WorldWideScience

Sample records for neurally inspired computer

  1. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing.

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, Craig Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilize memory.

  2. Low-cost autonomous perceptron neural network inspired by quantum computation

    Science.gov (United States)

    Zidan, Mohammed; Abdel-Aty, Abdel-Haleem; El-Sadek, Alaa; Zanaty, E. A.; Abdel-Aty, Mahmoud

    2017-11-01

    Achieving low cost learning with reliable accuracy is one of the important goals to achieve intelligent machines to save time, energy and perform learning process over limited computational resources machines. In this paper, we propose an efficient algorithm for a perceptron neural network inspired by quantum computing composite from a single neuron to classify inspirable linear applications after a single training iteration O(1). The algorithm is applied over a real world data set and the results are outer performs the other state-of-the art algorithms.

  3. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    Science.gov (United States)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  4. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing.

    Science.gov (United States)

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are "in situ." In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired "blackboards." The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing.

  5. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  6. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are “in situ.” In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain

  7. INSPIRED High School Computing Academies

    Science.gov (United States)

    Doerschuk, Peggy; Liu, Jiangjiang; Mann, Judith

    2011-01-01

    If we are to attract more women and minorities to computing we must engage students at an early age. As part of its mission to increase participation of women and underrepresented minorities in computing, the Increasing Student Participation in Research Development Program (INSPIRED) conducts computing academies for high school students. The…

  8. A Reconfigurable and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Jim Harkin

    2009-01-01

    Full Text Available FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable SNNs on reconfigurable FPGAs. The paper proposes a novel field programmable neural network architecture (EMBRACE, incorporating low-power analogue spiking neurons, interconnected using a Network-on-Chip architecture. Results on the evaluation of the EMBRACE architecture using the XOR benchmark problem are presented, and the performance of the architecture is discussed. The paper also discusses the adaptability of the EMBRACE architecture in supporting fault tolerant computing.

  9. Coastal 'Big Data' and nature-inspired computation: Prediction potentials, uncertainties, and knowledge derivation of neural networks for an algal metric

    Science.gov (United States)

    Millie, David F.; Weckman, Gary R.; Young, William A.; Ivey, James E.; Fries, David P.; Ardjmand, Ehsan; Fahnenstiel, Gary L.

    2013-07-01

    Coastal monitoring has become reliant upon automated sensors for data acquisition. Such a technical commitment comes with a cost; particularly, the generation of large, high-dimensional data streams ('Big Data') that personnel must search through to identify data structures. Nature-inspired computation, inclusive of artificial neural networks (ANNs), affords the unearthing of complex, recurring patterns within sizable data volumes. In 2009, select meteorological and hydrological data were acquired via autonomous instruments in Sarasota Bay, Florida (USA). ANNs estimated continuous chlorophyll (CHL) a concentrations from abiotic predictors, with correlations between measured:modeled concentrations >0.90 and model efficiencies ranging from 0.80 to 0.90. Salinity and water temperature were the principal influences for modeled CHL within the Bay; concentrations steadily increased at temperatures >28° C and were greatest at salinities 6.1 μg CHL L-1 maximized at a salinity of ca. 36.3 and a temperature of ca. 29.5 °C. A 10th-order Chebyshev bivariate polynomial equation was fit (adj. r2 = 0.99, p turbidity, temperature, and salinity (and to lesser degrees, wind speed, wind/current direction, irradiance, and urea-nitrogen) were key variables for quantitative rules in tree formalisms. Taken together, computations enabled knowledge provision for and quantifiable representations of the non-linear relationships between environmental variables and CHL a.

  10. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and ... Author Affiliations. OM PRAKASH PATEL1 ARUNA TIWARI. Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore 453552, India ...

  11. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  12. Efficient computation in adaptive artificial spiking neural networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); R.B.P. Nusselder (Roeland); H.S. Scholte; S.M. Bohte (Sander)

    2017-01-01

    textabstractArtificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of

  13. Biologically inspired EM image alignment and neural reconstruction.

    Science.gov (United States)

    Knowles-Barley, Seymour; Butcher, Nancy J; Meinertzhagen, Ian A; Armstrong, J Douglas

    2011-08-15

    Three-dimensional reconstruction of consecutive serial-section transmission electron microscopy (ssTEM) images of neural tissue currently requires many hours of manual tracing and annotation. Several computational techniques have already been applied to ssTEM images to facilitate 3D reconstruction and ease this burden. Here, we present an alternative computational approach for ssTEM image analysis. We have used biologically inspired receptive fields as a basis for a ridge detection algorithm to identify cell membranes, synaptic contacts and mitochondria. Detected line segments are used to improve alignment between consecutive images and we have joined small segments of membrane into cell surfaces using a dynamic programming algorithm similar to the Needleman-Wunsch and Smith-Waterman DNA sequence alignment procedures. A shortest path-based approach has been used to close edges and achieve image segmentation. Partial reconstructions were automatically generated and used as a basis for semi-automatic reconstruction of neural tissue. The accuracy of partial reconstructions was evaluated and 96% of membrane could be identified at the cost of 13% false positive detections. An open-source reference implementation is available in the Supplementary information. seymour.kb@ed.ac.uk; douglas.armstrong@ed.ac.uk Supplementary data are available at Bioinformatics online.

  14. Nature-inspired computation in engineering

    CERN Document Server

    2016-01-01

    This timely review book summarizes the state-of-the-art developments in nature-inspired optimization algorithms and their applications in engineering. Algorithms and topics include the overview and history of nature-inspired algorithms, discrete firefly algorithm, discrete cuckoo search, plant propagation algorithm, parameter-free bat algorithm, gravitational search, biogeography-based algorithm, differential evolution, particle swarm optimization and others. Applications include vehicle routing, swarming robots, discrete and combinatorial optimization, clustering of wireless sensor networks, cell formation, economic load dispatch, metamodeling, surrogated-assisted cooperative co-evolution, data fitting and reverse engineering as well as other case studies in engineering. This book will be an ideal reference for researchers, lecturers, graduates and engineers who are interested in nature-inspired computation, artificial intelligence and computational intelligence. It can also serve as a reference for relevant...

  15. Neuro-Inspired Computing with Stochastic Electronics

    KAUST Repository

    Naous, Rawan

    2016-01-06

    The extensive scaling and integration within electronic systems have set the standards for what is addressed to as stochastic electronics. The individual components are increasingly diverting away from their reliable behavior and producing un-deterministic outputs. This stochastic operation highly mimics the biological medium within the brain. Hence, building on the inherent variability, particularly within novel non-volatile memory technologies, paves the way for unconventional neuromorphic designs. Neuro-inspired networks with brain-like structures of neurons and synapses allow for computations and levels of learning for diverse recognition tasks and applications.

  16. Optimal neural computations require analog processors

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    This paper discusses some of the limitations of hardware implementations of neural networks. The authors start by presenting neural structures and their biological inspirations, while mentioning the simplifications leading to artificial neural networks. Further, the focus will be on hardware imposed constraints. They will present recent results for three different alternatives of parallel implementations of neural networks: digital circuits, threshold gate circuits, and analog circuits. The area and the delay will be related to the neurons` fan-in and to the precision of their synaptic weights. The main conclusion is that hardware-efficient solutions require analog computations, and suggests the following two alternatives: (i) cope with the limitations imposed by silicon, by speeding up the computation of the elementary silicon neurons; (2) investigate solutions which would allow the use of the third dimension (e.g. using optical interconnections).

  17. Wireless synapses in bio-inspired neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin

    2009-05-01

    Wireless (virtual) synapses represent a novel approach to bio-inspired neural networks that follow the infrastructure of the biological brain, except that biological (physical) synapses are replaced by virtual ones based on cellular telephony modeling. Such synapses are of two types: intracluster synapses are based on IR wireless ones, while intercluster synapses are based on RF wireless ones. Such synapses have three unique features, atypical of conventional artificial ones: very high parallelism (close to that of the human brain), very high reconfigurability (easy to kill and to create), and very high plasticity (easy to modify or upgrade). In this paper we analyze the general concept of wireless synapses with special emphasis on RF wireless synapses. Also, biological mammalian (vertebrate) neural models are discussed for comparison, and a novel neural lensing effect is discussed in detail.

  18. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  19. Neuro-inspired computing using resistive synaptic devices

    CERN Document Server

    2017-01-01

    This book summarizes the recent breakthroughs in hardware implementation of neuro-inspired computing using resistive synaptic devices. The authors describe how two-terminal solid-state resistive memories can emulate synaptic weights in a neural network. Readers will benefit from state-of-the-art summaries of resistive synaptic devices, from the individual cell characteristics to the large-scale array integration. This book also discusses peripheral neuron circuits design challenges and design strategies. Finally, the authors describe the impact of device non-ideal properties (e.g. noise, variation, yield) and their impact on the learning performance at the system-level, using a device-algorithm co-design methodology. • Provides single-source reference to recent breakthroughs in resistive synaptic devices, not only at individual cell-level, but also at integrated array-level; • Includes detailed discussion of the peripheral circuits and array architecture design of the neuro-crossbar system; • Focuses on...

  20. Touchable Computing: Computing-Inspired Bio-Detection.

    Science.gov (United States)

    Chen, Yifan; Shi, Shaolong; Yao, Xin; Nakano, Tadashi

    2017-12-01

    We propose a new computing-inspired bio-detection framework called touchable computing (TouchComp). Under the rubric of TouchComp, the best solution is the cancer to be detected, the parameter space is the tissue region at high risk of malignancy, and the agents are the nanorobots loaded with contrast medium molecules for tracking purpose. Subsequently, the cancer detection procedure (CDP) can be interpreted from the computational optimization perspective: a population of externally steerable agents (i.e., nanorobots) locate the optimal solution (i.e., cancer) by moving through the parameter space (i.e., tissue under screening), whose landscape (i.e., a prescribed feature of tissue environment) may be altered by these agents but the location of the best solution remains unchanged. One can then infer the landscape by observing the movement of agents by applying the "seeing-is-sensing" principle. The term "touchable" emphasizes the framework's similarity to controlling by touching the screen with a finger, where the external field for controlling and tracking acts as the finger. Given this analogy, we aim to answer the following profound question: can we look to the fertile field of computational optimization algorithms for solutions to achieve effective cancer detection that are fast, accurate, and robust? Along this line of thought, we consider the classical particle swarm optimization (PSO) as an example and propose the PSO-inspired CDP, which differs from the standard PSO by taking into account realistic in vivo propagation and controlling of nanorobots. Finally, we present comprehensive numerical examples to demonstrate the effectiveness of the PSO-inspired CDP for different blood flow velocity profiles caused by tumor-induced angiogenesis. The proposed TouchComp bio-detection framework may be regarded as one form of natural computing that employs natural materials to compute.

  1. Optics in neural computation

    Science.gov (United States)

    Levene, Michael John

    In all attempts to emulate the considerable powers of the brain, one is struck by both its immense size, parallelism, and complexity. While the fields of neural networks, artificial intelligence, and neuromorphic engineering have all attempted oversimplifications on the considerable complexity, all three can benefit from the inherent scalability and parallelism of optics. This thesis looks at specific aspects of three modes in which optics, and particularly volume holography, can play a part in neural computation. First, holography serves as the basis of highly-parallel correlators, which are the foundation of optical neural networks. The huge input capability of optical neural networks make them most useful for image processing and image recognition and tracking. These tasks benefit from the shift invariance of optical correlators. In this thesis, I analyze the capacity of correlators, and then present several techniques for controlling the amount of shift invariance. Of particular interest is the Fresnel correlator, in which the hologram is displaced from the Fourier plane. In this case, the amount of shift invariance is limited not just by the thickness of the hologram, but by the distance of the hologram from the Fourier plane. Second, volume holography can provide the huge storage capacity and high speed, parallel read-out necessary to support large artificial intelligence systems. However, previous methods for storing data in volume holograms have relied on awkward beam-steering or on as-yet non- existent cheap, wide-bandwidth, tunable laser sources. This thesis presents a new technique, shift multiplexing, which is capable of very high densities, but which has the advantage of a very simple implementation. In shift multiplexing, the reference wave consists of a focused spot a few millimeters in front of the hologram. Multiplexing is achieved by simply translating the hologram a few tens of microns or less. This thesis describes the theory for how shift

  2. Emerging trends in neuro engineering and neural computation

    CERN Document Server

    Lee, Kendall; Garmestani, Hamid; Lim, Chee

    2017-01-01

    This book focuses on neuro-engineering and neural computing, a multi-disciplinary field of research attracting considerable attention from engineers, neuroscientists, microbiologists and material scientists. It explores a range of topics concerning the design and development of innovative neural and brain interfacing technologies, as well as novel information acquisition and processing algorithms to make sense of the acquired data. The book also highlights emerging trends and advances regarding the applications of neuro-engineering in real-world scenarios, such as neural prostheses, diagnosis of neural degenerative diseases, deep brain stimulation, biosensors, real neural network-inspired artificial neural networks (ANNs) and the predictive modeling of information flows in neuronal networks. The book is broadly divided into three main sections including: current trends in technological developments, neural computation techniques to make sense of the neural behavioral data, and application of these technologie...

  3. Bio-inspired spiking neural network for nonlinear systems control.

    Science.gov (United States)

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Traceability investigation in Computed Tomography using industry-inspired workpieces

    DEFF Research Database (Denmark)

    Kraemer, Alexandra; Stolfi, Alessandro; Schneider, Timm

    2017-01-01

    This paper concerns an investigation of the accuracy of Computed Tomography (CT) measurements using four industry-inspired workpieces. A total of 16 measurands were selected and calibrated using CMMs. CT measurements on industry-inspired workpieces were carried out using two CTs having different...

  5. Bio-inspired computation in unmanned aerial vehicles

    CERN Document Server

    Duan, Haibin

    2014-01-01

    Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aeros...

  6. Bio-Inspired Neural Model for Learning Dynamic Models

    Science.gov (United States)

    Duong, Tuan; Duong, Vu; Suri, Ronald

    2009-01-01

    A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.

  7. A biologically inspired neural network controller for ballistic arm movements

    Directory of Open Access Journals (Sweden)

    Schmid Maurizio

    2007-09-01

    Full Text Available Abstract Background In humans, the implementation of multijoint tasks of the arm implies a highly complex integration of sensory information, sensorimotor transformations and motor planning. Computational models can be profitably used to better understand the mechanisms sub-serving motor control, thus providing useful perspectives and investigating different control hypotheses. To this purpose, the use of Artificial Neural Networks has been proposed to represent and interpret the movement of upper limb. In this paper, a neural network approach to the modelling of the motor control of a human arm during planar ballistic movements is presented. Methods The developed system is composed of three main computational blocks: 1 a parallel distributed learning scheme that aims at simulating the internal inverse model in the trajectory formation process; 2 a pulse generator, which is responsible for the creation of muscular synergies; and 3 a limb model based on two joints (two degrees of freedom and six muscle-like actuators, that can accommodate for the biomechanical parameters of the arm. The learning paradigm of the neural controller is based on a pure exploration of the working space with no feedback signal. Kinematics provided by the system have been compared with those obtained in literature from experimental data of humans. Results The model reproduces kinematics of arm movements, with bell-shaped wrist velocity profiles and approximately straight trajectories, and gives rise to the generation of synergies for the execution of movements. The model allows achieving amplitude and direction errors of respectively 0.52 cm and 0.2 radians. Curvature values are similar to those encountered in experimental measures with humans. The neural controller also manages environmental modifications such as the insertion of different force fields acting on the end-effector. Conclusion The proposed system has been shown to properly simulate the development of

  8. Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms

    Science.gov (United States)

    Kaluza, Pablo; Urdapilleta, Eugenio

    2014-10-01

    Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron's computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.

  9. A computational model of conditioning inspired by Drosophila olfactory system.

    Science.gov (United States)

    Faghihi, Faramarz; Moustafa, Ahmed A; Heinrich, Ralf; Wörgötter, Florentin

    2017-03-01

    Recent studies have demonstrated that Drosophila melanogaster (briefly Drosophila) can successfully perform higher cognitive processes including second order olfactory conditioning. Understanding the neural mechanism of this behavior can help neuroscientists to unravel the principles of information processing in complex neural systems (e.g. the human brain) and to create efficient and robust robotic systems. In this work, we have developed a biologically-inspired spiking neural network which is able to execute both first and second order conditioning. Experimental studies demonstrated that volume signaling (e.g. by the gaseous transmitter nitric oxide) contributes to memory formation in vertebrates and invertebrates including insects. Based on the existing knowledge of odor encoding in Drosophila, the role of retrograde signaling in memory function, and the integration of synaptic and non-synaptic neural signaling, a neural system is implemented as Simulated fly. Simulated fly navigates in a two-dimensional environment in which it receives odors and electric shocks as sensory stimuli. The model suggests some experimental research on retrograde signaling to investigate neural mechanisms of conditioning in insects and other animals. Moreover, it illustrates a simple strategy to implement higher cognitive capabilities in machines including robots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nature-inspired computing and optimization theory and applications

    CERN Document Server

    Yang, Xin-She; Nakamatsu, Kazumi

    2017-01-01

    The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based opti...

  11. A biologically inspired neural net for trajectory formation and obstacle avoidance.

    Science.gov (United States)

    Glasius, R; Komoda, A; Gielen, S C

    1996-06-01

    In this paper we present a biologically inspired two-layered neural network for trajectory formation and obstacle avoidance. The two topographically ordered neural maps consist of analog neurons having continuous dynamics. The first layer, the sensory map, receives sensory information and builds up an activity pattern which contains the optimal solution (i.e. shortest path without collisions) for any given set of current position, target positions and obstacle positions. Targets and obstacles are allowed to move, in which case the activity pattern in the sensory map will change accordingly. The time evolution of the neural activity in the second layer, the motor map, results in a moving cluster of activity, which can be interpreted as a population vector. Through the feedforward connections between the two layers, input of the sensory map directs the movement of the cluster along the optimal path from the current position of the cluster to the target position. The smooth trajectory is the result of the intrinsic dynamics of the network only. No supervisor is required. The output of the motor map can be used for direct control of an autonomous system in a cluttered environment or for control of the actuators of a biological limb or robot manipulator. The system is able to reach a target even in the presence of an external perturbation. Computer simulations of a point robot and a multi-joint manipulator illustrate the theory.

  12. Web Solutions Inspire Cloud Computing Software

    Science.gov (United States)

    2013-01-01

    An effort at Ames Research Center to standardize NASA websites unexpectedly led to a breakthrough in open source cloud computing technology. With the help of Rackspace Inc. of San Antonio, Texas, the resulting product, OpenStack, has spurred the growth of an entire industry that is already employing hundreds of people and generating hundreds of millions in revenue.

  13. Neural computation and the computational theory of cognition.

    Science.gov (United States)

    Piccinini, Gualtiero; Bahar, Sonya

    2013-04-01

    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism-neural processes are computations in the generic sense. After that, we reject on empirical grounds the common assimilation of neural computation to either analog or digital computation, concluding that neural computation is sui generis. Analog computation requires continuous signals; digital computation requires strings of digits. But current neuroscientific evidence indicates that typical neural signals, such as spike trains, are graded like continuous signals but are constituted by discrete functional elements (spikes); thus, typical neural signals are neither continuous signals nor strings of digits. It follows that neural computation is sui generis. Finally, we highlight three important consequences of a proper understanding of neural computation for the theory of cognition. First, understanding neural computation requires a specially designed mathematical theory (or theories) rather than the mathematical theories of analog or digital computation. Second, several popular views about neural computation turn out to be incorrect. Third, computational theories of cognition that rely on non-neural notions of computation ought to be replaced or reinterpreted in terms of neural computation. Copyright © 2012 Cognitive Science Society, Inc.

  14. Fundamentals of computational intelligence neural networks, fuzzy systems, and evolutionary computation

    CERN Document Server

    Keller, James M; Fogel, David B

    2016-01-01

    This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...

  15. 7th World Congress on Nature and Biologically Inspired Computing

    CERN Document Server

    Engelbrecht, Andries; Abraham, Ajith; Plessis, Mathys; Snášel, Václav; Muda, Azah

    2016-01-01

    World Congress on Nature and Biologically Inspired Computing (NaBIC) is organized to discuss the state-of-the-art as well as to address various issues with respect to Nurturing Intelligent Computing Towards Advancement of Machine Intelligence. This Volume contains the papers presented in the Seventh World Congress (NaBIC’15) held in Pietermaritzburg, South Africa during December 01-03, 2015. The 39 papers presented in this Volume were carefully reviewed and selected. The Volume would be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  16. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  17. Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.

    Science.gov (United States)

    Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu

    2017-05-23

    This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.

  18. Computationally efficient model predictive control algorithms a neural network approach

    CERN Document Server

    Ławryńczuk, Maciej

    2014-01-01

    This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: ·         A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. ·         Implementation details of the MPC algorithms for feedforward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. ·         The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). ·         The MPC algorithms with neural approximation with no on-line linearization. ·         The MPC algorithms with guaranteed stability and robustness. ·         Cooperation between the MPC algorithms and set-point optimization. Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require d...

  19. A neurally inspired musical instrument classification system based upon the sound onset.

    Science.gov (United States)

    Newton, Michael J; Smith, Leslie S

    2012-06-01

    Physiological evidence suggests that sound onset detection in the auditory system may be performed by specialized neurons as early as the cochlear nucleus. Psychoacoustic evidence shows that the sound onset can be important for the recognition of musical sounds. Here the sound onset is used in isolation to form tone descriptors for a musical instrument classification task. The task involves 2085 isolated musical tones from the McGill dataset across five instrument categories. A neurally inspired tone descriptor is created using a model of the auditory system's response to sound onset. A gammatone filterbank and spiking onset detectors, built from dynamic synapses and leaky integrate-and-fire neurons, create parallel spike trains that emphasize the sound onset. These are coded as a descriptor called the onset fingerprint. Classification uses a time-domain neural network, the echo state network. Reference strategies, based upon mel-frequency cepstral coefficients, evaluated either over the whole tone or only during the sound onset, provide context to the method. Classification success rates for the neurally-inspired method are around 75%. The cepstral methods perform between 73% and 76%. Further testing with tones from the Iowa MIS collection shows that the neurally inspired method is considerably more robust when tested with data from an unrelated dataset.

  20. Neural Computation and the Computational Theory of Cognition

    Science.gov (United States)

    Piccinini, Gualtiero; Bahar, Sonya

    2013-01-01

    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism--neural processes are computations in the…

  1. Advances in neural networks computational and theoretical issues

    CERN Document Server

    Esposito, Anna; Morabito, Francesco

    2015-01-01

    This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and  bio-inspired memristor-based networks.  Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive, and context-aware Information Communication Technologies.

  2. A Novel Clustering Algorithm Inspired by Membrane Computing

    Directory of Open Access Journals (Sweden)

    Hong Peng

    2015-01-01

    Full Text Available P systems are a class of distributed parallel computing models; this paper presents a novel clustering algorithm, which is inspired from mechanism of a tissue-like P system with a loop structure of cells, called membrane clustering algorithm. The objects of the cells express the candidate centers of clusters and are evolved by the evolution rules. Based on the loop membrane structure, the communication rules realize a local neighborhood topology, which helps the coevolution of the objects and improves the diversity of objects in the system. The tissue-like P system can effectively search for the optimal partitioning with the help of its parallel computing advantage. The proposed clustering algorithm is evaluated on four artificial data sets and six real-life data sets. Experimental results show that the proposed clustering algorithm is superior or competitive to k-means algorithm and several evolutionary clustering algorithms recently reported in the literature.

  3. Color encoding in biologically-inspired convolutional neural networks.

    Science.gov (United States)

    Rafegas, Ivet; Vanrell, Maria

    2018-05-11

    Convolutional Neural Networks have been proposed as suitable frameworks to model biological vision. Some of these artificial networks showed representational properties that rival primate performances in object recognition. In this paper we explore how color is encoded in a trained artificial network. It is performed by estimating a color selectivity index for each neuron, which allows us to describe the neuron activity to a color input stimuli. The index allows us to classify whether they are color selective or not and if they are of a single or double color. We have determined that all five convolutional layers of the network have a large number of color selective neurons. Color opponency clearly emerges in the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green), but this is reduced and rotated as we go deeper into the network. In layer 2 we find a denser hue sampling of color neurons and opponency is reduced almost to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In layers 3, 4 and 5 color neurons are similar amongst themselves, presenting different type of neurons that detect specific colored objects (e.g., orangish faces), specific surrounds (e.g., blue sky) or specific colored or contrasted object-surround configurations (e.g. blue blob in a green surround). Overall, our work concludes that color and shape representation are successively entangled through all the layers of the studied network, revealing certain parallelisms with the reported evidences in primate brains that can provide useful insight into intermediate hierarchical spatio-chromatic representations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  5. Jet-images: computer vision inspired techniques for jet tagging

    International Nuclear Information System (INIS)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel

    2015-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  6. Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.

    Science.gov (United States)

    Diwaker, Chander; Tomar, Pradeep; Poonia, Ramesh C; Singh, Vijander

    2018-04-10

    A lot of models have been made for predicting software reliability. The reliability models are restricted to using particular types of methodologies and restricted number of parameters. There are a number of techniques and methodologies that may be used for reliability prediction. There is need to focus on parameters consideration while estimating reliability. The reliability of a system may increase or decreases depending on the selection of different parameters used. Thus there is need to identify factors that heavily affecting the reliability of the system. In present days, reusability is mostly used in the various area of research. Reusability is the basis of Component-Based System (CBS). The cost, time and human skill can be saved using Component-Based Software Engineering (CBSE) concepts. CBSE metrics may be used to assess those techniques which are more suitable for estimating system reliability. Soft computing is used for small as well as large-scale problems where it is difficult to find accurate results due to uncertainty or randomness. Several possibilities are available to apply soft computing techniques in medicine related problems. Clinical science of medicine using fuzzy-logic, neural network methodology significantly while basic science of medicine using neural-networks-genetic algorithm most frequently and preferably. There is unavoidable interest shown by medical scientists to use the various soft computing methodologies in genetics, physiology, radiology, cardiology and neurology discipline. CBSE boost users to reuse the past and existing software for making new products to provide quality with a saving of time, memory space, and money. This paper focused on assessment of commonly used soft computing technique like Genetic Algorithm (GA), Neural-Network (NN), Fuzzy Logic, Support Vector Machine (SVM), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). This paper presents working of soft computing

  7. A biologically inspired neural network model to transformation invariant object recognition

    Science.gov (United States)

    Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz

    2007-09-01

    Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to

  8. Experimental Demonstrations of Optical Neural Computers

    OpenAIRE

    Hsu, Ken; Brady, David; Psaltis, Demetri

    1988-01-01

    We describe two experiments in optical neural computing. In the first a closed optical feedback loop is used to implement auto-associative image recall. In the second a perceptron-like learning algorithm is implemented with photorefractive holography.

  9. Artificial neuron operations and spike-timing-dependent plasticity using memristive devices for brain-inspired computing

    Science.gov (United States)

    Marukame, Takao; Nishi, Yoshifumi; Yasuda, Shin-ichi; Tanamoto, Tetsufumi

    2018-04-01

    The use of memristive devices for creating artificial neurons is promising for brain-inspired computing from the viewpoints of computation architecture and learning protocol. We present an energy-efficient multiplier accumulator based on a memristive array architecture incorporating both analog and digital circuitries. The analog circuitry is used to full advantage for neural networks, as demonstrated by the spike-timing-dependent plasticity (STDP) in fabricated AlO x /TiO x -based metal-oxide memristive devices. STDP protocols for controlling periodic analog resistance with long-range stability were experimentally verified using a variety of voltage amplitudes and spike timings.

  10. Biologically-inspired On-chip Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the "biologically-inspired" approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks, We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  11. Simple Algorithms for Distributed Leader Election in Anonymous Synchronous Rings and Complete Networks Inspired by Neural Development in Fruit Flies.

    Science.gov (United States)

    Xu, Lei; Jeavons, Peter

    2015-11-01

    Leader election in anonymous rings and complete networks is a very practical problem in distributed computing. Previous algorithms for this problem are generally designed for a classical message passing model where complex messages are exchanged. However, the need to send and receive complex messages makes such algorithms less practical for some real applications. We present some simple synchronous algorithms for distributed leader election in anonymous rings and complete networks that are inspired by the development of the neural system of the fruit fly. Our leader election algorithms all assume that only one-bit messages are broadcast by nodes in the network and processors are only able to distinguish between silence and the arrival of one or more messages. These restrictions allow implementations to use a simpler message-passing architecture. Even with these harsh restrictions our algorithms are shown to achieve good time and message complexity both analytically and experimentally.

  12. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Jianyong Liu

    2015-01-01

    Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

  13. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  14. 7th International Conference on Bio-Inspired Computing : Theories and Applications

    CERN Document Server

    Singh, Pramod; Deep, Kusum; Pant, Millie; Nagar, Atulya

    2013-01-01

    The book is a collection of high quality peer reviewed research papers presented in Seventh International Conference on Bio-Inspired Computing (BIC-TA 2012) held at ABV-IIITM Gwalior, India. These research papers provide the latest developments in the broad area of "Computational Intelligence". The book discusses wide variety of industrial, engineering and scientific applications of nature/bio-inspired computing and presents invited papers from the inventors/originators of novel computational techniques.

  15. Computational Intelligence-Assisted Understanding of Nature-Inspired Superhydrophobic Behavior.

    Science.gov (United States)

    Zhang, Xia; Ding, Bei; Cheng, Ran; Dixon, Sebastian C; Lu, Yao

    2018-01-01

    In recent years, state-of-the-art computational modeling of physical and chemical systems has shown itself to be an invaluable resource in the prediction of the properties and behavior of functional materials. However, construction of a useful computational model for novel systems in both academic and industrial contexts often requires a great depth of physicochemical theory and/or a wealth of empirical data, and a shortage in the availability of either frustrates the modeling process. In this work, computational intelligence is instead used, including artificial neural networks and evolutionary computation, to enhance our understanding of nature-inspired superhydrophobic behavior. The relationships between experimental parameters (water droplet volume, weight percentage of nanoparticles used in the synthesis of the polymer composite, and distance separating the superhydrophobic surface and the pendant water droplet in adhesive force measurements) and multiple objectives (water droplet contact angle, sliding angle, and adhesive force) are built and weighted. The obtained optimal parameters are consistent with the experimental observations. This new approach to materials modeling has great potential to be applied more generally to aid design, fabrication, and optimization for myriad functional materials.

  16. Advances in bio-inspired computing for combinatorial optimization problems

    CERN Document Server

    Pintea, Camelia-Mihaela

    2013-01-01

    Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a

  17. Normalization as a canonical neural computation

    Science.gov (United States)

    Carandini, Matteo; Heeger, David J.

    2012-01-01

    There is increasing evidence that the brain relies on a set of canonical neural computations, repeating them across brain regions and modalities to apply similar operations to different problems. A promising candidate for such a computation is normalization, in which the responses of neurons are divided by a common factor that typically includes the summed activity of a pool of neurons. Normalization was developed to explain responses in the primary visual cortex and is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions. Normalization may underlie operations such as the representation of odours, the modulatory effects of visual attention, the encoding of value and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that it serves as a canonical neural computation. PMID:22108672

  18. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems

    Science.gov (United States)

    Broccard, Frédéric D.; Joshi, Siddharth; Wang, Jun; Cauwenberghs, Gert

    2017-08-01

    Objective. Computation in nervous systems operates with different computational primitives, and on different hardware, than traditional digital computation and is thus subjected to different constraints from its digital counterpart regarding the use of physical resources such as time, space and energy. In an effort to better understand neural computation on a physical medium with similar spatiotemporal and energetic constraints, the field of neuromorphic engineering aims to design and implement electronic systems that emulate in very large-scale integration (VLSI) hardware the organization and functions of neural systems at multiple levels of biological organization, from individual neurons up to large circuits and networks. Mixed analog/digital neuromorphic VLSI systems are compact, consume little power and operate in real time independently of the size and complexity of the model. Approach. This article highlights the current efforts to interface neuromorphic systems with neural systems at multiple levels of biological organization, from the synaptic to the system level, and discusses the prospects for future biohybrid systems with neuromorphic circuits of greater complexity. Main results. Single silicon neurons have been interfaced successfully with invertebrate and vertebrate neural networks. This approach allowed the investigation of neural properties that are inaccessible with traditional techniques while providing a realistic biological context not achievable with traditional numerical modeling methods. At the network level, populations of neurons are envisioned to communicate bidirectionally with neuromorphic processors of hundreds or thousands of silicon neurons. Recent work on brain-machine interfaces suggests that this is feasible with current neuromorphic technology. Significance. Biohybrid interfaces between biological neurons and VLSI neuromorphic systems of varying complexity have started to emerge in the literature. Primarily intended as a

  19. Fifth International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Abraham, Ajith; Snášel, Václav

    2014-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at IBICA2014, the 5th International Conference on Innovations in Bio-inspired Computing and Applications. The aim of IBICA 2014 was to provide a platform for world research leaders and practitioners, to discuss the full spectrum of current theoretical developments, emerging technologies, and innovative applications of Bio-inspired Computing. Bio-inspired Computing remains to be one of the most exciting research areas, and it is continuously demonstrating exceptional strength in solving complex real life problems. The main driving force of the conference was to further explore the intriguing potential of Bio-inspired Computing. IBICA 2014 was held in Ostrava, Czech Republic and hosted by the VSB - Technical University of Ostrava.

