WorldWideScience

Sample records for neurodegenerative disorders consistent

  1. Aquatherapy for neurodegenerative disorders.

    Science.gov (United States)

    Plecash, Alyson R; Leavitt, Blair R

    2014-01-01

    Aquatherapy is used for rehabilitation and exercise; water provides a challenging, yet safe exercise environment for many special populations. We have reviewed the use of aquatherapy programs in four neurodegenerative disorders: Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. Results support the use of aquatherapy in Parkinson's disease and multiple sclerosis, however further evidence is required to make specific recommendations in all of the aforementioned disorders.

  2. Autophagy and neurodegenerative disorders

    Institute of Scientific and Technical Information of China (English)

    Evangelia Kesidou; Roza Lagoudaki; Olga Touloumi; Kyriaki-Nefeli Poulatsidou; Constantina Simeonidou

    2013-01-01

    Accumulation of aberrant proteins and inclusion bodies are hallmarks in most neurodegenerative diseases. Consequently, these aggregates within neurons lead to toxic effects, overproduction of reactive oxygen species and oxidative stress. Autophagy is a significant intracel ular mechanism that removes damaged organelles and misfolded proteins in order to maintain cel homeostasis. Excessive or insufficient autophagic activity in neurons leads to altered homeostasis and influences their survival rate, causing neurodegeneration. The review article provides an update of the role of autophagic process in representative chronic and acute neurodegenerative disorders.

  3. Molecular diagnostics of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Megha eAgrawal

    2015-09-01

    Full Text Available Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer’s and Parkinson’s disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease, and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  4. Molecular diagnostics of neurodegenerative disorders.

    Science.gov (United States)

    Agrawal, Megha; Biswas, Abhijit

    2015-01-01

    Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  5. The aging brain and neurodegenerative disorders

    International Nuclear Information System (INIS)

    Braffman, B.H.; Trojanowski, J.Q.; Atlas, S.W.

    1991-01-01

    Both the aging brain and neurodegenerative disorders are characterized by a lack of vital endurance of affected neurons resulting in their premature death. Neuronal shrinkage or atrophy and death are normal and inevitable aspects of normal or successful aging; this is unexpected, excessive, and premature in neurodegenerative disorders. These histologic changes result in the neuroimaging findings of focal and/or diffuse atrophy with consequent enlargement of cerebrospinal fluid (CSF) spaces. The aging brain and neurodegenerative disorders share other magnetic resonance (MR) changes, i.e., markedly hypointense extrapyramidal nuclei and hyperintense white matter foci. The sequelae of senescent vascular changes result in additional characteristic features of the aging brain. This paper presents the MR and neuropathologic manifestations of both the normal aging brain and the brain affected by neurodegenerative disorders

  6. Transmission of Neurodegenerative Disorders Through Blood Transfusion

    DEFF Research Database (Denmark)

    Edgren, Gustaf; Hjalgrim, Henrik; Rostgaard, Klaus

    2016-01-01

    BACKGROUND: The aggregation of misfolded proteins in the brain occurs in several neurodegenerative disorders. Aberrant protein aggregation is inducible in rodents and primates by intracerebral inoculation. Possible transfusion transmission of neurodegenerative diseases has important public health...... implications. OBJECTIVE: To investigate possible transfusion transmission of neurodegenerative disorders. DESIGN: Retrospective cohort study. SETTING: Nationwide registers of transfusions in Sweden and Denmark. PARTICIPANTS: 1 465 845 patients who received transfusions between 1968 and 2012. MEASUREMENTS.......9% received a transfusion from a donor diagnosed with one of the studied neurodegenerative diseases. No evidence of transmission of any of these diseases was found, regardless of approach. The hazard ratio for dementia in recipients of blood from donors with dementia versus recipients of blood from healthy...

  7. Ghrelin and Neurodegenerative Disorders-a Review.

    Science.gov (United States)

    Shi, Limin; Du, Xixun; Jiang, Hong; Xie, Junxia

    2017-03-01

    Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor 1a (GHS-R1a), is a gut-derived, orexigenic peptide hormone that primarily regulates growth hormone secretion, food intake, and energy homeostasis. With the wide expression of GHS-R1a in extra-hypothalamic regions, the physiological role of ghrelin is more extensive than solely its involvement in metabolic function. Ghrelin has been shown to be involved in numerous higher brain functions, such as memory, reward, mood, and sleep. Some of these functions are disrupted in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). This link between ghrelin and these neurodegenerative diseases is supported by numerous studies. This review aims to provide a comprehensive overview of the most recent evidence of the novel neuromodulatory role of ghrelin in PD, AD, and HD. Moreover, the changes in circulating and/or central ghrelin levels that are associated with disease progression are also postulated to be a biomarker for clinical diagnosis and therapy.

  8. Comparative Incidence of Conformational, Neurodegenerative Disorders.

    Directory of Open Access Journals (Sweden)

    Jesús de Pedro-Cuesta

    Full Text Available The purpose of this study was to identify incidence and survival patterns in conformational neurodegenerative disorders (CNDDs.We identified 2563 reports on the incidence of eight conditions representing sporadic, acquired and genetic, protein-associated, i.e., conformational, NDD groups and age-related macular degeneration (AMD. We selected 245 papers for full-text examination and application of quality criteria. Additionally, data-collection was completed with detailed information from British, Swedish, and Spanish registries on Creutzfeldt-Jakob disease (CJD forms, amyotrophic lateral sclerosis (ALS, and sporadic rapidly progressing neurodegenerative dementia (sRPNDd. For each condition, age-specific incidence curves, age-adjusted figures, and reported or calculated median survival were plotted and examined.Based on 51 valid reported and seven new incidence data sets, nine out of eleven conditions shared specific features. Age-adjusted incidence per million person-years increased from ≤1.5 for sRPNDd, different CJD forms and Huntington's disease (HD, to 1589 and 2589 for AMD and Alzheimer's disease (AD respectively. Age-specific profiles varied from (a symmetrical, inverted V-shaped curves for low incidences to (b those increasing with age for late-life sporadic CNDDs and for sRPNDd, with (c a suggested, intermediate, non-symmetrical inverted V-shape for fronto-temporal dementia and Parkinson's disease. Frequently, peak age-specific incidences from 20-24 to ≥90 years increased with age at onset and survival. Distinct patterns were seen: for HD, with a low incidence, levelling off at middle age, and long median survival, 20 years; and for sRPNDd which displayed the lowest incidence, increasing with age, and a short median disease duration.These results call for a unified population view of NDDs, with an age-at-onset-related pattern for acquired and sporadic CNDDs. The pattern linking age at onset to incidence magnitude and survival might

  9. Comparative Incidence of Conformational, Neurodegenerative Disorders

    Science.gov (United States)

    de Pedro-Cuesta, Jesús; Rábano, Alberto; Martínez-Martín, Pablo; Ruiz-Tovar, María; Alcalde-Cabero, Enrique; Almazán-Isla, Javier; Avellanal, Fuencisla; Calero, Miguel

    2015-01-01

    Background The purpose of this study was to identify incidence and survival patterns in conformational neurodegenerative disorders (CNDDs). Methods We identified 2563 reports on the incidence of eight conditions representing sporadic, acquired and genetic, protein-associated, i.e., conformational, NDD groups and age-related macular degeneration (AMD). We selected 245 papers for full-text examination and application of quality criteria. Additionally, data-collection was completed with detailed information from British, Swedish, and Spanish registries on Creutzfeldt-Jakob disease (CJD) forms, amyotrophic lateral sclerosis (ALS), and sporadic rapidly progressing neurodegenerative dementia (sRPNDd). For each condition, age-specific incidence curves, age-adjusted figures, and reported or calculated median survival were plotted and examined. Findings Based on 51 valid reported and seven new incidence data sets, nine out of eleven conditions shared specific features. Age-adjusted incidence per million person-years increased from ≤1.5 for sRPNDd, different CJD forms and Huntington's disease (HD), to 1589 and 2589 for AMD and Alzheimer's disease (AD) respectively. Age-specific profiles varied from (a) symmetrical, inverted V-shaped curves for low incidences to (b) those increasing with age for late-life sporadic CNDDs and for sRPNDd, with (c) a suggested, intermediate, non-symmetrical inverted V-shape for fronto-temporal dementia and Parkinson's disease. Frequently, peak age-specific incidences from 20–24 to ≥90 years increased with age at onset and survival. Distinct patterns were seen: for HD, with a low incidence, levelling off at middle age, and long median survival, 20 years; and for sRPNDd which displayed the lowest incidence, increasing with age, and a short median disease duration. Interpretation These results call for a unified population view of NDDs, with an age-at-onset-related pattern for acquired and sporadic CNDDs. The pattern linking age at onset to

  10. Interaction between -Synuclein and Other Proteins in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Kurt A. Jellinger

    2011-01-01

    Full Text Available Protein aggregation is a common characteristic of many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic, and experimental differences, evidence increasingly indicates considerable overlap between synucleinopathies and tauopathies or other protein-misfolding diseases. Inclusions, characteristics of these disorders, also occurring in other neurodegenerative diseases, suggest interactions of pathological proteins engaging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Parkinson and Alzheimer diseases have confirmed correlations/overlaps between these and other neurodegenerative disorders. The synergistic effects of α-synuclein, hyperphosphorylated tau, amyloid-β, and other pathologic proteins, and the underlying molecular pathogenic mechanisms, including induction and spread of protein aggregates, are critically reviewed, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, although the etiology of most of these processes is still mysterious.

  11. Ghrelin: a link between ageing, metabolism and neurodegenerative disorders

    NARCIS (Netherlands)

    Stoyanova, Irina

    2014-01-01

    Along with the increase in life expectancy over the last century comes the increased risk for development of age-related disorders, including metabolic and neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. These chronic disorders share two main characteristics:

  12. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Yajin Liao

    2017-02-01

    Full Text Available The mitochondrial calcium uniporter (MCU—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP; however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders.

  13. Global warming and neurodegenerative disorders: speculations on their linkage

    Science.gov (United States)

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders. PMID:25671171

  14. Global warming and neurodegenerative disorders: speculations on their linkage.

    Science.gov (United States)

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  15. Predictive gene testing for Huntington disease and other neurodegenerative disorders.

    Science.gov (United States)

    Wedderburn, S; Panegyres, P K; Andrew, S; Goldblatt, J; Liebeck, T; McGrath, F; Wiltshire, M; Pestell, C; Lee, J; Beilby, J

    2013-12-01

    Controversies exist around predictive testing (PT) programmes in neurodegenerative disorders. This study sets out to answer the following questions relating to Huntington disease (HD) and other neurodegenerative disorders: differences between these patients in their PT journeys, why and when individuals withdraw from PT, and decision-making processes regarding reproductive genetic testing. A case series analysis of patients having PT from the multidisciplinary Western Australian centre for PT over the past 20 years was performed using internationally recognised guidelines for predictive gene testing in neurodegenerative disorders. Of 740 at-risk patients, 518 applied for PT: 466 at risk of HD, 52 at risk of other neurodegenerative disorders - spinocerebellar ataxias, hereditary prion disease and familial Alzheimer disease. Thirteen percent withdrew from PT - 80.32% of withdrawals occurred during counselling stages. Major withdrawal reasons related to timing in the patients' lives or unknown as the patient did not disclose the reason. Thirty-eight HD individuals had reproductive genetic testing: 34 initiated prenatal testing (of which eight withdrew from the process) and four initiated pre-implantation genetic diagnosis. There was no recorded or other evidence of major psychological reactions or suicides during PT. People withdrew from PT in relation to life stages and reasons that are unknown. Our findings emphasise the importance of: (i) adherence to internationally recommended guidelines for PT; (ii) the role of the multidisciplinary team in risk minimisation; and (iii) patient selection. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  16. Nanomedicine and neurodegenerative disorders: so close yet so far.

    Science.gov (United States)

    Tosi, Giovanni; Vandelli, Maria Angela; Forni, Flavio; Ruozi, Barbara

    2015-07-01

    This editorial provides an overview of the main advantages of the use of nanomedicine-based approach for innovation in the treatment of neurodegenerative diseases. Besides these aspects, a critical analysis on the main causes that slow the application of nanomedicine to brain disorders is given along with the identification of possible solutions and possible interventions. Better communication between the main players of research in this field and a detailed understanding of the most critical issues to be addressed should help in defining future directions towards the improvement and, finally, the clinical application of nanomedicine to neurodegenerative diseases.

  17. Evidence-based therapy for sleep disorders in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    LIU Ling

    2013-08-01

    Full Text Available Objective To evaluate the effectiveness of the treatments for sleep disorders in neurodegenerative diseases so as to provide the best therapeutic regimens for the evidence-based treatment. Methods Search PubMed, MEDLINE, Cochrane Library, Wanfang Data and China National Knowledge Infrastructure (CNKI databases with "sleep disorder or sleep disturbance", "neurodegenerative diseases", "Parkinson's disease or PD", "Alzheimer's disease or AD", "multiple system atrophy or MSA" as retrieval words. The quality of the articles were evaluated with Jadad Scale. Results A total of 35 articles, including 2 systematic reviews, 5 randomized controlled trials, 13 clinical controlled trials, 13 case series and 2 epidemiological investigation studies were included for evaluation, 13 of which were high grade and 22 were low grade articles. Clinical evidences showed that: 1 advice on sleep hygiene, careful use of dopaminergic drugs and hypnotic sedative agents should be considered for PD. Bright light therapy (BLT may improve circadian rhythm sleep disorders and clonazepam may be effective for rapid eye movement sleep behavior disorder (RBD. However, to date, very few controlled studies are available to make a recommendation for the management of sleep disorders in PD; 2 treatments for sleep disorders in AD include drug therapy (e.g. melatonin, acetylcholinesterase inhibitors, antipsychotic drugs, antidepressants and non-drug therapy (e.g. BLT, behavior therapy, but very limited evidence shows the effectiveness of these treatments; 3 the first line treatment for sleep-related breathing disorder in MSA is nasal continuous positive airway pressure (nCPAP, and clonazepam is effective for RBD in MSA; 4 there is rare evidence related to the treatment of sleep disorders in dementia with Lewy body (DLB and amyotrophic lateral sclerosis (ALS. Conclusion Evidence-based medicine can provide the best clinical evidence on sleep disorders' treatment in neurodegenerative

  18. Neurodegenerative Disorders Treatment: The MicroRNA Role.

    Science.gov (United States)

    Ridolfi, Barbara; Abdel-Haq, Hanin

    2017-01-01

    Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and prion disease are not timely and effectively treated using conventional therapies. This emphasizes the need for alternative therapeutic approaches. In this respect, gene-based therapies have been adopted as potentially feasible alternative therapies, where the microRNA (miRNA) approach has experienced a great explosion in recent years. Because miRNAs have been shown to be implicated in the pathogenesis of several diseases including neurodegenerative diseases, they are intensely studied as candidates for diagnostic and prognostic biomarkers, as predictors of drug response and as therapeutic agents. In this review, we evaluate the feasibility of both direct and indirect miRNA mimics and inhibitors toward the regulation of neurodegenerative-related genes both in vivo and in vitro models, highlight the advantages and drawbacks associated with miRNA-based therapy, and summarize the relevant techniques and approaches attempted to deliver miRNAs to the central nervous system for therapeutic purposes, with particular regard to the exosomes. Additionally, we describe a new approach that holds great promise for the treatment of a wide range of diseases including neurodegenerative disorders. This approach is based on addressing the incorporation of miRNAs into exosomes to increase the quantity and quality of miRNA packed and delivered to the central nervous system and other sites of action. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Transposable elements in TDP-43-mediated neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Wanhe Li

    Full Text Available Elevated expression of specific transposable elements (TEs has been observed in several neurodegenerative disorders. TEs also can be active during normal neurogenesis. By mining a series of deep sequencing datasets of protein-RNA interactions and of gene expression profiles, we uncovered extensive binding of TE transcripts to TDP-43, an RNA-binding protein central to amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration (FTLD. Second, we find that association between TDP-43 and many of its TE targets is reduced in FTLD patients. Third, we discovered that a large fraction of the TEs to which TDP-43 binds become de-repressed in mouse TDP-43 disease models. We propose the hypothesis that TE mis-regulation contributes to TDP-43 related neurodegenerative diseases.

  20. REM behaviour disorder detection associated with neurodegenerative diseases

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Sorensen, Gertrud; Zoetmulder, Marielle

    2010-01-01

    Abnormal skeleton muscle activity during REM sleep is characterized as REM Behaviour Disorder (RBD), and may be an early marker for different neurodegenerative diseases. Early detection of RBD is therefore highly important, and in this ongoing study a semi-automatic method for RBD detection......, a computerized algorithm has been attempted implemented. By analysing the REM and non-REM EMG activity, using advanced signal processing tools combined with a statistical classifier, it is possible to discriminate normal and abnormal EMG activity. Due to the small number of patients, the overall performance...

  1. Iron in neurodegenerative disorders: being in the wrong place at the wrong time?

    Science.gov (United States)

    Apostolakis, Sotirios; Kypraiou, Anna-Maria

    2017-11-27

    Brain iron deposits have been reported consistently in imaging and histologic examinations of patients with neurodegenerative disorders. While the origins of this finding have not been clarified yet, it is speculated that impaired iron homeostasis or deficient transport mechanisms result in the accumulation of this highly toxic metal ultimately leading to formation of reactive oxygen species and cell death. On the other hand, there are also those who support that iron is just an incidental finding, a by product of neuronal loss. A literature review has been performed in order to present the key findings in support of the iron hypothesis of neurodegeneration, as well as to identify conditions causing or resulting from iron overload and compare and contrast their features with the most prominent neurodegenerative disorders. There is an abundance of experimental and observational findings in support of the hypothesis in question; however, as neurodegeneration is a rare incident of commonly encountered iron-associated disorders of the nervous system, and this metal is found in non-neurodegenerative disorders as well, it is possible that iron is the result or even an incidental finding in neurodegeneration. Understanding the underlying processes of iron metabolism in the brain and particularly its release during cell damage is expected to provide a deeper understanding of the origins of neurodegeneration in the years to come.

  2. Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders.

    Science.gov (United States)

    Ikonomovic, Milos D; Mi, Zhiping; Abrahamson, Eric E

    2017-03-01

    Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also involved in neuropathology of several other chronic neurodegenerative diseases, and are under intense investigation in the aftermath of TBI as potential contributors to the risk for developing AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and dependent on injury severity, age-at-injury, and length of time between injury and neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid states related to age and central and peripheral vascular health. In this regard, dysfunction of the aging neurovascular system could be an important link between TBI and chronic neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like pathology which is amplified in the context of aging. Thus with advanced age and vascular dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of

  3. Support system and method for detecting neurodegenerative disorder

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a system and a method for detection of abnormal motor activity during REM sleep, and further to systems and method for assisting in detecting neurodegenerative disorders such as Parkinson's. One embodiment relates to a method for detection of abnormal motor activity...... during REM sleep comprising the steps of: performing polysomnographic recordings of a sleeping subject, thereby obtaining one or more electromyography (EMG) derivations, preferably surface EMG recordings, and one or more EEG derivations, and/or one or more electrooculargraphy (EOG) derivations, detecting...... one or more REM sleep stages, preferably based on the one or more EEG and/or EOG derivations, determining the level of muscle activity during the one or more REM sleep stages based on the one or more EMG derivations, wherein a subject having an increased level of muscle activity during REM sleep...

  4. Motor Phenotype in Neurodegenerative Disorders: Gait and Balance Platform Study Design Protocol for the Ontario Neurodegenerative Research Initiative (ONDRI).

    Science.gov (United States)

    Montero-Odasso, Manuel; Pieruccini-Faria, Frederico; Bartha, Robert; Black, Sandra E; Finger, Elizabeth; Freedman, Morris; Greenberg, Barry; Grimes, David A; Hegele, Robert A; Hudson, Christopher; Kleinstiver, Peter W; Lang, Anthony E; Masellis, Mario; McLaughlin, Paula M; Munoz, Douglas P; Strother, Stephen; Swartz, Richard H; Symons, Sean; Tartaglia, Maria Carmela; Zinman, Lorne; Strong, Michael J; McIlroy, William

    2017-01-01

    The association of cognitive and motor impairments in Alzheimer's disease and other neurodegenerative diseases is thought to be related to damage in the common brain networks shared by cognitive and cortical motor control processes. These common brain networks play a pivotal role in selecting movements and postural synergies that meet an individual's needs. Pathology in this "highest level" of motor control produces abnormalities of gait and posture referred to as highest-level gait disorders. Impairments in cognition and mobility, including falls, are present in almost all neurodegenerative diseases, suggesting common mechanisms that still need to be unraveled. To identify motor-cognitive profiles across neurodegenerative diseases in a large cohort of patients. Cohort study that includes up to 500 participants, followed every year for three years, across five neurodegenerative disease groups: Alzheimer's disease/mild cognitive impairment, frontotemporal degeneration, vascular cognitive impairment, amyotrophic lateral sclerosis, and Parkinson's disease. Gait and balance will be assessed using accelerometers and electronic walkways, evaluated at different levels of cognitive and sensory complexity, using the dual-task paradigm. Comparison of cognitive and motor performances across neurodegenerative groups will allow the identification of motor-cognitive phenotypes through the standardized evaluation of gait and balance characteristics. As part of the Ontario Neurodegenerative Research Initiative (ONDRI), the gait and balance platform aims to identify motor-cognitive profiles across neurodegenerative diseases. Gait assessment, particularly while dual-tasking, will help dissect the cognitive and motor contribution in mobility and cognitive decline, progression to dementia syndromes, and future adverse outcomes including falls and mortality.

  5. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders

    International Nuclear Information System (INIS)

    Agarwal, Swati; Yadav, Anuradha; Chaturvedi, Rajnish Kumar

    2017-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found that the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models. - Highlights: • Peroxisome -activated receptors (PPARs) serve to be a promising therapeutic target for several neurodegenerative disorders. • PPAR agonist as well as provides neuroprotection in vitro as well as in vivo animal models of neurodegenerative disorders. • PPAR activating anti-inflammatory drugs use is effective in decreasing progression of neurodegenerative diseases.

  6. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders?

    Science.gov (United States)

    Luchowska-Kocot, Dorota; Kiełczykowska, Małgorzata; Musik, Irena; Kurzepa, Jacek

    2017-01-01

    Vitamin C (Vit C) is considered to be a vital antioxidant molecule in the brain. Intracellular Vit C helps maintain integrity and function of several processes in the central nervous system (CNS), including neuronal maturation and differentiation, myelin formation, synthesis of catecholamine, modulation of neurotransmission and antioxidant protection. The importance of Vit C for CNS function has been proven by the fact that targeted deletion of the sodium-vitamin C co-transporter in mice results in widespread cerebral hemorrhage and death on post-natal day one. Since neurological diseases are characterized by increased free radical generation and the highest concentrations of Vit C in the body are found in the brain and neuroendocrine tissues, it is suggested that Vit C may change the course of neurological diseases and display potential therapeutic roles. The aim of this review is to update the current state of knowledge of the role of vitamin C on neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis and amyotrophic sclerosis, as well as psychiatric disorders including depression, anxiety and schizophrenia. The particular attention is attributed to understanding of the mechanisms underlying possible therapeutic properties of ascorbic acid in the presented disorders. PMID:28654017

  7. Hippocampal-Prefrontal Circuit and Disrupted Functional Connectivity in Psychiatric and Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Ming Li

    2015-01-01

    Full Text Available In rodents, the hippocampus has been studied extensively as part of a brain system responsible for learning and memory, and the prefrontal cortex (PFC participates in numerous cognitive functions including working memory, flexibility, decision making, and rewarding learning. The neuronal projections from the hippocampus, either directly or indirectly, to the PFC, referred to as the hippocampal-prefrontal cortex (Hip-PFC circuit, play a critical role in cognitive and emotional regulation and memory consolidation. Although in certain psychiatric and neurodegenerative diseases, structural connectivity viewed by imaging techniques has been consistently found to be associated with clinical phenotype and disease severity, the focus has moved towards the investigation of connectivity correlates of molecular pathology and coupling of oscillation. Moreover, functional and structural connectivity measures have been emerging as potential intermediate biomarkers for neuronal disorders. In this review, we summarize progress on the anatomic, molecular, and electrophysiological characters of the Hip-PFC circuit in cognition and emotion processes with an emphasis on oscillation and functional connectivity, revealing a disrupted Hip-PFC connectivity and electrical activity in psychiatric and neurodegenerative disorders as a promising candidate of neural marker for neuronal disorders.

  8. Relationships between Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: Clinical Assessments, Biomarkers, and Treatment

    Science.gov (United States)

    Li, Min; Wang, Li; Liu, Jiang-Hong; Zhan, Shu-Qin

    2018-01-01

    Objective: Rapid eye movement sleep behavior disorder (RBD) is characterized by dream enactment and loss of muscle atonia during rapid eye movement sleep. RBD is closely related to α-synucleinopathies including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Many studies have investigated the markers of imaging and neurophysiological, genetic, cognitive, autonomic function of RBD and their predictive value for neurodegenerative diseases. This report reviewed the progress of these studies and discussed their limitations and future research directions. Data Sources: Using the combined keywords: “RBD”, “neurodegenerative disease”, “Parkinson disease”, and “magnetic resonance imaging”, the PubMed/MEDLINE literature search was conducted up to January 1, 2018. Study Selection: A total of 150 published articles were initially identified citations. Of the 150 articles, 92 articles were selected after further detailed review. This study referred to all the important English literature in full. Results: Single-nucleotide polymorphisms in SCARB2 (rs6812193) and MAPT (rs12185268) were significantly associated with RBD. The olfactory loss, autonomic dysfunction, marked electroencephalogram slowing during both wakefulness and rapid eye movement sleep, and cognitive impairments were potential predictive markers for RBD conversion to neurodegenerative diseases. Traditional structural imaging studies reported relatively inconsistent results, whereas reduced functional connectivity between the left putamen and substantia nigra and dopamine transporter uptake demonstrated by functional imaging techniques were relatively consistent findings. Conclusions: More longitudinal studies should be conducted to evaluate the predictive value of biomarkers of RBD. Moreover, because the glucose and dopamine metabolisms are not specific for assessing cognitive cognition, the molecular metabolism directly related to cognition should be investigated

  9. The emergence of designed multiple ligands for neurodegenerative disorders.

    Science.gov (United States)

    Geldenhuys, Werner J; Youdim, Moussa B H; Carroll, Richard T; Van der Schyf, Cornelis J

    2011-09-01

    The incidence of neurodegenerative diseases has seen a constant increase in the global population, and is likely to be the result of extended life expectancy brought about by better health care. Despite this increase in the incidence of neurodegenerative diseases, there has been a dearth in the introduction of new disease-modifying therapies that are approved to prevent or delay the onset of these diseases, or reverse the degenerative processes in brain. Mounting evidence in the peer-reviewed literature shows that the etiopathology of these diseases is extremely complex and heterogeneous, resulting in significant comorbidity and therefore unlikely to be mitigated by any drug acting on a single pathway or target. A recent trend in drug design and discovery is the rational design or serendipitous discovery of novel drug entities with the ability to address multiple drug targets that form part of the complex pathophysiology of a particular disease state. In this review we discuss the rationale for developing such multifunctional drugs (also called designed multiple ligands or DMLs), and why these drug candidates seem to offer better outcomes in many cases compared to single-targeted drugs in pre-clinical studies for neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Examples are drawn from the literature of drug candidates that have already reached the market, some unsuccessful attempts, and others that are still in the drug development pipeline. Copyright © 2011. Published by Elsevier Ltd.

  10. Prions, prion-like prionoids, and neurodegenerative disordersVacancy

    Directory of Open Access Journals (Sweden)

    Ashok Verma

    2016-01-01

    Full Text Available Prion diseases or transmissible spongiform encephalopathies are fatal neurodegenerative diseases characterized by the aggregation and deposition of the misfolded prion protein in the brain. α-synuclein (α-syn-associated multiple system atrophy has been recently shown to be caused by a bona fide α-syn prion strain. Several other misfolded native proteins such as β-amyloid, tau and TDP-43 share some aspects of prions although none of them is shown to be transmissible in nature or in experimental animals. However, these prion-like “prionoids” are causal to a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The remarkable recent discovery of at least two new α-syn prion strains and their transmissibility in transgenic mice and in vitro cell models raises a distinct question as to whether some specific strain of other prionoids could have the capability of disease transmission in a manner similar to prions. In this overview, we briefly describe human and other mammalian prion diseases and comment on certain similarities between prion and prionoid and the possibility of prion-like transmissibility of some prionoid strains.

  11. Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders.

    Science.gov (United States)

    Jęśko, Henryk; Wencel, Przemysław; Strosznajder, Robert P; Strosznajder, Joanna B

    2017-03-01

    Sirtuins (SIRT1-SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD + levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modulate the course of aging and affect neurodegenerative diseases. SIRTSs interact with multiple signaling proteins, transcription factors (TFs) and poly(ADP-ribose) polymerases (PARPs) another class of NAD + -dependent post-translational protein modifiers. The cross-talk between SIRTs TFs and PARPs is a highly promising research target in a number of brain pathologies. This review describes updated results on sirtuins in brain aging/neurodegeneration. It focuses on SIRT1 but also on the roles of mitochondrial SIRTs (SIRT3, 4, 5) and on SIRT6 and SIRT2 localized in the nucleus and in cytosol, respectively. The involvement of SIRTs in regulation of insulin-like growth factor signaling in the brain during aging and in Alzheimer's disease was also focused. Moreover, we analyze the mechanism(s) and potential significance of interactions between SIRTs and several TFs in the regulation of cell survival and death. A critical view is given on the application of SIRT activators/modulators in therapy of neurodegenerative diseases.

  12. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Laura Louise Scott

    2017-12-01

    Full Text Available Although cyanobacterial β-N-methylamino-l-alanine (BMAA has been implicated in the development of Alzheimer’s Disease (AD, Parkinson’s Disease (PD and Amyotrophic Lateral Sclerosis (ALS, no BMAA animal model has reproduced all the neuropathology typically associated with these neurodegenerative diseases. We present here a neonatal BMAA model that causes β-amyloid deposition, neurofibrillary tangles of hyper-phosphorylated tau, TDP-43 inclusions, Lewy bodies, microbleeds and microgliosis as well as severe neuronal loss in the hippocampus, striatum, substantia nigra pars compacta, and ventral horn of the spinal cord in rats following a single BMAA exposure. We also report here that BMAA exposure on particularly PND3, but also PND4 and 5, the critical period of neurogenesis in the rodent brain, is substantially more toxic than exposure to BMAA on G14, PND6, 7 and 10 which suggests that BMAA could potentially interfere with neonatal neurogenesis in rats. The observed selective toxicity of BMAA during neurogenesis and, in particular, the observed pattern of neuronal loss observed in BMAA-exposed rats suggest that BMAA elicits its effect by altering dopamine and/or serotonin signaling in rats.

  13. Research progress on the pathogenesis of rapid eye movement sleep behavior disorder and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Hai-yang JIANG

    2017-10-01

    Full Text Available Rapid eye movement sleep behavior disorder (RBD is a sleep disorder characterized by the disappearance of muscle relaxation and enacting one's dreams during rapid eye movement (REM, with most of the dreams being violent or aggressive. Prevalence of RBD, based on population, is 0.38%-2.01%, but it becomes much higher in patients with neurodegenerative diseases, especially α - synucleinopathies. RBD may herald the emergence of α-synucleinopathies by decades, thus it may be used as an effective early marker of neurodegenerative diseases. In this review, we summarized the progress on the pathogenesis of RBD and its relationship with neurodegenerative diseases. DOI: 10.3969/j.issn.1672-6731.2017.10.003

  14. Tremor in neurodegenerative ataxias, Huntington disease and tic disorder.

    Science.gov (United States)

    Rudzińska, M; Krawczyk, M; Wójcik-Pędziwiatr, M; Szczudlik, A; Tomaszewski, T

    2013-01-01

    Tremor is the most prevalent movement disorder, defined as rhythmic oscillations of a body part, caused by alternating or synchronic contractions of agonistic or antagonistic muscles. The aim of the study was to assess prevalence and to characterize parameters of tremor accompanying de-generative ataxias, Huntington disease (HD) and tic disorders in comparison with a control group. Forty-three patients with degenerative ataxias, 28 with HD and 26 with tic disorders together with 51 healthy controls were included in the study. For each participant, clinical and instrumental assessment (accelerometer, electromyography [EMG], graphic tablet) of hand tremor was performed. Frequency and severity of tremor were assessed in three positions: at rest (rest tremor), with hands extended (postural tremor), during the 'finger-to-nose' test and during Archimedes spiral drawing (kinetic tremor). Based on the mass load test, the type of tremor was determined as essential tremor type or enhanced physiological tremor type. The incidence of tremor in the accelerometry in patients with degenerative ataxia (50%) significantly differs from controls (10%) (p = 0.001). The dominant tremor was postural, low-intense, with 7-Hz frequency, essential tremor (23%) or other tremor type (23%), while enhanced physiological tremor was the least frequent (2%). Tremor in patients with HD and tic disorders was found in 10% and 20% of patients, respectively, similarly to the control group. Tremor was mild, postural and of essential tremor type, less frequently of enhanced physiological tremor type. No correlation between severity of tremor and severity of disease was found. The prevalence of tremor is considerably higher among patients with degenerative ataxias compared with HD, tic disorder and the control group. The most common type of tremor accompanying ataxias, HD and tic disorders is essential tremor type.

  15. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Heeok Hong

    2016-05-01

    Full Text Available Brain diseases and disorders such as Alzheimer disease, Parkinson disease, depression, schizophrenia, autism, and addiction lead to reduced quality of daily life through abnormal thoughts, perceptions, emotional states, and behavior. While the underlying mechanisms remain poorly understood, human and animal studies have supported a role of neuroinflammation in the etiology of these diseases. In the central nervous system, an increased inflammatory response is capable of activating microglial cells, leading to the release of pro-inflammatory cytokines including interleukin (IL-1β, IL-6, and tumor necrosis factor-α. In turn, the pro-inflammatory cytokines aggravate and propagate neuroinflammation, degenerating healthy neurons and impairing brain functions. Therefore, activated microglia may play a key role in neuroinflammatory processes contributing to the pathogenesis of psychiatric disorders and neurodegeneration.

  16. Lower urinary tract dysfunction in patients with parkinsonism and other neurodegenerative disorders

    DEFF Research Database (Denmark)

    Winge, Kristian

    2015-01-01

    of incontinence in Alzheimer's disease, but higher cognitive function including attention and self-management may play a role. Incontinence is a major risk factor for loss of independence. The complex pathophysiologic mechanisms of neurodegenerative disorders and hence complex symptoms play important roles......Progressive neurodegenerative disorders are devastating diseases with often fatal outcomes. Lower urinary tract symptoms (LUTS) add to morbidity and increase the risk of becoming dependent on the help of others (e.g., nursing-home referral). In Parkinson's disease (PD), the specific loss...... in LUTS and patient quality of life. Nocturia, incontinence, and urgency as well as poor bladder emptying are the most common symptoms. These symptoms may interact with the core symptoms of the disorders, increasing the risk of incontinence and infection. In rarer neurogenerative disorder LUTS may...

  17. Trends in the Molecular Pathogenesis and Clinical Therapeutics of Common Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Sibongile R. Sibambo

    2009-06-01

    Full Text Available The term neurodegenerative disorders, encompasses a variety of underlying conditions, sporadic and/or familial and are characterized by the persistent loss of neuronal subtypes. These disorders can disrupt molecular pathways, synapses, neuronal subpopulations and local circuits in specific brain regions, as well as higher-order neural networks. Abnormal network activities may result in a vicious cycle, further impairing the integrity and functions of neurons and synapses, for example, through aberrant excitation or inhibition. The most common neurodegenerative disorders are Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and Huntington’s disease. The molecular features of these disorders have been extensively researched and various unique neurotherapeutic interventions have been developed. However, there is an enormous coercion to integrate the existing knowledge in order to intensify the reliability with which neurodegenerative disorders can be diagnosed and treated. The objective of this review article is therefore to assimilate these disorders’ in terms of their neuropathology, neurogenetics, etiology, trends in pharmacological treatment, clinical management, and the use of innovative neurotherapeutic interventions.

  18. Neurodevelopmental Versus Neurodegenerative Model of Schizophrenia and Bipolar Disorder: Comparison with Physiological Brain Development and Aging.

    Science.gov (United States)

    Buoli, Massimiliano; Serati, Marta; Caldiroli, Alice; Cremaschi, Laura; Altamura, Alfredo Carlo

    2017-03-01

    Available data support a contribution of both neurodevelopmental and neurodegenerative factors in the etiology of schizophrenia (SCH) and bipolar disorder (BD). Of note, one of the most important issue of the current psychiatric research is to identify the specific factors that contribute to impaired brain development and neurodegeneration in SCH and BD, and especially how these factors alter normal brain development and physiological aging process. Our hypothesis is that only specific damages, taking place in precise brain development stages, are associated with future SCH /BD onset and that neurodegeneration consists of an acceleration of brain aging after SCH /BD onset. In support of our hypothesis, the results of the present narrative mini-review shows as neurodevelopmental damages generally contribute to neuropsychiatric syndromes (e.g. hypothyroidism or treponema pallidum), but only some of them are specifically associated with adult SCH and BD (e.g. toxoplasma or substance abuse), particularly if they happen in specific stages of brain development. On the other hand, cognitive impairment and brain changes, associated with long duration of SCH /BD, look like what happens during aging: memory, executive domains and prefrontal cortex are implicated both in aging and in SCH /BD progression. Future research will explore possible validity of this etiological model for SCH and BD.

  19. Therapeutic Role and Drug Delivery Potential of Neuroinflammation as a Target in Neurodegenerative Disorders.

    Science.gov (United States)

    Singh, Abhijeet; Chokriwal, Ankit; Sharma, Madan Mohan; Jain, Devendra; Saxena, Juhi; Stephen, Bjorn John

    2017-08-16

    Neuroinflammation, the condition associated with the hyperactivity of immune cells within the CNS (central nervous system), has recently been linked to a host range of neurodegenerative disorders. Targeting neuroinflammation could be of prime importance as recent research highlights the beneficial aspects associated with modulating the inflammatory mediators associated with the CNS. One of the main obstructions in neuroinflammatory treatments is the hindrance posed by the blood-brain barrier for the delivery of drugs. Hence, research has focused on novel modes of transport for drugs to cross the barrier through drug delivery and nanotechnology approaches. In this Review, we highlight the therapeutic advancement made in the field of neurodegenerative disorders by focusing on the effect neuroinflammation treatment has on these conditions.

  20. Recent Updates in the Treatment of Neurodegenerative Disorders Using Natural Compounds

    Directory of Open Access Journals (Sweden)

    Mahmood Rasool

    2014-01-01

    Full Text Available Neurodegenerative diseases are characterized by protein aggregates and inflammation as well as oxidative stress in the central nervous system (CNS. Multiple biological processes are linked to neurodegenerative diseases such as depletion or insufficient synthesis of neurotransmitters, oxidative stress, abnormal ubiquitination. Furthermore, damaging of blood brain barrier (BBB in the CNS also leads to various CNS-related diseases. Even though synthetic drugs are used for the management of Alzheimer’s disease, Parkinson’s disease, autism, and many other chronic illnesses, they are not without side effects. The attentions of researchers have been inclined towards the phytochemicals, many of which have minimal side effects. Phytochemicals are promising therapeutic agents because many phytochemicals have anti-inflammatory, antioxidative as well as anticholinesterase activities. Various drugs of either synthetic or natural origin applied in the treatment of brain disorders need to cross the BBB before they can be used. This paper covers various researches related to phytochemicals used in the management of neurodegenerative disorders.

  1. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders.

    Science.gov (United States)

    Eira, Jessica; Silva, Catarina Santos; Sousa, Mónica Mendes; Liz, Márcia Almeida

    2016-06-01

    Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. C9orf72-related disorders: expanding the clinical and genetic spectrum of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Paulo Victor Sgobbi de Souza

    2015-03-01

    Full Text Available Neurodegenerative diseases represent a heterogeneous group of neurological conditions primarily involving dementia, motor neuron disease and movement disorders. They are mostly related to different pathophysiological processes, notably in family forms in which the clinical and genetic heterogeneity are lush. In the last decade, much knowledge has been acumulated about the genetics of neurodegenerative diseases, making it essential in cases of motor neuron disease and frontotemporal dementia the repeat expansions of C9orf72 gene. This review analyzes the main clinical, radiological and genetic aspects of the phenotypes related to the hexanucleotide repeat expansions (GGGGCC of C9orf72 gene. Future studies will aim to further characterize the neuropsychological, imaging and pathological aspects of the extra-motor features of motor neuron disease, and will help to provide a new classification system that is both clinically and biologically relevant.

  3. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders.

    Science.gov (United States)

    Luan, Hemi; Wang, Xian; Cai, Zongwei

    2017-11-12

    Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the

  4. Glucose 6 phosphatase dehydrogenase (G6PD and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Manju Tiwari

    2017-12-01

    Full Text Available Glucose 6 phosphate dehydrogenase (G6PD is a key and rate limiting enzyme in the pentose phosphate pathway (PPP. The physiological significance of enzyme is providing reduced energy to specific cells like erythrocyte by maintaining co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH. There are preponderance research findings that demonstrate the enzyme (G6PD role in the energy balance, and it is associated with blood-related diseases and disorders, primarily the anemia resulted from G6PD deficiency. The X-linked genetic deficiency of G6PD and associated non-immune hemolytic anemia have been studied widely across the globe. Recent advancement in biology, more precisely neuroscience has revealed that G6PD is centrally involved in many neurological and neurodegenerative disorders. The neuroprotective role of the enzyme (G6PD has also been established, as well as the potential of G6PD in oxidative damage and the Reactive Oxygen Species (ROS produced in cerebral ischemia. Though G6PD deficiency remains a global health issue, however, a paradigm shift in research focusing the potential of the enzyme in neurological and neurodegenerative disorders will surely open a new avenue in diagnostics and enzyme therapeutics. Here, in this study, more emphasis was made on exploring the role of G6PD in neurological and inflammatory disorders as well as non-immune hemolytic anemia, thus providing diagnostic and therapeutic opportunities.

  5. Open Science Meets Stem Cells: A New Drug Discovery Approach for Neurodegenerative Disorders.

    Science.gov (United States)

    Han, Chanshuai; Chaineau, Mathilde; Chen, Carol X-Q; Beitel, Lenore K; Durcan, Thomas M

    2018-01-01

    Neurodegenerative diseases are a challenge for drug discovery, as the biological mechanisms are complex and poorly understood, with a paucity of models that faithfully recapitulate these disorders. Recent advances in stem cell technology have provided a paradigm shift, providing researchers with tools to generate human induced pluripotent stem cells (iPSCs) from patient cells. With the potential to generate any human cell type, we can now generate human neurons and develop "first-of-their-kind" disease-relevant assays for small molecule screening. Now that the tools are in place, it is imperative that we accelerate discoveries from the bench to the clinic. Using traditional closed-door research systems raises barriers to discovery, by restricting access to cells, data and other research findings. Thus, a new strategy is required, and the Montreal Neurological Institute (MNI) and its partners are piloting an "Open Science" model. One signature initiative will be that the MNI biorepository will curate and disseminate patient samples in a more accessible manner through open transfer agreements. This feeds into the MNI open drug discovery platform, focused on developing industry-standard assays with iPSC-derived neurons. All cell lines, reagents and assay findings developed in this open fashion will be made available to academia and industry. By removing the obstacles many universities and companies face in distributing patient samples and assay results, our goal is to accelerate translational medical research and the development of new therapies for devastating neurodegenerative disorders.

  6. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    International Nuclear Information System (INIS)

    Kamei, Hidekazu

    1989-01-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author)

  7. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  8. Open Science Meets Stem Cells: A New Drug Discovery Approach for Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Chanshuai Han

    2018-02-01

    Full Text Available Neurodegenerative diseases are a challenge for drug discovery, as the biological mechanisms are complex and poorly understood, with a paucity of models that faithfully recapitulate these disorders. Recent advances in stem cell technology have provided a paradigm shift, providing researchers with tools to generate human induced pluripotent stem cells (iPSCs from patient cells. With the potential to generate any human cell type, we can now generate human neurons and develop “first-of-their-kind” disease-relevant assays for small molecule screening. Now that the tools are in place, it is imperative that we accelerate discoveries from the bench to the clinic. Using traditional closed-door research systems raises barriers to discovery, by restricting access to cells, data and other research findings. Thus, a new strategy is required, and the Montreal Neurological Institute (MNI and its partners are piloting an “Open Science” model. One signature initiative will be that the MNI biorepository will curate and disseminate patient samples in a more accessible manner through open transfer agreements. This feeds into the MNI open drug discovery platform, focused on developing industry-standard assays with iPSC-derived neurons. All cell lines, reagents and assay findings developed in this open fashion will be made available to academia and industry. By removing the obstacles many universities and companies face in distributing patient samples and assay results, our goal is to accelerate translational medical research and the development of new therapies for devastating neurodegenerative disorders.

  9. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders.

    Science.gov (United States)

    Iturria-Medina, Yasser; Sotero, Roberto C; Toussaint, Paule J; Evans, Alan C

    2014-11-01

    Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM) for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database). Furthermore, this model strongly supports a) the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b) that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c) the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d) the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders.

  10. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Yasser Iturria-Medina

    2014-11-01

    Full Text Available Misfolded proteins (MP are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database. Furthermore, this model strongly supports a the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders.

  11. Integration of Nanobots Into Neural Circuits As a Future Therapy for Treating Neurodegenerative Disorders.

    Science.gov (United States)

    Saniotis, Arthur; Henneberg, Maciej; Sawalma, Abdul-Rahman

    2018-01-01

    Recent neuroscientific research demonstrates that the human brain is becoming altered by technological devices. Improvements in biotechnologies and computer based technologies are now increasing the likelihood for the development of brain augmentation devices in the next 20 years. We have developed the idea of an "Endomyccorhizae like interface" (ELI) nanocognitive device as a new kind of future neuroprosthetic which aims to facilitate neuronal network properties in individuals with neurodegenerative disorders. The design of our ELI may overcome the problems of invasive neuroprosthetics, post-operative inflammation, and infection and neuroprosthetic degradation. The method in which our ELI is connected and integrated to neuronal networks is based on a mechanism similar to endomyccorhizae which is the oldest and most widespread form of plant symbiosis. We propose that the principle of Endomyccorhizae could be relevant for developing a crossing point between the ELI and neuronal networks. Similar to endomyccorhizae the ELI will be designed to form webs, each of which connects multiple neurons together. The ELI will function to sense action potentials and deliver it to the neurons it connects to. This is expected to compensate for neuronal loss in some neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

  12. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support.

    Science.gov (United States)

    Marsh, Samuel E; Blurton-Jones, Mathew

    2017-06-01

    Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease currently affect tens of millions of people worldwide. Unfortunately, as the world's population ages, the incidence of many of these diseases will continue to rise and is expected to more than double by 2050. Despite significant research and a growing understanding of disease pathogenesis, only a handful of therapies are currently available and all of them provide only transient benefits. Thus, there is an urgent need to develop novel disease-modifying therapies to prevent the development or slow the progression of these debilitating disorders. A growing number of pre-clinical studies have suggested that transplantation of neural stem cells (NSCs) could offer a promising new therapeutic approach for neurodegeneration. While much of the initial excitement about this strategy focused on the use of NSCs to replace degenerating neurons, more recent studies have implicated NSC-mediated changes in neurotrophins as a major mechanism of therapeutic efficacy. In this mini-review we will discuss recent work that examines the ability of NSCs to provide trophic support to disease-effected neuronal populations and synapses in models of neurodegeneration. We will then also discuss some of key challenges that remain before NSC-based therapies for neurodegenerative diseases can be translated toward potential clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Integration of Nanobots Into Neural Circuits As a Future Therapy for Treating Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Arthur Saniotis

    2018-03-01

    Full Text Available Recent neuroscientific research demonstrates that the human brain is becoming altered by technological devices. Improvements in biotechnologies and computer based technologies are now increasing the likelihood for the development of brain augmentation devices in the next 20 years. We have developed the idea of an “Endomyccorhizae like interface” (ELI nanocognitive device as a new kind of future neuroprosthetic which aims to facilitate neuronal network properties in individuals with neurodegenerative disorders. The design of our ELI may overcome the problems of invasive neuroprosthetics, post-operative inflammation, and infection and neuroprosthetic degradation. The method in which our ELI is connected and integrated to neuronal networks is based on a mechanism similar to endomyccorhizae which is the oldest and most widespread form of plant symbiosis. We propose that the principle of Endomyccorhizae could be relevant for developing a crossing point between the ELI and neuronal networks. Similar to endomyccorhizae the ELI will be designed to form webs, each of which connects multiple neurons together. The ELI will function to sense action potentials and deliver it to the neurons it connects to. This is expected to compensate for neuronal loss in some neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

  14. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron

    Science.gov (United States)

    Morgan, Neil V; Westaway, Shawn K; Morton, Jenny E V; Gregory, Allison; Gissen, Paul; Sonek, Scott; Cangul, Hakan; Coryell, Jason; Canham, Natalie; Nardocci, Nardo; Zorzi, Giovanna; Pasha, Shanaz; Rodriguez, Diana; Desguerre, Isabelle; Mubaidin, Amar; Bertini, Enrico; Trembath, Richard C; Simonati, Alessandro; Schanen, Carolyn; Johnson, Colin A; Levinson, Barbara; Woods, C Geoffrey; Wilmot, Beth; Kramer, Patricia; Gitschier, Jane; Maher, Eamonn R; Hayflick, Susan J

    2007-01-01

    Neurodegenerative disorders with high brain iron include Parkinson disease, Alzheimer disease and several childhood genetic disorders categorized as neuroaxonal dystrophies. We mapped a locus for infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation (NBIA) to chromosome 22q12-q13 and identified mutations in PLA2G6, encoding a calcium-independent group VI phospholipase A2, in NBIA, INAD and the related Karak syndrome. This discovery implicates phospholipases in the pathogenesis of neurodegenerative disorders with iron dyshomeostasis. PMID:16783378

  15. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders.

    Science.gov (United States)

    Kos, Claire; van Tol, Marie-José; Marsman, Jan-Bernard C; Knegtering, Henderikus; Aleman, André

    2016-10-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar across different pathological conditions. The purpose of this systematic review was to provide an extensive overview of the neuroimaging literature on apathy including studies of various patient populations, and evaluate whether the current state of affairs suggest disorder specific or shared neural correlates of apathy. Results suggest that abnormalities within fronto-striatal circuits are most consistently associated with apathy across the different pathological conditions. Of note, abnormalities within the inferior parietal cortex were also linked to apathy, a region previously not included in neuroanatomical models of apathy. The variance in brain regions implicated in apathy may suggest that different routes towards apathy are possible. Future research should investigate possible alterations in different processes underlying goal-directed behavior, ranging from intention and goal-selection to action planning and execution. Copyright © 2016. Published by Elsevier Ltd.

  16. Assessing Executive Dysfunction in Neurodegenerative Disorders: A Critical Review of Brief Neuropsychological Tools

    Directory of Open Access Journals (Sweden)

    Helena S. Moreira

    2017-11-01

    Full Text Available Executive function (EF has been defined as a multifaceted construct that involves a variety of high-level cognitive abilities such as planning, working memory, mental flexibility, and inhibition. Being able to identify deficits in EF is important for the diagnosis and monitoring of several neurodegenerative disorders, and thus their assessment is a topic of much debate. In particular, there has been a growing interest in the development of neuropsychological screening tools that can potentially provide a reliable quick measure of EF. In this review, we critically discuss the four screening tools of EF currently available in the literature: Executive Interview-25 (EXIT 25, Frontal Assessment Battery (FAB, INECO Frontal Screening (IFS, and FRONTIER Executive Screen (FES. We first describe their features, and then evaluate their psychometric properties, the existing evidence on their neural correlates, and the empirical work that has been conducted in clinical populations. We conclude that the four screening tools generally present appropriate psychometric properties, and are sensitive to impairments in EF in several neurodegenerative conditions. However, more research will be needed mostly with respect to normative data and neural correlates, and to determine the extent to which these tools add specific information to the one provided by global cognition screening tests. More research directly comparing the available tools with each other will also be important to establish in which conditions each of them can be most useful.

  17. Self-consistent phonons in disordered systems

    International Nuclear Information System (INIS)

    Das, M.P.

    1990-01-01

    The time is now ripe for the development of a microscopic theory of the disordered systems in the context of phonons. The adiabatic approximation has helped to separate the electronic motion from that of the ions. In the microscopic dielectric formulation we have been able to obtain the interatomic forces for ordered systems by incorporating the effect of the electronic motion. The nature of the electronic states in disordered systems is now better understood with realistic coherent potential approximation calculations. Therefore, it will not be too ambitious to construct an average dielectric function for a disordered system. Then we can obtain a properly screened pair potential in terms of this dielectric function. In view of the availability of super fast computers, the development of the microscopic theories are expected to get a new direction. (author). 36 refs

  18. Cell based-gene delivery approaches for the treatment of spinal cord injury and neurodegenerative disorders.

    Science.gov (United States)

    Taha, Masoumeh Fakhr

    2010-03-01

    Cell based-gene delivery has provided an important therapeutic strategy for different disorders in the recent years. This strategy is based on the transplantation of genetically modified cells to express specific genes and to target the delivery of therapeutic factors, especially for the treatment of cancers and neurological, immunological, cardiovascular and heamatopoietic disorders. Although, preliminary reports are encouraging, and experimental studies indicate functionally and structurally improvements in the animal models of different disorders, universal application of this strategy for human diseases requires more evidence. There are a number of parameters that need to be evaluated, including the optimal cell source, the most effective gene/genes to be delivered, the optimal vector and method of gene delivery into the cells and the most efficient route for the delivery of genetically modified cells into the patient. Also, some obstacles have to be overcome, including the safety and usefulness of the approaches and the stability of the improvements. Here, recent studies concerning with the cell-based gene delivery for spinal cord injury and some neurodegenerative disorders such as amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease are briefly reviewed, and their exciting consequences are discussed.

  19. Amino acids as dietary excitotoxins: a contribution to understanding neurodegenerative disorders.

    Science.gov (United States)

    Meldrum, B

    1993-01-01

    The possibility that some acidic amino acids occurring naturally or as additives in the diet can act as excitotoxins producing central nervous system pathology has been the subject of extensive debate in the last 20 years and is here reviewed. High doses of glutamate, aspartate or related excitatory amino acids given in isolation to neonatal rodents produce acute degeneration organs. Neuropathology resulting from consumption of glutamate or aspartate has not been described in man. Various unusual amino acids of plant origin can produce acute excitotoxic syndromes. In man domoate (consumed in mussels that have fed on (Nitschia pungens) can produce an acute syndrome associated with limbic system lesions and anterograde amnesia. Kainate and domoate produce similar syndromes in rodents; acromelate produces spinal pathology. The mechanisms and manifestations of chronic excitotoxicity are less clearly established. A combination of impaired energy metabolism or impaired buffering of calcium and free radicals and endogenous or exogenous excitotoxins may contribute to neuronal loss in human neurodegenerative disorders.

  20. In Vivo Profiling Reveals a Competent Heat Shock Response in Adult Neurons: Implications for Neurodegenerative Disorders.

    Directory of Open Access Journals (Sweden)

    Alisia Carnemolla

    Full Text Available The heat shock response (HSR is the main pathway used by cells to counteract proteotoxicity. The inability of differentiated neurons to induce an HSR has been documented in primary neuronal cultures and has been proposed to play a critical role in ageing and neurodegeneration. However, this accepted dogma has not been demonstrated in vivo. We used BAC transgenic mice generated by the Gene Expression Nervous System Atlas project to investigate the capacity of striatal medium sized spiny neurons to induce an HSR as compared to that of astrocytes and oligodendrocytes. We found that all cell populations were competent to induce an HSR upon HSP90 inhibition. We also show the presence and relative abundance of heat shock-related genes and proteins in these striatal cell populations. The identification of a competent HSR in adult neurons supports the development of therapeutics that target the HSR pathway as treatments for neurodegenerative disorders.

  1. Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders.

    Science.gov (United States)

    Goemaere, Julie; Knoops, Bernard

    2012-02-01

    Redox changes are observed in neurodegenerative diseases, ranging from increased levels of reactive oxygen/nitrogen species and disturbance of antioxidant systems, to nitro-oxidative damage. By reducing hydrogen peroxide, peroxynitrite, and organic hydroperoxides, peroxiredoxins (Prdxs) represent a major potential protective barrier against nitro-oxidative insults in the brain. While recent works have investigated the putative role of Prdxs in neurodegenerative disorders, less is known about their expression in the healthy brain. Here we used immunohistochemistry to map basal expression of Prdxs throughout C57BL/6 mouse brain. We first confirmed the neuronal localization of Prdx2-5 and the glial expression of Prdx1, Prdx4, and Prdx6. Then we performed an in-depth analysis of neuronal Prdx distribution in the brain. Our results show that Prdx2-5 are widely detected in the different neuronal populations, and especially well expressed in the olfactory bulb, in the cerebral cortex, in pons nuclei, in the red nucleus, in all cranial nerve nuclei, in the cerebellum, and in motor neurons of the spinal cord. In contrast, Prdx expression is very low in the dopaminergic neurons of substantia nigra pars compacta and in the CA1/2 pyramidal cells of hippocampus. This low basal expression may contribute to the vulnerability of these neurons to nitro-oxidative attacks occurring in Parkinson's disease and Alzheimer's disease. In addition, we found that Prdx expression levels are unevenly distributed among neurons of a determined region and that distinct regional patterns of expression are observed between isoforms, reinforcing the hypothesis of the nonredundant function of Prdxs. Copyright © 2011 Wiley-Liss, Inc.

  2. Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools.

    Science.gov (United States)

    Silva, Juliana; Monge-Fuentes, Victoria; Gomes, Flávia; Lopes, Kamila; dos Anjos, Lilian; Campos, Gabriel; Arenas, Claudia; Biolchi, Andréia; Gonçalves, Jacqueline; Galante, Priscilla; Campos, Leandro; Mortari, Márcia

    2015-08-18

    Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer's Disease, Parkinson's Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.

  3. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders

    NARCIS (Netherlands)

    Kos, Claire; van Tol, Marie-Jose; Marsman, Jan-Bernard C.; Knegtering, Henderikus; Aleman, Andre

    2016-01-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar

  4. The Influence of Adipose Tissue on Brain Development, Cognition, and Risk of Neurodegenerative Disorders.

    Science.gov (United States)

    Letra, Liliana; Santana, Isabel

    2017-01-01

    The brain is a highly metabolic organ and thus especially vulnerable to changes in peripheral metabolism, including those induced by obesity-associated adipose tissue dysfunction. In this context, it is likely that the development and maturation of neurocognitive circuits may also be affected and modulated by metabolic environmental factors, beginning in utero. It is currently recognized that maternal obesity, either pre-gestational or gestational, negatively influences fetal brain development and elevates the risk of cognitive impairment and neuropsychiatric disorders in the offspring. During infancy and adolescence, obesity remains a limiting factor for healthy neurodevelopment, especially affecting executive functions but also attention, visuospatial ability, and motor skills. In middle age, obesity seems to induce an accelerated brain aging and thus may increase the risk of age-related neurodegenerative diseases such as Alzheimer's disease. In this chapter we review and discuss experimental and clinical evidence focusing on the influence of adipose tissue dysfunction on neurodevelopment and cognition across lifespan, as well as some possible mechanistic links, namely the role of the most well studied adipokines.