  20. 4th International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Krömer, Pavel; Snášel, Václav

    2014-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at IBICA2013, the 4th International Conference on Innovations in Bio-inspired Computing and Applications. The aim of IBICA 2013 was to provide a platform for world research leaders and practitioners, to discuss the full spectrum of current theoretical developments, emerging technologies, and innovative applications of Bio-inspired Computing. Bio-inspired Computing is currently one of the most exciting research areas, and it is continuously demonstrating exceptional strength in solving complex real life problems. The main driving force of the conference is to further explore the intriguing potential of Bio-inspired Computing. IBICA 2013 was held in Ostrava, Czech Republic and hosted by the VSB - Technical University of Ostrava.

  1. Handbook of nature-inspired and innovative computing integrating classical models with emerging technologies

    CERN Document Server

    2006-01-01

    As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. This handbook explores the connection between nature-inspired and traditional computational paradigms. It presents computing paradigms and models based on natural phenomena.

  2. A Parallel Supercomputer Implementation of a Biological Inspired Neural Network and its use for Pattern Recognition

    International Nuclear Information System (INIS)

    De Ladurantaye, Vincent; Lavoie, Jean; Bergeron, Jocelyn; Parenteau, Maxime; Lu Huizhong; Pichevar, Ramin; Rouat, Jean

    2012-01-01

    A parallel implementation of a large spiking neural network is proposed and evaluated. The neural network implements the binding by synchrony process using the Oscillatory Dynamic Link Matcher (ODLM). Scalability, speed and performance are compared for 2 implementations: Message Passing Interface (MPI) and Compute Unified Device Architecture (CUDA) running on clusters of multicore supercomputers and NVIDIA graphical processing units respectively. A global spiking list that represents at each instant the state of the neural network is described. This list indexes each neuron that fires during the current simulation time so that the influence of their spikes are simultaneously processed on all computing units. Our implementation shows a good scalability for very large networks. A complex and large spiking neural network has been implemented in parallel with success, thus paving the road towards real-life applications based on networks of spiking neurons. MPI offers a better scalability than CUDA, while the CUDA implementation on a GeForce GTX 285 gives the best cost to performance ratio. When running the neural network on the GTX 285, the processing speed is comparable to the MPI implementation on RQCHP's Mammouth parallel with 64 notes (128 cores).

  3. Computational chaos in massively parallel neural networks

    Science.gov (United States)

    Barhen, Jacob; Gulati, Sandeep

    1989-01-01

    A fundamental issue which directly impacts the scalability of current theoretical neural network models to massively parallel embodiments, in both software as well as hardware, is the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the possible emergence of chaotic manifestations. Previous analyses attributed dynamical instability to the topology of the interconnection matrix, to parasitic components or to propagation delays. However, researchers have observed the existence of emergent computational chaos in a concurrently asynchronous framework, independent of the network topology. Researcher present a methodology enabling the effective asynchronous operation of large-scale neural networks. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are computed formally to characterize the underlying nonlinear dynamics. Simulation results are presented to illustrate network convergence to the correct results, even in the presence of large delays.

  4. Inherently stochastic spiking neurons for probabilistic neural computation

    KAUST Repository

    Al-Shedivat, Maruan; Naous, Rawan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2015-01-01

    . Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards

  5. Fuzzy logic, neural networks, and soft computing

    Science.gov (United States)

    Zadeh, Lofti A.

    1994-01-01

    The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial

  6. Neural chips, neural computers and application in high and superhigh energy physics experiments

    International Nuclear Information System (INIS)

    Nikityuk, N.M.; )

    2001-01-01

    Architecture peculiarity and characteristics of series of neural chips and neural computes used in scientific instruments are considered. Tendency of development and use of them in high energy and superhigh energy physics experiments are described. Comparative data which characterize the efficient use of neural chips for useful event selection, classification elementary particles, reconstruction of tracks of charged particles and for search of hypothesis Higgs particles are given. The characteristics of native neural chips and accelerated neural boards are considered [ru

  7. On Biblical Hebrew and Computer Science: Inspiration, Models, Tools, And Cross-fertilization

    DEFF Research Database (Denmark)

    Sandborg-Petersen, Ulrik

    2011-01-01

    Eep Talstra's work has been an inspiration to maby researchers, both within and outside of the field of Old Testament scholarship. Among others, Crist-Jan Doedens and the present author have been heavily influenced by Talstra in their own work within the field of computer science. The present...... of the present author. In addition, the tools surrounding Emdros, including SESB, Libronis, and the Emdros Query Tool, are described. Ecamples Biblical Hebrew scholar. Thus the inspiration of Talstra comes full-circle: from Biblical Hebrew databases to computer science and back into Biblical Hebrew scholarship....

  8. New Computer Simulations of Macular Neural Functioning

    Science.gov (United States)

    Ross, Muriel D.; Doshay, D.; Linton, S.; Parnas, B.; Montgomery, K.; Chimento, T.

    1994-01-01

    We use high performance graphics workstations and supercomputers to study the functional significance of the three-dimensional (3-D) organization of gravity sensors. These sensors have a prototypic architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scaled-up, 3-D versions run on a Cray Y-MP supercomputer. A semi-automated method of reconstruction of neural tissue from serial sections studied in a transmission electron microscope has been developed to eliminate tedious conventional photography. The reconstructions use a mesh as a step in generating a neural surface for visualization. Two meshes are required to model calyx surfaces. The meshes are connected and the resulting prisms represent the cytoplasm and the bounding membranes. A finite volume analysis method is employed to simulate voltage changes along the calyx in response to synapse activation on the calyx or on calyceal processes. The finite volume method insures that charge is conserved at the calyx-process junction. These and other models indicate that efferent processes act as voltage followers, and that the morphology of some afferent processes affects their functioning. In a final application, morphological information is symbolically represented in three dimensions in a computer. The possible functioning of the connectivities is tested using mathematical interpretations of physiological parameters taken from the literature. Symbolic, 3-D simulations are in progress to probe the functional significance of the connectivities. This research is expected to advance computer-based studies of macular functioning and of synaptic plasticity.

  9. The super-Turing computational power of plastic recurrent neural networks.

    Science.gov (United States)

    Cabessa, Jérémie; Siegelmann, Hava T

    2014-12-01

    We study the computational capabilities of a biologically inspired neural model where the synaptic weights, the connectivity pattern, and the number of neurons can evolve over time rather than stay static. Our study focuses on the mere concept of plasticity of the model so that the nature of the updates is assumed to be not constrained. In this context, we show that the so-called plastic recurrent neural networks (RNNs) are capable of the precise super-Turing computational power--as the static analog neural networks--irrespective of whether their synaptic weights are modeled by rational or real numbers, and moreover, irrespective of whether their patterns of plasticity are restricted to bi-valued updates or expressed by any other more general form of updating. Consequently, the incorporation of only bi-valued plastic capabilities in a basic model of RNNs suffices to break the Turing barrier and achieve the super-Turing level of computation. The consideration of more general mechanisms of architectural plasticity or of real synaptic weights does not further increase the capabilities of the networks. These results support the claim that the general mechanism of plasticity is crucially involved in the computational and dynamical capabilities of biological neural networks. They further show that the super-Turing level of computation reflects in a suitable way the capabilities of brain-like models of computation.

  10. Semiconductor-inspired design principles for superconducting quantum computing.

    Science.gov (United States)

    Shim, Yun-Pil; Tahan, Charles

    2016-03-17

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  11. 6th International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Abraham, Ajith; Krömer, Pavel; Pant, Millie; Muda, Azah

    2016-01-01

    This Volume contains the papers presented during the 6th International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2015 which was held in Kochi, India during December 16-18, 2015. The 51 papers presented in this Volume were carefully reviewed and selected. The 6th International Conference IBICA 2015 has been organized to discuss the state-of-the-art as well as to address various issues in the growing research field of Bio-inspired Computing which is currently one of the most exciting research areas, and is continuously demonstrating exceptional strength in solving complex real life problems. The Volume will be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  12. Neural correlates and neural computations in posterior parietal cortex during perceptual decision-making

    Directory of Open Access Journals (Sweden)

    Alexander eHuk

    2012-10-01

    Full Text Available A recent line of work has found remarkable success in relating perceptual decision-making and the spiking activity in the macaque lateral intraparietal area (LIP. In this review, we focus on questions about the neural computations in LIP that are not answered by demonstrations of neural correlates of psychological processes. We highlight three areas of limitations in our current understanding of the precise neural computations that might underlie neural correlates of decisions: (1 empirical questions not yet answered by existing data; (2 implementation issues related to how neural circuits could actually implement the mechanisms suggested by both physiology and psychology; and (3 ecological constraints related to the use of well-controlled laboratory tasks and whether they provide an accurate window on sensorimotor computation. These issues motivate the adoption of a more general encoding-decoding framework that will be fruitful for more detailed contemplation of how neural computations in LIP relate to the formation of perceptual decisions.

  13. Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing

    CERN Document Server

    Siddique, Nazmul

    2013-01-01

    Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect

  14. Cerebellum-inspired neural network solution of the inverse kinematics problem.

    Science.gov (United States)

    Asadi-Eydivand, Mitra; Ebadzadeh, Mohammad Mehdi; Solati-Hashjin, Mehran; Darlot, Christian; Abu Osman, Noor Azuan

    2015-12-01

    The demand today for more complex robots that have manipulators with higher degrees of freedom is increasing because of technological advances. Obtaining the precise movement for a desired trajectory or a sequence of arm and positions requires the computation of the inverse kinematic (IK) function, which is a major problem in robotics. The solution of the IK problem leads robots to the precise position and orientation of their end-effector. We developed a bioinspired solution comparable with the cerebellar anatomy and function to solve the said problem. The proposed model is stable under all conditions merely by parameter determination, in contrast to recursive model-based solutions, which remain stable only under certain conditions. We modified the proposed model for the simple two-segmented arm to prove the feasibility of the model under a basic condition. A fuzzy neural network through its learning method was used to compute the parameters of the system. Simulation results show the practical feasibility and efficiency of the proposed model in robotics. The main advantage of the proposed model is its generalizability and potential use in any robot.

  15. Biologically Inspired Modular Neural Control for a Leg-Wheel Hybrid Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Wörgötter, Florentin; Laksanacharoen, Pudit

    2014-01-01

    In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal...... processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions...... or they can serve as useful modules for other module-based neural control applications....

  16. Sound Source Localization through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network.

    Science.gov (United States)

    Beck, Christoph; Garreau, Guillaume; Georgiou, Julius

    2016-01-01

    Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  17. Sound Source Localization Through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network

    Directory of Open Access Journals (Sweden)

    Christoph Beck

    2016-10-01

    Full Text Available Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  18. Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model.

    Science.gov (United States)

    Ahmad, Iftikhar; Raja, Muhammad Asif Zahoor; Bilal, Muhammad; Ashraf, Farooq

    2016-01-01

    This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is exploited for modelling of the equation in an unsupervised manner. The proposed approximated solutions of higher order ordinary differential equation are calculated with the weights of neural networks trained with genetic algorithm, and pattern search hybrid with sequential quadratic programming for rapid local convergence. The results of proposed solvers for solving the nonlinear singular systems are in good agreements with the standard solutions. Accuracy and convergence the design schemes are demonstrated by the results of statistical performance measures based on the sufficient large number of independent runs.

  19. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  20. Connecting Neural Coding to Number Cognition: A Computational Account

    Science.gov (United States)

    Prather, Richard W.

    2012-01-01

    The current study presents a series of computational simulations that demonstrate how the neural coding of numerical magnitude may influence number cognition and development. This includes behavioral phenomena cataloged in cognitive literature such as the development of numerical estimation and operational momentum. Though neural research has…

  1. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); S.M. Bohte (Sander)

    2016-01-01

    textabstractBiological neurons communicate with a sparing exchange of pulses - spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on

  3. 8th International Conference on Bio-Inspired Computing : Theories and Applications

    CERN Document Server

    Pan, Linqiang; Fang, Xianwen

    2013-01-01

    International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA) is one of the flagship conferences on Bio-Computing, bringing together the world’s leading scientists from different areas of Natural Computing. Since 2006, the conferences have taken place at Wuhan (2006), Zhengzhou (2007), Adelaide (2008), Beijing (2009), Liverpool & Changsha (2010), Malaysia (2011) and India (2012). Following the successes of previous events, the 8th conference is organized and hosted by Anhui University of Science and Technology in China. This conference aims to provide a high-level international forum that researchers with different backgrounds and who are working in the related areas can use to present their latest results and exchange ideas. Additionally, the growing trend in Emergent Systems has resulted in the inclusion of two other closely related fields in the BIC-TA 2013 event, namely Complex Systems and Computational Neuroscience. These proceedings are intended for researchers in the fiel...

  4. Anomalous Diffusion within the Transcriptome as a Bio-Inspired Computing Framework for Resilience

    Directory of Open Access Journals (Sweden)

    William Seffens

    2017-07-01

    Full Text Available Much of biology-inspired computer science is based on the Central Dogma, as implemented with genetic algorithms or evolutionary computation. That 60-year-old biological principle based on the genome, transcriptome and proteasome is becoming overshadowed by a new paradigm of complex ordered associations and connections between layers of biological entities, such as interactomes, metabolomics, etc. We define a new hierarchical concept as the “Connectosome”, and propose new venues of computational data structures based on a conceptual framework called “Grand Ensemble” which contains the Central Dogma as a subset. Connectedness and communication within and between living or biology-inspired systems comprise ensembles from which a physical computing system can be conceived. In this framework the delivery of messages is filtered by size and a simple and rapid semantic analysis of their content. This work aims to initiate discussion on the Grand Ensemble in network biology as a representation of a Persistent Turing Machine. This framework adding interaction and persistency to the classic Turing-machine model uses metrics based on resilience that has application to dynamic optimization problem solving in Genetic Programming.

  5. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    Science.gov (United States)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  6. Neural decoding of collective wisdom with multi-brain computing.

    Science.gov (United States)

    Eckstein, Miguel P; Das, Koel; Pham, Binh T; Peterson, Matthew F; Abbey, Craig K; Sy, Jocelyn L; Giesbrecht, Barry

    2012-01-02

    Group decisions and even aggregation of multiple opinions lead to greater decision accuracy, a phenomenon known as collective wisdom. Little is known about the neural basis of collective wisdom and whether its benefits arise in late decision stages or in early sensory coding. Here, we use electroencephalography and multi-brain computing with twenty humans making perceptual decisions to show that combining neural activity across brains increases decision accuracy paralleling the improvements shown by aggregating the observers' opinions. Although the largest gains result from an optimal linear combination of neural decision variables across brains, a simpler neural majority decision rule, ubiquitous in human behavior, results in substantial benefits. In contrast, an extreme neural response rule, akin to a group following the most extreme opinion, results in the least improvement with group size. Analyses controlling for number of electrodes and time-points while increasing number of brains demonstrate unique benefits arising from integrating neural activity across different brains. The benefits of multi-brain integration are present in neural activity as early as 200 ms after stimulus presentation in lateral occipital sites and no additional benefits arise in decision related neural activity. Sensory-related neural activity can predict collective choices reached by aggregating individual opinions, voting results, and decision confidence as accurately as neural activity related to decision components. Estimation of the potential for the collective to execute fast decisions by combining information across numerous brains, a strategy prevalent in many animals, shows large time-savings. Together, the findings suggest that for perceptual decisions the neural activity supporting collective wisdom and decisions arises in early sensory stages and that many properties of collective cognition are explainable by the neural coding of information across multiple brains. Finally

  7. Recurrent Neural Network for Computing Outer Inverse.

    Science.gov (United States)

    Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin

    2016-05-01

    Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.

  8. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    Science.gov (United States)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  9. Integrated evolutionary computation neural network quality controller for automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  10. Predicting Student Academic Performance: A Comparison of Two Meta-Heuristic Algorithms Inspired by Cuckoo Birds for Training Neural Networks

    Directory of Open Access Journals (Sweden)

    Jeng-Fung Chen

    2014-10-01

    Full Text Available Predicting student academic performance with a high accuracy facilitates admission decisions and enhances educational services at educational institutions. This raises the need to propose a model that predicts student performance, based on the results of standardized exams, including university entrance exams, high school graduation exams, and other influential factors. In this study, an approach to the problem based on the artificial neural network (ANN with the two meta-heuristic algorithms inspired by cuckoo birds and their lifestyle, namely, Cuckoo Search (CS and Cuckoo Optimization Algorithm (COA is proposed. In particular, we used previous exam results and other factors, such as the location of the student’s high school and the student’s gender as input variables, and predicted the student academic performance. The standard CS and standard COA were separately utilized to train the feed-forward network for prediction. The algorithms optimized the weights between layers and biases of the neuron network. The simulation results were then discussed and analyzed to investigate the prediction ability of the neural network trained by these two algorithms. The findings demonstrated that both CS and COA have potential in training ANN and ANN-COA obtained slightly better results for predicting student academic performance in this case. It is expected that this work may be used to support student admission procedures and strengthen the service system in educational institutions.

  11. 16th International Conference on Hybrid Intelligent Systems and the 8th World Congress on Nature and Biologically Inspired Computing

    CERN Document Server

    Haqiq, Abdelkrim; Alimi, Adel; Mezzour, Ghita; Rokbani, Nizar; Muda, Azah

    2017-01-01

    This book presents the latest research in hybrid intelligent systems. It includes 57 carefully selected papers from the 16th International Conference on Hybrid Intelligent Systems (HIS 2016) and the 8th World Congress on Nature and Biologically Inspired Computing (NaBIC 2016), held on November 21–23, 2016 in Marrakech, Morocco. HIS - NaBIC 2016 was jointly organized by the Machine Intelligence Research Labs (MIR Labs), USA; Hassan 1st University, Settat, Morocco and University of Sfax, Tunisia. Hybridization of intelligent systems is a promising research field in modern artificial/computational intelligence and is concerned with the development of the next generation of intelligent systems. The conference’s main aim is to inspire further exploration of the intriguing potential of hybrid intelligent systems and bio-inspired computing. As such, the book is a valuable resource for practicing engineers /scientists and researchers working in the field of computational intelligence and artificial intelligence.

  12. Handwritten Digits Recognition Using Neural Computing

    Directory of Open Access Journals (Sweden)

    Călin Enăchescu

    2009-12-01

    Full Text Available In this paper we present a method for the recognition of handwritten digits and a practical implementation of this method for real-time recognition. A theoretical framework for the neural networks used to classify the handwritten digits is also presented.The classification task is performed using a Convolutional Neural Network (CNN. CNN is a special type of multy-layer neural network, being trained with an optimized version of the back-propagation learning algorithm.CNN is designed to recognize visual patterns directly from pixel images with minimal preprocessing, being capable to recognize patterns with extreme variability (such as handwritten characters, and with robustness to distortions and simple geometric transformations.The main contributions of this paper are related to theoriginal methods for increasing the efficiency of the learning algorithm by preprocessing the images before the learning process and a method for increasing the precision and performance for real-time applications, by removing the non useful information from the background.By combining these strategies we have obtained an accuracy of 96.76%, using as training set the NIST (National Institute of Standards and Technology database.

  13. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-01

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  14. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-06

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  15. A biologically inspired neural model for visual and proprioceptive integration including sensory training.

    Science.gov (United States)

    Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi

    2013-12-01

    Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model

  16. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  17. A novel nature inspired firefly algorithm with higher order neural network: Performance analysis

    Directory of Open Access Journals (Sweden)

    Janmenjoy Nayak

    2016-03-01

    Full Text Available The applications of both Feed Forward Neural network and Multilayer perceptron are very diverse and saturated. But the linear threshold unit of feed forward networks causes fast learning with limited capabilities, while due to multilayering, the back propagation of errors exhibits slow training speed in MLP. So, a higher order network can be constructed by correlating between the input variables to perform nonlinear mapping using the single layer of input units for overcoming the above drawbacks. In this paper, a Firefly based higher order neural network has been proposed for data classification for maintaining fast learning and avoids the exponential increase of processing units. A vast literature survey has been conducted to review the state of the art of the previous developed models. The performance of the proposed method has been tested with various benchmark datasets from UCI machine learning repository and compared with the performance of other established models. Experimental results imply that the proposed method is fast, steady, reliable and provides better classification accuracy than others.

  18. Computational aspects of feedback in neural circuits.

    Directory of Open Access Journals (Sweden)

    Wolfgang Maass

    2007-01-01

    Full Text Available It has previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit, have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise, the resulting computational model can perform a large class of biologically relevant real-time computations that require a nonfading memory. We demonstrate these computational implications of feedback both theoretically, and through computer simulations of detailed cortical microcircuit models that are subject to noise and have complex inherent dynamics. We show that the application of simple learning procedures (such as linear regression or perceptron learning to a few neurons enables such circuits to represent time over behaviorally relevant long time spans, to integrate evidence from incoming spike trains over longer periods of time, and to process new information contained in such spike trains in diverse ways according to the current internal state of the circuit. In particular we show that such generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. Although this article examines primarily the computational role of feedback in circuits of neurons, the mathematical principles on which its analysis is based apply to a variety of dynamical systems. Hence they may also

  19. Inherently stochastic spiking neurons for probabilistic neural computation

    KAUST Repository

    Al-Shedivat, Maruan

    2015-04-01

    Neuromorphic engineering aims to design hardware that efficiently mimics neural circuitry and provides the means for emulating and studying neural systems. In this paper, we propose a new memristor-based neuron circuit that uniquely complements the scope of neuron implementations and follows the stochastic spike response model (SRM), which plays a cornerstone role in spike-based probabilistic algorithms. We demonstrate that the switching of the memristor is akin to the stochastic firing of the SRM. Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards memristive, scalable and efficient stochastic neuromorphic platforms. © 2015 IEEE.

  20. Hybrid computing using a neural network with dynamic external memory.

    Science.gov (United States)

    Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago; Agapiou, John; Badia, Adrià Puigdomènech; Hermann, Karl Moritz; Zwols, Yori; Ostrovski, Georg; Cain, Adam; King, Helen; Summerfield, Christopher; Blunsom, Phil; Kavukcuoglu, Koray; Hassabis, Demis

    2016-10-27

    Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.

  1. Parallel Processing and Bio-inspired Computing for Biomedical Image Registration

    Directory of Open Access Journals (Sweden)

    Silviu Ioan Bejinariu

    2014-07-01

    Full Text Available Image Registration (IR is an optimization problem computing optimal parameters of a geometric transform used to overlay one or more source images to a given model by maximizing a similarity measure. In this paper the use of bio-inspired optimization algorithms in image registration is analyzed. Results obtained by means of three different algorithms are compared: Bacterial Foraging Optimization Algorithm (BFOA, Genetic Algorithm (GA and Clonal Selection Algorithm (CSA. Depending on the images type, the registration may be: area based, which is slow but more precise, and features based, which is faster. In this paper a feature based approach based on the Scale Invariant Feature Transform (SIFT is proposed. Finally, results obtained using sequential and parallel implementations on multi-core systems for area based and features based image registration are compared.

  2. Neural Computations in a Dynamical System with Multiple Time Scales.

    Science.gov (United States)

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.

  3. Computer simulation system of neural PID control on nuclear reactor

    International Nuclear Information System (INIS)

    Chen Yuzhong; Yang Kaijun; Shen Yongping

    2001-01-01

    Neural network proportional integral differential (PID) controller on nuclear reactor is designed, and the control process is simulated by computer. The simulation result show that neutral network PID controller can automatically adjust its parameter to ideal state, and good control result can be gotten in reactor control process

  4. THE COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR PREDICTIONS - ARTIFICIAL NEURAL NETWORKS

    OpenAIRE

    Mary Violeta Bar

    2014-01-01

    The computational intelligence techniques are used in problems which can not be solved by traditional techniques when there is insufficient data to develop a model problem or when they have errors.Computational intelligence, as he called Bezdek (Bezdek, 1992) aims at modeling of biological intelligence. Artificial Neural Networks( ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is solving problems that are too c...

  5. VLSI implementation of a bio-inspired olfactory spiking neural network.

    Science.gov (United States)

    Hsieh, Hung-Yi; Tang, Kea-Tiong

    2012-07-01

    This paper presents a low-power, neuromorphic spiking neural network (SNN) chip that can be integrated in an electronic nose system to classify odor. The proposed SNN takes advantage of sub-threshold oscillation and onset-latency representation to reduce power consumption and chip area, providing a more distinct output for each odor input. The synaptic weights between the mitral and cortical cells are modified according to an spike-timing-dependent plasticity learning rule. During the experiment, the odor data are sampled by a commercial electronic nose (Cyranose 320) and are normalized before training and testing to ensure that the classification result is only caused by learning. Measurement results show that the circuit only consumed an average power of approximately 3.6 μW with a 1-V power supply to discriminate odor data. The SNN has either a high or low output response for a given input odor, making it easy to determine whether the circuit has made the correct decision. The measurement result of the SNN chip and some well-known algorithms (support vector machine and the K-nearest neighbor program) is compared to demonstrate the classification performance of the proposed SNN chip.The mean testing accuracy is 87.59% for the data used in this paper.

  6. Towards practical control design using neural computation

    Science.gov (United States)

    Troudet, Terry; Garg, Sanjay; Mattern, Duane; Merrill, Walter

    1991-01-01

    The objective is to develop neural network based control design techniques which address the issue of performance/control effort tradeoff. Additionally, the control design needs to address the important issue if achieving adequate performance in the presence of actuator nonlinearities such as position and rate limits. These issues are discussed using the example of aircraft flight control. Given a set of pilot input commands, a feedforward net is trained to control the vehicle within the constraints imposed by the actuators. This is achieved by minimizing an objective function which is the sum of the tracking errors, control input rates and control input deflections. A tradeoff between tracking performance and control smoothness is obtained by varying, adaptively, the weights of the objective function. The neurocontroller performance is evaluated in the presence of actuator dynamics using a simulation of the vehicle. Appropriate selection of the different weights in the objective function resulted in the good tracking of the pilot commands and smooth neurocontrol. An extension of the neurocontroller design approach is proposed to enhance its practicality.

  7. A neural circuit for angular velocity computation

    Directory of Open Access Journals (Sweden)

    Samuel B Snider

    2010-12-01

    Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  8. Neural computations underlying social risk sensitivity

    Directory of Open Access Journals (Sweden)

    Nina eLauharatanahirun

    2012-08-01

    Full Text Available Under standard models of expected utility, preferences over stochastic events are assumed to be independent of the source of uncertainty. Thus, in decision-making, an agent should exhibit consistent preferences, regardless of whether the uncertainty derives from the unpredictability of a random process or the unpredictability of a social partner. However, when a social partner is the source of uncertainty, social preferences can influence decisions over and above pure risk attitudes. Here, we compared risk-related hemodynamic activity and individual preferences for two sets of options that differ only in the social or non-social nature of the risk. Risk preferences in social and non-social contexts were systematically related to neural activity during decision and outcome phases of each choice. Individuals who were more risk averse in the social context exhibited decreased risk-related activity in the amygdala during non-social decisions, while individuals who were more risk averse in the non-social context exhibited the opposite pattern. Differential risk preferences were similarly associated with hemodynamic activity in ventral striatum at the outcome of these decisions. These findings suggest that social preferences, including aversion to betrayal or exploitation by social partners, may be associated with variability in the response of these subcortical regions to social risk.

  9. Computation and control with neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1989-10-04

    As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future microprocessors' are predicted and requested on this basis. 19 refs., 18 figs.

  10. Computation and control with neural nets

    International Nuclear Information System (INIS)

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1989-01-01

    As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future 'microprocessors' are predicted and requested on this basis. 19 refs., 18 figs

  11. Recurrent Neural Network for Computing the Drazin Inverse.

    Science.gov (United States)

    Stanimirović, Predrag S; Zivković, Ivan S; Wei, Yimin

    2015-11-01

    This paper presents a recurrent neural network (RNN) for computing the Drazin inverse of a real matrix in real time. This recurrent neural network (RNN) is composed of n independent parts (subnetworks), where n is the order of the input matrix. These subnetworks can operate concurrently, so parallel and distributed processing can be achieved. In this way, the computational advantages over the existing sequential algorithms can be attained in real-time applications. The RNN defined in this paper is convenient for an implementation in an electronic circuit. The number of neurons in the neural network is the same as the number of elements in the output matrix, which represents the Drazin inverse. The difference between the proposed RNN and the existing ones for the Drazin inverse computation lies in their network architecture and dynamics. The conditions that ensure the stability of the defined RNN as well as its convergence toward the Drazin inverse are considered. In addition, illustrative examples and examples of application to the practical engineering problems are discussed to show the efficacy of the proposed neural network.

  12. Efficient universal computing architectures for decoding neural activity.

    Directory of Open Access Journals (Sweden)

    Benjamin I Rapoport

    Full Text Available The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain- machine interfaces (BMIs. Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain- machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than [Formula: see text]. We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA implementation of this portion

  13. Quantum neural network-based EEG filtering for a brain-computer interface.

    Science.gov (United States)

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  14. Fusion of neural computing and PLS techniques for load estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, M.; Xue, H.; Cheng, X. [Northwestern Polytechnical Univ., Xi' an (China); Zhang, W. [Xi' an Inst. of Post and Telecommunication, Xi' an (China)

    2007-07-01

    A method to predict the electric load of a power system in real time was presented. The method is based on neurocomputing and partial least squares (PLS). Short-term load forecasts for power systems are generally determined by conventional statistical methods and Computational Intelligence (CI) techniques such as neural computing. However, statistical modeling methods often require the input of questionable distributional assumptions, and neural computing is weak, particularly in determining topology. In order to overcome the problems associated with conventional techniques, the authors developed a CI hybrid model based on neural computation and PLS techniques. The theoretical foundation for the designed CI hybrid model was presented along with its application in a power system. The hybrid model is suitable for nonlinear modeling and latent structure extracting. It can automatically determine the optimal topology to maximize the generalization. The CI hybrid model provides faster convergence and better prediction results compared to the abductive networks model because it incorporates a load conversion technique as well as new transfer functions. In order to demonstrate the effectiveness of the hybrid model, load forecasting was performed on a data set obtained from the Puget Sound Power and Light Company. Compared with the abductive networks model, the CI hybrid model reduced the forecast error by 32.37 per cent on workday, and by an average of 27.18 per cent on the weekend. It was concluded that the CI hybrid model has a more powerful predictive ability. 7 refs., 1 tab., 3 figs.

  15. Neural computing thermal comfort index for HVAC systems

    International Nuclear Information System (INIS)

    Atthajariyakul, S.; Leephakpreeda, T.

    2005-01-01

    The primary purpose of a heating, ventilating and air conditioning (HVAC) system within a building is to make occupants comfortable. Without real time determination of human thermal comfort, it is not feasible for the HVAC system to yield controlled conditions of the air for human comfort all the time. This paper presents a practical approach to determine human thermal comfort quantitatively via neural computing. The neural network model allows real time determination of the thermal comfort index, where it is not practical to compute the conventional predicted mean vote (PMV) index itself in real time. The feed forward neural network model is proposed as an explicit function of the relation of the PMV index to accessible variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity, clothing insulation and human activity. An experiment in an air conditioned office room was done to demonstrate the effectiveness of the proposed methodology. The results show good agreement between the thermal comfort index calculated from the neural network model in real time and those calculated from the conventional PMV model

  16. Advances in neural networks computational intelligence for ICT

    CERN Document Server

    Esposito, Anna; Morabito, Francesco; Pasero, Eros

    2016-01-01

    This carefully edited book is putting emphasis on computational and artificial intelligent methods for learning and their relative applications in robotics, embedded systems, and ICT interfaces for psychological and neurological diseases. The book is a follow-up of the scientific workshop on Neural Networks (WIRN 2015) held in Vietri sul Mare, Italy, from the 20th to the 22nd of May 2015. The workshop, at its 27th edition became a traditional scientific event that brought together scientists from many countries, and several scientific disciplines. Each chapter is an extended version of the original contribution presented at the workshop, and together with the reviewers’ peer revisions it also benefits from the live discussion during the presentation. The content of book is organized in the following sections. 1. Introduction, 2. Machine Learning, 3. Artificial Neural Networks: Algorithms and models, 4. Intelligent Cyberphysical and Embedded System, 5. Computational Intelligence Methods for Biomedical ICT in...

  17. A neural algorithm for a fundamental computing problem.

    Science.gov (United States)

    Dasgupta, Sanjoy; Stevens, Charles F; Navlakha, Saket

    2017-11-10

    Similarity search-for example, identifying similar images in a database or similar documents on the web-is a fundamental computing problem faced by large-scale information retrieval systems. We discovered that the fruit fly olfactory circuit solves this problem with a variant of a computer science algorithm (called locality-sensitive hashing). The fly circuit assigns similar neural activity patterns to similar odors, so that behaviors learned from one odor can be applied when a similar odor is experienced. The fly algorithm, however, uses three computational strategies that depart from traditional approaches. These strategies can be translated to improve the performance of computational similarity searches. This perspective helps illuminate the logic supporting an important sensory function and provides a conceptually new algorithm for solving a fundamental computational problem. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. A Neural Information Field Approach to Computational Cognition

    Science.gov (United States)

    2016-11-18

    effects of distraction during list memory . These distractions include short and long delays before recall, and continuous distraction (forced rehearsal... memory encoding and replay in hippocampus. Computational Neuroscience Society (CNS), p. 166, 2014. D. A. Pinotsis, Neural Field Coding of Short Term ...performance of children learning to count in a SPA model; proposed a new SPA model of cognitive load using the N-back task; developed a new model of the

  19. Neuroscience-inspired computational systems for speech recognition under noisy conditions

    Science.gov (United States)

    Schafer, Phillip B.

    Humans routinely recognize speech in challenging acoustic environments with background music, engine sounds, competing talkers, and other acoustic noise. However, today's automatic speech recognition (ASR) systems perform poorly in such environments. In this dissertation, I present novel methods for ASR designed to approach human-level performance by emulating the brain's processing of sounds. I exploit recent advances in auditory neuroscience to compute neuron-based representations of speech, and design novel methods for decoding these representations to produce word transcriptions. I begin by considering speech representations modeled on the spectrotemporal receptive fields of auditory neurons. These representations can be tuned to optimize a variety of objective functions, which characterize the response properties of a neural population. I propose an objective function that explicitly optimizes the noise invariance of the neural responses, and find that it gives improved performance on an ASR task in noise compared to other objectives. The method as a whole, however, fails to significantly close the performance gap with humans. I next consider speech representations that make use of spiking model neurons. The neurons in this method are feature detectors that selectively respond to spectrotemporal patterns within short time windows in speech. I consider a number of methods for training the response properties of the neurons. In particular, I present a method using linear support vector machines (SVMs) and show that this method produces spikes that are robust to additive noise. I compute the spectrotemporal receptive fields of the neurons for comparison with previous physiological results. To decode the spike-based speech representations, I propose two methods designed to work on isolated word recordings. The first method uses a classical ASR technique based on the hidden Markov model. The second method is a novel template-based recognition scheme that takes

  20. Neural Computations in a Dynamical System with Multiple Time Scales

    Directory of Open Access Journals (Sweden)

    Yuanyuan Mi

    2016-09-01

    Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.

  1. Review On Applications Of Neural Network To Computer Vision

    Science.gov (United States)

    Li, Wei; Nasrabadi, Nasser M.

    1989-03-01

    Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.

  2. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  3. A modular architecture for transparent computation in recurrent neural networks.

    Science.gov (United States)

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Computational modeling of neural activities for statistical inference

    CERN Document Server

    Kolossa, Antonio

    2016-01-01

    This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field. .

  5. Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform.

    Science.gov (United States)

    Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B

    2016-01-01

    Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks.

  6. Computational Models and Emergent Properties of Respiratory Neural Networks

    Science.gov (United States)

    Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.

    2012-01-01

    Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564

  7. Computed tomography of x-ray images using neural networks

    Science.gov (United States)

    Allred, Lloyd G.; Jones, Martin H.; Sheats, Matthew J.; Davis, Anthony W.

    2000-03-01

    Traditional CT reconstruction is done using the technique of Filtered Backprojection. While this technique is widely employed in industrial and medical applications, it is not generally understood that FB has a fundamental flaw. Gibbs phenomena states any Fourier reconstruction will produce errors in the vicinity of all discontinuities, and that the error will equal 28 percent of the discontinuity. A number of years back, one of the authors proposed a biological perception model whereby biological neural networks perceive 3D images from stereo vision. The perception model proports an internal hard-wired neural network which emulates the external physical process. A process is repeated whereby erroneous unknown internal values are used to generate an emulated signal with is compared to external sensed data, generating an error signal. Feedback from the error signal is then sued to update the erroneous internal values. The process is repeated until the error signal no longer decrease. It was soon realized that the same method could be used to obtain CT from x-rays without having to do Fourier transforms. Neural networks have the additional potential for handling non-linearities and missing data. The technique has been applied to some coral images, collected at the Los Alamos high-energy x-ray facility. The initial images show considerable promise, in some instances showing more detail than the FB images obtained from the same data. Although routine production using this new method would require a massively parallel computer, the method shows promise, especially where refined detail is required.

  8. Computations Underlying Social Hierarchy Learning: Distinct Neural Mechanisms for Updating and Representing Self-Relevant Information.

    Science.gov (United States)

    Kumaran, Dharshan; Banino, Andrea; Blundell, Charles; Hassabis, Demis; Dayan, Peter

    2016-12-07

    Knowledge about social hierarchies organizes human behavior, yet we understand little about the underlying computations. Here we show that a Bayesian inference scheme, which tracks the power of individuals, better captures behavioral and neural data compared with a reinforcement learning model inspired by rating systems used in games such as chess. We provide evidence that the medial prefrontal cortex (MPFC) selectively mediates the updating of knowledge about one's own hierarchy, as opposed to that of another individual, a process that underpinned successful performance and involved functional interactions with the amygdala and hippocampus. In contrast, we observed domain-general coding of rank in the amygdala and hippocampus, even when the task did not require it. Our findings reveal the computations underlying a core aspect of social cognition and provide new evidence that self-relevant information may indeed be afforded a unique representational status in the brain. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Artificial intelligence in pharmaceutical product formulation: neural computing

    Directory of Open Access Journals (Sweden)

    Svetlana Ibrić

    2009-10-01

    Full Text Available The properties of a formulation are determined not only by the ratios in which the ingredients are combined but also by the processing conditions. Although the relationships between the ingredient levels, processing conditions, and product performance may be known anecdotally, they can rarely be quantified. In the past, formulators tended to use statistical techniques to model their formulations, relying on response surfaces to provide a mechanism for optimazation. However, the optimization by such a method can be misleading, especially if the formulation is complex. More recently, advances in mathematics and computer science have led to the development of alternative modeling and data mining techniques which work with a wider range of data sources: neural networks (an attempt to mimic the processing of the human brain; genetic algorithms (an attempt to mimic the evolutionary process by which biological systems self-organize and adapt, and fuzzy logic (an attempt to mimic the ability of the human brain to draw conclusions and generate responses based on incomplete or imprecise information. In this review the current technology will be examined, as well as its application in pharmaceutical formulation and processing. The challenges, benefits and future possibilities of neural computing will be discussed.

  10. Fast computation with spikes in a recurrent neural network

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.; Seung, H. Sebastian

    2002-01-01

    Neural networks with recurrent connections are sometimes regarded as too slow at computation to serve as models of the brain. Here we analytically study a counterexample, a network consisting of N integrate-and-fire neurons with self excitation, all-to-all inhibition, instantaneous synaptic coupling, and constant external driving inputs. When the inhibition and/or excitation are large enough, the network performs a winner-take-all computation for all possible external inputs and initial states of the network. The computation is done very quickly: As soon as the winner spikes once, the computation is completed since no other neurons will spike. For some initial states, the winner is the first neuron to spike, and the computation is done at the first spike of the network. In general, there are M potential winners, corresponding to the top M external inputs. When the external inputs are close in magnitude, M tends to be larger. If M>1, the selection of the actual winner is strongly influenced by the initial states. If a special relation between the excitation and inhibition is satisfied, the network always selects the neuron with the maximum external input as the winner

  11. Brain-inspired Stochastic Models and Implementations

    KAUST Repository

    Al-Shedivat, Maruan

    2015-05-12

    One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using machines. The recent breakthrough, named deep learning, demonstrated that large multi-layer networks of arti- ficial neural-like computing units attain remarkable performance on some of these tasks. Nevertheless, such artificial networks remain to be very loosely inspired by the brain, which rich structures and mechanisms may further suggest new algorithms or even new paradigms of computation. In this thesis, we explore brain-inspired probabilistic mechanisms, such as neural and synaptic stochasticity, in the context of generative models. The two questions we ask here are: (i) what kind of models can describe a neural learning system built of stochastic components? and (ii) how can we implement such systems e ̆ciently? To give specific answers, we consider two well known models and the corresponding neural architectures: the Naive Bayes model implemented with a winner-take-all spiking neural network and the Boltzmann machine implemented in a spiking or non-spiking fashion. We propose and analyze an e ̆cient neuromorphic implementation of the stochastic neu- ral firing mechanism and study the e ̄ects of synaptic unreliability on learning generative energy-based models implemented with neural networks.

  12. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  13. Neuroscience-Inspired Artificial Intelligence.

    Science.gov (United States)

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  14. A Federal Vision for Future Computing: A Nanotechnology-Inspired Grand Challenge

    Science.gov (United States)

    2016-07-29

    fault-tolerant system that consumes less power than an incandescent light bulb. Recent progress in developing novel, low-power methods of sensing and...computation—including neuromorphic, magneto-electronic, and analog systems—combined with dramatic advances in neuroscience and cognitive sciences...enable ready-to-fabricate designs and specifications. 4. Brain-Inspired Approaches Neuroscience research suggests that the brain is a complex, high

  15. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    CERN Document Server

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  16. Influence of extracellular oscillations on neural communication: a computational perspective

    Directory of Open Access Journals (Sweden)

    Zoran eTiganj

    2014-02-01

    Full Text Available Neural communication generates oscillations of electric potential in the extracellular medium. In feedback, these oscillations affect the electrochemical processes within the neurons, influencing the timing and the number of action potentials. It is unclear whether this influence should be considered only as noise or it has some functional role in neural communication. Through computer simulations we investigated the effect of various sinusoidal extracellular oscillations on the timing and number of action potentials. Each simulation is based on a multicompartment model of a single neuron, which is stimulated through spatially distributed synaptic activations. A thorough analysis is conducted on a large number of simulations with different models of CA3 and CA1 pyramidal neurons which are modeled using realistic morphologies and active ion conductances. We demonstrated that the influence of the weak extracellular oscillations, which are commonly present in the brain, is rather stochastic and modest. We found that the stronger fields, which are spontaneously present in the brain only in some particular cases (e.g. during seizures or that can be induced externally, could significantly modulate spike timings.

  17. Real-time immune-inspired optimum state-of-charge trajectory estimation using upcoming route information preview and neural networks for plug-in hybrid electric vehicles fuel economy

    Science.gov (United States)

    Mozaffari, Ahmad; Vajedi, Mahyar; Azad, Nasser L.

    2015-06-01

    The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categorizing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomie software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.

  18. Topology and computational performance of attractor neural networks

    International Nuclear Information System (INIS)

    McGraw, Patrick N.; Menzinger, Michael

    2003-01-01

    To explore the relation between network structure and function, we studied the computational performance of Hopfield-type attractor neural nets with regular lattice, random, small-world, and scale-free topologies. The random configuration is the most efficient for storage and retrieval of patterns by the network as a whole. However, in the scale-free case retrieval errors are not distributed uniformly among the nodes. The portion of a pattern encoded by the subset of highly connected nodes is more robust and efficiently recognized than the rest of the pattern. The scale-free network thus achieves a very strong partial recognition. The implications of these findings for brain function and social dynamics are suggestive

  19. Computational optical tomography using 3-D deep convolutional neural networks

    Science.gov (United States)

    Nguyen, Thanh; Bui, Vy; Nehmetallah, George

    2018-04-01

    Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.

  20. Neural Cognition and Affective Computing on Cyber Language.

    Science.gov (United States)

    Huang, Shuang; Zhou, Xuan; Xue, Ke; Wan, Xiqiong; Yang, Zhenyi; Xu, Duo; Ivanović, Mirjana; Yu, Xueer

    2015-01-01

    Characterized by its customary symbol system and simple and vivid expression patterns, cyber language acts as not only a tool for convenient communication but also a carrier of abundant emotions and causes high attention in public opinion analysis, internet marketing, service feedback monitoring, and social emergency management. Based on our multidisciplinary research, this paper presents a classification of the emotional symbols in cyber language, analyzes the cognitive characteristics of different symbols, and puts forward a mechanism model to show the dominant neural activities in that process. Through the comparative study of Chinese, English, and Spanish, which are used by the largest population in the world, this paper discusses the expressive patterns of emotions in international cyber languages and proposes an intelligent method for affective computing on cyber language in a unified PAD (Pleasure-Arousal-Dominance) emotional space.

  1. Neural computation and particle accelerators research, technology and applications

    CERN Document Server

    D'Arras, Horace

    2010-01-01

    This book discusses neural computation, a network or circuit of biological neurons and relatedly, particle accelerators, a scientific instrument which accelerates charged particles such as protons, electrons and deuterons. Accelerators have a very broad range of applications in many industrial fields, from high energy physics to medical isotope production. Nuclear technology is one of the fields discussed in this book. The development that has been reached by particle accelerators in energy and particle intensity has opened the possibility to a wide number of new applications in nuclear technology. This book reviews the applications in the nuclear energy field and the design features of high power neutron sources are explained. Surface treatments of niobium flat samples and superconducting radio frequency cavities by a new technique called gas cluster ion beam are also studied in detail, as well as the process of electropolishing. Furthermore, magnetic devises such as solenoids, dipoles and undulators, which ...

  2. Neural Cognition and Affective Computing on Cyber Language

    Directory of Open Access Journals (Sweden)

    Shuang Huang

    2015-01-01

    Full Text Available Characterized by its customary symbol system and simple and vivid expression patterns, cyber language acts as not only a tool for convenient communication but also a carrier of abundant emotions and causes high attention in public opinion analysis, internet marketing, service feedback monitoring, and social emergency management. Based on our multidisciplinary research, this paper presents a classification of the emotional symbols in cyber language, analyzes the cognitive characteristics of different symbols, and puts forward a mechanism model to show the dominant neural activities in that process. Through the comparative study of Chinese, English, and Spanish, which are used by the largest population in the world, this paper discusses the expressive patterns of emotions in international cyber languages and proposes an intelligent method for affective computing on cyber language in a unified PAD (Pleasure-Arousal-Dominance emotional space.

  3. Bio-inspired algorithms applied to molecular docking simulations.

    Science.gov (United States)

    Heberlé, G; de Azevedo, W F

    2011-01-01

    Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.

  4. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance

  5. Computational speech segregation based on an auditory-inspired modulation analysis

    DEFF Research Database (Denmark)

    May, Tobias; Dau, Torsten

    2014-01-01

    A monaural speech segregation system is presented that estimates the ideal binary mask from noisy speech based on the supervised learning of amplitude modulation spectrogram (AMS) features. Instead of using linearly scaled modulation filters with constant absolute bandwidth, an auditory- inspired...... about speech activity present in neighboring time-frequency units. In order to evaluate the generalization performance of the system to unseen acoustic conditions, the speech segregation system is trained with a limited set of low signal-to-noise ratio (SNR) conditions, but tested over a wide range...

  6. Computational Design of Multi-component Bio-Inspired Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Evan Koufos

    2014-04-01

    Full Text Available Our investigation is motivated by the need to design bilayer membranes with tunable interfacial and mechanical properties for use in a range of applications, such as targeted drug delivery, sensing and imaging. We draw inspiration from biological cell membranes and focus on their principal constituents. In this paper, we present our results on the role of molecular architecture on the interfacial, structural and dynamical properties of bio-inspired membranes. We focus on four lipid architectures with variations in the head group shape and the hydrocarbon tail length. Each lipid species is composed of a hydrophilic head group and two hydrophobic tails. In addition, we study a model of the Cholesterol molecule to understand the interfacial properties of a bilayer membrane composed of rigid, single-tail molecular species. We demonstrate the properties of the bilayer membranes to be determined by the molecular architecture and rigidity of the constituent species. Finally, we demonstrate the formation of a stable mixed bilayer membrane composed of Cholesterol and one of the phospholipid species. Our approach can be adopted to design multi-component bilayer membranes with tunable interfacial and mechanical properties. We use a Molecular Dynamics-based mesoscopic simulation technique called Dissipative Particle Dynamics that resolves the molecular details of the components through soft-sphere coarse-grained models and reproduces the hydrodynamic behavior of the system over extended time scales.

  7. Writing Inspired

    Science.gov (United States)

    Tischhauser, Karen

    2015-01-01

    Students need inspiration to write. Assigning is not teaching. In order to inspire students to write fiction worth reading, teachers must take them through the process of writing. Physical objects inspire good writing with depth. In this article, the reader will be taken through the process of inspiring young writers through the use of boxes.…

  8. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  9. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.

    Science.gov (United States)

    Rao, Chen; Liu, Hao

    2018-06-08

    Owls are a master to achieve silent flight in gliding and flapping flights under natural turbulent environments owing to their unique wing morphologies. While the leading-edge serrations are recently revealed, as a passive flow control micro-device, to play a crucial role in aerodynamic force production and sound suppression [25], the characteristics of wind-gust rejection associated with leading-edge serrations remain unclear. Here we address a large-eddy simulation (LES)-based study of aerodynamic robustness in owl-inspired leading-edge serrations, which is conducted with clean and serrated wing models through mimicking wind-gusts under a longitudinal fluctuation in free-stream inflow and a lateral fluctuation in pitch angle over a broad range of angles of attack (AoAs) over 0° ≤ Φ ≤ 20°. Our results show that the leading-edge serration-based passive flow control mechanisms associated with laminar-turbulent transition work effectively under fluctuated inflow and wing pitch, indicating that the leading-edge serrations are of potential gust fluctuation rejection or robustness in aerodynamic performance. Moreover, it is revealed that the tradeoff between turbulent flow control (i.e., aero-acoustic suppression) and force production in the serrated model holds independently to the wind-gust environments: poor at lower AoAs but capable of achieving equivalent aerodynamic performance at higher AoAs > 15o compared to the clean model. Our results reveal that the owl-inspired leading-edge serrations can be a robust micro-device for aero-acoustic control coping with unsteady and complex wind environments in biomimetic rotor designs for various fluid machineries. © 2018 IOP Publishing Ltd.

  10. Advanced neural network-based computational schemes for robust fault diagnosis

    CERN Document Server

    Mrugalski, Marcin

    2014-01-01

    The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...

  11. Transient diagnosis system using quantum-inspired computing and Minkowski distance

    Energy Technology Data Exchange (ETDEWEB)

    Nicolau, Andressa dos Santos; Schirru, Roberto, E-mail: andressa@lmp.ufrj.b, E-mail: schirru@lmp.ufrj.b [Federal University of Rio de Janeiro (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program

    2011-07-01

    This paper proposes a diagnosis system model for identification of transient in a PWR nuclear power plant, optimized by the Quantum Inspired Evolutionary Algorithm - QEA in order to help nuclear power plant operator reduce his cognitive load and increase his available time to maintain the plant operating in a safe condition. This method was developed in order to be able to recognize the normal condition and three accidents of the design basis list of the nuclear power plant Angra 2, postulated in the Final Safety Analysis Report (FSAR). This System compares the similarly distance between the set of variables of the anomalous event, in a given time t, and the centroids of the design-basis transient variables. The lower similarly distance indicates the class of the transient to which the anomalous event belongs. The QEA was then used to find the best position of the centroids of each class of the selected transients. Such positions maximize the number of the correct classifications. Unlike the diagnosis system proposed in the literature, Minkowski distance was employed to calculate the similarity distance. The signatures of four transients were submitted to 1% and 2% of noise, and tested with prototype vector found by QEA. The results showed that the present transient diagnostic system was successfully implemented in the nuclear accident identification problem and was compatible with the techniques presented in the literature. (author)

  12. Transient diagnosis system using quantum-inspired computing and Minkowski distance

    International Nuclear Information System (INIS)

    Nicolau, Andressa dos Santos; Schirru, Roberto

    2011-01-01

    This paper proposes a diagnosis system model for identification of transient in a PWR nuclear power plant, optimized by the Quantum Inspired Evolutionary Algorithm - QEA in order to help nuclear power plant operator reduce his cognitive load and increase his available time to maintain the plant operating in a safe condition. This method was developed in order to be able to recognize the normal condition and three accidents of the design basis list of the nuclear power plant Angra 2, postulated in the Final Safety Analysis Report (FSAR). This System compares the similarly distance between the set of variables of the anomalous event, in a given time t, and the centroids of the design-basis transient variables. The lower similarly distance indicates the class of the transient to which the anomalous event belongs. The QEA was then used to find the best position of the centroids of each class of the selected transients. Such positions maximize the number of the correct classifications. Unlike the diagnosis system proposed in the literature, Minkowski distance was employed to calculate the similarity distance. The signatures of four transients were submitted to 1% and 2% of noise, and tested with prototype vector found by QEA. The results showed that the present transient diagnostic system was successfully implemented in the nuclear accident identification problem and was compatible with the techniques presented in the literature. (author)

  13. Neural Computations for Biosonar Imaging in the Big Brown Bat

    Science.gov (United States)

    Saillant, Prestor Augusto

    1995-11-01

    The study of the intimate relationship between space and time has taken many forms, ranging from the Theory of Relativity down to the problem of avoiding traffic jams. However, nowhere has this relationship been more fully developed and exploited than in dolphins and bats, which have the ability to utilize biosonar. This thesis describes research on the behavioral and computational basis of echolocation carried out in order to explore the neural mechanisms which may account for the space-time constructs which are of psychological importance to the big brown bat. The SCAT (Spectrogram Correlation and Transformation) computational model was developed to provide a framework for understanding the computational requirements of FM echolocation as determined from psychophysical experiments (i.e., high resolution imaging) and neurobiological constraints (Saillant et al., 1993). The second part of the thesis consisted in developing a new behavioral paradigm for simultaneously studying acoustic behavior and flight behavior of big brown bats in pursuit of stationary or moving targets. In the third part of the thesis a complete acoustic "artificial bat" was constructed, making use of the SCAT process. The development of the artificial bat allowed us to begin experimentation with real world echoes from various targets, in order to gain a better appreciation for the additional complexities and sources of information encountered by bats in flight. Finally, the continued development of the SCAT model has allowed a deeper understanding of the phenomenon of "time expansion" and of the phenomenon of phase sensitivity in the ultrasonic range. Time expansion, first predicted through the use of the SCAT model, and later found in auditory local evoked potential recordings, opens up a new realm of information processing and representation in the brain which as of yet has not been considered. It seems possible, from the work in the auditory system, that time expansion may provide a novel

  14. Aware Computing in Spatial Language Understanding Guided by Cognitively Inspired Knowledge Representation

    Directory of Open Access Journals (Sweden)

    Masao Yokota

    2012-01-01

    Full Text Available Mental image directed semantic theory (MIDST has proposed an omnisensory mental image model and its description language Lmd. This language is designed to represent and compute human intuitive knowledge of space and can provide multimedia expressions with intermediate semantic descriptions in predicate logic. It is hypothesized that such knowledge and semantic descriptions are controlled by human attention toward the world and therefore subjective to each human individual. This paper describes Lmd expression of human subjective knowledge of space and its application to aware computing in cross-media operation between linguistic and pictorial expressions as spatial language understanding.

  15. Integrated Markov-neural reliability computation method: A case for multiple automated guided vehicle system

    International Nuclear Information System (INIS)

    Fazlollahtabar, Hamed; Saidi-Mehrabad, Mohammad; Balakrishnan, Jaydeep

    2015-01-01

    This paper proposes an integrated Markovian and back propagation neural network approaches to compute reliability of a system. While states of failure occurrences are significant elements for accurate reliability computation, Markovian based reliability assessment method is designed. Due to drawbacks shown by Markovian model for steady state reliability computations and neural network for initial training pattern, integration being called Markov-neural is developed and evaluated. To show efficiency of the proposed approach comparative analyses are performed. Also, for managerial implication purpose an application case for multiple automated guided vehicles (AGVs) in manufacturing networks is conducted. - Highlights: • Integrated Markovian and back propagation neural network approach to compute reliability. • Markovian based reliability assessment method. • Managerial implication is shown in an application case for multiple automated guided vehicles (AGVs) in manufacturing networks

  16. Inspired Responses

    Science.gov (United States)

    Steele, Carol Frederick

    2011-01-01

    In terms of teacher quality, Steele believes the best teachers have reached a stage she terms inspired, and that teachers move progressively through the stages of unaware, aware, and capable until the most reflective teachers finally reach the inspired level. Inspired teachers have a wide repertoire of teaching and class management techniques and…

  17. Bio-inspired vision

    International Nuclear Information System (INIS)

    Posch, C

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  18. Hardware Acceleration of Adaptive Neural Algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - world conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.

  19. Deep ART Neural Model for Biologically Inspired Episodic Memory and Its Application to Task Performance of Robots.

    Science.gov (United States)

    Park, Gyeong-Moon; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan

    2017-06-26

    Robots are expected to perform smart services and to undertake various troublesome or difficult tasks in the place of humans. Since these human-scale tasks consist of a temporal sequence of events, robots need episodic memory to store and retrieve the sequences to perform the tasks autonomously in similar situations. As episodic memory, in this paper we propose a novel Deep adaptive resonance theory (ART) neural model and apply it to the task performance of the humanoid robot, Mybot, developed in the Robot Intelligence Technology Laboratory at KAIST. Deep ART has a deep structure to learn events, episodes, and even more like daily episodes. Moreover, it can retrieve the correct episode from partial input cues robustly. To demonstrate the effectiveness and applicability of the proposed Deep ART, experiments are conducted with the humanoid robot, Mybot, for performing the three tasks of arranging toys, making cereal, and disposing of garbage.

  20. 3D Relativistic Hydrodynamic Computations Using Lattice-QCD-Inspired Equations of State

    International Nuclear Information System (INIS)

    Hama, Yogiro; Andrade, Rone P.G.; Grassi, Frederique; Socolowski, Otavio; Kodama, Takeshi; Tavares, Bernardo; Padula, Sandra S.

    2006-01-01

    In this communication, we report results of three-dimensional hydrodynamic computations, by using equations of state with a critical end point as suggested by the lattice QCD. Some of the results are an increase of the multiplicity in the mid-rapidity region and a larger elliptic-flow parameter v 2 . We discuss also the effcts of the initial-condition fluctuations and the continuous emission

  1. 3D Relativistic Hydrodynamic Computations Using Lattice-QCD-Inspired Equations of State

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Yogiro [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Andrade, Rone P.G. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Grassi, Frederique [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Socolowski, Otavio [Instituto Tecnologico da Aeronautica (Brazil); Kodama, Takeshi [Instituto de Fisica, Universidade Federal do Rio de Janeiro (Brazil); Tavares, Bernardo [Instituto de Fisica, Universidade Federal do Rio de Janeiro (Brazil); Padula, Sandra S. [Instituto de Fisica Teorica, Universidade Estadual Paulista (Brazil)

    2006-08-07

    In this communication, we report results of three-dimensional hydrodynamic computations, by using equations of state with a critical end point as suggested by the lattice QCD. Some of the results are an increase of the multiplicity in the mid-rapidity region and a larger elliptic-flow parameter v{sub 2}. We discuss also the effcts of the initial-condition fluctuations and the continuous emission.

  2. The Third Life of Quantum Logic: Quantum Logic Inspired by Quantum Computing

    OpenAIRE

    Dunn, J. Michael; Moss, Lawrence S.; Wang, Zhenghan

    2013-01-01

    We begin by discussing the history of quantum logic, dividing it into three eras or lives. The first life has to do with Birkhoff and von Neumann's algebraic approach in the 1930's. The second life has to do with attempt to understand quantum logic as logic that began in the late 1950's and blossomed in the 1970's. And the third life has to do with recent developments in quantum logic coming from its connections to quantum computation. We discuss our own work connecting quantum logic to quant...

  3. Si Interface Barrier Modification on Memristor for Brain-Inspired Computing

    Science.gov (United States)

    Wu, Wei; Wu, Huaqiang; Gao, Bin; Qian, He

    2017-06-01

    Memristor is an emerging technology aimed at implementing neuromorphic computing in hardware system. Resistive random access memory (RRAM) is a kind of memristor with excellent performance, but abrupt switching in the set process influences the efficiency of neuromorphic system. In this study, we present an interface switching memristor device based on TiN/Si/TaOx/TiN stack and CMOS compatible fabrication process to achieve gradually resistive switching both in set and reset processes. The devices show a more than 10 switching window. The related switching mechanism is discussed.

  4. Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

    Directory of Open Access Journals (Sweden)

    GHULAM MUSTAFA

    2017-01-01

    Full Text Available Compute intensive programs generally consume significant fraction of execution time in a small amount of repetitive code. Such repetitive code is commonly known as hotspot code. We observed that compute intensive hotspots often possess exploitable loop level parallelism. A JIT (Just-in-Time compiler profiles a running program to identify its hotspots. Hotspots are then translated into native code, for efficient execution. Using similar approach, we propose a methodology to identify hotspots and exploit their parallelization potential on multicore systems. Proposed methodology selects and parallelizes each DOALL loop that is either contained in a hotspot method or calls a hotspot method. The methodology could be integrated in front-end of a JIT compiler to parallelize sequential code, just before native translation. However, compilation to native code is out of scope of this work. As a case study, we analyze eighteen JGF (Java Grande Forum benchmarks to determine parallelization potential of hotspots. Eight benchmarks demonstrate a speedup of up to 7.6x on an 8-core system

  5. Just-in-time compilation-inspired methodology for parallelization of compute intensive java code

    International Nuclear Information System (INIS)

    Mustafa, G.; Ghani, M.U.

    2017-01-01

    Compute intensive programs generally consume significant fraction of execution time in a small amount of repetitive code. Such repetitive code is commonly known as hotspot code. We observed that compute intensive hotspots often possess exploitable loop level parallelism. A JIT (Just-in-Time) compiler profiles a running program to identify its hotspots. Hotspots are then translated into native code, for efficient execution. Using similar approach, we propose a methodology to identify hotspots and exploit their parallelization potential on multicore systems. Proposed methodology selects and parallelizes each DOALL loop that is either contained in a hotspot method or calls a hotspot method. The methodology could be integrated in front-end of a JIT compiler to parallelize sequential code, just before native translation. However, compilation to native code is out of scope of this work. As a case study, we analyze eighteen JGF (Java Grande Forum) benchmarks to determine parallelization potential of hotspots. Eight benchmarks demonstrate a speedup of up to 7.6x on an 8-core system. (author)

  6. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  7. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    Science.gov (United States)

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  8. Back propagation and Monte Carlo algorithms for neural network computations

    International Nuclear Information System (INIS)

    Junczys, R.; Wit, R.

    1996-01-01

    Results of teaching procedures for neural network for two different algorithms are presented. The first one is based on the well known back-propagation technique, the second is an adopted version of the Monte Carlo global minimum seeking method. Combination of these two, different in nature, approaches provides promising results. (author) nature, approaches provides promising results. (author)

  9. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI.