  5. An overview of the molecular mechanisms and novel roles of Nrf2 in neurodegenerative disorders.

    Science.gov (United States)

    Yang, Yang; Jiang, Shuai; Yan, Juanjuan; Li, Yue; Xin, Zhenlong; Lin, Yan; Qu, Yan

    2015-02-01

    Recently, growing evidence has demonstrated that nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal regulator of endogenous defense systems that function via the activation of a set of protective genes, and this is particularly clear in the central nervous system (CNS). Therefore, it is highly useful to summarize the current literature on the molecular mechanisms and role of Nrf2 in the CNS. In this review, we first briefly introduce the molecular features of Nrf2. We then discuss the regulation, cerebral actions, upstream modulators and downstream targets of Nrf2 pathway. Following this background, we expand our discussion to the role of Nrf2 in several major neurodegenerative disorders (NDDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis. Lastly, we discuss some potential future directions. The information reviewed here may be significant in the design of further experimental research and increase the potential of Nrf2 as a therapeutic target in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Old Things New View: Ascorbic Acid Protects the Brain in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Adriana Covarrubias-Pinto

    2015-11-01

    Full Text Available Ascorbic acid is a key antioxidant of the Central Nervous System (CNS. Under brain activity, ascorbic acid is released from glial reservoirs to the synaptic cleft, where it is taken up by neurons. In neurons, ascorbic acid scavenges reactive oxygen species (ROS generated during synaptic activity and neuronal metabolism where it is then oxidized to dehydroascorbic acid and released into the extracellular space, where it can be recycled by astrocytes. Other intrinsic properties of ascorbic acid, beyond acting as an antioxidant, are important in its role as a key molecule of the CNS. Ascorbic acid can switch neuronal metabolism from glucose consumption to uptake and use of lactate as a metabolic substrate to sustain synaptic activity. Multiple evidence links oxidative stress with neurodegeneration, positioning redox imbalance and ROS as a cause of neurodegeneration. In this review, we focus on ascorbic acid homeostasis, its functions, how it is used by neurons and recycled to ensure antioxidant supply during synaptic activity and how this antioxidant is dysregulated in neurodegenerative disorders.

  7. Cannabinoids and value-based decision making: Implications for neurodegenerative disorders

    NARCIS (Netherlands)

    Lee, AM; Oleson, E.B.; Diergaarde, L.; Cheer, J.F.; Pattij, T.

    2012-01-01

    In recent years, disturbances in cognitive function have been increasingly recognized as important symptomatic phenomena in neurodegenerative diseases, including Parkinson's disease (PD). Value-based decision making in particular is an important executive cognitive function that is not only impaired

  8. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    KAUST Repository

    Bajic, Vladimir B.; Essack, Magbubah

    2015-01-01

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer's Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent

  9. Confocal Synaptology: Synaptic Rearrangements in Neurodegenerative Disorders and upon Nervous System Injury

    Directory of Open Access Journals (Sweden)

    Maja Vulovic

    2018-02-01

    Full Text Available The nervous system is a notable exception to the rule that the cell is the structural and functional unit of tissue systems and organs. The functional unit of the nervous system is the synapse, the contact between two nerve cells. As such, synapses are the foci of investigations of nervous system organization and function, as well as a potential readout for the progression of various disorders of the nervous system. In the past decade the development of antibodies specific to presynaptic terminals has enabled us to assess, at the optical, laser scanning microscopy level, these subcellular structures, and has provided a simple method for the quantification of various synapses. Indeed, excitatory (glutamatergic and inhibitory synapses can be visualized using antibodies against the respective vesicular transporters, and choline-acetyl transferase (ChAT immunoreactivity identifies cholinergic synapses throughout the central nervous system. Here we review the results of several studies in which these methods were used to estimate synaptic numbers as the structural equivalent of functional outcome measures in spinal cord and femoral nerve injuries, as well as in genetic mouse models of neurodegeneration, including Alzheimer’s disease (AD. The results implicate disease- and brain region-specific changes in specific types of synapses, which correlate well with the degree of functional deficit caused by the disease process. Additionally, results are reproducible between various studies and experimental paradigms, supporting the reliability of the method. To conclude, this quantitative approach enables fast and reliable estimation of the degree of the progression of neurodegenerative changes and can be used as a parameter of recovery in experimental models.

  10. Neurodegenerative Dementia

    International Nuclear Information System (INIS)

    Allard, Michelle

    2006-01-01

    Full text: With increasing life expectancy across the world, the number of elderly people at risk of developing dementia is growing rapidly. Thus, progressive neurodegenerative disorders such as dementia represent a growing public health concern. These diseases are characterized by a progressive loss in most of the cognitive functions. The promise, possibly in a near future, of disease-modifying therapies has made the characterization of the early stages of dementia a topic of major interest. The assessment of these early stages is a challenge for neuroimaging studies. In order to conceive prevention trials; it is of major outcome to fully understand the mechanisms of the cognitive system impairment and its evolution, with a particular reference to the symptomatic pre-dementia stage, when subjects just begin to depart from normality. In this article we review recent progress in neuroimaging, and their potentiality for increasing a diagnostic accuracy. (author)

  11. Relationships between Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: Clinical Assessments, Biomarkers, and Treatment

    Directory of Open Access Journals (Sweden)

    Min Li

    2018-01-01

    Conclusions: More longitudinal studies should be conducted to evaluate the predictive value of biomarkers of RBD. Moreover, because the glucose and dopamine metabolisms are not specific for assessing cognitive cognition, the molecular metabolism directly related to cognition should be investigated. There is a need for more treatment trials to determine the effectiveness of interventions of RBD on preventing the conversion to neurodegenerative diseases.

  12. Pig Models of Neurodegenerative Disorders: Utilization in Cell Replacement-Based Preclinical Safety and Efficacy Studies

    Czech Academy of Sciences Publication Activity Database

    Doležalová, D.; Hruška-Plocháň, M.; Bjarkam, C. R.; Sorensen, J. C. H.; Cunningham, M.; Weingarten, D.; Ciacci, J. D.; Juhás, Štefan; Juhásová, Jana; Motlík, Jan; Hefferan, M. P.; Hazel, T.; Johe, K.; Carromeu, C.; Muotri, A.; Bui, J. D.; Strnádel, J.; Marsala, M.

    2014-01-01

    Roč. 522, č. 12 (2014), s. 2784-2801 ISSN 0021-9967 R&D Projects: GA TA ČR(CZ) TA01011466; GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : pig * neurodegenerative models * stem cells Subject RIV: FH - Neurology Impact factor: 3.225, year: 2014

  13. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    KAUST Repository

    Bajic, Vladimir B.

    2015-06-18

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer\\'s Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent, including an inhibitor of TLR4/MD-2/CD14, nAChR agonist, Resatorvid, Curcumin, Tilorone or a Tilorone analog, or a combination thereof.

  14. Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders.

    Science.gov (United States)

    Fagherazzi, Elen V; Garcia, Vanessa A; Maurmann, Natasha; Bervanger, Thielly; Halmenschlager, Luis H; Busato, Stefano B; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Schröder, Nadja

    2012-02-01

    Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.

  15. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder.

    Science.gov (United States)

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K; Van Vleet, Jeremy; Fenstermaker, Ali G; Silhavy, Jennifer L; Scheliga, Judith S; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma M; Celep, Figen; Oraby, Azza; Zaki, Maha S; Al-Baradie, Raidah; Faqeih, Eissa A; Saleh, Mohammed A M; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W; Gleeson, Joseph G

    2013-08-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder

    Science.gov (United States)

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K.; Vleet, Jeremy Van; Fenstermaker, Ali G.; Silhavy, Jennifer L.; Scheliga, Judith S.; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma Mujgan; Celep, Figen; Oraby, Azza; Zaki, Maha S.; Al-Baradie, Raidah; Faqeih, Eissa; Saleh, Mohammad; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W.; Gleeson, Joseph G.

    2013-01-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a new distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new, potentially treatable early-onset neurodegenerative disease. PMID:23911318

  17. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Martin Hofmann-Apitius

    2015-12-01

    Full Text Available Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies—data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI; which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations

  18. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive?

    Science.gov (United States)

    Doty, Kevin R; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2015-08-18

    Neurodegenerative diseases share common features, including catastrophic neuronal loss that leads to cognitive or motor dysfunction. Neuronal injury occurs in an inflammatory milieu that is populated by resident and sometimes, infiltrating, immune cells - all of which participate in a complex interplay between secreted inflammatory modulators and activated immune cell surface receptors. The importance of these immunomodulators is highlighted by the number of immune factors that have been associated with increased risk of neurodegeneration in recent genome-wide association studies. One of the more difficult tasks for designing therapeutic strategies for immune modulation against neurodegenerative diseases is teasing apart beneficial from harmful signals. In this regard, learning more about the immune components of these diseases has yielded common themes. These unifying concepts should eventually enable immune-based therapeutics for treatment of Alzheimer׳s and Parkinson׳s diseases and amyotrophic lateral sclerosis. Targeted immune modulation should be possible to temper maladaptive factors, enabling beneficial immune responses in the context of neurodegenerative diseases. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Essential Tremor: A Neurodegenerative Disease?

    Directory of Open Access Journals (Sweden)

    Julian Benito-Leon

    2014-07-01

    Full Text Available Background: Essential tremor (ET is one of the most common neurological disorders among adults, and is the most common of the many tremor disorders. It has classically been viewed as a benign monosymptomatic condition, yet over the past decade, a growing body of evidence indicates that ET is a progressive condition that is clinically heterogeneous, as it may be associated with a spectrum of clinical features, with both motor and non‐motor elements. In this review, I will describe the most significant emerging milestones in research which, when taken together, suggest that ET is a neurodegenerative condition.Methods: A PubMed search conducted in June 2014 crossing the terms “essential tremor” (ET and “neurodegenerative” yielded 122 entries, 20 of which included the term “neurodegenerative” in the article title. This was supplemented by articles in the author's files that pertained to this topic.Results/Discussion: There is an open and active dialogue in the medical community as to whether ET is a neurodegenerative disease, with considerable evidence in favor of this. Specifically, ET is a progressive disorder of aging associated with neuronal loss (reduction in Purkinje cells as well as other post‐mortem changes that occur in traditional neurodegenerative disorders. Along with this, advanced neuroimaging techniques are now demonstrating distinct structural changes, several of which are consistent with neuronal loss, in patients with ET. However, further longitudinal clinical and neuroimaging longitudinal studies to assess progression are required.

  20. Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: implications for neurodegenerative disorders.

    Science.gov (United States)

    Ghosh, Arunava; Pahan, Kalipada

    2012-08-03

    Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders.

  1. The interplay between iron accumulation, mitochondrial dysfunction and inflammation during the execution step of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Pamela J. Urrutia

    2014-03-01

    Full Text Available A growing set of observations points to mitochondrial dysfunction, iron accumulation, oxidative damage and chronic inflammation as common pathognomonic signs of a number of neurodegenerative diseases that includes Alzheimer's disease, Huntington disease, amyotrophic lateral sclerosis, Friedrich’s ataxia and Parkinson’s disease. Particularly relevant for neurodegenerative processes is the relationship between mitochondria and iron. The mitochondrion upholds the synthesis of iron-sulfur clusters and heme, the most abundant iron-containing prosthetic groups in a large variety of proteins, so a fraction of incoming iron must go through this organelle before reaching its final destination. In turn, the mitochondrial respiratory chain is the source of reactive oxygen species (ROS derived from leaks in the electron transport chain. The co-existence of both iron and ROS in the secluded space of the mitochondrion makes this organelle particularly prone to hydroxyl radical-mediated damage. In addition, a connection between the loss of iron homeostasis and inflammation is starting to emerge; thus, inflammatory cytokines like TNF-alpha and IL-6 induce the synthesis of the divalent metal transporter 1 and promote iron accumulation in neurons and microglia. Here, we review the recent literature on mitochondrial iron homeostasis and the role of inflammation on mitochondria dysfunction and iron accumulation on the neurodegenerative process that lead to cell death in Parkinson’s disease. We also put forward the hypothesis that mitochondrial dysfunction, iron accumulation and inflammation are part of a synergistic self-feeding cycle that ends in apoptotic cell death, once the antioxidant cellular defense systems are finally overwhelmed.

  2. Development and validation of brain and spinal cord vector and cell-delivery techniques in pre-clinical minipig models of neurodegenerative disorders

    Czech Academy of Sciences Publication Activity Database

    Juhás, Štefan; Juhásová, Jana; Klíma, Jiří; Maršala, M.; Maršala, S.; Atsushi, Y.; Johe, K.; Motlík, Jan

    2015-01-01

    Roč. 78, Suppl 2 (2015), s. 9-10 ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. 08.11.2015-10.11.2015, Liblice] R&D Projects: GA MŠk ED2.1.00/03.0124; GA MŠk(CZ) 7F14308 Institutional support: RVO:67985904 Keywords : minipig models of neurodegenerative disorders * brin and spinal cord cell delivery techniques Subject RIV: EB - Genetics ; Molecular Biology

  3. FDTD-based Transcranial Magnetic Stimulation model applied to specific neurodegenerative disorders.

    Science.gov (United States)

    Fanjul-Vélez, Félix; Salas-García, Irene; Ortega-Quijano, Noé; Arce-Diego, José Luis

    2015-01-01

    Non-invasive treatment of neurodegenerative diseases is particularly challenging in Western countries, where the population age is increasing. In this work, magnetic propagation in human head is modelled by Finite-Difference Time-Domain (FDTD) method, taking into account specific characteristics of Transcranial Magnetic Stimulation (TMS) in neurodegenerative diseases. It uses a realistic high-resolution three-dimensional human head mesh. The numerical method is applied to the analysis of magnetic radiation distribution in the brain using two realistic magnetic source models: a circular coil and a figure-8 coil commonly employed in TMS. The complete model was applied to the study of magnetic stimulation in Alzheimer and Parkinson Diseases (AD, PD). The results show the electrical field distribution when magnetic stimulation is supplied to those brain areas of specific interest for each particular disease. Thereby the current approach entails a high potential for the establishment of the current underdeveloped TMS dosimetry in its emerging application to AD and PD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Prodromal Parkinsonism and Neurodegenerative Risk Stratification in REM Sleep Behavior Disorder.

    Science.gov (United States)

    Barber, Thomas R; Lawton, Michael; Rolinski, Michal; Evetts, Samuel; Baig, Fahd; Ruffmann, Claudio; Gornall, Aimie; Klein, Johannes C; Lo, Christine; Dennis, Gary; Bandmann, Oliver; Quinnell, Timothy; Zaiwalla, Zenobia; Ben-Shlomo, Yoav; Hu, Michele T M

    2017-08-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is the most specific marker of prodromal alpha-synucleinopathies. We sought to delineate the baseline clinical characteristics of RBD and evaluate risk stratification models. Clinical assessments were performed in 171 RBD, 296 control, and 119 untreated Parkinson's (PD) participants. Putative risk measures were assessed as predictors of prodromal neurodegeneration, and Movement Disorders Society (MDS) criteria for prodromal PD were applied. Participants were screened for common leucine-rich repeat kinase 2 (LRRK2)/glucocerebrosidase gene (GBA) gene mutations. Compared to controls, participants with RBD had higher rates of solvent exposure, head injury, smoking, obesity, and antidepressant use. GBA mutations were more common in RBD, but no LRRK2 mutations were found. RBD participants performed significantly worse than controls on Unified Parkinson's Disease Rating Scale (UPDRS)-III, timed "get-up-and-go", Flamingo test, Sniffin Sticks, and cognitive tests and had worse measures of constipation, quality of life (QOL), and orthostatic hypotension. For all these measures except UPDRS-III, RBD and PD participants were equally impaired. Depression, anxiety, and apathy were worse in RBD compared to PD participants. Stratification of people with RBD according to antidepressant use, obesity, and age altered the odds ratio (OR) of hyposmia compared to controls from 3.4 to 45.5. 74% (95% confidence interval [CI] 66%, 80%) of RBD participants met the MDS criteria for probable prodromal Parkinson's compared to 0.3% (95% CI 0.009%, 2%) of controls. RBD are impaired across a range of clinical measures consistent with prodromal PD and suggestive of a more severe nonmotor subtype. Clinical risk stratification has the potential to select higher risk patients for neuroprotective interventions. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  5. S-Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding.

    Science.gov (United States)

    Nakamura, T; Lipton, S A

    2007-07-01

    Although activation of glutamate receptors is essential for normal brain function, excessive activity leads to a form of neurotoxicity known as excitotoxicity. Key mediators of excitotoxic damage include overactivation of N-methyl-D-aspartate (NMDA) receptors, resulting in excessive Ca(2+) influx with production of free radicals and other injurious pathways. Overproduction of free radical nitric oxide (NO) contributes to acute and chronic neurodegenerative disorders. NO can react with cysteine thiol groups to form S-nitrosothiols and thus change protein function. S-nitrosylation can result in neuroprotective or neurodestructive consequences depending on the protein involved. Many neurodegenerative diseases manifest conformational changes in proteins that result in misfolding and aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Molecular chaperones - such as protein-disulfide isomerase, glucose-regulated protein 78, and heat-shock proteins - can provide neuroprotection by facilitating proper protein folding. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence that NO contributes to degenerative conditions by S-nitrosylating-specific chaperones that would otherwise prevent accumulation of misfolded proteins and neuronal cell death. In contrast, we also review therapeutics that can abrogate excitotoxic damage by preventing excessive NMDA receptor activity, in part via S-nitrosylation of this receptor to curtail excessive activity.

  6. Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Amin Mottahedin

    2017-07-01

    Full Text Available The brain is a plastic organ where both the intrinsic CNS milieu and extrinsic cues play important roles in shaping and wiring neural connections. The perinatal period constitutes a critical time in central nervous system development with extensive refinement of neural connections, which are highly sensitive to fetal and neonatal compromise, such as inflammatory challenges. Emerging evidence suggests that inflammatory cells in the brain such as microglia and astrocytes are pivotal in regulating synaptic structure and function. In this article, we will review the role of glia cells in synaptic physiology and pathophysiology, including microglia-mediated elimination of synapses. We propose that activation of the immune system dynamically affects synaptic organization and function in the developing brain. We will discuss the role of neuroinflammation in altered synaptic plasticity following perinatal inflammatory challenges and potential implications for neurodevelopmental and neurodegenerative disorders.

  7. Bio-effectiveness of the main flavonoids of Achillea millefolium in the pathophysiology of neurodegenerative disorders- a review

    Directory of Open Access Journals (Sweden)

    Fatemeh Ayoobi

    2017-06-01

    Full Text Available The Achillea millefolium L. (Yarrow is a common herb which is widely being used, worldwide. Achillea is being used for treatment of many disorders since centuries. It is considered safe for supplemental use and flavonoids such as kaempferol, luteolin and apigenin are of main constituents present in Achillea. Most of both antioxidant and anti-inflammatory properties of this herb have been attributed to its flavonoid content. Oxidative and inflammatory processes play important roles in pathogenesis of neurodegenerative diseases. Present review was aimed to review the latest literature evidences regarding application of Achillea and/or its three main flavonoid constituents on epilepsy, Alzheimer's disease, multiple sclerosis, Parkinson's disease and stroke.

  8. The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: a comparative immunohistochemical analysis.

    Science.gov (United States)

    Leveugle, B; Spik, G; Perl, D P; Bouras, C; Fillit, H M; Hof, P R

    1994-07-04

    Lactotransferrin is a glycoprotein that specifically binds and transports iron. This protein is also believed to transport other metals such as aluminum. Several lines of evidence indicate that iron and aluminum are involved in the pathogenesis of many dementing diseases. In this context, the analysis of the iron-binding protein distribution in the brains of patients affected by neurodegenerative disorders is of particular interest. In the present study, the distribution of lactotransferrin was analyzed by immunohistochemistry in the cerebral cortex from patients presenting with Alzheimer's disease, Down syndrome, amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam, sporadic amyotrophic lateral sclerosis, or Pick's disease. The results show that lactotransferrin accumulates in the characteristic lesions of the different pathologic conditions investigated. For instance, in Alzheimer's disease and Guamanian cases, a subpopulation of neurofibrillary tangles was intensely labeled in the hippocampal formation and inferior temporal cortex. Senile plaques and Pick bodies were also consistently labeled. These staining patterns were comparable to those obtained with antibodies to the microtubule-associated protein tau and the amyloid beta A4 protein, although generally fewer neurofibrillary tangles were positive for lactotransferrin than for tau protein. Neuronal cytoplasmic staining with lactotransferrin antibodies, was observed in a subpopulation of pyramidal neurons in normal aging, and was more pronounced in Alzheimer's disease, Guamanian cases, Pick's disease, and particularly in Down syndrome. Lactotransferrin was also strongly associated with Betz cells and other motoneurons in the primary motor cortex of control, Alzheimer's disease, Down syndrome, Guamanian and Pick's disease cases. These same lactotransferrin-immunoreactive motoneurons were severely affected in the cases with amyotrophic lateral sclerosis. It is possible that in these

  9. Application of PIXE in medical study. Environmental minerals and neurodegenerative disorders

    International Nuclear Information System (INIS)

    Yoshida, S.

    1999-01-01

    Comparative study on amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PDC) in the Kii Peninsula of Japan and Guam was conducted to evaluate the participatory role of environmental minerals in the pathogenesis of the above neurodegenerative diseases, using particle-induced x-ray emission (PIXE) spectrometry and morphometric-statistical analysis. A significantly high content of Al in the hippocampus and spinal cord or Kii and Guamanian ALS/PD cases was found with a positive correlation for Fe and Cu, and a negative correlation for Zn. The numbers of hippocampal neurons in Guamanian PDC, Alzheimer's disease, and Parkinson's disease were significantly decreased with a high Al content. Al content significantly and positively correlated with the number of Alzheimer's neurofibrillary tangles (NFTs) in the hippocampus of ALS cases and controls in both foci, especially in Guamanian cases. The slope of best linear regression of Guamanian cases was markedly steeper than that of Japanese cases (p < 0,001), Morin staining for Al showed green fluorescence on the nucleolus, cytoplasm, and NFT in the hippocampus of Kii ALS cases. These findings suggest that Guamanian and Kii people have a predisposition to develop ALS/PDC precipitated by their geological/geochemical environmental status, i.e., a prolonged low intake or Ca and Mg together with excess exposure to Al and other environmental minerals. (author)

  10. Application of PIXE in medical study. Environmental minerals and neurodegenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S. [Department of Neurology, Wakayama Medical College, Wakayama (Japan)

    1999-07-01

    Comparative study on amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PDC) in the Kii Peninsula of Japan and Guam was conducted to evaluate the participatory role of environmental minerals in the pathogenesis of the above neurodegenerative diseases, using particle-induced x-ray emission (PIXE) spectrometry and morphometric-statistical analysis. A significantly high content of Al in the hippocampus and spinal cord or Kii and Guamanian ALS/PD cases was found with a positive correlation for Fe and Cu, and a negative correlation for Zn. The numbers of hippocampal neurons in Guamanian PDC, Alzheimer's disease, and Parkinson's disease were significantly decreased with a high Al content. Al content significantly and positively correlated with the number of Alzheimer's neurofibrillary tangles (NFTs) in the hippocampus of ALS cases and controls in both foci, especially in Guamanian cases. The slope of best linear regression of Guamanian cases was markedly steeper than that of Japanese cases (p < 0,001), Morin staining for Al showed green fluorescence on the nucleolus, cytoplasm, and NFT in the hippocampus of Kii ALS cases. These findings suggest that Guamanian and Kii people have a predisposition to develop ALS/PDC precipitated by their geological/geochemical environmental status, i.e., a prolonged low intake or Ca and Mg together with excess exposure to Al and other environmental minerals. (author)

  11. The glial response to intracerebrally delivered therapies for neurodegenerative disorders: Is this a critical issue?

    Directory of Open Access Journals (Sweden)

    Francesca eCicchetti

    2014-07-01

    Full Text Available The role of glial cells in the pathogenesis of many neurodegenerative conditions of the central nervous system (CNS is now well established (as is discussed in other reviews in this special issue of Frontiers in Neuropharmacology. What is less clear is whether there are changes in these same cells in terms of their behaviour and function in response to invasive experimental therapeutic interventions for these diseases. This has, and will continue to, become more of an issue as we enter a new era of novel treatments which require the agent to be directly placed/infused into the CNS such as deep brain stimulation, cell transplants, gene therapies and growth factor infusions. To date, all of these treatments have produced variable outcomes and the reasons for this have been widely debated but the host astrocytic and/or microglial response induced by such invasively delivered agents has not been discussed in any detail. In this review, we have attempted to summarise the limited published data on this, in particular we discuss the small number of human post-mortem studies reported in this field. By so doing, we hope to provide a better description and understanding of the extent and nature of both the astrocytic and microglial response, which in turn could lead to modifications in the way these therapeutic interventions are delivered.

  12. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities

    OpenAIRE

    Manju Tiwari

    2017-01-01

    Glucose 6 phosphate dehydrogenase (G6PD) is a key and rate limiting enzyme in the pentose phosphate pathway (PPP). The physiological significance of enzyme is providing reduced energy to specific cells like erythrocyte by maintaining co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH). There are preponderance research findings that demonstrate the enzyme (G6PD) role in the energy balance, and it is associated with blood-related diseases and disorders, primarily the anemia resulted f...

  13. Neuroimaging Biomarkers of Neurodegenerative Diseases and Dementia

    OpenAIRE

    Risacher, Shannon L.; Saykin, Andrew J.

    2013-01-01

    Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer’s disease (AD) and prodromal stages, famili...

  14. Glutamate and Neurodegenerative Disease

    Science.gov (United States)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  15. Synopsis on Managment Strategies for Neurodegenerative Disorders: Challenges from Bench to Bedside in Successful Drug Discovery and Development.

    Science.gov (United States)

    Bhat, Sheraz Ahmad; Kamal, Mohammad Amjad; Yarla, Nagendra Sastry; Ashraf, Ghulam Md

    2017-01-01

    The maintenance of health requires successful cell functioning, which in turn depends upon the proper and active conformation of proteins besides other biomolecules. However, occasionally these proteins may misfold and lead to the appearance and progression of protein conformational diseases. These diseases apart from others include several neurodegenerative disorders (NDDs) such as Alzheimer's disease, Parkinson disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, and other lesser known diseases. Although much knowledge has been gained, these NDDs still warrant advance research in the elucidation of their mechanisms as well as effective therapeutic interventions and proper management. There is an ever-growing and urgent need to improve the diagnosis and management of NDDs due to their devastating nature, serious social impact and neuropsychiatric symptoms. It is also envisioned that we may be able to encourage, develop, and strengthen the cell defenses against amyloid toxicity and prevent neuronal destruction and consequently neurodegeneration. In this review, the implications of protein misfolding and aggregation in NDDs are discussed along with some of the most recent findings on the curative and beneficial effects of natural molecules such as polyphenols. This paper also reviews the anti-aggregation and protective effects of some organic and peptidic compounds duly supported experimentally, as prospective future therapeutics for NDDs. The synopses presented in this review shall prove helpful in further understanding of the causes, cures and management of lethal NDDs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Potential contribution of the neurodegenerative disorders risk loci to cognitive performance in an elderly male gout population.

    Science.gov (United States)

    Han, Lin; Jia, Zhaotong; Cao, Chunwei; Liu, Zhen; Liu, Fuqiang; Wang, Lin; Ren, Wei; Sun, Mingxia; Wang, Baoping; Li, Changgui; Chen, Li

    2017-09-01

    Cognitive impairment has been described in elderly subjects with high normal concentrations of serum uric acid. However, it remains unclear if gout confers an increased poorer cognition than those in individuals with asymptomatic hyperuricemia. The present study aimed at evaluating cognitive function in patients suffering from gout in an elderly male population, and further investigating the genetic contributions to the risk of cognitive function.This study examined the cognitive function as assessed by Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) in 205 male gout patients and 204 controls. The genetic basis of these cognitive measures was evaluated by genome-wide association study (GWAS) data in 102 male gout patients. Furthermore, 7 loci associated with cognition in GWAS were studied for correlation with gout in 1179 male gout patients and 1848 healthy male controls.Compared with controls, gout patients had significantly lower MoCA scores [22.78 ± 3.01 vs 23.42 ± 2.95, P = .023, adjusted by age, body mass index (BMI), education, and emotional disorder]. GWAS revealed 7 single-nucleotide polymorphisms (SNPs) associations with MoCA test at a level of conventional genome-wide significance (P gout in further analysis (all P > .05).Elderly male subjects with gout exhibit accelerated decline in cognition performance. Several neurodegenerative disorders risk loci were identified for genetic contributors to cognitive performance in our Chinese elderly male gout population. Larger prospective studies of the cognitive performance and genetic analysis in gout subjects are recommended.

  17. Neuroregeneration in neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Mureşanu Dafin F

    2011-06-01

    Full Text Available Abstract Background Neuroregeneration is a relatively recent concept that includes neurogenesis, neuroplasticity, and neurorestoration - implantation of viable cells as a therapeutical approach. Discussion Neurogenesis and neuroplasticity are impaired in brains of patients suffering from Alzheimer's Disease or Parkinson's Disease and correlate with low endogenous protection, as a result of a diminished growth factors expression. However, we hypothesize that the brain possesses, at least in early and medium stages of disease, a "neuroregenerative reserve", that could be exploited by growth factors or stem cells-neurorestoration therapies. Summary In this paper we review the current data regarding all three aspects of neuroregeneration in Alzheimer's Disease and Parkinson's Disease.

  18. Potential contribution of the neurodegenerative disorders risk loci to cognitive performance in an elderly male gout population

    Science.gov (United States)

    Han, Lin; Jia, Zhaotong; Cao, Chunwei; Liu, Zhen; Liu, Fuqiang; Wang, Lin; Ren, Wei; Sun, Mingxia; Wang, Baoping; Li, Changgui; Chen, Li

    2017-01-01

    Abstract Cognitive impairment has been described in elderly subjects with high normal concentrations of serum uric acid. However, it remains unclear if gout confers an increased poorer cognition than those in individuals with asymptomatic hyperuricemia. The present study aimed at evaluating cognitive function in patients suffering from gout in an elderly male population, and further investigating the genetic contributions to the risk of cognitive function. This study examined the cognitive function as assessed by Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) in 205 male gout patients and 204 controls. The genetic basis of these cognitive measures was evaluated by genome-wide association study (GWAS) data in 102 male gout patients. Furthermore, 7 loci associated with cognition in GWAS were studied for correlation with gout in 1179 male gout patients and 1848 healthy male controls. Compared with controls, gout patients had significantly lower MoCA scores [22.78 ± 3.01 vs 23.42 ± 2.95, P = .023, adjusted by age, body mass index (BMI), education, and emotional disorder]. GWAS revealed 7 single-nucleotide polymorphisms (SNPs) associations with MoCA test at a level of conventional genome-wide significance (P gene (Padjusted = 4.2 × 10−9, Padjusted = 4.7 × 10–9) at 14q22. The next best signal was in RELN gene (rs155333, Padjusted = 1.3 × 10–8) at 7q22, while the other variants at rs17458357 (Padjusted = 3.98 × 10–8), rs2572683 (Padjusted = 8.9 × 10–8), rs12555895 (Padjusted = 2.6 × 10–8), and rs3764030 (Padjusted = 9.4 × 10–8) were also statistically significant. The 7 SNPs were not associated with gout in further analysis (all P > .05). Elderly male subjects with gout exhibit accelerated decline in cognition performance. Several neurodegenerative disorders risk loci were identified for genetic contributors to cognitive performance in our

  19. Fetal programming of the human brain: is there a link with insurgence of neurodegenerative disorders in adulthood?

    Science.gov (United States)

    Faa, G; Marcialis, M A; Ravarino, A; Piras, M; Pintus, M C; Fanos, V

    2014-01-01

    In recent years, evidence is growing on the role played by gestational factors in shaping brain development and on the influence of intrauterine experiences on later development of neurodegenerative diseases including Parkinson's (PD) and Alzheimer's disease (AD). The nine months of intrauterine development and the first three years of postnatal life are appearing to be extremely critical for making connections among neurons and among neuronal and glial cells that will shape a lifetime of experience. Here, the multiple epigenetic factors acting during gestation - including maternal diet, malnutrition, stress, hypertension, maternal diabetes, fetal hypoxia, prematurity, low birth weight, prenatal infection, intrauterine growth restriction, drugs administered to the mother or to the baby - are reported, and their ability to modulate brain development, resulting in interindividual variability in the total neuronal and glial burden at birth is discussed. Data from recent literature suggest that prevention of neurodegeneration should be identified as the one method to halt the diffusion of neurodegenerative diseases. The "two hits" hypothesis, first introduced for PD and successfully applied to AD and other neurodegenerative human pathologies, should focus our attention on a peculiar period of our life: the intrauterine and perinatal periods. The first hit to our nervous system occurs early in life, determining a PD or AD imprinting to our brain that will condition our resistance or, alternatively, our susceptibility to develop a neurodegenerative disease later in life. In conclusion, how early life events contribute to late-life development of adult neurodegenerative diseases, including PD and AD, is emerging as a new fascinating research focus. This assumption implies that research on prevention of neurodegenerative diseases should center on events taking place early in life, during gestation and in the perinatal periods, thus presenting a new challenge to

  20. Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: ashwagandha.

    Science.gov (United States)

    Ven Murthy, M R; Ranjekar, Prabhakar K; Ramassamy, Charles; Deshpande, Manasi

    2010-09-01

    nontoxic medication that normalizes physiological functions, disturbed by chronic stress, through correction of imbalances in the neuroendocrine and immune systems [9, 10]. The scientific research that has been carried out on Ashwagandha and other ayurvedic herbal medicines may be classified into three major categories, taking into consideration the endogenous or exogenous phenomena that are known to cause physiological disequilibrium leading to the pathological state; (A) pharmacological and therapeutic effects of extracts, purified compounds or multi-herbal mixtures on specific non-neurological diseases; (B) pharmacological and therapeutic effects of extracts, purified compounds or multi-herbal mixtures on neurodegenerative disorders; and (C) biochemical, physiological and genetic studies on the herbal plants themselves, in order to distinguish between those originating from different habitats, or to improve the known medicinal quality of the indigenous plant. Some of the major points on its use in the treatment of neurodegenerative disorders are described below.

  1. No Geographic Correlation between Lyme Disease and Death Due to 4 Neurodegenerative Disorders, United States, 2001-2010.

    Science.gov (United States)

    Forrester, Joseph D; Kugeler, Kiersten J; Perea, Anna E; Pastula, Daniel M; Mead, Paul S

    2015-11-01

    Associations between Lyme disease and certain neurodegenerative diseases have been proposed, but supportive evidence for an association is lacking. Similar geographic distributions would be expected if 2 conditions were etiologically linked. Thus, we compared the distribution of Lyme disease cases in the United States with the distributions of deaths due to Alzheimer disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Parkinson disease; no geographic correlations were identified. Lyme disease incidence per US state was not correlated with rates of death due to ALS, MS, or Parkinson disease; however, an inverse correlation was detected between Lyme disease and Alzheimer disease. The absence of a positive correlation between the geographic distribution of Lyme disease and the distribution of deaths due to Alzheimer disease, ALS, MS, and Parkinson disease provides further evidence that Lyme disease is not associated with the development of these neurodegenerative conditions.

  2. Cerebral Blood Flow and A beta-Amyloid Estimates by WARAM Analysis of [C-11]PiB Uptake Distinguish among and between Neurodegenerative Disorders and Aging

    DEFF Research Database (Denmark)

    Rodell, Anders B.; O'Keefe, Graeme; Rowe, Christopher C.

    2017-01-01

    Alzheimer’s disease, and healthy volunteers. The method introduces two approaches to the identification of brain pathology related to amyloid accumulation, (1) a novel analysis of amyloid binding based on the late washout of the tracer from brain tissue, and (2) the simultaneous estimation of absolute...... metabolism and reduction of blood flow by neurovascular coupling in neurodegenerative disorders, including Alzheimer’s disease. Methods: Previously reported images of [11C]PiB retention in brain of 29 subjects with cognitive impairment or dementia [16 Alzheimer’s Disease (AD), eight subjects with dementia...

  3. Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools

    OpenAIRE

    Silva, Juliana; Monge-Fuentes, Victoria; Gomes, Fl?via; Lopes, Kamila; dos Anjos, Lilian; Campos, Gabriel; Arenas, Claudia; Biolchi, Andr?ia; Gon?alves, Jacqueline; Galante, Priscilla; Campos, Leandro; Mortari, M?rcia

    2015-01-01

    Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for...

  4. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  5. DNA damage in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Coppedè, Fabio; Migliore, Lucia

    2015-01-01

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  6. Genetic dissection of a cell-autonomous neurodegenerative disorder: lessons learned from mouse models of Niemann-Pick disease type C

    Directory of Open Access Journals (Sweden)

    Manuel E. Lopez

    2013-09-01

    Full Text Available Understanding neurodegenerative disease progression and its treatment requires the systematic characterization and manipulation of relevant cell types and molecular pathways. The neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NPC is highly amenable to genetic approaches that allow exploration of the disease biology at the organismal, cellular and molecular level. Although NPC is a rare disease, genetic analysis of the associated neuropathology promises to provide insight into the logic of disease neural circuitry, selective neuron vulnerability and neural-glial interactions. The ability to control the disorder cell-autonomously and in naturally occurring spontaneous animal models that recapitulate many aspects of the human disease allows for an unparalleled dissection of the disease neurobiology in vivo. Here, we review progress in mouse-model-based studies of NPC disease, specifically focusing on the subtype that is caused by a deficiency in NPC1, a sterol-binding late endosomal membrane protein involved in lipid trafficking. We also discuss recent findings and future directions in NPC disease research that are pertinent to understanding the cellular and molecular mechanisms underlying neurodegeneration in general.

  7. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders.

    Science.gov (United States)

    Di Domenico, Fabio; Tramutola, Antonella; Butterfield, D Allan

    2017-10-01

    Oxidative stress is involved in various and numerous pathological states including several age-related neurodegenerative diseases. Peroxidation of the membrane lipid bilayer is one of the major sources of free radical-mediated injury that directly damages neurons causing increased membrane rigidity, decreased activity of membrane-bound enzymes, impairment of membrane receptors and altered membrane permeability and eventual cell death. Moreover, the peroxidation of polyunsaturated fatty acids leads to the formation of aldehydes, which can act as toxic by-products. One of the most abundant and cytotoxic lipid -derived aldehydes is 4-hydroxy 2-nonenal (HNE). HNE toxicity is mainly due to the alterations of cell functions by the formation of covalent adducts of HNE with proteins. A key marker of lipid peroxidation, HNE-protein adducts, were found to be elevated in brain tissues and body fluids of Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis subjects and/or models of the respective age-related neurodegenerative diseases. Although only a few proteins were identified as common targets of HNE modification across all these listed disorders, a high overlap of these proteins occurs concerning the alteration of common pathways, such as glucose metabolism or mitochondrial function that are known to contribute to cognitive decline. Within this context, despite the different etiological and pathological mechanisms that lead to the onset of different neurodegenerative diseases, the formation of HNE-protein adducts might represent the shared leit-motif, which aggravates brain damage contributing to disease specific clinical presentation and decline in cognitive performance observed in each case. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Self-consistent cluster theory for systems with off-diagonal disorder

    International Nuclear Information System (INIS)

    Kaplan, T.; Leath, P.L.; Gray, L.J.; Diehl, H.W.

    1980-01-01

    A self-consistent cluster theory for elementary excitations in systems with diagonal, off-diagonal, and environmental disorder is presented. The theory is developed in augmented space where the configurational average over the disorder is replaced by a ground-state matrix element in a translationally invariant system. The analyticity of the resulting approximate Green's function is proved. Numerical results for the self-consistent single-site and pair approximations are presented for the vibrational and electronic properties of disordered linear chains with diagonal, off-diagonal, and environmental disorder

  9. REM Sleep Behavior Disorder: Updated Review of the Core Features, the RBD-Neurodegenerative Disease Association, Evolving Concepts, Controversies, and Future Directions

    Science.gov (United States)

    Boeve, Bradley F.

    2010-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia manifested by vivid, often frightening dreams associated with simple or complex motor behavior during REM sleep. Patients appear to “act out their dreams,” in which the exhibited behaviors mirror the content of the dreams, and the dream content often involves a chasing or attacking theme. The polysomnographic features of RBD include increased electromyographic tone +/- dream enactment behavior during REM sleep. Management with counseling and pharmacologic measures is usually straight-forward and effective. In this review, the terminology, clinical and polysomnographic features, demographic and epidemiologic features, diagnostic criteria, differential diagnosis, and management strategies are discussed. Recent data on the suspected pathophysiologic mechanisms of RBD are also reviewed. The literature and our institutional experience on RBD are next discussed, with an emphasis on the RBD-neurodegenerative disease association and particularly the RBD-synucleinopathy association. Several issues relating to evolving concepts, controversies, and future directions are then reviewed, with an emphasis on idiopathic RBD representing an early feature of a neurodegenerative disease and particularly an evolving synucleinopathy. Planning for future therapies that impact patients with idiopathic RBD is reviewed in detail. PMID:20146689

  10. Diagnostic consistency and interchangeability of schizophrenic disorders and bipolar disorders: A 7-year follow-up study.

    Science.gov (United States)

    Hung, Yen-Ni; Yang, Shu-Yu; Kuo, Chian-Jue; Lin, Shih-Ku

    2018-03-01

    The change in psychiatric diagnoses in clinical practice is not an unusual phenomenon. The interchange between the diagnoses of schizophrenic disorders and bipolar disorders is a major clinical issue because of the differences in treatment regimens and long-term prognoses. In this study, we used a nationwide population-based sample to compare the diagnostic consistency and interchange rate between schizophrenic disorders and bipolar disorders. In total, 25 711 and 11 261 patients newly diagnosed as having schizophrenic disorder and bipolar disorder, respectively, were retrospectively enrolled from the Psychiatric Inpatient Medical Claims database between 2001 and 2005. We followed these two cohorts for 7 years to determine whether their diagnoses were consistent throughout subsequent hospitalizations. The interchange between the two diagnoses was analyzed. In the schizophrenic disorder cohort, the overall diagnostic consistency rate was 87.3% and the rate of change to bipolar disorder was 3.0% during the 7-year follow-up. Additional analyses of subtypes revealed that the change rate from schizoaffective disorder to bipolar disorder was 12.0%. In the bipolar disorder cohort, the overall diagnostic consistency rate was 71.9% and the rate of change to schizophrenic disorder was 8.3%. Changes in the diagnosis of a major psychosis are not uncommon. The interchange between the diagnoses of schizophrenic disorders and bipolar disorders might be attributed to the evolution of clinical symptoms and the observation of preserved social functions that contradict the original diagnosis. While making a psychotic diagnosis, clinicians should be aware of the possibility of the change in diagnosis in the future. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  11. Pain in Neurodegenerative Disease : Current Knowledge and Future Perspectives

    NARCIS (Netherlands)

    de Tommaso, Marina; Arendt-Nielsen, Lars; Defrin, Ruth; Kunz, Miriam; Pickering, Gisele; Valeriani, Massimiliano

    2016-01-01

    Neurodegenerative diseases are going to increase as the life expectancy is getting longer. The management of neurodegenerative diseases such as Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD) and PD related disorders, motor neuron diseases (MND), Huntington's disease (HD),

  12. Antibiotics for respiratory, ear and urinary tract disorders and consistency among GPs.

    NARCIS (Netherlands)

    Ong, D.S.Y.; Kuyvenhoven, M.M.; Dijk, L. van; Verheij, T.J.M.

    2008-01-01

    Objectives: To describe specific diagnoses for which systemic antibiotics are prescribed, to assess adherence of antibiotic choice to national guidelines and to assess consistency among general practitioners (GPs) in prescribed volumes of antibiotics for respiratory, ear and urinary tract disorders.

  13. Neuroprotective effects of the anti-cancer drug sunitinib in models of HIV neurotoxicity suggests potential for the treatment of neurodegenerative disorders.

    Science.gov (United States)

    Wrasidlo, Wolf; Crews, Leslie A; Tsigelny, Igor F; Stocking, Emily; Kouznetsova, Valentina L; Price, Diana; Paulino, Amy; Gonzales, Tania; Overk, Cassia R; Patrick, Christina; Rockenstein, Edward; Masliah, Eliezer

    2014-12-01

    Anti-retrovirals have improved and extended the life expectancy of patients with HIV. However, as this population ages, the prevalence of cognitive changes is increasing. Aberrant activation of kinases, such as receptor tyrosine kinases (RTKs) and cyclin-dependent kinase 5 (CDK5), play a role in the mechanisms of HIV neurotoxicity. Inhibitors of CDK5, such as roscovitine, have neuroprotective effects; however, CNS penetration is low. Interestingly, tyrosine kinase inhibitors (TKIs) display some CDK inhibitory activity and ability to cross the blood-brain barrier. We screened a small group of known TKIs for a candidate with additional CDK5 inhibitory activity and tested the efficacy of the candidate in in vitro and in vivo models of HIV-gp120 neurotoxicity. Among 12 different compounds, sunitinib inhibited CDK5 with an IC50 of 4.2 μM. In silico analysis revealed that, similarly to roscovitine, sunitinib fitted 6 of 10 features of the CDK5 pharmacophore. In a cell-based model, sunitinib reduced CDK5 phosphorylation (pCDK5), calpain-dependent p35/p25 conversion and protected neuronal cells from the toxic effects of gp120. In glial fibrillary acidic protein-gp120 transgenic (tg) mice, sunitinib reduced levels of pCDK5, p35/p25 and phosphorylated tau protein, along with amelioration of the neurodegenerative pathology. Compounds such as sunitinib with dual kinase inhibitory activity could ameliorate the cognitive impairment associated with chronic HIV infection of the CNS. Moreover, repositioning existing low MW compounds holds promise for the treatment of patients with neurodegenerative disorders. © 2014 The British Pharmacological Society.

  14. Gene-Environment Interplay in Internalizing Disorders: Consistent Findings across Six Environmental Risk Factors

    Science.gov (United States)

    Hicks, Brian M.; DiRago, Ana C.; Iacono, William G.; McGue, Matt

    2009-01-01

    Background Newer behavior genetic methods can better elucidate gene-environment (G-E) interplay in the development of internalizing (INT) disorders (i.e., major depression and anxiety disorders). However, no study to date has conducted a comprehensive analysis examining multiple environmental risks with the purpose of delineating how general G-E mechanisms influence the development of INT disorders. Methods The sample consisted of 1315 male and female twin pairs participating in the age 17 assessment of the Minnesota Twin Family Study. Quantitative G-E interplay models were used to examine how genetic and environmental risk for INT disorders changes as a function of environmental context. Multiple measures and informants were employed to construct composite measures of INT disorders and 6 environmental risk factors including: stressful life events, mother-child and father-child relationship problems, antisocial and prosocial peer affiliation, and academic achievement and engagement. Results Significant moderation effects were detected between each environmental risk factor and INT such that in the context of greater environmental adversity, nonshared environmental factors became more important in the etiology of INT symptoms. Conclusion Our results are consistent with the interpretation that environmental stressors have a causative effect on the emergence of INT disorders. The consistency of our results suggests a general mechanism of environmental influence on INT disorders regardless of the specific form of environmental risk. PMID:19594836

  15. Novel mutations in PANK2 and PLA2G6 genes in patients with neurodegenerative disorders: two case reports.

    Science.gov (United States)

    Dastsooz, Hassan; Nemati, Hamid; Fard, Mohammad Ali Farazi; Fardaei, Majid; Faghihi, Mohammad Ali

    2017-08-18

    Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous group of disorders associated with progressive impairment of movement, vision, and cognition. The disease is initially diagnosed on the basis of changes in brain magnetic resonance imaging which indicate an abnormal brain iron accumulation in the basal ganglia. However, the diagnosis of specific types should be based on both clinical findings and molecular genetic testing for genes associated with different types of NBIA, including PANK2, PLA2G6, C19orf12, FA2H, ATP13A2, WDR45, COASY, FTL, CP, and DCAF17. The purpose of this study was to investigate disease-causing mutations in two patients with distinct NBIA disorders. Whole Exome sequencing using Next Generation Illumina Sequencing was used to enrich all exons of protein-coding genes as well as some other important genomic regions in these two affected patients. A deleterious homozygous four-nucleotide deletion causing frameshift deletion in PANK2 gene (c.1426_1429delATGA, p.M476 fs) was identified in an 8 years old girl with dystonia, bone fracture, muscle rigidity, abnormal movement, lack of coordination and chorea. In addition, our study revealed a novel missense mutation in PLA2G6 gene (c.3G > T:p.M1I) in one and half-year-old boy with muscle weakness and neurodevelopmental regression (speech, motor and cognition). The novel mutations were also confirmed by Sanger sequencing in the proband and their parents. Current study uncovered two rare novel mutations in PANK2 and PLA2G6 genes in patients with NBIA disorder and such studies may help to conduct genetic counseling and prenatal diagnosis more accurately for individuals at the high risk of these types of disorders.

  16. Automatic sleep scoring in normals and in individuals with neurodegenerative disorders according to new international sleep scoring criteria

    DEFF Research Database (Denmark)

    Jensen, Peter S.; Sørensen, Helge Bjarup Dissing; Jennum, P. J.

    2010-01-01

    Medicine (AASM). Methods: A biomedical signal processing algorithm was developed, allowing for automatic sleep depth quantification of routine polysomnographic (PSG) recordings through feature extraction, supervised probabilistic Bayesian classification, and heuristic rule-based smoothing. The performance......Introduction: Reliable polysomnographic classification is the basis for evaluation of sleep disorders in neurological diseases. Aim: To develop a fully automatic sleep scoring algorithm on the basis of a reproduction of new international sleep scoring criteria from the American Academy of Sleep....... Conclusion: The developed algorithm was capable of scoring normal sleep with an accuracy around the manual inter-scorer reliability, it failed in accurately scoring abnormal sleep as encountered for the PD/MSA patients, which is due to the abnormal micro- and macrostructure pattern in these patients....

  17. Self-consistent approximation for muffin-tin models of random substitutional alloys with environmental disorder

    International Nuclear Information System (INIS)

    Kaplan, T.; Gray, L.J.

    1984-01-01

    The self-consistent approximation of Kaplan, Leath, Gray, and Diehl is applied to models for substitutional random alloys with muffin-tin potentials. The particular advantage of this approximation is that, in addition to including cluster scattering, the muffin-tin potentials in the alloy can depend on the occupation of the surrounding sites (i.e., environmental disorder is included)

  18. Structure of disordered alloys - II: self-consistent CCPA calculations for III-V semiconducting alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.; Chaudhry, V.

    1980-09-01

    Using the chemical pseudopotential approach of Anderson and Bullett we have generated from first principles pseudo-Hamiltonians for heteropolar alloys. The one-electron density of states has been generated for Gasub(x)Insub(1-x)As using a self-consistent cluster CPA introduced earlier by one of us. Off-diagonal disorder has also been incorporated. (author)

  19. When cytokinin, a plant hormone, meets the adenosine A2A receptor: a novel neuroprotectant and lead for treating neurodegenerative disorders?

    Directory of Open Access Journals (Sweden)

    Yi-Chao Lee

    Full Text Available It is well known that cytokinins are a class of phytohormones that promote cell division in plant roots and shoots. However, their targets, biological functions, and implications in mammalian systems have rarely been examined. In this study, we show that one cytokinin, zeatin riboside, can prevent pheochromocytoma (PC12 cells from serum deprivation-induced apoptosis by acting on the adenosine A(2A receptor (A(2A-R, which was blocked by an A(2A-R antagonist and a protein kinase A (PKA inhibitor, demonstrating the functional ability of zeatin riboside by mediating through A(2A-R signaling event. Since the A(2A-R was implicated as a therapeutic target in treating Huntington's disease (HD, a cellular model of HD was applied by transfecting mutant huntingtin in PC12 cells. By using filter retardation assay and confocal microscopy we found that zeatin riboside reversed mutant huntingtin (Htt-induced protein aggregations and proteasome deactivation through A(2A-R signaling. PKA inhibitor blocked zeatin riboside-induced suppression of mutant Htt aggregations. In addition, PKA activated proteasome activity and reduced mutant Htt protein aggregations. However, a proteasome inhibitor blocked both zeatin riboside-and PKA activator-mediated suppression of mutant Htt aggregations, confirming mediation of the A(2A-R/PKA/proteasome pathway. Taken together, zeatin riboside might have therapeutic potential as a novel neuroprotectant and a lead for treating neurodegenerative disorders.

  20. Composition, standardization and chemical profiling of Banisteriopsis caapi, a plant for the treatment of neurodegenerative disorders relevant to Parkinson's disease.

    Science.gov (United States)

    Wang, Yan-Hong; Samoylenko, Volodymyr; Tekwani, Babu L; Khan, Ikhlas A; Miller, Loren S; Chaurasiya, Narayan D; Rahman, Md Mostafizur; Tripathi, Lalit M; Khan, Shabana I; Joshi, Vaishali C; Wigger, Frank T; Muhammad, Ilias

    2010-04-21

    Banisteriopsis caapi, a woody vine from the Amazonian basin, is popularly known as an ingredient of a sacred drink ayahuasca, widely used throughout the Amazon as a medicinal tea for healing and spiritual exploration. The usefulness of Banisteriopsis caapi has been established for alleviating symptoms of neurological disorders including Parkinson's disease. Primary objective of this study was to develop the process for preparing standardized extracts of Banisteriopsis caapi to achieve high potency for inhibition of human monoamine oxidases (MAO) and antioxidant properties. The aqueous extracts prepared from different parts of the plant collected from different geographical locations and seasons were analyzed by HPLC for principal bioactive markers. The extracts were simultaneously tested in vitro for inhibition of human MAOs and antioxidant activity for analysis of correlation between phytochemical composition of the extracts and bioactivities. Reversed-phase HPLC with photodiode array detection was employed to profile the alkaloidal and non-alkaloidal components of the aqueous extract of Banisteriopsis caapi. The Banisteriopsis caapi extracts and standardized compositions were tested in vitro for inhibition of recombinant preparations of human MAO-A and MAO-B. In vitro cell-based assays were employed for evaluation of antioxidant property and mammalian cell cytotoxicity of these preparations. Among the different aerial parts, leaves, stems/large branches and stem bark of Banisteriopsis caapi, HPLC analysis revealed that most of the dominant chemical and bioactive markers (1, 2, 5, 7-9) were present in high concentrations in dried bark of large branch. A library of HPLC chromatograms has also been generated as a tool for fingerprinting and authentication of the studied Banisteriopsis caapi species. The correlation between potency of MAO inhibition and antioxidant activity with the content of the main active constituents of the aqueous Banisteriopsis caapi extracts

  1. Longitudinal Study of Neurodegenerative Disorders

    Science.gov (United States)

    2018-01-31

    MLD; Krabbe Disease; ALD; MPS I; MPS II; MPS III; Vanishing White Matter Disease; GM3 Gangliosidosis; PKAN; Tay-Sachs Disease; NP Deficiency; Osteopetrosis; Alpha-Mannosidosis; Sandhoff Disease; Niemann-Pick Diseases; MPS IV; Gaucher Disease; GAN; GM1 Gangliosidoses; Morquio Disease; S-Adenosylhomocysteine Hydrolase Deficiency; Batten Disease; Pelizaeus-Merzbacher Disease; Leukodystrophy; Lysosomal Storage Diseases; Purine Nucleoside Phosphorylase Deficiency; Multiple Sulfatase Deficiency Disease

  2. Coenzyme Q10 effects in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Meredith Spindler

    2009-11-01

    Full Text Available Meredith Spindler1, M Flint Beal1,2, Claire Henchcliffe1,21Department of Neurology, 2Department of Neuroscience, Weill Medical College of Cornell University, New York, NY, USAAbstract: Coenzyme Q10 (CoQ10 is an essential cofactor in the mitochondrial respiratory chain, and as a dietary supplement it has recently gained attention for its potential role in the treatment of neurodegenerative disease. Evidence for mitochondrial dysfunction in neurodegenerative disorders derives from animal models, studies of mitochondria from patients, identification of genetic defects in patients with neurodegenerative disease, and measurements of markers of oxidative stress. Studies of in vitro models of neuronal toxicity and animal models of neurodegenerative disorders have demonstrated potential neuroprotective effects of CoQ10. With this data in mind, several clinical trials of CoQ10 have been performed in Parkinson’s disease and atypical Parkinson’s syndromes, Huntington’s disease, Alzheimer disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis, with equivocal findings. CoQ10 is widely available in multiple formulations and is very well tolerated with minimal adverse effects, making it an attractive potential therapy. Phase III trials of high-dose CoQ10 in large sample sizes are needed to further ascertain the effects of CoQ10 in neurodegenerative diseases.Keywords: coenzyme Q10, neurodegenerative disease, Parkinson’s disease, Huntington’s disease, mitochondrial dysfunction

  3. Effect of gap detection threshold on consistency of speech in children with speech sound disorder.

    Science.gov (United States)

    Sayyahi, Fateme; Soleymani, Zahra; Akbari, Mohammad; Bijankhan, Mahmood; Dolatshahi, Behrooz

    2017-02-01

    The present study examined the relationship between gap detection threshold and speech error consistency in children with speech sound disorder. The participants were children five to six years of age who were categorized into three groups of typical speech, consistent speech disorder (CSD) and inconsistent speech disorder (ISD).The phonetic gap detection threshold test was used for this study, which is a valid test comprised six syllables with inter-stimulus intervals between 20-300ms. The participants were asked to listen to the recorded stimuli three times and indicate whether they heard one or two sounds. There was no significant difference between the typical and CSD groups (p=0.55), but there were significant differences in performance between the ISD and CSD groups and the ISD and typical groups (p=0.00). The ISD group discriminated between speech sounds at a higher threshold. Children with inconsistent speech errors could not distinguish speech sounds during time-limited phonetic discrimination. It is suggested that inconsistency in speech is a representation of inconsistency in auditory perception, which causes by high gap detection threshold. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Self-consistent cluster theories for alloys with diagonal and off-diagonal disorder

    International Nuclear Information System (INIS)

    Gonis, A.; Garland, J.W.