    Science.gov (United States)

    Song, Yang; Zhang, Yu-Dong; Yan, Xu; Liu, Hui; Zhou, Minxiong; Hu, Bingwen; Yang, Guang

    2018-04-16

    Deep learning is the most promising methodology for automatic computer-aided diagnosis of prostate cancer (PCa) with multiparametric MRI (mp-MRI). To develop an automatic approach based on deep convolutional neural network (DCNN) to classify PCa and noncancerous tissues (NC) with mp-MRI. Retrospective. In all, 195 patients with localized PCa were collected from a PROSTATEx database. In total, 159/17/19 patients with 444/48/55 observations (215/23/23 PCas and 229/25/32 NCs) were randomly selected for training/validation/testing, respectively. T 2 -weighted, diffusion-weighted, and apparent diffusion coefficient images. A radiologist manually labeled the regions of interest of PCas and NCs and estimated the Prostate Imaging Reporting and Data System (PI-RADS) scores for each region. Inspired by VGG-Net, we designed a patch-based DCNN model to distinguish between PCa and NCs based on a combination of mp-MRI data. Additionally, an enhanced prediction method was used to improve the prediction accuracy. The performance of DCNN prediction was tested using a receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Moreover, the predicted result was compared with the PI-RADS score to evaluate its clinical value using decision curve analysis. Two-sided Wilcoxon signed-rank test with statistical significance set at 0.05. The DCNN produced excellent diagnostic performance in distinguishing between PCa and NC for testing datasets with an AUC of 0.944 (95% confidence interval: 0.876-0.994), sensitivity of 87.0%, specificity of 90.6%, PPV of 87.0%, and NPV of 90.6%. The decision curve analysis revealed that the joint model of PI-RADS and DCNN provided additional net benefits compared with the DCNN model and the PI-RADS scheme. The proposed DCNN-based model with enhanced prediction yielded high performance in statistical analysis, suggesting

  10. Bio-inspired networking

    CERN Document Server

    Câmara, Daniel

    2015-01-01

    Bio-inspired techniques are based on principles, or models, of biological systems. In general, natural systems present remarkable capabilities of resilience and adaptability. In this book, we explore how bio-inspired methods can solve different problems linked to computer networks. Future networks are expected to be autonomous, scalable and adaptive. During millions of years of evolution, nature has developed a number of different systems that present these and other characteristics required for the next generation networks. Indeed, a series of bio-inspired methods have been successfully used to solve the most diverse problems linked to computer networks. This book presents some of these techniques from a theoretical and practical point of view. Discusses the key concepts of bio-inspired networking to aid you in finding efficient networking solutions Delivers examples of techniques both in theoretical concepts and practical applications Helps you apply nature's dynamic resource and task management to your co...

  11. Quantum perceptron over a field and neural network architecture selection in a quantum computer.

    Science.gov (United States)

    da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa

    2016-04-01

    In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks.

    Science.gov (United States)

    Längkvist, Martin; Jendeberg, Johan; Thunberg, Per; Loutfi, Amy; Lidén, Mats

    2018-06-01

    Computed tomography (CT) is the method of choice for diagnosing ureteral stones - kidney stones that obstruct the ureter. The purpose of this study is to develop a computer aided detection (CAD) algorithm for identifying a ureteral stone in thin slice CT volumes. The challenge in CAD for urinary stones lies in the similarity in shape and intensity of stones with non-stone structures and how to efficiently deal with large high-resolution CT volumes. We address these challenges by using a Convolutional Neural Network (CNN) that works directly on the high resolution CT volumes. The method is evaluated on a large data base of 465 clinically acquired high-resolution CT volumes of the urinary tract with labeling of ureteral stones performed by a radiologist. The best model using 2.5D input data and anatomical information achieved a sensitivity of 100% and an average of 2.68 false-positives per patient on a test set of 88 scans. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Science.gov (United States)

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  14. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Directory of Open Access Journals (Sweden)

    Rohit Shukla

    2018-03-01

    Full Text Available Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  15. Application of neural computing paradigms for signal validation

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Eryurek, E.; Mathai, G.

    1989-01-01

    Signal validation and process monitoring problems often require the prediction of one or more process variables in a system. The feasibility of applying neural network paradigms to relate one variable with a set of other related variables is studied. The backpropagation network (BPN) is applied to develop models of signals from both a commercial power plant and the EBR-II. Modification of the BPN algorithm is studied with emphasis on the speed of network training and the accuracy of prediction. The prediction of process variables in a Westinghouse PWR is presented in this paper

  16. Artificial intelligence. Application of the Statistical Neural Networks computer program in nuclear medicine

    International Nuclear Information System (INIS)

    Stefaniak, B.; Cholewinski, W.; Tarkowska, A.

    2005-01-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer application of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. In this paper practical aspects of scientific application of ANN in medicine using the Statistical Neural Networks Computer program, were presented. Several steps of data analysis with the above ANN software package were discussed shortly, from material selection and its dividing into groups to the types of obtained results. The typical problems connected with assessing scintigrams by ANN were also described. (author)

  17. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    Directory of Open Access Journals (Sweden)

    Daniel Durstewitz

    2017-06-01

    Full Text Available The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast maximum-likelihood estimation framework for PLRNNs that may enable to recover

  18. Neural-network-based depth computation for blind navigation

    Science.gov (United States)

    Wong, Farrah; Nagarajan, Ramachandran R.; Yaacob, Sazali

    2004-12-01

    A research undertaken to help blind people to navigate autonomously or with minimum assistance is termed as "Blind Navigation". In this research, an aid that could help blind people in their navigation is proposed. Distance serves as an important clue during our navigation. A stereovision navigation aid implemented with two digital video cameras that are spaced apart and fixed on a headgear to obtain the distance information is presented. In this paper, a neural network methodology is used to obtain the required parameters of the camera which is known as camera calibration. These parameters are not known but obtained by adjusting the weights in the network. The inputs to the network consist of the matching features in the stereo pair images. A back propagation network with 16-input neurons, 3 hidden neurons and 1 output neuron, which gives depth, is created. The distance information is incorporated into the final processed image as four gray levels such as white, light gray, dark gray and black. Preliminary results have shown that the percentage errors fall below 10%. It is envisaged that the distance provided by neural network shall enable blind individuals to go near and pick up an object of interest.

  19. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  20. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  1. Oscillations, neural computations and learning during wake and sleep.

    Science.gov (United States)

    Penagos, Hector; Varela, Carmen; Wilson, Matthew A

    2017-06-01

    Learning and memory theories consider sleep and the reactivation of waking hippocampal neural patterns to be crucial for the long-term consolidation of memories. Here we propose that precisely coordinated representations across brain regions allow the inference and evaluation of causal relationships to train an internal generative model of the world. This training starts during wakefulness and strongly benefits from sleep because its recurring nested oscillations may reflect compositional operations that facilitate a hierarchical processing of information, potentially including behavioral policy evaluations. This suggests that an important function of sleep activity is to provide conditions conducive to general inference, prediction and insight, which contribute to a more robust internal model that underlies generalization and adaptive behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Spiking neural networks on high performance computer clusters

    Science.gov (United States)

    Chen, Chong; Taha, Tarek M.

    2011-09-01

    In this paper we examine the acceleration of two spiking neural network models on three clusters of multicore processors representing three categories of processors: x86, STI Cell, and NVIDIA GPGPUs. The x86 cluster utilized consists of 352 dualcore AMD Opterons, the Cell cluster consists of 320 Sony Playstation 3s, while the GPGPU cluster contains 32 NVIDIA Tesla S1070 systems. The results indicate that the GPGPU platform can dominate in performance compared to the Cell and x86 platforms examined. From a cost perspective, the GPGPU is more expensive in terms of neuron/s throughput. If the cost of GPGPUs go down in the future, this platform will become very cost effective for these models.

  3. Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations.

    Science.gov (United States)

    Giese, Martin A; Rizzolatti, Giacomo

    2015-10-07

    Action recognition has received enormous interest in the field of neuroscience over the last two decades. In spite of this interest, the knowledge in terms of fundamental neural mechanisms that provide constraints for underlying computations remains rather limited. This fact stands in contrast with a wide variety of speculative theories about how action recognition might work. This review focuses on new fundamental electrophysiological results in monkeys, which provide constraints for the detailed underlying computations. In addition, we review models for action recognition and processing that have concrete mathematical implementations, as opposed to conceptual models. We think that only such implemented models can be meaningfully linked quantitatively to physiological data and have a potential to narrow down the many possible computational explanations for action recognition. In addition, only concrete implementations allow judging whether postulated computational concepts have a feasible implementation in terms of realistic neural circuits. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Distributed computing methodology for training neural networks in an image-guided diagnostic application.

    Science.gov (United States)

    Plagianakos, V P; Magoulas, G D; Vrahatis, M N

    2006-03-01

    Distributed computing is a process through which a set of computers connected by a network is used collectively to solve a single problem. In this paper, we propose a distributed computing methodology for training neural networks for the detection of lesions in colonoscopy. Our approach is based on partitioning the training set across multiple processors using a parallel virtual machine. In this way, interconnected computers of varied architectures can be used for the distributed evaluation of the error function and gradient values, and, thus, training neural networks utilizing various learning methods. The proposed methodology has large granularity and low synchronization, and has been implemented and tested. Our results indicate that the parallel virtual machine implementation of the training algorithms developed leads to considerable speedup, especially when large network architectures and training sets are used.

  5. Neural computation of visual imaging based on Kronecker product in the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Guozheng Yao

    2010-03-01

    Full Text Available Abstract Background What kind of neural computation is actually performed by the primary visual cortex and how is this represented mathematically at the system level? It is an important problem in the visual information processing, but has not been well answered. In this paper, according to our understanding of retinal organization and parallel multi-channel topographical mapping between retina and primary visual cortex V1, we divide an image into orthogonal and orderly array of image primitives (or patches, in which each patch will evoke activities of simple cells in V1. From viewpoint of information processing, this activated process, essentially, involves optimal detection and optimal matching of receptive fields of simple cells with features contained in image patches. For the reconstruction of the visual image in the visual cortex V1 based on the principle of minimum mean squares error, it is natural to use the inner product expression in neural computation, which then is transformed into matrix form. Results The inner product is carried out by using Kronecker product between patches and function architecture (or functional column in localized and oriented neural computing. Compared with Fourier Transform, the mathematical description of Kronecker product is simple and intuitive, so is the algorithm more suitable for neural computation of visual cortex V1. Results of computer simulation based on two-dimensional Gabor pyramid wavelets show that the theoretical analysis and the proposed model are reasonable. Conclusions Our results are: 1. The neural computation of the retinal image in cortex V1 can be expressed to Kronecker product operation and its matrix form, this algorithm is implemented by the inner operation between retinal image primitives and primary visual cortex's column. It has simple, efficient and robust features, which is, therefore, such a neural algorithm, which can be completed by biological vision. 2. It is more suitable

  6. A computational framework for ultrastructural mapping of neural circuitry.

    Directory of Open Access Journals (Sweden)

    James R Anderson

    2009-03-01

    Full Text Available Circuitry mapping of metazoan neural systems is difficult because canonical neural regions (regions containing one or more copies of all components are large, regional borders are uncertain, neuronal diversity is high, and potential network topologies so numerous that only anatomical ground truth can resolve them. Complete mapping of a specific network requires synaptic resolution, canonical region coverage, and robust neuronal classification. Though transmission electron microscopy (TEM remains the optimal tool for network mapping, the process of building large serial section TEM (ssTEM image volumes is rendered difficult by the need to precisely mosaic distorted image tiles and register distorted mosaics. Moreover, most molecular neuronal class markers are poorly compatible with optimal TEM imaging. Our objective was to build a complete framework for ultrastructural circuitry mapping. This framework combines strong TEM-compliant small molecule profiling with automated image tile mosaicking, automated slice-to-slice image registration, and gigabyte-scale image browsing for volume annotation. Specifically we show how ultrathin molecular profiling datasets and their resultant classification maps can be embedded into ssTEM datasets and how scripted acquisition tools (SerialEM, mosaicking and registration (ir-tools, and large slice viewers (MosaicBuilder, Viking can be used to manage terabyte-scale volumes. These methods enable large-scale connectivity analyses of new and legacy data. In well-posed tasks (e.g., complete network mapping in retina, terabyte-scale image volumes that previously would require decades of assembly can now be completed in months. Perhaps more importantly, the fusion of molecular profiling, image acquisition by SerialEM, ir-tools volume assembly, and data viewers/annotators also allow ssTEM to be used as a prospective tool for discovery in nonneural systems and a practical screening methodology for neurogenetics. Finally

  7. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  8. Neural Network Design on the SRC-6 Reconfigurable Computer

    Science.gov (United States)

    2006-12-01

    fingerprint identification. In this field, automatic identification methods are used to save time, especially for the purpose of fingerprint matching in...grid widths and lengths and therefore was useful in producing an accurate canvas with which to create sample training images. The added benefit of...tools available free of charge and readily accessible on the computer, it was simple to design bitmap data files visually on a canvas and then

  9. A computational neural model of goal-directed utterance selection.

    Science.gov (United States)

    Klein, Michael; Kamp, Hans; Palm, Guenther; Doya, Kenji

    2010-06-01

    It is generally agreed that much of human communication is motivated by extra-linguistic goals: we often make utterances in order to get others to do something, or to make them support our cause, or adopt our point of view, etc. However, thus far a computational foundation for this view on language use has been lacking. In this paper we propose such a foundation using Markov Decision Processes. We borrow computational components from the field of action selection and motor control, where a neurobiological basis of these components has been established. In particular, we make use of internal models (i.e., next-state transition functions defined on current state action pairs). The internal model is coupled with reinforcement learning of a value function that is used to assess the desirability of any state that utterances (as well as certain non-verbal actions) can bring about. This cognitive architecture is tested in a number of multi-agent game simulations. In these computational experiments an agent learns to predict the context-dependent effects of utterances by interacting with other agents that are already competent speakers. We show that the cognitive architecture can account for acquiring the capability of deciding when to speak in order to achieve a certain goal (instead of performing a non-verbal action or simply doing nothing), whom to address and what to say. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Depth perception in frogs and toads a study in neural computing

    CERN Document Server

    House, Donald

    1989-01-01

    Depth Perception in Frogs and Toads provides a comprehensive exploration of the phenomenon of depth perception in frogs and toads, as seen from a neuro-computational point of view. Perhaps the most important feature of the book is the development and presentation of two neurally realizable depth perception algorithms that utilize both monocular and binocular depth cues in a cooperative fashion. One of these algorithms is specialized for computation of depth maps for navigation, and the other for the selection and localization of a single prey for prey catching. The book is also unique in that it thoroughly reviews the known neuroanatomical, neurophysiological and behavioral data, and then synthesizes, organizes and interprets that information to explain a complex sensory-motor task. The book will be of special interest to that segment of the neural computing community interested in understanding natural neurocomputational structures, particularly to those working in perception and sensory-motor coordination. ...

  11. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.

    Science.gov (United States)

    Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang

    2011-11-01

    The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

  12. Cardiac dosimetric evaluation of deep inspiration breath-hold level variances using computed tomography scans generated from deformable image registration displacement vectors

    International Nuclear Information System (INIS)

    Harry, Taylor; Rahn, Doug; Semenov, Denis; Gu, Xuejun; Yashar, Catheryn; Einck, John; Jiang, Steve; Cerviño, Laura

    2016-01-01

    There is a reduction in cardiac dose for left-sided breast radiotherapy during treatment with deep inspiration breath-hold (DIBH) when compared with treatment with free breathing (FB). Various levels of DIBH may occur for different treatment fractions. Dosimetric effects due to this and other motions are a major component of uncertainty in radiotherapy in this setting. Recent developments in deformable registration techniques allow displacement vectors between various temporal and spatial patient representations to be digitally quantified. We propose a method to evaluate the dosimetric effect to the heart from variable reproducibility of DIBH by using deformable registration to create new anatomical computed tomography (CT) scans. From deformable registration, 3-dimensional deformation vectors are generated with FB and DIBH. The obtained deformation vectors are scaled to 75%, 90%, and 110% and are applied to the reference image to create new CT scans at these inspirational levels. The scans are then imported into the treatment planning system and dose calculations are performed. The average mean dose to the heart was 2.5 Gy (0.7 to 9.6 Gy) at FB, 1.2 Gy (0.6 to 3.8 Gy, p < 0.001) at 75% inspiration, 1.1 Gy (0.6 to 3.1 Gy, p = 0.004) at 90% inspiration, 1.0 Gy (0.6 to 3.0 Gy) at 100% inspiration or DIBH, and 1.0 Gy (0.6 to 2.8 Gy, p = 0.019) at 110% inspiration. The average mean dose to the left anterior descending artery (LAD) was 19.9 Gy (2.4 to 46.4 Gy), 8.6 Gy (2.0 to 43.8 Gy, p < 0.001), 7.2 Gy (1.9 to 40.1 Gy, p = 0.035), 6.5 Gy (1.8 to 34.7 Gy), and 5.3 Gy (1.5 to 31.5 Gy, p < 0.001), correspondingly. This novel method enables numerous anatomical situations to be mimicked and quantifies the dosimetric effect they have on a treatment plan.

  13. Cardiac dosimetric evaluation of deep inspiration breath-hold level variances using computed tomography scans generated from deformable image registration displacement vectors

    Energy Technology Data Exchange (ETDEWEB)

    Harry, Taylor [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA (United States); Department of Radiation Medicine, Oregon Health and Science University, Portland, OR (United States); Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, OR (United States); Rahn, Doug; Semenov, Denis [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA (United States); Gu, Xuejun [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Yashar, Catheryn; Einck, John [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA (United States); Jiang, Steve [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Cerviño, Laura, E-mail: lcervino@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA (United States)

    2016-04-01

    There is a reduction in cardiac dose for left-sided breast radiotherapy during treatment with deep inspiration breath-hold (DIBH) when compared with treatment with free breathing (FB). Various levels of DIBH may occur for different treatment fractions. Dosimetric effects due to this and other motions are a major component of uncertainty in radiotherapy in this setting. Recent developments in deformable registration techniques allow displacement vectors between various temporal and spatial patient representations to be digitally quantified. We propose a method to evaluate the dosimetric effect to the heart from variable reproducibility of DIBH by using deformable registration to create new anatomical computed tomography (CT) scans. From deformable registration, 3-dimensional deformation vectors are generated with FB and DIBH. The obtained deformation vectors are scaled to 75%, 90%, and 110% and are applied to the reference image to create new CT scans at these inspirational levels. The scans are then imported into the treatment planning system and dose calculations are performed. The average mean dose to the heart was 2.5 Gy (0.7 to 9.6 Gy) at FB, 1.2 Gy (0.6 to 3.8 Gy, p < 0.001) at 75% inspiration, 1.1 Gy (0.6 to 3.1 Gy, p = 0.004) at 90% inspiration, 1.0 Gy (0.6 to 3.0 Gy) at 100% inspiration or DIBH, and 1.0 Gy (0.6 to 2.8 Gy, p = 0.019) at 110% inspiration. The average mean dose to the left anterior descending artery (LAD) was 19.9 Gy (2.4 to 46.4 Gy), 8.6 Gy (2.0 to 43.8 Gy, p < 0.001), 7.2 Gy (1.9 to 40.1 Gy, p = 0.035), 6.5 Gy (1.8 to 34.7 Gy), and 5.3 Gy (1.5 to 31.5 Gy, p < 0.001), correspondingly. This novel method enables numerous anatomical situations to be mimicked and quantifies the dosimetric effect they have on a treatment plan.

  14. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ruchi D. Chande

    2017-01-01

    Full Text Available Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  15. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks.

    Science.gov (United States)

    Chande, Ruchi D; Hargraves, Rosalyn Hobson; Ortiz-Robinson, Norma; Wayne, Jennifer S

    2017-01-01

    Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  16. Modular Neural Tile Architecture for Compact Embedded Hardware Spiking Neural Network

    NARCIS (Netherlands)

    Pande, Sandeep; Morgan, Fearghal; Cawley, Seamus; Bruintjes, Tom; Smit, Gerardus Johannes Maria; McGinley, Brian; Carrillo, Snaider; Harkin, Jim; McDaid, Liam

    2013-01-01

    Biologically-inspired packet switched network on chip (NoC) based hardware spiking neural network (SNN) architectures have been proposed as an embedded computing platform for classification, estimation and control applications. Storage of large synaptic connectivity (SNN topology) information in

  17. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    Science.gov (United States)

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  18. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Directory of Open Access Journals (Sweden)

    Lukas Falat

    2016-01-01

    Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  19. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Science.gov (United States)

    Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  20. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task

    Science.gov (United States)

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.

    2014-12-01

    Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  1. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.

    Science.gov (United States)

    Revechkis, Boris; Aflalo, Tyson N S; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A

    2014-12-01

    To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like 'Face in a Crowd' task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the 'Crowd') using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a 'Crowd Off' condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.

  2. Computing single step operators of logic programming in radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  3. Computing single step operators of logic programming in radial basis function neural networks

    Science.gov (United States)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  4. Container-code recognition system based on computer vision and deep neural networks

    Science.gov (United States)

    Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao

    2018-04-01

    Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.

  5. Computing single step operators of logic programming in radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-01-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T p :I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks

  6. The Use of Neural Network to Recognize the Parts of the Computer Motherboard

    OpenAIRE

    Abbas M. Ali; S. D. Gore; Musaab AL-Sarierah

    2005-01-01

    This study suggests a new approach of learning which utilizes the techniques of computer vision to recognize the parts inside the motherboard. The main thrust is to identify different parts of the motherboard using a Hopfield Neural Network. The outcome of the net is compared with the objects stored in the database. The proposed scheme is implemented using bottom -up approach, where steps like edge detection, spatial filtering, image masking..etc are performed in sequence. the scheme is simul...

  7. Artificial Neural Networks for Reducing Computational Effort in Active Truncated Model Testing of Mooring Lines

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Voie, Per Erlend Torbergsen; Høgsberg, Jan Becker

    2015-01-01

    simultaneously, this method is very demanding in terms of numerical efficiency and computational power. Therefore, this method has not yet proved to be feasible. It has recently been shown how a hybrid method combining classical numerical models and artificial neural networks (ANN) can provide a dramatic...... prior to the experiment and with a properly trained ANN it is no problem to obtain accurate simulations much faster than real time-without any need for large computational capacity. The present study demonstrates how this hybrid method can be applied to the active truncated experiments yielding a system...

  8. International Conference on Artificial Neural Networks (ICANN)

    CERN Document Server

    Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics

    2015-01-01

    The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...

  9. The impact of natural aging on computational and neural indices of perceptual decision making: A review.

    Science.gov (United States)

    Dully, Jessica; McGovern, David P; O'Connell, Redmond G

    2018-02-10

    It is well established that natural aging negatively impacts on a wide variety of cognitive functions and research has sought to identify core neural mechanisms that may account for these disparate changes. A central feature of any cognitive task is the requirement to translate sensory information into an appropriate action - a process commonly known as perceptual decision making. While computational, psychophysical, and neurophysiological research has made substantial progress in establishing the key computations and neural mechanisms underpinning decision making, it is only relatively recently that this knowledge has begun to be applied to research on aging. The purpose of this review is to provide an overview of this work which is beginning to offer new insights into the core psychological processes that mediate age-related cognitive decline in adults aged 65 years and over. Mathematical modelling studies have consistently reported that older adults display longer non-decisional processing times and implement more conservative decision policies than their younger counterparts. However, there are limits on what we can learn from behavioural modeling alone and neurophysiological analyses can play an essential role in empirically validating model predictions and in pinpointing the precise neural mechanisms that are impacted by aging. Although few studies to date have explicitly examined correspondences between computational models and neural data with respect to cognitive aging, neurophysiological studies have already highlighted age-related changes at multiple levels of the sensorimotor hierarchy that are likely to be consequential for decision making behaviour. Here, we provide an overview of this literature and suggest some future directions for the field. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    Science.gov (United States)

    Blake, R W; Ng, H; Chan, K H S; Li, J

    2008-09-01

    Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications).

  11. Introduction to neural networks

    International Nuclear Information System (INIS)

    Pavlopoulos, P.

    1996-01-01

    This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix

  12. Memristor-Based Analog Computation and Neural Network Classification with a Dot Product Engine.

    Science.gov (United States)

    Hu, Miao; Graves, Catherine E; Li, Can; Li, Yunning; Ge, Ning; Montgomery, Eric; Davila, Noraica; Jiang, Hao; Williams, R Stanley; Yang, J Joshua; Xia, Qiangfei; Strachan, John Paul

    2018-03-01

    Using memristor crossbar arrays to accelerate computations is a promising approach to efficiently implement algorithms in deep neural networks. Early demonstrations, however, are limited to simulations or small-scale problems primarily due to materials and device challenges that limit the size of the memristor crossbar arrays that can be reliably programmed to stable and analog values, which is the focus of the current work. High-precision analog tuning and control of memristor cells across a 128 × 64 array is demonstrated, and the resulting vector matrix multiplication (VMM) computing precision is evaluated. Single-layer neural network inference is performed in these arrays, and the performance compared to a digital approach is assessed. Memristor computing system used here reaches a VMM accuracy equivalent of 6 bits, and an 89.9% recognition accuracy is achieved for the 10k MNIST handwritten digit test set. Forecasts show that with integrated (on chip) and scaled memristors, a computational efficiency greater than 100 trillion operations per second per Watt is possible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Computational neuroanatomy: ontology-based representation of neural components and connectivity.

    Science.gov (United States)

    Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron

    2009-02-05

    A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future.

  14. Population coding and decoding in a neural field: a computational study.

    Science.gov (United States)

    Wu, Si; Amari, Shun-Ichi; Nakahara, Hiroyuki

    2002-05-01

    This study uses a neural field model to investigate computational aspects of population coding and decoding when the stimulus is a single variable. A general prototype model for the encoding process is proposed, in which neural responses are correlated, with strength specified by a gaussian function of their difference in preferred stimuli. Based on the model, we study the effect of correlation on the Fisher information, compare the performances of three decoding methods that differ in the amount of encoding information being used, and investigate the implementation of the three methods by using a recurrent network. This study not only rediscovers main results in existing literatures in a unified way, but also reveals important new features, especially when the neural correlation is strong. As the neural correlation of firing becomes larger, the Fisher information decreases drastically. We confirm that as the width of correlation increases, the Fisher information saturates and no longer increases in proportion to the number of neurons. However, we prove that as the width increases further--wider than (sqrt)2 times the effective width of the turning function--the Fisher information increases again, and it increases without limit in proportion to the number of neurons. Furthermore, we clarify the asymptotic efficiency of the maximum likelihood inference (MLI) type of decoding methods for correlated neural signals. It shows that when the correlation covers a nonlocal range of population (excepting the uniform correlation and when the noise is extremely small), the MLI type of method, whose decoding error satisfies the Cauchy-type distribution, is not asymptotically efficient. This implies that the variance is no longer adequate to measure decoding accuracy.

  15. Biomaterials and computation: a strategic alliance to investigate emergent responses of neural cells.

    Science.gov (United States)

    Sergi, Pier Nicola; Cavalcanti-Adam, Elisabetta Ada

    2017-03-28

    Topographical and chemical cues drive migration, outgrowth and regeneration of neurons in different and crucial biological conditions. In the natural extracellular matrix, their influences are so closely coupled that they result in complex cellular responses. As a consequence, engineered biomaterials are widely used to simplify in vitro conditions, disentangling intricate in vivo behaviours, and narrowing the investigation on particular emergent responses. Nevertheless, how topographical and chemical cues affect the emergent response of neural cells is still unclear, thus in silico models are used as additional tools to reproduce and investigate the interactions between cells and engineered biomaterials. This work aims at presenting the synergistic use of biomaterials-based experiments and computation as a strategic way to promote the discovering of complex neural responses as well as to allow the interactions between cells and biomaterials to be quantitatively investigated, fostering a rational design of experiments.

  16. Programmable neural processing on a smartdust for brain-computer interfaces.

    Science.gov (United States)

    Yuwen Sun; Shimeng Huang; Oresko, Joseph J; Cheng, Allen C

    2010-10-01

    Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing unit, or via custom application-specific integrated circuits that lack the programmability to perform different algorithms and upgrades. In this research, we propose and test the feasibility of performing on-chip, real-time spike sorting on a programmable smartdust, including feature extraction, classification, compression, and wireless transmission. A detailed power/performance tradeoff analysis using DVFS is presented. Our experimental results show that the execution time and power density meet the requirements to perform real-time spike sorting and wireless transmission on a single neural channel.

  17. Quality-of-service sensitivity to bio-inspired/evolutionary computational methods for intrusion detection in wireless ad hoc multimedia sensor networks

    Science.gov (United States)

    Hortos, William S.

    2012-06-01

    In the author's previous work, a cross-layer protocol approach to wireless sensor network (WSN) intrusion detection an identification is created with multiple bio-inspired/evolutionary computational methods applied to the functions of the protocol layers, a single method to each layer, to improve the intrusion-detection performance of the protocol over that of one method applied to only a single layer's functions. The WSN cross-layer protocol design embeds GAs, anti-phase synchronization, ACO, and a trust model based on quantized data reputation at the physical, MAC, network, and application layer, respectively. The construct neglects to assess the net effect of the combined bioinspired methods on the quality-of-service (QoS) performance for "normal" data streams, that is, streams without intrusions. Analytic expressions of throughput, delay, and jitter, coupled with simulation results for WSNs free of intrusion attacks, are the basis for sensitivity analyses of QoS metrics for normal traffic to the bio-inspired methods.

  18. Unification of behavioural, computational and neural accounts of word production errors in post-stroke aphasia

    Directory of Open Access Journals (Sweden)

    Marija Tochadse

    Full Text Available Neuropsychological assessment, brain imaging and computational modelling have augmented our understanding of the multifaceted functional deficits in people with language disorders after stroke. Despite the volume of research using each technique, no studies have attempted to assimilate all three approaches in order to generate a unified behavioural-computational-neural model of post-stroke aphasia.The present study included data from 53 participants with chronic post-stroke aphasia and merged: aphasiological profiles based on a detailed neuropsychological assessment battery which was analysed with principal component and correlational analyses; measures of the impairment taken from Dell's computational model of word production; and the neural correlates of both behavioural and computational accounts analysed by voxel-based correlational methodology.As a result, all three strands coincide with the separation of semantic and phonological stages of aphasic naming, revealing the prominence of these dimensions for the explanation of aphasic performance. Over and above three previously described principal components (phonological ability, semantic ability, executive-demand, we observed auditory working memory as a novel factor. While the phonological Dell parameter was uniquely related to phonological errors/factor, the semantic parameter was less clear-cut, being related to both semantic errors and omissions, and loading heavily with semantic ability and auditory working memory factors. The close relationship between the semantic Dell parameter and omission errors recurred in their high lesion-correlate overlap in the anterior middle temporal gyrus. In addition, the simultaneous overlap of the lesion correlate of omission errors with more dorsal temporal regions, associated with the phonological parameter, highlights the multiple drivers that underpin this error type. The novel auditory working memory factor was located along left superior

  19. The prediction in computer color matching of dentistry based on GA+BP neural network.

    Science.gov (United States)

    Li, Haisheng; Lai, Long; Chen, Li; Lu, Cheng; Cai, Qiang

    2015-01-01

    Although the use of computer color matching can reduce the influence of subjective factors by technicians, matching the color of a natural tooth with a ceramic restoration is still one of the most challenging topics in esthetic prosthodontics. Back propagation neural network (BPNN) has already been introduced into the computer color matching in dentistry, but it has disadvantages such as unstable and low accuracy. In our study, we adopt genetic algorithm (GA) to optimize the initial weights and threshold values in BPNN for improving the matching precision. To our knowledge, we firstly combine the BPNN with GA in computer color matching in dentistry. Extensive experiments demonstrate that the proposed method improves the precision and prediction robustness of the color matching in restorative dentistry.

  20. Computing with Spiking Neuron Networks

    NARCIS (Netherlands)

    H. Paugam-Moisy; S.M. Bohte (Sander); G. Rozenberg; T.H.W. Baeck (Thomas); J.N. Kok (Joost)

    2012-01-01

    htmlabstractAbstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions

  1. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling.

    Science.gov (United States)

    Dick, Thomas E; Molkov, Yaroslav I; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J; Doyle, John; Scheff, Jeremy D; Calvano, Steve E; Androulakis, Ioannis P; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.

  2. Biologically inspired emotion recognition from speech

    Directory of Open Access Journals (Sweden)

    Buscicchio Cosimo

    2011-01-01

    Full Text Available Abstract Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  3. Binary Factorization in Hopfield-Like Neural Networks: Single-Step Approximation and Computer Simulations

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Sirota, A.M.; Húsek, Dušan; Muraviev, I. P.

    2004-01-01

    Roč. 14, č. 2 (2004), s. 139-152 ISSN 1210-0552 R&D Projects: GA ČR GA201/01/1192 Grant - others:BARRANDE(EU) 99010-2/99053; Intellectual computer Systems(EU) Grant 2.45 Institutional research plan: CEZ:AV0Z1030915 Keywords : nonlinear binary factor analysis * feature extraction * recurrent neural network * Single-Step approximation * neurodynamics simulation * attraction basins * Hebbian learning * unsupervised learning * neuroscience * brain function modeling Subject RIV: BA - General Mathematics

  4. Use of artificial neural networks (computer analysis) in the diagnosis of microcalcifications on mammography

    International Nuclear Information System (INIS)

    Markopoulos, Christos; Kouskos, Efstratios; Koufopoulos, Konstantinos; Kyriakou, Vasiliki; Gogas, John

    2001-01-01

    Introduction/objective: the purpose of this study was to evaluate a computer based method for differentiating malignant from benign clustered microcalcifications, comparing it with the performance of three physicians. Methods and material: materials for the study are 240 suspicious microcalcifications on mammograms from 220 female patients who underwent breast biopsy, following hook wire localization under mammographic guidance. The histologic findings were malignant in 108 cases (45%) and benign in 132 cases (55%). Those clusters were analyzed by a computer program and eight features of the calcifications (density, number, area, brightness, diameter average, distance average, proximity average, perimeter compacity average) were quantitatively estimated by a specific artificial neural network. Human input was limited to initial identification of the calcifications. Three physicians-observers were also evaluated for the malignant or benign nature of the clustered microcalcifications. Results: the performance of the artificial network was evaluated by receiver operating characteristics (ROC) curves. ROC curves were also generated for the performance of each observer and for the three observers as a group. The ROC curves for the computer and for the physicians were compared and the results are:area under the curve (AUC) value for computer is 0.937, for physician-1 is 0.746, for physician-2 is 0.785, for physician-3 is 0.835 and for physicians as a group is 0.810. The results of the Student's t-test for paired data showed statistically significant difference between the artificial neural network and the physicians' performance, independently and as a group. Discussion and conclusion: our study showed that computer analysis achieves statistically significantly better performance than that of physicians in the classification of malignant and benign calcifications. This method, after further evaluation and improvement, may help radiologists and breast surgeons in better

  5. Bio-Inspired Optimization of Sustainable Energy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zheng

    2013-01-01

    Full Text Available Sustainable energy development always involves complex optimization problems of design, planning, and control, which are often computationally difficult for conventional optimization methods. Fortunately, the continuous advances in artificial intelligence have resulted in an increasing number of heuristic optimization methods for effectively handling those complicated problems. Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent advances in bio-inspired optimization methods, including artificial neural networks, evolutionary algorithms, swarm intelligence, and their hybridizations, which are applied to the field of sustainable energy development. Literature reviewed in this paper shows the current state of the art and discusses the potential future research trends.

  6. Scaling strength distributions in quasi-brittle materials from micro-to macro-scales: A computational approach to modeling Nature-inspired structural ceramics

    International Nuclear Information System (INIS)

    Genet, Martin; Couegnat, Guillaume; Tomsia, Antoni P.; Ritchie, Robert O.

    2014-01-01

    This paper presents an approach to predict the strength distribution of quasi-brittle materials across multiple length-scales, with emphasis on Nature-inspired ceramic structures. It permits the computation of the failure probability of any structure under any mechanical load, solely based on considerations of the microstructure and its failure properties by naturally incorporating the statistical and size-dependent aspects of failure. We overcome the intrinsic limitations of single periodic unit-based approaches by computing the successive failures of the material components and associated stress redistributions on arbitrary numbers of periodic units. For large size samples, the microscopic cells are replaced by a homogenized continuum with equivalent stochastic and damaged constitutive behavior. After establishing the predictive capabilities of the method, and illustrating its potential relevance to several engineering problems, we employ it in the study of the shape and scaling of strength distributions across differing length-scales for a particular quasi-brittle system. We find that the strength distributions display a Weibull form for samples of size approaching the periodic unit; however, these distributions become closer to normal with further increase in sample size before finally reverting to a Weibull form for macroscopic sized samples. In terms of scaling, we find that the weakest link scaling applies only to microscopic, and not macroscopic scale, samples. These findings are discussed in relation to failure patterns computed at different size-scales. (authors)

  7. A computational relationship between thalamic sensory neural responses and contrast perception.

    Science.gov (United States)

    Jiang, Yaoguang; Purushothaman, Gopathy; Casagrande, Vivien A

    2015-01-01

    Uncovering the relationship between sensory neural responses and perceptual decisions remains a fundamental problem in neuroscience. Decades of experimental and modeling work in the sensory cortex have demonstrated that a perceptual decision pool is usually composed of tens to hundreds of neurons, the responses of which are significantly correlated not only with each other, but also with the behavioral choices of an animal. Few studies, however, have measured neural activity in the sensory thalamus of awake, behaving animals. Therefore, it remains unclear how many thalamic neurons are recruited and how the information from these neurons is pooled at subsequent cortical stages to form a perceptual decision. In a previous study we measured neural activity in the macaque lateral geniculate nucleus (LGN) during a two alternative forced choice (2AFC) contrast detection task, and found that single LGN neurons were significantly correlated with the monkeys' behavioral choices, despite their relatively poor contrast sensitivity and a lack of overall interneuronal correlations. We have now computationally tested a number of specific hypotheses relating these measured LGN neural responses to the contrast detection behavior of the animals. We modeled the perceptual decisions with different numbers of neurons and using a variety of pooling/readout strategies, and found that the most successful model consisted of about 50-200 LGN neurons, with individual neurons weighted differentially according to their signal-to-noise ratios (quantified as d-primes). These results supported the hypothesis that in contrast detection the perceptual decision pool consists of multiple thalamic neurons, and that the response fluctuations in these neurons can influence contrast perception, with the more sensitive thalamic neurons likely to exert a greater influence.

  8. Multiscale Methods, Parallel Computation, and Neural Networks for Real-Time Computer Vision.

    Science.gov (United States)

    Battiti, Roberto

    1990-01-01

    This thesis presents new algorithms for low and intermediate level computer vision. The guiding ideas in the presented approach are those of hierarchical and adaptive processing, concurrent computation, and supervised learning. Processing of the visual data at different resolutions is used not only to reduce the amount of computation necessary to reach the fixed point, but also to produce a more accurate estimation of the desired parameters. The presented adaptive multiple scale technique is applied to the problem of motion field estimation. Different parts of the image are analyzed at a resolution that is chosen in order to minimize the error in the coefficients of the differential equations to be solved. Tests with video-acquired images show that velocity estimation is more accurate over a wide range of motion with respect to the homogeneous scheme. In some cases introduction of explicit discontinuities coupled to the continuous variables can be used to avoid propagation of visual information from areas corresponding to objects with different physical and/or kinematic properties. The human visual system uses concurrent computation in order to process the vast amount of visual data in "real -time." Although with different technological constraints, parallel computation can be used efficiently for computer vision. All the presented algorithms have been implemented on medium grain distributed memory multicomputers with a speed-up approximately proportional to the number of processors used. A simple two-dimensional domain decomposition assigns regions of the multiresolution pyramid to the different processors. The inter-processor communication needed during the solution process is proportional to the linear dimension of the assigned domain, so that efficiency is close to 100% if a large region is assigned to each processor. Finally, learning algorithms are shown to be a viable technique to engineer computer vision systems for different applications starting from

  9. Characterization of physiological networks in sleep apnea patients using artificial neural networks for Granger causality computation

    Science.gov (United States)

    Cárdenas, Jhon; Orjuela-Cañón, Alvaro D.; Cerquera, Alexander; Ravelo, Antonio

    2017-11-01

    Different studies have used Transfer Entropy (TE) and Granger Causality (GC) computation to quantify interconnection between physiological systems. These methods have disadvantages in parametrization and availability in analytic formulas to evaluate the significance of the results. Other inconvenience is related with the assumptions in the distribution of the models generated from the data. In this document, the authors present a way to measure the causality that connect the Central Nervous System (CNS) and the Cardiac System (CS) in people diagnosed with obstructive sleep apnea syndrome (OSA) before and during treatment with continuous positive air pressure (CPAP). For this purpose, artificial neural networks were used to obtain models for GC computation, based on time series of normalized powers calculated from electrocardiography (EKG) and electroencephalography (EEG) signals recorded in polysomnography (PSG) studies.

  10. A novel role for visual perspective cues in the neural computation of depth.

    Science.gov (United States)

    Kim, HyungGoo R; Angelaki, Dora E; DeAngelis, Gregory C

    2015-01-01

    As we explore a scene, our eye movements add global patterns of motion to the retinal image, complicating visual motion produced by self-motion or moving objects. Conventionally, it has been assumed that extraretinal signals, such as efference copy of smooth pursuit commands, are required to compensate for the visual consequences of eye rotations. We consider an alternative possibility: namely, that the visual system can infer eye rotations from global patterns of image motion. We visually simulated combinations of eye translation and rotation, including perspective distortions that change dynamically over time. We found that incorporating these 'dynamic perspective' cues allowed the visual system to generate selectivity for depth sign from motion parallax in macaque cortical area MT, a computation that was previously thought to require extraretinal signals regarding eye velocity. Our findings suggest neural mechanisms that analyze global patterns of visual motion to perform computations that require knowledge of eye rotations.

  11. Attacks and Intrusion Detection in Cloud Computing Using Neural Networks and Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Ahmad Shokuh Saljoughi

    2018-01-01

    Full Text Available Today, cloud computing has become popular among users in organizations and companies. Security and efficiency are the two major issues facing cloud service providers and their customers. Since cloud computing is a virtual pool of resources provided in an open environment (Internet, cloud-based services entail security risks. Detection of intrusions and attacks through unauthorized users is one of the biggest challenges for both cloud service providers and cloud users. In the present study, artificial intelligence techniques, e.g. MLP Neural Network sand particle swarm optimization algorithm, were used to detect intrusion and attacks. The methods were tested for NSL-KDD, KDD-CUP datasets. The results showed improved accuracy in detecting attacks and intrusions by unauthorized users.

  12. Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain

    Science.gov (United States)

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market. PMID:24782659

  13. Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain

    Directory of Open Access Journals (Sweden)

    Yonghui Dai

    2014-01-01

    Full Text Available The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market.

  14. Neural Computation Scheme of Compound Control: Tacit Learning for Bipedal Locomotion

    Science.gov (United States)

    Shimoda, Shingo; Kimura, Hidenori

    The growing need for controlling complex behaviors of versatile robots working in unpredictable environment has revealed the fundamental limitation of model-based control strategy that requires precise models of robots and environments before their operations. This difficulty is fundamental and has the same root with the well-known frame problem in artificial intelligence. It has been a central long standing issue in advanced robotics, as well as machine intelligence, to find a prospective clue to attack this fundamental difficulty. The general consensus shared by many leading researchers in the related field is that the body plays an important role in acquiring intelligence that can conquer unknowns. In particular, purposeful behaviors emerge during body-environment interactions with the help of an appropriately organized neural computational scheme that can exploit what the environment can afford. Along this line, we propose a new scheme of neural computation based on compound control which represents a typical feature of biological controls. This scheme is based on classical neuron models with local rules that can create macroscopic purposeful behaviors. This scheme is applied to a bipedal robot and generates the rhythm of walking without any model of robot dynamics and environments.

  15. Hardware implementation of stochastic spiking neural networks.

    Science.gov (United States)

    Rosselló, Josep L; Canals, Vincent; Morro, Antoni; Oliver, Antoni

    2012-08-01

    Spiking Neural Networks, the last generation of Artificial Neural Networks, are characterized by its bio-inspired nature and by a higher computational capacity with respect to other neural models. In real biological neurons, stochastic processes represent an important mechanism of neural behavior and are responsible of its special arithmetic capabilities. In this work we present a simple hardware implementation of spiking neurons that considers this probabilistic nature. The advantage of the proposed implementation is that it is fully digital and therefore can be massively implemented in Field Programmable Gate Arrays. The high computational capabilities of the proposed model are demonstrated by the study of both feed-forward and recurrent networks that are able to implement high-speed signal filtering and to solve complex systems of linear equations.

  16. Bio-inspired feedback-circuit implementation of discrete, free energy optimizing, winner-take-all computations.

    Science.gov (United States)

    Genewein, Tim; Braun, Daniel A

    2016-06-01

    Bayesian inference and bounded rational decision-making require the accumulation of evidence or utility, respectively, to transform a prior belief or strategy into a posterior probability distribution over hypotheses or actions. Crucially, this process cannot be simply realized by independent integrators, since the different hypotheses and actions also compete with each other. In continuous time, this competitive integration process can be described by a special case of the replicator equation. Here we investigate simple analog electric circuits that implement the underlying differential equation under the constraint that we only permit a limited set of building blocks that we regard as biologically interpretable, such as capacitors, resistors, voltage-dependent conductances and voltage- or current-controlled current and voltage sources. The appeal of these circuits is that they intrinsically perform normalization without requiring an explicit divisive normalization. However, even in idealized simulations, we find that these circuits are very sensitive to internal noise as they accumulate error over time. We discuss in how far neural circuits could implement these operations that might provide a generic competitive principle underlying both perception and action.

  17. A computer vision system for rapid search inspired by surface-based attention mechanisms from human perception.

    Science.gov (United States)

    Mohr, Johannes; Park, Jong-Han; Obermayer, Klaus

    2014-12-01

    Humans are highly efficient at visual search tasks by focusing selective attention on a small but relevant region of a visual scene. Recent results from biological vision suggest that surfaces of distinct physical objects form the basic units of this attentional process. The aim of this paper is to demonstrate how such surface-based attention mechanisms can speed up a computer vision system for visual search. The system uses fast perceptual grouping of depth cues to represent the visual world at the level of surfaces. This representation is stored in short-term memory and updated over time. A top-down guided attention mechanism sequentially selects one of the surfaces for detailed inspection by a recognition module. We show that the proposed attention framework requires little computational overhead (about 11 ms), but enables the system to operate in real-time and leads to a substantial increase in search efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Nature Inspired Computational Technique for the Numerical Solution of Nonlinear Singular Boundary Value Problems Arising in Physiology

    Directory of Open Access Journals (Sweden)

    Suheel Abdullah Malik

    2014-01-01

    Full Text Available We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE and its boundary conditions is formulated. The optimization of the unknown adjustable parameters contained in the fitness function is performed by the hybrid heuristic computation algorithm based on genetic algorithm (GA, interior point algorithm (IPA, and active set algorithm (ASA. The efficiency and the viability of the proposed method are confirmed by solving three examples from physiology. The obtained approximate solutions are found in excellent agreement with the exact solutions as well as some conventional numerical solutions.

  19. An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    Science.gov (United States)

    2007-03-01

    Optimization Coello, Van Veldhuizen , and Lamont define global optimization as, “the process of finding the global minimum4 within some search space S [CVL02...Technology, Shapes Markets, and Manages People, Simon & Schuster, New York, 1995. [CVL02] Coello, C., Van Veldhuizen , D., Lamont, G.B., Evolutionary...Anomaly Detection, Technical Report CS- 2003-02, Computer Science Department, Florida Institute of Technology, 2003. [Marmelstein99] Marmelstein, R., Van

  20. Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing

    Science.gov (United States)

    Sengupta, Abhronil; Roy, Kaushik

    2017-12-01

    Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform every day. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this paper attempts to provide a review of the recent developments in the field of spintronic device based neuromorphic computing. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing device structures mimicking neural and synaptic functionalities is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations.

  1. Bio-inspired varying subspace based computational framework for a class of nonlinear constrained optimal trajectory planning problems.

    Science.gov (United States)

    Xu, Y; Li, N

    2014-09-01

    Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator-prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework.

  2. Bio-inspired varying subspace based computational framework for a class of nonlinear constrained optimal trajectory planning problems

    International Nuclear Information System (INIS)

    Xu, Y; Li, N

    2014-01-01

    Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator–prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework. (paper)

  3. Design of a computation tool for neutron spectrometry and dosimetry through evolutionary neural networks

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.; Martinez B, M. R.; Gallego, E.

    2009-10-01

    The neutron dosimetry is one of the most complicated tasks of radiation protection, due to it is a complex technique and highly dependent of neutron energy. One of the first devices used to perform neutron spectrometry is the system known as spectrometric system of Bonner spheres, that continuous being one of spectrometers most commonly used. This system has disadvantages such as: the components weight, the low resolution of spectrum, long and drawn out procedure for the spectra reconstruction, which require an expert user in system management, the need of use a reconstruction code as BUNKIE, SAND, etc., which are based on an iterative reconstruction algorithm and whose greatest inconvenience is that for the spectrum reconstruction, are needed to provide to system and initial spectrum as close as possible to the desired spectrum get. Consequently, researchers have mentioned the need to developed alternative measurement techniques to improve existing monitoring systems for workers. Among these alternative techniques have been reported several reconstruction procedures based on artificial intelligence techniques such as genetic algorithms, artificial neural networks and hybrid systems of evolutionary artificial neural networks using genetic algorithms. However, the use of these techniques in the nuclear science area is not free of problems, so it has been suggested that more research is conducted in such a way as to solve these disadvantages. Because they are emerging technologies, there are no tools for the results analysis, so in this paper we present first the design of a computation tool that allow to analyze the neutron spectra and equivalent doses, obtained through the hybrid technology of neural networks and genetic algorithms. This tool provides an user graphical environment, friendly, intuitive and easy of operate. The speed of program operation is high, executing the analysis in a few seconds, so it may storage and or print the obtained information for

  4. Displacement of structures in the thorax from expiration to inspiration as estimated by computed tomography and a 3-D treatment planning system

    International Nuclear Information System (INIS)

    Garmon, Pamela; Huang, David; Lutz, Steve; Zwicker, Robert

    1996-01-01

    Purpose/Objective: The spread of image based three dimensional treatment planning and conformal radiotherapy have brought new attention to the problems of patient motion during treatment. Recent studies of the effects of breathing on the motion of internal structures have led to the suggestion that gated irradiation might improve the therapeutic benefits of conformal therapy. In the present work we investigate the displacement of tumor and other structures in the thorax with breathing in order to assess further the potential benefit of gating in the treatment of lung tumors. Materials and Methods: Thoracic CT scans were obtained for patients immediately after inspiration and after expiration. Tumor positions were assessed by computing the centers of the outlined volumes for both inspiration and expiration. Effects of breathing motion along the longitudinal direction were evaluated by using a three dimensional treatment planning system to measure the distances between scans where the top of the diaphragm was present. Displacement within the transverse direction was assessed by measuring the positions of the field skin markers, the aorta and the esophagus. Results: Movement of the centers of the tumor volumes as computed by reconstructed volumes was measured to be 0.7-1.2cm. The magnitude of this movement was greatest for tumors in the mid to lower region of the lung and was primarily in the direction of superior to inferior combined with anterior to posterior. Displacement of the diaphragm ranged 1-3 cm with breathing. Displacement of the aorta and esophagus was measured to be 0.2-1.5 cm. Movement of these structures was only analyzed transversely and showed displacement to the patients' left and posterior upon expiration. The magnitude did not appear to correlate with position relative to the diaphragm. Patients with less diaphragm movement also had smaller tidal volumes and conversely, patients with larger diaphragm displacement had greater tidal volumes

  5. Dual Coding Theory Explains Biphasic Collective Computation in Neural Decision-Making

    Directory of Open Access Journals (Sweden)

    Bryan C. Daniels

    2017-06-01

    Full Text Available A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a “coding duality” in which there are accumulation and consensus formation processes distinguished by different timescales.

  6. Dual Coding Theory Explains Biphasic Collective Computation in Neural Decision-Making.

    Science.gov (United States)

    Daniels, Bryan C; Flack, Jessica C; Krakauer, David C

    2017-01-01

    A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a "coding duality" in which there are accumulation and consensus formation processes distinguished by different timescales.

  7. Emerging phenomena in neural networks with dynamic synapses and their computational implications

    Directory of Open Access Journals (Sweden)

    Joaquin J. eTorres

    2013-04-01

    Full Text Available In this paper we review our research on the effect and computational role of dynamical synapses on feed-forward and recurrent neural networks. Among others, we report on the appearance of a new class of dynamical memories which result from the destabilisation of learned memory attractors. This has important consequences for dynamic information processing allowing the system to sequentially access the information stored in the memories under changing stimuli. Although storage capacity of stable memories also decreases, our study demonstrated the positive effect of synaptic facilitation to recover maximum storage capacity and to enlarge the capacity of the system for memory recall in noisy conditions. Possibly, the new dynamical behaviour can be associated with the voltage transitions between up and down states observed in cortical areas in the brain. We investigated the conditions for which the permanence times in the up state are power-law distributed, which is a sign for criticality, and concluded that the experimentally observed large variability of permanence times could be explained as the result of noisy dynamic synapses with large recovery times. Finally, we report how short-term synaptic processes can transmit weak signals throughout more than one frequency range in noisy neural networks, displaying a kind of stochastic multi-resonance. This effect is due to competition between activity-dependent synaptic fluctuations (due to dynamic synapses and the existence of neuron firing threshold which adapts to the incoming mean synaptic input.

  8. Application of artificial neural networks to identify equilibration in computer simulations

    Science.gov (United States)

    Leibowitz, Mitchell H.; Miller, Evan D.; Henry, Michael M.; Jankowski, Eric

    2017-11-01

    Determining which microstates generated by a thermodynamic simulation are representative of the ensemble for which sampling is desired is a ubiquitous, underspecified problem. Artificial neural networks are one type of machine learning algorithm that can provide a reproducible way to apply pattern recognition heuristics to underspecified problems. Here we use the open-source TensorFlow machine learning library and apply it to the problem of identifying which hypothetical observation sequences from a computer simulation are “equilibrated” and which are not. We generate training populations and test populations of observation sequences with embedded linear and exponential correlations. We train a two-neuron artificial network to distinguish the correlated and uncorrelated sequences. We find that this simple network is good enough for > 98% accuracy in identifying exponentially-decaying energy trajectories from molecular simulations.

  9. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography.

    Science.gov (United States)

    Yang, Xiaogang; De Carlo, Francesco; Phatak, Charudatta; Gürsoy, Dogˇa

    2017-03-01

    This paper presents an algorithm to calibrate the center-of-rotation for X-ray tomography by using a machine learning approach, the Convolutional Neural Network (CNN). The algorithm shows excellent accuracy from the evaluation of synthetic data with various noise ratios. It is further validated with experimental data of four different shale samples measured at the Advanced Photon Source and at the Swiss Light Source. The results are as good as those determined by visual inspection and show better robustness than conventional methods. CNN has also great potential for reducing or removing other artifacts caused by instrument instability, detector non-linearity, etc. An open-source toolbox, which integrates the CNN methods described in this paper, is freely available through GitHub at tomography/xlearn and can be easily integrated into existing computational pipelines available at various synchrotron facilities. Source code, documentation and information on how to contribute are also provided.

  10. Premonitory urges and tics in Tourette syndrome: computational mechanisms and neural correlates.

    Science.gov (United States)

    Conceição, Vasco A; Dias, Ângelo; Farinha, Ana C; Maia, Tiago V

    2017-10-01

    Tourette syndrome is characterized by open motor behaviors - tics - but another crucial aspect of the disorder is the presence of premonitory urges: uncomfortable sensations that typically precede tics and are temporarily alleviated by tics. We review the evidence implicating the somatosensory cortices and the insula in premonitory urges and the motor cortico-basal ganglia-thalamo-cortical loop in tics. We consider how these regions interact during tic execution, suggesting that the insula plays an important role as a nexus linking the sensory and emotional character of premonitory urges with their translation into tics. We also consider how these regions interact during tic learning, integrating the neural evidence with a computational perspective on how premonitory-urge alleviation reinforces tics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quantum-Inspired Multidirectional Associative Memory With a Self-Convergent Iterative Learning.

    Science.gov (United States)

    Masuyama, Naoki; Loo, Chu Kiong; Seera, Manjeevan; Kubota, Naoyuki

    2018-04-01

    Quantum-inspired computing is an emerging research area, which has significantly improved the capabilities of conventional algorithms. In general, quantum-inspired hopfield associative memory (QHAM) has demonstrated quantum information processing in neural structures. This has resulted in an exponential increase in storage capacity while explaining the extensive memory, and it has the potential to illustrate the dynamics of neurons in the human brain when viewed from quantum mechanics perspective although the application of QHAM is limited as an autoassociation. We introduce a quantum-inspired multidirectional associative memory (QMAM) with a one-shot learning model, and QMAM with a self-convergent iterative learning model (IQMAM) based on QHAM in this paper. The self-convergent iterative learning enables the network to progressively develop a resonance state, from inputs to outputs. The simulation experiments demonstrate the advantages of QMAM and IQMAM, especially the stability to recall reliability.

  12. Neural and computational processes underlying dynamic changes in self-esteem

    Science.gov (United States)

    Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-01-01

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an ‘interpersonal vulnerability’ dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability. PMID:29061228

  13. [Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].

    Science.gov (United States)

    Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei

    2017-08-01

    The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.

  14. Neural and computational processes underlying dynamic changes in self-esteem.

    Science.gov (United States)

    Will, Geert-Jan; Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-10-24

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an 'interpersonal vulnerability' dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability.

  15. Reconstruction of sub-surface archaeological remains from magnetic data using neural computing.

    Science.gov (United States)

    Bescoby, D. J.; Cawley, G. C.; Chroston, P. N.

    2003-04-01

    The remains of a former Roman colonial settlement, once part of the classical city of Butrint in southern Albania have been the subject of a high resolution magnetic survey using a caesium-vapour magnetometer. The survey revealed the surviving remains of an extensive planned settlement and a number of outlying buildings, today buried beneath over 0.5 m of alluvial deposits. The aim of the current research is to derive a sub-surface model from the magnetic survey measurements, allowing an enhanced archaeological interpretation of the data. Neural computing techniques are used to perform the non-linear mapping between magnetic data and corresponding sub-surface model parameters. The adoption of neural computing paradigms potentially holds several advantages over other modelling techniques, allowing fast solutions for complex data, while having a high tolerance to noise. A multi-layer perceptron network with a feed-forward architecture is trained to estimate the shape and burial depth of wall foundations using a series of representative models as training data. Parameters used to forward model the training data sets are derived from a number of trial trench excavations targeted over features identified by the magnetic survey. The training of the network was optimized by first applying it to synthetic test data of known source parameters. Pre-processing of the network input data, including the use of a rotationally invariant transform, enhanced network performance and the efficiency of the training data. The approach provides good results when applied to real magnetic data, accurately predicting the depths and layout of wall foundations within the former settlement, verified by subsequent excavation. The resulting sub-surface model is derived from the averaged outputs of a ‘committee’ of five networks, trained with individualized training sets. Fuzzy logic inference has also been used to combine individual network outputs through correlation with data from a second

  16. Goal-directed behaviour and instrumental devaluation: a neural system-level computational model

    Directory of Open Access Journals (Sweden)

    Francesco Mannella

    2016-10-01

    Full Text Available Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviours guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers activate the representation of rewards (or `action-outcomes', e.g. foods while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods. The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b the three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and integrates the results of different devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behaviour.

  17. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    Directory of Open Access Journals (Sweden)

    Markus A Wenzel

    Full Text Available Brain-computer interfaces (BCIs that are based on event-related potentials (ERPs can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG. Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI, because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli.Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions.Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG.The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.

  18. Prediction of the Thermal Conductivity of Refrigerants by Computational Methods and Artificial Neural Network.

    Science.gov (United States)

    Ghaderi, Forouzan; Ghaderi, Amir H; Ghaderi, Noushin; Najafi, Bijan

    2017-01-01

    Background: The thermal conductivity of fluids can be calculated by several computational methods. However, these methods are reliable only at the confined levels of density, and there is no specific computational method for calculating thermal conductivity in the wide ranges of density. Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and a computational method established upon the Rainwater-Friend theory, were used to predict the value of thermal conductivity in all ranges of density. The thermal conductivity of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these methods and the effectiveness of models was specified and compared. Results: The results show that the computational method is a usable method for predicting thermal conductivity at low levels of density. However, the efficiency of this model is considerably reduced in the mid-range of density. It means that this model cannot be used at density levels which are higher than 6. On the other hand, the ANN approach is a reliable method for thermal conductivity prediction in all ranges of density. The best accuracy of ANN is achieved when the number of units is increased in the hidden layer. Conclusion: The results of the computational method indicate that the regular dependence between thermal conductivity and density at higher densities is eliminated. It can develop a nonlinear problem. Therefore, analytical approaches are not able to predict thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as, ANN is a valuable method for this purpose.

  19. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    International Nuclear Information System (INIS)

    Klem, Jukka; Iwaszkiewicz, Jan

    2011-01-01

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  20. Neural networks advances and applications 2

    CERN Document Server

    Gelenbe, E

    1992-01-01

    The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret

  1. Soft Computing in Construction Information Technology

    NARCIS (Netherlands)

    Ciftcioglu, O.; Durmisevic, S.; Sariyildiz, S.

    2001-01-01

    The last decade, civil engineering has exercised a rapidly growing interest in the application of neurally inspired computing techniques. The motive for this interest was the promises of certain information processing characteristics, which are similar to some extend, to those of human brain. The

  2. The Study of Learners' Preference for Visual Complexity on Small Screens of Mobile Computers Using Neural Networks

    Science.gov (United States)

    Wang, Lan-Ting; Lee, Kun-Chou

    2014-01-01

    The vision plays an important role in educational technologies because it can produce and communicate quite important functions in teaching and learning. In this paper, learners' preference for the visual complexity on small screens of mobile computers is studied by neural networks. The visual complexity in this study is divided into five…

  3. Data systems and computer science: Neural networks base R/T program overview

    Science.gov (United States)

    Gulati, Sandeep

    1991-01-01

    The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.

  4. The neural correlates of 'vitality form' recognition: an fMRI study: this work is dedicated to Daniel Stern, whose immeasurable contribution to science has inspired our research.

    Science.gov (United States)

    Di Cesare, Giuseppe; Di Dio, Cinzia; Rochat, Magali J; Sinigaglia, Corrado; Bruschweiler-Stern, Nadia; Stern, Daniel N; Rizzolatti, Giacomo

    2014-07-01

    The observation of goal-directed actions performed by another individual allows one to understand what that individual is doing and why he/she is doing it. Important information about others' behaviour is also carried out by the dynamics of the observed action. Action dynamics characterize the 'vitality form' of an action describing the cognitive and affective relation between the performing agent and the action recipient. Here, using the fMRI technique, we assessed the neural correlates of vitality form recognition presenting participants with videos showing two actors executing actions with different vitality forms: energetic and gentle. The participants viewed the actions in two tasks. In one task (what), they had to focus on the goal of the presented action; in the other task (how), they had to focus on the vitality form. For both tasks, activations were found in the action observation/execution circuit. Most interestingly, the contrast how vs what revealed activation in right dorso-central insula, highlighting the involvement, in the recognition of vitality form, of an anatomical region connecting somatosensory areas with the medial temporal region and, in particular, with the hippocampus. This somatosensory-insular-limbic circuit could underlie the observers' capacity to understand the vitality forms conveyed by the observed action. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. On the Reduction of Computational Complexity of Deep Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Partha Maji

    2018-04-01

    Full Text Available Deep convolutional neural networks (ConvNets, which are at the heart of many new emerging applications, achieve remarkable performance in audio and visual recognition tasks. Unfortunately, achieving accuracy often implies significant computational costs, limiting deployability. In modern ConvNets it is typical for the convolution layers to consume the vast majority of computational resources during inference. This has made the acceleration of these layers an important research area in academia and industry. In this paper, we examine the effects of co-optimizing the internal structures of the convolutional layers and underlying implementation of fundamental convolution operation. We demonstrate that a combination of these methods can have a big impact on the overall speedup of a ConvNet, achieving a ten-fold increase over baseline. We also introduce a new class of fast one-dimensional (1D convolutions for ConvNets using the Toom–Cook algorithm. We show that our proposed scheme is mathematically well-grounded, robust, and does not require any time-consuming retraining, while still achieving speedups solely from convolutional layers with no loss in baseline accuracy.

  6. Classification of dried vegetables using computer image analysis and artificial neural networks

    Science.gov (United States)

    Koszela, K.; Łukomski, M.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Zaborowicz, M.; Wojcieszak, D.

    2017-07-01

    In the recent years, there has been a continuously increasing demand for vegetables and dried vegetables. This trend affects the growth of the dehydration industry in Poland helping to exploit excess production. More and more often dried vegetables are used in various sectors of the food industry, both due to their high nutritional qualities and changes in consumers' food preferences. As we observe an increase in consumer awareness regarding a healthy lifestyle and a boom in health food, there is also an increase in the consumption of such food, which means that the production and crop area can increase further. Among the dried vegetables, dried carrots play a strategic role due to their wide application range and high nutritional value. They contain high concentrations of carotene and sugar which is present in the form of crystals. Carrots are also the vegetables which are most often subjected to a wide range of dehydration processes; this makes it difficult to perform a reliable qualitative assessment and classification of this dried product. The many qualitative properties of dried carrots determining their positive or negative quality assessment include colour and shape. The aim of the research was to develop and implement the model of a computer system for the recognition and classification of freeze-dried, convection-dried and microwave vacuum dried products using the methods of computer image analysis and artificial neural networks.