    1978-01-01

    The molecular coherent-potential approximation (MCPA) and other, simpler cluster approximations for disordered alloys are studied both analytically and numerically for alloys with diagonal and off-diagonal disorder (ODD). First, the MCPA for alloys with only diagonal disorder is rederived within the interactor formalism of Blackman, Esterling, and Berk. This formalism, which simplifies the numerical implementation of the MCPA, is then used to generalize the MCPA so as to take account of ODD. It is shown that the analytic properties of the MCPA are preserved under this generalization. Also, two computationally simple cluster approximations, the self-consistent central-site approximation (SCCSA) and the self-consistent boundary-site approximation (SCBSA), are generalized to include the effects of ODD. It is shown that for one-dimensional systems with only nearest-neighbor hopping the SCBSA yields Green's functions which are identical to those given by the MCPA and thus are analytic, even in the presence of ODD. Finally, the results of numerical calculations are reported for one-dimensional systems with only nearest-neighbor hopping but with both diagonal and off-diagonal disorder. These calculations were performed using the single-site approximation of Blackman, Esterling, and Berk and three different cluster approximations: the multishell method previously proposed by the authors, the SCCSA, and the SCBSA. The results of these calculations are compared with exact results and with previous results obtained using the truncated t-matix approximation and the recent method of Kaplan and Gray. These comparisons suggest that the multishell method and the generalization of the SCBSA given in this paper are more efficient and accurate for the calculation of densities of states for systems with ODD. On the other hand, as expected, the SCCSA was found to yield severely nonanalytic results for the values of band parameters used

  5. WOrk-Related Questionnaire for UPper extremity disorders (WORQ-UP): Factor Analysis and Internal Consistency.

    Science.gov (United States)

    Aerts, Bas R; Kuijer, P Paul; Beumer, Annechien; Eygendaal, Denise; Frings-Dresen, Monique H

    2018-04-17

    To test a 17-item questionnaire, the WOrk-Related Questionnaire for UPper extremity disorders (WORQ-UP), for dimensionality of the items (factor analysis) and internal consistency. Cross-sectional study. Outpatient clinic. A consecutive sample of patients (N=150) consisting of all new referral patients (either from a general physician or other hospital) who visited the orthopedic outpatient clinic because of an upper extremity musculoskeletal disorder. Not applicable. Number and dimensionality of the factors in the WORQ-UP. Four factors with eigenvalues (EVs) >1.0 were found. The factors were named exertion, dexterity, tools & equipment, and mobility. The EVs of the factors were, respectively, 5.78, 2.38, 1.81, and 1.24. The factors together explained 65.9% of the variance. The Cronbach alpha values for these factors were, respectively, .88, .74, .87, and .66. The 17 items of the WORQ-UP resemble 4 factors-exertion, dexterity, tools & equipment, and mobility-with a good internal consistency. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. The ELISA-measured increase in cerebrospinal fluid tau that discriminates Alzheimer's disease from other neurodegenerative disorders is not attributable to differential recognition of tau assembly forms.

    Science.gov (United States)

    O'Dowd, Seán T; Ardah, Mustafa T; Johansson, Per; Lomakin, Aleksey; Benedek, George B; Roberts, Kinley A; Cummins, Gemma; El Agnaf, Omar M; Svensson, Johan; Zetterberg, Henrik; Lynch, Timothy; Walsh, Dominic M

    2013-01-01

    Elevated cerebrospinal fluid concentrations of tau discriminate Alzheimer's disease from other neurodegenerative conditions. The reasons for this are unclear. While commercial assay kits are widely used to determine total-tau concentrations, little is known about their ability to detect different aggregation states of tau. We demonstrate that the leading commercial enzyme-linked immunosorbent assay reliably detects aggregated and monomeric tau and evinces good recovery of both species when added into cerebrospinal fluid. Hence, the disparity between total-tau levels encountered in Alzheimer's disease and other neurodegenerative conditions is not due to differential recognition of tau assembly forms or the extent of degeneration.

  7. Humoral activity of cord blood-derived stem/progenitor cells: implications for stem cell-based adjuvant therapy of neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Edyta Paczkowska

    that CM from SPCs favorable influence neural cell proliferation and survival. Understanding the mechanisms governing the characterization and humoral activity of subsets of SPCs may yield new therapeutic strategies that might be more effective in treating neurodegenerative disorders.

  8. Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2016-01-01

    Full Text Available Understanding the organizational architecture of human brain function and its alteration patterns in diseased brains such as Autism Spectrum Disorder (ASD patients are of great interests. In-vivo functional magnetic resonance imaging (fMRI offers a unique window to investigate the mechanism of brain function and to identify functional network components of the human brain. Previously, we have shown that multiple concurrent functional networks can be derived from fMRI signals using whole-brain sparse representation. Yet it is still an open question to derive group-wise consistent networks featured in ASD patients and controls. Here we proposed an effective volumetric network descriptor, named connectivity map, to compactly describe spatial patterns of brain network maps and implemented a fast framework in Apache Spark environment that can effectively identify group-wise consistent networks in big fMRI dataset. Our experiment results identified 144 group-wisely common intrinsic connectivity networks (ICNs shared between ASD patients and healthy control subjects, where some ICNs are substantially different between the two groups. Moreover, further analysis on the functional connectivity and spatial overlap between these 144 common ICNs reveals connectomics signatures characterizing ASD patients and controls. In particular, the computing time of our Spark-enabled functional connectomics framework is significantly reduced from 240 hours (C++ code, single core to 20 hours, exhibiting a great potential to handle fMRI big data in the future.

  9. Excitatory amino acid neurotoxicity and neurodegenerative disease.

    Science.gov (United States)

    Meldrum, B; Garthwaite, J

    1990-09-01

    The progress over the last 30 years in defining the role of excitatory amino acids in normal physiological function and in the abnormal neuronal activity of epilepsy has been reviewed in earlier articles in this series. In the last five years it has become clear that excitatory amino acids also play a role in a wide range of neurodegenerative processes. The evidence is clearest where the degenerative process is acute, but is more controversial for slow degenerative processes. In this article Brian Meldrum and John Garthwaite review in vivo and in vitro studies of the cytotoxicity of amino acids and summarize the contribution of such toxicity to acute and chronic neurodegenerative disorders.

  10. Olfactory memory impairment in neurodegenerative diseases.

    Science.gov (United States)

    Bahuleyan, Biju; Singh, Satendra

    2012-10-01

    Olfactory disorders are noted in a majority of neurodegenerative diseases, but they are often misjudged and are rarely rated in the clinical setting. Severe changes in the olfactory tests are observed in Parkinson's disease. Olfactory deficits are an early feature in Alzheimer's disease and they worsen with the disease progression. Alterations in the olfactory function are also noted after severe head injuries, temporal lobe epilepsy, multiple sclerosis, and migraine. The purpose of the present review was to discuss the available scientific knowledge on the olfactory memory and to relate its impairment with neurodegenerative diseases.

  11. Curcumin and neurodegenerative diseases

    Science.gov (United States)

    Monroy, Adriana; Lithgow, Gordon J.; Alavez, Silvestre

    2013-01-01

    Over the last ten years curcumin has been reported to be effective against a wide variety of diseases and is characterized as having anti-carcinogenic, hepatoprotective, thrombosuppressive, cardioprotective, anti-arthritic, and anti-infectious properties. Recent studies performed in both vertebrate and invertebrate models have been conducted to determine whether curcumin was also neuroprotective. The efficacy of curcumin in several pre-clinical trials for neurodegenerative diseases has created considerable excitement mainly due to its lack of toxicity and low cost. This suggests that curcumin could be a worthy candidate for nutraceutical intervention. Since aging is a common risk factor for neurodegenerative diseases, it is possible that some compounds that target aging mechanisms could also prevent these kinds of diseases. One potential mechanism to explain several of the general health benefits associated with curcumin is that it may prevent aging-associated changes in cellular proteins that lead to protein insolubility and aggregation. This loss in protein homeostasis is associated with several age-related diseases. Recently, curcumin has been found to help maintain protein homeostasis and extend lifespan in the model invertebrate Caenorhabditis elegans. Here, we review the evidence from several animal models that curcumin improves healthspan by preventing or delaying the onset of various neurodegenerative diseases. PMID:23303664

  12. Assisted delivery of antisense therapeutics in animal models of heritable neurodegenerative and neuromuscular disorders: a systematic review and meta-analysis.

    Science.gov (United States)

    van der Bent, M Leontien; Paulino da Silva Filho, Omar; van Luijk, Judith; Brock, Roland; Wansink, Derick G

    2018-03-08

    Antisense oligonucleotide (AON)-based therapies hold promise for a range of neurodegenerative and neuromuscular diseases and have shown benefit in animal models and patients. Success in the clinic is nevertheless still limited, due to unfavourable biodistribution and poor cellular uptake of AONs. Extensive research is currently being conducted into the formulation of AONs to improve delivery, but thus far there is no consensus on which of those strategies will be the most effective. This systematic review was designed to answer in an unbiased manner which delivery strategies most strongly enhance the efficacy of AONs in animal models of heritable neurodegenerative and neuromuscular diseases. In total, 95 primary studies met the predefined inclusion criteria. Study characteristics and data on biodistribution and toxicity were extracted and reporting quality and risk of bias were assessed. Twenty studies were eligible for meta-analysis. We found that even though the use of delivery systems provides an advantage over naked AONs, it is not yet possible to select the most promising strategies. Importantly, standardisation of experimental procedures is warranted in order to reach conclusions about the most efficient delivery strategies. Our best practice guidelines for future experiments serve as a step in that direction.

  13. Gene-Environment Interplay in Internalizing Disorders: Consistent Findings across Six Environmental Risk Factors

    Science.gov (United States)

    Hicks, Brian M.; Dirago, Ana C.; Iacono, William G.; McGue, Matt

    2009-01-01

    Background: Behavior genetic methods can help to elucidate gene-environment (G-E) interplay in the development of internalizing (INT) disorders (i.e., major depression and anxiety disorders). To date, however, no study has conducted a comprehensive analysis examining multiple environmental risk factors with the purpose of delineating general…

  14. Role of agmatine in neurodegenerative diseases and epilepsy.

    Science.gov (United States)

    Moretti, Morgana; Matheus, Filipe C; de Oliveira, Paulo A; Neis, Vivian B; Ben, Juliana; Walz, Roger; Rodrigues, Ana Lucia S; Prediger, Rui Daniel

    2014-06-01

    Agmatine, a cationic polyamine synthesized after decarboxylation of L-arginine by the enzyme arginine decarboxylase, is an endogenous neuromodulator that emerges as a potential agent to manage diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, there is increasing number of preclinical studies demonstrating the beneficial effects of exogenous agmatine administration on depression, anxiety, hypoxic ischemia, nociception, morphine tolerance, memory, Parkinson`s disease, Alzheimer`s disease, traumatic brain injury related alterations/disorders and epilepsy. The aim of this review is to summarize the knowledge about the effects of agmatine in CNS and point out its potential as new pharmacological treatment for diverse neurological and neurodegenerative diseases. Moreover, some molecular mechanisms underlying the neuroprotective effects of agmatine will be discussed.

  15. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection.

    Science.gov (United States)

    Khalilpour, Saba; Latifi, Shahrzad; Behnammanesh, Ghazaleh; Majid, Amin Malik Shah Abdul; Majid, Aman Shah Abdul; Tamayol, Ali

    2017-04-15

    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression. Copyright © 2016. Published by Elsevier B.V.

  16. More consistent, yet less sensitive : Interval timing in autism spectrum disorders

    NARCIS (Netherlands)

    Falter, Christine M.; Noreika, Valdas; Wearden, John H.; Bailey, Anthony J.

    2012-01-01

    Even though phenomenological observations and anecdotal reports suggest atypical time processing in individuals with an autism spectrum disorder (ASD), very few psychophysical studies have investigated interval timing, and the obtained results are contradictory. The present study aimed to clarify

  17. Olfactory Memory Impairment in Neurodegenerative Diseases

    OpenAIRE

    Bahuleyan, Biju; Singh, Satendra

    2012-01-01

    Olfactory disorders are noted in a majority of neurodegenerative diseases, but they are often misjudged and are rarely rated in the clinical setting. Severe changes in the olfactory tests are observed in Parkinson's disease. Olfactory deficits are an early feature in Alzheimer's disease and they worsen with the disease progression. Alterations in the olfactory function are also noted after severe head injuries, temporal lobe epilepsy, multiple sclerosis, and migraine. The purpose of the prese...

  18. Synthetic prions and other human neurodegenerative proteinopathies.

    Science.gov (United States)

    Le, Nhat Tran Thanh; Narkiewicz, Joanna; Aulić, Suzana; Salzano, Giulia; Tran, Hoa Thanh; Scaini, Denis; Moda, Fabio; Giachin, Gabriele; Legname, Giuseppe

    2015-09-02

    Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Progranulin in neurodegenerative disease.

    Science.gov (United States)

    Petkau, Terri L; Leavitt, Blair R

    2014-07-01

    Loss-of-function mutations in the progranulin gene are a common cause of familial frontotemporal dementia (FTD). The purpose of this review is to summarize the role of progranulin in health and disease, because the field is now poised to begin examining therapeutics that alter endogenous progranulin levels. We first review the clinical and neuropathological phenotype of FTD patients carrying mutations in the progranulin gene, which suggests that progranulin-mediated neurodegeneration is multifactorial and influenced by other genetic and/or environmental factors. We then examine evidence for the role of progranulin in the brain with a focus on mouse model systems. A better understanding of the complexity of progranulin biology in the brain will help guide the development of progranulin-modulating therapies for neurodegenerative disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sleep disturbance in mental health problems and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Anderson KN

    2013-05-01

    Full Text Available Kirstie N Anderson1 Andrew J Bradley2,3 1Department of Neurology, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK; 2Eli Lilly and Company Limited, Lilly House, Basingstoke, UK; 3Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK Abstract: Sleep has been described as being of the brain, by the brain, and for the brain. This fundamental neurobiological behavior is controlled by homeostatic and circadian (24-hour processes and is vital for normal brain function. This review will outline the normal sleep–wake cycle, the changes that occur during aging, and the specific patterns of sleep disturbance that occur in association with both mental health disorders and neurodegenerative disorders. The role of primary sleep disorders such as insomnia, obstructive sleep apnea, and REM sleep behavior disorder as potential causes or risk factors for particular mental health or neurodegenerative problems will also be discussed. Keywords: sleep, mental health, neurodegenerative disorders, cognition

  1. Kata Techniques Training Consistently Decreases Stereotypy in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Bahrami, Fatimah; Movahedi, Ahmadreza; Marandi, Sayed Mohammad; Abedi, Ahmad

    2012-01-01

    The effects of 14 weeks of Kata techniques training on stereotypic behaviors of children with autism spectrum disorders (ASD) were investigated. The study included 30 eligible (diagnosed ASD, school age) children with ages ranging from 5 to 16 years whom they assigned to an exercise (n = 15) or a no-exercise control group (n = 15). Participants of…

  2. Self-consistent electronic structure of disordered Fe/sub 0.65/Ni/sub 0.35/

    International Nuclear Information System (INIS)

    Johnson, D.D.; Pinski, F.J.; Stocks, G.M.

    1985-01-01

    We present the results of the first ab initio calculation of the electronic structure of the disordered alloy Fe/sub 0.65/Ni/sub 0.35/. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko--Wilk--Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared to the very structured majority spin density of states. This difference is due to a subtle balance between exchange splitting and charge neutrality

  3. Nutraceutical Potential of Phenolics from ′Brava′ and ′Mansa′ Extra-Virgin Olive Oils on the Inhibition of Enzymes Associated to Neurodegenerative Disorders in Comparison with Those of ′Picual′ and ′Cornicabra′

    Directory of Open Access Journals (Sweden)

    María Figueiredo-González

    2018-03-01

    Full Text Available The increasing interest in the Mediterranean diet is based on the protective effects against several diseases, including neurodegenerative disorders. Polyphenol-rich functional foods have been proposed to be unique supplementary and nutraceutical treatments for these disorders. Extra-virgin olive oils (EVOOs obtained from ′Brava′ and ′Mansa′, varieties recently identified from Galicia (northwestern Spain, were selected for in vitro screening to evaluate their capacity to inhibit key enzymes involved in Alzheimer′s disease (AD (acetylcholinesterase (AChE, butyrylcholinesterase (BuChE and 5-lipoxygenase (5-LOX, major depressive disorder (MDD and Parkinson′s disease (PD (monoamine oxidases: hMAO-A and hMAO-B respectively. ′Brava′ oil exhibited the best inhibitory activity against all enzymes, when they are compared to ′Mansa′ oil: BuChE (IC50 = 245 ± 5 and 591 ± 23 mg·mL−1, 5-LOX (IC50 = 45 ± 7 and 106 ± 14 mg·mL−1, hMAO-A (IC50 = 30 ± 1 and 72 ± 10 mg·mL−1 and hMAO-B (IC50 = 191 ± 8 and 208 ± 14 mg·mL−1, respectively. The inhibitory capacity of the phenolic extracts could be associated with the content of secoiridoids, lignans and phenolic acids.

  4. Mice lacking Brinp2 or Brinp3, or both, exhibit behaviours consistent with neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Susie Ruth Berkowicz

    2016-10-01

    Full Text Available Background: Brinps 1 – 3, and Astrotactins (Astn 1 and 2, are members of the Membrane Attack Complex / Perforin (MACPF superfamily that are predominantly expressed in the mammalian brain during development. Genetic variation at the human BRINP2/ASTN1 and BRINP1/ASTN2 loci has been implicated in neurodevelopmental disorders. We, and others, have previously shown that Brinp1-/- mice exhibit behaviour reminiscent of autism spectrum disorder (ASD and attention deficit hyperactivity disorder (ADHD.Method: We created Brinp2-/- mice and Brinp3-/- mice via the Cre-mediated LoxP system to investigate the effect of gene deletion on anatomy and behaviour. Additionally, Brinp2-/-Brinp3-/- double knock-out mice were generated by interbreeding Brinp2-/- and Brinp3-/- mice. Genomic validation was carried out for each knock-out line, followed by histological, weight and behavioural examination. Brinp1-/-Brinp2-/-Brinp3-/- triple knock-out mice were also generated by crossing Brinp2/3 double knock-out mice with previously generated Brinp1-/- mice, and examined by weight and histological analysis.Results: Brinp2-/- and Brinp3-/- mice differ in their behaviour: Brinp2-/- mice are hyperactive, whereas Brinp3-/- mice exhibit marked changes in anxiety-response on the elevated plus maze. Brinp3-/- mice also show evidence of altered sociability. Both Brinp2-/- and Brinp3-/- mice have normal short-term memory, olfactory responses, pre-pulse inhibition and motor learning. The double knock-out mice show behaviours of Brinp2-/- and Brinp3-/- mice, without evidence of new or exacerbated phenotypes. Conclusion: Brinp3 is important in moderation of anxiety, with potential relevance to anxiety disorders. Brinp2 dysfunction resulting in hyperactivity may be relevant to the association of ADHD with chromosome locus 1q25.2. Brinp2-/- and Brinp3-/- genes do not compensate in the mammalian brain and likely have distinct molecular or cell-type specific functions.

  5. Self-consistent approach to the eletronic problem in disordered solids

    International Nuclear Information System (INIS)

    Taguena-Martinez, J.; Barrio, R.A.; Martinez, E.; Yndurain, F.

    1984-01-01

    It is developed a simple formalism which allows us to perform a self consistent non-parametrized calculation in a non-periodic system, by finding out the thermodynamically averaged Green's function of a cluster Bethe lattice system. (Author) [pt

  6. Electronic structure of disordered alloys - I: self-consistent cluster CPA incorporating off-diagonal disorder and short-range order

    International Nuclear Information System (INIS)

    Kumar, V.; Mookerjee, A.; Srivastava, V.K.

    1980-09-01

    We have developed here a self-consistent coherent potential approximation generalized to take into account effect of clusters. Off-diagonal disorder and short-range order are taken into account. A graphical method married to the recursion technique, enables us to work on realistic three-dimensional lattices. Calculations are shown for a binary alloy on a diamond lattice. (author)

  7. A lack of consistent evidence for cortisol dysregulation in premenstrual syndrome/premenstrual dysphoric disorder.

    Science.gov (United States)

    Kiesner, Jeff; Granger, Douglas A

    2016-03-01

    Although decades of research has examined the association between cortisol regulation and premenstrual syndrome/premenstrual dysphoric disorder (PMS/PMDD), no review exists to provide a general set of conclusions from the extant research. In the present review we summarize and interpret research that has tested for associations between PMS/PMDD and cortisol levels and reactivity (n=38 original research articles). Three types of studies are examined: correlational studies, environmental-challenge studies, and pharmacological-challenge studies. Overall, there was very little evidence that women with and without PMS/PMDD demonstrate systematic and predictable mean-level differences in cortisol, or differences in cortisol response/reactivity to challenges. Methodological differences in sample size, the types of symptoms used for diagnosis (physical and psychological vs. only affective), or the type of cortisol measure used (serum vs. salivary), did not account for differences between studies that did and did not find significant effects. Caution is recommended before accepting the conclusion of null effects, and recommendations are made that more rigorous research be conducted, considering symptom-specificity, within-person analyses, and multiple parameters of cortisol regulation, before final conclusions are drawn. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Aptamer and its applications in neurodegenerative diseases.

    Science.gov (United States)

    Qu, Jing; Yu, Shuqing; Zheng, Yuan; Zheng, Yan; Yang, Hui; Zhang, Jianliang

    2017-02-01

    Aptamers are small single-stranded DNA or RNA oligonucleotide fragments or small peptides, which can bind to targets by high affinity and specificity. Because aptamers are specific, non-immunogenic and non-toxic, they are ideal materials for clinical applications. Neurodegenerative disorders are ravaging the lives of patients. Even though the mechanism of these diseases is still elusive, they are mainly characterized by the accumulation of misfolded proteins in the central nervous system. So it is essential to develop potential measures to slow down or prevent the onset of these diseases. With the advancements of the technologies, aptamers have opened up new areas in this research field. Aptamers could bind with these related target proteins to interrupt their accumulation, subsequently blocking or preventing the process of neurodegenerative diseases. This review presents recent advances in the aptamer generation and its merits and limitations, with emphasis on its applications in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathy, Huntington's disease and multiple sclerosis.

  9. Convergent molecular defects underpin diverse neurodegenerative diseases.

    Science.gov (United States)

    Tofaris, George K; Buckley, Noel J

    2018-02-19

    In our ageing population, neurodegenerative disorders carry an enormous personal, societal and economic burden. Although neurodegenerative diseases are often thought of as clinicopathological entities, increasing evidence suggests a considerable overlap in the molecular underpinnings of their pathogenesis. Such overlapping biological processes include the handling of misfolded proteins, defective organelle trafficking, RNA processing, synaptic health and neuroinflammation. Collectively but in different proportions, these biological processes in neurons or non-neuronal cells lead to regionally distinct patterns of neuronal vulnerability and progression of pathology that could explain the disease symptomology. With the advent of patient-derived cellular models and novel genetic manipulation tools, we are now able to interrogate this commonality despite the cellular complexity of the brain in order to develop novel therapeutic strategies to prevent or arrest neurodegeneration. Here, we describe broadly these concepts and their relevance across neurodegenerative diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. [Sense of smell, physiological ageing and neurodegenerative diseases: II. Ageing and neurodegenerative diseases].

    Science.gov (United States)

    Fusari, A; Molina, J A

    The sense of smell, which was once studied because of its biological and evolutionary significance, is today one of the centres of interest in research on normal and pathological ageing. The latest scientific developments point to an inversely proportional relationship between age and olfactory sensitivity. In certain neurodegenerative diseases this sensory decline is one of the first symptoms of the disorder and is correlated with the progression of the disease. In this work we are going to review the scientific knowledge on loss of sense of smell in ageing and in neurodegenerative diseases, with special attention given to Alzheimer's and Parkinson's diseases. A survey of studies that have examined the olfactory deficits in ageing and in some neurodegenerative diseases offers conclusive results about the presence of these impairments in the early stages of these disorders and even among healthy elderly persons. Although a number of causes contribute to these sensory losses in physiological ageing, a common neurological foundation has been proposed for Alzheimer's and Parkinson's diseases. Nevertheless, despite certain initial similarities, the olfactory deficits shown in these disorders seem to be qualitatively different.

  11. Factor structure, internal consistency and reliability of the Posttraumatic Stress Disorder Checklist (PCL: an exploratory study Estrutura fatorial, consistência interna e confiabilidade do Posttraumatic Stress Disorder Checklist (PCL: um estudo exploratório

    Directory of Open Access Journals (Sweden)

    Eduardo de Paula Lima

    2012-01-01

    Full Text Available INTRODUCTION: Posttraumatic stress disorder (PTSD is an anxiety disorder resulting from exposure to traumatic events. The Posttraumatic Stress Disorder Checklist (PCL is a self-report measure largely used to evaluate the presence of PTSD. OBJECTIVE: To investigate the internal consistency, temporal reliability and factor validity of the Portuguese language version of the PCL used in Brazil. METHODS: A total of 186 participants were recruited. The sample was heterogeneous with regard to occupation, sociodemographic data, mental health history, and exposure to traumatic events. Subjects answered the PCL at two occasions within a 15 days’ interval (range: 5-15 days. RESULTS: Cronbach’s alpha coefficients indicated high internal consistency for the total scale (0.91 and for the theoretical dimensions of the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV (0.83, 0.81, and 0.80. Temporal reliability (test-retest was high and consistent for different cutoffs. Maximum likelihood exploratory factor analysis (EFA was conducted and oblique rotation (Promax was applied. The Kaiser-Meyer-Olkin (KMO index (0.911 and Bartlett’s test of sphericity (χ² = 1,381.34, p INTRODUÇÃO: O transtorno do estresse pós-traumático (TEPT é um transtorno de ansiedade decorrente da exposição a eventos traumáticos. Entre as medidas de avaliação dos sintomas, destaca-se o Posttraumatic Stress Disorder Checklist (PCL. OBJETIVO: Investigar a consistência interna, a confiabilidade temporal e a validade fatorial da versão do PCL em português, utilizada no Brasil. MÉTODOS: Participaram do estudo 186 indivíduos heterogêneos em relação a ocupação, características sociodemográficas, histórico de saúde mental e exposição a eventos traumáticos. O PCL foi aplicado em dois momentos considerando um intervalo máximo de 15 dias (intervalo: 5-15 dias. RESULTADOS: A consistência interna (alfa de Cronbach foi adequada para a escala

  12. Histochemical approaches to assess cell-to-cell transmission of misfolded proteins in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    G. Natale

    2013-03-01

    Full Text Available Formation, aggregation and transmission of abnormal proteins are common features in neurodegenerative disorders including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. The mechanisms underlying protein alterations in neurodegenerative diseases remain controversial. Novel findings highlighted altered protein clearing systems as common biochemical pathways which generate protein misfolding, which in turn causes protein aggregation and protein spreading. In fact, proteinaceous aggregates are prone to cell-to-cell propagation. This is reminiscent of what happens in prion disorders, where the prion protein misfolds thus forming aggregates which spread to neighbouring cells. For this reason, the term prionoids is currently used to emphasize how several misfolded proteins are transmitted in neurodegenerative diseases following this prion-like pattern. Histochemical techniques including the use of specific antibodies covering both light and electron microscopy offer a powerful tool to describe these phenomena and investigate specific molecular steps. These include: prion like protein alterations; glycation of prion-like altered proteins to form advanced glycation end-products (AGEs; mechanisms of extracellular secretion; interaction of AGEs with specific receptors placed on neighbouring cells (RAGEs. The present manuscript comments on these phenomena aimed to provide a consistent scenario of the available histochemical approaches to dissect each specific step.

  13. Effect of electromagnetic radiations on neurodegenerative diseases- technological revolution as a curse in disguise.

    Science.gov (United States)

    Hasan, Gulam M; Sheikh, Ishfaq A; Karim, Sajjad; Haque, Absarul; Kamal, Mohammad A; Chaudhary, Adeel G; Azhar, Essam; Mirza, Zeenat

    2014-01-01

    In the present developed world, all of us are flooded with electromagnetic radiations (EMR) emanating from generation and transmission of electricity, domestic appliances and industrial equipments, to telecommunications and broadcasting. We have been exposed to EMR for last many decades; however their recent steady increase from artificial sources has been reported as millions of antennas and satellites irradiate the global population round the clock, year round. Needless to say, these are so integral to modern life that interaction with them on a daily basis is seemingly inevitable; hence, the EMR exposure load has increased to a point where their health effects are becoming a major concern. Delicate and sensitive electrical system of human body is affected by consistent penetration of electromagnetic frequencies causing DNA breakages and chromosomal aberrations. Technological innovations came with Pandora's Box of hazardous consequences including neurodegenerative disorders, hearing disabilities, diabetes, congenital abnormalities, infertility, cardiovascular diseases and cancer to name few, all on a sharp rise. Electromagnetic non-ionizing radiations pose considerable health threat with prolonged exposure. Mobile phones are usually held near to the brain and manifest progressive structural or functional alterations in neurons leading to neurodegenerative diseases and neuronal death. This has provoked awareness among both the general public and scientific community and international bodies acknowledge that further systematic research is needed. The aim of the present review was to have an insight in whether and how cumulative electro-magnetic field exposure is a risk factor for neurodegenerative disorders.

  14. Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders.

    Science.gov (United States)

    Niewiadomska-Cimicka, Anna; Krzyżosiak, Agnieszka; Ye, Tao; Podleśny-Drabiniok, Anna; Dembélé, Doulaye; Dollé, Pascal; Krężel, Wojciech

    2017-07-01

    Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARβ-null mutant mice, we identified genomic targets of RARβ in the striatum. Characterization of RARβ transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARβ in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e -5 ), cAMP (p = 4.5e -4 ), and calcium signaling (p = 3.4e -3 ). Many identified RARβ target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARβ transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARβ in huntingtin protein aggregates may account for reduced RA signaling reported in HD.

  15. Composition, Standardization and Chemical Profiling of Banisteriopsis caapi, a Plant for the Treatment of Neurodegenerative Disorders Relevant to Parkinson’s Disease†

    Science.gov (United States)

    Wang, Yan-Hong; Samoylenko, Volodymyr; Tekwani, Babu L.; Khan, Ikhlas A.; Miller, Loren S.; Chaurasiya, Narayan D.; Rahman, Md. Mostafizur; Tripathi, Lalit M.; Khan, Shabana I.; Joshi, Vaishali C.; Wigger, Frank T.; Muhammad, Ilias

    2010-01-01

    Ethnopharmacological relevance Banisteriopsis caapi, a woody vine from the Amazonian basin, is popularly known as an ingredient of a sacred drink ayahuasca, widely used throughout the Amazon as a medicinal tea for healing and spiritual exploration. The usefulness of B. caapi has been established for alleviating symptoms of neurological disorders including Parkinson’s disease. Aim of the study Primary objective of this study was to develop the process for preparing standardized extracts of B. caapi to achieve high potency for inhibition of human monoamine oxidases (MAO) and antioxidant properties. The aqueous extracts prepared from different parts of the plant collected from different geographical locations and seasons were analyzed by HPLC for principal bioactive markers. The extracts were simultaneously tested in vitro for inhibition of human MAOs and antioxidant activity for analysis of correlation between phytochemical composition of the extracts and bioactivities. Materials and methods Reversed-phase HPLC with photodiode array detection was employed to profile the alkaloidal and non-alkaloidal components of the aqueous extract of B. caapi. The B. caapi extracts and standardized compositions were tested in vitro for inhibition of recombinant preparations of human MAO-A and MAO-B. In vitro cell-based assays were employed for evaluation of antioxidant property and mammalian cell cytotoxicity of these preparations. Results Among the different aerial parts, leaves, stems/large branches and stem bark of B. caapi, HPLC analysis revealed that most of the dominant chemical and bioactive markers (1, 2, 5, 7-9) were present in high concentrations in dried bark of large branch. A library of HPLC chromatograms has also been generated as a tool for fingerprinting and authentication of the studied B. caapi species. The correlation between potency of MAO inhibition and antioxidant activity with the content of the main active constituents of the aqueous B. caapi extracts and

  16. Role of sigma-1 receptors in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Linda Nguyen

    2015-01-01

    Full Text Available Neurodegenerative diseases with distinct genetic etiologies and pathological phenotypes appear to share common mechanisms of neuronal cellular dysfunction, including excitotoxicity, calcium dysregulation, oxidative damage, ER stress and mitochondrial dysfunction. Glial cells, including microglia and astrocytes, play an increasingly recognized role in both the promotion and prevention of neurodegeneration. Sigma receptors, particularly the sigma-1 receptor subtype, which are expressed in both neurons and glia of multiple regions within the central nervous system, are a unique class of intracellular proteins that can modulate many biological mechanisms associated with neurodegeneration. These receptors therefore represent compelling putative targets for pharmacologically treating neurodegenerative disorders. In this review, we provide an overview of the biological mechanisms frequently associated with neurodegeneration, and discuss how sigma-1 receptors may alter these mechanisms to preserve or restore neuronal function. In addition, we speculate on their therapeutic potential in the treatment of various neurodegenerative disorders.

  17. NSAIDs and cardiovascular drugs in neurodegenerative and cerebrovascular diseases

    NARCIS (Netherlands)

    M.D.M. Haag (Mendel)

    2009-01-01

    textabstractNeurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer disease (AD)), Parkinson disease (PD) and stroke. The prevalence of these neurological disorders rises with older age. From 55 years to 90 years and

  18. Diabetic retinopathy is a neurodegenerative disorder.

    Science.gov (United States)

    Lynch, Stephanie K; Abràmoff, Michael D

    2017-10-01

    Since 1875, controversy has ensued over whether ocular diabetic complications are primarily vasculopathic or neuropathic in nature. Here, we discuss the historical context by which diabetic retinopathy (DR) came to be considered a primary vasculopathy, in contrast to more recent data suggesting the importance of diabetic retinal neurodegeneration (DRN) as the primary manifestation of ocular diabetic damage. Unsurprisingly, DRN parallels other diabetic complications related to neuropathy. In general, there are three possible relationships between microvascular DR and DRN: i) microvasculopathy causes neurodegeneration; ii) neurodegeneration causes microvasculopathy or iii) they are mutually independent. The authors' group has recently produced experimental data showing that DRN precedes even the earliest manifestations of DR microvasculopathy. In combination with earlier studies showing that focal implicit time delays predicted future development of DR microvasculopathy in the same location, relationships i) and iii) are unlikely. As such, ii) is the most likely relationship: DRN is a cause of DR. Granted, additional studies are needed to confirm this hypothesis and elucidate the mechanism of diabetes-induced neurodegeneration. We conclude this review by proposing experimental approaches to test the hypothesis that DRN causes DR. If confirmed, this new paradigm may lead to earlier detection of ocular diabetic damage and earlier treatment of early DR, thereby preventing visual loss in people with diabetes. Published by Elsevier Ltd.

  19. DNA triplex structures in neurodegenerative disorder, Friedreich's ...

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... clearly suggests that the shape of DNA is the determining factor in the cellular function. FRDA is the only ..... SCA VII. CAG. 4–35. 28–35. 37 –200. SBMA. CAG. 15–31. –. 40–62 ... production of Frataxin (Babcock et al. 1997).

  20. Redox Imbalance and Viral Infections in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Dolores Limongi

    2016-01-01

    Full Text Available Reactive oxygen species (ROS are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson’s disease (PD, Alzheimer’s disease (AD, and amyotrophic lateral sclerosis (ALS.

  1. Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases

    Science.gov (United States)

    Damiani, Ernesto; Bosco, Gerardo

    2014-01-01

    An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson's disease, and some mitochondriopathies. Although these diseases have different pathogenesis and features, there are some common mechanisms that could explain the effects of ketogenic diets. These mechanisms are to provide an efficient source of energy for the treatment of certain types of neurodegenerative diseases characterized by focal brain hypometabolism; to decrease the oxidative damage associated with various kinds of metabolic stress; to increase the mitochondrial biogenesis pathways; and to take advantage of the capacity of ketones to bypass the defect in complex I activity implicated in some neurological diseases. These mechanisms will be discussed in this review. PMID:25101284

  2. Transgenic nonhuman primates for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Chan Anthony WS

    2004-06-01

    Full Text Available Abstract Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD, Parkinson's disease (PD and Huntington's disease (HD have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which

  3. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    areas, which is consistent with the Braak hypothesis. In the narcolepsy patients, it was shown that a reduced HRR to arousals was primarily predicted by hypocretin deficiency in both rapid-eye-movement (REM) and non-REM sleep, independent of cataplexy and other factors. The results confirm...... that hypocretin deficiency affects the autonomic nervous system of patients with narcolepsy and that the hypocretin system is important for proper heart rate modulation at rest.Furthermore, it was shown that hypocretin deficiency and cataplexy are associated with signs of destabilized sleep-wake and REM sleep...... control, indicating that the disorder may serve as a human model for the sleep-wake and REM sleep flip-flop switches. The increased frequency of transitions may cause increased sympathetic activity during sleep and thereby increased heart rate, or the increased heart rate could be caused by decreased...

  4. Chameleon sequences in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali

    2016-01-01

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix to coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.

  5. Chameleon sequences in neurodegenerative diseases.

    Science.gov (United States)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to "helix to strand (HE)", "helix to coil (HC)" and "strand to coil (CE)" alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Tau imaging in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Dani, M.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Neuroscience, London (United Kingdom); Brooks, D.J. [Imperial College London, Neurology Imaging Unit, Division of Neuroscience, London (United Kingdom); Aarhus University, Institute of Clinical Medicine, Aarhus (Denmark)

    2016-06-15

    Aggregated tau protein is a major neuropathological substrate central to the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and chronic traumatic encephalopathy. In AD, it has been shown that the density of hyperphosphorylated tau tangles correlates closely with neuronal dysfunction and cell death, unlike β-amyloid. Until now, diagnostic and pathologic information about tau deposition has only been available from invasive techniques such as brain biopsy or autopsy. The recent development of selective in-vivo tau PET imaging ligands including [{sup 18}F]THK523, [{sup 18}F]THK5117, [{sup 18}F]THK5105 and [{sup 18}F]THK5351, [{sup 18}F]AV1451(T807) and [{sup 11}C]PBB3 has provided information about the role of tau in the early phases of neurodegenerative diseases, and provided support for diagnosis, prognosis, and imaging biomarkers to track disease progression. Moreover, the spatial and longitudinal relationship of tau distribution compared with β - amyloid and other pathologies in these diseases can be mapped. In this review, we discuss the role of aggregated tau in tauopathies, the challenges posed in developing selective tau ligands as biomarkers, the state of development in tau tracers, and the new clinical information that has been uncovered, as well as the opportunities for improving diagnosis and designing clinical trials in the future. (orig.)

  7. Chameleon sequences in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Bahramali, Golnaz [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Goliaei, Bahram, E-mail: goliaei@ut.ac.ir [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Minuchehr, Zarrin, E-mail: minuchehr@nigeb.ac.ir [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of); Salari, Ali [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of)

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix to coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.

  8. Neurodegenerative diseases: exercising towards neurogenesis and neuroregeneration

    Directory of Open Access Journals (Sweden)

    Eng-Tat Ang

    2010-07-01

    Full Text Available Currently, there is still no effective therapy for neurodegenerative diseases (NDD such as Alzheimer’s disease (AD and Parkinson’s disease (PD despite intensive research and on-going clinical trials. Collectively, these diseases account for the bulk of health care burden associated with age-related neurodegenerative disorders. There is therefore an urgent need to further research into the molecular pathogenesis, histological differentiation, and clinical management of NDD. Importantly, there is also an urgency to understand the similarities and differences between these two diseases so as to identify the common or different upstream and downstream signaling pathways. In this review, the role iron play in NDD will be highlighted, as iron is key to a common underlying pathway in the production of oxidative stress. There is increasing evidence to suggest that oxidative stress predisposed cells to undergo damage to DNA, protein and lipid, and as such a common factor involved in the pathogenesis of AD and PD. The challenge then is to minimize elevated and uncontrolled oxidative stress levels while not affecting basal iron metabolism, as iron plays vital roles in sustaining cellular function. However, overload of iron results in increased oxidative stress due to the Fenton reaction. We discuss evidence to suggest that sustained exercise and diet restriction may be ways to slow the rate of neurodegeneration, by perhaps promoting neurogenesis or antioxidant-related pathways. It is also our intention to cover NDD in a broad sense, in the context of basic and clinical sciences to cater for both clinician’s and the scientist’s needs, and to highlight current research investigating exercise as a therapeutic or preventive measure.

  9. LSTM for diagnosis of neurodegenerative diseases using gait data

    Science.gov (United States)

    Zhao, Aite; Qi, Lin; Li, Jie; Dong, Junyu; Yu, Hui

    2018-04-01

    Neurodegenerative diseases (NDs) usually cause gait disorders and postural disorders, which provides an important basis for NDs diagnosis. By observing and analyzing these clinical manifestations, medical specialists finally give diagnostic results to the patient, which is inefficient and can be easily affected by doctors' subjectivity. In this paper, we propose a two-layer Long Short-Term Memory (LSTM) model to learn the gait patterns exhibited in the three NDs. The model was trained and tested using temporal data that was recorded by force-sensitive resistors including time series, such as stride interval and swing interval. Our proposed method outperforms other methods in literature in accordance with accuracy of the predicted diagnostic result. Our approach aims at providing the quantitative assessment so that to indicate the diagnosis and treatment of these neurodegenerative diseases in clinic

  10. Cerebral correlates of psychotic syndromes in neurodegenerative diseases

    OpenAIRE

    Jellinger, Kurt A

    2012-01-01

    Abstract Psychosis has been recognized as a common feature in neurodegenerative diseases and a core feature of dementia that worsens most clinical courses. It includes hallucinations, delusions including paranoia, aggressive behaviour, apathy and other psychotic phenomena that occur in a wide range of degenerative disorders including Alzheimer?s disease, synucleinopathies (Parkinson?s disease, dementia with Lewy bodies), Huntington?s disease, frontotemporal degenerations, motoneuron and prion...

  11. Cerebral correlates of psychotic syndromes in neurodegenerative diseases.

    Science.gov (United States)

    Jellinger, Kurt A

    2012-05-01

    Psychosis has been recognized as a common feature in neurodegenerative diseases and a core feature of dementia that worsens most clinical courses. It includes hallucinations, delusions including paranoia, aggressive behaviour, apathy and other psychotic phenomena that occur in a wide range of degenerative disorders including Alzheimer's disease, synucleinopathies (Parkinson's disease, dementia with Lewy bodies), Huntington's disease, frontotemporal degenerations, motoneuron and prion diseases. Many of these psychiatric manifestations may be early expressions of cognitive impairment, but often there is a dissociation between psychotic/behavioural symptoms and the rather linear decline in cognitive function, suggesting independent pathophysiological mechanisms. Strictly neuropathological explanations are likely to be insufficient to explain them, and a large group of heterogeneous factors (environmental, neurochemical changes, genetic factors, etc.) may influence their pathogenesis. Clinico-pathological evaluation of behavioural and psychotic symptoms (PS) in the setting of neurodegenerative and dementing disorders presents a significant challenge for modern neurosciences. Recognition and understanding of these manifestations may lead to the development of more effective preventive and therapeutic options that can serve to delay long-term progression of these devastating disorders and improve the patients' quality of life. A better understanding of the pathophysiology and distinctive pathological features underlying the development of PS in neurodegenerative diseases may provide important insights into psychotic processes in general. © 2011 The Author Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  12. Role of Ionizing Radiation in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Neel K. Sharma

    2018-05-01

    Full Text Available Ionizing radiation (IR from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR.

  13. Role of Ionizing Radiation in Neurodegenerative Diseases

    Science.gov (United States)

    Sharma, Neel K.; Sharma, Rupali; Mathur, Deepali; Sharad, Shashwat; Minhas, Gillipsie; Bhatia, Kulsajan; Anand, Akshay; Ghosh, Sanchita P.

    2018-01-01

    Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR. PMID:29867445

  14. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    Science.gov (United States)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  15. Protection against neurodegenerative disease on Earth and in space

    Science.gov (United States)

    Takamatsu, Yoshiki; Koike, Wakako; Takenouchi, Takato; Sugama, Shuei; Wei, Jianshe; Waragai, Masaaki; Sekiyama, Kazunari; Hashimoto, Makoto

    2016-01-01

    All living organisms have evolutionarily adapted themselves to the Earth’s gravity, and failure to adapt to gravity changes may lead to pathological conditions. This perspective may also apply to abnormal aging observed in bedridden elderly patients with aging-associated diseases such as osteoporosis and sarcopenia. Given that bedridden elderly patients are partially analogous to astronauts in that both cannot experience the beneficial effects of gravity on the skeletal system and may suffer from bone loss and muscle weakness, one may wonder whether there are gravity-related mechanisms underlying diseases among the elderly. In contrast to numerous studies of the relevance of microgravity in skeletal disorders, little attention has been paid to neurodegenerative diseases. Therefore, the objective of this paper is to discuss the possible relevance of microgravity in these diseases. We particularly noted a proteomics paper showing that levels of hippocampal proteins, including β-synuclein and carboxyl-terminal ubiquitin hydrolase L1, which have been linked to familial neurodegenerative diseases, were significantly decreased in the hippocampus of mice subjected to hindlimb suspension, a model of microgravity. We suggest that microgravity-induced neurodegeneration may be further exacerbated by diabetes and other factors. On the basis of this view, prevention of neurodegenerative diseases through ‘anti-diabetes’ and ‘hypergravity’ approaches may be important as a common therapeutic approach on Earth and in space. Collectively, neurodegenerative diseases and space medicine may be linked to each other more strongly than previously thought. PMID:28725728

  16. Evaluating the Consistency of Scales Used in Adult Attention Deficit Hyperactivity Disorder Assessment of College-Aged Adults

    Science.gov (United States)

    Saleh, Ayman; Fuchs, Catherine; Taylor, Warren D.; Niarhos, Frances

    2018-01-01

    Objective: Neurocognitive evaluations are commonly integrated with clinical assessment to evaluate adult Attention Deficit Hyperactivity Disorder (ADHD). Study goal is to identify measures most strongly related to ADHD diagnosis and to determine their utility in screening processes. Participants: 230 students who were evaluated at the Vanderbilt…

  17. Predictors of Age of Diagnosis for Children with Autism Spectrum Disorder: The Role of a Consistent Source of Medical Care, Race, and Condition Severity

    Science.gov (United States)

    Emerson, Natacha D.; Morrell, Holly E. R.; Neece, Cameron

    2016-01-01

    Having a consistent source of medical care may facilitate diagnosis of autism spectrum disorders (ASD). This study examined predictors of age of ASD diagnosis using data from the 2011-2012 National Survey of Children's Health. Using multiple linear regression analysis, age of diagnosis was predicted by race, ASD severity, having a consistent…

  18. Nanobiomaterials' applications in neurodegenerative diseases.

    Science.gov (United States)

    Silva Adaya, Daniela; Aguirre-Cruz, Lucinda; Guevara, Jorge; Ortiz-Islas, Emma

    2017-02-01

    The blood-brain barrier is the interface between the blood and brain, impeding the passage of most circulating cells and molecules, protecting the latter from foreign substances, and maintaining central nervous system homeostasis. However, its restrictive nature constitutes an obstacle, preventing therapeutic drugs from entering the brain. Usually, a large systemic dose is required to achieve pharmacological therapeutic levels in the brain, leading to adverse effects in the body. As a consequence, various strategies are being developed to enhance the amount and concentration of therapeutic compounds in the brain. One such tool is nanotechnology, in which nanostructures that are 1-100 nm are designed to deliver drugs to the brain. In this review, we examine many nanotechnology-based approaches to the treatment of neurodegenerative diseases. The review begins with a brief history of nanotechnology, followed by a discussion of its definition, the properties of most reported nanomaterials, their biocompatibility, the mechanisms of cell-material interactions, and the current status of nanotechnology in treating Alzheimer's, Parkinson's diseases, and amyotrophic lateral sclerosis. Of all strategies to deliver drug to the brain that are used in nanotechnology, drug release systems are the most frequently reported.

  19. Mapping Neurodegenerative Disease Onset and Progression.

    Science.gov (United States)

    Seeley, William W

    2017-08-01

    Brain networks have been of long-standing interest to neurodegeneration researchers, including but not limited to investigators focusing on conventional prion diseases, which are known to propagate along neural pathways. Tools for human network mapping, however, remained inadequate, limiting our understanding of human brain network architecture and preventing clinical research applications. Until recently, neuropathological studies were the only viable approach to mapping disease onset and progression in humans but required large autopsy cohorts and laborious methods for whole-brain sectioning and staining. Despite important advantages, postmortem studies cannot address in vivo, physiological, or longitudinal questions and have limited potential to explore early-stage disease except for the most common disorders. Emerging in vivo network-based neuroimaging strategies have begun to address these issues, providing data that complement the neuropathological tradition. Overall, findings to date highlight several fundamental principles of neurodegenerative disease anatomy and pathogenesis, as well as some enduring mysteries. These principles and mysteries provide a road map for future research. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Computed tomography of neurodegenerative disease in childhood

    International Nuclear Information System (INIS)

    Kataoka, Kenkichi; Nakagawa, Yoshihiro; Hojo, Hiroatsu

    1984-01-01

    Serial computed tomographic scans were performed on seven children with neurodegenerative disorders. In two cases of white-matter diseases (Krabbe's disease and metachromatic leukodystrophy), diffuse, low-density lesions of white matter were visible in the early stage of the diseases. In one case of adrenoleukodystrophy, regional low-density lesions of the white matter around the posterior horns and peculiar high-density strip lesions were visible in the early stage. In two cases of storage-type gray-matter diseases (Tay-Sachs' and infantile Gaucher's disease), there were no abnormalities in the early stage, but diffuse cortical atrophies in the late stage. In one case of Leigh's disease, there were small, low-density lesions of the basal ganglia and multiple low-density lesions of the gray matter in the early stage. In one case of subacute sclerosing panencephalitis, there were no abnormalities in the early stage, but small, low-density lesions of the basal ganglia and diffuse cerebral atrophies in the late stage. Diagnostic values were recognized dominantly in two cases of adrenoleukodystrophy and Leigh's disease. In the other cases, however, serial CT scans were useful in the diagnostic process. (author)

  1. Role of Different Alpha-Synuclein Strains in Synucleinopathies, Similarities with other Neurodegenerative Diseases

    OpenAIRE

    Melki, Ronald

    2015-01-01

    Abstract Misfolded protein aggregates are the hallmark of several neurodegenerative diseases in humans. The main protein constituent of these aggregates and the regions within the brain that are affected differ from one neurodegenerative disorder to another. A plethora of reports suggest that distinct diseases have in common the ability of protein aggregates to spread and amplify within the central nervous system. This review summarizes briefly what is known about the nature of the protein ag...

  2. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  3. Aspirin-Mediated Acetylation Protects Against Multiple Neurodegenerative Pathologies by Impeding Protein Aggregation.

    Science.gov (United States)

    Ayyadevara, Srinivas; Balasubramaniam, Meenakshisundaram; Kakraba, Samuel; Alla, Ramani; Mehta, Jawahar L; Shmookler Reis, Robert J

    2017-12-10

    Many progressive neurological disorders, including Alzheimer's disease (AD), Huntington's disease, and Parkinson's disease (PD), are characterized by accumulation of insoluble protein aggregates. In prospective trials, the cyclooxygenase inhibitor aspirin (acetylsalicylic acid) reduced the risk of AD and PD, as well as cardiovascular events and many late-onset cancers. Considering the role played by protein hyperphosphorylation in aggregation and neurodegenerative diseases, and aspirin's known ability to donate acetyl groups, we asked whether aspirin might reduce both phosphorylation and aggregation by acetylating protein targets. Aspirin was substantially more effective than salicylate in reducing or delaying aggregation in human neuroblastoma cells grown in vitro, and in Caenorhabditis elegans models of human neurodegenerative diseases in vivo. Aspirin acetylates many proteins, while reducing phosphorylation, suggesting that acetylation may oppose phosphorylation. Surprisingly, acetylated proteins were largely excluded from compact aggregates. Molecular-dynamic simulations indicate that acetylation of amyloid peptide energetically disfavors its association into dimers and octamers, and oligomers that do form are less compact and stable than those comprising unacetylated peptides. Hyperphosphorylation predisposes certain proteins to aggregate (e.g., tau, α-synuclein, and transactive response DNA-binding protein 43 [TDP-43]), and it is a critical pathogenic marker in both cardiovascular and neurodegenerative diseases. We present novel evidence that acetylated proteins are underrepresented in protein aggregates, and that aggregation varies inversely with acetylation propensity after diverse genetic and pharmacologic interventions. These results are consistent with the hypothesis that aspirin inhibits protein aggregation and the ensuing toxicity of aggregates through its acetyl-donating activity. This mechanism may contribute to the neuro-protective, cardio

  4. Transition fields in organic materials: From percolation to inverted Marcus regime. A consistent Monte Carlo simulation in disordered PPV

    Science.gov (United States)

    Volpi, Riccardo; Stafström, Sven; Linares, Mathieu

    2015-03-01

    In this article, we analyze the electric field dependence of the hole mobility in disordered poly(p-phenylene vinylene). The charge carrier mobility is obtained from Monte Carlo simulations. Depending on the field strength three regions can be identified: the percolation region, the correlation region, and the inverted region. Each region is characterized by a different conduction mechanism and thus a different functional dependence of the mobility on the electric field. Earlier studies have highlighted that Poole-Frenkel law, which appears in the correlation region, is based on the type of correlation caused by randomly distributed electric dipoles. This behavior is thus observed in a limited range of field strengths, and by studying a broader range of electric fields, a more fundamental understanding of the transport mechanism is obtained. We identify the electric fields determining the transitions between the different conduction mechanisms in the material and we explain their physical origin. In principle, this allows us to characterize the mobility field dependence for any organic material. Additionally, we study the charge carrier trapping mechanisms due to diagonal and off-diagonal disorder, respectively.

  5. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases.

    Science.gov (United States)

    Artusi, Carlo Alberto; Mishra, Murli; Latimer, Patricia; Vizcarra, Joaquin A; Lopiano, Leonardo; Maetzler, Walter; Merola, Aristide; Espay, Alberto J

    2018-01-01

    We sought to review the landscape of past, present, and future use of technology-based outcome measures (TOMs) in clinical trials of neurodegenerative disorders. We systematically reviewed PubMed and ClinicalTrials.gov for published and ongoing clinical trials in neurodegenerative disorders employing TOMs. In addition, medical directors of selected pharmaceutical companies were surveyed on their companies' ongoing efforts and future plans to integrate TOMs in clinical trials as primary, secondary, or exploratory endpoints. We identified 164 published clinical trials indexed in PubMed that used TOMs as outcome measures in Parkinson disease (n = 132) or other neurodegenerative disorders (n = 32). The ClinicalTrials.gov search yielded 42 clinical trials using TOMs, representing 2.7% of ongoing trials. Sensor-based technology accounted for over 75% of TOMs applied. Gait and physical activity were the most common targeted domains. Within the next 5 years, 83% of surveyed pharmaceutical companies engaged in neurodegenerative disorders plan to deploy TOMs in clinical trials. Although promising, TOMs are underutilized in clinical trials of neurodegenerative disorders. Validating relevant endpoints, standardizing measures and procedures, establishing a single platform for integration of data and algorithms from different devices, and facilitating regulatory approvals should advance TOMs integration into clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Role of Copper in Neurodegenerative Disease

    Science.gov (United States)

    Rose, Francis M.

    My research concerns the fundamental atomistic mechanisms of neurodegenerative diseases and the methodologies by which they may be discerned. This thesis consists of three primary parts. The introductory material is the raison d'etre for this work and a critical overview of the specific physics, mathematics and algorithms used in this research. The methods are presented along with specific details in order to facilitate future replication and enhancement. With the groundwork of mechanisms and methods out of the way, we then explore a nouveau atomistic mechanism describing the onset of Parkinson's disease, a disease that has been closely linked to misfolded metalloproteins. Further exploration of neurodegeneration takes place in the following chapter, where a remedial approach to Alzheimer's disease via a simulated chelation of a metalloprotein is undertaken. Altogether, the methods and techniques applied here allow for simulated exploration of both the atomistic mechanisms of neurodegeneration and their potential remediation strategies. The beginning portion of the research efforts explore protein misfolding dynamics in the presence a copper ion. Misfolding of the human alpha-synuclein (aS) protein has been implicated as a central constituent in neurodegenerative disease. In Parkinson's disease (PD) in particular, aS is thought to be the causative participant when found concentrated into neuritic plaques. Here we propose a scenario involving the metal ion Cu2+ as the protein misfolding initiator of fibrillized aS, the chief component of neuritic plaques. From experimental results we know these misfolded proteins have a rich beta--sheet signature, a marker that we reproduce with our simulated model. This model identifies a process of structural modifications to a natively unfolded alpha-synuclein resulting in a partially folded intermediate with a well defined nucleation site. It serves as a precursor to the fully misfolded protein. Understanding the nucleation

  7. Implications of glial nitric oxyde in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jose Enrique eYuste

    2015-08-01

    Full Text Available Nitric oxide (NO is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases.

  8. Amnestic Disorders

    NARCIS (Netherlands)

    Kessels, R.P.C.; Savage, G.; Cautin, R.L.; Lilienfeld, S.O.

    2015-01-01

    Amnestic disorders may involve deficits in the encoding or storage of information in memory, or in retrieval of information from memory. Etiologies vary and include traumatic brain injury, neurodegenerative disease, and psychiatric illness. Different forms of amnesia can be distinguished:

  9. [Obsessive-compulsive symptoms, tics, stereotypic movements or need for absolute consistency? The occurrence of repetitive activities in patients with pervasive developmental disorders--case studies].

    Science.gov (United States)

    Bryńska, Anita; Lipińska, Elzbieta; Matelska, Monika

    2011-01-01

    Repetitive and stereotyped behaviours in the form of stereotyped interests or specific routine activities are one ofthe diagnostic criteria in pervasive developmental disorders. The occurrence of repetitive behaviours in patients with pervasive developmental disorders is a starting point for questions about the type and classification criteria of such behaviours. The aim of the article is to present case studies of patients with pervasive developmental disorders and co-morbid symptoms in the form of routine activities, tics, obsessive-compulsive symptoms or stereotyped behaviours. The first case study describes a patient with Asperger's syndrome and obsessive compulsive symptoms. The diagnostic problems regarding complex motor tics are discussed in the second case study which describes a patient with Asperger's syndrome and Gilles de la Tourette syndrome. The third and fourth case study describes mono-zygotic twins with so called High Functioning Autism whose repetitive activities point to either obsessive compulsive symptoms, stereotypic movements, need for absolute consistency or echopraxia. The possible comorbidity of pervasive developmental disorders and symptoms in the form of repetitive behaviours, possible interactions as well as diagnostic challenges is discussed in the article.

  10. Drosophila as an In Vivo Model for Human Neurodegenerative Disease

    Science.gov (United States)

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M.

    2015-01-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. PMID:26447127

  11. Predicting borderline personality disorder features from personality traits, identity orientation, and attachment styles in Italian nonclinical adults: issues of consistency across age ranges.

    Science.gov (United States)

    Fossati, Andrea; Borroni, Serena; Feeney, Judith; Maffei, Cesare

    2012-04-01

    The aims of this study were to assess whether Borderline Personality Disorder (BPD) features could be predicted by Big Five traits, impulsivity, identity orientation, and adult attachment patterns in a sample of 1,192 adult nonclinical participants, and to evaluate the consistency of these regression models across four age groups (49 years, and >50 years, respectively). In the full sample, measures of neuroticism (N), impulsivity, and anxious insecure attachment were substantial predictors of BPD features (adjusted R(2) = .38, p personality traits and disturbed attachment patterns.

  12. Calculation of self-consistent potentials for substitutionally disordered systems with application to the Ag/sub x/-Pd/sub 1-x/ alloy series

    International Nuclear Information System (INIS)

    Winter, H.; Stocks, G.M.

    1983-01-01

    Previous Korringa-Kohn-Rostoker coherent-potential-approximation electronic-structure calculations for substitutionally random alloys have been based on ad hoc potentials. The lack of procedures suitable to provide self-consistent, parameter-free potentials prevented computations for systems consisting of dissimilar atoms and is also the reason why quantities like, for example, cohesive energies or lattice constants, have not so far been evaluated for systems of similar constituents. We present in full detail a generally applicable scheme devised for calculating the self-consistent electronic structures of substitutionally disordered systems. Its feasibility is demonstrated by presenting the results obtained for the Ag/sub x/Pd/sub 1-x/ alloy series. They are compared with those of former non-self-consistent calculations which use Mattheiss prescription potentials and the α = 1 Slater exchange, whereas the von Barth--Hedin expression is employed in our work. The differences are perceptible and have to be understood as combined self-consistency and exchange-correlation effects. .ID BW2039 .PG 905 909

  13. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    Science.gov (United States)

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  14. Recent trends in the transdermal delivery of therapeutic agents used for the management of neurodegenerative diseases.

    Science.gov (United States)

    Ita, Kevin

    2017-06-01

    With the increasing proportion of the global geriatric population, it becomes obvious that neurodegenerative diseases will become more widespread. From an epidemiological standpoint, it is necessary to develop new therapeutic agents for the management of Alzheimer's disease, Parkinson's disease, multiple sclerosis and other neurodegenerative disorders. An important approach in this regard involves the use of the transdermal route. With transdermal drug delivery systems (TDDS), it is possible to modulate the pharmacokinetic profiles of these medications and improve patient compliance. Transdermal drug delivery has also been shown to be useful for drugs with short half-life and low or unpredictable bioavailability. In this review, several transdermal drug delivery enhancement technologies are being discussed in relation to the delivery of medications used for the management of neurodegenerative disorders.

  15. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  16. Home video monitoring system for neurodegenerative diseases based on commercial HD cameras

    NARCIS (Netherlands)

    Abramiuc, B.; Zinger, S.; De With, P.H.N.; De Vries-Farrouh, N.; Van Gilst, M.M.; Bloem, B.; Overeem, S.

    2016-01-01

    Neurodegenerative disease (ND) is an umbrella term for chronic disorders that are characterized by severe joint cognitive-motor impairments, which are difficult to evaluate on a frequent basis. HD cameras in the home environment could extend and enhance the diagnosis process and could lead to better

  17. Seeking environmental causes of neurodegenerative disease and envisioning primary prevention.

    Science.gov (United States)

    Spencer, Peter S; Palmer, Valerie S; Kisby, Glen E

    2016-09-01

    Pathological changes of the aging brain are expressed in a range of neurodegenerative disorders that will impact increasing numbers of people across the globe. Research on the causes of these disorders has focused heavily on genetics, and strategies for prevention envision drug-induced slowing or arresting disease advance before its clinical appearance. We discuss a strategic shift that seeks to identify the environmental causes or contributions to neurodegeneration, and the vision of primary disease prevention by removing or controlling exposure to culpable agents. The plausibility of this approach is illustrated by the prototypical neurodegenerative disease amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS-PDC). This often-familial long-latency disease, once thought to be an inherited genetic disorder but now known to have a predominant or exclusive environmental origin, is in the process of disappearing from the three heavily affected populations, namely Chamorros of Guam and Rota, Japanese residents of Kii Peninsula, Honshu, and Auyu and Jaqai linguistic groups on the island of New Guinea in West Papua, Indonesia. Exposure via traditional food and/or medicine (the only common exposure in all three geographic isolates) to one or more neurotoxins in seed of cycad plants is the most plausible if yet unproven etiology. Neurotoxin dosage and/or subject age at exposure might explain the stratified epidemic of neurodegenerative disease on Guam in which high-incidence ALS peaked and declined before that of PD, only to be replaced today by a dementing disorder comparable to Alzheimer's disease. Exposure to the Guam environment is also linked to the delayed development of ALS among a subset of Chamorro and non-Chamorro Gulf War/Era veterans, a summary of which is reported here for the first time. Lessons learned from this study and from 65 years of research on ALS-PDC include the exceptional value of initial, field-based informal investigation of

  18. Susceptibility weighted imaging in the evaluation of movement disorders

    International Nuclear Information System (INIS)

    Hingwala, D.R.; Kesavadas, C.; Thomas, B.; Kapilamoorthy, T.R.

    2013-01-01

    Movement disorders are neurodegenerative disorders associated with abnormalities of brain iron deposition. In this presentation, we aim to describe the role of susceptibility weighted imaging (SWI) in the imaging of patients with movement disorders and differentiate between the various disorders. SWI is a high-resolution, fully velocity-encoded gradient-echo magnetic resonance imaging (MRI) sequence that consists of using both magnitude and phase information. We describe briefly the physics behind this sequence and the post-processing techniques used. The anatomy of the midbrain and basal ganglia in normal subjects on SWI is covered. A number of neurodegenerative disorders are associated with abnormal iron deposition, which can be detected due to the susceptibility effects

  19. Interface Consistency

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen

    1998-01-01

    This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....

  20. Congo red and protein aggregation in neurodegenerative diseases.

    Science.gov (United States)

    Frid, Petrea; Anisimov, Sergey V; Popovic, Natalija

    2007-01-01

    Congo red is a commonly used histological dye for amyloid detection. The specificity of this staining results from Congo red's affinity for binding to fibril proteins enriched in beta-sheet conformation. Unexpectedly, recent investigations indicate that the dye also possesses the capacity to interfere with processes of protein misfolding and aggregation, stabilizing native protein monomers or partially folded intermediates, while reducing concentration of more toxic protein oligomers. Inhibitory effects of Congo red upon amyloid toxicity may also range from blockade of channel formation and interference with glycosaminoglycans binding or immune functions, to the modulation of gene expression. Particularly, Congo red exhibits ameliorative effect in models of neurodegenerative disorders, such as Alzheimer's, Parkinson's, Huntington's and prion diseases. Another interesting application of Congo red analogues is the development of imaging probes. Based on their small molecular size and penetrability through blood-brain barrier, Congo red congeners can be used for both antemortem and in vivo visualization and quantification of brain amyloids. Therefore, understanding mechanisms involved in dye-amyloidal fibril binding and inhibition of aggregation will provide instructive guides for the design of future compounds, potentially useful for monitoring and treating neurodegenerative diseases.

  1. Neuronal network disintegration: common pathways linking neurodegenerative diseases.

    Science.gov (United States)

    Ahmed, Rebekah M; Devenney, Emma M; Irish, Muireann; Ittner, Arne; Naismith, Sharon; Ittner, Lars M; Rohrer, Jonathan D; Halliday, Glenda M; Eisen, Andrew; Hodges, John R; Kiernan, Matthew C

    2016-11-01

    Neurodegeneration refers to a heterogeneous group of brain disorders that progressively evolve. It has been increasingly appreciated that many neurodegenerative conditions overlap at multiple levels and therefore traditional clinicopathological correlation approaches to better classify a disease have met with limited success. Neuronal network disintegration is fundamental to neurodegeneration, and concepts based around such a concept may better explain the overlap between their clinical and pathological phenotypes. In this Review, promoters of overlap in neurodegeneration incorporating behavioural, cognitive, metabolic, motor, and extrapyramidal presentations will be critically appraised. In addition, evidence that may support the existence of large-scale networks that might be contributing to phenotypic differentiation will be considered across a neurodegenerative spectrum. Disintegration of neuronal networks through different pathological processes, such as prion-like spread, may provide a better paradigm of disease and thereby facilitate the identification of novel therapies for neurodegeneration. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Non-coding RNA and pseudogenes in neurodegenerative diseases: "The (unUsual Suspects"

    Directory of Open Access Journals (Sweden)

    Valerio eCosta

    2012-10-01

    Full Text Available Neurodegenerative disorders and cancer are severe diseases threatening human health. The glaring differences between neurons and cancer cells mask the processes involved in their pathogenesis. Defects in cell cycle, DNA repair and cell differentiation can determine unlimited proliferation in cancer, or conversely, compromise neuronal plasticity, leading to cell death and neurodegeneration.Alteration in regulatory networks affecting gene expression contribute to human diseases' onset, including neurodegenerative disorders, and deregulation of non-coding RNAs - particularly microRNAs - is supposed to have a significant impact.Recently, competitive endogenous RNAs - acting as sponges - have been identified in cancer, indicating a new and intricate regulatory network. Given that neurodegenerative disorders and cancer share altered genes and pathways, and considering the emerging role of microRNAs in neurogenesis, we hypothesize competitive endogenous RNAs may be implicated in neurodegenerative diseases. Here we propose, and computationally predict, such regulatory mechanism may be shared between the diseases. It is predictable that similar regulation occurs in other complex diseases, and further investigation is needed.

  3. Amyloid PET in neurodegenerative diseases with dementia.

    Science.gov (United States)

    Camacho, V; Gómez-Grande, A; Sopena, P; García-Solís, D; Gómez Río, M; Lorenzo, C; Rubí, S; Arbizu, J

    2018-05-15

    Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive decline and memory loss, and is the most common form of dementia. Amyloid plaques with neurofibrillary tangles are a neuropathological hallmark of AD that produces synaptic dysfunction and culminates later in neuronal loss. Amyloid PET is a useful, available and non-invasive technique that provides in vivo information about the cortical amyloid burden. In the latest revised criteria for the diagnosis of AD biomarkers were defined and integrated: pathological and diagnostic biomarkers (increased retention on fibrillar amyloid PET or decreased Aβ 1-42 and increased T-Tau or P-Tau in CSF) and neurodegeneration or topographical biomarkers (temporoparietal hypometabolism on 18 F-FDG PET and temporal atrophy on MRI). Recently specific recommendations have been created as a consensus statement on the appropriate use of the imaging biomarkers, including amyloid PET: early-onset cognitive impairment/dementia, atypical forms of AD, mild cognitive impairment with early age of onset, and to differentiate between AD and other neurodegenerative diseases that occur with dementia. Amyloid PET is also contributing to the development of new therapies for AD, as well as in research studies for the study of other neurodegenerative diseases that occur with dementia where the deposition of Aβ amyloid is involved in its pathogenesis. In this paper, we review some general concepts and study the use of amyloid PET in depth and its relationship with neurodegenerative diseases and other diagnostic techniques. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Nonpeptide neurotrophic agents useful in the treatment of neurodegenerative diseases such as Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Masaaki Akagi

    2015-02-01

    Full Text Available Developed regions, including Japan, have become “aged societies,” and the number of adults with senile dementias, such as Alzheimer's disease (AD, Parkinson's disease, and Huntington's disease, has also increased in such regions. Neurotrophins (NTs may play a role in the treatment of AD because endogenous neurotrophic factors (NFs prevent neuronal death. However, peptidyl compounds have been unable to cross the blood–brain barrier in clinical studies. Thus, small molecules, which can mimic the functions of NFs, might be promising alternatives for the treatment of neurodegenerative diseases. Natural products, such as or nutraceuticals or those used in traditional medicine, can potentially be used to develop new therapeutic agents against neurodegenerative diseases. In this review, we introduced the neurotrophic activities of polyphenols honokiol and magnolol, which are the main constituents of Magnolia obovata Thunb, and methanol extracts from Zingiber purpureum (BANGLE, which may have potential therapeutic applications in various neurodegenerative disorders.

  5. Methods for the prognosus and suagnosis of neurodegenerative diseases

    OpenAIRE

    Naranjo, José Ramón; Mellström, Britt; Rábano, Alberto

    2014-01-01

    [EN] The present invention corresponds to the field of neurobiology and relates to methods for predicting the appearance of a neurodegenerative disease in a subject, for diagnosing the prodromic stage of a neurodegenerative disease in a subject, for predicting whether a subject diagnosed of a prodromic stage of a neurodegenerative disease will develop said neurodegenerative disease and for selecting a subject for a therapy for the prevention and/or treatment of a prodromic stage of a neurode...

  6. Repurposing of Copper(II)-chelating Drugs for the Treatment of Neurodegenerative Diseases.

    Science.gov (United States)

    Lanza, Valeria; Milardi, Danilo; Di Natale, Giuseppe; Pappalardo, Giuseppe

    2018-02-12

    There is mounting urgency to find new drugs for the treatment of neurodegenerative disorders. A large number of reviews have exhaustively described either the molecular or clinical aspects of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's (PD). Conversely, reports outlining how known drugs in use for other diseases can also be effective as therapeutic agents in neurodegenerative diseases are less reported. This review focuses on the current uses of some copper(II) chelating molecules as potential drug candidates in neurodegeneration. Starting from the well-known harmful relationships existing between the dyshomeostasis and mis-management of metals and AD onset, we surveyed the experimental work reported in the literature, which deals with the repositioning of metal-chelating drugs in the field of neurodegenerative diseases. The reviewed papers were retrieved from common literature and their selection was limited to those describing the biomolecular aspects associated with neuroprotection. In particular, we emphasized the copper(II) coordination abilities of the selected drugs. Copper, together with zinc and iron, are known to play a key role in regulating neuronal functions. Changes in copper homeostasis are crucial for several neurodegenerative disorders. The studies included in this review may provide an overview on the current strategies aimed at repurposing copper (II) chelating drugs for the treatment of neurodegenerative disorders. Starting from the exemplary case of clioquinol repurposing, we discuss the challenge and the opportunities that repurposing of other metal-chelating drugs may provide (e.g. PBT-2, metformin and cyclodipeptides) in the treatment of neurodegenerative disease. In order to improve the success rate of drug repositioning, comprehensive studies on the molecular mechanism and therapeutic efficacy are still required. The present review upholds that drug repurposing makes significant advantages over drug discovery since

  7. Sulforaphane as a Potential Protective Phytochemical against Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Tarozzi

    2013-01-01

    Full Text Available A wide variety of acute and chronic neurodegenerative diseases, including ischemic/traumatic brain injury, Alzheimer’s disease, and Parkinson's disease, share common characteristics such as oxidative stress, misfolded proteins, excitotoxicity, inflammation, and neuronal loss. As no drugs are available to prevent the progression of these neurological disorders, intervention strategies using phytochemicals have been proposed as an alternative form of treatment. Among phytochemicals, isothiocyanate sulforaphane, derived from the hydrolysis of the glucosinolate glucoraphanin mainly present in Brassica vegetables, has demonstrated neuroprotective effects in several in vitro and in vivo studies. In particular, evidence suggests that sulforaphane beneficial effects could be mainly ascribed to its peculiar ability to activate the Nrf2/ARE pathway. Therefore, sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing neurodegeneration.

  8. Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases.

    Science.gov (United States)

    Costa, Silvia Lima; Silva, Victor Diogenes Amaral; Dos Santos Souza, Cleide; Santos, Cleonice Creusa; Paris, Irmgard; Muñoz, Patricia; Segura-Aguilar, Juan

    2016-07-01

    Neurodegenerative disorders have a common characteristic that is the involvement of different cell types, typically the reactivity of astrocytes and microglia, characterizing gliosis, which in turn contributes to the neuronal dysfunction and or death. Flavonoids are secondary metabolites of plant origin widely investigated at present and represent one of the most important and diversified among natural products phenolic groups. Several biological activities are attributed to this class of polyphenols, such as antitumor activity, antioxidant, antiviral, and anti-inflammatory, among others, which give significant pharmacological importance. Our group have observed that flavonoids derived from Brazilian plants Dimorphandra mollis Bent., Croton betulaster Müll. Arg., e Poincianella pyramidalis Tul., botanical synonymous Caesalpinia pyramidalis Tul. also elicit a broad spectrum of responses in astrocytes and neurons in culture as activation of astrocytes and microglia, astrocyte associated protection of neuronal progenitor cells, neuronal differentiation and neuritogenesis. It was observed the flavonoids also induced neuronal differentiation of mouse embryonic stem cells and human pluripotent stem cells. Moreover, with the objective of seeking preclinical pharmacological evidence of these molecules, in order to assess its future use in the treatment of neurodegenerative disorders, we have evaluated the effects of flavonoids in preclinical in vitro models of neuroinflammation associated with Parkinson's disease and glutamate toxicity associated with ischemia. In particular, our efforts have been directed to identify mechanisms involved in the changes in viability, morphology, and glial cell function induced by flavonoids in cultures of glial cells and neuronal cells alone or in interactions and clarify the relation with their neuroprotective and morphogetic effects.

  9. The role of thiamine in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Irena Bubko

    2015-09-01

    Full Text Available Vitamin B1 (thiamine plays an important role in metabolism. It is indispensable for normal growth and development of the organism. Thiamine has a favourable impact on a number of systems, including the digestive, cardiovascular and nervous systems. It also stimulates the brain and improves the psycho-emotional state. Hence it is often called the vitamin of “reassurance of the spirit”. Thiamine is a water-soluble vitamin. It can be present in the free form as thiamine or as its phosphate esters: mono-, di- or triphosphate. The main source of thiamine as an exogenous vitamin is certain foodstuffs, but trace amounts can be synthesised by microorganisms of the large intestine. The recommended daily intake of thiamine is about 2.0 mg. Since vitamin B1 has no ability to accumulate in the organism, manifestations of its deficiency begin to appear very quickly. The chronic state of thiamine deficiency, to a large extent, because of its function, contributes to the development of neurodegenerative diseases. It was proved that supporting vitamin B1 therapy not only constitutes neuroprotection but can also have a favourable impact on advanced neurodegenerative diseases. This article presents the current state of knowledge as regards the effects of thiamine exerted through this vitamin in a number of diseases such as Parkinson’s disease, Alzheimer’s disease, Wernicke’s encephalopathy or Wernicke-Korsakoff syndrome and Huntington’s disease.

  10. TRPM2, calcium and neurodegenerative diseases

    Science.gov (United States)

    Xie, Yu-Feng; MacDonald, John F; Jackson, Michael F

    2010-01-01

    NMDA receptor overactivation triggers intracellular Ca2+ dysregulation, which has long been thought to be critical for initiating excitotoxic cell death cascades associated with stroke and neurodegenerative disease. The inability of NMDA receptor antagonists to afford neuroprotection in clinical stroke trials has led to a re-evaluation of excitotoxic models of cell death and has focused research efforts towards identifying additional Ca2+ influx pathways. Recent studies indicate that TRPM2, a member of the TRPM subfamily of Ca2+-permeant, non-selective cation channel, plays an important role in mediating cellular responses to a wide range of stimuli that, under certain situations, can induce cell death. These include reactive oxygen and nitrogen species, tumour necrosis factor as well as soluble oli-gomers of amyloid beta. However, the molecular basis of TRPM2 channel involvement in these processes is not fully understood. In this review, we summarize recent studies about the regulation of TRPM2, its interaction with calcium and the possible implications for neurodegenerative diseases. PMID:21383889

  11. Chronic traumatic encephalopathy and other neurodegenerative proteinopathies

    Directory of Open Access Journals (Sweden)

    Maria Carmela Tartaglia

    2014-01-01

    Full Text Available Chronic traumatic encephalopathy (CTE is described as a slowly progressive neurodegenerative disease believed to result from multiple concussions. Traditionally, concussions were considered benign events and although most people recover fully, about 10% develop a post-concussive syndrome with persisting neurological, cognitive and neuropsychiatric symptoms. CTE was once thought to be unique to boxers, but it has now been observed in many different athletes having suffered multiple concussions as well as in military personal after repeated blast injuries. Much remains unknown about the development of CTE but its pathological substrate is usually tau, similar to that seen in Alzheimer’s disease and frontotemporal lobar degeneration. The aim of this perspective is to compare and contrast clinical and pathological CTE with the other neurodegenerative proteinopathies and highlight that there is an urgent need for understanding the relationship between concussion and the development of CTE as it may provide a window into the development of a proteinopathy and thus new avenues for treatment.

  12. Heat shock protein 90 in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Rodina Anna

    2010-06-01

    Full Text Available Abstract Hsp90 is a molecular chaperone with important roles in regulating pathogenic transformation. In addition to its well-characterized functions in malignancy, recent evidence from several laboratories suggests a role for Hsp90 in maintaining the functional stability of neuronal proteins of aberrant capacity, whether mutated or over-activated, allowing and sustaining the accumulation of toxic aggregates. In addition, Hsp90 regulates the activity of the transcription factor heat shock factor-1 (HSF-1, the master regulator of the heat shock response, mechanism that cells use for protection when exposed to conditions of stress. These biological functions therefore propose Hsp90 inhibition as a dual therapeutic modality in neurodegenerative diseases. First, by suppressing aberrant neuronal activity, Hsp90 inhibitors may ameliorate protein aggregation and its associated toxicity. Second, by activation of HSF-1 and the subsequent induction of heat shock proteins, such as Hsp70, Hsp90 inhibitors may redirect neuronal aggregate formation, and protect against protein toxicity. This mini-review will summarize our current knowledge on Hsp90 in neurodegeneration and will focus on the potential beneficial application of Hsp90 inhibitors in neurodegenerative diseases.

  13. Intervention modalities for targeting cognitive-motor interference in individuals with neurodegenerative disease: a systematic review.

    Science.gov (United States)

    Wajda, Douglas A; Mirelman, Anat; Hausdorff, Jeffrey M; Sosnoff, Jacob J

    2017-03-01

    Individuals with neurodegenerative disease (NDD) commonly have elevated cognitive-motor interference, change in either cognitive or motor performance (or both) when tasks are performed simultaneously, compared to healthy controls. Given that cognitive-motor interference is related to reduced community ambulation and elevated fall risk, it is a target of rehabilitation interventions. Areas covered: This review details the collective findings of previous dual task interventions in individuals with NDD. A total of 21 investigations focusing on 4 different neurodegenerative diseases and one NDD precursor (Parkinson's disease, multiple sclerosis, Alzheimer's disease (AD), dementia other than AD, and mild cognitive impairment) consisting of 721 participants were reviewed. Expert commentary: Preliminary evidence from interventions targeting cognitive-motor interference, both directly and indirectly, show promising results for improving CMI in individuals with neurodegenerative diseases. Methodological limitations, common to pilot investigations preclude firm conclusions. Well-designed randomized control trials targeting cognitive motor interference are warranted.

  14. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases.

    Science.gov (United States)

    González, Hugo; Elgueta, Daniela; Montoya, Andro; Pacheco, Rodrigo

    2014-09-15

    Neuroinflammation constitutes a fundamental process involved in the progression of several neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and multiple sclerosis. Microglial cells play a central role in neuroinflammation, promoting neuroprotective or neurotoxic microenvironments, thus controlling neuronal fate. Acquisition of different microglial functions is regulated by intercellular interactions with neurons, astrocytes, the blood-brain barrier, and T-cells infiltrating the central nervous system. In this study, an overview of the regulation of microglial function mediated by different intercellular communications is summarised and discussed. Afterward, we focus in T-cell-mediated regulation of neuroinflammation involved in neurodegenerative disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Lipid Involvement in Neurodegenerative Diseases of the Motor System: Insights from Lysosomal Storage Diseases.

    Science.gov (United States)

    Dodge, James C

    2017-01-01

    Lysosomal storage diseases (LSDs) are a heterogeneous group of rare inherited metabolic diseases that are frequently triggered by the accumulation of lipids inside organelles of the endosomal-autophagic-lysosomal system (EALS). There is now a growing realization that disrupted lysosomal homeostasis (i.e., lysosomal cacostasis) also contributes to more common neurodegenerative disorders such as Parkinson disease (PD). Lipid deposition within the EALS may also participate in the pathogenesis of some additional neurodegenerative diseases of the motor system. Here, I will highlight the lipid abnormalities and clinical manifestations that are common to LSDs and several diseases of the motor system, including amyotrophic lateral sclerosis (ALS), atypical forms of spinal muscular atrophy, Charcot-Marie-Tooth disease (CMT), hereditary spastic paraplegia (HSP), multiple system atrophy (MSA), PD and spinocerebellar ataxia (SCA). Elucidating the underlying basis of intracellular lipid mislocalization as well as its consequences in each of these disorders will likely provide innovative targets for therapeutic research.

  16. The Big Bluff of Amyotrophic Lateral Sclerosis Diagnosis: The Role of Neurodegenerative Disease Mimics.

    Science.gov (United States)

    Bicchi, Ilaria; Emiliani, Carla; Vescovi, Angelo; Martino, Sabata

    2015-01-01

    Neurodegenerative diseases include a significant number of pathologies affecting the nervous system. Generally, the primary cause of each disease is specific; however, recently, it was shown that they may be correlated at molecular level. This aspect, together with the exhibition of similar symptoms, renders the diagnosis of these disorders difficult. Amyotrophic lateral sclerosis is one of these pathologies. Herein, we report several cases of amyotrophic lateral sclerosis misdiagnosed as a consequence of features that are common to several neurodegenerative diseases, such as Parkinson's, Huntington's and Alzheimer's disease, spinal muscular atrophy, progressive bulbar palsy, spastic paraplegia and frontotemporal dementia, and mostly with the lysosomal storage disorder GM2 gangliosidosis. Overall reports highlight that the differential diagnosis for amyotrophic lateral sclerosis should include correlated mechanisms. © 2015 S. Karger AG, Basel.

  17. Recent progress in translational research on neurovascular and neurodegenerative disorders

    DEFF Research Database (Denmark)

    Demuth, Hans-Ulrich; Dijkhuizen, Rick M; Farr, Tracy D

    2017-01-01

    in neurovascular and dementia research. It highlights sessions from the 9th International Symposium on Neuroprotection and Neurorepair that have been discussed from April 19th to 22nd in Leipzig, Germany. To acknowledge the emerging culture of interdisciplinary collaboration and research, special emphasis is given...

  18. Sleep Spindles as Biomarker for Early Detection of Neurodegenerative Disorders

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to the use of sleep spindles as a novel biomarker for early diagnosis of synucleinopathies, in particular Parkinson's disease (PD). The method is based on automatic detection of sleep spindles. The method may be combined with measurements of one or more further...

  19. Neurotrophin Therapy of Neurodegenerative Disorders with Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2007-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  20. Neurotrophin Therapy of Neurodegenerative Disorders with Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2006-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  1. Neurotrophin Therapy of Neurodegenerative Disorders with Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2004-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  2. Neurotrophin Therapy of Neurodegenerative Disorders With Mitochondrial Dysfunction

    National Research Council Canada - National Science Library

    Bambrick, Linda L

    2005-01-01

    This research program will determine whether accelerated neuron death due to increased oxidative stress resulting from mitochondrial dysfunction can be compensated or corrected by neurotrophin stimulation...

  3. Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases.

    Science.gov (United States)

    Kuboyama, Tomoharu; Tohda, Chihiro; Komatsu, Katsuko

    2014-01-01

    Neurodegenerative diseases commonly induce irreversible destruction of central nervous system (CNS) neuronal networks, resulting in permanent functional impairments. Effective medications against neurodegenerative diseases are currently lacking. Ashwagandha (roots of Withania somnifera Dunal) is used in traditional Indian medicine (Ayurveda) for general debility, consumption, nervous exhaustion, insomnia, and loss of memory. In this review, we summarize various effects and mechanisms of Ashwagandha extracts and related compounds on in vitro and in vivo models of neurodegenerative diseases such as Alzheimer's disease and spinal cord injury.

  4. Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Elżbieta Miller

    2014-01-01

    Full Text Available Accumulating data shows that oxidative stress plays a crucial role in neurodegenerative disorders. The literature data indicate that in vivo or postmortem cerebrospinal fluid and brain tissue levels of F2-isoprostanes (F2-IsoPs especially F4-neuroprotanes (F4-NPs are significantly increased in some neurodegenerative diseases: multiple sclerosis, Alzheimer's disease, Huntington's disease, and Creutzfeldt-Jakob disease. Central nervous system is the most metabolically active organ of the body characterized by high requirement for oxygen and relatively low antioxidative activity, what makes neurons and glia highly susceptible to destruction by reactive oxygen/nitrogen species and neurodegeneration. The discovery of F2-IsoPs and F4-NPs as markers of lipid peroxidation caused by the free radicals has opened up new areas of investigation regarding the role of oxidative stress in the pathogenesis of human neurodegenerative diseases. This review focuses on the relationship between F2-IsoPs and F4-NPs as biomarkers of oxidative stress and neurodegenerative diseases. We summarize the knowledge of these novel biomarkers of oxidative stress and the advantages of monitoring their formation to better define the involvement of oxidative stress in neurological diseases.

  5. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases.

    Science.gov (United States)

    Martin-Jiménez, Cynthia A; García-Vega, Ángela; Cabezas, Ricardo; Aliev, Gjumrakch; Echeverria, Valentina; González, Janneth; Barreto, George E

    2017-11-01

    Endoplasmic reticulum (ER) is a subcellular organelle involved in protein folding and processing. ER stress constitutes a cellular process characterized by accumulation of misfolded proteins, impaired lipid metabolism and induction of inflammatory responses. ER stress has been suggested to be involved in several human pathologies, including neurodegenerative diseases and obesity. Different studies have shown that both neurodegenerative diseases and obesity trigger similar cellular responses to ER stress. Moreover, both diseases are assessed in astrocytes as evidences suggest these cells as key regulators of brain homeostasis. However, the exact contributions to the effects of ER stress in astrocytes in the various neurodegenerative diseases and its relation with obesity are not well known. Here, we discuss recent advances in the understanding of molecular mechanisms that regulate ER stress-related disorders in astrocytes such as obesity and neurodegeneration. Moreover, we outline the correlation between the activated proteins of the unfolded protein response (UPR) in these pathological conditions in order to identify possible therapeutic targets for ER stress in astrocytes. We show that ER stress in astrocytes shares UPR activation pathways during both obesity and neurodegenerative diseases, demonstrating that UPR related proteins like ER chaperone GRP 78/Bip, PERK pathway and other exogenous molecules ameliorate UPR response and promote neuroprotection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    Directory of Open Access Journals (Sweden)

    Katerina Markopoulou

    Full Text Available Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L, which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may

  7. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    Science.gov (United States)

    Markopoulou, Katerina; Chase, Bruce A; Robowski, Piotr; Strongosky, Audrey; Narożańska, Ewa; Sitek, Emilia J; Berdynski, Mariusz; Barcikowska, Maria; Baker, Matt C; Rademakers, Rosa; Sławek, Jarosław; Klein, Christine; Hückelheim, Katja; Kasten, Meike; Wszolek, Zbigniew K

    2016-01-01

    Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L), which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may reflect the

  8. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech.

    Science.gov (United States)

    Josephs, Keith A; Duffy, Joseph R; Strand, Edythe A; Machulda, Mary M; Senjem, Matthew L; Master, Ankit V; Lowe, Val J; Jack, Clifford R; Whitwell, Jennifer L

    2012-05-01

    Apraxia of speech is a disorder of speech motor planning and/or programming that is distinguishable from aphasia and dysarthria. It most commonly results from vascular insults but can occur in degenerative diseases where it has typically been subsumed under aphasia, or it occurs in the context of more widespread neurodegeneration. The aim of this study was to determine whether apraxia of speech can present as an isolated sign of neurodegenerative disease. Between July 2010 and July 2011, 37 subjects with a neurodegenerative speech and language disorder were prospectively recruited and underwent detailed speech and language, neurological, neuropsychological and neuroimaging testing. The neuroimaging battery included 3.0 tesla volumetric head magnetic resonance imaging, [(18)F]-fluorodeoxyglucose and [(11)C] Pittsburg compound B positron emission tomography scanning. Twelve subjects were identified as having apraxia of speech without any signs of aphasia based on a comprehensive battery of language tests; hence, none met criteria for primary progressive aphasia. These subjects with primary progressive apraxia of speech included eight females and four males, with a mean age of onset of 73 years (range: 49-82). There were no specific additional shared patterns of neurological or neuropsychological impairment in the subjects with primary progressive apraxia of speech, but there was individual variability. Some subjects, for example, had mild features of behavioural change, executive dysfunction, limb apraxia or Parkinsonism. Voxel-based morphometry of grey matter revealed focal atrophy of superior lateral premotor cortex and supplementary motor area. Voxel-based morphometry of white matter showed volume loss in these same regions but with extension of loss involving the inferior premotor cortex and body of the corpus callosum. These same areas of white matter loss were observed with diffusion tensor imaging analysis, which also demonstrated reduced fractional anisotropy

  9. From Narcissistic Personality Disorder to Frontotemporal Dementia: A Case Report

    OpenAIRE

    Michele Poletti; Ubaldo Bonuccelli

    2011-01-01

    Premorbid personality characteristics could have a pathoplastic effect on behavioral symptoms and personality changes related to neurodegenerative diseases. Patients with personality disorders, in particular of the dramatic cluster, may present functional frontolimbic abnormalities. May these neurobiological vulnerabilities linked to a premorbid personality disorder predispose or represent a risk factor to subsequently develop a neurodegenerative disorder? Are subjects with personality disord...

  10. THE MITOCHONDRIAL DERANGEMENTS IN NEURONAL DEGENER ATION AND NEURODEGENERATIVE DISEASES

    Institute of Scientific and Technical Information of China (English)

    Xue, Qi-ming; Gao, Feng; Chen, Qin-tang

    2000-01-01

    @@There are diverse concepts on the pathogenesis of neuronal degeneration and the neurodegenerative diseases. Among them there are different factors which might influence the initiation of neuronal degeneration as well as the pathogenesis of neurodegenerative diseases, such as Alzheimer′s disease, Parkinson′s disease, motor neuron disease, and so on.

  11. Neurodegenerative diseases of the central motor system in MRI

    International Nuclear Information System (INIS)

    Alfke, K.

    2005-01-01

    Neurodegenerative diseases of the central motor system often lead to discrete but functionally important parenchymal abnormalities in various parts of the brain. MRI is the most sensitive imaging method to detect these abnormalities. Various neurodegenerative diseases are presented with their clinical symptoms and MRI findings. Criteria for differential diagnosis are provided as well. (orig.)

  12. Building an integrated neurodegenerative disease database at an academic health center.

    Science.gov (United States)

    Xie, Sharon X; Baek, Young; Grossman, Murray; Arnold, Steven E; Karlawish, Jason; Siderowf, Andrew; Hurtig, Howard; Elman, Lauren; McCluskey, Leo; Van Deerlin, Vivianna; Lee, Virginia M-Y; Trojanowski, John Q

    2011-07-01

    It is becoming increasingly important to study common and distinct etiologies, clinical and pathological features, and mechanisms related to neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration. These comparative studies rely on powerful database tools to quickly generate data sets that match diverse and complementary criteria set by them. In this article, we present a novel integrated neurodegenerative disease (INDD) database, which was developed at the University of Pennsylvania (Penn) with the help of a consortium of Penn investigators. Because the work of these investigators are based on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration, it allowed us to achieve the goal of developing an INDD database for these major neurodegenerative disorders. We used the Microsoft SQL server as a platform, with built-in "backwards" functionality to provide Access as a frontend client to interface with the database. We used PHP Hypertext Preprocessor to create the "frontend" web interface and then used a master lookup table to integrate individual neurodegenerative disease databases. We also present methods of data entry, database security, database backups, and database audit trails for this INDD database. Using the INDD database, we compared the results of a biomarker study with those using an alternative approach by querying individual databases separately. We have demonstrated that the Penn INDD database has the ability to query multiple database tables from a single console with high accuracy and reliability. The INDD database provides a powerful tool for generating data sets in comparative studies on several neurodegenerative diseases. Copyright © 2011 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  13. Expression of Nrf2 in neurodegenerative diseases.

    Science.gov (United States)

    Ramsey, Chenere P; Glass, Charles A; Montgomery, Marshall B; Lindl, Kathryn A; Ritson, Gillian P; Chia, Luis A; Hamilton, Ronald L; Chu, Charleen T; Jordan-Sciutto, Kelly L

    2007-01-01

    In response to oxidative stress, the nuclear factor E2-related factor 2 (Nrf2) transcription factor translocates from the cytoplasm into the nucleus and transactivates expression of genes with antioxidant activity. Despite this cellular mechanism, oxidative damage is abundant in Alzheimer and Parkinson disease (AD and PD). To investigate mechanisms by which Nrf2 activity may be aberrant or insufficient in neurodegenerative conditions, we assessed Nrf2 localization in affected brain regions of AD, Lewy body variant of AD (LBVAD), and PD. By immunohistochemistry, Nrf2 is expressed in both the nucleus and the cytoplasm of neurons in normal hippocampi with predominant expression in the nucleus. In AD and LBVAD, Nrf2 was predominantly cytoplasmic in hippocampal neurons and was not a major component of beta amyloid plaques or neurofibrillary tangles. By immunoblotting, we observed a significant decrease in nuclear Nrf2 levels in AD cases. In contrast, Nrf2 was strongly nuclear in PD nigral neurons but cytoplasmic in substantia nigra of normal, AD, and LBVAD cases. These findings suggest that Nrf2-mediated transcription is not induced in neurons in AD despite the presence of oxidative stress. In PD, nuclear localization of Nrf2 is strongly induced, but this response may be insufficient to protect neurons from degeneration.

  14. Health benefits of methylxanthines in neurodegenerative diseases.

    Science.gov (United States)

    Oñatibia-Astibia, Ainhoa; Franco, Rafael; Martínez-Pinilla, Eva

    2017-06-01

    Methylxanthines (MTXs) are consumed by almost everybody in almost every area of the world. Caffeine, theophylline and theobromine are the most well-known members of this family of compounds; they are present, inter alia, in coffee, tea, cacao, yerba mate and cola drinks. MTXs are readily absorbed in the gastrointestinal tract and are able to penetrate into the central nervous system, where they exert significant psychostimulant actions, which are more evident in acute intake. Coffee has been paradigmatic, as its use was forbidden in many diseases, however, this negative view has radically changed; evidence shows that MTXs display health benefits in diseases involving cell death in the nervous system. This paper reviews data that appraise the preventive and even therapeutic potential of MTXs in a variety of neurodegenerative diseases. Future perspectives include the use of MTXs to advance the understanding the pathophysiology of, inter alia, Alzheimer's disease (AD) and Parkinson's disease (PD), and the use of the methylxanthine chemical moiety as a basis for the development of new and more efficacious drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Folic acid, neurodegenerative and neuropsychiatric disease.

    Science.gov (United States)

    Kronenberg, Golo; Colla, Michael; Endres, Matthias

    2009-04-01

    Folic acid plays an important role in neuroplasticity and in the maintenance of neuronal integrity. Folate is a co-factor in one-carbon metabolism during which it promotes the regeneration of methionine from homocysteine, a highly reactive sulfur-containing amino acid. Methionine may then be converted to S-adenosylmethionine (SAM), the principal methyl donor in most biosynthetic methylation reactions. On the cellular level, folate deficiency and hyperhomocysteinemia exert multiple detrimental effects. These include induction of DNA damage, uracil misincorporation into DNA and altered patterns of DNA methylation. Low folate status and elevated homocysteine increase the generation of reactive oxygen species and contribute to excitotoxicity and mitochondrial dysfunction which may lead to apoptosis. Strong epidemiological and experimental evidence links derangements of one-carbon metabolism to vascular, neurodegenerative and neuropsychiatric disease, including most prominently cerebral ischemia, Alzheimer's dementia and depression. Although firm evidence from controlled clinical trials is largely lacking, B-vitamin supplementation and homocysteine reduction may have a role especially in the primary prevention of stroke and dementia as well as as an adjunct to antidepressant pharmacotherapy.

  16. PENN neurodegenerative disease research - in the spirit of Benjamin Franklin.

    Science.gov (United States)

    Trojanowski, John Q

    2008-01-01

    Benjamin Franklin (1706-1790) was entrepreneur, statesman, supporter of the public good as well as inventor, and his most significant invention was the University of Pennsylvania (PENN). Franklin outlined his plans for a college providing practical and classical instruction to prepare youth for real-world pursuits in his 'Proposals Relating to the Education of Youth in Pensilvania' (1749), and Franklin's spirit of learning to serve society guides PENN to the present day. This is evidenced by the series of articles in this special issue of Neurosignals, describing research conducted by seasoned and newly recruited PENN faculty, addressing consequences of the longevity revolution which defines our epoch at the dawn of this millennium. While aging affects all organ systems, the nervous system is most critical to successful aging. Thus, the articles in this special issue of Neurosignals focus on research at PENN that is designed to prevent or ameliorate aging-related neurodegenerative disorders such as Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. This research could enhance our chances of aging successfully in the continuing longevity revolution, and the essay here provides context and background on this research.

  17. Association between environmental exposure to pesticides and neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Parron, Tesifon [University of Almeria, Department of Neurosciences and Health Sciences, Almeria (Spain); Andalusian Council of Health at Almeria province, Almeria (Spain); Requena, Mar [Andalusian Council of Health at Almeria province, Almeria (Spain); Hernandez, Antonio F., E-mail: ajerez@ugr.es [University of Granada School of Medicine, Granada (Spain); Alarcon, Raquel [Andalusian Council of Health at Almeria province, Almeria (Spain)

    2011-11-15

    Preliminary studies have shown associations between chronic pesticide exposure in occupational settings and neurological disorders. However, data on the effects of long-term non-occupational exposures are too sparse to allow any conclusions. This study examines the influence of environmental pesticide exposure on a number of neuropsychiatric conditions and discusses their underlying pathologic mechanisms. An ecological study was conducted using averaged prevalence rates of Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral degeneration, polyneuropathies, affective psychosis and suicide attempts in selected Andalusian health districts categorized into areas of high and low environmental pesticide exposure based on the number of hectares devoted to intensive agriculture and pesticide sales per capita. A total of 17,429 cases were collected from computerized hospital records (minimum dataset) between 1998 and 2005. Prevalence rates and the risk of having Alzheimer's disease, Parkinson's disease, multiple sclerosis and suicide were significantly higher in districts with greater pesticide use as compared to those with lower pesticide use. The multivariate analyses showed that the population living in areas with high pesticide use had an increased risk for Alzheimer's disease and suicide attempts and that males living in these areas had increased risks for polyneuropathies, affective disorders and suicide attempts. In conclusion, this study supports and extends previous findings and provides an indication that environmental exposure to pesticides may affect the human health by increasing the incidence of certain neurological disorders at the level of the general population. -- Highlights: Black-Right-Pointing-Pointer Environmental exposure to pesticides and neurodegenerative-psychiatric disorders. Black-Right-Pointing-Pointer Increased risk for Alzheimer's disease and suicide attempts in high exposure areas. Black

  18. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    Science.gov (United States)

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine.

  19. Chronic exposure of mutant DISC1 mice to lead produces sex-dependent abnormalities consistent with schizophrenia and related mental disorders: a gene-environment interaction study.

    Science.gov (United States)

    Abazyan, Bagrat; Dziedzic, Jenifer; Hua, Kegang; Abazyan, Sofya; Yang, Chunxia; Mori, Susumu; Pletnikov, Mikhail V; Guilarte, Tomas R

    2014-05-01

    The glutamatergic hypothesis of schizophrenia suggests that hypoactivity of the N-methyl-D-aspartate receptor (NMDAR) is an important factor in the pathophysiology of schizophrenia and related mental disorders. The environmental neurotoxicant, lead (Pb(2+)), is a potent and selective antagonist of the NMDAR. Recent human studies have suggested an association between prenatal Pb(2+) exposure and the increased likelihood of schizophrenia later in life, possibly via interacting with genetic risk factors. In order to test this hypothesis, we examined the neurobehavioral consequences of interaction between Pb(2+) exposure and mutant disrupted in schizophrenia 1 (mDISC1), a risk factor for major psychiatric disorders. Mutant DISC1 and control mice born by the same dams were raised and maintained on a regular diet or a diet containing moderate levels of Pb(2+). Chronic, lifelong exposure of mDISC1 mice to Pb(2+) was not associated with gross developmental abnormalities but produced sex-dependent hyperactivity, exaggerated responses to the NMDAR antagonist, MK-801, mildly impaired prepulse inhibition of the acoustic startle, and enlarged lateral ventricles. Together, these findings support the hypothesis that environmental toxins could contribute to the pathogenesis of mental disease in susceptible individuals.

  20. Qualitative analysis of the capacity to consent to treatment in patients with a chronic neurodegenerative disease: Alzheimer's disease / Analisi qualitativa sulla capacità a prestare consenso al trattamento in pazienti con malattie cronico degenerative neuropsicoorganiche: Demenza di Alzheimer.

    Science.gov (United States)

    Carabellese, Felice; Felthous, Alan R; La Tegola, Donatella; Piazzolla, Giuseppina; Distaso, Salvatore; Logroscino, Giancarlo; Leo, Antonio; Ventriglio, Antonio; Catanesi, Roberto

    2018-02-01

    Informed consent is an essential element in doctor-patient relationship. In particular, obtaining valid informed consent from patients with neurocognitive diseases is a critical issue at present. For this reason, we decided to conduct research on elderly patients with Alzheimer's disease ( Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) to assess their capacity to make treatment decisions. The experimental group comprised 70 Alzheimer patients who were admitted to the Neurodegenerative Disease Unit of the University of Bari. The control group consisted of 83 elderly patients without neurocognitive disorders who were hospitalized in the Geriatric Unit at the same university. After providing written consent to participate in the research, each subject underwent the following assessments: (a) assessment of comprehension sheet, (b) Neuropsychiatric Inventory (NPI) and Global Functioning Evaluation (GFE), (c) neurological evaluation, (d) neuropsychological assessment with a full battery of tests, (d) The MacArthur Treatment Competence Study (MacArthur Competence Assessment Tool for Treatment (MacCAT-T); understanding, appreciating, reasoning and expressing a choice) and (e) a semi-structured interview administered by the patient's caregiver. The present survey was designed to analyze possible qualitative and quantitative correlations between cognitive functioning and capacity to consent in relation to different degrees of severity of the neurodegenerative disorder. A large portion of the patients in our experimental sample did not appear to have the capacity to provide a valid consent. The authors present initial results of this study and discuss their possible implications.

  1. Recommendations for the Design of Serious Games in Neurodegenerative Diseases.

    Science.gov (United States)

    Ben-Sadoun, Grégory; Manera, Valeria; Alvarez, Julian; Sacco, Guillaume; Robert, Philippe

    2018-01-01

    The use of Serious Games (SG) in the health domain is expanding. In the field of Neurodegenerative Diseases (ND) such as Alzheimer's Disease, SG are currently employed to provide alternative solutions for patients' treatment, stimulation, and rehabilitation. The design of SG for people with ND implies collaborations between professionals in ND and professionals in SG design. As the field is quite young, professionals specialized in both ND and SG are still rare, and recommendations for the design of SG for people with ND are still missing. This perspective paper aims to provide recommendations in terms of ergonomic choices for the design of SG aiming at stimulating people with ND, starting from the existing SG already tested in this population: "MINWii", "Kitchen and Cooking", and "X-Torp". We propose to rely on nine ergonomic criteria: eight ergonomic criteria inspired by works in the domain of office automation: Compatibility, Guidance, Workload, Adaptability, Consistency, Significance of codes, Explicit control and Error management; and one ergonomic criterion related to videogame: the game rules. Perspectives derived from this proposal are also discussed.

  2. Recommendations for the Design of Serious Games in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Grégory Ben-Sadoun

    2018-02-01

    Full Text Available The use of Serious Games (SG in the health domain is expanding. In the field of Neurodegenerative Diseases (ND such as Alzheimer’s Disease, SG are currently employed to provide alternative solutions for patients’ treatment, stimulation, and rehabilitation. The design of SG for people with ND implies collaborations between professionals in ND and professionals in SG design. As the field is quite young, professionals specialized in both ND and SG are still rare, and recommendations for the design of SG for people with ND are still missing. This perspective paper aims to provide recommendations in terms of ergonomic choices for the design of SG aiming at stimulating people with ND, starting from the existing SG already tested in this population: “MINWii”, “Kitchen and Cooking”, and “X-Torp”. We propose to rely on nine ergonomic criteria: eight ergonomic criteria inspired by works in the domain of office automation: Compatibility, Guidance, Workload, Adaptability, Consistency, Significance of codes, Explicit control and Error management; and one ergonomic criterion related to videogame: the game rules. Perspectives derived from this proposal are also discussed.

  3. Targeting Microglial KATP Channels to Treat Neurodegenerative Diseases: A Mitochondrial Issue

    Directory of Open Access Journals (Sweden)

    Manuel J. Rodríguez

    2013-01-01

    Full Text Available Neurodegeneration is a complex process involving different cell types and neurotransmitters. A common characteristic of neurodegenerative disorders is the occurrence of a neuroinflammatory reaction in which cellular processes involving glial cells, mainly microglia and astrocytes, are activated in response to neuronal death. Microglia do not constitute a unique cell population but rather present a range of phenotypes closely related to the evolution of neurodegeneration. In a dynamic equilibrium with the lesion microenvironment, microglia phenotypes cover from a proinflammatory activation state to a neurotrophic one directly involved in cell repair and extracellular matrix remodeling. At each moment, the microglial phenotype is likely to depend on the diversity of signals from the environment and of its response capacity. As a consequence, microglia present a high energy demand, for which the mitochondria activity determines the microglia participation in the neurodegenerative process. As such, modulation of microglia activity by controlling microglia mitochondrial activity constitutes an innovative approach to interfere in the neurodegenerative process. In this review, we discuss the mitochondrial KATP channel as a new target to control microglia activity, avoid its toxic phenotype, and facilitate a positive disease outcome.

  4. Potential application of lithium in Parkinson’s and other neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Carol A Lazzara

    2015-10-01

    Full Text Available Lithium, the long-standing hallmark treatment for bipolar disorder, has recently been identified as a potential neuroprotective agent in neurodegeneration. Here we focus on introducing numerous in vitro and in vivo studies that have shown lithium treatment to be efficacious in reducing oxidative stress and inflammation, increasing autophagy, inhibiting apoptosis, and decreasing the accumulation of α-synulcein, with an emphasis on Parkinson’s disease. A number of biological pathways have been shown to be involved in causing these neuroprotective effects. The inhibition of GSK-3β has been the mechanism most studied; however, other modes of action include the regulation of apoptotic proteins and glutamate excitotoxicity as well as down-regulation of Calpain-1. This review provides a framework of the neuroprotective effects of lithium in neurodegenerative diseases and the putative mechanisms by which lithium provides the protection. Lithium-only treatment may not be a suitable therapeutic option for neurodegenerative diseases due to inconsistent efficacy and potential side-effects, however, the use of low dose lithium in combination with other potential or existing therapeutic compounds may be a promising approach to reduce symptoms and disease progression in neurodegenerative diseases.

  5. Edible and Medicinal Mushrooms: Emerging Brain Food for the Mitigation of Neurodegenerative Diseases.

    Science.gov (United States)

    Phan, Chia-Wei; David, Pamela; Sabaratnam, Vikineswary

    2017-01-01

    There is an exponential increase in dementia in old age at a global level because of increasing life expectancy. The prevalence of neurodegenerative diseases such as dementia and Alzheimer's disease (AD) will continue to rise steadily, and is expected to reach 42 million cases worldwide in 2020. Despite the advancement of medication, the management of these diseases remains largely ineffective. Therefore, it is vital to explore novel nature-based nutraceuticals to mitigate AD and other age-related neurodegenerative disorders. Mushrooms and their extracts appear to hold many health benefits, including immune-modulating effects. A number of edible mushrooms have been shown to contain rare and exotic compounds that exhibit positive effects on brain cells both in vitro and in vivo. In this review, we summarize the scientific information on edible and culinary mushrooms with regard to their antidementia/AD active compounds and/or pharmacological test results. The bioactive components in these mushrooms and the underlying mechanism of their activities are discussed. In short, these mushrooms may be regarded as functional foods for the mitigation of neurodegenerative diseases.

  6. Pharmacogenetics in Neurodegenerative Diseases: Implications for Clinical Trials.

    Science.gov (United States)

    Tortelli, Rosanna; Seripa, Davide; Panza, Francesco; Solfrizzi, Vincenzo; Logroscino, Giancarlo

    2016-01-01

    Pharmacogenetics has become extremely important over the last 20 years for identifying individuals more likely to be responsive to pharmacological interventions. The role of genetic background as a predictor of drug response is a young and mostly unexplored field in neurodegenerative diseases. Mendelian mutations in neurodegenerative diseases have been used as models for early diagnosis and intervention. On the other hand, genetic polymorphisms or risk factors for late-onset Alzheimer's disease (AD) or other neurodegenerative diseases, probably influencing drug response, are hardly taken into account in randomized clinical trial (RCT) design. The same is true for genetic variants in cytochrome P450 (CYP), the principal enzymes influencing drug metabolism. A better characterization of individual genetic background may optimize clinical trial design and personal drug response. This chapter describes the state of the art about the impact of genetic factors in RCTs on neurodegenerative disease, with AD, frontotemporal dementia, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease as examples. Furthermore, a brief description of the genetic bases of drug response focusing on neurodegenerative diseases will be conducted. The role of pharmacogenetics in RCTs for neurodegenerative diseases is still a young, unexplored, and promising field. Genetic tools allow increased sophistication in patient profiling and treatment optimization. Pharmaceutical companies are aware of the value of collecting genetic data during their RCTs. Pharmacogenetic research is bidirectional with RCTs: efficacy data are correlated with genetic polymorphisms, which in turn define subjects for treatment stratification. © 2016 S. Karger AG, Basel.

  7. Cell ageing: a flourishing field for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Dora Brites

    2015-06-01

    Full Text Available Cellular senescence is viewed as an irreversible cell-cycle arrest mechanism involving a complexity of biological progressive processes and the acquisition of diverse cellular phenotypes. Several cell-intrinsic and extrinsic causes (stresses may lead to diverse cellular signaling cascades that include oxidative stress, mitochondrial dysfunction, DNA damage, excessive accumulation of misfolded proteins, impaired microRNA processing and inflammation. Here we review recent advances in the causes and consequences of brain cell ageing, including the senescence of endothelial cells at the central nervous system barriers, as well as of neurons and glial cells. We address what makes ageing an important risk factor for neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and cerebrovascular disease. In particular, we highlight the importance of defects in mitochondrial dynamics, in the cathepsin activity imbalance, in cell-cell communication, in the accumulation of misfolded and unfolded proteins and in the microRNA profiling as having potential impact on cellular ageing processes. Another important aspect is that the absence of specific senescence biomarkers has hampered the characterization of senescent cells in ageing and age-associated diseases. In accordance, the senescence-associated secretory phenotype (SASP or secretome was shown to vary in distinct cell types and upon different stressors, and SASP heterogeneity is believed to create subsets of senenescent cells. In addition to secreted proteins, we then place extracellular vesicles (exosomes and ectosomes as important mediators of intercellular communication with pathophysiological roles in disease spreading, and as emerging targets for therapeutic intervention. We also discuss the application of engineered extracellular vesicles as vehicles for drug delivery. Finally, we summarize current knowledge on methods to rejuvenate senescent cells

  8. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases?

    Science.gov (United States)

    Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Blandizzi, Corrado; Fornai, Matteo

    2018-05-24

    Neurological diseases, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut microbiota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays its own distinct clinical features.

  9. Transcranial Direct Current Stimulation in Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Argye E. Hillis

    2014-04-01

    Full Text Available We review rationale, challenges, study designs, reported results, and future directions in the use of transcranial direct cranial stimulation (tDCS in neurodegenerative disease, focusing on treatment of spelling in primary progressive aphasia (PPA. Rationale Evidence from both animal studies and human studies indicates that anodal and cathodal tDCS over the brain result in a temporary change in membrane potentials, reducing the threshold for long-term potentiation of neurons in the affected area. This may allow unaffected brain regions to assume functions of diseased regions. Challenges Special challenges in treating individuals with progressive conditions include altered goals of treatment and the possibility that participants may accumulate new deficits over the course of the treatment program that interfere with their ability to understand, retain, or cooperate with aspects of the program. The most serious challenge – particularly for single case designs - is that there may be no stable baseline against which to measure change with treatment. Thus, it is essential to demonstrate that treatment results in a statistically significant change in the slope of decline or improvement. Therefore, demonstration of a significant difference between tDCS and control (sham requires either a large number of participants or a large effect size. Designs The choice of a treatment design reflects these limitations. Group studies with a randomized, double-blind, sham control trial design (without cross-over provide the greatest power to detect a difference between intervention and control conditions, with the fewest participants. A cross-over design, in which all participants (from 1 to many receive both active and sham conditions, in randomized order, requires a larger effect size for the active condition relative to the control condition (or little to no maintenance of treatment gains or carry-over effect to show significant differences between treatment

  10. Dysregulation of the HPA axis as a core pathophysiology mediating co-morbid depression in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Xin eDu

    2015-03-01

    Full Text Available There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson’s disease and Huntington’s disease. These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression, and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioural deficits and/or mood disorders. Dysregulation of the HPA axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, anti-depressant drugs such as the selective serotonin reuptake inhibitors (SSRI have been shown to alter HPA axis activity. In this review, we will summarize the current state of knowledge regarding HPA axis pathology in Alzheimer’s, Parkinson’s and Huntington’s diseases, differentiating between prodromal and later stages of disease progression where possible. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the pre-clinical evidence to better inform prospective, intervention studies.

  11. Autophagy and Its Impact on Neurodegenerative Diseases: New Roles for TDP-43 and C9orf72.

    Science.gov (United States)

    Budini, Mauricio; Buratti, Emanuele; Morselli, Eugenia; Criollo, Alfredo

    2017-01-01

    Autophagy is a catabolic mechanism where intracellular material is degraded by vesicular structures called autophagolysosomes. Autophagy is necessary to maintain the normal function of the central nervous system (CNS), avoiding the accumulation of misfolded and aggregated proteins. Consistently, impaired autophagy has been associated with the pathogenesis of various neurodegenerative diseases. The proteins TAR DNA-binding protein-43 (TDP-43), which regulates RNA processing at different levels, and chromosome 9 open reading frame 72 (C9orf72), probably involved in membrane trafficking, are crucial in the development of neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Additionally, recent studies have identified a role for these proteins in the control of autophagy. In this manuscript, we review what is known regarding the autophagic mechanism and discuss the involvement of TDP-43 and C9orf72 in autophagy and their impact on neurodegenerative diseases.