  7. Computer vision-based method for classification of wheat grains using artificial neural network.

    Science.gov (United States)

    Sabanci, Kadir; Kayabasi, Ahmet; Toktas, Abdurrahim

    2017-06-01

    A simplified computer vision-based application using artificial neural network (ANN) depending on multilayer perceptron (MLP) for accurately classifying wheat grains into bread or durum is presented. The images of 100 bread and 100 durum wheat grains are taken via a high-resolution camera and subjected to pre-processing. The main visual features of four dimensions, three colors and five textures are acquired using image-processing techniques (IPTs). A total of 21 visual features are reproduced from the 12 main features to diversify the input population for training and testing the ANN model. The data sets of visual features are considered as input parameters of the ANN model. The ANN with four different input data subsets is modelled to classify the wheat grains into bread or durum. The ANN model is trained with 180 grains and its accuracy tested with 20 grains from a total of 200 wheat grains. Seven input parameters that are most effective on the classifying results are determined using the correlation-based CfsSubsetEval algorithm to simplify the ANN model. The results of the ANN model are compared in terms of accuracy rate. The best result is achieved with a mean absolute error (MAE) of 9.8 × 10 -6 by the simplified ANN model. This shows that the proposed classifier based on computer vision can be successfully exploited to automatically classify a variety of grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. The neural correlates of problem states: testing FMRI predictions of a computational model of multitasking.

    Directory of Open Access Journals (Sweden)

    Jelmer P Borst

    Full Text Available BACKGROUND: It has been shown that people can only maintain one problem state, or intermediate mental representation, at a time. When more than one problem state is required, for example in multitasking, performance decreases considerably. This effect has been explained in terms of a problem state bottleneck. METHODOLOGY: In the current study we use the complimentary methodologies of computational cognitive modeling and neuroimaging to investigate the neural correlates of this problem state bottleneck. In particular, an existing computational cognitive model was used to generate a priori fMRI predictions for a multitasking experiment in which the problem state bottleneck plays a major role. Hemodynamic responses were predicted for five brain regions, corresponding to five cognitive resources in the model. Most importantly, we predicted the intraparietal sulcus to show a strong effect of the problem state manipulations. CONCLUSIONS: Some of the predictions were confirmed by a subsequent fMRI experiment, while others were not matched by the data. The experiment supported the hypothesis that the problem state bottleneck is a plausible cause of the interference in the experiment and that it could be located in the intraparietal sulcus.

  9. Ensemble of Neural Network Conditional Random Fields for Self-Paced Brain Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Hossein Bashashati

    2017-07-01

    Full Text Available Classification of EEG signals in self-paced Brain Computer Interfaces (BCI is an extremely challenging task. The main difficulty stems from the fact that start time of a control task is not defined. Therefore it is imperative to exploit the characteristics of the EEG data to the extent possible. In sensory motor self-paced BCIs, while performing the mental task, the user’s brain goes through several well-defined internal state changes. Applying appropriate classifiers that can capture these state changes and exploit the temporal correlation in EEG data can enhance the performance of the BCI. In this paper, we propose an ensemble learning approach for self-paced BCIs. We use Bayesian optimization to train several different classifiers on different parts of the BCI hyper- parameter space. We call each of these classifiers Neural Network Conditional Random Field (NNCRF. NNCRF is a combination of a neural network and conditional random field (CRF. As in the standard CRF, NNCRF is able to model the correlation between adjacent EEG samples. However, NNCRF can also model the nonlinear dependencies between the input and the output, which makes it more powerful than the standard CRF. We compare the performance of our algorithm to those of three popular sequence labeling algorithms (Hidden Markov Models, Hidden Markov Support Vector Machines and CRF, and to two classical classifiers (Logistic Regression and Support Vector Machines. The classifiers are compared for the two cases: when the ensemble learning approach is not used and when it is. The data used in our studies are those from the BCI competition IV and the SM2 dataset. We show that our algorithm is considerably superior to the other approaches in terms of the Area Under the Curve (AUC of the BCI system.

  10. Limits to high-speed simulations of spiking neural networks using general-purpose computers.

    Science.gov (United States)

    Zenke, Friedemann; Gerstner, Wulfram

    2014-01-01

    To understand how the central nervous system performs computations using recurrent neuronal circuitry, simulations have become an indispensable tool for theoretical neuroscience. To study neuronal circuits and their ability to self-organize, increasing attention has been directed toward synaptic plasticity. In particular spike-timing-dependent plasticity (STDP) creates specific demands for simulations of spiking neural networks. On the one hand a high temporal resolution is required to capture the millisecond timescale of typical STDP windows. On the other hand network simulations have to evolve over hours up to days, to capture the timescale of long-term plasticity. To do this efficiently, fast simulation speed is the crucial ingredient rather than large neuron numbers. Using different medium-sized network models consisting of several thousands of neurons and off-the-shelf hardware, we compare the simulation speed of the simulators: Brian, NEST and Neuron as well as our own simulator Auryn. Our results show that real-time simulations of different plastic network models are possible in parallel simulations in which numerical precision is not a primary concern. Even so, the speed-up margin of parallelism is limited and boosting simulation speeds beyond one tenth of real-time is difficult. By profiling simulation code we show that the run times of typical plastic network simulations encounter a hard boundary. This limit is partly due to latencies in the inter-process communications and thus cannot be overcome by increased parallelism. Overall, these results show that to study plasticity in medium-sized spiking neural networks, adequate simulation tools are readily available which run efficiently on small clusters. However, to run simulations substantially faster than real-time, special hardware is a prerequisite.

  11. Bio-inspired nano tools for neuroscience.

    Science.gov (United States)

    Das, Suradip; Carnicer-Lombarte, Alejandro; Fawcett, James W; Bora, Utpal

    2016-07-01

    Research and treatment in the nervous system is challenged by many physiological barriers posing a major hurdle for neurologists. The CNS is protected by a formidable blood brain barrier (BBB) which limits surgical, therapeutic and diagnostic interventions. The hostile environment created by reactive astrocytes in the CNS along with the limited regeneration capacity of the PNS makes functional recovery after tissue damage difficult and inefficient. Nanomaterials have the unique ability to interface with neural tissue in the nano-scale and are capable of influencing the function of a single neuron. The ability of nanoparticles to transcend the BBB through surface modifications has been exploited in various neuro-imaging techniques and for targeted drug delivery. The tunable topography of nanofibers provides accurate spatio-temporal guidance to regenerating axons. This review is an attempt to comprehend the progress in understanding the obstacles posed by the complex physiology of the nervous system and the innovations in design and fabrication of advanced nanomaterials drawing inspiration from natural phenomenon. We also discuss the development of nanomaterials for use in Neuro-diagnostics, Neuro-therapy and the fabrication of advanced nano-devices for use in opto-electronic and ultrasensitive electrophysiological applications. The energy efficient and parallel computing ability of the human brain has inspired the design of advanced nanotechnology based computational systems. However, extensive use of nanomaterials in neuroscience also raises serious toxicity issues as well as ethical concerns regarding nano implants in the brain. In conclusion we summarize these challenges and provide an insight into the huge potential of nanotechnology platforms in neuroscience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  13. A Dynamic Connectome Supports the Emergence of Stable Computational Function of Neural Circuits through Reward-Based Learning.

    Science.gov (United States)

    Kappel, David; Legenstein, Robert; Habenschuss, Stefan; Hsieh, Michael; Maass, Wolfgang

    2018-01-01

    Synaptic connections between neurons in the brain are dynamic because of continuously ongoing spine dynamics, axonal sprouting, and other processes. In fact, it was recently shown that the spontaneous synapse-autonomous component of spine dynamics is at least as large as the component that depends on the history of pre- and postsynaptic neural activity. These data are inconsistent with common models for network plasticity and raise the following questions: how can neural circuits maintain a stable computational function in spite of these continuously ongoing processes, and what could be functional uses of these ongoing processes? Here, we present a rigorous theoretical framework for these seemingly stochastic spine dynamics and rewiring processes in the context of reward-based learning tasks. We show that spontaneous synapse-autonomous processes, in combination with reward signals such as dopamine, can explain the capability of networks of neurons in the brain to configure themselves for specific computational tasks, and to compensate automatically for later changes in the network or task. Furthermore, we show theoretically and through computer simulations that stable computational performance is compatible with continuously ongoing synapse-autonomous changes. After reaching good computational performance it causes primarily a slow drift of network architecture and dynamics in task-irrelevant dimensions, as observed for neural activity in motor cortex and other areas. On the more abstract level of reinforcement learning the resulting model gives rise to an understanding of reward-driven network plasticity as continuous sampling of network configurations.

  14. Neural and cortisol responses during play with human and computer partners in children with autism

    Science.gov (United States)

    Edmiston, Elliot Kale; Merkle, Kristen

    2015-01-01

    Children with autism spectrum disorder (ASD) exhibit impairment in reciprocal social interactions, including play, which can manifest as failure to show social preference or discrimination between social and nonsocial stimuli. To explore mechanisms underlying these deficits, we collected salivary cortisol from 42 children 8–12 years with ASD or typical development during a playground interaction with a confederate child. Participants underwent functional MRI during a prisoner’s dilemma game requiring cooperation or defection with a human (confederate) or computer partner. Search region of interest analyses were based on previous research (e.g. insula, amygdala, temporal parietal junction—TPJ). There were significant group differences in neural activation based on partner and response pattern. When playing with a human partner, children with ASD showed limited engagement of a social salience brain circuit during defection. Reduced insula activation during defection in the ASD children relative to TD children, regardless of partner type, was also a prominent finding. Insula and TPJ BOLD during defection was also associated with stress responsivity and behavior in the ASD group under playground conditions. Children with ASD engage social salience networks less than TD children during conditions of social salience, supporting a fundamental disturbance of social engagement. PMID:25552572

  15. Neural Computation of Surface Border Ownership and Relative Surface Depth from Ambiguous Contrast Inputs

    Science.gov (United States)

    Dresp-Langley, Birgitta; Grossberg, Stephen

    2016-01-01

    The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the continuous boundaries that they induced along their collinear edges. The shapes in some images had the same contrast (black or white) with respect to the background gray. Other images included opposite contrasts along each induced continuous boundary. Psychophysical results demonstrate conditions under which figure-ground judgment probabilities in response to these ambiguous displays are determined by the orientation of contrasts only, not by their relative contrasts, despite the fact that many border ownership cells in cortical area V2 respond to a preferred relative contrast. Studies are also reviewed in which both polarity-specific and polarity-invariant properties obtain. The FACADE and 3D LAMINART models are used to explain these data. PMID:27516746

  16. Abstract computation in schizophrenia detection through artificial neural network based systems.

    Science.gov (United States)

    Cardoso, L; Marins, F; Magalhães, R; Marins, N; Oliveira, T; Vicente, H; Abelha, A; Machado, J; Neves, J

    2015-01-01

    Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.

  17. Neural Computation of Surface Border Ownership and Relative Surface Depth from Ambiguous Contrast Inputs.

    Science.gov (United States)

    Dresp-Langley, Birgitta; Grossberg, Stephen

    2016-01-01

    The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the continuous boundaries that they induced along their collinear edges. The shapes in some images had the same contrast (black or white) with respect to the background gray. Other images included opposite contrasts along each induced continuous boundary. Psychophysical results demonstrate conditions under which figure-ground judgment probabilities in response to these ambiguous displays are determined by the orientation of contrasts only, not by their relative contrasts, despite the fact that many border ownership cells in cortical area V2 respond to a preferred relative contrast. Studies are also reviewed in which both polarity-specific and polarity-invariant properties obtain. The FACADE and 3D LAMINART models are used to explain these data.

  18. Neural computation of surface border ownership and relative surface depth from ambiguous contrast inputs

    Directory of Open Access Journals (Sweden)

    Birgitta Dresp-Langley

    2016-07-01

    Full Text Available The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the continuous boundaries that they induced along their collinear edges. The shapes in some images had the same contrast (black or white with respect to the background gray. Other images included opposite contrasts along each induced continuous boundary. Results demonstrate conditions under which figure-ground judgment probabilities in response to these ambiguous displays are determined by the orientation of contrasts only, not by their relative contrasts, despite the fact that many border ownership cells in cortical area V2 respond to a preferred relative contrast. Studies are also reviewed in which both polarity-specific and polarity-invariant properties obtain. The FACADE and 3D LAMINART models are used to explain these data.

  19. Projection decomposition algorithm for dual-energy computed tomography via deep neural network.

    Science.gov (United States)

    Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei

    2018-03-15

    Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.

  20. Abstract Computation in Schizophrenia Detection through Artificial Neural Network Based Systems

    Directory of Open Access Journals (Sweden)

    L. Cardoso

    2015-01-01

    Full Text Available Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason of defective information.

  1. Building bridges between perceptual and economic decision-making: neural and computational mechanisms

    Directory of Open Access Journals (Sweden)

    Christopher eSummerfield

    2012-05-01

    Full Text Available Investigation into the neural and computational bases of decision-making has proceeded in two parallel but distinct streams. Perceptual decision making (PDM is concerned with how observers detect, discriminate and categorise noisy sensory information. Economic decision making (EDM explores how options are selected on the basis of their reinforcement history. Traditionally, the subfields of PDM and EDM have employed different paradigms, proposed different mechanistic models, explored different brain regions, disagreed about whether decisions approach optimality. Nevertheless, we argue that there is a common framework for understanding decisions made in both domains, under which an agent has to combine sensory information (what is the stimulus with value information (what is it worth. We review computational models of the decision process typically used in PDM, based around the idea that decisions involve a serial integration of evidence, and assess their applicability to decisions between good and gambles. Subsequently, we consider the contribution of three key brain regions – the parietal cortex, the basal ganglia, and the orbitofrontal cortex – to perceptual and economic decision-making, with a focus on the mechanisms by which sensory and reward information are integrated during choice. We find that although the parietal cortex is often implicated in the integration of sensory evidence, there is evidence for its role in encoding the expected value of a decision. Similarly, although much research has emphasised the role of the striatum and orbitofrontal cortex in value-guided choices, they may play an important role in categorisation of perceptual information. In conclusion, we consider how findings from the two fields might be brought together, in order to move towards a general framework for understanding decision-making in humans and other primates.

  2. Neural networks and their potential application in nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1991-01-01

    A neural network is a data processing system consisting of a number of simple, highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks have emerged in the past few years as an area of unusual opportunity for research, development and application to a variety of real world problems. Indeed, neural networks exhibit characteristics and capabilities not provided by any other technology. Examples include reading Japanese Kanji characters and human handwriting, reading a typewritten manuscript aloud, compensating for alignment errors in robots, interpreting very noise signals (e.g., electroencephalograms), modeling complex systems that cannot be modeled mathematically, and predicting whether proposed loans will be good or fail. This paper presents a brief tutorial on neural networks and describes research on the potential applications to nuclear power plants

  3. Brain architecture: a design for natural computation.

    Science.gov (United States)

    Kaiser, Marcus

    2007-12-15

    Fifty years ago, John von Neumann compared the architecture of the brain with that of the computers he invented and which are still in use today. In those days, the organization of computers was based on concepts of brain organization. Here, we give an update on current results on the global organization of neural systems. For neural systems, we outline how the spatial and topological architecture of neuronal and cortical networks facilitates robustness against failures, fast processing and balanced network activation. Finally, we discuss mechanisms of self-organization for such architectures. After all, the organization of the brain might again inspire computer architecture.

  4. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    Science.gov (United States)

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  5. A GIS-based multi-criteria seismic vulnerability assessment using the integration of granular computing rule extraction and artificial neural networks

    NARCIS (Netherlands)

    Sheikhian, Hossein; Delavar, Mahmoud Reza; Stein, Alfred

    2017-01-01

    This study proposes multi‐criteria group decision‐making to address seismic physical vulnerability assessment. Granular computing rule extraction is combined with a feed forward artificial neural network to form a classifier capable of training a neural network on the basis of the rules provided by

  6. Biologically inspired collision avoidance system for unmanned vehicles

    Science.gov (United States)

    Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.

    2009-05-01

    In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.

  7. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience.

    Science.gov (United States)

    Komeda, Yoriaki; Handa, Hisashi; Watanabe, Tomohiro; Nomura, Takanobu; Kitahashi, Misaki; Sakurai, Toshiharu; Okamoto, Ayana; Minami, Tomohiro; Kono, Masashi; Arizumi, Tadaaki; Takenaka, Mamoru; Hagiwara, Satoru; Matsui, Shigenaga; Nishida, Naoshi; Kashida, Hiroshi; Kudo, Masatoshi

    2017-01-01

    Computer-aided diagnosis (CAD) is becoming a next-generation tool for the diagnosis of human disease. CAD for colon polyps has been suggested as a particularly useful tool for trainee colonoscopists, as the use of a CAD system avoids the complications associated with endoscopic resections. In addition to conventional CAD, a convolutional neural network (CNN) system utilizing artificial intelligence (AI) has been developing rapidly over the past 5 years. We attempted to generate a unique CNN-CAD system with an AI function that studied endoscopic images extracted from movies obtained with colonoscopes used in routine examinations. Here, we report our preliminary results of this novel CNN-CAD system for the diagnosis of colon polyps. A total of 1,200 images from cases of colonoscopy performed between January 2010 and December 2016 at Kindai University Hospital were used. These images were extracted from the video of actual endoscopic examinations. Additional video images from 10 cases of unlearned processes were retrospectively assessed in a pilot study. They were simply diagnosed as either an adenomatous or nonadenomatous polyp. The number of images used by AI to learn to distinguish adenomatous from nonadenomatous was 1,200:600. These images were extracted from the videos of actual endoscopic examinations. The size of each image was adjusted to 256 × 256 pixels. A 10-hold cross-validation was carried out. The accuracy of the 10-hold cross-validation is 0.751, where the accuracy is the ratio of the number of correct answers over the number of all the answers produced by the CNN. The decisions by the CNN were correct in 7 of 10 cases. A CNN-CAD system using routine colonoscopy might be useful for the rapid diagnosis of colorectal polyp classification. Further prospective studies in an in vivo setting are required to confirm the effectiveness of a CNN-CAD system in routine colonoscopy. © 2017 S. Karger AG, Basel.

  8. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.

    Science.gov (United States)

    Nakao, Takahiro; Hanaoka, Shouhei; Nomura, Yukihiro; Sato, Issei; Nemoto, Mitsutaka; Miki, Soichiro; Maeda, Eriko; Yoshikawa, Takeharu; Hayashi, Naoto; Abe, Osamu

    2018-04-01

    The usefulness of computer-assisted detection (CAD) for detecting cerebral aneurysms has been reported; therefore, the improved performance of CAD will help to detect cerebral aneurysms. To develop a CAD system for intracranial aneurysms on unenhanced magnetic resonance angiography (MRA) images based on a deep convolutional neural network (CNN) and a maximum intensity projection (MIP) algorithm, and to demonstrate the usefulness of the system by training and evaluating it using a large dataset. Retrospective study. There were 450 cases with intracranial aneurysms. The diagnoses of brain aneurysms were made on the basis of MRA, which was performed as part of a brain screening program. Noncontrast-enhanced 3D time-of-flight (TOF) MRA on 3T MR scanners. In our CAD, we used a CNN classifier that predicts whether each voxel is inside or outside aneurysms by inputting MIP images generated from a volume of interest (VOI) around the voxel. The CNN was trained in advance using manually inputted labels. We evaluated our method using 450 cases with intracranial aneurysms, 300 of which were used for training, 50 for parameter tuning, and 100 for the final evaluation. Free-response receiver operating characteristic (FROC) analysis. Our CAD system detected 94.2% (98/104) of aneurysms with 2.9 false positives per case (FPs/case). At a sensitivity of 70%, the number of FPs/case was 0.26. We showed that the combination of a CNN and an MIP algorithm is useful for the detection of intracranial aneurysms. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:948-953. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Application of Neural Network Optimized by Mind Evolutionary Computation in Building Energy Prediction

    Science.gov (United States)

    Song, Chen; Zhong-Cheng, Wu; Hong, Lv

    2018-03-01

    Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.

  10. Evidence for Neural Computations of Temporal Coherence in an Auditory Scene and Their Enhancement during Active Listening.

    Science.gov (United States)

    O'Sullivan, James A; Shamma, Shihab A; Lalor, Edmund C

    2015-05-06

    The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene. Copyright © 2015 the authors 0270-6474/15/357256-08$15.00/0.

  11. Social insects inspire human design

    Science.gov (United States)

    Holbrook, C. Tate; Clark, Rebecca M.; Moore, Dani; Overson, Rick P.; Penick, Clint A.; Smith, Adrian A.

    2010-01-01

    The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design. PMID:20392721

  12. A computational model incorporating neural stem cell dynamics reproduces glioma incidence across the lifespan in the human population.

    Directory of Open Access Journals (Sweden)

    Roman Bauer

    Full Text Available Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age. Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan. Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population. Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated decrease in the number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we conclude that four or five oncogenic mutations are sufficient for the formation of glioma.

  13. Computer-assisted detection of colonic polyps with CT colonography using neural networks and binary classification trees

    International Nuclear Information System (INIS)

    Jerebko, Anna K.; Summers, Ronald M.; Malley, James D.; Franaszek, Marek; Johnson, C. Daniel

    2003-01-01

    Detection of colonic polyps in CT colonography is problematic due to complexities of polyp shape and the surface of the normal colon. Published results indicate the feasibility of computer-aided detection of polyps but better classifiers are needed to improve specificity. In this paper we compare the classification results of two approaches: neural networks and recursive binary trees. As our starting point we collect surface geometry information from three-dimensional reconstruction of the colon, followed by a filter based on selected variables such as region density, Gaussian and average curvature and sphericity. The filter returns sites that are candidate polyps, based on earlier work using detection thresholds, to which the neural nets or the binary trees are applied. A data set of 39 polyps from 3 to 25 mm in size was used in our investigation. For both neural net and binary trees we use tenfold cross-validation to better estimate the true error rates. The backpropagation neural net with one hidden layer trained with Levenberg-Marquardt algorithm achieved the best results: sensitivity 90% and specificity 95% with 16 false positives per study

  14. Neural networks and applications tutorial

    Science.gov (United States)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  15. Computation of optimal transport and related hedging problems via penalization and neural networks

    OpenAIRE

    Eckstein, Stephan; Kupper, Michael

    2018-01-01

    This paper presents a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, martingale optimal transport, portfolio optimization under uncertainty and generative adversa...

  16. Cat Swarm Optimization Based Functional Link Artificial Neural Network Filter for Gaussian Noise Removal from Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2016-01-01

    Full Text Available Gaussian noise is one of the dominant noises, which degrades the quality of acquired Computed Tomography (CT image data. It creates difficulties in pathological identification or diagnosis of any disease. Gaussian noise elimination is desirable to improve the clarity of a CT image for clinical, diagnostic, and postprocessing applications. This paper proposes an evolutionary nonlinear adaptive filter approach, using Cat Swarm Functional Link Artificial Neural Network (CS-FLANN to remove the unwanted noise. The structure of the proposed filter is based on the Functional Link Artificial Neural Network (FLANN and the Cat Swarm Optimization (CSO is utilized for the selection of optimum weight of the neural network filter. The applied filter has been compared with the existing linear filters, like the mean filter and the adaptive Wiener filter. The performance indices, such as peak signal to noise ratio (PSNR, have been computed for the quantitative analysis of the proposed filter. The experimental evaluation established the superiority of the proposed filtering technique over existing methods.

  17. A neutron spectrum unfolding computer code based on artificial neural networks

    International Nuclear Information System (INIS)

    Ortiz-Rodríguez, J.M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J.M.; Vega-Carrillo, H.R.

    2014-01-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding

  18. Computational Models of Neuron-Astrocyte Interactions Lead to Improved Efficacy in the Performance of Neural Networks

    Science.gov (United States)

    Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B.

    2012-01-01

    The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem. PMID:22649480

  19. The human hand as an inspiration for robot hand development

    CERN Document Server

    Santos, Veronica

    2014-01-01

    “The Human Hand as an Inspiration for Robot Hand Development” presents an edited collection of authoritative contributions in the area of robot hands. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities. The twenty-four chapters discuss the field of robotic grasping and manipulation viewed in light of the human hand’s capabilities and push the state-of-the-art in robot hand design and control. Topics discussed include human hand biomechanics, neural control, sensory feedback and perception, and robotic grasp and manipulation. This book will be useful for researchers from diverse areas such as robotics, biomechanics, neuroscience, and anthropologists.

  20. Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Chen Jiun-Ching

    2007-05-01

    Full Text Available Abstract Background Genome-wide identification of specific oligonucleotides (oligos is a computationally-intensive task and is a requirement for designing microarray probes, primers, and siRNAs. An artificial neural network (ANN is a machine learning technique that can effectively process complex and high noise data. Here, ANNs are applied to process the unique subsequence distribution for prediction of specific oligos. Results We present a novel and efficient algorithm, named the integration of ANN and BLAST (IAB algorithm, to identify specific oligos. We establish the unique marker database for human and rat gene index databases using the hash table algorithm. We then create the input vectors, via the unique marker database, to train and test the ANN. The trained ANN predicted the specific oligos with high efficiency, and these oligos were subsequently verified by BLAST. To improve the prediction performance, the ANN over-fitting issue was avoided by early stopping with the best observed error and a k-fold validation was also applied. The performance of the IAB algorithm was about 5.2, 7.1, and 6.7 times faster than the BLAST search without ANN for experimental results of 70-mer, 50-mer, and 25-mer specific oligos, respectively. In addition, the results of polymerase chain reactions showed that the primers predicted by the IAB algorithm could specifically amplify the corresponding genes. The IAB algorithm has been integrated into a previously published comprehensive web server to support microarray analysis and genome-wide iterative enrichment analysis, through which users can identify a group of desired genes and then discover the specific oligos of these genes. Conclusion The IAB algorithm has been developed to construct SpecificDB, a web server that provides a specific and valid oligo database of the probe, siRNA, and primer design for the human genome. We also demonstrate the ability of the IAB algorithm to predict specific oligos through

  1. Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2017-12-01

    Full Text Available BackgroundRadiotherapy is one of the main treatment methods for nasopharyngeal carcinoma (NPC. It requires exact delineation of the nasopharynx gross tumor volume (GTVnx, the metastatic lymph node gross tumor volume (GTVnd, the clinical target volume (CTV, and organs at risk in the planning computed tomography images. However, this task is time-consuming and operator dependent. In the present study, we developed an end-to-end deep deconvolutional neural network (DDNN for segmentation of these targets.MethodsThe proposed DDNN is an end-to-end architecture enabling fast training and testing. It consists of two important components: an encoder network and a decoder network. The encoder network was used to extract the visual features of a medical image and the decoder network was used to recover the original resolution by deploying deconvolution. A total of 230 patients diagnosed with NPC stage I or stage II were included in this study. Data from 184 patients were chosen randomly as a training set to adjust the parameters of DDNN, and the remaining 46 patients were the test set to assess the performance of the model. The Dice similarity coefficient (DSC was used to quantify the segmentation results of the GTVnx, GTVnd, and CTV. In addition, the performance of DDNN was compared with the VGG-16 model.ResultsThe proposed DDNN method outperformed the VGG-16 in all the segmentation. The mean DSC values of DDNN were 80.9% for GTVnx, 62.3% for the GTVnd, and 82.6% for CTV, whereas VGG-16 obtained 72.3, 33.7, and 73.7% for the DSC values, respectively.ConclusionDDNN can be used to segment the GTVnx and CTV accurately. The accuracy for the GTVnd segmentation was relatively low due to the considerable differences in its shape, volume, and location among patients. The accuracy is expected to increase with more training data and combination of MR images. In conclusion, DDNN has the potential to improve the consistency of contouring and streamline radiotherapy

  2. Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images.

    Science.gov (United States)

    Men, Kuo; Chen, Xinyuan; Zhang, Ye; Zhang, Tao; Dai, Jianrong; Yi, Junlin; Li, Yexiong

    2017-01-01

    Radiotherapy is one of the main treatment methods for nasopharyngeal carcinoma (NPC). It requires exact delineation of the nasopharynx gross tumor volume (GTVnx), the metastatic lymph node gross tumor volume (GTVnd), the clinical target volume (CTV), and organs at risk in the planning computed tomography images. However, this task is time-consuming and operator dependent. In the present study, we developed an end-to-end deep deconvolutional neural network (DDNN) for segmentation of these targets. The proposed DDNN is an end-to-end architecture enabling fast training and testing. It consists of two important components: an encoder network and a decoder network. The encoder network was used to extract the visual features of a medical image and the decoder network was used to recover the original resolution by deploying deconvolution. A total of 230 patients diagnosed with NPC stage I or stage II were included in this study. Data from 184 patients were chosen randomly as a training set to adjust the parameters of DDNN, and the remaining 46 patients were the test set to assess the performance of the model. The Dice similarity coefficient (DSC) was used to quantify the segmentation results of the GTVnx, GTVnd, and CTV. In addition, the performance of DDNN was compared with the VGG-16 model. The proposed DDNN method outperformed the VGG-16 in all the segmentation. The mean DSC values of DDNN were 80.9% for GTVnx, 62.3% for the GTVnd, and 82.6% for CTV, whereas VGG-16 obtained 72.3, 33.7, and 73.7% for the DSC values, respectively. DDNN can be used to segment the GTVnx and CTV accurately. The accuracy for the GTVnd segmentation was relatively low due to the considerable differences in its shape, volume, and location among patients. The accuracy is expected to increase with more training data and combination of MR images. In conclusion, DDNN has the potential to improve the consistency of contouring and streamline radiotherapy workflows, but careful human review and a

  3. Computer interpretation of thallium SPECT studies based on neural network analysis

    Science.gov (United States)

    Wang, David C.; Karvelis, K. C.

    1991-06-01

    A class of artificial intelligence (Al) programs known as neural networks are well suited to pattern recognition. A neural network is trained rather than programmed to recognize patterns. This differs from "expert system" Al programs in that it is not following an extensive set of rules determined by the programmer, but rather bases its decision on a gestalt interpretation of the image. The "bullseye" images from cardiac stress thallium tests performed on 50 male patients, as well as several simulated images were used to train the network. The network was able to accurately classify all patients in the training set. The network was then tested against 50 unknown patients and was able to correctly categorize 77% of the areas of ischemia and 92% of the areas of infarction. While not yet matching the ability of a trained physician, the neural network shows great promise in this area and has potential application in other areas of medical imaging.

  4. Computer interpretation of thallium SPECT studies based on neural network analysis

    International Nuclear Information System (INIS)

    Wang, D.C.; Karvelis, K.C.

    1991-01-01

    This paper reports that a class of artificial intelligence (AI) programs known as neural-networks are well suited to pattern recognition. A neural network is trained rather than programmed to recognize patterns. This differs from expert system AI programs in that it is not following an extensive set of rules determined by the programmer, but rather bases its decision on a gestalt interpretation of the image. The bullseye images from cardiac stress thallium tests performed on 50 male patients, as well as several simulated images were used to train the network. The network was able to accurately classify all patients in the training set. The network was then tested against 50 unknown patients and was able to correctly categorize 77% of the areas of ischemia and 92% of the areas of infarction. While not yet matching the ability of the trained physician, the neural network shows great promise in this area and has potential application in other areas of medical imaging

  5. On-chip visual perception of motion: a bio-inspired connectionist model on FPGA.

    Science.gov (United States)

    Torres-Huitzil, César; Girau, Bernard; Castellanos-Sánchez, Claudio

    2005-01-01

    Visual motion provides useful information to understand the dynamics of a scene to allow intelligent systems interact with their environment. Motion computation is usually restricted by real time requirements that need the design and implementation of specific hardware architectures. In this paper, the design of hardware architecture for a bio-inspired neural model for motion estimation is presented. The motion estimation is based on a strongly localized bio-inspired connectionist model with a particular adaptation of spatio-temporal Gabor-like filtering. The architecture is constituted by three main modules that perform spatial, temporal, and excitatory-inhibitory connectionist processing. The biomimetic architecture is modeled, simulated and validated in VHDL. The synthesis results on a Field Programmable Gate Array (FPGA) device show the potential achievement of real-time performance at an affordable silicon area.