  12. An Internet-based intervention for eating disorders consisting of automated computer-tailored feedback with or without supplemented frequent or infrequent support from a coach: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Aardoom, Jiska J; Dingemans, Alexandra E; Spinhoven, Philip; Hakkaart-van Roijen, Leona; Van Furth, Eric F

    2013-10-17

    Several Internet-based interventions for eating disorders have shown their effectiveness. Still, there is a need to refine such interventions given that most existing programs seem to be limited by their static 'one-size-fits-all' approach. 'Featback', an Internet-based intervention for symptoms of eating disorders provides a more individualized approach. It consists of several components (psychoeducation, a fully automated monitoring and feedback system, and support from a coach), which can be matched to participants' needs and preferences. Until now, it is unclear whether online self-help interventions for eating disorders with support are more effective than those without. The aims of the current study are i) to examine the relative effectiveness of (the different components of) Featback; ii) to examine predictors, moderators and mediators of intervention responses; iii) to report on practical experiences with Featback; and iv) to examine the cost-effectiveness of Featback. Individuals aged 16 years or older, with mild to severe eating disorder symptoms will be randomized to one of the four study conditions. In condition one, participants receive the basic version of Featback, consisting of psychoeducation and a fully automated monitoring and feedback system. In conditions two and three, participants receive the basic version of Featback supplemented with the possibility of infrequent (weekly) or frequent (three times a week) e-mail, chat, or Skype support from a coach, respectively. The fourth condition is a waiting list control condition. Participants are assessed at baseline, post-intervention (8 weeks), and at 3- and 6-month follow-up (the latter except for participants in the waiting list control condition). Primary outcome measures are disordered eating behaviors and attitudes. Secondary outcome measures are (eating disorder-related) quality of life, self-stigma of seeking help, self-esteem, mastery and support, symptoms of depression and anxiety

  13. Structural Consistency, Consistency, and Sequential Rationality.

    OpenAIRE

    Kreps, David M; Ramey, Garey

    1987-01-01

    Sequential equilibria comprise consistent beliefs and a sequentially ra tional strategy profile. Consistent beliefs are limits of Bayes ratio nal beliefs for sequences of strategies that approach the equilibrium strategy. Beliefs are structurally consistent if they are rationaliz ed by some single conjecture concerning opponents' strategies. Consis tent beliefs are not necessarily structurally consistent, notwithstan ding a claim by Kreps and Robert Wilson (1982). Moreover, the spirit of stru...

  14. In silico studies in drug research against neurodegenerative diseases.

    Science.gov (United States)

    Makhouri, Farahnaz Rezaei; Ghasemi, Jahan B

    2017-08-22

    Neurodegenerative diseases such as Alzheimer's disease (AD), progressive neurodegenerative forms of Huntington's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis, spinal cerebellar ataxias, and spinal and bulbar muscular atrophy are described by slow and selective dysfunction and degeneration of neurons and axons in the central nervous system (CNS). Computer-aided or in silico design methods have matured into powerful tools for reducing the number of ligands that should be screened in experimental assays. In the present review, the authors provide a basic background about neurodegenerative diseases and in silico techniques in the drug research. Furthermore, they review the various in silico studies reported against various targets in neurodegenerative diseases, including homology modeling, molecular docking, virtual high-throughput screening, quantitative structure activity relationship (QSAR), hologram quantitative structure activity relationship (HQSAR), 3D pharmacophore mapping, proteochemometrics modeling (PCM), fingerprints, fragment-based drug discovery, Monte Carlo simulation, molecular dynamic (MD) simulation, quantum-mechanical methods for drug design, support vector machines, and machine learning approaches. Neurodegenerative diseases have a multifactorial pathoetiological origin, so scientists have become persuaded that a multi-target therapeutic strategy aimed at the simultaneous targeting of multiple proteins (and therefore etiologies) involved in the development of a disease is recommended in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Silvia Vanni

    2018-01-01

    Full Text Available Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively and in different genetic forms of prion diseases (gPrD in comparison to Alzheimer's disease (AD subjects and age-matched controls.Methods: Total RNA was obtained from the frontal cortex of vCJD (n = 20, iCJD (n = 11, sCJD (n = 23, gPrD (n = 30, and AD (n = 14 patients and age-matched controls (n = 30. RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis.Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level.Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue—together with specific molecular and conformational features of the pathological agent of the disease—seem to dictate the peculiar

  16. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases.

    Science.gov (United States)

    Vanni, Silvia; Zattoni, Marco; Moda, Fabio; Giaccone, Giorgio; Tagliavini, Fabrizio; Haïk, Stéphane; Deslys, Jean-Philippe; Zanusso, Gianluigi; Ironside, James W; Carmona, Margarita; Ferrer, Isidre; Kovacs, Gabor G; Legname, Giuseppe

    2018-01-01

    Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively) and in different genetic forms of prion diseases (gPrD) in comparison to Alzheimer's disease (AD) subjects and age-matched controls. Methods: Total RNA was obtained from the frontal cortex of vCJD ( n = 20), iCJD ( n = 11), sCJD ( n = 23), gPrD ( n = 30), and AD ( n = 14) patients and age-matched controls ( n = 30). RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis. Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level. Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue)-together with specific molecular and conformational features of the pathological agent of the disease-seem to dictate the peculiar hemoglobin

  17. Neuroproteases in peptide neurotransmission and neurodegenerative diseases: applications to drug discovery research.

    Science.gov (United States)

    Hook, Vivian Y H

    2006-01-01

    The nervous system represents a key area for development of novel therapeutic agents for the treatment of neurological and neurodegenerative diseases. Recent research has demonstrated the critical importance of neuroproteases for the production of specific peptide neurotransmitters and for the production of toxic peptides in major neurodegenerative diseases that include Alzheimer, Huntington, and Parkinson diseases. This review illustrates the successful criteria that have allowed identification of proteases responsible for converting protein precursors into active peptide neurotransmitters, consisting of dual cysteine protease and subtilisin-like protease pathways in neuroendocrine cells. These peptide neurotransmitters are critical regulators of neurologic conditions, including analgesia and cognition, and numerous behaviors. Importantly, protease pathways also represent prominent mechanisms in neurodegenerative diseases, especially Alzheimer, Huntington, and Parkinson diseases. Recent studies have identified secretory vesicle cathepsin B as a novel beta-secretase for production of the neurotoxic beta-amyloid (Abeta) peptide of Alzheimer disease. Moreover, inhibition of cathepsin B reduces Abeta peptide levels in brain. These neuroproteases potentially represent new drug targets that should be explored in future pharmaceutical research endeavors for drug discovery.

  18. Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases.

    Science.gov (United States)

    Ejlerskov, Patrick; Ashkenazi, Avraham; Rubinsztein, David C

    2018-04-03

    Most of the neurodegenerative diseases that afflict humans manifest with the intraneuronal accumulation of toxic proteins that are aggregate-prone. Extensive data in cell and neuronal models support the concept that such proteins, like mutant huntingtin or alpha-synuclein, are substrates for macroautophagy (hereafter autophagy). Furthermore, autophagy-inducing compounds lower the levels of such proteins and ameliorate their toxicity in diverse animal models of neurodegenerative diseases. However, most of these compounds also have autophagy-independent effects and it is important to understand if similar benefits are seen with genetic strategies that upregulate autophagy, as this strengthens the validity of this strategy in such diseases. Here we review studies in vertebrate models using genetic manipulations of core autophagy genes and describe how these improve pathology and neurodegeneration, supporting the validity of autophagy upregulation as a target for certain neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Beer and bread to brains and beyond: can yeast cells teach us about neurodegenerative disease?

    Science.gov (United States)

    Gitler, Aaron D

    2008-01-01

    For millennia, humans have harnessed the astonishing power of yeast, producing such culinary masterpieces as bread, beer and wine. Therefore, in this new millennium, is it very farfetched to ask if we can also use yeast to unlock some of the modern day mysteries of human disease? Remarkably, these seemingly simple cells possess most of the same basic cellular machinery as the neurons in the brain. We and others have been using the baker's yeast, Saccharomyces cerevisiae, as a model system to study the mechanisms of devastating neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's and amyotrophic lateral sclerosis. While very different in their pathophysiology, they are collectively referred to as protein-misfolding disorders because of the presence of misfolded and aggregated forms of various proteins in the brains of affected individuals. Using yeast genetics and the latest high-throughput screening technologies, we have identified some of the potential causes underpinning these disorders and discovered conserved genes that have proven effective in preventing neuron loss in animal models. Thus, these genes represent new potential drug targets. In this review, I highlight recent work investigating mechanisms of cellular toxicity in a yeast Parkinson's disease model and discuss how similar approaches are being applied to additional neurodegenerative diseases.

  20. [Changes in olfaction during ageing and in certain neurodegenerative diseases: up-to-date].

    Science.gov (United States)

    Bianchi, A-J; Guépet-Sordet, H; Manckoundia, P

    2015-01-01

    Olfaction is a complex sensory system, and increasing interest is being shown in the link between olfaction and cognition, notably in the elderly. In this literature review, we revisit the specific neurophysiological features of the olfactory system and odorants that lead to a durable olfactory memory and an emotional memory, for which the implicit component produces subconscious olfactory conditioning. Olfaction is known to affect cognitive abilities and mood. We also consider the impairment of olfactory function due to ageing and to neurodegenerative diseases, in particular Alzheimer's disease and Parkinson's disease, through anatomopathological changes in the peripheral and central olfactory structures. The high frequency of these olfactory disorders as well as their early occurrence in Alzheimer disease and Parkinson disease are in favour of their clinical detection in subjects suffering from these two neurodegenerative diseases. Finally, we analyse the impact of olfactory stimulation on cognitive performance and attention. Current observational data from studies in elderly patients with Alzheimer-type dementia are limited to multiple sensory stimulation methods, such as the Snoezelen method, and aromatherapy. These therapies have shown benefits for dementia-related mood and behaviour disorders in the short term, with few side effects. Since olfactory chemosensory stimulation may be beneficial, it may be proposed in patients with dementia, especially Alzheimer-type dementia, as a complementary or even alternative therapy to existing medical strategies. Copyright © 2014 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  1. Chronic Pain Types Differ in Their Reported Prevalence of Post -Traumatic Stress Disorder (PTSD) and There Is Consistent Evidence That Chronic Pain Is Associated with PTSD: An Evidence-Based Structured Systematic Review.

    Science.gov (United States)

    Fishbain, David A; Pulikal, Aditya; Lewis, John E; Gao, Jinrun

    2017-04-01

    The hypotheses of this systematic review were the following: 1) Prevalence of post-traumatic stress disorder (PTSD) will differ between various types of chronic pain (CP), and 2) there will be consistent evidence that CP is associated with PTSD. Of 477 studies, 40 fulfilled the inclusion/exclusion criteria of this review and were grouped according to the type of CP. The reported prevalence of PTSD for each grouping was determined by aggregating all the patients in all the studies in that group. Additionally all patients in all groupings were combined. Percentage of studies that had found an association between CP and PTSD was determined. The consistency of the evidence represented by the percentage of studies finding an association was rated according to the Agency for Health Care Policy and Research guidelines. Grouping PTSD prevalence differed ranging from a low of 0.69% for chronic low back pain to a high of 50.1% in veterans. Prevalence in the general population with CP was 9.8%. Of 19 studies, 16 had found an association between CP and PTSD (84.2%) generating an A consistency rating (consistent multiple studies). Three of the groupings had an A or B (generally consistent) rating. The veterans grouping received a C (finding inconsistent) rating. The results of this systematic review confirmed the hypotheses of this review. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The causative role and therapeutic potential of the kynurenine pathway in neurodegenerative disease.

    Science.gov (United States)

    Amaral, Marta; Outeiro, Tiago F; Scrutton, Nigel S; Giorgini, Flaviano

    2013-06-01

    Metabolites of the kynurenine pathway (KP), which arise from the degradation of tryptophan, have been studied in detail for over a century and garnered the interest of the neuroscience community in the late 1970s and early 1980s with work uncovering the neuromodulatory potential of this pathway. Much research in the following decades has found that perturbations in the levels of KP metabolites likely contribute to the pathogenesis of several neurodegenerative diseases. More recently, it has become apparent that targeting KP enzymes, in particular kynurenine 3-monooxygenase (KMO), may hold substantial therapeutic potential for these disorders. Here we provide an overview of the KP, the neuroactive properties of KP metabolites and their role in neurodegeneration. We also discuss KMO as a therapeutic target for these disorders, and our recent resolution of the crystallographic structure of KMO, which will permit the development of new and improved KMO inhibitors which may ultimately expedite clinical application of these compounds.

  3. MRI Markers of Neurodegenerative and Neurovascular Changes in Relation to Postoperative Delirium and Postoperative Cognitive Decline.

    Science.gov (United States)

    Kant, Ilse M J; de Bresser, Jeroen; van Montfort, Simone J T; Slooter, Arjen J C; Hendrikse, Jeroen

    2017-10-01

    Postoperative delirium (POD) and postoperative cognitive decline (POCD) are common in elderly patients. The aim of the present review was to explore the association of neurodegenerative and neurovascular changes with the occurrence of POD and POCD. Fifteen MRI studies were identified by combining multiple search terms for POD, POCD, and brain imaging. These studies described a total of 1,422 patients and were all observational in design. Neurodegenerative changes (global and regional brain volumes) did not show a consistent association with the occurrence of POD (four studies) or POCD (two studies). In contrast, neurovascular changes (white matter hyperintensities and cerebral infarcts) were more consistently associated with the occurrence of POD (seven studies) and POCD (five studies). In conclusion, neurovascular changes appear to be consistently associated with the occurrence of POD and POCD, and may identify patients at increased risk of these conditions. Larger prospective studies are needed to study the consistency of these findings and to unravel the underlying pathophysiological mechanisms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Visual dysfunction, neurodegenerative diseases, and aging.

    Science.gov (United States)

    Jackson, Gregory R; Owsley, Cynthia

    2003-08-01

    The four most common sight-threatening conditions in older adults in North America are cataract, ARM, glaucoma, and diabetic retinopathy. Even in their moderate stages, these conditions cause visual sensory impairments and reductions in health-related quality of life, including difficulties in daily tasks and psychosocial problems. Many older adults are free from these conditions, yet still experience a variety of visual perceptual problems resulting from aging-related changes in the optics of the eye and degeneration of the visual neural pathways. These problems consist of impairments in visual acuity, contrast sensitivity, color discrimination, temporal sensitivity, motion perception, peripheral visual field sensitivity, and visual processing speed. PD causes a progressive loss of dopaminergic cells predominantly in the retina and possibly in other areas of the visual system. This retinal dopamine deficiency produces selective spatial-temporal abnormalities in retinal ganglion cell function, probably arising from altered receptive field organization in the PD retina. The cortical degeneration characteristics of AD, including neurofibrillary tangles and neuritic plaques, also are present in the visual cortical areas, especially in the visual association areas. The most prominent electrophysiologic change in AD is a delay in the P2 component of the flash VEP. Deficits in higher-order visual abilities typically are compromised in AD, including problems with visual attention, perceiving structure from motion, visual memory, visual learning, reading, and object and face perception. There have been reports of a visual variant of AD in which these types of visual problems are the initial and most prominent signs of the disease. Visual sensory impairments (e.g., contrast sensitivity or achromatopsia) also have been reported but are believed more reflective of cortical disturbances than of AD-associated optic neuropathy.

  5. Mechanisms of action of brain insulin against neurodegenerative diseases.

    Science.gov (United States)

    Ramalingam, Mahesh; Kim, Sung-Jin

    2014-06-01

    Insulin, a pancreatic hormone, is best known for its peripheral effects on the metabolism of glucose, fats and proteins. There is a growing body of evidence linking insulin action in the brain to neurodegenerative diseases. Insulin present in central nervous system is a regulator of central glucose metabolism nevertheless this glucoregulation is not the main function of insulin in the brain. Brain is known to be specifically vulnerable to oxidative products relative to other organs and altered brain insulin signaling may cause or promote neurodegenerative diseases which invalidates and reduces the quality of life. Insulin located within the brain is mostly of pancreatic origin or is produced in the brain itself crosses the blood-brain barrier and enters the brain via a receptor-mediated active transport system. Brain Insulin, insulin receptor and insulin receptor substrate-mediated signaling pathways play important roles in the regulation of peripheral metabolism, feeding behavior, memory and maintenance of neural functions such as neuronal growth and differentiation, neuromodulation and neuroprotection. In the present review, we would like to summarize the novel biological and pathophysiological roles of neuronal insulin in neurodegenerative diseases and describe the main signaling pathways in use for therapeutic strategies in the use of insulin to the cerebral tissues and their biological applications to neurodegenerative diseases.

  6. Prediction of neurodegenerative diseases from functional brain imaging data

    NARCIS (Netherlands)

    Mudali, Deborah

    2016-01-01

    Neurodegenerative diseases are a challenge, especially in the developed society where life expectancy is high. Since these diseases progress slowly, they are not easy to diagnose at an early stage. Moreover, they portray similar disease features, which makes them hard to differentiate. In this

  7. Molecular Chaperone Dysfunction in Neurodegenerative Diseases and Effects of Curcumin

    Directory of Open Access Journals (Sweden)

    Panchanan Maiti

    2014-01-01

    Full Text Available The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer’s disease, tauopathies, and Huntington’s diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell.

  8. Absence of consensus in diagnostic criteria for familial neurodegenerative diseases.

    LENUS (Irish Health Repository)

    Byrne, Susan

    2012-04-01

    A small proportion of cases seen in neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS), Parkinson\\'s disease and Alzheimer disease are familial. These familial cases are usually clinically indistinguishable from sporadic cases. Identifying familial cases is important both in terms of clinical guidance for family members and for gene discovery.

  9. Movement and Other Neurodegenerative Syndromes in Patients with Systemic Rheumatic Diseases: A Case Series of 8 Patients and Review of the Literature.

    Science.gov (United States)

    Menezes, Rikitha; Pantelyat, Alexander; Izbudak, Izlem; Birnbaum, Julius

    2015-08-01

    Patients with rheumatic diseases can present with movement and other neurodegenerative disorders. It may be underappreciated that movement and other neurodegenerative disorders can encompass a wide variety of disease entities. Such disorders are strikingly heterogeneous and lead to a wider spectrum of clinical injury than seen in Parkinson's disease. Therefore, we sought to stringently phenotype movement and other neurodegenerative disorders presenting in a case series of rheumatic disease patients. We integrated our findings with a review of the literature to understand mechanisms which may account for such a ubiquitous pattern of clinical injury.Seven rheumatic disease patients (5 Sjögren's syndrome patients, 2 undifferentiated connective tissue disease patients) were referred and could be misdiagnosed as having Parkinson's disease. However, all of these patients were ultimately diagnosed as having other movement or neurodegenerative disorders. Findings inconsistent with and more expansive than Parkinson's disease included cerebellar degeneration, dystonia with an alien-limb phenomenon, and nonfluent aphasias.A notable finding was that individual patients could be affected by cooccurring movement and other neurodegenerative disorders, each of which could be exceptionally rare (ie, prevalence of ∼1:1000), and therefore with the collective probability that such disorders were merely coincidental and causally unrelated being as low as ∼1-per-billion. Whereas our review of the literature revealed that ubiquitous patterns of clinical injury were frequently associated with magnetic resonance imaging (MRI) findings suggestive of a widespread vasculopathy, our patients did not have such neuroimaging findings. Instead, our patients could have syndromes which phenotypically resembled paraneoplastic and other inflammatory disorders which are known to be associated with antineuronal antibodies. We similarly identified immune-mediated and inflammatory markers of injury

  10. Targeting Specific HATs for Neurodegenerative Disease Treatment: Translating Basic Biology to Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    Sheila K. Pirooznia

    2013-03-01

    Full Text Available Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HATs activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and

  11. Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes.

    Science.gov (United States)

    Vyas, Sheela; Maatouk, Layal

    2013-12-01

    Isolation of glucocorticoids (GCs) from adrenal glands followed by synthesis led rapidly to their first clinical application, about 70 years ago, for treatment of rheumatoid arthritis. To this day GCs are used in diseases that have an inflammatory component. However, their use is carefully monitored because of harmful side effects. GCs are also synonymous with stress and adaptation. In CNS, GC binds and activates high affinity mineralocorticoid receptor (MR) and low affinity glucocorticoid receptor (GR). GR, whose expression is ubiquitous, is only activated when GC levels rise as during circadian peak and in response to stress. Numerous recent studies have yielded important and new insights on the mechanisms concerning pulsatile secretory pattern of GCs as well as various processes that tightly control their synthesis via hypothalamic-pituitary-adrenal (HPA) axis involving regulated release of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) from hypothalamus and pituitary, respectively. GR modulates neuronal functions and viability through both genomic and non-genomic actions, and importantly its transcriptional regulatory activity is tightly locked with GC secretory pattern. There is increasing evidence pointing to involvement of GC-GR in neurodegenerative disorders. Patients with Alzheimer's or Parkinson's or Huntington's disease show chronically high cortisol levels suggesting changes occurring in controls of HPA axis. In experimental models of these diseases, chronic stress or GC treatment was found to exacerbate both the clinical symptoms and neurodegenerative processes. However, recent evidence also shows that GC-GR can exert neuroprotective effects. Thus, for any potential therapeutic strategies in these neurodegenerative diseases we need to understand the precise modifications both in HPA axis and in GR activity and find ways to harness their protective actions.

  12. Infectivity versus Seeding in Neurodegenerative Diseases Sharing a Prion-Like Mechanism

    Directory of Open Access Journals (Sweden)

    Natalia Fernández-Borges

    2013-01-01

    Full Text Available Prions are considered the best example to prove that the biological information can be transferred protein to protein through a conformational change. The term “prion-like” is used to describe molecular mechanisms that share similarities with the mammalian prion protein self-perpetuating aggregation and spreading characteristics. Since prions are presumably composed only of protein and are infectious, the more similar the mechanisms that occur in the different neurodegenerative diseases, the more these processes will resemble an infection. In vitro and in vivo experiments carried out during the last decade in different neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's diseases (PD, and amyotrophic lateral sclerosis (ALS have shown a convergence toward a unique mechanism of misfolded protein propagation. In spite of the term “infection” that could be used to explain the mechanism governing the diversity of the pathological processes, other concepts as “seeding” or “de novo induction” are being used to describe the in vivo propagation and transmissibility of misfolded proteins. The current studies are demanding an extended definition of “disease-causing agents” to include those already accepted as well as other misfolded proteins. In this new scenario, “seeding” would be a type of mechanism by which an infectious agent can be transmitted but should not be used to define a whole “infection” process.

  13. New Therapeutic Drugs from Bioactive Natural Molecules: the Role of Gut Microbiota Metabolism in Neurodegenerative Diseases.

    Science.gov (United States)

    Di Meo, Francesco; Donato, Stella; Di Pardo, Alba; Maglione, Vittorio; Filosa, Stefania; Crispi, Stefania

    2018-04-03

    The gut-brain axis is considered a neuroendocrine system, which connects brain and gastrointestinal tract and plays an important role in stress response. The homeostasis of gut-brain axis is important for healthy conditions and its alterations are associated to neurological disorders and neurodegenerative diseases. Gut microbiota is a dynamic ecosystem that can be altered by external factors such as diet composition, antibiotics or xenobiotics. Recent advances in gut microbiota analyses indicate that the gut bacterial community plays a key role in maintaining normal brain functions. Recent metagenomic analyses have elucidated that the relationship between gut and brain, either in normal or in pathological conditions, reflects the existence of a "microbiota-gut-brain" axis. Gut microbiota composition can be influenced by dietary ingestion of probiotics or natural bioactive molecules such as prebiotics and polyphenols. Their derivatives coming from microbiota metabolism can affect both gut bacterial composition and brain biochemistry. Modifications of microbiota composition by natural bioactive molecules could be used to restore the altered brain functions, which characterize neurodegenerative diseases, leading to consider these compounds as novel therapeutic strategies for the treatment of neuropathologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Modeling cognitive deficits following neurodegenerative diseases and traumatic brain injuries with deep convolutional neural networks.

    Science.gov (United States)

    Lusch, Bethany; Weholt, Jake; Maia, Pedro D; Kutz, J Nathan

    2018-06-01

    The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to interpreting cognitive deficits from complex systems such as the human brain. However, we provide important insight and a quantitative framework for disorders in which FAS are implicated. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.

    Science.gov (United States)

    Ciechanover, Aaron; Kwon, Yong Tae

    2015-03-13

    Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.

  16. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?

    Science.gov (United States)

    Bellingham, Shayne A; Guo, Belinda B; Coleman, Bradley M; Hill, Andrew F

    2012-01-01

    Exosomes are small membranous vesicles secreted by a number of cell types including neurons and can be isolated from conditioned cell media or bodily fluids such as urine and plasma. Exosome biogenesis involves the inward budding of endosomes to form multivesicular bodies (MVB). When fused with the plasma membrane, the MVB releases the vesicles into the extracellular environment as exosomes. Proposed functions of these vesicles include roles in cell-cell signaling, removal of unwanted proteins, and the transfer of pathogens between cells. One such pathogen which exploits this pathway is the prion, the infectious particle responsible for the transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Similarly, exosomes are also involved in the processing of the amyloid precursor protein (APP) which is associated with Alzheimer's disease. Exosomes have been shown to contain full-length APP and several distinct proteolytically cleaved products of APP, including Aβ. In addition, these fragments can be modulated using inhibitors of the proteases involved in APP cleavage. These observations provide further evidence for a novel pathway in which PrP and APP fragments are released from cells. Other proteins such as superoxide dismutase I and alpha-synuclein (involved in amyotrophic lateral sclerosis and Parkinson's disease, respectively) are also found associated with exosomes. This review will focus on the role of exosomes in neurodegenerative disorders and discuss the potential of these vesicles for the spread of neurotoxicity, therapeutics, and diagnostics for these diseases.

  17. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Ian James Martins

    2015-12-01

    Full Text Available Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.

  18. Olfaction in Neurologic and Neurodegenerative Diseases: A Literature Review

    Directory of Open Access Journals (Sweden)

    Godoy, Maria Dantas Costa Lima

    2015-01-01

    Full Text Available Introduction Loss of smell is involved in various neurologic and neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. However, the olfactory test is usually neglected by physicians at large. Objective The aim of this study was to review the current literature about the relationship between olfactory dysfunction and neurologic and neurodegenerative diseases. Data Synthesis Twenty-seven studies were selected for analysis, and the olfactory system, olfaction, and the association between the olfactory dysfunction and dementias were reviewed. Furthermore, is described an up to date in olfaction. Conclusion Otolaryngologist should remember the importance of olfaction evaluation in daily practice. Furthermore, neurologists and physicians in general should include olfactory tests in the screening of those at higher risk of dementia.

  19. Progranulin: at the interface of neurodegenerative and metabolic diseases.

    Science.gov (United States)

    Nguyen, Andrew D; Nguyen, Thi A; Martens, Lauren Herl; Mitic, Laura L; Farese, Robert V

    2013-12-01

    Progranulin is a widely expressed, cysteine-rich, secreted glycoprotein originally discovered for its growth factor-like properties. Its subsequent identification as a causative gene for frontotemporal dementia (FTD), a devastating early-onset neurodegenerative disease, has catalyzed a surge of new discoveries about progranulin function in the brain. More recently, progranulin was recognized as an adipokine involved in diet-induced obesity and insulin resistance, revealing its metabolic function. We review here progranulin biology in both neurodegenerative and metabolic diseases. In particular, we highlight the growth factor-like, trophic, and anti-inflammatory properties of progranulin as potential unifying themes in these seemingly divergent conditions. We also discuss potential therapeutic options for raising progranulin levels to treat progranulin-deficient FTD, as well as the possible consequences of such treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Maillard reaction versus other nonenzymatic modifications in neurodegenerative processes.

    Science.gov (United States)

    Pamplona, Reinald; Ilieva, Ekaterina; Ayala, Victoria; Bellmunt, Maria Josep; Cacabelos, Daniel; Dalfo, Esther; Ferrer, Isidre; Portero-Otin, Manuel

    2008-04-01

    Nonenzymatic protein modifications are generated from direct oxidation of amino acid side chains and from reaction of the nucleophilic side chains of specific amino acids with reactive carbonyl species. These reactions give rise to specific markers that have been analyzed in different neurodegenerative diseases sharing protein aggregation, such as Alzheimer's disease, Pick's disease, Parkinson's disease, dementia with Lewy bodies, Creutzfeldt-Jakob disease, and amyotrophic lateral sclerosis. Collectively, available data demonstrate that oxidative stress homeostasis, mitochondrial function, and energy metabolism are key factors in determining the disease-specific pattern of protein molecular damage. In addition, these findings suggest the lack of a "gold marker of oxidative stress," and, consequently, they strengthen the need for a molecular dissection of the nonenzymatic reactions underlying neurodegenerative processes.

  1. Astrocytes in neurodegenerative diseases (I): function and molecular description.

    Science.gov (United States)

    Guillamón-Vivancos, T; Gómez-Pinedo, U; Matías-Guiu, J

    2015-03-01

    Astrocytes have been considered mere supporting cells in the CNS. However, we now know that astrocytes are actively involved in many of the functions of the CNS and may play an important role in neurodegenerative diseases. This article reviews the roles astrocytes play in CNS development and plasticity; control of synaptic transmission; regulation of blood flow, energy, and metabolism; formation of the blood-brain barrier; regulation of the circadian rhythms, lipid metabolism and secretion of lipoproteins; and in neurogenesis. Astrocyte markers and the functions of astrogliosis are also described. Astrocytes play an active role in the CNS. A good knowledge of astrocytes is essential to understanding the mechanisms of neurodegenerative diseases. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  2. Memory in neurodegenerative disease: biological, cognitive, and clinical perspectives

    National Research Council Canada - National Science Library

    Tröster, Alexander I

    1998-01-01

    ... of memory dysfunction in neurodegenerative disease  . ,  . ,     .  100 6 Functional neuroimaging correlates...

  3. Progranulin: At the interface of neurodegenerative and metabolic diseases

    OpenAIRE

    Nguyen, Andrew D.; Nguyen, Thi A.; Martens, Lauren Herl; Mitic, Laura L.; Farese, Robert V.

    2013-01-01

    Progranulin is a widely expressed, cysteine-rich, secreted glycoprotein originally discovered for its growth factor–like properties. Its subsequent identification as a causative gene for frontotemporal dementia (FTD), a devastating early-onset neurodegenerative disease, has catalyzed a surge of new discoveries about progranulin’s function in the brain. More recently, progranulin was recognized as an adipokine involved in diet-induced obesity and insulin resistance, revealing its metabolic fun...

  4. [Caregivers of people with neurodegenerative diseases: from help to delegation].

    Science.gov (United States)

    Delzescaux, Sabine; Blondel, Frédéric

    2015-01-01

    Being a caregiver is difficult, even more so when it comes to helping people with a neurodegenerative disease. These caregivers, either family members or close friends, are confronted with an unexpected delegation which can prove to be highly complex as the pitfalls can indeed be significant. Moreover, the support the caregivers can provide depends on the support they can get for themselves. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Medicinal Plants in Neurodegenerative Diseases: Perspective of Traditional Persian Medicine.

    Science.gov (United States)

    Farzaei, Mohammad Hosein; Shahpiri, Zahra; Mehri, Mohammad Reza; Bahramsoltani, Roodabeh; Rezaei, Mahdi; Raeesdana, Azade; Rahimi, Roja

    2018-01-01

    Neurodegenerative diseases are a progressive loss of structure and/or function of neurons. Weak therapeutic response and progressive nature of the diseases, as well as a wide range of side effects caused by conventional therapeutic approaches make patients seek for complementary and alternative medicine. The aim of the present paper is to discuss the neuropharmacological basis of medicinal plants and their principle phytochemicals which have been used in traditional Persian medicine for different types of neurodegenerative diseases. Medicinal plants introduced in traditional Persian medicine perform beneficial effects in neurodegenerative diseases via various cellular and molecular mechanisms including suppression of apoptosis mediated by an increase in the expression of anti-apoptotic agents (e.g. Bcl-2) as well as a decrease in the expression and activity of proapoptotic proteins (e.g. Bax, caspase 3 and 9). Alleviating inflammatory responses and suppressing the expression and function of pro-inflammatory cytokines like Tumor necrosis factor α and interleukins, as well as improvement in antioxidative performance mediated by superoxide dismutase and catalase, are among other neuroprotective mechanisms of traditional medicinal plants. Modulation of transcription, transduction, intracellular signaling pathways including ERK, p38, and MAPK, with upstream regulatory activity on inflammatory cascades, apoptosis and oxidative stress associated pathways, play an essential role in the preventive and therapeutic potential of the plants in neurodegenerative diseases. Medicinal plants used in traditional Persian medicine along with their related phytochemicals by affecting various neuropharmacological pathways can be considered as future drugs or adjuvant therapies with conventional pharmacotherapeutics; though, further clinical studies are necessary for the confirmation of their safety and efficacy. Copyright© Bentham Science Publishers; For any queries, please email at

  6. Sleep and caregiving : sleeping practices of couples facing neurodegenerative diseases

    OpenAIRE

    Casini , Elisa

    2017-01-01

    This doctoral dissertation in sociology examines the sleep practices of ageing couples confronted with neuro-degenerative conditions. It aims to understand the time- and space-related aspects of these sleep practices, so central to couples’ lives, throughout the different stages of illness, and places particular emphasis on gender-based relations. Thirty couples were interviewed in their homes, 12 of whom were affected by Lewy Body Dementia and 18 by Alzheimer’s Disease. Empirical methods suc...

  7. Neural Substrates of Spontaneous Narrative Production in Focal Neurodegenerative Disease

    Science.gov (United States)

    Gola, Kelly A.; Thorne, Avril; Veldhuisen, Lisa D.; Felix, Cordula M.; Hankinson, Sarah; Pham, Julie; Shany-Ur, Tal; Schauer, Guido P.; Stanley, Christine M.; Glenn, Shenly; Miller, Bruce L.; Rankin, Katherine P.

    2016-01-01

    Conversational storytelling integrates diverse cognitive and socio-emotional abilities that critically differ across neurodegenerative disease groups and may have diagnostic relevance and predict anatomic changes. The present study employed mixed methods discourse and quantitative analyses to delineate patterns of storytelling across focal neurodegenerative disease groups, and to clarify the neuroanatomical contributions to common storytelling characteristics in these patients. Transcripts of spontaneous social interactions of 46 participants (15 behavioral variant frontotemporal dementia (bvFTD), 7 semantic variant primary progressive aphasia (svPPA), 12 Alzheimer's disease (AD), and 12 healthy older normal controls) were analysed for storytelling characteristics and frequency, and videos of the interactions were rated for patients' social attentiveness. Compared to controls, svPPAs also told more stories and autobiographical stories, and perseverated on aspects of self during storytelling. ADs told fewer autobiographical stories than NCs, and svPPAs and bvFTDs failed to attend to social cues. Storytelling characteristics were associated with a processing speed and mental flexibility, and voxel-based anatomic analysis of structural magnetic resonance imaging revealed that temporal organization, evaluations, and social attention correlated with atrophy corresponding to known intrinsic connectivity networks, including the default mode, limbic, salience, and stable task control networks. Differences in spontaneous storytelling among neurodegenerative groups elucidated diverse cognitive, socio-emotional, and neural contributions to narrative production, with implications for diagnostic screening and therapeutic intervention. PMID:26485159

  8. Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology

    Directory of Open Access Journals (Sweden)

    Jose A. Santiago

    2017-05-01

    Full Text Available Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather influenced by a combination of genetic, epigenetic and environmental factors. Emerging high-throughput technologies such as RNA sequencing have been instrumental in deciphering the molecular landscape of neurodegenerative diseases, however, the interpretation of such large amounts of data remains a challenge. Network biology has become a powerful platform to integrate multiple omics data to comprehensively explore the molecular networks in the context of health and disease. In this review article, we highlight recent advances in network biology approaches with an emphasis in brain-networks that have provided insights into the molecular mechanisms leading to the most prevalent neurodegenerative diseases including Alzheimer’s (AD, Parkinson’s (PD and Huntington’s diseases (HD. We discuss how integrative approaches using multi-omics data from different tissues have been valuable for identifying biomarkers and therapeutic targets. In addition, we discuss the challenges the field of network medicine faces toward the translation of network-based findings into clinically actionable tools for personalized medicine applications.

  9. Sublethal RNA Oxidation as a Mechanism for Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Mark A. Smith

    2008-05-01

    Full Text Available Although cellular RNA is subjected to the same oxidative insults as DNA and other cellular macromolecules, oxidative damage to RNA has not been a major focus in investigations of the biological consequences of free radical damage. In fact, because it is largely single-stranded and its bases lack the protection of hydrogen bonding and binding by specific proteins, RNA may be more susceptible to oxidative insults than is DNA. Oxidative damage to protein-coding RNA or non-coding RNA will, in turn, potentially cause errors in proteins and/or dysregulation of gene expression. While less lethal than mutations in the genome, such sublethal insults to cells might be associated with underlying mechanisms of several chronic diseases, including neurodegenerative disease. Recently, oxidative RNA damage has been described in several neurodegenerative diseases including Alzheimer disease, Parkinson disease, dementia with Lewy bodies, and prion diseases. Of particular interest, oxidative RNA damage can be demonstrated in vulnerable neurons early in disease, suggesting that RNA oxidation may actively contribute to the onset of the disease. An increasing body of evidence suggests that, mechanistically speaking, the detrimental effects of oxidative RNA damage to protein synthesis are attenuated, at least in part, by the existence of protective mechanisms that prevent the incorporation of the damaged ribonucleotides into the translational machinery. Further investigations aimed at understanding the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative and other degenerative diseases and lead to better therapeutic strategies.

  10. Comprehension of insincere communication in neurodegenerative disease: lies, sarcasm, and theory of mind.

    Science.gov (United States)

    Shany-Ur, Tal; Poorzand, Pardis; Grossman, Scott N; Growdon, Matthew E; Jang, Jung Y; Ketelle, Robin S; Miller, Bruce L; Rankin, Katherine P

    2012-01-01

    Comprehension of insincere communication is an important aspect of social cognition requiring visual perspective taking, emotion reading, and understanding others' thoughts, opinions, and intentions. Someone who is lying intends to hide their insincerity from the listener, while a sarcastic speaker wants the listener to recognize they are speaking insincerely. We investigated whether face-to-face testing of comprehending insincere communication would effectively discriminate among neurodegenerative disease patients with different patterns of real-life social deficits. We examined ability to comprehend lies and sarcasm from a third-person perspective, using contextual cues, in 102 patients with one of four neurodegenerative diseases (behavioral variant frontotemporal dementia [bvFTD], Alzheimer's disease [AD], progressive supranuclear palsy [PSP], and vascular cognitive impairment) and 77 healthy older adults (normal controls--NCs). Participants answered questions about videos depicting social interactions involving deceptive, sarcastic, or sincere speech using The Awareness of Social Inference Test. All subjects equally understood sincere remarks, but bvFTD patients displayed impaired comprehension of lies and sarcasm compared with NCs. In other groups, impairment was not disease-specific but was proportionate to general cognitive impairment. Analysis of the task components revealed that only bvFTD patients were impaired on perspective taking and emotion reading elements and that both bvFTD and PSP patients had impaired ability to represent others' opinions and intentions (i.e., theory of mind). Test performance correlated with informants' ratings of subjects' empathy, perspective taking and neuropsychiatric symptoms in everyday life. Comprehending insincere communication is complex and requires multiple cognitive and emotional processes vulnerable across neurodegenerative diseases. However, bvFTD patients show uniquely focal and severe impairments at every level

  11. Emulation of Physician Tasks in Eye-Tracked Virtual Reality for Remote Diagnosis of Neurodegenerative Disease.

    Science.gov (United States)

    Orlosky, Jason; Itoh, Yuta; Ranchet, Maud; Kiyokawa, Kiyoshi; Morgan, John; Devos, Hannes

    2017-04-01

    For neurodegenerative conditions like Parkinson's disease, early and accurate diagnosis is still a difficult task. Evaluations can be time consuming, patients must often travel to metropolitan areas or different cities to see experts, and misdiagnosis can result in improper treatment. To date, only a handful of assistive or remote methods exist to help physicians evaluate patients with suspected neurological disease in a convenient and consistent way. In this paper, we present a low-cost VR interface designed to support evaluation and diagnosis of neurodegenerative disease and test its use in a clinical setting. Using a commercially available VR display with an infrared camera integrated into the lens, we have constructed a 3D virtual environment designed to emulate common tasks used to evaluate patients, such as fixating on a point, conducting smooth pursuit of an object, or executing saccades. These virtual tasks are designed to elicit eye movements commonly associated with neurodegenerative disease, such as abnormal saccades, square wave jerks, and ocular tremor. Next, we conducted experiments with 9 patients with a diagnosis of Parkinson's disease and 7 healthy controls to test the system's potential to emulate tasks for clinical diagnosis. We then applied eye tracking algorithms and image enhancement to the eye recordings taken during the experiment and conducted a short follow-up study with two physicians for evaluation. Results showed that our VR interface was able to elicit five common types of movements usable for evaluation, physicians were able to confirm three out of four abnormalities, and visualizations were rated as potentially useful for diagnosis.

  12. The Emerging Role of Proteomics in Precision Medicine: Applications in Neurodegenerative Diseases and Neurotrauma.

    Science.gov (United States)

    Alaaeddine, Rana; Fayad, Mira; Nehme, Eliana; Bahmad, Hisham F; Kobeissy, Firas

    2017-01-01

    Inter-individual variability in response to pharmacotherapy has provoked a higher demand to personalize medical decisions. As the field of pharmacogenomics has served to translate personalized medicine from concept to practice, the contribution of the "omics" disciplines to the era of precision medicine seems to be vital in improving therapeutic outcomes. Although we have observed significant advances in the field of genomics towards personalized medicine , the field of proteomics-with all its capabilities- is still in its infancy towards the area of personalized precision medicine. Neurodegenerative diseases and neurotrauma are among the areas where the implementation of neuroproteomics approaches has enabled neuroscientists to broaden their understanding of neural disease mechanisms and characteristics. It has been shown that the influence of epigenetics, genetics and environmental factors were among the recognized factors contributing to the diverse presentation of a single disease as well as its treatment establishing the factor-disease interaction. Thus, management of these variable single disease presentation/outcome necessitated the need for factoring the influence of epigenetics, genetics, epigenetics, and other factors on disease progression to create a custom treatment plan unique to each individual. In fact, neuroproteomics with its high ability to decipher protein alterations along with their post translational modifications (PTMs) can be an ideal tool for personalized medicine goals including: discovery of molecular mechanisms underlying disease pathobiology, development of novel diagnostics, enhancement of pharmacological neurotherapeutic approaches and finally, providing a "proteome identity" for patients with certain disorders and diseases. So far, neuroproteomics approaches have excelled in the areas of biomarker discovery arena where several diagnostic, prognostic and injury markers have been identified with a direct impact on the

  13. A new look at auranofin, dextromethorphan and rosiglitazone for reduction of glia-mediated inflammation in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jocelyn M Madeira

    2015-01-01

    Full Text Available Neurodegenerative disorders including Alzheimer′s disease are characterized by chronic inflammation in the central nervous system. The two main glial types involved in inflammatory reactions are microglia and astrocytes. While these cells normally protect neurons by providing nutrients and growth factors, disease specific stimuli can induce glial secretion of neurotoxins. It has been hypothesized that reducing glia-mediated inflammation could diminish neuronal loss. This hypothesis is supported by observations that chronic use of non-steroidal anti-inflammatory drugs (NSAIDs is linked with lower incidences of neurodegenerative disease. It is possible that the NSAIDs are not potent enough to appreciably reduce chronic neuroinflammation after disease processes are fully established. Gold thiol compounds, including auranofin, comprise another class of medications effective at reducing peripheral inflammation. We have demonstrated that auranofin inhibits human microglia- and astrocyte-mediated neurotoxicity. Other drugs which are currently used to treat peripheral inflammatory conditions could be helpful in neurodegenerative disease. Three different classes of anti-inflammatory compounds, which have a potential to inhibit neuroinflammation are highlighted below.

  14. Translocator Protein-18 kDa (TSPO Positron Emission Tomography (PET Imaging and Its Clinical Impact in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Anne-Claire Dupont

    2017-04-01

    Full Text Available In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO. In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease’s stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia’s role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases.

  15. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  16. Bitcoin Meets Strong Consistency

    OpenAIRE

    Decker, Christian; Seidel, Jochen; Wattenhofer, Roger

    2014-01-01

    The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...

  17. Consistent classical supergravity theories

    International Nuclear Information System (INIS)

    Muller, M.

    1989-01-01

    This book offers a presentation of both conformal and Poincare supergravity. The consistent four-dimensional supergravity theories are classified. The formulae needed for further modelling are included

  18. [Investigation of Genetic Aetiology in Neurodegenerative Ataxias: Recommendations from the Group of Neurogenetics of Centro Hospitalar São João, Portugal].

    Science.gov (United States)

    Gomes, Tiago; Guimaraes, Joana; Leão, Miguel

    2017-06-30

    In recent decades, a long and increasing list of monogenic neurodegenerative ataxias has been identified, allowing for better characterization of the pathophysiology, phenotype and prognosis of this heterogeneous group of disorders, while also revealing potential new therapeutic targets. However, the heterogeneity and complexity of the genotype-phenotype relationships and the high costs of molecular genetics often make it difficult for clinicians to decide on a molecular investigation based on an unbiased rational plan. Clinical history is essential to guide the diagnostic workup, but often the phenotype does not hold enough specificity to allow for predicting the genotype. The Group of Neurogenetics of the Centro Hospitalar São João, a multidisciplinary team of neurologists and geneticists with special interest in neurogenetic disorders, devised consensus recommendations for the investigation of the genetic aetiology of neurodegenerative ataxias in clinical practice, based on international consensus documents (currently containing potentially outdated information) and published scientific evidence on this topic. At the time these recommendations were written, there were around 10 well described autosomal recessive loci and more than 27 autosomal dominant loci for neurodegenerative ataxias. This document covers, in a pragmatic way, the rational process used for the genetic diagnosis of neurodegenerative ataxias, with specific recommendations for the various groups of these heterogeneous diseases, per the Portuguese reality.

  19. Investigation of Genetic Aetiology in Neurodegenerative Ataxias: Recommendations from the Group of Neurogenetics of Centro Hospitalar São João, Portugal

    Directory of Open Access Journals (Sweden)

    Tiago Gomes

    2017-06-01

    Full Text Available In recent decades, a long and increasing list of monogenic neurodegenerative ataxias has been identified, allowing for better characterization of the pathophysiology, phenotype and prognosis of this heterogeneous group of disorders, while also revealing potential new therapeutic targets. However, the heterogeneity and complexity of the genotype-phenotype relationships and the high costs of molecular genetics often make it difficult for clinicians to decide on a molecular investigation based on an unbiased rational plan. Clinical history is essential to guide the diagnostic workup, but often the phenotype does not hold enough specificity to allow for predicting the genotype. The Group of Neurogenetics of the Centro Hospitalar São João, a multidisciplinary team of neurologists and geneticists with special interest in neurogenetic disorders, devised consensus recommendations for the investigation of the genetic aetiology of neurodegenerative ataxias in clinical practice, based on international consensus documents (currently containing potentially outdated information and published scientific evidence on this topic. At the time these recommendations were written, there were around 10 well described autosomal recessive loci and more than 27 autosomal dominant loci for neurodegenerative ataxias. This document covers, in a pragmatic way, the rational process used for the genetic diagnosis of neurodegenerative ataxias, with specific recommendations for the various groups of these heterogeneous diseases, per the Portuguese reality.

  20. Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy?

    Science.gov (United States)

    Washington, Patricia M; Villapol, Sonia; Burns, Mark P

    2016-01-01

    Neuropathological studies of human traumatic brain injury (TBI) cases have described amyloid plaques acutely after a single severe TBI, and tau pathology after repeat mild TBI (mTBI). This has helped drive the hypothesis that a single moderate to severe TBI increases the risk of developing late-onset Alzheimer's disease (AD), while repeat mTBI increases the risk of developing chronic traumatic encephalopathy (CTE). In this review we critically assess this position-examining epidemiological and case control human studies, neuropathological evidence, and preclinical data. Epidemiological studies emphasize that TBI is associated with the increased risk of developing multiple types of dementia, not just AD-type dementia, and that TBI can also trigger other neurodegenerative conditions such as Parkinson's disease. Further, human post-mortem studies on both single TBI and repeat mTBI can show combinations of amyloid, tau, TDP-43, and Lewy body pathology indicating that the neuropathology of TBI is best described as a 'polypathology'. Preclinical studies confirm that multiple proteins associated with the development of neurodegenerative disease accumulate in the brain after TBI. The chronic sequelae of both single TBI and repeat mTBI share common neuropathological features and clinical symptoms of classically defined neurodegenerative disorders. However, while the spectrum of chronic cognitive and neurobehavioral disorders that occur following repeat mTBI is viewed as the symptoms of CTE, the spectrum of chronic cognitive and neurobehavioral symptoms that occur after a single TBI is considered to represent distinct neurodegenerative diseases such as AD. These data support the suggestion that the multiple manifestations of TBI-induced neurodegenerative disorders be classified together as traumatic encephalopathy or trauma-induced neurodegeneration, regardless of the nature or frequency of the precipitating TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Monira Pervin

    2018-05-01

    Full Text Available Tea is one of the most consumed beverages in the world. Green tea, black tea, and oolong tea are made from the same plant Camellia sinensis (L. O. Kuntze. Among them, green tea has been the most extensively studied for beneficial effects on diseases including cancer, obesity, diabetes, and inflammatory and neurodegenerative diseases. Several human observational and intervention studies have found beneficial effects of tea consumption on neurodegenerative impairment, such as cognitive dysfunction and memory loss. These studies supported the basis of tea’s preventive effects of Parkinson’s disease, but few studies have revealed such effects on Alzheimer’s disease. In contrast, several human studies have not reported these favorable effects with regard to tea. This discrepancy may be due to incomplete adjustment of confounding factors, including the method of quantifying consumption, beverage temperature, cigarette smoking, alcohol consumption, and differences in genetic and environmental factors, such as race, sex, age, and lifestyle. Thus, more rigorous human studies are required to understand the neuroprotective effect of tea. A number of laboratory experiments demonstrated the benefits of green tea and green tea catechins (GTCs, such as epigallocatechin gallate (EGCG, and proposed action mechanisms. The targets of GTCs include the abnormal accumulation of fibrous proteins, such as Aβ and α-synuclein, inflammation, elevated expression of pro-apoptotic proteins, and oxidative stress, which are associated with neuronal cell dysfunction and death in the cerebral cortex. Computational molecular docking analysis revealed how EGCG can prevent the accumulation of fibrous proteins. These findings suggest that GTCs have the potential to be used in the prevention and treatment of neurodegenerative diseases and could be useful for the development of new drugs.

  2. Consistency of orthodox gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1997-01-01

    A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.

  3. Quasiparticles and thermodynamical consistency

    International Nuclear Information System (INIS)

    Shanenko, A.A.; Biro, T.S.; Toneev, V.D.

    2003-01-01

    A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)

  4. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells.

    Science.gov (United States)

    LaMarca, Elizabeth A; Powell, Samuel K; Akbarian, Schahram; Brennand, Kristen J

    2018-01-01

    Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.

  5. Clinical neurogenetics: behavioral management of inherited neurodegenerative disease.

    Science.gov (United States)

    Wexler, Eric

    2013-11-01

    Psychiatric symptoms often manifest years before overt neurologic signs in patients with inherited neurodegenerative disease. The most frequently cited example of this phenomenon is the early onset of personality changes in "presymptomatic" Huntington patients. In some cases the changes in mood and cognition are even more debilitating than their neurologic symptoms. The goal of this article is to provide the neurologist with a concise primer that can be applied in a busy clinic or private practice. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Circulating progranulin as a biomarker for neurodegenerative diseases.

    Science.gov (United States)

    Ghidoni, Roberta; Paterlini, Anna; Benussi, Luisa

    2012-01-01

    Progranulin is a growth factor involved in the regulation of multiple processes including tumorigenesis, wound repair, development, and inflammation. The recent discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD), and other neurodegenerative diseases leading to dementia, has brought renewed interest in progranulin and its functions in the central nervous system. GRN null mutations cause protein haploinsufficiency, leading to a significant decrease in progranulin levels that can be detected in plasma, serum and cerebrospinal fluid (CSF) of mutation carriers. The dosage of circulating progranulin sped up the identification of GRN mutations thus favoring genotype-phenotype correlation studies. Researchers demonstrated that, in GRN null mutation carriers, the shortage of progranulin invariably precedes clinical symptoms and thus mutation carriers are "captured" regardless of their disease status. GRN is a particularly appealing gene for drug targeting, in the way that boosting its expression may be beneficial for mutation carriers, preventing or delaying the onset of GRN-related neurodegenerative diseases. Physiological regulation of progranulin expression level is only partially known. Progranulin expression reflects mutation status and, intriguingly, its levels can be modulated by some additional factor (i.e. genetic background; drugs). Thus, factors increasing the production and secretion of progranulin from the normal gene are promising potential therapeutic avenues. In conclusion, peripheral progranulin is a nonintrusive highly accurate biomarker for early identification of mutation carriers and for monitoring future treatments that might boost the level of this protein.

  7. The epigenetic bottleneck of neurodegenerative and psychiatric diseases.

    Science.gov (United States)

    Sananbenesi, Farahnaz; Fischer, Andre

    2009-11-01

    The orchestrated expression of genes is essential for the development and survival of every organism. In addition to the role of transcription factors, the availability of genes for transcription is controlled by a series of proteins that regulate epigenetic chromatin remodeling. The two most studied epigenetic phenomena are DNA methylation and histone-tail modifications. Although a large body of literature implicates the deregulation of histone acetylation and DNA methylation with the pathogenesis of cancer, recently epigenetic mechanisms have also gained much attention in the neuroscientific community. In fact, a new field of research is rapidly emerging and there is now accumulating evidence that the molecular machinery that regulates histone acetylation and DNA methylation is intimately involved in synaptic plasticity and is essential for learning and memory. Importantly, dysfunction of epigenetic gene expression in the brain might be involved in neurodegenerative and psychiatric diseases. In particular, it was found that inhibition of histone deacetylases attenuates synaptic and neuronal loss in animal models for various neurodegenerative diseases and improves cognitive function. In this article, we will summarize recent data in the novel field of neuroepigenetics and discuss the question why epigenetic strategies are suitable therapeutic approaches for the treatment of brain diseases.

  8. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Samantha Giordano

    2014-01-01

    Full Text Available Oxidative stress including DNA damage, increased lipid and protein oxidation, are important features of aging and neurodegeneration suggesting that endogenous antioxidant protective pathways are inadequate or overwhelmed. Importantly, oxidative protein damage contributes to age-dependent accumulation of dysfunctional mitochondria or protein aggregates. In addition, environmental toxins such as rotenone and paraquat, which are risk factors for the pathogenesis of neurodegenerative diseases, also promote protein oxidation. The obvious approach of supplementing the primary antioxidant systems designed to suppress the initiation of oxidative stress has been tested in animal models and positive results were obtained. However, these findings have not been effectively translated to treating human patients, and clinical trials for antioxidant therapies using radical scavenging molecules such as α-tocopherol, ascorbate and coenzyme Q have met with limited success, highlighting several limitations to this approach. These could include: (1 radical scavenging antioxidants cannot reverse established damage to proteins and organelles; (2 radical scavenging antioxidants are oxidant specific, and can only be effective if the specific mechanism for neurodegeneration involves the reactive species to which they are targeted and (3 since reactive species play an important role in physiological signaling, suppression of endogenous oxidants maybe deleterious. Therefore, alternative approaches that can circumvent these limitations are needed. While not previously considered an antioxidant system we propose that the autophagy-lysosomal activities, may serve this essential function in neurodegenerative diseases by removing damaged or dysfunctional proteins and organelles.

  9. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  10. Swallowing disorders in Parkinson's disease.

    Science.gov (United States)

    Mamolar Andrés, Sandra; Santamarina Rabanal, María Liliana; Granda Membiela, Carla María; Fernández Gutiérrez, María José; Sirgo Rodríguez, Paloma; Álvarez Marcos, César

    Parkinson's disease is a type of chronic neurodegenerative pathology with a typical movement pattern, as well as different, less studied symptoms such as dysphagia. Disease-related disorders in efficacy or safety in the process of swallowing usually lead to malnutrition, dehydration or pneumonias. The aim of this study was identifying and analyzing swallowing disorders in Parkinson's disease. The initial sample consisted of 52 subjects with Parkinson's disease to whom the specific test for dysphagia SDQ was applied. Nineteen participants (36.5%) with some degree of dysphagia in the SDQ test were selected to be evaluated by volume-viscosity clinical exploration method and fiberoptic endoscopic evaluation of swallowing. Disorders in swallowing efficiency and safety were detected in 94.7% of the selected sample. With regards to efficiency, disorders were found in food transport (89.5%), insufficient labial closing (68.4%) and oral residues (47.4%), relating to duration of ingestion. Alterations in security were also observed: pharynx residues (52.7%), coughing (47.4%), penetration (31.64%), aspiration and decrease of SaO 2 (5.3%), relating to the diagnosis of respiratory pathology in the previous year. The SDQ test detected swallowing disorders in 36.5% of the subjects with Parkinson's disease. Disorders in swallowing efficiency and safety were demonstrated in 94.7% of this subset. Disorders of efficiency were more frequent than those of safety, establishing a relationship with greater time in ingestion and the appearance of respiratory pathology and pneumonias. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  11. The role of the motor system in action naming in patients with neurodegenerative extrapyramidal syndromes.

    Science.gov (United States)

    Cotelli, Maria; Manenti, Rosa; Brambilla, Michela; Borroni, Barbara

    2018-03-01

    Previous studies of patients with brain damage have suggested a close relationship between aphasia and movement disorders. Neurodegenerative extrapyramidal syndromes associated with cognitive impairment provide an interesting model for studying the neural substrates of cognitive and motor symptoms. In this review, we focused on studies investigating language production abilities in patients with Parkinson's disease (PD), Corticobasal Syndrome (CBS) and Progressive Supranuclear Palsy (PSP). According to some reports, these patients exhibit a reduction in performance in both action and object naming or verb production compared to healthy individuals. Furthermore, a disproportional impairment of action naming compared to object naming was systematically observed in patients with these disorders. The study of these clinical conditions offers the unique opportunity to examine the close link between linguistic features and motor characteristics of action. This particular pattern of language impairment may contribute to the debate on embodiment theory and on the involvement of the basal ganglia in language and in integrating language and movement. From a translational perspective, we suggest that language ability assessments are useful in the clinical work-up, along with neuropsychological and motor evaluations. Specific protocols should be developed in the near future to better characterize language deficits and to permit an early cognitive diagnosis. Moreover, the link between language deficits and motor impairment opens a new issue for treatment approaches. Treatment of one of these two symptoms may ameliorate the other, and treating both may produce a greater improvement in patients' global clinical conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Consistency in PERT problems

    OpenAIRE

    Bergantiños, Gustavo; Valencia-Toledo, Alfredo; Vidal-Puga, Juan

    2016-01-01

    The program evaluation review technique (PERT) is a tool used to schedule and coordinate activities in a complex project. In assigning the cost of a potential delay, we characterize the Shapley rule as the only rule that satisfies consistency and other desirable properties.

  13. Developmental Vulnerability of Synapses and Circuits Associated with Neuropsychiatric Disorders

    OpenAIRE

    Penzes, Peter; Buonanno, Andres; Passafarro, Maria; Sala, Carlo; Sweet, Robert A.

    2013-01-01

    Psychiatric and neurodegenerative disorders, including intellectual disability (ID), autism spectrum disorders (ASD), schizophrenia (SZ), and Alzheimer's disease (AD), pose an immense burden to society. Symptoms of these disorders become manifest at different stages of life: early childhood, adolescence, and late adulthood, respectively. Progress has been made in recent years toward understanding the genetic substrates, cellular mechanisms, brain circuits, and endophenotypes of these disorder...

  14. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth A. LaMarca

    2018-04-01

    Full Text Available Human-induced pluripotent stem cells (hiPSCs have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional “mini-brains” and clustered, regularly interspersed short palindromic repeats (CRISPR-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson’s disease, and consider the future of this groundbreaking research.

  15. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Federica Ciregia

    2017-08-01

    Full Text Available Extracellular vesicles (EVs can be classified into apoptotic bodies, microvesicles (MVs, and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM, neuroblastoma (NB, medulloblastoma (MB, and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.

  16. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2016-01-01

    Neurodegenerative diseases are being modelled in-vitro using human patient-specific, induced pluripotent stem cells and transgenic embryonic stem cells to determine more about disease mechanisms, as well as to discover new treatments for patients. Current research in modelling Alzheimer’s disease......, frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... that includes studying more complex 3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells for modelling disease have already shown to be a powerful approach for discovering more about...

  17. Glial hemichannels and their involvement in aging and neurodegenerative diseases.

    Science.gov (United States)

    Orellana, Juan A; von Bernhardi, Rommy; Giaume, Christian; Sáez, Juan C

    2012-01-26

    During the last two decades, it became increasingly evident that glial cells accomplish a more important role in brain function than previously thought. Glial cells express pannexins and connexins, which are member subunits of two protein families that form membrane channels termed hemichannels. These channels communicate intra- and extracellular compartments and allow the release of autocrine/paracrine signaling molecules [e.g., adenosine triphosphate (ATP), glutamate, nicotinamide adenine dinucleotide, and prostaglandin E2] to the extracellular milieu, as well as the uptake of small molecules (e.g., glucose). An increasing body of evidence has situated glial hemichannels as potential regulators of the beginning and maintenance of homeostatic imbalances observed in diverse brain diseases. Here, we review and discuss the current evidence about the possible role of glial hemichannels on neurodegenerative diseases. A subthreshold pathological threatening condition leads to microglial activation, which keeps active defense and restores the normal function of the central nervous system. However, if the stimulus is deleterious, microglial cells and the endothelium become overactivated, both releasing bioactive molecules (e.g., glutamate, cytokines, prostaglandins, and ATP), which increase the activity of glial hemichannels, reducing the astroglial neuroprotective functions, and further reducing neuronal viability. Because ATP and glutamate are released via glial hemichannels in neurodegenerative conditions, it is expected that they contribute to neurotoxicity. More importantly, toxic molecules released via glial hemichannels could increase the Ca2+ entry in neurons also via neuronal hemichannels, leading to neuronal death. Therefore, blockade of hemichannels expressed by glial cells and/or neurons during neuroinflammation might prevent neurodegeneration.

  18. Early Diagnosis and Monitoring of Neurodegenerative Langerhans Cell Histiocytosis.

    Directory of Open Access Journals (Sweden)

    Elena Sieni

    Full Text Available Neurodegenerative Langerhans Cell Histiocytosis (ND-LCH is a rare, unpredictable consequence that may devastate the quality of life of patients cured from LCH. We prospectively applied a multidisciplinary diagnostic work-up to early identify and follow-up patients with ND-LCH, with the ultimate goal of better determining the appropriate time for starting therapy.We studied 27 children and young adults with either ND-LCH verified by structural magnetic resonance imaging (MRI (group 1 or specific risk factors for (diabetes insipidus, craniofacial bone lesions, but no evidence of, neurodegenerative MRI changes (group 2. All patients underwent clinical, neurophysiological and MRI studies.Seventeen patients had MRI alterations typical for ND-LCH. Nine showed neurological impairment but only three were symptomatic; 11 had abnormal somatosensory evoked potentials (SEPs, and five had abnormal brainstem auditory evoked potentials (BAEPs. MR spectroscopy (MRS showed reduced cerebellar NAA/Cr ratio in nine patients. SEPs showed sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV for predicting ND-LCH of 70.6% (95%CI, 44.0%-89.7%, 100% (69.2%-100%, 100% (73.5%-100%, and 66.7% (38.4%-88.2%, respectively. Repeated investigations in group 1 revealed increasingly abnormal EP parameters, or neurological examination, or both, in nine of fifteen patients while MRI remained unchanged in all but one patient.A targeted MRI study should be performed in all patients with risk factors for ND-LCH for early identification of demyelination. The combined use of SEPs and careful neurological evaluation may represent a valuable, low-cost, well-tolerated and easily available methodology to monitor patients from pre-symptomatic to symptomatic stages. We suggest a multidisciplinary protocol including clinical, MRS, and neurophysiological investigations to identify a population target for future therapeutic trials.

  19. Adult Neurogenesis and Neurodegenerative Diseases: A Systems Biology Perspective

    Science.gov (United States)

    Horgusluoglu, Emrin; Nudelman, Kelly; Nho, Kwangsik; Saykin, Andrew J.

    2016-01-01

    New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. PMID:26879907

  20. A neurodegenerative vascular burden index and the impact on cognition

    Directory of Open Access Journals (Sweden)

    Sebastian eHeinzel

    2014-07-01

    Full Text Available A wide range of vascular burden factors have been identified to impact vascular function and structure as indicated by carotid intima-media thickness (IMT. On the basis of their impact on IMT, vascular factors may be selected and clustered in a vascular burden index (VBI. Since many vascular factors increase the risk of Alzheimer's disease (AD, a multifactorial neurodegenerative VBI may be related to early pathological processes in AD and cognitive decline in its preclinical stages.We investigated an elderly cohort at risk for neurodegeneration (TREND study, n = 1102 for the multifactorial influence of vascular burden factors on IMT measured by ultrasound. To create a VBI for this cohort, vascular factors and their definitions (considering medical history, medication and/or blood marker data were selected based on their statistical effects on IMT in multiple regressions including age and sex. The impact of the VBI on cognitive performance was assessed using the Trail-Making Test (TMT and the CERAD neuropsychological battery.IMT was significantly predicted by age (standardized β = .26, sex (.09; males > females and the factors included in the VBI: obesity (.18, hypertension (.14, smoking (.08, diabetes (.07, and atherosclerosis (.05, whereas other cardiovascular diseases or hypercholesterolemia were not significant. Individuals with 2 or more VBI factors compared to individuals without had an odds ratio of 3.17 regarding overly increased IMT (≥1.0 mm. The VBI showed an impact on executive control (log(TMT B-A, p = .047 and a trend towards decreased global cognitive function (CERAD total score, p = .057 independent of age, sex and education.A VBI established on the basis of IMT may help to identify individuals with overly increased vascular burden linked to decreased cognitive function indicating neurodegenerative processes. The longitudinal study of this risk cohort will reveal the value of the VBI as prodromal marker for cognitive decline and

  1. Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases

    Science.gov (United States)

    de Souza, Jessica M.; Goncalves, Bruno D. C.; Gomez, Marcus V.; Vieira, Luciene B.; Ribeiro, Fabiola M.

    2018-01-01

    Neurodegenerative diseases affect millions of individuals worldwide. So far, no disease-modifying drug is available to treat patients, making the search for effective drugs an urgent need. Neurodegeneration is triggered by the activation of several cellular processes, including oxidative stress, mitochondrial impairment, neuroinflammation, aging, aggregate formation, glutamatergic excitotoxicity, and apoptosis. Therefore, many research groups aim to identify drugs that may inhibit one or more of these events leading to neuronal cell death. Venoms are fruitful natural sources of new molecules, which have been relentlessly enhanced by evolution through natural selection. Several studies indicate that venom components can exhibit selectivity and affinity for a wide variety of targets in mammalian systems. For instance, an expressive number of natural peptides identified in venoms from animals, such as snakes, scorpions, bees, and spiders, were shown to lessen inflammation, regulate glutamate release, modify neurotransmitter levels, block ion channel activation, decrease the number of protein aggregates, and increase the levels of neuroprotective factors. Thus, these venom components hold potential as therapeutic tools to slow or even halt neurodegeneration. However, there are many technological issues to overcome, as venom peptides are hard to obtain and characterize and the amount obtained from natural sources is insufficient to perform all the necessary experiments and tests. Fortunately, technological improvements regarding heterologous protein expression, as well as peptide chemical synthesis will help to provide enough quantities and allow chemical and pharmacological enhancements of these natural occurring compounds. Thus, the main focus of this review is to highlight the most promising studies evaluating animal toxins as therapeutic tools to treat a wide variety of neurodegenerative conditions, including Alzheimer’s disease, Parkinson’s disease, brain

  2. Affective disorders in neurological diseases

    DEFF Research Database (Denmark)

    Nilsson, F M; Kessing, L V; Sørensen, T M

    2003-01-01

    OBJECTIVE: To investigate the temporal relationships between a range of neurological diseases and affective disorders. METHOD: Data derived from linkage of the Danish Psychiatric Central Register and the Danish National Hospital Register. Seven cohorts with neurological index diagnoses and two...... of affective disorder was lower than the incidence in the control groups. CONCLUSION: In neurological diseases there seems to be an increased incidence of affective disorders. The elevated incidence was found to be particularly high for dementia and Parkinson's disease (neurodegenerative diseases)....

  3. Reporting consistently on CSR

    DEFF Research Database (Denmark)

    Thomsen, Christa; Nielsen, Anne Ellerup

    2006-01-01

    This chapter first outlines theory and literature on CSR and Stakeholder Relations focusing on the different perspectives and the contextual and dynamic character of the CSR concept. CSR reporting challenges are discussed and a model of analysis is proposed. Next, our paper presents the results...... of a case study showing that companies use different and not necessarily consistent strategies for reporting on CSR. Finally, the implications for managerial practice are discussed. The chapter concludes by highlighting the value and awareness of the discourse and the discourse types adopted...... in the reporting material. By implementing consistent discourse strategies that interact according to a well-defined pattern or order, it is possible to communicate a strong social commitment on the one hand, and to take into consideration the expectations of the shareholders and the other stakeholders...

  4. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  5. The Rucio Consistency Service

    CERN Document Server

    Serfon, Cedric; The ATLAS collaboration

    2016-01-01

    One of the biggest challenge with Large scale data management system is to ensure the consistency between the global file catalog and what is physically on all storage elements. To tackle this issue, the Rucio software which is used by the ATLAS Distributed Data Management system has been extended to automatically handle lost or unregistered files (aka Dark Data). This system automatically detects these inconsistencies and take actions like recovery or deletion of unneeded files in a central manner. In this talk, we will present this system, explain the internals and give some results.

  6. Is cosmology consistent?

    International Nuclear Information System (INIS)

    Wang Xiaomin; Tegmark, Max; Zaldarriaga, Matias

    2002-01-01

    We perform a detailed analysis of the latest cosmic microwave background (CMB) measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the 'standard' adiabatic inflationary cosmological model. Our best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favor 'small-field' inflation models

  7. Consistent Quantum Theory

    Science.gov (United States)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  8. The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases.

    Science.gov (United States)

    Penke, Botond; Fulop, Livia; Szucs, Maria; Frecska, Ede

    2018-01-01

    Widespread protein aggregation occurs in the living system under stress or during aging, owing to disturbance of endoplasmic reticulum (ER) proteostasis. Many neurodegenerative diseases may have a common mechanism: the failure of protein homeostasis. Perturbation of ER results in unfolded protein response (UPR). Prolonged chronical UPR may activate apoptotic pathways and cause cell death. Research articles on Sigma-1 receptor were reviewed. ER is associated to mitochondria by the mitochondria-associated ER-membrane, MAM. The sigma-1 receptor (Sig-1R), a well-known ER-chaperone localizes in the MAM. It serves for Ca2+-signaling between the ER and mitochondria, involved in ion channel activities and especially important during neuronal differentiation. Sig-1R acts as central modulator in inter-organelle signaling. Sig-1R helps cell survival by attenuating ER-stress. According to sequence based predictions Sig-1R is a 223 amino acid protein with two transmembrane (2TM) domains. The X-ray structure of the Sig-1R [1] showed a membrane-bound trimeric assembly with one transmembrane (1TM) region. Despite the in vitro determined assembly, the results of in vivo studies are rather consistent with the 2TM structure. The receptor has unique and versatile pharmacological profile. Dimethyl tryptamine (DMT) and neuroactive steroids are endogenous ligands that activate Sig-1R. The receptor has a plethora of interacting client proteins. Sig-1R exists in oligomeric structures (dimer-trimer-octamer-multimer) and this fact may explain interaction with diverse proteins. Sig-1R agonists have been used in the treatment of different neurodegenerative diseases, e.g. Alzheimer's and Parkinson's diseases (AD and PD) and amyotrophic lateral sclerosis. Utilization of Sig-1R agents early in AD and similar other diseases has remained an overlooked therapeutic opportunity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    Science.gov (United States)

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  10. Neuroanatomy of Shared Conversational Laughter in Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Peter S. Pressman

    2018-06-01

    Full Text Available Perceiving another person's emotional expression often sparks a corresponding signal in the observer. Shared conversational laughter is a familiar example. Prior studies of shared laughter have made use of task-based functional neuroimaging. While these methods offer insight in a controlled setting, the ecological validity of such controlled tasks has limitations. Here, we investigate the neural correlates of shared laughter in patients with one of a variety of neurodegenerative disease syndromes (N = 75, including Alzheimer's disease (AD, behavioral variant frontotemporal dementia (bvFTD, right and left temporal variants of semantic dementia (rtvFTD, svPPA, nonfluent/agrammatic primary progressive aphasia (nfvPPA, corticobasal syndrome (CBS, and progressive supranuclear palsy (PSP. Patients were recorded in a brief unrehearsed conversation with a partner (e.g., a friend or family member. Laughter was manually labeled, and an automated system was used to assess the timing of that laughter relative to the partner's laughter. The probability of each participant with neurodegenerative disease laughing during or shortly after his or her partners' laughter was compared to differences in brain morphology using voxel-based morphometry, thresholded based on cluster size and a permutation method and including age, sex, magnet strength, disease-specific atrophy and total intracranial volumes as covariates. While no significant correlations were found at the critical T value, at a corrected voxelwise threshold of p < 0.005, a cluster in the left posterior cingulate gyrus demonstrated a trend at p = 0.08 (T = 4.54. Exploratory analysis with a voxelwise threshold of p = 0.001 also suggests involvement of the left precuneus (T = 3.91 and right fusiform gyrus (T = 3.86. The precuneus has been previously implicated in the detection of socially complex laughter, and the fusiform gyrus has a well-described role in the recognition and processing of others

  11. Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases

    OpenAIRE

    Martin, Antonio; De Vivo, Giulia; Gentile, Vittorio

    2011-01-01

    Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases, such as Pa...

  12. The applications of pharmacogenomics to neurological disorders.

    Science.gov (United States)

    Gilman, C; McSweeney, C; Mao, Y

    2014-01-01

    The most common neurological disorders, including neurodegenerative diseases and psychiatric disorders, have received recent attention with regards to pharmacogenomics and personalized medicine. Here, we will focus on a neglected neurodegenerative disorder, cerebral ischemic stroke (CIS), and highlight recent advances in two disorders, Parkinson's disease (PD) and Alzheimer's diseases (AD), that possess both similar and distinct mechanisms in regards to potential therapeutic targets. In the first part of this review, we will focus primarily on mechanisms that are somewhat specific to each disorder which are involved in neurodegeneration (i.e., protease pathways, calcium homeostasis, reactive oxygen species regulation, DNA repair mechanisms, neurogenesis regulation, mitochondrial function, etc.). In the second part of this review, we will discuss the applications of the genome-wide technology on pharmacogenomics of mental illnesses including schizophrenia (SCZ), autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and obsessive compulsive disorder (OCD).

  13. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia.

    Science.gov (United States)

    Benussi, Alberto; Dell'Era, Valentina; Cotelli, Maria Sofia; Turla, Marinella; Casali, Carlo; Padovani, Alessandro; Borroni, Barbara

    Neurodegenerative cerebellar ataxias represent a group of disabling disorders for which we currently lack effective therapies. Cerebellar transcranial direct current stimulation (tDCS) is a non-invasive technique, which has been demonstrated to modulate cerebellar excitability and improve symptoms in patients with cerebellar ataxias. The present study investigated whether a two-weeks' treatment with cerebellar anodal tDCS could improve symptoms in patients with neurodegenerative cerebellar ataxia and could modulate cerebello-motor connectivity, at short and long term. We performed a double-blind, randomized, sham controlled trial with cerebellar tDCS (5 days/week for 2 weeks) in twenty patients with ataxia. Each patient underwent a clinical evaluation pre- and post-anodal tDCS or sham stimulation. A follow-up evaluation was performed at one and three months. Cerebello-motor connectivity was evaluated using transcranial magnetic stimulation (TMS) at baseline and at follow-up. Patients who underwent anodal tDCS showed a significant improvement in all performance scores (scale for the assessment and rating of ataxia, international cooperative ataxia rating scale, 9-hole peg test, 8-m walking time) and in cerebellar brain inhibition compared to patients who underwent sham stimulation. A two-weeks' treatment with anodal cerebellar tDCS improves symptoms in patients with ataxia and restores physiological cerebellar brain inhibition pathways. Cerebellar tDCS might represent a promising future therapeutic and rehabilitative approach in patients with neurodegenerative ataxia. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Neurodegenerative Diseases: Might Citrus Flavonoids Play a Protective Role?

    Directory of Open Access Journals (Sweden)

    Santa Cirmi

    2016-09-01

    Full Text Available Neurodegenerative diseases (ND result from the gradual and progressive degeneration of the structure and function of the central nervous system or the peripheral nervous system or both. They are characterized by deterioration of neurons and/or myelin sheath, disruption of sensory information transmission and loss of movement control. There is no effective treatment for ND, and the drugs currently marketed are symptom-oriented, albeit with several side effects. Within the past decades, several natural remedies have gained attention as potential neuroprotective drugs. Moreover, an increasing number of studies have suggested that dietary intake of vegetables and fruits can prevent or delay the onset of ND. These properties are mainly due to the presence of polyphenols, an important group of phytochemicals that are abundantly present in fruits, vegetables, cereals and beverages. The main class of polyphenols is flavonoids, abundant in Citrus fruits. Our review is an overview on the scientific literature concerning the neuroprotective effects of the Citrus flavonoids in the prevention or treatment of ND. This review may be used as scientific basis for the development of nutraceuticals, food supplements or complementary and alternative drugs to maintain and improve the neurophysiological status.

  15. Improving drug delivery technology for treating neurodegenerative diseases.

    Science.gov (United States)

    Choonara, Yahya E; Kumar, Pradeep; Modi, Girish; Pillay, Viness

    2016-07-01

    Neurodegenerative diseases (NDs) represent intricate challenges for efficient uptake and transport of drugs to the brain mainly due to the restrictive blood-brain barrier (BBB). NDs are characterized by the loss of neuronal subtypes as sporadic and/or familial and several mechanisms of neurodegeneration have been identified. This review attempts to recap, organize and concisely evaluate the advanced drug delivery systems designed for treating common NDs. It highlights key research gaps and opinionates on new neurotherapies to overcome the BBB as an addition to the current treatments of countering oxidative stress, inflammation and apoptotic mechanisms. Current treatments do not fully address the biological, drug and therapeutic factors faced. This has led to the development of vogue treatments such as nose-to-brain technologies, bio-engineered systems, fusion protein chaperones, stem cells, gene therapy, use of natural compounds, neuroprotectants and even vaccines. However, failure of these treatments is mainly due to the BBB and non-specific delivery in the brain. In order to increase neuroavailability various advanced drug delivery systems provide promising alternatives that are able to augment the treatment of Alzheimer's disease and Parkinson's disease. However, much work is still required in this field beyond the preclinical testing phase.

  16. Molecular origin of polyglutamine aggregation in neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Expansion of polyglutamine (polyQ tracts in proteins results in protein aggregation and is associated with cell death in at least nine neurodegenerative diseases. Disease age of onset is correlated with the polyQ insert length above a critical value of 35-40 glutamines. The aggregation kinetics of isolated polyQ peptides in vitro also shows a similar critical-length dependence. While recent experimental work has provided considerable insights into polyQ aggregation, the molecular mechanism of aggregation is not well understood. Here, using computer simulations of isolated polyQ peptides, we show that a mechanism of aggregation is the conformational transition in a single polyQ peptide chain from random coil to a parallel beta-helix. This transition occurs selectively in peptides longer than 37 glutamines. In the beta-helices observed in simulations, all residues adopt beta-strand backbone dihedral angles, and the polypeptide chain coils around a central helical axis with 18.5 +/- 2 residues per turn. We also find that mutant polyQ peptides with proline-glycine inserts show formation of antiparallel beta-hairpins in their ground state, in agreement with experiments. The lower stability of mutant beta-helices explains their lower aggregation rates compared to wild type. Our results provide a molecular mechanism for polyQ-mediated aggregation.

  17. Oxidative Stress in Neurodegenerative Diseases: Mechanisms and Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Ailton Melo

    2011-01-01

    Full Text Available The incidence and prevalence of neurodegenerative diseases (ND increase with life expectancy. This paper reviews the role of oxidative stress (OS in ND and pharmacological attempts to fight against reactive oxygen species (ROS-induced neurodegeneration. Several mechanisms involved in ROS generation in neurodegeneration have been proposed. Recent articles about molecular pathways involved in ROS generation were reviewed. The progress in the development of neuroprotective therapies has been hampered because it is difficult to define targets for treatment and determine what should be considered as neuroprotective. Therefore, the attention was focused on researches about pharmacological targets that could protect neurons against OS. Since it is necessary to look for genes as the ultimate controllers of all biological processes, this paper also tried to identify gerontogenes involved in OS and neurodegeneration. Since neurons depend on glial cells to survive, recent articles about the functioning of these cells in aging and ND were also reviewed. Finally, clinical trials testing potential neuroprotective agents were critically reviewed. Although several potential drugs have been screened in in vitro and in vivo models of ND, these results were not translated in benefit of patients, and disappointing results were obtained in the majority of clinical trials.

  18. The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Sahar eAl-Mahdawi

    2014-12-01

    Full Text Available DNA methylation primarily occurs within human cells as a 5-methylcytosine (5mC modification of the cytosine bases in CpG dinucleotides. 5mC has proven to be an important epigenetic mark that is involved in the control of gene transcription for processes such as development and differentiation. However, recent studies have identified an alternative modification, 5-hydroxymethylcytosine (5hmC, which is formed by oxidation of 5mC by ten-eleven translocation (TET enzymes. The overall levels of 5hmC in the mammalian genome are approximately 10% of 5mC levels, although higher levels have been detected in tissues of the central nervous system (CNS. The functions of 5hmC are not yet fully known, but evidence suggests that 5hmC may be both an intermediate product during the removal of 5mC by passive or active demethylation processes and also an epigenetic modification in its own right, regulating chromatin or transcriptional factors involved in processes such as neurodevelopment or environmental stress response. This review highlights our current understanding of the role that 5hmC plays in neurodegenerative diseases, including Alzheimer’s disease (AD, amyotrophic lateral sclerosis (ALS, fragile X-associated tremor/ataxia syndrome (FXTAS, Friedreich ataxia (FRDA, Huntington’s disease (HD, and Parkinson’s disease (PD.

  19. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine.

    Science.gov (United States)

    Kovacs, Gabor G

    2016-02-02

    Neurodegenerative diseases (NDDs) are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma protein (FUS), molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials.

  20. From narcissistic personality disorder to frontotemporal dementia: a case report.

    Science.gov (United States)

    Poletti, Michele; Bonuccelli, Ubaldo

    2011-01-01

    Premorbid personality characteristics could have a pathoplastic effect on behavioral symptoms and personality changes related to neurodegenerative diseases. Patients with personality disorders, in particular of the dramatic cluster, may present functional frontolimbic abnormalities. May these neurobiological vulnerabilities linked to a premorbid personality disorder predispose or represent a risk factor to subsequently develop a neurodegenerative disorder? Are subjects with personality disorders more at risk to develop a dementia than mentally healthy subjects? This topic is discussed presenting the clinical case of a patient who suffered of a probable Narcissistic Personality Disorder and subsequently developed a clinically diagnosed Frontotemporal Dementia.

  1. An Internet-based intervention for eating disorders consisting of automated computer-tailored feedback with or without supplemented frequent or infrequent support from a coach: Study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    J.J. Aardoom; A.E. Dingemans (Alexandra); P. Spinhoven (Philip); L. van Hakkaart-van Roijen (Leona); E.F. van Furth (Eric)

    2013-01-01

    textabstractBackground: Several Internet-based interventions for eating disorders have shown their effectiveness. Still, there is a need to refine such interventions given that most existing programs seem to be limited by their static 'one-size-fits-all' approach. 'Featback', an Internet-based

  2. Beneficial Role of Coffee and Caffeine in Neurodegenerative Diseases: A Minireview

    Directory of Open Access Journals (Sweden)

    Yenisetti SC

    2016-06-01

    Full Text Available Coffee is among the most widespread and healthiest beverages in the world. Coffee typically contains more caffeine than most other beverages, and is widely and frequently consumed. Thus, it contributes significantly to the overall caffeine consumption within the general population, particularly in adults. Controversies regarding its benefits and risks still exist as reliable evidence is becoming available supporting its health-promoting potential. Several lines of evidence have highlighted the beneficial effects towards several disease conditions including Type II diabetes, hepatitis C virus, hepatocellular carcinoma, nonalcoholic fatty liver disease and neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's disease (PD and Amyotrophic Lateral Sclerosis (ALS. The health-promoting properties of coffee are largely attributed to its rich phytochemistry, including caffeine, chlorogenic acid, caffeic acid, and hydroxy hydroquinone. In this minireview, an attempt has been made to discuss the various evidences which are mainly derived from animal and cell models. Various mechanisms chiefly responsible for the beneficial effects of caffeine have also been briefly outlined. A short note on the undesirable effects of excessive coffee intakes is also presented.

  3. SVM Based Descriptor Selection and Classification of Neurodegenerative Disease Drugs for Pharmacological Modeling.

    Science.gov (United States)

    Shahid, Mohammad; Shahzad Cheema, Muhammad; Klenner, Alexander; Younesi, Erfan; Hofmann-Apitius, Martin

    2013-03-01

    Systems pharmacological modeling of drug mode of action for the next generation of multitarget drugs may open new routes for drug design and discovery. Computational methods are widely used in this context amongst which support vector machines (SVM) have proven successful in addressing the challenge of classifying drugs with similar features. We have applied a variety of such SVM-based approaches, namely SVM-based recursive feature elimination (SVM-RFE). We use the approach to predict the pharmacological properties of drugs widely used against complex neurodegenerative disorders (NDD) and to build an in-silico computational model for the binary classification of NDD drugs from other drugs. Application of an SVM-RFE model to a set of drugs successfully classified NDD drugs from non-NDD drugs and resulted in overall accuracy of ∼80 % with 10 fold cross validation using 40 top ranked molecular descriptors selected out of total 314 descriptors. Moreover, SVM-RFE method outperformed linear discriminant analysis (LDA) based feature selection and classification. The model reduced the multidimensional descriptors space of drugs dramatically and predicted NDD drugs with high accuracy, while avoiding over fitting. Based on these results, NDD-specific focused libraries of drug-like compounds can be designed and existing NDD-specific drugs can be characterized by a well-characterized set of molecular descriptors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Social Cognition Dysfunctions in Neurodegenerative Diseases: Neuroanatomical Correlates and Clinical Implications

    Science.gov (United States)

    Santamaría-García, Hernando; Santangelo, Gabriella

    2018-01-01

    Social cognitive function, involved in the perception, processing, and interpretation of social information, has been shown to be crucial for successful communication and interpersonal relationships, thereby significantly impacting mental health, well-being, and quality of life. In this regard, assessment of social cognition, mainly focusing on four key domains, such as theory of mind (ToM), emotional empathy, and social perception and behavior, has been increasingly evaluated in clinical settings, given the potential implications of impairments of these skills for therapeutic decision-making. With regard to neurodegenerative diseases (NDs), most disorders, characterized by variable disease phenotypes and progression, although similar for the unfavorable prognosis, are associated to impairments of social cognitive function, with consequent negative effects on patients' management. Specifically, in some NDs these deficits may represent core diagnostic criteria, such as for behavioral variant frontotemporal dementia (bvFTD), or may emerge during the disease course as critical aspects, such as for Parkinson's and Alzheimer's diseases. On this background, we aimed to revise the most updated evidence on the neurobiological hypotheses derived from network-based approaches, clinical manifestations, and assessment tools of social cognitive dysfunctions in NDs, also prospecting potential benefits on patients' well-being, quality of life, and outcome derived from potential therapeutic perspectives of these deficits. PMID:29854017

  5. Quinoline Fluorescent Probes for Zinc - from Diagnostic to Therapeutic Molecules in Treating Neurodegenerative Diseases.

    Science.gov (United States)

    Czaplinska, Barbara; Spaczynska, Ewelina; Musiol, Robert

    2018-01-01

    Fluorescent compounds had gained strong attention due to their wide and appealing applications. Microscopic techniques and visualization are good examples among others. Introduction of fluorescent dyes into microbiology opens the possibility to observe tissues, organisms or organelle with exceptional sensitivity and resolution. Probes for detection of biologically relevant metals as zinc, iron or copper seems to be particularly important for drug design and pharmaceutical sciences. Quinoline derivatives are well known for their good metal affinity and wide spectrum of biological activity. In this regard, molecular sensors built on this scaffold may be useful not only as analytical but also as therapeutic agents. In the present review, application of quinoline moiety in designing of novel fluorescent probes for zinc is presented and discussed. Zinc cations are relevant for vast majority of processes and recently attract a great deal of attention for their role in neurodegenerative diseases. Compounds interacting with Zn2+ may be used for early diagnosis of such disorders, for example the Alzheimer disease. Quinoline-based zinc probes may exert some beneficial role in organism acting as theranostic agents. First preliminary drugs for Alzheimer therapy that are based on quinoline moiety are good example of this trend. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Computed tomography of neurodegenerative disease in childhood. Serial CT findings and their diagnostic values

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Kenkichi; Nakagawa, Yoshihiro; Hojo, Hiroatsu

    1984-12-01

    Serial computed tomographic scans were performed on seven children with neurodegenerative disorders. In two cases of white-matter diseases (Krabbe's disease and metachromatic leukodystrophy), diffuse, low-density lesions of white matter were visible in the early stage of the diseases. In one case of adrenoleukodystrophy, regional low-density lesions of the white matter around the posterior horns and peculiar high-density strip lesions were visible in the early stage. In two cases of storage-type gray-matter diseases (Tay-Sachs' and infantile Gaucher's disease), there were no abnormalities in the early stage, but diffuse cortical atrophies in the late stage. In one case of Leigh's disease, there were small, low-density lesions of the basal ganglia and multiple low-density lesions of the gray matter in the early stage. In one case of subacute sclerosing panencephalitis, there were no abnormalities in the early stage, but small, low-density lesions of the basal ganglia and diffuse cerebral atrophies in the late stage. Diagnostic values were recognized dominantly in two cases of adrenoleukodystrophy and Leigh's disease. In the other cases, however, serial CT scans were useful in the diagnostic process. (author).

  7. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Matthew J Haney

    Full Text Available The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD. This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders.

  8. Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases.

    Science.gov (United States)

    Felder, Christian C; Goldsmith, Paul J; Jackson, Kimberley; Sanger, Helen E; Evans, David A; Mogg, Adrian J; Broad, Lisa M

    2018-01-25

    The cholinergic signalling system has been an attractive pathway to seek targets for modulation of arousal, cognition, and attention which are compromised in neurodegenerative and neuropsychiatric diseases. The acetylcholine muscarinic receptor M1 and M4 subtypes which are highly expressed in the central nervous system, in cortex, hippocampus and striatum, key areas of cognitive and neuropsychiatric control, have received particular attention. Historical muscarinic drug development yielded first generation agonists with modest selectivity for these two receptor targets over M2 and M3 receptors, the major peripheral sub-types hypothesised to underlie the dose-limiting clinical side effects. More recent compound screening and medicinal chemistry optimization of orthosteric and allosteric agonists, and positive allosteric modulators binding to sites distinct from the highly homologous acetylcholine binding pocket have yielded a collection of highly selective tool compounds for preclinical validation studies. Several M1 selective ligands have progressed to early clinical development and in time will hopefully lead to useful therapeutics for treating symptoms of Alzheimer's disease and related disorders. Copyright © 2018. Published by Elsevier Ltd.

  9. Social Cognition Dysfunctions in Neurodegenerative Diseases: Neuroanatomical Correlates and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Foteini Christidi

    2018-01-01

    Full Text Available Social cognitive function, involved in the perception, processing, and interpretation of social information, has been shown to be crucial for successful communication and interpersonal relationships, thereby significantly impacting mental health, well-being, and quality of life. In this regard, assessment of social cognition, mainly focusing on four key domains, such as theory of mind (ToM, emotional empathy, and social perception and behavior, has been increasingly evaluated in clinical settings, given the potential implications of impairments of these skills for therapeutic decision-making. With regard to neurodegenerative diseases (NDs, most disorders, characterized by variable disease phenotypes and progression, although similar for the unfavorable prognosis, are associated to impairments of social cognitive function, with consequent negative effects on patients’ management. Specifically, in some NDs these deficits may represent core diagnostic criteria, such as for behavioral variant frontotemporal dementia (bvFTD, or may emerge during the disease course as critical aspects, such as for Parkinson’s and Alzheimer’s diseases. On this background, we aimed to revise the most updated evidence on the neurobiological hypotheses derived from network-based approaches, clinical manifestations, and assessment tools of social cognitive dysfunctions in NDs, also prospecting potential benefits on patients’ well-being, quality of life, and outcome derived from potential therapeutic perspectives of these deficits.

  10. [Cost of therapy for neurodegenerative diseases. Applying an activity-based costing system].

    Science.gov (United States)

    Sánchez-Rebull, María-Victoria; Terceño Gómez, Antonio; Travé Bautista, Angeles

    2013-01-01

    To apply the activity based costing (ABC) model to calculate the cost of therapy for neurodegenerative disorders in order to improve hospital management and allocate resources more efficiently. We used the case study method in the Francolí long-term care day center. We applied all phases of an ABC system to quantify the cost of the activities developed in the center. We identified 60 activities; the information was collected in June 2009. The ABC system allowed us to calculate the average cost per patient with respect to the therapies received. The most costly and commonly applied technique was psycho-stimulation therapy. Focusing on this therapy and on others related to the admissions process could lead to significant cost savings. ABC costing is a viable method for costing activities and therapies in long-term day care centers because it can be adapted to their structure and standard practice. This type of costing allows the costs of each activity and therapy, or combination of therapies, to be determined and aids measures to improve management. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.

  11. Basic pathologies of neurodegenerative dementias and their relevance for state-of-the-art molecular imaging studies

    International Nuclear Information System (INIS)

    Drzezga, Alexander

    2008-01-01

    Rising life-expectancy in the modern society has resulted in a rapidly growing prevalence of dementia, particularly of Alzheimer's disease (AD). Dementia turns into one of the most common age-related disorders with deleterious consequences for the concerned patients and their relatives, as well as worrying effects on the socio-economic systems. These facts justify strengthened scientific efforts to identify the pathologic origin of dementing disorders, to improve diagnosis, and to interfere therapeutically with the disease progression. In the recent years, remarkable progress has been made concerning the identification of molecular mechanisms underlying the pathology of neurodegenerative disorders. Growing evidence indicates that a common basis of many neurodegenerative dementias can be found in increased production, misfolding and pathological aggregation of proteins, such as ss-amyloid, tau protein, a-synuclein, or the recently described ubiquitinated TDP-43. This progressive insight in pathological processes is paralleled by the development of new therapeutic approaches. However, the exact contribution or mechanism of different pathologies with regard to the development of disease is not yet sufficiently clear. Considerable overlap of pathologies has been documented in different types of clinically defined dementias post mortem, and it has been difficult to correlate post mortem histopathology data with disease-expression during life. Molecular imaging procedures may play a valuable role to circumvent this limitation. In general, methods of molecular imaging have recently experienced an impressive advance, with numerous new and improved technologies emerging. These exciting tools may play a key role in the future regarding the evaluation of pathomechanisms, preclinical evaluation of new diagnostic procedures in animal models, selection of patients for clinical trials, and therapy monitoring. In this overview, molecular key pathologies, which are currently

  12. Mitochondrial Mutations in Subjects with Psychiatric Disorders

    NARCIS (Netherlands)

    V. Sequeira (Vasco); S.M. Rollins; C. Magnan (Christophe); M. van Oven (Mannis); P. Baldi (Pierre); R.M. Myers (Richard M.); J.D. Barchas (Jack D.); A.F. Schatzberg (Alan F); S.J. Watson (Stanley J); H. Akil (Huda); W.E. Bunney (William E.); M.P. Vawter (Marquis)

    2015-01-01

    textabstractA considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear

  13. The test of variables of attention (TOVA): Internal consistency (Q1 vs. Q2 and Q3 vs. Q4) in children with Attention Deficit/Hyperactivity Disorder (ADHD)

    Science.gov (United States)

    The internal consistency of the Test of Variables of Attention (TOVA) was examined in a cohort of 6- to 12-year-old children (N = 63) strictly diagnosed with ADHD. The internal consistency of errors of omission (OMM), errors of commission (COM), response time (RT), and response time variability (RTV...

  14. Skin disorders in Parkinson's disease

    DEFF Research Database (Denmark)

    Ravn, Astrid-Helene; Thyssen, Jacob P; Egeberg, Alexander

    2017-01-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders, characterized by a symptom triad comprising resting tremor, rigidity, and akinesia. In addition, non-motor symptoms of PD are well recognized and often precede the overt motor manifestations. Cutaneous manifestations...

  15. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury.

    Science.gov (United States)

    Dai, Jie-wen; Yuan, Hao; Shen, Shun-yao; Lu, Jing-ting; Zhu, Xiao-fang; Yang, Tong; Zhang, Jiang-fei; Shen, Guo-fang

    2013-08-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation. Cell based treatment for these diseases had gained special interest in recent years. Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo, and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities. Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells. However, DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells, and most were fibroblast cells while just contain a small portion of DPSCs. Thus, there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells. p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs, which had capacity of differentiation into neurons and repairing neural system. In this article, we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast, and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis. This will bring great hope to patients with neurodegenerative disease and neural injury.

  16. A novel human model of the neurodegenerative disease GM1 gangliosidosis using induced pluripotent stem cells demonstrates inflammasome activation.

    Science.gov (United States)

    Son, Mi-Young; Kwak, Jae Eun; Seol, Binna; Lee, Da Yong; Jeon, Hyejin; Cho, Yee Sook

    2015-09-01

    GM1 gangliosidosis (GM1) is an inherited neurodegenerative disorder caused by mutations in the lysosomal β-galactosidase (β-gal) gene. Insufficient β-gal activity leads to abnormal accumulation of GM1 gangliosides in tissues, particularly in the central nervous system, resulting in progressive neurodegeneration. Here, we report an in vitro human GM1 model, based on induced pluripotent stem cell (iPSC) technology. Neural progenitor cells differentiated from GM1 patient-derived iPSCs (GM1-NPCs) recapitulated the biochemical and molecular phenotypes of GM1, including defective β-gal activity and increased lysosomes. Importantly, the characterization of GM1-NPCs established that GM1 is significantly associated with the activation of inflammasomes, which play a critical role in the pathogenesis of various neurodegenerative diseases. Specific inflammasome inhibitors potently alleviated the disease-related phenotypes of GM1-NPCs in vitro and in vivo. Our data demonstrate that GM1-NPCs are a valuable in vitro human GM1 model and suggest that inflammasome activation is a novel target pathway for GM1 drug development. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. The Mircen project, neuro-degenerative disease: mechanisms, therapeutics and imaging research Unit URA Cea Cnrs 2210

    International Nuclear Information System (INIS)

    Hantraye, Ph.

    2006-01-01

    During the post-genomic era, significant advances in our understanding of the molecular basis of disease have been made. The power of functional and molecular imaging in translating this knowledge into effective therapy is now being more and more recognized. Thus, molecular imaging plays a vital role in the early identification of disease-related molecular markers, in the development of molecular-targeted therapies, and in monitoring phenotypic response to therapy both in experimental animals and in human patients. In this context, MIRCen (acronym for Molecular Imaging Research Center ) provides a comprehensive resource available to empower basic, translational, and clinical research through the application of imaging and drug, cell, and gene based technologies. The MIR center will be dedicated to the development of pre-clinical trials for the treatment of various seriously debilitating diseases such as neuro-degenerative diseases, cardiac and hepatic disorders, and infectious diseases (AIDS). Despite the fact that many of these pathologies are still incurable, recent advances in drug, cell and gene therapy point to the feasibility of new therapeutic approaches. The long term goals of MIRCen are therefore to develop and validate: - pertinent animal models for neuro-degenerative, hepatic, cardiac and infectious diseases in rodents as well as non-human primates, - novel technologies for in vivo sensing and imaging of disease-related molecular events,- drug, gene and cell based palliative and or curative therapeutic strategies aiming at protecting and /or restoring damaged or lost functions. (author)

  18. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Daniel L.; Alexander-Brett, Jennifer M.; Karch, Celeste M.; Cruchaga, Carlos; Colonna, Marco; Holtzman, Michael J.; Brett, Thomas J. (WU-MED)

    2016-12-20

    Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s risk variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.

  19. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  20. Coenzyme Q10 and its effects in the treatment of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Graciela Cristina dos Santos

    2009-12-01

    Full Text Available According to clinical and pre-clinical studies, oxidative stress and its consequences may be the cause or, at least, a contributing factor, to a large number of neurodegenerative diseases. These diseases include common and debilitating disorders, characterized by progressive and irreversible loss of neurons in specific regions of the brain. The most common neurodegenerative diseases are Parkinson's disease, Huntington's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Coenzyme Q10 (CoQ10 has been extensively studied since its discovery in 1957. It is a component of the electron transportation chain and participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate (ATP. The property of CoQ10 to act as an antioxidant or a pro-oxidant, suggests that it also plays an important role in the modulation of redox cellular status under physiological and pathological conditions, also performing a role in the ageing process. In several animal models of neurodegenerative diseases, CoQ10 has shown beneficial effects in reducing disease progression. However, further studies are needed to assess the outcome and effectiveness of CoQ10 before exposing patients to unnecessary health risks at significant costs.De acordo com estudos clínicos e pré-clínicos, o estresse oxidativo e suas conseqüências podem ser a causa, ou, no mínimo, o fator que contribui para grande número de doenças degenerativas. Estas doenças incluem problemas comuns e debilitantes, caracterizados por perda progressiva e irreversível de neurônios em regiões específicas do cérebro. As doenças degenerativas mais comuns são doença de Parkinson, de Hutington, de Alzheimer e esclerose amiotrófica lateral. A Coenzima Q10 (CoQ10 tem sido intensamente estudada desde sua descoberta, em 1957. É um componente da cadeia de transporte eletrônico e participa da respiração aeróbica celular, gerando energia na forma de trifosfato de

  1. The role of lipid nanoparticles and its surface modification in reaching the brain: an approach for neurodegenerative diseases treatment.

    Science.gov (United States)

    Pedraz, Jose Luis; Igartua, Manoli; Maria, Rosa; Hernando, Sara

    2018-05-09

    Nanomedicine is a field of science that employs materials in the nanometer scale. Specifically, the use of nanoparticles (NPs) has some medical applications due to their structure, for example, the ability to cross the biological barriers, and their effectiveness avoiding some drug delivery problems. Because of that, in the last years, the use of NPs has been raised as a workable solution for neurodegenerative diseases (ND) treatment [1,2]. NDs are characterized by a continuous structural and functional neuronal loss, usually correlated with neuronal death. Between NDs, Alzheimer disease (AD) and Parkinson's disease (PD) are the most common disorders worldwide, becoming a serious economic burden and public health problem [3]. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Differential diagnosis of neurodegenerative dementias with nuclear medicine methods

    International Nuclear Information System (INIS)

    Kluge, R.

    2015-01-01

    Full text: Neurodegenerative dementias (NDD) are characterized by insidious onset and gradual progression of cognitive dysfunction, initially relatively focal with respect to cognitive domains and brain regions involved. Nuclear medicine techniques help to clarify differential diagnoses of syndromes such as Alzheimer’s disease (AD), dementia with Lewy bodies (DlB), posterior cortical atrophy (PCA), logopenic primary progressive aphasia (PPA), agrammatic PPA, semantic dementia (SD), behavioral variant frontotemporal dementia (bvFTD) and progressive supranuclear palsy syndrome (PSPS). The process of pathologic changes in the brain may start decades before first clinical symptoms become evident. An early diagnosis already in the pre-clinical phase of the diseases will be of immense importance when expected effective therapeutic options have been introduced. NDDs are histopathologically characterized by accumulation of pathological proteins in the brain like beta amyloid or protein tau. While radiotracers for labeling of protein tau are in preclinical evaluation, different radiotracers labeling amyloid plaques ([11C]PIB, [18F]Florbetapir (Amyvid, Fa. EliLilly), [18F]Florbetaben (Neuraceq, Fa. Piramal), [18F]Flutemetamol (vVzamyl, Fa. Ge) have already been established in clinical use during the last years. In AD these tracers are intensively accumulated in the whole cortical brain. Even an early disease can be excluded in case of a negative amyloid PET. The method is, however, not highly specific since amyloid plaques may also be present in DlB (70 – 80%), FTD (30%) orlogopenicPPA (100%). Neuronal dysfunction goes along with decreased glucose consumption. Different diseases are characterized by different topographical zones of reduced [18F]FDG uptake. In AD the posterior cingular, temporopariatal and (later) frontal cortex are affected, in DlB the pattern is similar, including the occipital cortex, in FTD the frontal cortex is affected, in nonfluent PPA the

  3. Progranulin: a new avenue towards the understanding and treatment of neurodegenerative disease.

    Science.gov (United States)

    Chitramuthu, Babykumari P; Bennett, Hugh P J; Bateman, Andrew

    2017-12-01

    Progranulin, a secreted glycoprotein, is encoded in humans by the single GRN gene. Progranulin consists of seven and a half, tandemly repeated, non-identical copies of the 12 cysteine granulin motif. Many cellular processes and diseases are associated with this unique pleiotropic factor that include, but are not limited to, embryogenesis, tumorigenesis, inflammation, wound repair, neurodegeneration and lysosome function. Haploinsufficiency caused by autosomal dominant mutations within the GRN gene leads to frontotemporal lobar degeneration, a progressive neuronal atrophy that presents in patients as frontotemporal dementia. Frontotemporal dementia is an early onset form of dementia, distinct from Alzheimer's disease. The GRN-related form of frontotemporal lobar dementia is a proteinopathy characterized by the appearance of neuronal inclusions containing ubiquitinated and fragmented TDP-43 (encoded by TARDBP). The neurotrophic and neuro-immunomodulatory properties of progranulin have recently been reported but are still not well understood. Gene delivery of GRN in experimental models of Alzheimer's- and Parkinson's-like diseases inhibits phenotype progression. Here we review what is currently known concerning the molecular function and mechanism of action of progranulin in normal physiological and pathophysiological conditions in both in vitro and in vivo models. The potential therapeutic applications of progranulin in treating neurodegenerative diseases are highlighted. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases.

    Science.gov (United States)

    Brady, Scott T; Morfini, Gerardo A

    2017-09-01

    Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Autoimmune Aspects of Neurodegenerative and Psychiatric Diseases : A Template for Innovative Therapy

    NARCIS (Netherlands)

    de Haan, Peter; Klein, Hans C; 't Hart, Bert A

    2017-01-01

    Neurodegenerative and psychiatric diseases (NPDs) are today's most important group of diseases, surpassing both atherosclerotic cardiovascular disease and cancer in morbidity incidence. Although NPDs have a dramatic impact on our society because of their high incidence, mortality, and severe

  6. The role of DNA methylation and histone modifications in neurodegenerative diseases: A systematic review

    NARCIS (Netherlands)

    K.-X. Wen (Ke-Xin); J. Milic (Jelena); El-Khodor, B. (Bassem); K. Dhana (Klodian); J. Nano (Jana); Pulido, T. (Tammy); B. Kraja (Bledar); A. Zaciragic (Asija); W.M. Bramer (Wichor); J. Troup; R. Chowdhury (Rajiv); Arfam Ikram, M.; A. Dehghan (Abbas); T. Muka (Taulant); O.H. Franco (Oscar)

    2016-01-01

    textabstractImportance Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD). Objective To systematically review studies

  7. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases

    NARCIS (Netherlands)

    Jansen, Anne H. P.; Reits, Eric A. J.; Hol, Elly M.

    2014-01-01

    The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, Parkinson's,

  8. 4 Tesla Whole Body MRI MRSI System for Investigation of Neurodegenerative Diseases

    National Research Council Canada - National Science Library

    Weiner, Michael W

    2004-01-01

    The overall long-term goal of imaging research to be performed with this 4 Tesla Siemens/Bruker MRI system is the development of improved diagnostic methods for accurate detection of neurodegenerative...

  9. Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders.

    Science.gov (United States)

    Lattante, Serena; Millecamps, Stéphanie; Stevanin, Giovanni; Rivaud-Péchoux, Sophie; Moigneu, Carine; Camuzat, Agnès; Da Barroca, Sandra; Mundwiller, Emeline; Couarch, Philippe; Salachas, François; Hannequin, Didier; Meininger, Vincent; Pasquier, Florence; Seilhean, Danielle; Couratier, Philippe; Danel-Brunaud, Véronique; Bonnet, Anne-Marie; Tranchant, Christine; LeGuern, Eric; Brice, Alexis; Le Ber, Isabelle; Kabashi, Edor

    2014-09-09

    The aim of this study was to establish the frequency of ATXN2 polyglutamine (polyQ) expansion in large cohorts of patients with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), and to evaluate whether ATXN2 could act as a modifier gene in patients carrying the C9orf72 expansion. We screened a large cohort of French patients (1,144 ALS, 203 FTD, 168 FTD-ALS, and 109 PSP) for ATXN2 CAG repeat length. We included in our cohort 322 carriers of the C9orf72 expansion (202 ALS, 63 FTD, and 57 FTD-ALS). We found a significant association with intermediate repeat size (≥29 CAG) in patients with ALS (both familial and sporadic) and, for the first time, in patients with familial FTD-ALS. Of interest, we found the co-occurrence of pathogenic C9orf72 expansion in 23.2% of ATXN2 intermediate-repeat carriers, all in the FTD-ALS and familial ALS subgroups. In the cohort of C9orf72 carriers, 3.1% of patients also carried an intermediate ATXN2 repeat length. ATXN2 repeat lengths in patients with PSP and FTD were found to be similar to the controls. ATXN2 intermediary repeat length is a strong risk factor for ALS and FTD-ALS. Furthermore, we propose that ATXN2 polyQ expansions could act as a strong modifier of the FTD phenotype in the presence of a C9orf72 repeat expansion, leading to the development of clinical signs featuring both FTD and ALS. © 2014 American Academy of Neurology.

  10. The Wnt antagonist, Dickkopf-1, as a target for the treatment of neurodegenerative disorders

    NARCIS (Netherlands)

    Caraci, Filippo; Busceti, Carla; Biagioni, Francesca; Aronica, Eleonora; Mastroiacovo, Federica; Cappuccio, Irene; Battaglia, Giuseppe; Bruno, Valeria; Caricasole, Andrea; Copani, Agata; Nicoletti, Ferdinando

    2008-01-01

    The canonical Wnt pathway contributes to the regulation of neuronal survival and homeostasis in the CNS. Recent evidence suggests that an increased expression of Dickkopf-1 (Dkk-1), a secreted protein that negatively modulates the canonical Wnt pathway, is causally related to processes of

  11. Neurotoxins and Neurodegenerative Disorders in Japanese-American Men Living in Hawaii

    Science.gov (United States)

    2008-09-01

    Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate . Nature 2003;424:1013. 19. Jenner P, Olanow CW...0.004). Additional adjustment for insomnia, cognitive function, depressed mood , midlife cigarette smoking and coffee drinking, and other factors failed...coffee intake, daily bowel movement frequency, cognitive performance, depressed mood , and the use of antidepressants, antipsychotics, and sedatives

  12. Quantification of intermuscular and intramuscular adipose tissue using magnetic resonance imaging after neurodegenerative disorders

    Institute of Scientific and Technical Information of China (English)

    Madoka Ogawa; Robert Lester; Hiroshi Akima; Ashraf S. Gorgey

    2017-01-01

    Ectopic adiposity has gained considerable attention because of its tight association with metabolic and cardiovascular health in persons with spinal cord injury (SCI). Ectopic adiposity is characterized by the storage of adipose tissue in non-subcutaneous sites. Magnetic resonance imaging (MRI) has proven to be an effective tool in quantifying ectopic adiposity and provides the opportunity to measure different adipose depots including intermuscular adipose tissue (IMAT) and intramuscular adipose tissue (IntraMAT) or in-tramuscular fat (IMF). It is highly important to distinguish and clearly define these compartments, because controversy still exists on how to accurately quantify these adipose depots. Investigators have relied on separating muscle from fat pixels based on their characteristic signal intensities. A common technique is plotting a threshold histogram that clearly separates between muscle and fat peaks. The cut-offs to separate between muscle and fat peaks are still not clearly defined and different cut-offs have been identified. This review will outline and compare the Midpoint and Otsu techniques, two methods used to determine the threshold between muscle and fat pixels on T1 weighted MRI. The process of water/fat segmentation using the Dixon method will also be outlined. We are hopeful that this review will trigger more research towards accurately quantifying ectopic adiposity due to its high relevance to cardiometabolic health after SCI.

  13. Krabbe Disease: Report of a Rare Lipid Storage and Neurodegenerative Disorder.

    Science.gov (United States)

    Pavuluri, Pratyusha; Vadakedath, Sabitha; Gundu, Rajkumar; Uppulety, Sushmitha; Kandi, Venkataramana

    2017-01-01

    Krabbe disease is a rare (one in 100,000 births) autosomal recessive condition, usually noticed among children. It causes sphingolipidosis (dysfunctional metabolism of sphingolipids) and leads to fatal degenerative changes affecting the myelin sheath of the nervous system. We report a case of a six-year-old male child who presented with symptoms of muscle spasticity and irritability. Diagnosis of this disease can only be made with clinical suspicion. Laboratory diagnosis includes brain magnetic resonance imaging (MRI), magnetic resonance (MR) spectroscopy, biochemical analysis of cerebrospinal fluid, and genetic analysis for detecting mutation in genes coding for galactosyl cerebroside (GALC). We report a case of late infantile Krabbe disease.

  14. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders

    National Research Council Canada - National Science Library

    Browne, Susan E

    2004-01-01

    ... Generation in Parkinson's Disease", which was appended to the original grant number. This project is to assess in vivo whether mitochondria are the source of free radical generation in animal models of Parkinson's disease (PD...

  15. Adenyl cyclase activator forskolin protects against Huntington's disease-like neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Sidharth Mehan

    2017-01-01

    Full Text Available Long term suppression of succinate dehydrogenase by selective inhibitor 3-nitropropionic acid has been used in rodents to model Huntington's disease where mitochondrial dysfunction and oxidative damages are primary pathological hallmarks for neuronal damage. Improvements in learning and memory abilities, recovery of energy levels, and reduction of excitotoxicity damage can be achieved through activation of Adenyl cyclase enzyme by a specific phytochemical forskolin. In this study, intraperitoneal administration of 10 mg/kg 3-nitropropionic acid for 15 days in rats notably reduced body weight, worsened motor cocordination (grip strength, beam crossing task, locomotor activity, resulted in learning and memory deficits, greatly increased acetylcholinesterase, lactate dehydrogenase, nitrite, and malondialdehyde levels, obviously decreased adenosine triphosphate, succinate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione levels in the striatum, cortex and hippocampus. Intragastric administration of forskolin at 10, 20, 30 mg/kg dose-dependently reversed these behavioral, biochemical and pathological changes caused by 3-nitropropionic acid. These results suggest that forskolin exhibits neuroprotective effects on 3-nitropropionic acid-induced Huntington's disease-like neurodegeneration.

  16. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders

    National Research Council Canada - National Science Library

    Brown, Susan

    1999-01-01

    ... (HE) and familial amyotrophic lateral sclerosis (FALS), using transgenic mouse models. Studies in this first year employed C-14-2-deoxyglucose in vivo autoradiography and spectrophotometric metabolic enzyme assays...

  17. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders

    Science.gov (United States)

    2005-06-01

    perman- ganate, fungicides, and gasoline additives containing manganese (Albin, 2000). The symptom phenotype of manganese toxicity results from the...activity, followed by hypokinesis and locomotor de- chromosome were inserted into the appropriate position in Hdh terioration. Mice die prematurely (24-32

  18. Epigenetic Treatment of Neurodegenerative Ophthalmic Disorders: An Eye Toward the Future.

    Science.gov (United States)

    Moos, Walter H; Faller, Douglas V; Glavas, Ioannis P; Harpp, David N; Irwin, Michael H; Kanara, Iphigenia; Pinkert, Carl A; Powers, Whitney R; Steliou, Kosta; Vavvas, Demetrios G; Kodukula, Krishna

    2017-01-01

    Eye disease is one of the primary medical conditions that requires attention and therapeutic intervention in ageing populations worldwide. Further, the global burden of diabetes and obesity, along with heart disease, all lead to secondary manifestations of ophthalmic distress. Therefore, there is increased interest in developing innovative new approaches that target various mechanisms and sequelae driving conditions that result in adverse vision. The research challenge is even greater given that the terrain of eye diseases is difficult to landscape into a single therapeutic theme. This report addresses the burden of eye disease due to mitochondrial dysfunction, including antioxidant, autophagic, epigenetic, mitophagic, and other cellular processes that modulate the biomedical end result. In this light, we single out lipoic acid as a potent known natural activator of these pathways, along with alternative and potentially more effective conjugates, which together harness the necessary potency, specificity, and biodistribution parameters required for improved therapeutic outcomes.