  6. Retina-Inspired Filter.

    Science.gov (United States)

    Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien

    2018-07-01

    This paper introduces a novel filter, which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer, and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model "virtual retina." This model is the cornerstone to derive the non-separable spatio-temporal OPL retina-inspired filter, briefly renamed retina-inspired filter, studied in this paper. This filter is connected to the dynamic behavior of the retina, which enables the retina to increase the sharpness of the visual stimulus during filtering before its transmission to the brain. We establish that this retina-inspired transform forms a group of spatio-temporal Weighted Difference of Gaussian (WDoG) filters when it is applied to a still image visible for a given time. We analyze the spatial frequency bandwidth of the retina-inspired filter with respect to time. It is shown that the WDoG spectrum varies from a lowpass filter to a bandpass filter. Therefore, while time increases, the retina-inspired filter enables to extract different kinds of information from the input image. Finally, we discuss the benefits of using the retina-inspired filter in image processing applications such as edge detection and compression.

  7. Clay Bells: Edo Inspiration

    Science.gov (United States)

    Wagner, Tom

    2010-01-01

    The ceremonial copper and iron bells at the Smithsonian's National Museum of African Art were the author's inspiration for an interdisciplinary unit with a focus on the contributions various cultures make toward the richness of a community. The author of this article describes an Edo bell-inspired ceramic project incorporating slab-building…

  8. Inspiration from britain?

    DEFF Research Database (Denmark)

    Vagnby, Bo

    2008-01-01

    Danish housing policy needs a dose of renewed social concern - and could find new inspiration in Britain's housing and urban planning policies, says Bo Vagnby. Udgivelsesdato: November......Danish housing policy needs a dose of renewed social concern - and could find new inspiration in Britain's housing and urban planning policies, says Bo Vagnby. Udgivelsesdato: November...

  9. 2D neural hardware versus 3D biological ones

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    This paper will present important limitations of hardware neural nets as opposed to biological neural nets (i.e. the real ones). The author starts by discussing neural structures and their biological inspirations, while mentioning the simplifications leading to artificial neural nets. Going further, the focus will be on hardware constraints. The author will present recent results for three different alternatives of implementing neural networks: digital, threshold gate, and analog, while the area and the delay will be related to neurons' fan-in and weights' precision. Based on all of these, it will be shown why hardware implementations cannot cope with their biological inspiration with respect to their power of computation: the mapping onto silicon lacking the third dimension of biological nets. This translates into reduced fan-in, and leads to reduced precision. The main conclusion is that one is faced with the following alternatives: (1) try to cope with the limitations imposed by silicon, by speeding up the computation of the elementary silicon neurons; (2) investigate solutions which would allow one to use the third dimension, e.g. using optical interconnections.

  10. An Efficient Neural-Network-Based Microseismic Monitoring Platform for Hydraulic Fracture on an Edge Computing Architecture.

    Science.gov (United States)

    Zhang, Xiaopu; Lin, Jun; Chen, Zubin; Sun, Feng; Zhu, Xi; Fang, Gengfa

    2018-06-05

    Microseismic monitoring is one of the most critical technologies for hydraulic fracturing in oil and gas production. To detect events in an accurate and efficient way, there are two major challenges. One challenge is how to achieve high accuracy due to a poor signal-to-noise ratio (SNR). The other one is concerned with real-time data transmission. Taking these challenges into consideration, an edge-computing-based platform, namely Edge-to-Center LearnReduce, is presented in this work. The platform consists of a data center with many edge components. At the data center, a neural network model combined with convolutional neural network (CNN) and long short-term memory (LSTM) is designed and this model is trained by using previously obtained data. Once the model is fully trained, it is sent to edge components for events detection and data reduction. At each edge component, a probabilistic inference is added to the neural network model to improve its accuracy. Finally, the reduced data is delivered to the data center. Based on experiment results, a high detection accuracy (over 96%) with less transmitted data (about 90%) was achieved by using the proposed approach on a microseismic monitoring system. These results show that the platform can simultaneously improve the accuracy and efficiency of microseismic monitoring.

  11. An Efficient Neural-Network-Based Microseismic Monitoring Platform for Hydraulic Fracture on an Edge Computing Architecture

    Directory of Open Access Journals (Sweden)

    Xiaopu Zhang

    2018-06-01

    Full Text Available Microseismic monitoring is one of the most critical technologies for hydraulic fracturing in oil and gas production. To detect events in an accurate and efficient way, there are two major challenges. One challenge is how to achieve high accuracy due to a poor signal-to-noise ratio (SNR. The other one is concerned with real-time data transmission. Taking these challenges into consideration, an edge-computing-based platform, namely Edge-to-Center LearnReduce, is presented in this work. The platform consists of a data center with many edge components. At the data center, a neural network model combined with convolutional neural network (CNN and long short-term memory (LSTM is designed and this model is trained by using previously obtained data. Once the model is fully trained, it is sent to edge components for events detection and data reduction. At each edge component, a probabilistic inference is added to the neural network model to improve its accuracy. Finally, the reduced data is delivered to the data center. Based on experiment results, a high detection accuracy (over 96% with less transmitted data (about 90% was achieved by using the proposed approach on a microseismic monitoring system. These results show that the platform can simultaneously improve the accuracy and efficiency of microseismic monitoring.

  12. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. On the relationships between generative encodings, regularity, and learning abilities when evolving plastic artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Paul Tonelli

    Full Text Available A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1 the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2 synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT. Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1 in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2 whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities.

  14. Neural networks and wavelet analysis in the computer interpretation of pulse oximetry data

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.; Skokowski, P.G.; Leach, R.R. Jr.

    1996-03-01

    Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. The sensor consists of red and infrared light sources and photodetectors. A method based on neural networks and wavelet analysis is developed for improved saturation estimation in the presence of sensor motion. Spectral and correlation functions of the dual channel oximetry data are used by a backpropagation neural network to characterize the type of motion. Amplitude ratios of red to infrared signals as a function of time scale are obtained from the multiresolution wavelet decomposition of the two-channel data. Motion class and amplitude ratios are then combined to obtain a short-time estimate of the oxygen saturation level. A final estimate of oxygen saturation is obtained by applying a 15 s smoothing filter on the short-time measurements based on 3.5 s windows sampled every 1.75 s. The design employs two backpropagation neural networks. The first neural network determines the motion characteristics and the second network determines the saturation estimate. Our approach utilizes waveform analysis in contrast to the standard algorithms that are based on the successful detection of peaks and troughs in the signal. The proposed algorithm is numerically efficient and has stable characteristics with a reduced false alarm rate with a small loss in detection. The method can be rapidly developed on a digital signal processing platform.

  15. A neutron spectrum unfolding computer code based on artificial neural networks

    Science.gov (United States)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2014-02-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in

  16. DEVELOPMENT OF A COMPUTER SYSTEM FOR IDENTITY AUTHENTICATION USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Timur Kartbayev

    2017-03-01

    Full Text Available The aim of the study is to increase the effectiveness of automated face recognition to authenticate identity, considering features of change of the face parameters over time. The improvement of the recognition accuracy, as well as consideration of the features of temporal changes in a human face can be based on the methodology of artificial neural networks. Hybrid neural networks, combining the advantages of classical neural networks and fuzzy logic systems, allow using the network learnability along with the explanation of the findings. The structural scheme of intelligent system for identification based on artificial neural networks is proposed in this work. It realizes the principles of digital information processing and identity recognition taking into account the forecast of key characteristics’ changes over time (e.g., due to aging. The structural scheme has a three-tier architecture and implements preliminary processing, recognition and identification of images obtained as a result of monitoring. On the basis of expert knowledge, the fuzzy base of products is designed. It allows assessing possible changes in key characteristics, used to authenticate identity based on the image. To take this possibility into consideration, a neuro-fuzzy network of ANFIS type was used, which implements the algorithm of Tagaki-Sugeno. The conducted experiments showed high efficiency of the developed neural network and a low value of learning errors, which allows recommending this approach for practical implementation. Application of the developed system of fuzzy production rules that allow predicting changes in individuals over time, will improve the recognition accuracy, reduce the number of authentication failures and improve the efficiency of information processing and decision-making in applications, such as authentication of bank customers, users of mobile applications, or in video monitoring systems of sensitive sites.

  17. Nature-Inspired Cognitive Evolution to Play MS. Pac-Man

    Science.gov (United States)

    Tan, Tse Guan; Teo, Jason; Anthony, Patricia

    Recent developments in nature-inspired computation have heightened the need for research into the three main areas of scientific, engineering and industrial applications. Some approaches have reported that it is able to solve dynamic problems and very useful for improving the performance of various complex systems. So far however, there has been little discussion about the effectiveness of the application of these models to computer and video games in particular. The focus of this research is to explore the hybridization of nature-inspired computation methods for optimization of neural network-based cognition in video games, in this case the combination of a neural network with an evolutionary algorithm. In essence, a neural network is an attempt to mimic the extremely complex human brain system, which is building an artificial brain that is able to self-learn intelligently. On the other hand, an evolutionary algorithm is to simulate the biological evolutionary processes that evolve potential solutions in order to solve the problems or tasks by applying the genetic operators such as crossover, mutation and selection into the solutions. This paper investigates the abilities of Evolution Strategies (ES) to evolve feed-forward artificial neural network's internal parameters (i.e. weight and bias values) for automatically generating Ms. Pac-man controllers. The main objective of this game is to clear a maze of dots while avoiding the ghosts and to achieve the highest possible score. The experimental results show that an ES-based system can be successfully applied to automatically generate artificial intelligence for a complex, dynamic and highly stochastic video game environment.

  18. General-Purpose Computation with Neural Networks: A Survey of Complexity Theoretic Results

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří; Orponen, P.

    2003-01-01

    Roč. 15, č. 12 (2003), s. 2727-2778 ISSN 0899-7667 R&D Projects: GA AV ČR IAB2030007; GA ČR GA201/02/1456 Institutional research plan: AV0Z1030915 Keywords : computational power * computational complexity * perceptrons * radial basis functions * spiking neurons * feedforward networks * reccurent networks * probabilistic computation * analog computation Subject RIV: BA - General Mathematics Impact factor: 2.747, year: 2003

  19. Evolutionary optimization of neural networks with heterogeneous computation: study and implementation

    OpenAIRE

    FE, JORGE DEOLINDO; Aliaga Varea, Ramón José; Gadea Gironés, Rafael

    2015-01-01

    In the optimization of artificial neural networks (ANNs) via evolutionary algorithms and the implementation of the necessary training for the objective function, there is often a trade-off between efficiency and flexibility. Pure software solutions on general-purpose processors tend to be slow because they do not take advantage of the inherent parallelism, whereas hardware realizations usually rely on optimizations that reduce the range of applicable network topologies, or they...

  20. Physicists get INSPIREd

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Particle physicists thrive on information. They first create information by performing experiments or elaborating theoretical conjectures and then they share it through publications and various web tools. The INSPIRE service, just released, will bring state of the art information retrieval to the fingertips of researchers.   Keeping track of the information shared within the particle physics community has long been the task of libraries at the larger labs, such as CERN, DESY, Fermilab and SLAC, as well as the focus of indispensible services like arXiv and those of the Particle Data Group. In 2007, many providers of information in the field came together for a summit at SLAC to see how physics information resources could be enhanced, and the INSPIRE project emerged from that meeting. The vision behind INSPIRE was built by a survey launched by the four labs to evaluate the real needs of the community. INSPIRE responds to these directives from the community by combining the most successful aspe...

  1. Quantum neural networks: Current status and prospects for development

    Science.gov (United States)

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  2. Application of a neural network for reflectance spectrum classification

    Science.gov (United States)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  3. A Computational Account of Children's Analogical Reasoning: Balancing Inhibitory Control in Working Memory and Relational Representation

    Science.gov (United States)

    Morrison, Robert G.; Doumas, Leonidas A. A.; Richland, Lindsey E.

    2011-01-01

    Theories accounting for the development of analogical reasoning tend to emphasize either the centrality of relational knowledge accretion or changes in information processing capability. Simulations in LISA (Hummel & Holyoak, 1997, 2003), a neurally inspired computer model of analogical reasoning, allow us to explore how these factors may…

  4. Inspiration, anyone? (Editorial

    Directory of Open Access Journals (Sweden)

    Lindsay Glynn

    2006-09-01

    Full Text Available I have to admit that writing an editorial for this issue was a struggle. Trying to sit down and write when the sun was shining outside and most of my colleagues were on vacation was, to say the least, difficult. Add to that research projects and conferences…let’s just say that I found myself less than inspired. A pitiful plea for ideas to a colleague resulted in the reintroduction to a few recent evidence based papers and resources which inspired further searching and reading. Though I generally find myself surrounded (more like buried in research papers and EBLIP literature, somehow I had missed the great strides that have been made of late in the world of evidence based library and information practice. I realize now that I am inspired by the researchers, authors and innovators who are putting EBLIP on the proverbial map. My biggest beef with library literature in general has been the plethora of articles highlighting what we should be doing. Take a close look at the evidence based practitioners in the information professions: these are some of the people who are actively practicing what has been preached for the past few years. Take, for example, the about‐to‐be released Libraries using Evidence Toolkit by Northern Sydney Central Coast Health and The University of Newcastle, Australia (see their announcement in this issue. An impressive advisory group is responsible for maintaining the currency and relevancy of the site as well as promoting the site and acting as a steering committee for related projects. This group is certainly doing more than “talking the talk”: they took their experience at the 3rd International Evidence Based Librarianship Conference and did something with the information they obtained by implementing solutions that worked in their environment. The result? The creation of a collection of tools for all of us to use. This toolkit is just what EBLIP needs: a portal to resources aimed at supporting the information

  5. Matching Behavior as a Tradeoff Between Reward Maximization and Demands on Neural Computation [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jan Kubanek

    2015-10-01

    Full Text Available When faced with a choice, humans and animals commonly distribute their behavior in proportion to the frequency of payoff of each option. Such behavior is referred to as matching and has been captured by the matching law. However, matching is not a general law of economic choice. Matching in its strict sense seems to be specifically observed in tasks whose properties make matching an optimal or a near-optimal strategy. We engaged monkeys in a foraging task in which matching was not the optimal strategy. Over-matching the proportions of the mean offered reward magnitudes would yield more reward than matching, yet, surprisingly, the animals almost exactly matched them. To gain insight into this phenomenon, we modeled the animals' decision-making using a mechanistic model. The model accounted for the animals' macroscopic and microscopic choice behavior. When the models' three parameters were not constrained to mimic the monkeys' behavior, the model over-matched the reward proportions and in doing so, harvested substantially more reward than the monkeys. This optimized model revealed a marked bottleneck in the monkeys' choice function that compares the value of the two options. The model featured a very steep value comparison function relative to that of the monkeys. The steepness of the value comparison function had a profound effect on the earned reward and on the level of matching. We implemented this value comparison function through responses of simulated biological neurons. We found that due to the presence of neural noise, steepening the value comparison requires an exponential increase in the number of value-coding neurons. Matching may be a compromise between harvesting satisfactory reward and the high demands placed by neural noise on optimal neural computation.

  6. Comparisons of a Quantum Annealing and Classical Computer Neural Net Approach for Inferring Global Annual CO2 Fluxes over Land

    Science.gov (United States)

    Halem, M.; Radov, A.; Singh, D.

    2017-12-01

    Investigations of mid to high latitude atmospheric CO2 show growing amplitudes in seasonal variations over the past several decades. Recent high-resolution satellite measurements of CO2 concentration are now available for three years from the Orbiting Carbon Observatory-2. The Atmospheric Radiation Measurement (ARM) program of DOE has been making long-term CO2-flux measurements (in addition to CO2 concentration and an array of other meteorological quantities) at several towers and mobile sites located around the globe at half-hour frequencies. Recent papers have shown CO2 fluxes inferred by assimilating CO2 observations into ecosystem models are largely inconsistent with station observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. Thus, new approaches for calculating CO2-flux for assimilation into land surface models are necessary for improving the prediction of annual carbon uptake. In this study, we calculate and compare the predicted CO2 fluxes results employing a Feed Forward Backward Propagation Neural Network model on two architectures, (i) an IBM Minsky Computer node and (ii) a hybrid version of the ARC D-Wave quantum annealing computer. We compare the neural net results of predictions of CO2 flux from ARM station data for three different DOE ecosystem sites; an arid plains near Oklahoma City, a northern arctic site at Barrows AL, and a tropical rainforest site in the Amazon. Training times and predictive results for the calculating annual CO2 flux for the two architectures for each of the three sites are presented. Comparative results of predictions as measured by RMSE and MAE are discussed. Plots and correlations of observed vs predicted CO2 flux are also presented for all three sites. We show the estimated training times for quantum and classical calculations when extended to calculating global annual Carbon Uptake over land. We also

  7. The Computational and Neural Basis of Cognitive Control: Charted Territory and New Frontiers

    Science.gov (United States)

    Botvinick, Matthew M.; Cohen, Jonathan D.

    2014-01-01

    Cognitive control has long been one of the most active areas of computational modeling work in cognitive science. The focus on computational models as a medium for specifying and developing theory predates the PDP books, and cognitive control was not one of the areas on which they focused. However, the framework they provided has injected work on…

  8. COMPUTATIONAL ANALYSIS BASED ON ARTIFICIAL NEURAL NETWORKS FOR AIDING IN DIAGNOSING OSTEOARTHRITIS OF THE LUMBAR SPINE

    Science.gov (United States)

    Veronezi, Carlos Cassiano Denipotti; de Azevedo Simões, Priscyla Waleska Targino; dos Santos, Robson Luiz; da Rocha, Edroaldo Lummertz; Meláo, Suelen; de Mattos, Merisandra Côrtes; Cechinel, Cristian

    2015-01-01

    Objective: To ascertain the advantages of applying artificial neural networks to recognize patterns on lumbar spine radiographies in order to aid in the process of diagnosing primary osteoarthritis. Methods: This was a cross-sectional descriptive analytical study with a quantitative approach and an emphasis on diagnosis. The training set was composed of images collected between January and July 2009 from patients who had undergone lateral-view digital radiographies of the lumbar spine, which were provided by a radiology clinic located in the municipality of Criciúma (SC). Out of the total of 260 images gathered, those with distortions, those presenting pathological conditions that altered the architecture of the lumbar spine and those with patterns that were difficult to characterize were discarded, resulting in 206 images. The image data base (n = 206) was then subdivided, resulting in 68 radiographies for the training stage, 68 images for tests and 70 for validation. A hybrid neural network based on Kohonen self-organizing maps and on Multilayer Perceptron networks was used. Results: After 90 cycles, the validation was carried out on the best results, achieving accuracy of 62.85%, sensitivity of 65.71% and specificity of 60%. Conclusions: Even though the effectiveness shown was moderate, this study is still innovative. The values show that the technique used has a promising future, pointing towards further studies on image and cycle processing methodology with a larger quantity of radiographies. PMID:27027010

  9. Neural Correlates of Racial Ingroup Bias in Observing Computer-Animated Social Encounters

    Directory of Open Access Journals (Sweden)

    Yuta Katsumi

    2018-01-01

    Full Text Available Despite evidence for the role of group membership in the neural correlates of social cognition, the mechanisms associated with processing non-verbal behaviors displayed by racially ingroup vs. outgroup members remain unclear. Here, 20 Caucasian participants underwent fMRI recording while observing social encounters with ingroup and outgroup characters displaying dynamic and static non-verbal behaviors. Dynamic behaviors included approach and avoidance behaviors, preceded or not by a handshake; both dynamic and static behaviors were followed by participants’ ratings. Behaviorally, participants showed bias toward their ingroup members, demonstrated by faster/slower reaction times for evaluating ingroup static/approach behaviors, respectively. At the neural level, despite overall similar responses in the action observation network to ingroup and outgroup encounters, the medial prefrontal cortex showed dissociable activation, possibly reflecting spontaneous processing of ingroup static behaviors and positive evaluations of ingroup approach behaviors. The anterior cingulate and superior frontal cortices also showed sensitivity to race, reflected in coordinated and reduced activation for observing ingroup static behaviors. Finally, the posterior superior temporal sulcus showed uniquely increased activity to observing ingroup handshakes. These findings shed light on the mechanisms of racial ingroup bias in observing social encounters, and have implications for understanding factors related to successful interactions with individuals from diverse backgrounds.

  10. The Prediction of Bandwidth On Need Computer Network Through Artificial Neural Network Method of Backpropagation

    Directory of Open Access Journals (Sweden)

    Ikhthison Mekongga

    2014-02-01

    Full Text Available The need for bandwidth has been increasing recently. This is because the development of internet infrastructure is also increasing so that we need an economic and efficient provider system. This can be achieved through good planning and a proper system. The prediction of the bandwidth consumption is one of the factors that support the planning for an efficient internet service provider system. Bandwidth consumption is predicted using ANN. ANN is an information processing system which has similar characteristics as the biologic al neural network.  ANN  is  chosen  to  predict  the  consumption  of  the  bandwidth  because  ANN  has  good  approachability  to  non-linearity.  The variable used in ANN is the historical load data. A bandwidth consumption information system was built using neural networks  with a backpropagation algorithm to make the use of bandwidth more efficient in the future both in the rental rate of the bandwidth and in the usage of the bandwidth.Keywords: Forecasting, Bandwidth, Backpropagation

  11. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Science.gov (United States)

    Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng

    2017-01-01

    In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  12. Pattern recognition, neural networks, genetic algorithms and high performance computing in nuclear reactor diagnostics. Results and perspectives

    International Nuclear Information System (INIS)

    Dzwinel, W.; Pepyolyshev, N.

    1996-01-01

    The main goal of this paper is the presentation of our experience in development of the diagnostic system for the IBR-2 (Russia - Dubna) nuclear reactor. The authors show the principal results of the system modifications to make it work more reliable and much faster. The former needs the adaptation of new techniques of data processing, the latter, implementation of the newest computational facilities. The results of application of the clustering techniques and a method of visualization of the multi-dimensional information directly on the operator display are presented. The experiences with neural nets, used for prediction of the reactor operation, are discussed. The genetic algorithms were also tested, to reduce the quantity of data nd extracting the most informative components of the analyzed spectra. (authors)

  13. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Directory of Open Access Journals (Sweden)

    WenBo Xiao

    Full Text Available In this article, we introduced an artificial neural network (ANN based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-, multi-crystalline (multi-, and amorphous (amor- crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  14. Gas Classification Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin

    2018-01-01

    In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP). PMID:29316723

  15. Gas Classification Using Deep Convolutional Neural Networks.

    Science.gov (United States)

    Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin

    2018-01-08

    In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP).

  16. Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks.

    Science.gov (United States)

    Liu, Jiamin; Wang, David; Lu, Le; Wei, Zhuoshi; Kim, Lauren; Turkbey, Evrim B; Sahiner, Berkman; Petrick, Nicholas A; Summers, Ronald M

    2017-09-01

    Colitis refers to inflammation of the inner lining of the colon that is frequently associated with infection and allergic reactions. In this paper, we propose deep convolutional neural networks methods for lesion-level colitis detection and a support vector machine (SVM) classifier for patient-level colitis diagnosis on routine abdominal CT scans. The recently developed Faster Region-based Convolutional Neural Network (Faster RCNN) is utilized for lesion-level colitis detection. For each 2D slice, rectangular region proposals are generated by region proposal networks (RPN). Then, each region proposal is jointly classified and refined by a softmax classifier and bounding-box regressor. Two convolutional neural networks, eight layers of ZF net and 16 layers of VGG net are compared for colitis detection. Finally, for each patient, the detections on all 2D slices are collected and a SVM classifier is applied to develop a patient-level diagnosis. We trained and evaluated our method with 80 colitis patients and 80 normal cases using 4 × 4-fold cross validation. For lesion-level colitis detection, with ZF net, the mean of average precisions (mAP) were 48.7% and 50.9% for RCNN and Faster RCNN, respectively. The detection system achieved sensitivities of 51.4% and 54.0% at two false positives per patient for RCNN and Faster RCNN, respectively. With VGG net, Faster RCNN increased the mAP to 56.9% and increased the sensitivity to 58.4% at two false positive per patient. For patient-level colitis diagnosis, with ZF net, the average areas under the ROC curve (AUC) were 0.978 ± 0.009 and 0.984 ± 0.008 for RCNN and Faster RCNN method, respectively. The difference was not statistically significant with P = 0.18. At the optimal operating point, the RCNN method correctly identified 90.4% (72.3/80) of the colitis patients and 94.0% (75.2/80) of normal cases. The sensitivity improved to 91.6% (73.3/80) and the specificity improved to 95.0% (76.0/80) for the Faster RCNN

  17. Implementing Signature Neural Networks with Spiking Neurons.

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  18. Neural Mechanisms of Cortical Motion Computation Based on a Neuromorphic Sensory System

    Science.gov (United States)

    Abdul-Kreem, Luma Issa; Neumann, Heiko

    2015-01-01

    The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina) that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields). In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells. PMID:26554589

  19. Neural Mechanisms of Cortical Motion Computation Based on a Neuromorphic Sensory System.

    Directory of Open Access Journals (Sweden)

    Luma Issa Abdul-Kreem

    Full Text Available The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields. In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells.

  20. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  1. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Inspirations in medical genetics.

    Science.gov (United States)

    Asadollahi, Reza

    2016-02-01

    There are abundant instances in the history of genetics and medical genetics to illustrate how curiosity, charisma of mentors, nature, art, the saving of lives and many other matters have inspired great discoveries. These achievements from deciphering genetic concepts to characterizing genetic disorders have been crucial for management of the patients. There remains, however, a long pathway ahead. © The Author(s) 2014.

  3. Nature as Inspiration

    Science.gov (United States)

    Tank, Kristina; Moore, Tamara; Strnat, Meg

    2015-01-01

    This article describes the final lesson within a seven-day STEM and literacy unit that is part of the Picture STEM curriculum (pictureSTEM. org) and uses engineering to integrate science and mathematics learning in a meaningful way (Tank and Moore 2013). For this engineering challenge, students used nature as a source of inspiration for designs to…

  4. Ndebele Inspired Houses

    Science.gov (United States)

    Rice, Nicole

    2012-01-01

    The house paintings of the South African Ndebele people are more than just an attempt to improve the aesthetics of a community; they are a source of identity and significance for Ndebele women. In this article, the author describes an art project wherein students use the tradition of Ndebele house painting as inspiration for creating their own…

  5. IR wireless cluster synapses of HYDRA very large neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas

    2008-04-01

    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  6. Great expectations: neural computations underlying the use of social norms in decision-making

    NARCIS (Netherlands)

    Chang, L.J.; Sanfey, A.G.

    2011-01-01

    Social expectations play a critical role in everyday decision-making. However, their precise neuro-computational role in the decision process remains unknown. Here we adopt a decision neuroscience framework by combining methods and theories from psychology, economics and neuroscience to outline a

  7. Great expectations: neural computations underlying the use of social norms in decision-making

    NARCIS (Netherlands)

    Chang, L.J.; Sanfey, A.G.

    2013-01-01

    Social expectations play a critical role in everyday decision-making. However, their precise neuro-computational role in the decision process remains unknown. Here we adopt a decision neuroscience framework by combining methods and theories from psychology, economics and neuroscience to outline a

  8. Neural computing thermal comfort index PMV for the indoor environment intelligent control system

    Science.gov (United States)

    Liu, Chang; Chen, Yifei

    2013-03-01

    Providing indoor thermal comfort and saving energy are two main goals of indoor environmental control system. An intelligent comfort control system by combining the intelligent control and minimum power control strategies for the indoor environment is presented in this paper. In the system, for realizing the comfort control, the predicted mean vote (PMV) is designed as the control goal, and with chastening formulas of PMV, it is controlled to optimize for improving indoor comfort lever by considering six comfort related variables. On the other hand, a RBF neural network based on genetic algorithm is designed to calculate PMV for better performance and overcoming the nonlinear feature of the PMV calculation better. The formulas given in the paper are presented for calculating the expected output values basing on the input samples, and the RBF network model is trained depending on input samples and the expected output values. The simulation result is proved that the design of the intelligent calculation method is valid. Moreover, this method has a lot of advancements such as high precision, fast dynamic response and good system performance are reached, it can be used in practice with requested calculating error.

  9. Dynamic indoor thermal comfort model identification based on neural computing PMV index

    International Nuclear Information System (INIS)

    Sahari, K S Mohamed; Jalal, M F Abdul; Homod, R Z; Eng, Y K

    2013-01-01

    This paper focuses on modelling and simulation of building dynamic thermal comfort control for non-linear HVAC system. Thermal comfort in general refers to temperature and also humidity. However in reality, temperature or humidity is just one of the factors affecting the thermal comfort but not the main measures. Besides, as HVAC control system has the characteristic of time delay, large inertia, and highly nonlinear behaviour, it is difficult to determine the thermal comfort sensation accurately if we use traditional Fanger's PMV index. Hence, Artificial Neural Network (ANN) has been introduced due to its ability to approximate any nonlinear mapping. Using ANN to train, we can get the input-output mapping of HVAC control system or in other word; we can propose a practical approach to identify thermal comfort of a building. Simulations were carried out to validate and verify the proposed method. Results show that the proposed ANN method can track down the desired thermal sensation for a specified condition space.

  10. Computational Depth of Anesthesia via Multiple Vital Signs Based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Muammar Sadrawi

    2015-01-01

    Full Text Available This study evaluated the depth of anesthesia (DoA index using artificial neural networks (ANN which is performed as the modeling technique. Totally 63-patient data is addressed, for both modeling and testing of 17 and 46 patients, respectively. The empirical mode decomposition (EMD is utilized to purify between the electroencephalography (EEG signal and the noise. The filtered EEG signal is subsequently extracted to achieve a sample entropy index by every 5-second signal. Then, it is combined with other mean values of vital signs, that is, electromyography (EMG, heart rate (HR, pulse, systolic blood pressure (SBP, diastolic blood pressure (DBP, and signal quality index (SQI to evaluate the DoA index as the input. The 5 doctor scores are averaged to obtain an output index. The mean absolute error (MAE is utilized as the performance evaluation. 10-fold cross-validation is performed in order to generalize the model. The ANN model is compared with the bispectral index (BIS. The results show that the ANN is able to produce lower MAE than BIS. For the correlation coefficient, ANN also has higher value than BIS tested on the 46-patient testing data. Sensitivity analysis and cross-validation method are applied in advance. The results state that EMG has the most effecting parameter, significantly.

  11. Nature-inspired design of hybrid intelligent systems

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2017-01-01

    This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as...

  12. Selection of window sizes for optimizing occupational comfort and hygiene based on computational fluid dynamics and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Stavrakakis, G.M.; Karadimou, D.P.; Zervas, P.L.; Markatos, N.C. [Computational Fluid Dynamics Unit, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, GR-15780 Athens (Greece); Sarimveis, H. [Unit of Process Control and Informatics, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, GR-15780 Athens (Greece)

    2011-02-15

    The present paper presents a novel computational method to optimize window sizes for thermal comfort and indoor air quality in naturally ventilated buildings. The methodology is demonstrated by means of a prototype case, which corresponds to a single-sided naturally ventilated apartment. Initially, the airflow in and around the building is simulated using a Computational Fluid Dynamics model. Local prevailing weather conditions are imposed in the CFD model as inlet boundary conditions. The produced airflow patterns are utilized to predict thermal comfort indices, i.e. the PMV and its modifications for non-air-conditioned buildings, as well as indoor air quality indices, such as ventilation effectiveness based on carbon dioxide and volatile organic compounds removal. Mean values of these indices (output/objective variables) within the occupied zone are calculated for different window sizes (input/design variables), to generate a database of input-output data pairs. The database is then used to train and validate Radial Basis Function Artificial Neural Network input-output ''meta-models''. The produced meta-models are used to formulate an optimization problem, which takes into account special constraints recommended by design guidelines. It is concluded that the proposed methodology determines appropriate windows architectural designs for pleasant and healthy indoor environments. (author)

  13. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  14. Developing a computational tool for predicting physical parameters of a typical VVER-1000 core based on artificial neural network

    International Nuclear Information System (INIS)

    Mirvakili, S.M.; Faghihi, F.; Khalafi, H.

    2012-01-01

    Highlights: ► Thermal–hydraulics parameters of a VVER-1000 core based on neural network (ANN), are carried out. ► Required data for ANN training are found based on modified COBRA-EN code and then linked each other using MATLAB software. ► Based on ANN method, average and maximum temperature of fuel and clad as well as MDNBR of each FA are predicted. -- Abstract: The main goal of the present article is to design a computational tool to predict physical parameters of the VVER-1000 nuclear reactor core based on artificial neural network (ANN), taking into account a detailed physical model of the fuel rods and coolant channels in a fuel assembly. Predictions of thermal characteristics of fuel, clad and coolant are performed using cascade feed forward ANN based on linear fission power distribution and power peaking factors of FAs and hot channels factors (which are found based on our previous neutronic calculations). A software package has been developed to prepare the required data for ANN training which applies a modified COBRA-EN code for sub-channel analysis and links the codes using the MATLAB software. Based on the current estimation system, five main core TH parameters are predicted, which include the average and maximum temperatures of fuel and clad as well as the minimum departure from nucleate boiling ratio (MDNBR) for each FA. To get the best conditions for the considered ANNs training, a comprehensive sensitivity study has been performed to examine the effects of variation of hidden neurons, hidden layers, transfer functions, and the learning algorithms on the training and simulation results. Performance evaluation results show that the developed ANN can be trained to estimate the core TH parameters of a typical VVER-1000 reactor quickly without loss of accuracy.