  19. Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils.

    Science.gov (United States)

    Loizzo, Monica Rosa; Ben Jemia, Mariem; Senatore, Felice; Bruno, Maurizio; Menichini, Francesco; Tundis, Rosa

    2013-09-01

    The chemical composition of Cistus creticus, Cistus salvifolius, Cistus libanotis, Cistus monspeliensis and Cistus villosus essential oils has been examined by GC and GC-MS analysis. Height-nine constituents were identified in C. salvifolius oil, sixty in C. creticus, fifty-six in C. libanotis, fifty-four in C. villosus, forty-five in C. monspeliensis. Although the five species belong to the same genus, the composition showed interesting differences. Essential oils were screened also for their potential antioxidant effects (by DPPH, ABTS, FRAP and β-carotene bleaching test) and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, useful for prevention and treatment of Alzheimer's disease. C. monspeliensis exhibited the most promising activity in β-carotene bleaching test (IC₅₀ of 54.7 μg/mL). In FRAP test C. libanotis showed a value of 19.2 μM Fe(II)/g. C. salvifolius showed the highest activity against AChE (IC₅₀ of 58.1 μg/mL) while C. libanotis, C. creticus, C. salvifolius demonstrated a good inhibitory activity against BChE with IC₅₀ values of 23.7, 29.1 and 34.2 μg/mL, respectively. Overall our results could promote the use of the essential oil of different Cistus species as food additives and for formulation of herbal infusion or nutraceutical products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Novel mitochondrial substrates of omi indicate a new regulatory role in neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Felicity Johnson

    Full Text Available The mitochondrial protease OMI (also known as HtrA2 has been implicated in Parkinson's Disease (PD and deletion or protease domain point mutations have shown profound neuropathologies in mice. A beneficial role by OMI, in preserving cell viability, is assumed to occur via the avoidance of dysfunctional protein turnover. However relatively few substrates for mitochondrial Omi are known. Here we report our identification of three novel mitochondrial substrates that impact metabolism and ATP production. Using a dual proteomic approach we have identified three interactors based upon ability to bind to OMI, and/or to persist in the proteome after OMI activity has been selectively inhibited. One candidate, the chaperone HSPA8, was common to each independent study. Two others (PDHB subunit and IDH3A subunit did not appear to bind to OMI, however persisted in the mito-proteome when OMI was inhibited. Pyruvate dehydrogenase (PDH and isocitrate dehydrogenase (IDH are two key Kreb's cycle enzymes that catalyse oxidative decarboxylation control points in mitochondrial respiration. We verified both PDHB and IDH3A co-immunoprecipitate with HSPA8 and after elution, were degraded by recombinant HtrA2 in vitro. Additionally our gene expression studies, using rotenone (an inhibitor of Complex I showed Omi expression was silenced when pdhb and idh3a were increased when a sub-lethal dose was applied. However higher dose treatment caused increased Omi expression and decreased levels of pdhb and idh3a transcripts. This implicates mitochondrial OMI in a novel mechanism relating to metabolism.

  1. Cellular and Molecular Aspects of the β-N-Methylamino-l-alanine (BMAA Mode of Action within the Neurodegenerative Pathway: Facts and Controversy

    Directory of Open Access Journals (Sweden)

    Nicolas Delcourt

    2017-12-01

    Full Text Available The implication of the cyanotoxin β-N-methylamino-l-alanine (BMAA in long-lasting neurodegenerative disorders is still a matter of controversy. It has been alleged that chronic ingestion of BMAA through the food chain could be a causative agent of amyotrophic lateral sclerosis (ALS and several related pathologies including Parkinson syndrome. Both in vitro and in vivo studies of the BMAA mode of action have focused on different molecular targets, demonstrating its toxicity to neuronal cells, especially motoneurons, and linking it to human neurodegenerative diseases. Historically, the hypothesis of BMAA-induced excitotoxicity following the stimulation of glutamate receptors has been established. However, in this paradigm, most studies have shown acute, rather than chronic effects of BMAA. More recently, the interaction of this toxin with neuromelanin, a pigment present in the nervous system, has opened a new research perspective. The issues raised by this toxin are related to its kinetics of action, and its possible incorporation into cellular proteins. It appears that BMAA neurotoxic activity involves different targets through several mechanisms known to favour the development of neurodegenerative processes.

  2. Association between environmental exposure to pesticides and neurodegenerative diseases

    International Nuclear Information System (INIS)

    Parrón, Tesifón; Requena, Mar; Hernández, Antonio F.; Alarcón, Raquel

    2011-01-01

    Preliminary studies have shown associations between chronic pesticide exposure in occupational settings and neurological disorders. However, data on the effects of long-term non-occupational exposures are too sparse to allow any conclusions. This study examines the influence of environmental pesticide exposure on a number of neuropsychiatric conditions and discusses their underlying pathologic mechanisms. An ecological study was conducted using averaged prevalence rates of Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral degeneration, polyneuropathies, affective psychosis and suicide attempts in selected Andalusian health districts categorized into areas of high and low environmental pesticide exposure based on the number of hectares devoted to intensive agriculture and pesticide sales per capita. A total of 17,429 cases were collected from computerized hospital records (minimum dataset) between 1998 and 2005. Prevalence rates and the risk of having Alzheimer's disease, Parkinson's disease, multiple sclerosis and suicide were significantly higher in districts with greater pesticide use as compared to those with lower pesticide use. The multivariate analyses showed that the population living in areas with high pesticide use had an increased risk for Alzheimer's disease and suicide attempts and that males living in these areas had increased risks for polyneuropathies, affective disorders and suicide attempts. In conclusion, this study supports and extends previous findings and provides an indication that environmental exposure to pesticides may affect the human health by increasing the incidence of certain neurological disorders at the level of the general population. -- Highlights: ► Environmental exposure to pesticides and neurodegenerative–psychiatric disorders. ► Increased risk for Alzheimer's disease and suicide attempts in high exposure areas. ► Males from areas with high pesticide exposure had a higher risk of polyneuropathy.

  3. Flavonoid-Based Therapies in the Early Management of Neurodegenerative Diseases12

    Science.gov (United States)

    Solanki, Isha; Parihar, Priyanka; Mansuri, Mohammad Lukman; Parihar, Mordhwaj S

    2015-01-01

    During the past several years, there has been enormous progress in the understanding of the causative factors that initiate neuronal damage in various neurodegenerative diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. Preventing neuronal damage and neuronal death will have a huge clinical benefit. However, despite major advances in causative factors that trigger these neurodegenerative diseases, to date there have been no therapies available that benefit patients who suffer from these diseases. Because most neurodegenerative diseases are late-onset and remain asymptomatic for most of the phases, the therapies initiated in advanced stages of the disease have limited value to patients. It may be possible to prevent or halt the disease progression to a great extent if therapies start at the initial stage of the disease. Such therapies may restore neuronal function by reducing or even eliminating the primary stressor. Flavonoids are key compounds for the development of a new generation of therapeutic agents that are clinically effective in treating neurodegenerative diseases. Regular consumption of flavonoids has been associated with a reduced risk of neurodegenerative diseases. In addition to their antioxidant properties, these polyphenolic compounds exhibit neuroprotective properties by their interaction with cellular signaling pathways followed by transcription and translation that mediate cell function under both normal and pathologic conditions. This review focuses on human intervention studies as well as animal studies on the role of various flavonoids in the prevention of neurodegenerative diseases. PMID:25593144

  4. Neuro degenerative diseases: clinical concerns; Les maladies neuro-degeneratives: problemes cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, V. [Hopitaux Universitaires de Geneve (HUG), Unite de Neuroimagerie, Dept. de Psychiatrie (Switzerland)

    2005-04-15

    Idiopathic Parkinson's disease (PD) and Alzheimer's disease (AD) are the main neuro-degenerative diseases (NDDs) seen clinically. They share some common clinical symptoms and neuro-pathological findings. The increase of life expectancy in the developed countries will inevitably contribute to enhance the prevalence of these diseases. Behavioral disorders, common in NDDs, will produce major care management challenges. Idiopathic Parkinson's disease corresponds to a histopathological diagnosis, based on the observation of a de-pigmentation and a neuronal loss in the substantia nigra, as well as on the presence of intra-neuronal inclusion bodies. AD is insidious with slowly progressive dementia in which the decline in memory constitutes the main complaint. The diagnosis of definite AD requires the presence of clinical criteria as well as the histopathological confirmation of brain lesions. The two main lesions are the presence of senile plaques and neuro-fibrillary tangles. Positron emission tomography (PET) explores cerebral metabolism and neurotransmitter kinetics in NDDs using principally [{sup 18}F]-deoxyglucose and [{sup 18}F]-dopa. Nigrostriatal dopaminergic function is altered in PD, as evidenced by the low uptake of [{sup 18}F]-dopa in the posterior putamen as compared to anterior putamen and caudate nucleus. In contrast, [{sup 18}F]-dopa uptake is equally depressed in all striatal structures in progressive supra-nuclear palsy. Regional glucose metabolism at rest is preserved in elderly once cerebral atrophy is taken into account. On the contrary, glucose metabolism is globally reduced in AD, with marked decrease in the parietal and temporal regions. PET has proved to be useful to study in vivo neurochemical processes in patients suffering from NDDs. The potential of this approach is still largely unexploited, and depends on new ligand production to establish early diagnosis and treatment follow-up. (author)

  5. The influence of Na+,K+-ATPase on glutamate signaling in neurodegenerative diseases and senescence

    Directory of Open Access Journals (Sweden)

    Paula Fernanda Kinoshita

    2016-06-01

    Full Text Available Decreased Na+,K+-ATPase (NKA activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β and γ, with four distinct isoforms of the catalytic α subunit (α1-4. Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS, the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2, while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP and alternating hemiplegia of childhood (AHC, as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2/3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP and cGMP‐dependent protein kinase (PKG pathway. Glutamate, through nitric oxide synthase (NOS, cGMP and PKG, stimulates brain α2/3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid‐β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.

  6. Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Fabio Guerriero

    2016-01-01

    Full Text Available Increasing evidence shows that extremely low frequency electromagnetic fields (ELF-EMFs stimulation is able to exert a certain action on autoimmunity and immune cells. In the past, the efficacy of pulsed ELF-EMFs in alleviating the symptoms and the progression of multiple sclerosis has been supported through their action on neurotransmission and on the autoimmune mechanisms responsible for demyelination. Regarding the immune system, ELF-EMF exposure contributes to a general activation of macrophages, resulting in changes of autoimmunity and several immunological reactions, such as increased reactive oxygen species-formation, enhanced phagocytic activity and increased production of chemokines. Transcranial electromagnetic brain stimulation is a non-invasive novel technique used recently to treat different neurodegenerative disorders, in particular Alzheimer's disease. Despite its proven value, the mechanisms through which EMF brain-stimulation exerts its beneficial action on neuronal function remains unclear. Recent studies have shown that its beneficial effects may be due to a neuroprotective effect on oxidative cell damage. On the basis of in vitro and clinical studies on brain activity, modulation by ELF-EMFs could possibly counteract the aberrant pro-inflammatory responses present in neurodegenerative disorders reducing their severity and their onset. The objective of this review is to provide a systematic overview of the published literature on EMFs and outline the most promising effects of ELF-EMFs in developing treatments of neurodegenerative disorders. In this regard, we review data supporting the role of ELF-EMF in generating immune-modulatory responses, neuromodulation, and potential neuroprotective benefits. Nonetheless, we reckon that the underlying mechanisms of interaction between EMF and the immune system are still to be completely understood and need further studies at a molecular level.

  7. Bipolar disorder, a precursor of Parkinson's disease?

    Directory of Open Access Journals (Sweden)

    Tânia M.S. Novaretti

    Full Text Available ABSTRACT Parkinson's disease is a neurodegenerative disorder predominantly resulting from dopamine depletion in the substantia nigra pars compacta. Some psychiatric disorders may have dopaminergic dysfunction as their substrate. We describe a well-documented case of Parkinson's disease associated with Bipolar Disorder. Although there is some knowledge about the association between these diseases, little is known about its pathophysiology and correlation. We believe that among various hypotheses, many neurotransmitters are linked to this pathophysiology.

  8. The Role of DNA Methylation and Histone Modifications in Neurodegenerative Diseases: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Ke-Xin Wen

    Full Text Available Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND such as Alzheimer's disease (AD and Parkinson's disease (PD.To systematically review studies investigating epigenetic marks in AD or PD.Eleven bibliographic databases (Embase.com, Medline (Ovid, Web-of-Science, Scopus, PubMed, Cinahl (EBSCOhost, Cochrane Central, ProQuest, Lilacs, Scielo and Google Scholar were searched until July 11th 2016 to identify relevant articles. We included all randomized controlled trials, cohort, case-control and cross-sectional studies in humans that examined associations between epigenetic marks and ND. Two independent reviewers, with a third reviewer available for disagreements, performed the abstract and full text selection. Data was extracted using a pre-designed data collection form.Of 6,927 searched references, 73 unique case-control studies met our inclusion criteria. Overall, 11,453 individuals were included in this systematic review (2,640 AD and 2,368 PD outcomes. There was no consistent association between global DNA methylation pattern and any ND. Studies reported epigenetic regulation of 31 genes (including cell communication, apoptosis, and neurogenesis genes in blood and brain tissue in relation to AD and PD. Methylation at the BDNF, SORBS3 and APP genes in AD were the most consistently reported associations. Methylation of α-synuclein gene (SNCA was also found to be associated with PD. Seven studies reported histone protein alterations in AD and PD.Many studies have investigated epigenetics and ND. Further research should include larger cohort or longitudinal studies, in order to identify clinically significant epigenetic changes. Identifying relevant epigenetic changes could lead to interventional strategies in ND.

  9. EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy

    Science.gov (United States)

    Byrne, Susan; Jansen, Lara; U-King-Im, Jean-Marie; Siddiqui, Ata; Lidov, Hart G. W.; Bodi, Istvan; Smith, Luke; Mein, Rachael; Cullup, Thomas; Dionisi-Vici, Carlo; Al-Gazali, Lihadh; Al-Owain, Mohammed; Bruwer, Zandre; Al Thihli, Khalid; El-Garhy, Rana; Flanigan, Kevin M.; Manickam, Kandamurugu; Zmuda, Erik; Banks, Wesley; Gershoni-Baruch, Ruth; Mandel, Hanna; Dagan, Efrat; Raas-Rothschild, Annick; Barash, Hila; Filloux, Francis; Creel, Donnell; Harris, Michael; Hamosh, Ada; Kölker, Stefan; Ebrahimi-Fakhari, Darius; Hoffmann, Georg F.; Manchester, David; Boyer, Philip J.; Manzur, Adnan Y.; Lourenco, Charles Marques; Pilz, Daniela T.; Kamath, Arveen; Prabhakar, Prab; Rao, Vamshi K.; Rogers, R. Curtis; Ryan, Monique M.; Brown, Natasha J.; McLean, Catriona A.; Said, Edith; Schara, Ulrike; Stein, Anja; Sewry, Caroline; Travan, Laura; Wijburg, Frits A.; Zenker, Martin; Mohammed, Shehla; Fanto, Manolis; Gautel, Mathias

    2016-01-01

    Vici syndrome is a progressive neurodevelopmental multisystem disorder due to recessive mutations in the key autophagy gene EPG5. We report genetic, clinical, neuroradiological, and neuropathological features of 50 children from 30 families, as well as the neuronal phenotype of EPG5 knock-down in Drosophila melanogaster. We identified 39 different EPG5 mutations, most of them truncating and predicted to result in reduced EPG5 protein. Most mutations were private, but three recurrent mutations (p.Met2242Cysfs*5, p.Arg417*, and p.Gln336Arg) indicated possible founder effects. Presentation was mainly neonatal, with marked hypotonia and feeding difficulties. In addition to the five principal features (callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, and immune dysfunction), we identified three equally consistent features (profound developmental delay, progressive microcephaly, and failure to thrive). The manifestation of all eight of these features has a specificity of 97%, and a sensitivity of 89% for the presence of an EPG5 mutation and will allow informed decisions about genetic testing. Clinical progression was relentless and many children died in infancy. Survival analysis demonstrated a median survival time of 24 months (95% confidence interval 0–49 months), with only a 10th of patients surviving to 5 years of age. Survival outcomes were significantly better in patients with compound heterozygous mutations (P = 0.046), as well as in patients with the recurrent p.Gln336Arg mutation. Acquired microcephaly and regression of skills in long-term survivors suggests a neurodegenerative component superimposed on the principal neurodevelopmental defect. Two-thirds of patients had a severe seizure disorder, placing EPG5 within the rapidly expanding group of genes associated with early-onset epileptic encephalopathies. Consistent neuroradiological features comprised structural abnormalities, in particular callosal agenesis and pontine hypoplasia, delayed

  10. Molecular Imaging and Precision Medicine in Dementia and Movement Disorders.

    Science.gov (United States)

    Mallik, Atul K; Drzezga, Alexander; Minoshima, Satoshi

    2017-01-01

    Precision medicine (PM) has been defined as "prevention and treatment strategies that take individual variability into account." Molecular imaging (MI) is an ideally suited tool for PM approaches to neurodegenerative dementia and movement disorders (MD). Here we review PM approaches and discuss how they may be applied to other associated neurodegenerative dementia and MD. With ongoing major therapeutic research initiatives that include the use of molecular imaging, we look forward to established interventions targeted to specific molecular pathophysiology and expect the potential benefit of MI PM approaches in neurodegenerative dementia and MD will only increase. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease

    Science.gov (United States)

    King, Oliver D.; Gitler, Aaron D.; Shorter, James

    2012-01-01

    Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable ‘prion domain’ enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer’s disease and Huntington’s disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the

  12. A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    2015-04-01

    Full Text Available Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136 in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

  13. Heme-coordinated histidine residues form non-specific functional "ferritin-heme" peroxidase system: Possible and partial mechanistic relevance to oxidative stress-mediated pathology in neurodegenerative diseases.

    Science.gov (United States)

    Esmaeili, Sajjad; Kooshk, Mohammad Reza Ashrafi; Asghari, Seyyed Mohsen; Khodarahmi, Reza

    2016-10-01

    Ferritin is a giant protein composed of 24 subunits which is able to sequester up to 4500 atoms of iron. We proposed two kinds of heme binding sites in mammalian ferritins and provided direct evidence for peroxidase activity of heme-ferritin, since there is the possibility that "ferritin-heme" systems display unexpected catalytic behavior like heme-containing enzymes. In the current study, peroxidase activity of heme-bound ferritin was studied using TMB(1), l-DOPA, serotonin, and dopamine, in the presence of H2O2, as oxidant substrate. The catalytic oxidation of TMB was consistent with first-order kinetics with respect to ferritin concentration. Perturbation of the binding affinity and catalytic behavior of heme-bound His-modified ferritin were also documented. We also discuss the importance of the peroxidase-/nitrative-mediated oxidation of vital molecules as well as ferritin-induced catalase inhibition using in vitro experimental system. Uncontrollable "heme-ferritin"-based enzyme activity as well as up-regulation of heme and ferritin may inspire that some oxidative stress-mediated cytotoxic effects in AD-affected cells could be correlated to ferritin-heme interaction and/or ferritin-induced catalase inhibition and describe its contribution as an important causative pathogenesis mechanism in some neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Liposomes for Targeted Delivery of Active Agents against Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Carlos Spuch

    2011-01-01

    Full Text Available Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease represent a huge unmet medical need. The prevalence of both diseases is increasing, but the efficacy of treatment is still very limited due to various factors including the blood brain barrier (BBB. Drug delivery to the brain remains the major challenge for the treatment of all neurodegenerative diseases because of the numerous protective barriers surrounding the central nervous system. New therapeutic drugs that cross the BBB are critically needed for treatment of many brain diseases. One of the significant factors on neurotherapeutics is the constraint of the blood brain barrier and the drug release kinetics that cause peripheral serious side effects. Contrary to common belief, neurodegenerative and neurological diseases may be multisystemic in nature, and this presents numerous difficulties for their potential treatment. Overall, the aim of this paper is to summarize the last findings and news related to liposome technology in the treatment of neurodegenerative diseases and demonstrate the potential of this technology for the development of novel therapeutics and the possible applications of liposomes in the two most widespread neurodegenerative diseases, Alzheimer's disease and Parkinson's disease.

  15. Paraneoplastic autoimmune movement disorders.

    Science.gov (United States)

    Lim, Thien Thien

    2017-11-01

    To provide an overview of paraneoplastic autoimmune disorders presenting with various movement disorders. The spectrum of paraneoplastic autoimmune disorders has been expanding with the discovery of new antibodies against cell surface and intracellular antigens. Many of these paraneoplastic autoimmune disorders manifest as a form of movement disorder. With the discovery of new neuronal antibodies, an increasing number of idiopathic or neurodegenerative movement disorders are now being reclassified as immune-mediated movement disorders. These include anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis which may present with orolingual facial dyskinesia and stereotyped movements, CRMP-5 IgG presenting with chorea, anti-Yo paraneoplastic cerebellar degeneration presenting with ataxia, anti-VGKC complex (Caspr2 antibodies) neuromyotonia, opsoclonus-myoclonus-ataxia syndrome, and muscle rigidity and episodic spasms (amphiphysin, glutamic acid decarboxylase, glycine receptor, GABA(A)-receptor associated protein antibodies) in stiff-person syndrome. Movement disorders may be a presentation for paraneoplastic autoimmune disorders. Recognition of these disorders and their common phenomenology is important because it may lead to the discovery of an occult malignancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Neuroimaging Studies of Essential Tremor: How Well Do These Studies Support/Refute the Neurodegenerative Hypothesis?

    Directory of Open Access Journals (Sweden)

    Elan D. Louis

    2014-05-01

    Full Text Available Background: Tissue‐based research has recently led to a new patho‐mechanistic model of essential tremor (ET—the cerebellar degenerative model. We are not aware of a study that has reviewed the current neuroimaging evidence, focusing on whether the studies support or refute the neurodegenerative hypothesis of ET. This was our aim.Methods: References for this review were identified by searches of PubMed (1966 to February 2014.Results: Several neuroimaging methods have been used to study ET, most of them based on magnetic resonance imaging (MRI. The methods most specific to address the question of neurodegeneration are MRI‐based volumetry, magnetic resonance spectroscopy, and diffusion‐weighted imaging. Studies using each of these methods provide support for the presence of cerebellar degeneration in ET, finding reduced cerebellar brain volumes, consistent decreases in cerebellar N‐acetylaspartate, and increased mean diffusivity. Other neuroimaging techniques, such as functional MRI and positron emission tomography (PET are less specific, but still sensitive to potential neurodegeneration. These techniques are used for measuring a variety of brain functions and their impairment. Studies using these modalities also largely support cerebellar neuronal impairment. In particular, changes in 11C‐flumazenil binding in PET studies and changes in iron deposition in an MRI study provide evidence along these lines. The composite data point to neuronal impairment and likely neuronal degeneration in ET.Discussion: Recent years have seen a marked increase in the number of imaging studies of ET. As a whole, the combined data provide support for the presence of cerebellar neuronal degeneration in this disease.

  17. Measuring process and knowledge consistency

    DEFF Research Database (Denmark)

    Edwards, Kasper; Jensen, Klaes Ladeby; Haug, Anders

    2007-01-01

    When implementing configuration systems, knowledge about products and processes are documented and replicated in the configuration system. This practice assumes that products are specified consistently i.e. on the same rule base and likewise for processes. However, consistency cannot be taken...... for granted; rather the contrary, and attempting to implement a configuration system may easily ignite a political battle. This is because stakes are high in the sense that the rules and processes chosen may only reflect one part of the practice, ignoring a majority of the employees. To avoid this situation......, this paper presents a methodology for measuring product and process consistency prior to implementing a configuration system. The methodology consists of two parts: 1) measuring knowledge consistency and 2) measuring process consistency. Knowledge consistency is measured by developing a questionnaire...

  18. Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Antonio Martin

    2011-01-01

    Full Text Available Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for several human neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases, such as Parkinson's disease, supranuclear palsy, Huntington's disease, and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This paper focuses on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.

  19. Progress of the relationship between serum uric acid and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Yang FU

    2018-04-01

    Full Text Available Serum uric acid (sUA, a natural antioxidant in human body, has been found to be related to the occurrence and development of various neurodegenerative diseases in recent years, including Parkinson's disease (PD, multiple system atrophy (MSA, Alzheimer's disease (AD and amyotrophic lateral sclerosis (ALS. Increasing of sUA level has been found to reduce the incidence of PD and ALS, but the relationship between sUA and AD, MSA remains largely unknown. The in vitro studies and animal experiments revealed that sUA can enhance the antioxidant capacity of neurons and delay neurodegeneration and apoptosis. This paper mainly reviews the progress in epidemiological and basic studies of the relationship between sUA and neurodegenerative diseases in recent years, and aims to provide a reference for future novel prevention and treatment strategies for neurodegenerative diseases. DOI: 10.3969/j.issn.1672-6731.2018.03.010

  20. The Role of Musk in Relieving the Neurodegenerative Changes Induced After Exposure to Chronic Stress.

    Science.gov (United States)

    Abd El Wahab, Manal Galal; Ali, Soad Shaker; Ayuob, Nasra Naeim

    2018-06-01

    This study aimed to evaluate the effect induced by musk on Alzheimer's disease-such as neurodegenerative changes in mice exposed to chronic unpredictable mild stress (CUMS). Forty male Swiss albino mice were divided into 4 groups (n = 10); control, CUMS, CUMS + fluoxetine, CUMS + musk. At the end of the experiment, behavior of the mice was assessed. Serum corticosterone level, hippocampal protein level of the glucocorticoid receptors, and brain-derived neurotropic factor were also assessed. Hippocampus was histopathologically examined. Musk improved depressive status induced after exposure to CUMS as evidenced by the forced swimming and open field tests and improved the short-term memory as evidenced by the elevated plus maze test. Musk reduced both corticosterone levels and the hippocampal neurodegenerative changes observed after exposure to CUMS. These improvements were comparable to those induced by fluoxetine. Musk alleviated the memory impairment and neurodegenerative changes induced after exposure to the chronic stress.

  1. Content analysis of neurodegenerative and mental diseases social groups.

    Science.gov (United States)

    Martínez-Pérez, Borja; de la Torre-Díez, Isabel; Bargiela-Flórez, Beatriz; López-Coronado, Miguel; Rodrigues, Joel J P C

    2015-12-01

    This article aims to characterize the different types of Facebook and Twitter groups for different mental diseases, their purposes, and their functions. We focused the search on depressive disorders, dementia, and Alzheimer's and Parkinson's diseases and examined the Facebook (www.facebook.com) and Twitter (www.twitter.com) groups. We used four assessment criteria: (1) purpose, (2) type of creator, (3) telehealth content, and (4) free-text responses in surveys and interviews. We observed a total of 357 Parkinson groups, 325 dementia groups, 853 Alzheimer groups, and 1127 depression groups on Facebook and Twitter. Moreover, we analyze the responses provided by different users. The survey and interview responses showed that many people were interested in using social networks to support and help in the fight against these diseases. The results indicate that social networks are acceptable by users in terms of simplicity and utility. People use them for finding support, information, self-help, advocacy and awareness, and for collecting funds. © The Author(s) 2014.

  2. High-school football and late-life risk of neurodegenerative syndromes, 1956–1970

    Science.gov (United States)

    Janssen, Pieter HH; Mandrekar, Jay; Mielke, Michelle M; Ahlskog, J. Eric; Boeve, Bradley F; Josephs, Keith; Savica, Rodolfo

    2017-01-01

    BACKGROUND Repeated head trauma has been associated with risk of neurodegenerative diseases. Few studies have evaluated the long-term risk of neurodegenerative diseases in collision sports like football. OBJECTIVE To assess whether athletes who played American varsity high-school football between 1956 and 1970 have an increased risk of neurodegenerative diseases later in life. PATIENTS AND METHODS We identified all male varsity football players between 1956 and 1970 in the public high schools of Rochester, Minnesota, compared to non-football-playing male varsity swimmers, wrestlers or basketball players. Using the records-linkage system of the Rochester Epidemiology Project, we ascertained the incidence of late-life neurodegenerative diseases: dementia, parkinsonism, or amyotrophic lateral sclerosis. We also recorded medical record-documented head trauma during high school years. RESULTS We identified 296 varsity football players and 190 athletes engaging in other sports. Football players had an increased risk of medically documented head trauma, especially if they played football for more than one year. Compared to non-football athletes, football players did not have an increased risk of neurodegenerative disease overall, nor the individual conditions of dementia, parkinsonism, or amyotrophic lateral sclerosis. CONCLUSION In this community based study, varsity high school football players from 1956 to 1970 did not have an increased risk of developing neurodegenerative diseases compared with athletes engaged in other varsity sports. This was from an era where there was a generally nihilistic view of concussion dangers, less protective equipment and without prohibition of spearing (head-first tackling). However, size and strength of players from prior eras may not be comparable to current high-school athletes. PMID:27979411

  3. Serum Levels of Progranulin Do Not Reflect Cerebrospinal Fluid Levels in Neurodegenerative Disease.

    Science.gov (United States)

    Wilke, Carlo; Gillardon, Frank; Deuschle, Christian; Dubois, Evelyn; Hobert, Markus A; Müller vom Hagen, Jennifer; Krüger, Stefanie; Biskup, Saskia; Blauwendraat, Cornelis; Hruscha, Michael; Kaeser, Stephan A; Heutink, Peter; Maetzler, Walter; Synofzik, Matthis

    2016-01-01

    Altered progranulin levels play a major role in neurodegenerative diseases, like Alzheimer's dementia (AD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), even in the absence of GRN mutations. Increasing progranulin levels could hereby provide a novel treatment strategy. However, knowledge on progranulin regulation in neurodegenerative diseases remains limited. We here demonstrate that cerebrospinal fluid progranulin levels do not correlate with its serum levels in AD, FTD and ALS, indicating a differential regulation of its central and peripheral levels in neurodegeneration. Blood progranulin levels thus do not reliably predict central nervous progranulin levels and their response to future progranulin-increasing therapeutics.

  4. Aging leads to altered microglial function that reduces brain resiliency increasing vulnerability to neurodegenerative diseases.

    Science.gov (United States)

    Bickford, Paula C; Flowers, Antwoine; Grimmig, Bethany

    2017-08-01

    Aging is the primary risk factor for many neurodegenerative diseases. Thus, understanding the basic biological changes that take place with aging that lead to the brain being less resilient to disease progression of neurodegenerative diseases such as Parkinson's disease or Alzheimer's disease or insults to the brain such as stroke or traumatic brain injuries. Clearly this will not cure the disease per se, yet increasing the ability of the brain to respond to injury could improve long term outcomes. The focus of this review is examining changes in microglia with age and possible therapeutic interventions involving the use of polyphenol rich dietary supplements. Published by Elsevier Inc.

  5. Analysis of neurodegenerative Mendelian genes in clinically diagnosed Alzheimer Disease.

    Directory of Open Access Journals (Sweden)

    Maria Victoria Fernández

    2017-11-01

    Full Text Available Alzheimer disease (AD, Frontotemporal lobar degeneration (FTD, Amyotrophic lateral sclerosis (ALS and Parkinson disease (PD have a certain degree of clinical, pathological and molecular overlap. Previous studies indicate that causative mutations in AD and FTD/ALS genes can be found in clinical familial AD. We examined the presence of causative and low frequency coding variants in the AD, FTD, ALS and PD Mendelian genes, in over 450 families with clinical history of AD and over 11,710 sporadic cases and cognitive normal participants from North America. Known pathogenic mutations were found in 1.05% of the sporadic cases, in 0.69% of the cognitively normal participants and in 4.22% of the families. A trend towards enrichment, albeit non-significant, was observed for most AD, FTD and PD genes. Only PSEN1 and PINK1 showed consistent association with AD cases when we used ExAC as the control population. These results suggest that current study designs may contain heterogeneity and contamination of the control population, and that current statistical methods for the discovery of novel genes with real pathogenic variants in complex late onset diseases may be inadequate or underpowered to identify genes carrying pathogenic mutations.

  6. Circadian Rhythms, Sleep, and Disorders of Aging.

    Science.gov (United States)

    Mattis, Joanna; Sehgal, Amita

    2016-04-01

    Sleep-wake cycles are known to be disrupted in people with neurodegenerative disorders. These findings are now supported by data from animal models for some of these disorders, raising the question of whether the disrupted sleep/circadian regulation contributes to the loss of neural function. As circadian rhythms and sleep consolidation also break down with normal aging, changes in these may be part of what makes aging a risk factor for disorders like Alzheimer's disease (AD). Mechanisms underlying the connection between circadian/sleep dysregulation and neurodegeneration remain unclear, but several recent studies provide interesting possibilities. While mechanistic analysis is under way, it is worth considering treatment of circadian/sleep disruption as a means to alleviate symptoms of neurodegenerative disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Context-dependent neural activation: internally and externally guided rhythmic lower limb movement in individuals with and without neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Madeleine Eve Hackney

    2015-12-01

    Full Text Available Parkinson’s Disease (PD is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients’ quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, tai chi have shown improvements to motor symptoms, lower limb control and postural stability in people with PD (Amano, Nocera, Vallabhajosula, Juncos, Gregor, Waddell et al., 2013; Earhart, 2009; M. E. Hackney & Earhart, 2008; Kadivar, Corcos, Foto, & Hondzinski, 2011; Morris, Iansek, & Kirkwood, 2009; Ridgel, Vitek, & Alberts, 2009. However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG and externally guided (EG movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG versus EG designs. Because of the potential task specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging (fMRI and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training and highlight research gaps. We believe better understanding of lower limb neural

  8. Consistency argued students of fluid

    Science.gov (United States)

    Viyanti; Cari; Suparmi; Winarti; Slamet Budiarti, Indah; Handika, Jeffry; Widyastuti, Fatma

    2017-01-01

    Problem solving for physics concepts through consistency arguments can improve thinking skills of students and it is an important thing in science. The study aims to assess the consistency of the material Fluid student argmentation. The population of this study are College students PGRI Madiun, UIN Sunan Kalijaga Yogyakarta and Lampung University. Samples using cluster random sampling, 145 samples obtained by the number of students. The study used a descriptive survey method. Data obtained through multiple-choice test and interview reasoned. Problem fluid modified from [9] and [1]. The results of the study gained an average consistency argmentation for the right consistency, consistency is wrong, and inconsistent respectively 4.85%; 29.93%; and 65.23%. Data from the study have an impact on the lack of understanding of the fluid material which is ideally in full consistency argued affect the expansion of understanding of the concept. The results of the study as a reference in making improvements in future studies is to obtain a positive change in the consistency of argumentations.

  9. Coordinating user interfaces for consistency

    CERN Document Server

    Nielsen, Jakob

    2001-01-01

    In the years since Jakob Nielsen's classic collection on interface consistency first appeared, much has changed, and much has stayed the same. On the one hand, there's been exponential growth in the opportunities for following or disregarding the principles of interface consistency-more computers, more applications, more users, and of course the vast expanse of the Web. On the other, there are the principles themselves, as persistent and as valuable as ever. In these contributed chapters, you'll find details on many methods for seeking and enforcing consistency, along with bottom-line analys

  10. The Diagnosis and Understanding of Apraxia of Speech: Why Including Neurodegenerative Etiologies May Be Important

    Science.gov (United States)

    Duffy, Joseph R.; Josephs, Keith A.

    2012-01-01

    Purpose: To discuss apraxia of speech (AOS) as it occurs in neurodegenerative disease (progressive AOS [PAOS]) and how its careful study may contribute to general concepts of AOS and help refine its diagnostic criteria. Method: The article summarizes our current understanding of the clinical features and neuroanatomical and pathologic correlates…

  11. High School Football and Late-Life Risk of Neurodegenerative Syndromes, 1956-1970.

    Science.gov (United States)

    Janssen, Pieter H H; Mandrekar, Jay; Mielke, Michelle M; Ahlskog, J Eric; Boeve, Bradley F; Josephs, Keith; Savica, Rodolfo

    2017-01-01

    To assess whether athletes who played American varsity high school football between 1956 and 1970 have an increased risk of neurodegenerative diseases later in life. We identified all male varsity football players between 1956 and 1970 in the public high schools of Rochester, Minnesota, and non-football-playing male varsity swimmers, wrestlers, and basketball players. Using the medical records linkage system of the Rochester Epidemiology Project, we ascertained the incidence of late-life neurodegenerative diseases: dementia, parkinsonism, and amyotrophic lateral sclerosis. We also recorded medical record-documented head trauma during high school years. We identified 296 varsity football players and 190 athletes engaging in other sports. Football players had an increased risk of medically documented head trauma, especially if they played football for more than 1 year. Compared with nonfootball athletes, football players did not have an increased risk of neurodegenerative disease overall or of the individual conditions of dementia, parkinsonism, and amyotrophic lateral sclerosis. In this community-based study, varsity high school football players from 1956 to 1970 did not have an increased risk of neurodegenerative diseases compared with athletes engaged in other varsity sports. This was from an era when there was a generally nihilistic view of concussion dangers, less protective equipment, and no prohibition of spearing (head-first tackling). However, the size and strength of players from previous eras may not be comparable with that of current high school athletes. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  12. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases

    NARCIS (Netherlands)

    Reijs, B.L.; Teunissen, C.E.; Goncharenko, N.; Betsou, F.; Blennow, K.; Baldeiras, I.; Brosseron, F.; Cavedo, E.; Fladby, T.; Froelich, L.; Gabryelewicz, T.; Gurvit, H.; Kapaki, E.; Koson, P.; Kulic, L.; Lehmann, S.; Lewczuk, P.; Lleo, A.; Maetzler, W.; Mendonca, A. de; Miller, A.M.; Molinuevo, J.L.; Mollenhauer, B.; Parnetti, L.; Rot, U.; Schneider, A.; Simonsen, A.H.; Tagliavini, F.; Tsolaki, M.; Verbeek, M.M.; Verhey, F.R.J.; Zboch, M.; Winblad, B.; Scheltens, P.; Zetterberg, H.; Visser, P.J.

    2015-01-01

    Biobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer's and Parkinson's disease (BIOMARKAPD) is a European multicenter study, funded by the EU Joint Programme-Neurodegenerative Disease Research, which aims to improve the clinical use of body fluid

  13. Neurodegenerative diseases : Lessons from genome-wide screens in small model organisms

    NARCIS (Netherlands)

    van Ham, Tjakko J.; Breitling, Rainer; Swertz, Morris A.; Nollen, Ellen A. A.

    2009-01-01

    Various age-related neurodegenerative diseases, including Parkinson's disease, polyglutamine expansion diseases and Alzheimer's disease, are associated with the accumulation of misfolded proteins in aggregates in the brain. How and why these proteins form aggregates and cause disease is still poorly

  14. Percutaneous Endoscopic Gastrostomy Tube Insertion in Neurodegenerative Disease: A Retrospective Study and Literature Review

    Directory of Open Access Journals (Sweden)

    Pamela Sarkar

    2017-05-01

    Full Text Available Background/Aims With the notable exceptions of dementia, stroke, and motor neuron disease, relatively little is known about the safety and utility of percutaneous endoscopic gastrostomy (PEG tube insertion in patients with neurodegenerative disease. We aimed to determine the safety and utility of PEG feeding in the context of neurodegenerative disease and to complete a literature review in order to identify whether particular factors need to be considered to improve safety and outcome. Methods A retrospective case note review of patients referred for PEG insertion by neurologists in a single neuroscience center was conducted according to a pre-determined set of standards. For the literature review, we identified references from searches of PubMed, mainly with the search items “percutaneous endoscopic gastrostomy” and “neurology” or “neurodegenerative disease.” Results Short-term mortality and morbidity associated with PEG in patients with neurological disease were significant. Age greater than 75 years was associated with poor outcome, and a trend toward adverse outcome was observed in patients with low serum albumin. Conclusions This study highlights the relatively high risk of PEG in patients with neurodegenerative disease. We present points for consideration to improve outcome in this particularly vulnerable group of patients.

  15. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Marjana Brkic

    2015-01-01

    Full Text Available Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs, a protein family of zinc-containing endopeptidases, are essential in (neuroinflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer’s disease (AD, Parkinson’s disease (PD, amyotrophic lateral sclerosis (ALS, Huntington’s disease (HD, and multiple sclerosis (MS. We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases.

  16. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases.

    Science.gov (United States)

    Brkic, Marjana; Balusu, Sriram; Libert, Claude; Vandenbroucke, Roosmarijn E

    2015-01-01

    Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS) functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs), a protein family of zinc-containing endopeptidases, are essential in (neuro)inflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases.

  17. Current therapeutic molecules and targets in neurodegenerative diseases based on in silico drug design.

    Science.gov (United States)

    Sehgal, Sheikh Arslan; Hammad, Mirza A; Tahir, Rana Adnan; Akram, Hafiza Nisha; Ahmad, Faheem

    2018-03-15

    As the number of elderly persons increases, neurodegenerative diseases are becoming ubiquitous. There is currently a great need for knowledge concerning management of old-age neurodegenerative diseases; the most important of which are: Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, and Huntington's disease. To summarize the potential of computationally predicted molecules and targets against neurodegenerative diseases. Review of literature published since 1997 against neurodegenerative diseases, utilizing as keywords: in silico, Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis ALS, and Huntington's disease. Due to the costs associated with experimentation and current ethical law, performing experiments directly on living organisms has become much more difficult. In this scenario, in silico techniques have been successful and have become powerful tools in the search to cure disease. Researchers use the Computer Aided Drug Design pipeline which: 1) generates 3-dimensional structures of target proteins through homology modeling 2) achieves stabilization through molecular dynamics simulation, and 3) exploits molecular docking through large compound libraries. Next generation sequencing is continually producing enormous amounts of raw sequence data while neuroimaging is producing a multitude of raw image data. To solve such pressing problems, these new tools and algorithms are required. This review elaborates precise in silico tools and techniques for drug targets, active molecules, and molecular docking studies, together with future prospects and challenges concerning possible breakthroughs in Alzheimer's, Parkinson's, Amyotrophic Lateral Sclerosis, and Huntington's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Ocimum basilicum improve chronic stress-induced neurodegenerative changes in mice hippocampus.

    Science.gov (United States)

    Ayuob, Nasra Naeim; El Wahab, Manal Galal Abd; Ali, Soad Shaker; Abdel-Tawab, Hanem Saad

    2018-01-22

    Alzheimer's disease (AD), one of the progressive neurodegenerative diseases might be associated with exposure to stress and altered living conditions. This study aimed to evaluate the effectiveness of Ocimum basilicum (OB) essential oils in improving the neurodegenerative-like changes induced in mice after exposed to chronic unpredictable mild stress (CUMS). Forty male Swiss albino mice divided into four groups (n = 10); the control, CUMS, CUMS + Fluoxetine, CUMS + OB were used. Behavioral tests, serum corticosterone level, hippocampus protein level of the glucocorticoid receptors (GRs) and brain-dreived neurotropic factor (BDNF) were determined after exposure to CUMS. Hippocampus was histopathologically examined. Data were analyzed using statistical package for the social sciences (SPSS) and P value of less than 0.05 was considered significant. OB diminished the depression manifestation as well as impaired short term memory observed in the mice after exposure to the CUMS as evidenced by the forced swimming and elevated plus maze test. OB also up-regulated the serum corticosterone level, hippocampal protein level of the glucocorticoid receptor and the brain-derived neurotropic factor and reduced the neurodegenerative and atrophic changes induced in the hippocampus after exposure to CUMS. Essential oils of OB alleviated the memory impairment and hippocampal neurodegenerative changes induced by exposure to the chronic unpredictable stress indicating that it is the time to test its effectiveness on patients suffering from Alzheimer disease.

  19. The potential of microRNAs as biofluid markers of neurodegenerative diseases – a systematic review

    DEFF Research Database (Denmark)

    Danborg, Pia B; Simonsen, Anja H; Waldemar, Gunhild

    2014-01-01

    monitoring. This systematic review clarifies biomarker potential of miRNAs detected in biofluids of neurodegenerative disease patients. Thirty-three and ten miRNAs displayed significant expression between patients with multiple sclerosis and Alzheimer's disease, respectively, compared to healthy controls...

  20. NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases

    NARCIS (Netherlands)

    Nalls, M.A.; Bras, J.; Hernandez, D.G.; Keller, M.F.; Majounie, E.; Renton, A.E.; Saad, M.; Jansen, I.E.; Guerreiro, R.; Lubbe, S.; Plagnol, V.; Gibbs, J.R.; Schulte, C.; Pankratz, N.; Sutherland, M.; Bertram, L.; Lill, C.M.; DeStefano, A.L.; Faroud, T.; Eriksson, N.; Tung, J.Y.; Edsall, C.; Nichols, N.; Brooks, J.; Arepalli, S.; Pliner, H.; Letson, C.; Heutink, P.; Martinez, M.; Gasser, T.; Traynor, B.J.; Wood, N.; Hardy, J.; Singleton, A.B.

    2015-01-01

    Our objective was to design a genotyping platform that would allow rapid genetic characterization of samples in the context of genetic mutations and risk factors associated with common neurodegenerative diseases. The platform needed to be relatively affordable, rapid to deploy, and use a common and

  1. Choice, internal consistency, and rationality

    OpenAIRE

    Aditi Bhattacharyya; Prasanta K. Pattanaik; Yongsheng Xu

    2010-01-01

    The classical theory of rational choice is built on several important internal consistency conditions. In recent years, the reasonableness of those internal consistency conditions has been questioned and criticized, and several responses to accommodate such criticisms have been proposed in the literature. This paper develops a general framework to accommodate the issues raised by the criticisms of classical rational choice theory, and examines the broad impact of these criticisms from both no...

  2. Self-consistent quark bags

    International Nuclear Information System (INIS)

    Rafelski, J.

    1979-01-01

    After an introductory overview of the bag model the author uses the self-consistent solution of the coupled Dirac-meson fields to represent a bound state of strongly ineteracting fermions. In this framework he discusses the vivial approach to classical field equations. After a short description of the used numerical methods the properties of bound states of scalar self-consistent Fields and the solutions of a self-coupled Dirac field are considered. (HSI) [de

  3. The retina as a window to the brain-from eye research to CNS disorders.

    Science.gov (United States)

    London, Anat; Benhar, Inbal; Schwartz, Michal

    2013-01-01

    Philosophers defined the eye as a window to the soul long before scientists addressed this cliché to determine its scientific basis and clinical relevance. Anatomically and developmentally, the retina is known as an extension of the CNS; it consists of retinal ganglion cells, the axons of which form the optic nerve, whose fibres are, in effect, CNS axons. The eye has unique physical structures and a local array of surface molecules and cytokines, and is host to specialized immune responses similar to those in the brain and spinal cord. Several well-defined neurodegenerative conditions that affect the brain and spinal cord have manifestations in the eye, and ocular symptoms often precede conventional diagnosis of such CNS disorders. Furthermore, various eye-specific pathologies share characteristics of other CNS pathologies. In this Review, we summarize data that support examination of the eye as a noninvasive approach to the diagnosis of select CNS diseases, and the use of the eye as a valuable model to study the CNS. Translation of eye research to CNS disease, and deciphering the role of immune cells in these two systems, could improve our understanding and, potentially, the treatment of neurodegenerative disorders.

  4. Lack of miRNA misregulation at early pathological stages in Drosophila neurodegenerative disease models

    Directory of Open Access Journals (Sweden)

    Anita eReinhardt

    2012-10-01

    Full Text Available Late onset neurodegenerative diseases represent a major public health concern as the population in many countries ages. Both frequent diseases such as Alzheimer disease (AD, 14% incidence for 80-84 year old Europeans or Parkinson disease (PD, 1.4% prevalence for > 55 years old share, with other low-incidence neurodegenerative pathologies such as spinocerebellar ataxias (SCAs, 0.01% prevalence and frontotemporal lobar degeneration (FTLD, 0.02% prevalence, a lack of efficient treatment in spite of important research efforts. Besides significant progress, studies with animal models have revealed unexpected complexities in the degenerative process, emphasizing a need to better understand the underlying pathological mechanisms. Recently, microRNAs, a class of small regulatory non-coding RNAs, have been implicated in some neurodegenerative diseases. The current data supporting a role of miRNAs in PD, tauopathies, dominant ataxias and FTLD will first be discussed to emphasize the different levels of the pathological processes which may be affected by miRNAs. To investigate a potential involvement of miRNA dysregulation in the early stages of these neurodegenerative diseases we have used Drosophila models for 7 diseases (PD, 3 FTLD, 3 dominant ataxias that recapitulate many features of the human diseases. We performed deep sequencing of head small RNAs after 3 days of pathological protein expression in the fly head neurons. We found no evidence for a statistically significant difference in miRNA expression in this early stage of the pathological process. In addition, we could not identify small non coding CAG repeat RNAs (sCAG in polyQ disease models. Thus our data suggest that transcriptional deregulation of miRNAs or sCAG is unlikely to play a significant role in the initial stages of neurodegenerative diseases.

  5. Therapeutic potential of systemic brain rejuvenation strategies for neurodegenerative disease [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Alana M. Horowitz

    2017-08-01

    Full Text Available Neurodegenerative diseases are a devastating group of conditions that cause progressive loss of neuronal integrity, affecting cognitive and motor functioning in an ever-increasing number of older individuals. Attempts to slow neurodegenerative disease advancement have met with little success in the clinic; however, a new therapeutic approach may stem from classic interventions, such as caloric restriction, exercise, and parabiosis. For decades, researchers have reported that these systemic-level manipulations can promote major functional changes that extend organismal lifespan and healthspan. Only recently, however, have the functional effects of these interventions on the brain begun to be appreciated at a molecular and cellular level. The potential to counteract the effects of aging in the brain, in effect rejuvenating the aged brain, could offer broad therapeutic potential to combat dementia-related neurodegenerative disease in the elderly. In particular, results from heterochronic parabiosis and young plasma administration studies indicate that pro-aging and rejuvenating factors exist in the circulation that can independently promote or reverse age-related phenotypes. The recent demonstration that human umbilical cord blood similarly functions to rejuvenate the aged brain further advances this work to clinical translation. In this review, we focus on these blood-based rejuvenation strategies and their capacity to delay age-related molecular and functional decline in the aging brain. We discuss new findings that extend the beneficial effects of young blood to neurodegenerative disease models. Lastly, we explore the translational potential of blood-based interventions, highlighting current clinical trials aimed at addressing therapeutic applications for the treatment of dementia-related neurodegenerative disease in humans.

  6. Time-consistent and market-consistent evaluations

    NARCIS (Netherlands)

    Pelsser, A.; Stadje, M.A.

    2014-01-01

    We consider evaluation methods for payoffs with an inherent financial risk as encountered for instance for portfolios held by pension funds and insurance companies. Pricing such payoffs in a way consistent to market prices typically involves combining actuarial techniques with methods from

  7. Immune mediated disorders in women with a fragile X expansion and FXTAS.

    Science.gov (United States)

    Jalnapurkar, Isha; Rafika, Nuva; Tassone, Flora; Hagerman, Randi

    2015-01-01

    Premutation alleles in fragile X mental retardation 1 (FMR1) can cause the late-onset neurodegenerative disorder, fragile X-associated tremor ataxia syndrome (FXTAS) and/or the fragile X-associated primary ovarian insufficiency in approximately 20% of heterozygotes. Heterozygotes of the FMR1 premutation have a higher incidence of immune mediated disorders such as autoimmune thyroid disorder, especially when accompanied by FXTAS motor signs. We describe the time course of symptoms of immune mediated disorders and the subsequent development of FXTAS in four women with an FMR1 CGG expansion, including three with the premutation and one with a gray zone expansion. These patients developed an immune mediated disorder followed by neurological symptoms that become consistent with FXTAS. In all patients we observed a pattern involving an initial appearance of disease symptoms-often after a period of heightened stress (depression, anxiety, divorce, general surgery) followed by the onset of tremor and/or ataxia. Immune mediated diseases are associated with the manifestations of FXTAS temporally, although further studies are needed to clarify this association. If a cause and effect relationship can be established, treatment of pre-existing immune mediated disorders may benefit patients with pathogenic FMR1 mutations. © 2014 Wiley Periodicals, Inc.

  8. Market-consistent actuarial valuation

    CERN Document Server

    Wüthrich, Mario V

    2016-01-01

    This is the third edition of this well-received textbook, presenting powerful methods for measuring insurance liabilities and assets in a consistent way, with detailed mathematical frameworks that lead to market-consistent values for liabilities. Topics covered are stochastic discounting with deflators, valuation portfolio in life and non-life insurance, probability distortions, asset and liability management, financial risks, insurance technical risks, and solvency. Including updates on recent developments and regulatory changes under Solvency II, this new edition of Market-Consistent Actuarial Valuation also elaborates on different risk measures, providing a revised definition of solvency based on industry practice, and presents an adapted valuation framework which takes a dynamic view of non-life insurance reserving risk.

  9. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  10. Consistent guiding center drift theories

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1982-04-01

    Various guiding-center drift theories are presented that are optimized in respect of consistency. They satisfy exact energy conservation theorems (in time-independent fields), Liouville's theorems, and appropriate power balance equations. A theoretical framework is given that allows direct and exact derivation of associated drift-kinetic equations from the respective guiding-center drift-orbit theories. These drift-kinetic equations are listed. Northrop's non-optimized theory is discussed for reference, and internal consistency relations of G.C. drift theories are presented. (orig.)

  11. Weak consistency and strong paraconsistency

    Directory of Open Access Journals (Sweden)

    Gemma Robles

    2009-11-01

    Full Text Available In a standard sense, consistency and paraconsistency are understood as, respectively, the absence of any contradiction and as the absence of the ECQ (“E contradictione quodlibet” rule that allows us to conclude any well formed formula from any contradiction. The aim of this paper is to explain the concepts of weak consistency alternative to the standard one, the concepts of paraconsistency related to them and the concept of strong paraconsistency, all of which have been defined by the author together with José M. Méndez.

  12. Consistent force fields for saccharides

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld

    1999-01-01

    Consistent force fields for carbohydrates were hitherto developed by extensive optimization ofpotential energy function parameters on experimental data and on ab initio results. A wide range of experimental data is used: internal structures obtained from gas phase electron diffraction and from x......-anomeric effects are accounted for without addition of specific terms. The work is done in the framework of the Consistent Force Field which originatedin Israel and was further developed in Denmark. The actual methods and strategies employed havebeen described previously. Extensive testing of the force field...

  13. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  14. Prominent effects and neural correlates of visual crowding in a neurodegenerative disease population.

    Science.gov (United States)

    Yong, Keir X X; Shakespeare, Timothy J; Cash, Dave; Henley, Susie M D; Nicholas, Jennifer M; Ridgway, Gerard R; Golden, Hannah L; Warrington, Elizabeth K; Carton, Amelia M; Kaski, Diego; Schott, Jonathan M; Warren, Jason D; Crutch, Sebastian J

    2014-12-01

    Crowding is a breakdown in the ability to identify objects in clutter, and is a major constraint on object recognition. Crowding particularly impairs object perception in peripheral, amblyopic and possibly developing vision. Here we argue that crowding is also a critical factor limiting object perception in central vision of individuals with neurodegeneration of the occipital cortices. In the current study, individuals with posterior cortical atrophy (n=26), typical Alzheimer's disease (n=17) and healthy control subjects (n=14) completed centrally-presented tests of letter identification under six different flanking conditions (unflanked, and with letter, shape, number, same polarity and reverse polarity flankers) with two different target-flanker spacings (condensed, spaced). Patients with posterior cortical atrophy were significantly less accurate and slower to identify targets in the condensed than spaced condition even when the target letters were surrounded by flankers of a different category. Importantly, this spacing effect was observed for same, but not reverse, polarity flankers. The difference in accuracy between spaced and condensed stimuli was significantly associated with lower grey matter volume in the right collateral sulcus, in a region lying between the fusiform and lingual gyri. Detailed error analysis also revealed that similarity between the error response and the averaged target and flanker stimuli (but not individual target or flanker stimuli) was a significant predictor of error rate, more consistent with averaging than substitution accounts of crowding. Our findings suggest that crowding in posterior cortical atrophy can be regarded as a pre-attentive process that uses averaging to regularize the pathologically noisy representation of letter feature position in central vision. These results also help to clarify the cortical localization of feature integration components of crowding. More broadly, we suggest that posterior cortical atrophy

  15. Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease.

    Science.gov (United States)

    Jones, Simon P; Franco, Nunzio F; Varney, Bianca; Sundaram, Gayathri; Brown, David A; de Bie, Josien; Lim, Chai K; Guillemin, Gilles J; Brew, Bruce J

    2015-01-01

    The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes.

  16. Time-consistent actuarial valuations

    NARCIS (Netherlands)

    Pelsser, A.A.J.; Salahnejhad Ghalehjooghi, A.

    2016-01-01

    Time-consistent valuations (i.e. pricing operators) can be created by backward iteration of one-period valuations. In this paper we investigate the continuous-time limits of well-known actuarial premium principles when such backward iteration procedures are applied. This method is applied to an

  17. Dynamically consistent oil import tariffs

    International Nuclear Information System (INIS)

    Karp, L.; Newbery, D.M.

    1992-01-01

    The standard theory of optimal tariffs considers tariffs on perishable goods produced abroad under static conditions, in which tariffs affect prices only in that period. Oil and other exhaustable resources do not fit this model, for current tariffs affect the amount of oil imported, which will affect the remaining stock and hence its future price. The problem of choosing a dynamically consistent oil import tariff when suppliers are competitive but importers have market power is considered. The open-loop Nash tariff is solved for the standard competitive case in which the oil price is arbitraged, and it was found that the resulting tariff rises at the rate of interest. This tariff was found to have an equilibrium that in general is dynamically inconsistent. Nevertheless, it is shown that necessary and sufficient conditions exist under which the tariff satisfies the weaker condition of time consistency. A dynamically consistent tariff is obtained by assuming that all agents condition their current decisions on the remaining stock of the resource, in contrast to open-loop strategies. For the natural case in which all agents choose their actions simultaneously in each period, the dynamically consistent tariff was characterized, and found to differ markedly from the time-inconsistent open-loop tariff. It was shown that if importers do not have overwhelming market power, then the time path of the world price is insensitive to the ability to commit, as is the level of wealth achieved by the importer. 26 refs., 4 figs

  18. Consistently violating the non-Gaussian consistency relation

    International Nuclear Information System (INIS)

    Mooij, Sander; Palma, Gonzalo A.

    2015-01-01

    Non-attractor models of inflation are characterized by the super-horizon evolution of curvature perturbations, introducing a violation of the non-Gaussian consistency relation between the bispectrum's squeezed limit and the power spectrum's spectral index. In this work we show that the bispectrum's squeezed limit of non-attractor models continues to respect a relation dictated by the evolution of the background. We show how to derive this relation using only symmetry arguments, without ever needing to solve the equations of motion for the perturbations

  19. Personality disorder

    DEFF Research Database (Denmark)

    Tyrer, Peter; Mulder, Roger; Crawford, Mike

    2010-01-01

    and to society, and interferes, usually negatively, with progress in the treatment of other mental disorders. We now have evidence that personality disorder, as currently classified, affects around 6% of the world population, and the differences between countries show no consistent variation. We are also getting......Personality disorder is now being accepted as an important condition in mainstream psychiatry across the world. Although it often remains unrecognized in ordinary practice, research studies have shown it is common, creates considerable morbidity, is associated with high costs to services...... increasing evidence that some treatments, mainly psychological, are of value in this group of disorders. What is now needed is a new classification that is of greater value to clinicians, and the WPA Section on Personality Disorders is currently undertaking this task....

  20. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression.

    Science.gov (United States)

    Maes, Michael; Yirmyia, Raz; Noraberg, Jens; Brene, Stefan; Hibbeln, Joe; Perini, Giulia; Kubera, Marta; Bob, Petr; Lerer, Bernard; Maj, Mario

    2009-03-01

    Despite extensive research, the current theories on serotonergic dysfunctions and cortisol hypersecretion do not provide sufficient explanations for the nature of depression. Rational treatments aimed at causal factors of depression are not available yet. With the currently available antidepressant drugs, which mainly target serotonin, less than two thirds of depressed patients achieve remission. There is now evidence that inflammatory and neurodegenerative (I&ND) processes play an important role in depression and that enhanced neurodegeneration in depression may-at least partly-be caused by inflammatory processes. Multiple inflammatory-cytokines, oxygen radical damage, tryptophan catabolites-and neurodegenerative biomarkers have been established in patients with depression and these findings are corroborated by animal models of depression. A number of vulnerability factors may predispose towards depression by enhancing inflammatory reactions, e.g. lower peptidase activities (dipeptidyl-peptidase IV, DPP IV), lower omega-3 polyunsaturated levels and an increased gut permeability (leaky gut). The cytokine hypothesis considers that external, e.g. psychosocial stressors, and internal stressors, e.g. organic inflammatory disorders or conditions, such as the postpartum period, may trigger depression via inflammatory processes. Most if not all antidepressants have specific anti-inflammatory effects, while restoration of decreased neurogenesis, which may be induced by inflammatory processes, may be related to the therapeutic efficacy of antidepressant treatments. Future research to disentangle the complex etiology of depression calls for a powerful paradigm shift, i.e. by means of a high throughput-high quality screening, including functional genetics and genotyping microarrays; established and novel animal and ex vivo-in vitro models for depression, such as new transgenic mouse models and endophenotype-based animal models, specific cell lines, in vivo and ex vivo

  1. Consistence of Network Filtering Rules

    Institute of Scientific and Technical Information of China (English)

    SHE Kun; WU Yuancheng; HUANG Juncai; ZHOU Mingtian

    2004-01-01

    The inconsistence of firewall/VPN(Virtual Private Network) rule makes a huge maintainable cost.With development of Multinational Company,SOHO office,E-government the number of firewalls/VPN will increase rapidly.Rule table in stand-alone or network will be increased in geometric series accordingly.Checking the consistence of rule table manually is inadequate.A formal approach can define semantic consistence,make a theoretic foundation of intelligent management about rule tables.In this paper,a kind of formalization of host rules and network ones for auto rule-validation based on SET theory were proporsed and a rule validation scheme was defined.The analysis results show the superior performance of the methods and demonstrate its potential for the intelligent management based on rule tables.

  2. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  3. An integral approach to the etiopathogenesis of human neurodegenerative diseases (HNDDs and cancer. Possible therapeutic consequences within the frame of the trophic factor withdrawal syndrome (TFWS

    Directory of Open Access Journals (Sweden)

    Enrique Meléndez Hevia

    2008-10-01

    Full Text Available Salvador Harguindey1, Gorka Orive2,6, Ramón Cacabelos3, Enrique Meléndez Hevia4, Ramón Díaz de Otazu5, et al1Institute of Clinical Biology and Metabolism, Vitoria, Spain; 2Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of The Basque Country, Vitoria, Spain; 3Department of Clinical Neuroscience, EuroEspes Biomedical Research Center, Bergondo, La Coruña, Spain; 4Institute for Cellular Metabolism, Tenerife, Spain; 5Department of Pathology, Hospital Txagorritxu, Vitoria, Spain; 6Biotechnology Institute (BTI, Vitoria, SpainAbstract: A novel and integral approach to the understanding of human neurodegenerative diseases (HNDDs and cancer based upon the disruption of the intracellular dynamics of the hydrogen ion (H+ and its physiopathology, is advanced. From an etiopathological perspective, the activity and/or deficiency of different growth factors (GFs in these pathologies are studied, and their relationships to intracellular acid-base homeostasis reviewed. Growth and trophic factor withdrawal in HNDDs indicate the need to further investigate the potential utilization of certain GFs in the treatment of Alzheimer disease and other neurodegenerative diseases.  Platelet abnormalities and the therapeutic potential of platelet-derived growth factors in these pathologies, either through platelet transfusions or other clinical methods, are considered. Finally, the etiopathogenic mechanisms of apoptosis and antiapoptosis in HNDDs and cancer are viewed as opposite biochemical and biological disorders of cellular acid-base balance and their secondary effects on intracellular signaling pathways and aberrant cell metabolism are considered in the light of the both the seminal and most recent data available. The “trophic factor withdrawal syndrome” is described for the first time in English-speaking medical literature, as well as a Darwinian-like interpretation of cellular behavior related to specific and nonspecific

  4. Lagrangian multiforms and multidimensional consistency

    Energy Technology Data Exchange (ETDEWEB)

    Lobb, Sarah; Nijhoff, Frank [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2009-10-30

    We show that well-chosen Lagrangians for a class of two-dimensional integrable lattice equations obey a closure relation when embedded in a higher dimensional lattice. On the basis of this property we formulate a Lagrangian description for such systems in terms of Lagrangian multiforms. We discuss the connection of this formalism with the notion of multidimensional consistency, and the role of the lattice from the point of view of the relevant variational principle.

  5. Consistency and Communication in Committees

    OpenAIRE

    Inga Deimen; Felix Ketelaar; Mark T. Le Quement

    2013-01-01

    This paper analyzes truthtelling incentives in pre-vote communication in heterogeneous committees. We generalize the classical Condorcet jury model by introducing a new informational structure that captures consistency of information. In contrast to the impossibility result shown by Coughlan (2000) for the classical model, full pooling of information followed by sincere voting is an equilibrium outcome of our model for a large set of parameter values implying the possibility of ex post confli...

  6. Deep Feature Consistent Variational Autoencoder

    OpenAIRE

    Hou, Xianxu; Shen, Linlin; Sun, Ke; Qiu, Guoping

    2016-01-01

    We present a novel method for constructing Variational Autoencoder (VAE). Instead of using pixel-by-pixel loss, we enforce deep feature consistency between the input and the output of a VAE, which ensures the VAE's output to preserve the spatial correlation characteristics of the input, thus leading the output to have a more natural visual appearance and better perceptual quality. Based on recent deep learning works such as style transfer, we employ a pre-trained deep convolutional neural net...

  7. Morbidities in rapid eye movement sleep behavior disorder

    DEFF Research Database (Denmark)

    Jennum, Poul; Mayer, Geert; Ju, Yo-El

    2013-01-01

    Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD, RBD without any obvious comorbid major neurological disease), is strongly associated with numerous comorbid conditions. The most prominent is that with neurodegenerative disorders, especially synuclein-mediated disorders, above all...... function, neuropsychiatric manifestations and sleep complaints. Furthermore, patients with PD and RBD may have worse prognosis in terms of impaired cognitive function and overall morbidity/mortality; in dementia, the presence of RBD is strongly associated with clinical hallmarks and pathological findings...

  8. Physical Exercise-Induced Adult Neurogenesis: A Good Strategy to Prevent Cognitive Decline in Neurodegenerative Diseases?

    Directory of Open Access Journals (Sweden)

    Suk-yu Yau

    2014-01-01

    Full Text Available Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review the recent approaches for measuring changes in neurogenesis in the live human brain.

  9. Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases

    International Nuclear Information System (INIS)

    Zhauang Jianjun; Ning Xinbao; Yang Xiaodong; Huo Chengyu; Hou Fengzhen

    2008-01-01

    In this paper the decrease in the Hurst exponent of human gait with aging and neurodegenerative diseases was observed by using an improved rescaled range (R/S) analysis method. It indicates that the long-range correlations of gait rhythm from young healthy people are stronger than those from the healthy elderly and the diseased. The result further implies that fractal dynamics in human gait will be altered due to weakening or impairment of neural control on locomotion resulting from aging and neurodegenerative diseases. Due to analysing short-term data sequences rather than long datasets required by most nonlinear methods, the algorithm has the characteristics of simplicity and sensitivity, most importantly, fast calculation as well as powerful anti-noise capacities. These findings have implications for modelling locomotor control and also for quantifying gait dynamics in varying physiologic and pathologic states

  10. The intersection between growth factors, autophagy and ER stress: A new target to treat neurodegenerative diseases?

    Science.gov (United States)

    Garcia-Huerta, Paula; Troncoso-Escudero, Paulina; Jerez, Carolina; Hetz, Claudio; Vidal, Rene L

    2016-10-15

    One of the salient features of most neurodegenerative diseases is the aggregation of specific proteins in the brain. This proteostasis imbalance is proposed as a key event triggering the neurodegenerative cascade. The unfolded protein response (UPR) and autophagy pathways are emerging as critical processes implicated in handling disease-related misfolded proteins. However, in some conditions, perturbations in the buffering capacity of the proteostasis network may be part of the etiology of the disease. Thus, pharmacological or gene therapy strategies to enhance autophagy or UPR responses are becoming an attractive target for disease intervention. Here, we discuss current evidence depicting the complex involvement of autophagy and ER stress in brain diseases. Novel pathways to modulate protein misfolding are discussed including the relation between aging and growth factor signaling. This article is part of a Special Issue entitled SI:Autophagy. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Theory of mind, empathy and emotion perception in cortical and subcortical neurodegenerative diseases.

    Science.gov (United States)

    Fortier, J; Besnard, J; Allain, P

    2018-04-01

    Although the impact of neurodegenerative diseases on everyday interactions is well known in the literature, their impact on social cognitive processes remains unclear. The concept of social cognition refers to a set of skills, all of which are essential for living in a community. It involves social knowledge, perception and processing of social cues, and representation of mental states. This report is a review of recent findings on the impact of cortical and subcortical neurodegenerative diseases on three social cognitive processes, namely, the theory of mind, empathy and processing emotions. The focus here is on a conceptual approach to each of these skills and their cerebral underpinnings. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases

    OpenAIRE

    Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian; Aznar, Susana; Pakkenberg, Bente; Brudek, Tomasz

    2016-01-01

    Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain sampl...

  13. Autonomic symptoms in idiopathic REM behavior disorder: a multicentre case-control study.

    Science.gov (United States)

    Ferini-Strambi, Luigi; Oertel, Wolfgang; Dauvilliers, Yves; Postuma, Ronald B; Marelli, Sara; Iranzo, Alex; Arnulf, Isabelle; Högl, Birgit; Birgit, Högl; Manni, Raffaele; Miyamoto, Tomoyuki; Fantini, Maria-Livia; Puligheddu, Monica; Jennum, Poul; Sonka, Karel; Santamaria, Joan; Zucconi, Marco; Rancoita, Paola M V; Leu-Semenescu, Smeranda; Frauscher, Birgit; Terzaghi, Michele; Miyamoto, Masayuki; Unger, Marcus; Stiasny-Kolster, Karin; Desautels, Alex; Wolfson, Christina; Pelletier, Amélie; Montplaisir, Jacques

    2014-06-01

    Patients with idiopathic REM sleep behavior disorder (iRBD) are at very high risk of developing neurodegenerative synucleinopathies, which are disorders with prominent autonomic dysfunction. Several studies have documented autonomic dysfunction in iRBD, but large-scale assessment of autonomic symptoms has never been systematically performed. Patients with polysomnography-confirmed iRBD (318 cases) and controls (137 healthy volunteers and 181 sleep center controls with sleep diagnoses other than RBD) were recruited from 13 neurological centers in 10 countries from 2008 to 2011. A validated scale to study the disorders of the autonomic nervous system in Parkinson's disease (PD) patients, the SCOPA-AUT, was administered to all the patients and controls. The SCOPA-AUT consists of 25 items assessing the following domains: gastrointestinal, urinary, cardiovascular, thermoregulatory, pupillomotor, and sexual dysfunction. Our results show that compared to control subjects with a similar overall age and sex distribution, patients with iRBD experience significantly more problems with gastrointestinal, urinary, and cardiovascular functioning. The most prominent differences in severity of autonomic symptoms between our iRBD patients and controls emerged in the gastrointestinal domain. Interestingly, it has been reported that an altered gastrointestinal motility can predate the motor phase of PD. The cardiovascular domain SCOPA-AUT score in our study in iRBD patients was intermediate with respect to the scores reported in PD patients by other authors. Our findings underline the importance of collecting data on autonomic symptoms in iRBD. These data may be used in prospective studies for evaluating the risk of developing neurodegenerative disorders.

  14. Mitochondrial enzymes and endoplasmic reticulum calcium stores as targets of oxidative stress in neurodegenerative diseases.

    Science.gov (United States)

    Gibson, Gary E; Huang, Hsueh-Meei

    2004-08-01

    Considerable evidence indicates that oxidative stress accompanies age-related neurodegenerative diseases. Specific mechanisms by which oxidative stress leads to neurodegeneration are unknown. Two targets of oxidative stress that are known to change in neurodegenerative diseases are the mitochondrial enzyme alpha-ketoglutarate dehydrogenase complex (KGDHC) and endoplasmic reticulum calcium stores. KGDHC activities are diminished in all common neurodegenerative diseases and the changes are particularly well documented in Alzheimer's disease (AD). A second change that occurs in cells from AD patients is an exaggerated endoplasmic reticulum calcium store [i.e., bombesin-releasable calcium stores (BRCS)]. H(2)O(2), a general oxidant, changes both variables in the same direction as occurs in disease. Other oxidants selectively alter these variables. Various antioxidants were used to help define the critical oxidant species that modifies these responses. All of the antioxidants diminish the oxidant-induced carboxy-dichlorofluorescein (cDCF) detectable reactive oxygen species (ROS), but have diverse actions on these cellular processes. For example, alpha-keto-beta-methyl-n-valeric acid (KMV) diminishes the H(2)O(2) effects on BRCS, while trolox and DMSO exaggerate the response. Acute trolox treatment does not alter H(2)O(2)-induced changes in KGDHC, whereas chronic treatment with trolox increases KGDHC almost threefold. The results suggest that KGDHC and BRCS provide targets by which oxidative stress may induce neurodegeneration and a useful tool for selecting antioxidants for reversing age-related neurodegeneration.

  15. Loss of Neuroprotective Factors in Neurodegenerative Dementias: The End or the Starting Point?

    Science.gov (United States)

    Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta

    2017-01-01

    Recent clinical, genetic and biochemical experimental evidences highlight the existence of common molecular pathways underlying neurodegenerative diseases. In this review, we will explore a key common pathological mechanism, i.e., the loss of neuroprotective factors, across the three major neurodegenerative diseases leading to dementia: Alzheimer's disease (AD), Frontotemporal dementia (FTD) and Lewy body dementia (LBD). We will report evidences that the Brain Derived Neurotrophic Factor (BDNF), the most investigated and characterized brain neurotrophin, progranulin, a multi-functional adipokine with trophic and growth factor properties, and cystatin C, a neuroprotective growth factor, are reduced in AD, FTD, and LBD. Moreover, we will review the molecular mechanism underlying the loss of neuroprotective factors in neurodegenerative diseases leading to dementia, with a special focus on endo-lysosomal pathway and intercellular communication mediated by extracellular vesicles. Exploring the shared commonality of disease mechanisms is of pivotal importance to identify novel potential therapeutic targets and to develop treatments to delay, slow or block disease progression. PMID:29249935

  16. Loss of Neuroprotective Factors in Neurodegenerative Dementias: The End or the Starting Point?

    Directory of Open Access Journals (Sweden)

    Luisa Benussi

    2017-12-01

    Full Text Available Recent clinical, genetic and biochemical experimental evidences highlight the existence of common molecular pathways underlying neurodegenerative diseases. In this review, we will explore a key common pathological mechanism, i.e., the loss of neuroprotective factors, across the three major neurodegenerative diseases leading to dementia: Alzheimer's disease (AD, Frontotemporal dementia (FTD and Lewy body dementia (LBD. We will report evidences that the Brain Derived Neurotrophic Factor (BDNF, the most investigated and characterized brain neurotrophin, progranulin, a multi-functional adipokine with trophic and growth factor properties, and cystatin C, a neuroprotective growth factor, are reduced in AD, FTD, and LBD. Moreover, we will review the molecular mechanism underlying the loss of neuroprotective factors in neurodegenerative diseases leading to dementia, with a special focus on endo-lysosomal pathway and intercellular communication mediated by extracellular vesicles. Exploring the shared commonality of disease mechanisms is of pivotal importance to identify novel potential therapeutic targets and to develop treatments to delay, slow or block disease progression.

  17. Brain Aggregates: An Effective In Vitro Cell Culture System Modeling Neurodegenerative Diseases.

    Science.gov (United States)

    Ahn, Misol; Kalume, Franck; Pitstick, Rose; Oehler, Abby; Carlson, George; DeArmond, Stephen J

    2016-03-01

    Drug discovery for neurodegenerative diseases is particularly challenging because of the discrepancies in drug effects between in vitro and in vivo studies. These discrepancies occur in part because current cell culture systems used for drug screening have many limitations. First, few cell culture systems accurately model human aging or neurodegenerative diseases. Second, drug efficacy may differ between dividing and stationary cells, the latter resembling nondividing neurons in the CNS. Brain aggregates (BrnAggs) derived from embryonic day 15 gestation mouse embryos may represent neuropathogenic processes in prion disease and reflect in vivo drug efficacy. Here, we report a new method for the production of BrnAggs suitable for drug screening and suggest that BrnAggs can model additional neurological diseases such as tauopathies. We also report a functional assay with BrnAggs by measuring electrophysiological activities. Our data suggest that BrnAggs could serve as an effective in vitro cell culture system for drug discovery for neurodegenerative diseases. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  18. Neurodegenerative diseases in the era of targeted therapeutics: how to handle a tangled issue.

    Science.gov (United States)

    Tofaris, George K; Schapira, Anthony H V

    2015-05-01

    Neurodegenerative diseases are age-related and relentlessly progressive with increasing prevalence and no cure or lasting symptomatic therapy. The well-recognized prodromal phase in many forms of neurodegeneration suggests a prolonged period of neuronal compensated dysfunction prior to cell loss that may be amenable to therapeutic intervention. Although most efforts to date have been focused on misfolded toxic proteins, it is now clear that widespread changes in protein homeostasis occur early in these diseases and understanding this fundamental biology is key to the design of targeted therapies. What has emerged from molecular genetics and animal studies is a previously less appreciated association of neurodegenerative diseases with defects in the molecular regulation of protein trafficking between cellular organelles, especially the intricate network of endosomes, lysosomes, autophagosomes and mitochondria. Here we summarized the broader concepts that stemmed from this Special Issue on "Protein Clearance in Neurodegenerative diseases: from mechanisms to therapies". This article is part of a Special Issue entitled 'Neuronal Protein'. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia.

    Science.gov (United States)

    Chiang, Shannon; Kalinowski, Danuta S; Jansson, Patric J; Richardson, Des R; Huang, Michael L-H

    2017-08-04

    Mitochondrial homeostasis is essential for maintaining healthy cellular function and survival. The detrimental involvement of mitochondrial dysfunction in neuro-degenerative diseases has recently been highlighted in human conditions, such as Parkinson's, Alzheimer's and Huntington's disease. Friedreich's ataxia (FA) is another neuro-degenerative, but also cardio-degenerative condition, where mitochondrial dysfunction plays a crucial role in disease progression. Deficient expression of the mitochondrial protein, frataxin, is the primary cause of FA, which leads to adverse alterations in whole cell and mitochondrial iron metabolism. Dys-regulation of iron metabolism in these compartments, results in the accumulation of inorganic iron deposits in the mitochondrial matrix that is thought to potentiate oxidative damage observed in FA. Therefore, the maintenance of mitochondrial homeostasis is crucial in the progression of neuro-degenerative conditions, particularly in FA. In this review, vital mitochondrial homeostatic processes and their roles in FA pathogenesis will be discussed. These include mitochondrial iron processing, mitochondrial dynamics (fusion and fission processes), mitophagy, mitochondrial biogenesis, mitochondrial energy production and calcium metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A neural network underlying intentional emotional facial expression in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Kelly A. Gola

    2017-01-01

    Full Text Available Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  1. Role of paraoxonase 1 (PON1) in organophosphate metabolism: Implications in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Androutsopoulos, Vasilis P. [Center of Toxicology Science and Research, University of Crete, Heraklion, Crete (Greece); Kanavouras, Konstantinos [Laboratory of Neurological Sciences, University of Crete, Heraklion, Crete (Greece); Tsatsakis, Aristidis M., E-mail: aris@med.uoc.gr [Center of Toxicology Science and Research, University of Crete, Heraklion, Crete (Greece)

    2011-11-15

    Organophosphate pesticides are a class of compounds that are widely used in agricultural and rural areas. Paraoxonase 1 (PON1) is a phase-I enzyme that is involved in the hydrolysis of organophosphate esters. Environmental poisoning by organophosphate compounds has been the main driving force of previous research on PON1 enzymes. Recent discoveries in animal models have revealed the important role of the enzyme in lipid metabolism. However although PON1 function is well established in experimental models, the contribution of PON1 in neurodegenerative diseases remains unclear. In this minireview we summarize the involvement of PON1 genotypes in the occurrence of Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. A brief overview of latest epidemiological studies, regarding the two most important PON1 coding region polymorphisms PON1-L55M and PON1-Q192R is presented. Positive and negative associations of PON1 with disease occurrence are reported. Notably the MM and RR alleles contribute a risk enhancing effect for the development of some neurodegenerative diseases, which may be explained by the reduced lipoprotein free radical scavenging activity that may give rise to neuronal damage, through distinct mechanism. Conflicting findings that fail to support this postulate may represent the human population ethnic heterogeneity, different sample size and environmental parameters affecting PON1 status. We conclude that further epidemiological studies are required in order to address the exact contribution of PON1 genome in combination with organophosphate exposure in populations with neurodegenerative diseases.

  2. [Retinal imaging of the macula and optic disc in neurodegenerative diseases].

    Science.gov (United States)

    Turski, G N; Schmitz-Valckenberg, S; Holz, F G; Finger, R P

    2017-02-01

    Due to current demographic trends, the prevalence of mild cognitive impairment and dementia is expected to increase considerably. For potential new therapies it is important to identify patients at risk as early as possible. Currently, there is no population-based screening. Therefore, identification of biomarkers that will help screen the population at risk is urgently needed. Thus, a literature review on retinal pathology in neurodegenerative diseases was performed. PubMed was searched for studies published up to August 2016 using the following keywords: "mild cognitive impairment", "dementia", "eye", "ocular biomarkers", "OCT" and "OCT angiography". Relevant publications were selected and summarized qualitatively. Multiple studies using noninvasive in vivo optical coherence tomography (OCT) imaging showed nonspecific retinal pathological changes in patients with neurodegenerative diseases such as mild cognitive impairment, Alzheimer's and Parkinson's disease. Pathological changes in macular volume, optic nerve fiber layer thickness and the ganglion cell complex were observed. However, based on available evidence, no ocular biomarkers for neurodegeneration which could be integrated in routine clinical diagnostics have been identified. The potential use of OCT in the early diagnostic workup and monitoring of progression of neurodegenerative diseases needs to be further explored in longitudinal studies with large cohorts.

  3. Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Laura Foucault-Fruchard

    2017-01-01

    Full Text Available Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all characterized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist.

  4. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Hideyuki eTakeuchi

    2014-09-01

    Full Text Available Microglia are macrophage-like resident immune cells that contribute to the maintenance of homeostasis in the central nervous system (CNS. Abnormal activation of microglia can cause damage in the CNS, and accumulation of activated microglia is a characteristic pathological observation in neurologic conditions such as trauma, stroke, inflammation, epilepsy, and neurodegenerative diseases. Activated microglia secrete high levels of glutamate, which damages CNS cells and has been implicated as a major cause of neurodegeneration in these conditions. Glutamate-receptor blockers and microglia inhibitors (e.g. minocycline have been examined as therapeutic candidates for several neurodegenerative diseases; however, these compounds exerted little therapeutic benefit because they either perturbed physiological glutamate signals or suppressed the actions of protective microglia. The ideal therapeutic approach would hamper the deleterious roles of activated microglia without diminishing their protective effects. We recently found that abnormally activated microglia secrete glutamate via gap-junction hemichannels on the cell surface. Moreover, administration of gap-junction inhibitors significantly suppressed excessive microglial glutamate release and improved disease symptoms in animal models of neurologic conditions such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer’s disease. Recent evidence also suggests that neuronal and glial communication via gap junctions amplifies neuroinflammation and neurodegeneration. Elucidation of the precise pathologic roles of gap junctions and hemichannels may lead to a novel therapeutic strategies that can slow and halt the progression of neurodegenerative diseases.

  5. Role of paraoxonase 1 (PON1) in organophosphate metabolism: Implications in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Androutsopoulos, Vasilis P.; Kanavouras, Konstantinos; Tsatsakis, Aristidis M.

    2011-01-01

    Organophosphate pesticides are a class of compounds that are widely used in agricultural and rural areas. Paraoxonase 1 (PON1) is a phase-I enzyme that is involved in the hydrolysis of organophosphate esters. Environmental poisoning by organophosphate compounds has been the main driving force of previous research on PON1 enzymes. Recent discoveries in animal models have revealed the important role of the enzyme in lipid metabolism. However although PON1 function is well established in experimental models, the contribution of PON1 in neurodegenerative diseases remains unclear. In this minireview we summarize the involvement of PON1 genotypes in the occurrence of Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. A brief overview of latest epidemiological studies, regarding the two most important PON1 coding region polymorphisms PON1-L55M and PON1-Q192R is presented. Positive and negative associations of PON1 with disease occurrence are reported. Notably the MM and RR alleles contribute a risk enhancing effect for the development of some neurodegenerative diseases, which may be explained by the reduced lipoprotein free radical scavenging activity that may give rise to neuronal damage, through distinct mechanism. Conflicting findings that fail to support this postulate may represent the human population ethnic heterogeneity, different sample size and environmental parameters affecting PON1 status. We conclude that further epidemiological studies are required in order to address the exact contribution of PON1 genome in combination with organophosphate exposure in populations with neurodegenerative diseases.

  6. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells: Possibilities and challenges.

    Science.gov (United States)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya; Phanthong, Phetcharat; Schmid, Benjamin; Nielsen, Troels T; Freude, Kristine K

    2017-10-25

    The rising prevalence of progressive neurodegenerative diseases coupled with increasing longevity poses an economic burden at individual and societal levels. There is currently no effective cure for the majority of neurodegenerative diseases and disease-affected tissues from patients have been difficult to obtain for research and drug discovery in pre-clinical settings. While the use of animal models has contributed invaluable mechanistic insights and potential therapeutic targets, the translational value of animal models could be further enhanced when combined with in vitro models derived from patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide the opportunity to model disease development, uncover novel mechanisms and test potential therapeutics. Here we review findings from iPSC-based modeling of selected neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia and spinocerebellar ataxia. Furthermore, we discuss the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Advances in the Development of PET Ligands Targeting Histone Deacetylases for the Assessment of Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Tetsuro Tago

    2018-01-01

    Full Text Available Epigenetic alterations of gene expression have emerged as a key factor in several neurodegenerative diseases. In particular, inhibitors targeting histone deacetylases (HDACs, which are enzymes responsible for deacetylation of histones and other proteins, show therapeutic effects in animal neurodegenerative disease models. However, the details of the interaction between changes in HDAC levels in the brain and disease progression remain unknown. In this review, we focus on recent advances in development of radioligands for HDAC imaging in the brain with positron emission tomography (PET. We summarize the results of radiosynthesis and biological evaluation of the HDAC ligands to identify their successful results and challenges. Since 2006, several small molecules that are radiolabeled with a radioisotope such as carbon-11 or fluorine-18 have been developed and evaluated using various assays including in vitro HDAC binding assays and PET imaging in rodents and non-human primates. Although most compounds do not readily cross the blood-brain barrier, adamantane-conjugated radioligands tend to show good brain uptake. Until now, only one HDAC radioligand has been tested clinically in a brain PET study. Further PET imaging studies to clarify age-related and disease-related changes in HDACs in disease models and humans will increase our understanding of the roles of HDACs in neurodegenerative diseases.

  8. Head trauma in sport and neurodegenerative disease: an issue whose time has come?

    Science.gov (United States)

    Pearce, Neil; Gallo, Valentina; McElvenny, Damien

    2015-03-01

    A number of small studies and anecdotal reports have been suggested that sports involving repeated head trauma may have long-term risks of neurodegenerative disease. There are now plausible mechanisms for these effects, and a recognition that these problems do not just occur in former boxers, but in a variety of sports involving repeated concussions, and possibly also in sports in which low-level head trauma is common. These neurodegenerative effects potentially include increased risks of impaired cognitive function and dementia, Parkinson's disease, and amyotrophic lateral sclerosis. Many would argue for taking a precautionary approach and immediately banning or restricting sports such as boxing. However, there are important public health issues in terms of how wide the net should be cast in terms of other sports, and what remedial measures could be taken? This in turn requires a major research effort involving both clinical and basic research to understand the underlying mechanisms, leading from head trauma to neurodegenerative disease and epidemiologic studies to assess the long-term consequences. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Metallothionein in Brain Disorders

    Directory of Open Access Journals (Sweden)

    Daniel Juárez-Rebollar

    2017-01-01

    Full Text Available Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I–IV, three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.

  10. REM sleep behavior disorder in Parkinson′s disease: A case from India confirmed with polysomnographic data

    Directory of Open Access Journals (Sweden)

    Ravi Gupta

    2013-01-01

    Full Text Available Rapid eye movement (REM sleep behavior disorder is a condition characterized by dream enactment. This condition may accompany neurodegenerative disorders. However, only a few reports from India are available, that too, without any polysomnographic evidence. We are reporting a case of REM sleep behavior disorder with polysomnographic evidence.

  11. Quantification of total apolipoprotein E and its specific isoforms in cerebrospinal fluid and blood in Alzheimer’s disease and other neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Melinda Rezeli

    2015-09-01

    Full Text Available A targeted mass spectrometric assay was developed for identification and quantification of apoE isoforms (apoE2, E3 and E4, and it was utilized for screening of samples from AD patients (n = 39 and patients with other neurodegenerative disorders (n = 38. The assay showed good linearity with LOQ corresponds to total apoE concentration of 0.8 and 40 ng/mL in CSF and plasma/serum, respectively. We identified apoE phenotypes with 100% accuracy in clinical samples. We found strong association between genotypes of the individuals and their apoE levels in blood; ϵ4 allele carriers had significantly lower apoE levels in blood than non-carriers.

  12. Maintaining consistency in distributed systems

    Science.gov (United States)

    Birman, Kenneth P.

    1991-01-01

    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.

  13. Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington's disease

    Directory of Open Access Journals (Sweden)

    Imis Dogan

    2015-01-01

    Full Text Available Huntington's disease (HD is a progressive neurodegenerative disorder characterized by a complex neuropsychiatric phenotype. In a recent meta-analysis we identified core regions of consistent neurodegeneration in premanifest HD in the striatum and middle occipital gyrus (MOG. For early manifest HD convergent evidence of atrophy was most prominent in the striatum, motor cortex (M1 and inferior frontal junction (IFJ. The aim of the present study was to functionally characterize this topography of brain atrophy and to investigate differential connectivity patterns formed by consistent cortico-striatal atrophy regions in HD. Using areas of striatal and cortical atrophy at different disease stages as seeds, we performed task-free resting-state and task-based meta-analytic connectivity modeling (MACM. MACM utilizes the large data source of the BrainMap database and identifies significant areas of above-chance co-activation with the seed-region via the activation-likelihood-estimation approach. In order to delineate functional networks formed by cortical as well as striatal atrophy regions we computed the conjunction between the co-activation profiles of striatal and cortical seeds in the premanifest and manifest stages of HD, respectively. Functional characterization of the seeds was obtained using the behavioral meta-data of BrainMap. Cortico-striatal atrophy seeds of the premanifest stage of HD showed common co-activation with a rather cognitive network including the striatum, anterior insula, lateral prefrontal, premotor, supplementary motor and parietal regions. A similar but more pronounced co-activation pattern, additionally including the medial prefrontal cortex and thalamic nuclei was found with striatal and IFJ seeds at the manifest HD stage. The striatum and M1 were functionally connected mainly to premotor and sensorimotor areas, posterior insula, putamen and thalamus. Behavioral characterization of the seeds confirmed that experiments

  14. N-3 PUFAs and neuroinflammatory processes in cognitive disorders

    Directory of Open Access Journals (Sweden)

    Leyrolle Quentin

    2016-01-01

    Full Text Available With the ageing population and increased cases of neurodegenerative diseases, there is a crucial need for the development of new nutritional approaches to prevent and delay the onset of cognitive decline. Neuroinflammatory processes contribute to neuronal damage that underpins neurodegenerative disorders. Growing evidence sheds light on the use of dietary n-3 long chain polyunsaturated fatty acids to improve cognitive performances and reduce the neuroinflammatory responses occurring with age and neurodegenerative pathologies. This review will summarise the most recent information related to the impact and mechanisms underlying the neuroinflammatory processes in cognitive disorders. We will also discuss the mechanisms underlying n-3 polyunsaturated fatty acids effect on neuroinflammation and memory decline.

  15. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?

    NARCIS (Netherlands)

    de Vries, H.E.; Witte, M.; Hondius, D.; Rozemuller, A.J.M.; Drukarch, B.; Hoozemans, J.J.M.; van Horssen, J.

    2008-01-01

    Neurodegenerative diseases share various pathological features, such as accumulation of aberrant protein aggregates, microglial activation, and mitochondrial dysfunction. These pathological processes are associated with generation of reactive oxygen species (ROS), which cause oxidative stress and

  16. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases.

    Science.gov (United States)

    Madeira, Maria H; Boia, Raquel; Ambrósio, António F; Santiago, Ana R

    2017-01-01

    Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A 2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.

  17. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Maria H. Madeira

    2017-01-01

    Full Text Available Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.

  18. Decentralized Consistent Updates in SDN

    KAUST Repository

    Nguyen, Thanh Dang

    2017-04-10

    We present ez-Segway, a decentralized mechanism to consistently and quickly update the network state while preventing forwarding anomalies (loops and blackholes) and avoiding link congestion. In our design, the centralized SDN controller only pre-computes information needed by the switches during the update execution. This information is distributed to the switches, which use partial knowledge and direct message passing to efficiently realize the update. This separation of concerns has the key benefit of improving update performance as the communication and computation bottlenecks at the controller are removed. Our evaluations via network emulations and large-scale simulations demonstrate the efficiency of ez-Segway, which compared to a centralized approach, improves network update times by up to 45% and 57% at the median and the 99th percentile, respectively. A deployment of a system prototype in a real OpenFlow switch and an implementation in P4 demonstrate the feasibility and low overhead of implementing simple network update functionality within switches.

  19. Arterial spin labeling-based Z-maps have high specificity and positive predictive value for neurodegenerative dementia compared to FDG-PET

    Energy Technology Data Exchange (ETDEWEB)

    Faellmar, David; Larsson, Elna-Marie [Uppsala University, Department of Surgical Sciences, Radiology, Uppsala (Sweden); Haller, Sven [Uppsala University, Department of Surgical Sciences, Radiology, Uppsala (Sweden); University Medical Center Freiburg, Department of Neuroradiology, Freiburg (Germany); University of Geneva, Faculty of Medicine, Geneva (Switzerland); Affidea CDRC - Centre Diagnostique Radiologique de Carouge, Carouge (Switzerland); Lilja, Johan [Uppsala University, Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala (Sweden); Hermes Medical Solutions, Stockholm (Sweden); Danfors, Torsten [Uppsala University, Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala (Sweden); Kilander, Lena [Uppsala University, Department of Public Health and Caring Sciences, Geriatrics, Uppsala (Sweden); Tolboom, Nelleke; Croon, Philip M.; Berckel, Bart N.M. van [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Egger, Karl [University Medical Center Freiburg, Department of Neuroradiology, Freiburg (Germany); Kellner, Elias [Medical Center University of Freiburg, Department of Radiology, Medical Physics, Faculty of Medicine, Freiburg (Germany); Verfaillie, Sander C.J.; Ossenkoppele, Rik [VU University Medical Center, Department of Neurology, Alzheimer Center Amsterdam, Amsterdam (Netherlands); Barkhof, Frederik [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); UCL, Institutes of Neurology and Healthcare Engineering, London (United Kingdom)

    2017-10-15

    Cerebral perfusion analysis based on arterial spin labeling (ASL) MRI has been proposed as an alternative to FDG-PET in patients with neurodegenerative disease. Z-maps show normal distribution values relating an image to a database of controls. They are routinely used for FDG-PET to demonstrate disease-specific patterns of hypometabolism at the individual level. This study aimed to compare the performance of Z-maps based on ASL to FDG-PET. Data were combined from two separate sites, each cohort consisting of patients with Alzheimer's disease (n = 18 + 7), frontotemporal dementia (n = 12 + 8) and controls (n = 9 + 29). Subjects underwent pseudocontinuous ASL and FDG-PET. Z-maps were created for each subject and modality. Four experienced physicians visually assessed the 166 Z-maps in random order, blinded to modality and diagnosis. Discrimination of patients versus controls using ASL-based Z-maps yielded high specificity (84%) and positive predictive value (80%), but significantly lower sensitivity compared to FDG-PET-based Z-maps (53% vs. 96%, p < 0.001). Among true-positive cases, correct diagnoses were made in 76% (ASL) and 84% (FDG-PET) (p = 0.168). ASL-based Z-maps can be used for visual assessment of neurodegenerative dementia with high specificity and positive predictive value, but with inferior sensitivity compared to FDG-PET. (orig.)

  20. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    International Nuclear Information System (INIS)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui

    2007-01-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr ∼ 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1∼9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI

  1. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    Energy Technology Data Exchange (ETDEWEB)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui [Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr {approx} 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1{approx}9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI.

  2. Modelling neurodegenerative diseases in vitro: Recent advances in 3D iPSC technologies

    Directory of Open Access Journals (Sweden)

    Elodie J Siney

    2018-03-01

    Full Text Available The discovery of induced pluripotent stem cells (iPSC 12 years ago has fostered the development of innovative patient-derived in vitro models for better understanding of disease mechanisms. This is particularly relevant to neurodegenerative diseases, where availability of live human brain tissue for research is limited and post-mortem interval changes influence readouts from autopsy-derived human tissue. Hundreds of iPSC lines have now been prepared and banked, thanks to several large scale initiatives and cell banks. Patient- or engineered iPSC-derived neural models are now being used to recapitulate cellular and molecular aspects of a variety of neurodegenerative diseases, including early and pre-clinical disease stages. The broad relevance of these models derives from the availability of a variety of differentiation protocols to generate disease-specific cell types and the manipulation to either introduce or correct disease-relevant genetic modifications. Moreover, the use of chemical and physical three-dimensional (3D matrices improves control over the extracellular environment and cellular organization of the models. These iPSC-derived neural models can be utilised to identify target proteins and, importantly, provide high-throughput screening for drug discovery. Choosing Alzheimer’s disease (AD as an example, this review describes 3D iPSC-derived neural models and their advantages and limitations. There is now a requirement to fully characterise and validate these 3D iPSC-derived neural models as a viable research tool that is capable of complementing animal models of neurodegeneration and live human brain tissue. With further optimization of differentiation, maturation and aging protocols, as well as the 3D cellular organisation and extracellular matrix to recapitulate more closely, the molecular extracellular-environment of the human brain, 3D iPSC-derived models have the potential to deliver new knowledge, enable discovery of novel

  3. A knowledge based approach to matching human neurodegenerative disease and animal models

    Directory of Open Access Journals (Sweden)

    Maryann E Martone

    2013-05-01

    Full Text Available Neurodegenerative diseases present a wide and complex range of biological and clinical features. Animal models are key to translational research, yet typically only exhibit a subset of disease features rather than being precise replicas of the disease. Consequently, connecting animal to human conditions using direct data-mining strategies has proven challenging, particularly for diseases of the nervous system, with its complicated anatomy and physiology. To address this challenge we have explored the use of ontologies to create formal descriptions of structural phenotypes across scales that are machine processable and amenable to logical inference. As proof of concept, we built a Neurodegenerative Disease Phenotype Ontology and an associated Phenotype Knowledge Base using an entity-quality model that incorporates descriptions for both human disease phenotypes and those of animal models. Entities are drawn from community ontologies made available through the Neuroscience Information Framework and qualities are drawn from the Phenotype and Trait Ontology. We generated ~1200 structured phenotype statements describing structural alterations at the subcellular, cellular and gross anatomical levels observed in 11 human neurodegenerative conditions and associated animal models. PhenoSim, an open source tool for comparing phenotypes, was used to issue a series of competency questions to compare individual phenotypes among organisms and to determine which animal models recapitulate phenotypic aspects of the human disease in aggregate. Overall, the system was able to use relationships within the ontology to bridge phenotypes across scales, returning non-trivial matches based on common subsumers that were meaningful to a neuroscientist with an advanced knowledge of neuroanatomy. The system can be used both to compare individual phenotypes and also phenotypes in aggregate. This proof of concept suggests that expressing complex phenotypes using formal

  4. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases.

    Science.gov (United States)

    Mendelsohn, Andrew R; Larrick, James W

    2013-12-01

    Decline of cognition and increasing risk of neurodegenerative diseases are major problems associated with aging in humans. Of particular importance is how the brain removes potentially toxic biomolecules that accumulate with normal neuronal function. Recently, a biomolecule clearance system using convective flow between the cerebrospinal fluid (CSF) and interstitial fluid (ISF) to remove toxic metabolites in the brain was described. Xie and colleagues now report that in mice the clearance activity of this so-called "glymphatic system" is strongly stimulated by sleep and is associated with an increase in interstitial volume, possibly by shrinkage of astroglial cells. Moreover, anesthesia and attenuation of adrenergic signaling can activate the glymphatic system to clear potentially toxic proteins known to contribute to the pathology of Alzheimer disease (AD) such as beta-amyloid (Abeta). Clearance during sleep is as much as two-fold faster than during waking hours. These results support a new hypothesis to answer the age-old question of why sleep is necessary. Glymphatic dysfunction may pay a hitherto unsuspected role in the pathogenesis of neurodegenerative diseases as well as maintenance of cognition. Furthermore, clinical studies suggest that quality and duration of sleep may be predictive of the onset of AD, and that quality sleep may significantly reduce the risk of AD for apolipoprotein E (ApoE) ɛ4 carriers, who have significantly greater chances of developing AD. Further characterization of the glymphatic system in humans may lead to new therapies and methods of prevention of neurodegenerative diseases. A public health initiative to ensure adequate sleep among middle-aged and older people may prove useful in preventing AD, especially in apolipoprotein E (ApoE) ɛ4 carriers.

  5. Worsening Cognitive Impairment and Neurodegenerative Pathology Progressively Increase Risk for Delirium

    Science.gov (United States)

    Davis, Daniel H.J.; Skelly, Donal T.; Murray, Carol; Hennessy, Edel; Bowen, Jordan; Norton, Samuel; Brayne, Carol; Rahkonen, Terhi; Sulkava, Raimo; Sanderson, David J.; Rawlins, J. Nicholas; Bannerman, David M.; MacLullich, Alasdair M.J.; Cunningham, Colm

    2015-01-01

    Background Delirium is a profound neuropsychiatric disturbance precipitated by acute illness. Although dementia is the major risk factor this has typically been considered a binary quantity (i.e., cognitively impaired versus cognitively normal) with respect to delirium risk. We used humans and mice to address the hypothesis that the severity of underlying neurodegenerative changes and/or cognitive impairment progressively alters delirium risk. Methods Humans in a population-based longitudinal study, Vantaa 85+, were followed for incident delirium. Odds for reporting delirium at follow-up (outcome) were modeled using random-effects logistic regression, where prior cognitive impairment measured by Mini-Mental State Exam (MMSE) (exposure) was considered. To address whether underlying neurodegenerative pathology increased susceptibility to acute cognitive change, mice at three stages of neurodegenerative disease progression (ME7 model of neurodegeneration: controls, 12 weeks, and 16 weeks) were assessed for acute cognitive dysfunction upon systemic inflammation induced by bacterial lipopolysaccharide (LPS; 100 μg/kg). Synaptic and axonal correlates of susceptibility to acute dysfunction were assessed using immunohistochemistry. Results In the Vantaa cohort, 465 persons (88.4 ± 2.8 years) completed MMSE at baseline. For every MMSE point lost, risk of incident delirium increased by 5% (p = 0.02). LPS precipitated severe and fluctuating cognitive deficits in 16-week ME7 mice but lower incidence or no deficits in 12-week ME7 and controls, respectively. This was associated with progressive thalamic synaptic loss and axonal pathology. Conclusion A human population-based cohort with graded severity of existing cognitive impairment and a mouse model with progressing neurodegeneration both indicate that the risk of delirium increases with greater severity of pre-existing cognitive impairment and neuropathology. PMID:25239680

  6. The Progression of Posterior Cortical Atrophy to Corticobasal Syndrome: Lumping or Splitting Neurodegenerative Diseases?

    Directory of Open Access Journals (Sweden)

    Maurizio Giorelli

    2014-06-01

    Full Text Available Background: Posterior cortical atrophy is a clinical syndrome that is characterized by the progressive loss of visuospatial integration and is associated with neurodegenerative conditions.Case Report: We describe a 60‐year‐old female with simultanagnosia, oculomotor apraxia, and optic ataxia for which she received an initial clinical diagnosis of posterior cortical atrophy. Three years later, she developed Balint's syndrome, Gerstmann's syndrome, left alien hand syndrome, smooth asymmetric (left rigidity, cortical sensory loss, and spontaneous myoclonic jerks of the left arm, which suggested a final diagnosis of corticobasal syndrome.Discussion: This case report indicates that corticobasal syndrome may present with visuospatial deficits.

  7. [Epigenetic regulations and cerebral plasticity: towards new therapeutic options in neurodegenerative diseases?

    Science.gov (United States)

    Merienne, Karine; Boutillier, Anne-Laurence

    2016-01-01

    Although revealed in the 1950's, epigenetics is still a fast-growing field. Its delineations continuously evolve and become clarified. In particular, "neuroepigenetics", a notion that encompasses epigenetic regulations associated with neuronal processes, appears very promising. Indeed, the challenge to be undertaken in this sub-field is double. On the one hand, it should bring molecular comprehension of specific neuronal processes, some of them falling within the long term regulations, such as learning and memory. On the other hand, it could bring therapeutic options for brain diseases, e.g. neurodegenerative diseases such as Alzheimer's or Huntington's diseases. © Société de Biologie, 2017.

  8. Role of the nucleolus in neurodegenerative diseases with particular reference to the retina: a review.

    Science.gov (United States)

    Sia, Paul I; Wood, John Pm; Chidlow, Glyn; Sharma, Shiwani; Craig, Jamie; Casson, Robert J

    2016-04-01

    The nucleolus has emerged as a key regulator of cellular growth and the response to stress, in addition to its traditionally understood function in ribosome biogenesis. The association between nucleolar function and neurodegenerative disease is increasingly being explored. There is also recent evidence indicating that the nucleolus may well be crucial in the development of the eye. In this present review, the role of the nucleolus in retinal development as well as in neurodegeneration with an emphasis on the retina is discussed. © 2015 Royal Australian and New Zealand College of Ophthalmologists.

  9. Functional validation of ABHD12 mutations in the neurodegenerative disease PHARC

    DEFF Research Database (Denmark)

    Tingaud-Sequeira, Angèle; Raldúa, Demetrio; Lavie, Julie

    2017-01-01

    ABHD12 mutations have been linked to neurodegenerative PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract), a rare, progressive, autosomal, recessive disease. Although ABHD12 is suspected to play a role in the lysophosphatidylserine and/or endocannabinoid...... and motor skill impairment. A disruption of retina architecture and retinotectal projections was observed, together with an inhibition of lens clarification and a low number of mechanosensory hair cells in the inner ear and lateral line system. The severe phenotypes in abhd12 knockdown morphants were...

  10. Brief Report: Consistency of Search Engine Rankings for Autism Websites

    Science.gov (United States)

    Reichow, Brian; Naples, Adam; Steinhoff, Timothy; Halpern, Jason; Volkmar, Fred R.

    2012-01-01

    The World Wide Web is one of the most common methods used by parents to find information on autism spectrum disorders and most consumers find information through search engines such as Google or Bing. However, little is known about how the search engines operate or the consistency of the results that are returned over time. This study presents the…

  11. Positron research in neuropsychiatric disorders

    International Nuclear Information System (INIS)

    Namura, Ikuro; Inoue, Osamu; Yamasaki, Toshiro.

    1984-01-01

    The principal findings revealed by our 18 F-fluoro-2-deoxyglucose ( 18 FDG) and 15 O-oxygen study were reviewed in the former part of this paper. (1) The effect of surgical severing of fiber connections on the terminal gray matter was clearly demonstrated in the following examples. A patient with the injured left optic radiation showed a markedly decreased 18 FDG uptake in the ipsilateral primary visual cortex. The extent of the decrease was larger in the secondary visual cortex (--60%). The patient with bilateral frontal leukotomy (lobotomy) showed about 30% decrease of oxygen accumulation not only in the frontal cortex but in the anterior half of the temporal cortex. (2) The effect of electrical stimulation of the left median nerve can be detected as an increased 18 FDG accumulation in the corresponding sensory and motor areas in the right precentral and postcentral cortices. The slight to moderate increase in the right striatal region was though to be related to the muscle movement caused by the stimulation. (3) The neuro-degenerative disorders such as Huntington's chorea and Parkinsonism could be diagnosed by demonstrating the decrease of 18 FDG in the degenerating focus or the increase in the secondarily affected area. An example was provided by a case of Huntington's chorea patient who showed a markedly decreased 18 FDG uptake in the striatal region in spite that 13 N-ammonia visualized this area. (4) Dementia gives another field where the 18 FDG and 15 O 2 studies are demonstrated to be quite useful. (5) The 18 FDG studies on the intrinsic psychoses are also reviewed. But consistent results seemed to be very difficult in this area by using labeled sugars and oxygens which are nonspecific gray matter imagers. Therefore, new tracers and new techniques in positron emission tomography are briefly described in the latter part of this paper. (author)

  12. Consistency of Self-Reported Neurocognitive Symptoms, Post-Traumatic Stress Disorder Symptoms, and Concussive Events From End of First Deployment to Veteran Health Administration Comprehensive Traumatic Brain Injury Evaluation by Operations Enduring Freedom/Iraqi Freedom/New Dawn Veterans.

    Science.gov (United States)

    Russo, Arthur C; Fingerhut, Esther C

    2017-03-01

    This study examined the consistency of self-reported symptoms and concussive events in combat veterans who reported experiencing concussive events. One hundred and forty, single deployed, Operation Enduring Freedom, Operation Iraqi Freedom and Operation New Dawn combat veterans with Veteran Health Administration (VHA) Comprehensive Traumatic Brain Injury Evaluations (CTBIE) and no post-deployment head injury were examined to assess consistency of self-reported (a) traumatic brain injury (TBI)-related symptoms, (b) post-traumatic stress disorder (PTSD)-related symptoms, and (c) TBI-related concussive events from soon after deployment to time of VHA CTBIE. Compared to their self-report of symptoms and traumatic events at the time of their Post-Deployment Health Assessment, at the time of their comprehensive VHA evaluation, subjects reported significantly greater impairment in concentration, decision making, memory, headache, and sleep. In addition, although half the subjects denied any PTSD symptoms post-deployment, approximately three quarters reported experiencing all four PTSD screening symptoms near the time of the VHA CTBIEs. At the latter time, subjects also reported significantly more TBI-related concussive events, as well as more post-concussive sequelae such as loss of consciousness immediately following these concussive events. Finally, although 84% reported a level of impairment so severe as to render all but the simplest activity doable, the vast majority simultaneously reported working and/or attending college. These findings raise questions regarding the accuracy of veteran self-report of both near and distant traumatic events, and argue for the inclusion of contemporaneous Department of Defense (DOD) records in veteran assessment and treatment planning. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. [Consistent Declarative Memory with Depressive Symptomatology].

    Science.gov (United States)

    Botelho de Oliveira, Silvia; Flórez, Ruth Natalia Suárez; Caballero, Diego Andrés Vásquez

    2012-12-01

    Some studies have suggested that potentiated remembrance of negative events on people with depressive disorders seems to be an important factor in the etiology, course and maintenance of depression. Evaluate the emotional memory in people with and without depressive symptomatology by means of an audio-visual test. 73 university students were evaluated, male and female, between 18 and 40 years old, distributed in two groups: with depressive symptomatology (32) and without depressive symptomatology (40), using the Scale from the Center of Epidemiologic Studies for Depression (CES-D, English Abbreviation) and a cutting point of 20. There were not meaningful differences between free and voluntary recalls, with and without depressive symptomatology, in spite of the fact that both groups had granted a higher emotional value to the audio-visual test and that they had associated it with emotional sadness. People with depressive symptomatology did not exhibit the effect of mnemonic potentiation generally associated to the content of the emotional version of the test; therefore, the hypothesis of emotional consistency was not validated. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  14. Imaging of dopaminergic system in movement disorders

    International Nuclear Information System (INIS)

    Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    Parkinson's disease is a common neurodegenerative disorder that is mainly caused by dopaminergic neuron loss in the substantia nigra. Several radiopharmaceutics have been developed to evaluated the integrity of dopaminergic neuronal system. In vivo PET and SPECT imaging of presynaptic dopamine imaging are already applied to Parkinson's disease and other parkinsonism, and can demonstrate the dopaminergic dysfunction. This review summarized the use of the presynaptic dopaminergic imaging in PD as biomarkers in evaluation of disease progression as well as in diagnosis of PD

  15. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    Science.gov (United States)

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  16. The central biobank and virtual biobank of BIOMARKAPD: a resource for studies on neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Babette eReijs

    2015-10-01

    Full Text Available AbstractBiobanks are important resources for biomarker discovery and assay development. Biomarkers for Alzheimer's and Parkinson's Disease (BIOMARKAPD is a European multicenter study, funded by the EU Joint Programme - Neurodegenerative Disease Research (JPND, that aims to improve the clinical use of body fluid markers for the diagnosis and prognosis of Alzheimer’s disease (AD and Parkinson’s disease (PD. The objective was to standardize the assessment of existing assays and to validate novel fluid biomarkers for AD and PD. To support the validation of novel biomarkers and assays, a central and a virtual biobank for body fluids and associated data from subjects with neurodegenerative diseases have been established. In the central biobank, cerebrospinal fluid (CSF and blood samples were collected according to the BIOMARKAPD standardized preanalytical procedures (SOP and stored at Integrated BioBank of Luxembourg (IBBL. The virtual biobank provides an overview of available CSF, plasma, serum, and DNA samples at each site. Currently, at the central biobank of BIOMARKAPD samples are available from over 400 subjects with normal cognition, mild cognitive impairment (MCI, AD, frontotemporal dementia (FTD, vascular dementia (VaD, multiple system atrophy (MSA, progressive supranuclear palsy (PSP, PD, PD with dementia, and dementia with Lewy bodies (DLB. The virtual biobank contains information on over 8600 subjects with varying diagnoses from 21 local biobanks. A website has been launched to enable sample requests from the central biobank and virtual biobank.

  17. Role of Artificial Intelligence Techniques (Automatic Classifiers) in Molecular Imaging Modalities in Neurodegenerative Diseases.

    Science.gov (United States)

    Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara

    2017-01-01

    Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.

  18. MicroRNA Biomarkers in Neurodegenerative Diseases and Emerging Nano-Sensors Technology

    Directory of Open Access Journals (Sweden)

    Pratik Shah

    2017-01-01

    Full Text Available MicroRNAs (miRNAs are essential small RNA molecules (20–24 nt that negatively regulate the expression of target genes at the post-transcriptional level. Due to their roles in a variety of biological processes, the aberrant expression profiles of miRNAs have been identified as biomarkers for many diseases, such as cancer, diabetes, cardiovascular disease and neurodegenerative diseases. In order to precisely, rapidly and economically monitor the expression of miRNAs, many cutting-edge nanotechnologies have been developed. One of the nanotechnologies, based on DNA encapsulated silver nanoclusters (DNA/AgNCs, has increasingly been adopted to create nanoscale bio-sensing systems due to its attractive optical properties, such as brightness, tuneable emission wavelengths and photostability. Using the DNA/AgNCs sensor methods, the presence of miRNAs can be detected simply by monitoring the fluorescence alteration of DNA/AgNCs sensors. We introduce these DNA/ AgNCs sensor methods and discuss their possible applications for detecting miRNA biomarkers in neurodegenerative diseases.

  19. Glaucoma and Alzheimer Disease: A Single Age-Related Neurodegenerative Disease of the Brain.

    Science.gov (United States)

    Mancino, Raffaele; Martucci, Alessio; Cesareo, Massimo; Giannini, Clarissa; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Nucci, Carlo

    2017-12-06

    Open Angle Glaucoma is one of the leading causes of irreversible blindness worldwide. Elevated intraocular pressure is considered an important risk factor for glaucoma, however a subset of patients experience disease progression even in presence of normal intraocular pressure values. This implies that risk factors other than intraocular pressure are involved in the pathogenesis of glaucoma. A possible relationship between glaucoma and neurodegenerative diseases such as Alzheimer Disease has been suggested. In this regard, we have recently described a high prevalence of alterations typical of glaucoma, using Heidelberg Retinal Tomograph-3 (HRT-3), in a group of patients with Alzheimer Disease. Interestingly, these alterations were not associated with elevated intraocular pressure or abnormal Central Corneal Thickness values. Alzheimer Disease is the most common form of dementia associated with progressive deterioration of memory and cognition. Complaints related to vision are common among Alzheimer Disease patients. Features common to both diseases, including risk factors and pathophysiological mechanisms, gleaned from the recent literature do suggest that Alzheimer Disease and glaucoma can be considered age-related neurodegenerative diseases that may co-exist in the elderly. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Larger aggregates of mutant seipin in Celia's Encephalopathy,