  15. Data specifications for INSPIRE

    Science.gov (United States)

    Portele, Clemens; Woolf, Andrew; Cox, Simon

    2010-05-01

    In Europe a major recent development has been the entering in force of the INSPIRE Directive in May 2007, establishing an infrastructure for spatial information in Europe to support Community environmental policies, and policies or activities which may have an impact on the environment. INSPIRE is based on the infrastructures for spatial information established and operated by the 27 Member States of the European Union. The Directive addresses 34 spatial data themes needed for environmental applications, with key components specified through technical implementing rules. This makes INSPIRE a unique example of a legislative "regional" approach. One of the requirements of the INSPIRE Directive is to make existing spatial data sets with relevance for one of the spatial data themes available in an interoperable way, i.e. where the spatial data from different sources in Europe can be combined to a coherent result. Since INSPIRE covers a wide range of spatial data themes, the first step has been the development of a modelling framework that provides a common foundation for all themes. This framework is largely based on the ISO 19100 series of standards. The use of common generic spatial modelling concepts across all themes is an important enabler for interoperability. As a second step, data specifications for the first set of themes has been developed based on the modelling framework. The themes include addresses, transport networks, protected sites, hydrography, administrative areas and others. The data specifications were developed by selected experts nominated by stakeholders from all over Europe. For each theme a working group was established in early 2008 working on their specific theme and collaborating with the other working groups on cross-theme issues. After a public review of the draft specifications starting in December 2008, an open testing process and thorough comment resolution process, the draft technical implementing rules for these themes have been

  16. A neural computational model for animal's time-to-collision estimation.

    Science.gov (United States)

    Wang, Ling; Yao, Dezhong

    2013-04-17

    The time-to-collision (TTC) is the time elapsed before a looming object hits the subject. An accurate estimation of TTC plays a critical role in the survival of animals in nature and acts as an important factor in artificial intelligence systems that depend on judging and avoiding potential dangers. The theoretic formula for TTC is 1/τ≈θ'/sin θ, where θ and θ' are the visual angle and its variation, respectively, and the widely used approximation computational model is θ'/θ. However, both of these measures are too complex to be implemented by a biological neuronal model. We propose a new simple computational model: 1/τ≈Mθ-P/(θ+Q)+N, where M, P, Q, and N are constants that depend on a predefined visual angle. This model, weighted summation of visual angle model (WSVAM), can achieve perfect implementation through a widely accepted biological neuronal model. WSVAM has additional merits, including a natural minimum consumption and simplicity. Thus, it yields a precise and neuronal-implemented estimation for TTC, which provides a simple and convenient implementation for artificial vision, and represents a potential visual brain mechanism.

  17. The scientific study of inspiration in the creative process: Challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Victoria C. Oleynick

    2014-06-01

    Full Text Available Inspiration is a motivational state that compels individuals to bring ideas into fruition. Creators have long argued that inspiration is important to the creative process, but until recently, scientists have not investigated this claim. In this article, we review challenges to the study of creative inspiration, as well as solutions to these challenges afforded by theoretical and empirical work on inspiration over the past decade. First, we discuss the problem of definitional ambiguity, which has been addressed through an integrative process of construct conceptualization. Second, we discuss the challenge of how to operationalize inspiration. This challenge has been overcome by the development and validation of the Inspiration Scale, which may be used to assess trait or state inspiration. Third, we address ambiguity regarding how inspiration differs from related concepts (creativity, insight, positive affect by discussing discriminant validity. Next, we discuss the preconception that inspiration is less important than perspiration (effort, and we review empirical evidence that inspiration and effort both play important—but different—roles in the creative process. Finally, with many challenges overcome, we argue that the foundation is now set for a new generation of research focused on neural underpinnings. We discuss potential challenges to and opportunities for the neuroscientific study of inspiration. A better understanding of the biological basis of inspiration will illuminate the process through which creative ideas fire the soul, such that individuals are compelled to transform ideas into products and solutions that may benefit society.

  18. Inspiring a generation

    CERN Multimedia

    2012-01-01

    The motto of the 2012 Olympic and Paralympic Games is ‘Inspire a generation’ so it was particularly pleasing to see science, the LHC and Higgs bosons featuring so strongly in the opening ceremony of the Paralympics last week.   It’s a sign of just how far our field has come that such a high-profile event featured particle physics so strongly, and we can certainly add our support to that motto. If the legacy of London 2012 is a generation inspired by science as well as sport, then the games will have more than fulfilled their mission. Particle physics has truly inspiring stories to tell, going well beyond Higgs and the LHC, and the entire community has played its part in bringing the excitement of frontier research in particle physics to a wide audience. Nevertheless, we cannot rest on our laurels: maintaining the kind of enthusiasm for science we witnessed at the Paralympic opening ceremony will require constant vigilance, and creative thinking about ways to rea...

  19. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Zenke, Friedemann; Ganguli, Surya

    2018-04-13

    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

  20. Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface

    Science.gov (United States)

    Blakely, Tim M.; Miller, Kai J.; Rao, Rajesh P. N.; Ojemann, Jeffrey G.

    2014-01-01

    Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75–200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms. PMID:25599079

  1. Computational Modelling of the Neural Representation of Object Shape in the Primate Ventral Visual System

    Directory of Open Access Journals (Sweden)

    Akihiro eEguchi

    2015-08-01

    Full Text Available Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognise the whole object.

  2. Neural Correlates of User-initiated Motor Success and Failure - A Brain-Computer Interface Perspective.

    Science.gov (United States)

    Yazmir, Boris; Reiner, Miriam

    2018-05-15

    Any motor action is, by nature, potentially accompanied by human errors. In order to facilitate development of error-tailored Brain-Computer Interface (BCI) correction systems, we focused on internal, human-initiated errors, and investigated EEG correlates of user outcome successes and errors during a continuous 3D virtual tennis game against a computer player. We used a multisensory, 3D, highly immersive environment. Missing and repelling the tennis ball were considered, as 'error' (miss) and 'success' (repel). Unlike most previous studies, where the environment "encouraged" the participant to perform a mistake, here errors happened naturally, resulting from motor-perceptual-cognitive processes of incorrect estimation of the ball kinematics, and can be regarded as user internal, self-initiated errors. Results show distinct and well-defined Event-Related Potentials (ERPs), embedded in the ongoing EEG, that differ across conditions by waveforms, scalp signal distribution maps, source estimation results (sLORETA) and time-frequency patterns, establishing a series of typical features that allow valid discrimination between user internal outcome success and error. The significant delay in latency between positive peaks of error- and success-related ERPs, suggests a cross-talk between top-down and bottom-up processing, represented by an outcome recognition process, in the context of the game world. Success-related ERPs had a central scalp distribution, while error-related ERPs were centro-parietal. The unique characteristics and sharp differences between EEG correlates of error/success provide the crucial components for an improved BCI system. The features of the EEG waveform can be used to detect user action outcome, to be fed into the BCI correction system. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Towards a general theory of neural computation based on prediction by single neurons.

    Directory of Open Access Journals (Sweden)

    Christopher D Fiorillo

    Full Text Available Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a general theory of its computational function. Here I present a theory that relates the established biophysical properties of single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of the past. The neuron's membrane voltage is proposed to signal the difference between current and prior information ("prediction error" or "surprise". A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with the most "new" information about future reward. To minimize the error in its predictions and to respond only when excitation is "new and surprising," the neuron selects amongst its prior information sources through an anti-Hebbian rule. The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous system could reflect the structure of the external world, and how the complexity and intelligence of the system might develop from a population of

  4. Cognitive and Neural Plasticity in Older Adults’ Prospective Memory Following Training with the Virtual Week Computer Game

    Directory of Open Access Journals (Sweden)

    Nathan S Rose

    2015-10-01

    Full Text Available Prospective memory (PM – the ability to remember and successfully execute our intentions and planned activities – is critical for functional independence and declines with age, yet few studies have attempted to train PM in older adults. We developed a PM training program using the Virtual Week computer game. Trained participants played the game in twelve, 1-hour sessions over one month. Measures of neuropsychological functions, lab-based PM, event-related potentials (ERPs during performance on a lab-based PM task, instrumental activities of daily living, and real-world PM were assessed before and after training. Performance was compared to both no-contact and active (music training control groups. PM on the Virtual Week game dramatically improved following training relative to controls, suggesting PM plasticity is preserved in older adults. Relative to control participants, training did not produce reliable transfer to laboratory-based tasks, but was associated with a reduction of an ERP component (sustained negativity over occipito-parietal cortex associated with processing PM cues, indicative of more automatic PM retrieval. Most importantly, training produced far transfer to real-world outcomes including improvements in performance on real-world PM and activities of daily living. Real-world gains were not observed in either control group. Our findings demonstrate that short-term training with the Virtual Week game produces cognitive and neural plasticity that may result in real-world benefits to supporting functional independence in older adulthood.

  5. Neural computational modeling reveals a major role of corticospinal gating of central oscillations in the generation of essential tremor

    Directory of Open Access Journals (Sweden)

    Hong-en Qu

    2017-01-01

    Full Text Available Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.

  6. Neural computational modeling reveals a major role of corticospinal gating of central oscillations in the generation of essential tremor.

    Science.gov (United States)

    Qu, Hong-En; Niu, Chuanxin M; Li, Si; Hao, Man-Zhao; Hu, Zi-Xiang; Xie, Qing; Lan, Ning

    2017-12-01

    Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.

  7. Cognitive and neural plasticity in older adults' prospective memory following training with the Virtual Week computer game.

    Science.gov (United States)

    Rose, Nathan S; Rendell, Peter G; Hering, Alexandra; Kliegel, Matthias; Bidelman, Gavin M; Craik, Fergus I M

    2015-01-01

    Prospective memory (PM) - the ability to remember and successfully execute our intentions and planned activities - is critical for functional independence and declines with age, yet few studies have attempted to train PM in older adults. We developed a PM training program using the Virtual Week computer game. Trained participants played the game in 12, 1-h sessions over 1 month. Measures of neuropsychological functions, lab-based PM, event-related potentials (ERPs) during performance on a lab-based PM task, instrumental activities of daily living, and real-world PM were assessed before and after training. Performance was compared to both no-contact and active (music training) control groups. PM on the Virtual Week game dramatically improved following training relative to controls, suggesting PM plasticity is preserved in older adults. Relative to control participants, training did not produce reliable transfer to laboratory-based tasks, but was associated with a reduction of an ERP component (sustained negativity over occipito-parietal cortex) associated with processing PM cues, indicative of more automatic PM retrieval. Most importantly, training produced far transfer to real-world outcomes including improvements in performance on real-world PM and activities of daily living. Real-world gains were not observed in either control group. Our findings demonstrate that short-term training with the Virtual Week game produces cognitive and neural plasticity that may result in real-world benefits to supporting functional independence in older adulthood.

  8. Parsimonious classification of binary lacunarity data computed from food surface images using kernel principal component analysis and artificial neural networks.

    Science.gov (United States)

    Iqbal, Abdullah; Valous, Nektarios A; Sun, Da-Wen; Allen, Paul

    2011-02-01

    Lacunarity is about quantifying the degree of spatial heterogeneity in the visual texture of imagery through the identification of the relationships between patterns and their spatial configurations in a two-dimensional setting. The computed lacunarity data can designate a mathematical index of spatial heterogeneity, therefore the corresponding feature vectors should possess the necessary inter-class statistical properties that would enable them to be used for pattern recognition purposes. The objectives of this study is to construct a supervised parsimonious classification model of binary lacunarity data-computed by Valous et al. (2009)-from pork ham slice surface images, with the aid of kernel principal component analysis (KPCA) and artificial neural networks (ANNs), using a portion of informative salient features. At first, the dimension of the initial space (510 features) was reduced by 90% in order to avoid any noise effects in the subsequent classification. Then, using KPCA, the first nineteen kernel principal components (99.04% of total variance) were extracted from the reduced feature space, and were used as input in the ANN. An adaptive feedforward multilayer perceptron (MLP) classifier was employed to obtain a suitable mapping from the input dataset. The correct classification percentages for the training, test and validation sets were 86.7%, 86.7%, and 85.0%, respectively. The results confirm that the classification performance was satisfactory. The binary lacunarity spatial metric captured relevant information that provided a good level of differentiation among pork ham slice images. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  9. Advances in photonic reservoir computing

    Directory of Open Access Journals (Sweden)

    Van der Sande Guy

    2017-05-01

    Full Text Available We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  10. Advances in photonic reservoir computing

    Science.gov (United States)

    Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.

    2017-05-01

    We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  11. Neural Computations Mediating One-Shot Learning in the Human Brain

    Science.gov (United States)

    Lee, Sang Wan; O’Doherty, John P.; Shimojo, Shinsuke

    2015-01-01

    Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI) data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively “switched” on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a “switch,” turning on and off one-shot learning as required. PMID:25919291

  12. Invariant visual object and face recognition: neural and computational bases, and a model, VisNet

    Directory of Open Access Journals (Sweden)

    Edmund T eRolls

    2012-06-01

    Full Text Available Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy modelin which invariant representations can be built by self-organizing learning based on the temporal and spatialstatistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associativesynaptic learning rule with a short term memory trace, and/or it can use spatialcontinuity in Continuous Spatial Transformation learning which does not require a temporal trace. The model of visual processing in theventral cortical stream can build representations of objects that are invariant withrespect to translation, view, size, and also lighting. The modelhas been extended to provide an account of invariant representations in the dorsal visualsystem of the global motion produced by objects such as looming, rotation, and objectbased movement. The model has been extended to incorporate top-down feedback connectionsto model the control of attention by biased competition in for example spatial and objectsearch tasks. The model has also been extended to account for how the visual system canselect single objects in complex visual scenes, and how multiple objects can berepresented in a scene. The model has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  13. A Computational Model of Torque Generation: Neural, Contractile, Metabolic and Musculoskeletal Components

    Science.gov (United States)

    Callahan, Damien M.; Umberger, Brian R.; Kent-Braun, Jane A.

    2013-01-01

    The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion were constructed, using a combination of experimentally-derived data and literature values. Simulation results were validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary torque output. PMID:23405245

  14. Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform

    Directory of Open Access Journals (Sweden)

    Massimiliano eGiulioni

    2016-02-01

    Full Text Available We demonstrate robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission and follows the basic theoretical principles presented in (Benosman et al. 2014: the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. The same basic principle is embedded in the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina. Mimicking those cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. We built a 3x3 test grid of independent detectors, each observing a different portion of the scene, so that our final output is a spike train encoding a 3x3 optical flow vector field. In this work we focus on the architectural aspects, and we demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene.

  15. Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice

    Science.gov (United States)

    Sherman, Maxwell A.; Lee, Shane; Law, Robert; Haegens, Saskia; Thorn, Catherine A.; Hämäläinen, Matti S.; Moore, Christopher I.; Jones, Stephanie R.

    2016-01-01

    Human neocortical 15–29-Hz beta oscillations are strong predictors of perceptual and motor performance. However, the mechanistic origin of beta in vivo is unknown, hindering understanding of its functional role. Combining human magnetoencephalography (MEG), computational modeling, and laminar recordings in animals, we present a new theory that accounts for the origin of spontaneous neocortical beta. In our MEG data, spontaneous beta activity from somatosensory and frontal cortex emerged as noncontinuous beta events typically lasting drive targeting proximal and distal dendrites of pyramidal neurons, where the defining feature of a beta event was a strong distal drive that lasted one beta period (∼50 ms). This beta mechanism rigorously accounted for the beta event profiles; several other mechanisms did not. The spatial location of synaptic drive in the model to supragranular and infragranular layers was critical to the emergence of beta events and led to the prediction that beta events should be associated with a specific laminar current profile. Laminar recordings in somatosensory neocortex from anesthetized mice and awake monkeys supported these predictions, suggesting this beta mechanism is conserved across species and recording modalities. These findings make several predictions about optimal states for perceptual and motor performance and guide causal interventions to modulate beta for optimal function. PMID:27469163

  16. Neural computations mediating one-shot learning in the human brain.

    Directory of Open Access Journals (Sweden)

    Sang Wan Lee

    2015-04-01

    Full Text Available Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively "switched" on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a "switch," turning on and off one-shot learning as required.

  17. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  18. Spike-timing computation properties of a feed-forward neural network model

    Directory of Open Access Journals (Sweden)

    Drew Benjamin Sinha

    2014-01-01

    Full Text Available Brain function is characterized by dynamical interactions among networks of neurons. These interactions are mediated by network topology at many scales ranging from microcircuits to brain areas. Understanding how networks operate can be aided by understanding how the transformation of inputs depends upon network connectivity patterns, e.g. serial and parallel pathways. To tractably determine how single synapses or groups of synapses in such pathways shape transformations, we modeled feed-forward networks of 7-22 neurons in which synaptic strength changed according to a spike-timing dependent plasticity rule. We investigated how activity varied when dynamics were perturbed by an activity-dependent electrical stimulation protocol (spike-triggered stimulation; STS in networks of different topologies and background input correlations. STS can successfully reorganize functional brain networks in vivo, but with a variability in effectiveness that may derive partially from the underlying network topology. In a simulated network with a single disynaptic pathway driven by uncorrelated background activity, structured spike-timing relationships between polysynaptically connected neurons were not observed. When background activity was correlated or parallel disynaptic pathways were added, however, robust polysynaptic spike timing relationships were observed, and application of STS yielded predictable changes in synaptic strengths and spike-timing relationships. These observations suggest that precise input-related or topologically induced temporal relationships in network activity are necessary for polysynaptic signal propagation. Such constraints for polysynaptic computation suggest potential roles for higher-order topological structure in network organization, such as maintaining polysynaptic correlation in the face of relatively weak synapses.

  19. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.

    Science.gov (United States)

    Rolls, Edmund T

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  20. Selection of an optimal neural network architecture for computer-aided detection of microcalcifications - Comparison of automated optimization techniques

    International Nuclear Information System (INIS)

    Gurcan, Metin N.; Sahiner, Berkman; Chan Heangping; Hadjiiski, Lubomir; Petrick, Nicholas

    2001-01-01

    Many computer-aided diagnosis (CAD) systems use neural networks (NNs) for either detection or classification of abnormalities. Currently, most NNs are 'optimized' by manual search in a very limited parameter space. In this work, we evaluated the use of automated optimization methods for selecting an optimal convolution neural network (CNN) architecture. Three automated methods, the steepest descent (SD), the simulated annealing (SA), and the genetic algorithm (GA), were compared. We used as an example the CNN that classifies true and false microcalcifications detected on digitized mammograms by a prescreening algorithm. Four parameters of the CNN architecture were considered for optimization, the numbers of node groups and the filter kernel sizes in the first and second hidden layers, resulting in a search space of 432 possible architectures. The area A z under the receiver operating characteristic (ROC) curve was used to design a cost function. The SA experiments were conducted with four different annealing schedules. Three different parent selection methods were compared for the GA experiments. An available data set was split into two groups with approximately equal number of samples. By using the two groups alternately for training and testing, two different cost surfaces were evaluated. For the first cost surface, the SD method was trapped in a local minimum 91% (392/432) of the time. The SA using the Boltzman schedule selected the best architecture after evaluating, on average, 167 architectures. The GA achieved its best performance with linearly scaled roulette-wheel parent selection; however, it evaluated 391 different architectures, on average, to find the best one. The second cost surface contained no local minimum. For this surface, a simple SD algorithm could quickly find the global minimum, but the SA with the very fast reannealing schedule was still the most efficient. The same SA scheme, however, was trapped in a local minimum on the first cost

  1. #IWD2016 Academic Inspiration

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    What academics or books have inspired you in your writing and research, or helped to make sense of the world around you? In this feature essay, Ninna Meier returns to her experience of reading Hannah Arendt as she sought to understand work and how it relates to value production in capitalist...... economies. Meier recounts how Arendt’s book On Revolution (1963) forged connective threads between the ‘smallest parts’ and the ‘largest wholes’ and showed how academic work is never fully relegated to the past, but can return in new iterations across time....

  2. Fourth International Conference on Computer Science and Its Applications (CIIA 2013)

    CERN Document Server

    Mohamed, Otmane; Bellatreche, Ladjel; Recent Advances in Robotics and Automation

    2013-01-01

        "During the last decades Computational Intelligence has emerged and showed its contributions in various broad research communities (computer science, engineering, finance, economic, decision making, etc.). This was done by proposing approaches and algorithms based either on turnkey techniques belonging to the large panoply of solutions offered by computational intelligence such as data mining, genetic algorithms, bio-inspired methods, Bayesian networks, machine learning, fuzzy logic, artificial neural networks, etc. or inspired by computational intelligence techniques to develop new ad-hoc algorithms for the problem under consideration.    This volume is a comprehensive collection of extended contributions from the 4th International Conference on Computer Science and Its Applications (CIIA’2013) organized into four main tracks: Track 1: Computational Intelligence, Track  2: Security & Network Technologies, Track  3: Information Technology and Track 4: Computer Systems and Applications. This ...

  3. Neural networks and their potential application to nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1991-01-01

    A network of artificial neurons, usually called an artificial neural network is a data processing system consisting of a number of highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks exhibit characteristics and capabilities not provided by any other technology. Neural networks may be designed so as to classify an input pattern as one of several predefined types or to create, as needed, categories or classes of system states which can be interpreted by a human operator. Neural networks have the ability to recognize patterns, even when the information comprising these patterns is noisy, sparse, or incomplete. Thus, systems of artificial neural networks show great promise for use in environments in which robust, fault-tolerant pattern recognition is necessary in a real-time mode, and in which the incoming data may be distorted or noisy. The application of neural networks, a rapidly evolving technology used extensively in defense applications, alone or in conjunction with other advanced technologies, to some of the problems of operating nuclear power plants has the potential to enhance the safety, reliability and operability of nuclear power plants. The potential applications of neural networking include, but are not limited to diagnosing specific abnormal conditions, identification of nonlinear dynamics and transients, detection of the change of mode of operation, control of temperature and pressure during start-up, signal validation, plant-wide monitoring using autoassociative neural networks, monitoring of check valves, modeling of the plant thermodynamics, emulation of core reload calculations, analysis of temporal sequences in NRC's ''licensee event reports,'' and monitoring of plant parameters

  4. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...

  5. When science inspires art

    CERN Multimedia

    Anaïs Vernède

    2011-01-01

    On Tuesday 18 January 2011, artist Pipilotti Rist came to CERN to find out how science could provide her with a source of inspiration for her art and perhaps to get ideas for future work. Pipilotti, who is an eclectic artist always on the lookout for an original source of inspiration, is almost as passionate about physics as she is about art.   Ever Is Over All, 1997, audio video installation by Pipilotti Rist.  View of the installation at the National Museum for Foreign Art, Sofia, Bulgaria. © Pipilotti Rist. Courtesy the artist and Hauser & Wirth. Photo by Angel Tzvetanov. Swiss video-maker Pipilotti Rist (her real name is Elisabeth Charlotte Rist), who is well-known in the international art world for her highly colourful videos and creations, visited CERN for the first time on Tuesday 18 January 2011.  Her visit represented a trip down memory lane, since she originally studied physics before becoming interested in pursuing a career as an artist and going on to de...

  6. An Expedient Study on Back-Propagation (BPN) Neural Networks for Modeling Automated Evaluation of the Answers and Progress of Deaf Students' That Possess Basic Knowledge of the English Language and Computer Skills

    Science.gov (United States)

    Vrettaros, John; Vouros, George; Drigas, Athanasios S.

    This article studies the expediency of using neural networks technology and the development of back-propagation networks (BPN) models for modeling automated evaluation of the answers and progress of deaf students' that possess basic knowledge of the English language and computer skills, within a virtual e-learning environment. The performance of the developed neural models is evaluated with the correlation factor between the neural networks' response values and the real value data as well as the percentage measurement of the error between the neural networks' estimate values and the real value data during its training process and afterwards with unknown data that weren't used in the training process.

  7. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga de Moura Meneses, Anderson, E-mail: ameneses@ieee.org [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Pereira de Almeida, Andre; Parreira Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro, RJ (Brazil); Cely Barroso, Regina [Laboratory of Applied Physics on Biomedical Sciences, Physics Department, Rio de Janeiro State University, RJ (Brazil); Almeida, Carlos Eduardo de [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil)

    2011-12-21

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography ({mu}CT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-{mu}CT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-{mu}CT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-{mu}CT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  8. Quality assessment of microwave-vacuum dried material with the use of computer image analysis and neural model

    Science.gov (United States)

    Koszela, K.; OtrzÄ sek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.

    2014-04-01

    The farming area for vegetables in Poland is constantly changed and modified. Each year the cultivation structure of particular vegetables is different. However, it is the cultivation of carrots that plays a significant role among vegetables. According to the Main Statistical Office (GUS), in 2012 carrot held second position among the cultivated root vegetables, and it was estimated at 835 thousand tons. In the world we are perceived as the leading producer of carrot, due to the fourth place in the ranking of global producers. Poland is the largest producer of this vegetable in the EU [1]. It is also noteworthy, that the demand for dried vegetables is still increasing. This tendency affects the development of drying industry in our country, contributing to utilization of the product surplus. Dried vegetables are used increasingly often in various sectors of food products industry, due to high nutrition value, as well as to changing alimentary preferences of consumers [2-3]. Dried carrot plays a crucial role among dried vegetables, because of its wide scope of use and high nutrition value. It contains a lot of carotene and sugar present in the form of crystals. Carrot also undergoes many different drying processes, which makes it difficult to perform a reliable quality assessment and classification of this dried material. One of many qualitative properties of dried carrot, having important influence on a positive or negative result of the quality assessment, is color and shape. The aim of the research project was to develop a method for the analysis of microwave-vacuum dried carrot images, and its application for the classification of individual fractions in the sample studied for quality assessment. During the research digital photographs of dried carrot were taken, which constituted the basis for assessment performed by a dedicated computer programme developed as a part of the research. Consequently, using a neural model, the dried material was classified [4-6].

  9. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    International Nuclear Information System (INIS)

    Alvarenga de Moura Meneses, Anderson; Giusti, Alessandro; Pereira de Almeida, André; Parreira Nogueira, Liebert; Braz, Delson; Cely Barroso, Regina; Almeida, Carlos Eduardo de

    2011-01-01

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  10. VI International Workshop on Nature Inspired Cooperative Strategies for Optimization

    CERN Document Server

    Otero, Fernando; Masegosa, Antonio

    2014-01-01

    Biological and other natural processes have always been a source of inspiration for computer science and information technology. Many emerging problem solving techniques integrate advanced evolution and cooperation strategies, encompassing a range of spatio-temporal scales for visionary conceptualization of evolutionary computation. This book is a collection of research works presented in the VI International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO) held in Canterbury, UK. Previous editions of NICSO were held in Granada, Spain (2006 & 2010), Acireale, Italy (2007), Tenerife, Spain (2008), and Cluj-Napoca, Romania (2011). NICSO 2013 and this book provides a place where state-of-the-art research, latest ideas and emerging areas of nature inspired cooperative strategies for problem solving are vigorously discussed and exchanged among the scientific community. The breadth and variety of articles in this book report on nature inspired methods and applications such as Swarm In...

  11. Ant- and Ant-Colony-Inspired ALife Visual Art.

    Science.gov (United States)

    Greenfield, Gary; Machado, Penousal

    2015-01-01

    Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior.

  12. Search and optimization by metaheuristics techniques and algorithms inspired by nature

    CERN Document Server

    Du, Ke-Lin

    2016-01-01

    This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computin...

  13. Optical computing and neural networks; Proceedings of the Meeting, National Chiao Tung Univ., Hsinchu, Taiwan, Dec. 16, 17, 1992

    Science.gov (United States)

    Hsu, Ken-Yuh (Editor); Liu, Hua-Kuang (Editor)

    1992-01-01

    The present conference discusses optical neural networks, photorefractive nonlinear optics, optical pattern recognition, digital and analog processors, and holography and its applications. Attention is given to bifurcating optical information processing, neural structures in digital halftoning, an exemplar-based optical neural net classifier for color pattern recognition, volume storage in photorefractive disks, and microlaser-based compact optical neuroprocessors. Also treated are the optical implementation of a feature-enhanced optical interpattern-associative neural network model and its optical implementation, an optical pattern binary dual-rail logic gate module, a theoretical analysis for holographic associative memories, joint transform correlators, image addition and subtraction via the Talbot effect, and optical wavelet-matched filters. (No individual items are abstracted in this volume)

  14. Optical computing and neural networks; Proceedings of the Meeting, National Chiao Tung Univ., Hsinchu, Taiwan, Dec. 16, 17, 1992

    Science.gov (United States)

    Hsu, Ken-Yuh; Liu, Hua-Kuang

    The present conference discusses optical neural networks, photorefractive nonlinear optics, optical pattern recognition, digital and analog processors, and holography and its applications. Attention is given to bifurcating optical information processing, neural structures in digital halftoning, an exemplar-based optical neural net classifier for color pattern recognition, volume storage in photorefractive disks, and microlaser-based compact optical neuroprocessors. Also treated are the optical implementation of a feature-enhanced optical interpattern-associative neural network model and its optical implementation, an optical pattern binary dual-rail logic gate module, a theoretical analysis for holographic associative memories, joint transform correlators, image addition and subtraction via the Talbot effect, and optical wavelet-matched filters. (No individual items are abstracted in this volume)

  15. Trusted computation through biologically inspired processes

    Science.gov (United States)

    Anderson, Gustave W.

    2013-05-01

    Due to supply chain threats it is no longer a reasonable assumption that traditional protections alone will provide sufficient security for enterprise systems. The proposed cognitive trust model architecture extends the state-of-the-art in enterprise anti-exploitation technologies by providing collective immunity through backup and cross-checking, proactive health monitoring and adaptive/autonomic threat response, and network resource diversity.

  16. Neural Network Optimization of Ligament Stiffnesses for the Enhanced Predictive Ability of a Patient-Specific, Computational Foot/Ankle Model.

    Science.gov (United States)

    Chande, Ruchi D; Wayne, Jennifer S

    2017-09-01

    Computational models of diarthrodial joints serve to inform the biomechanical function of these structures, and as such, must be supplied appropriate inputs for performance that is representative of actual joint function. Inputs for these models are sourced from both imaging modalities as well as literature. The latter is often the source of mechanical properties for soft tissues, like ligament stiffnesses; however, such data are not always available for all the soft tissues nor is it known for patient-specific work. In the current research, a method to improve the ligament stiffness definition for a computational foot/ankle model was sought with the greater goal of improving the predictive ability of the computational model. Specifically, the stiffness values were optimized using artificial neural networks (ANNs); both feedforward and radial basis function networks (RBFNs) were considered. Optimal networks of each type were determined and subsequently used to predict stiffnesses for the foot/ankle model. Ultimately, the predicted stiffnesses were considered reasonable and resulted in enhanced performance of the computational model, suggesting that artificial neural networks can be used to optimize stiffness inputs.

  17. Neural Global Pattern Similarity Underlies True and False Memories.

    Science.gov (United States)

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  18. Intelligent computing systems emerging application areas

    CERN Document Server

    Virvou, Maria; Jain, Lakhmi

    2016-01-01

    This book at hand explores emerging scientific and technological areas in which Intelligent Computing Systems provide efficient solutions and, thus, may play a role in the years to come. It demonstrates how Intelligent Computing Systems make use of computational methodologies that mimic nature-inspired processes to address real world problems of high complexity for which exact mathematical solutions, based on physical and statistical modelling, are intractable. Common intelligent computational methodologies are presented including artificial neural networks, evolutionary computation, genetic algorithms, artificial immune systems, fuzzy logic, swarm intelligence, artificial life, virtual worlds and hybrid methodologies based on combinations of the previous. The book will be useful to researchers, practitioners and graduate students dealing with mathematically-intractable problems. It is intended for both the expert/researcher in the field of Intelligent Computing Systems, as well as for the general reader in t...

  19. The benefit of combining a deep neural network architecture with ideal ratio mask estimation in computational speech segregation to improve speech intelligibility

    DEFF Research Database (Denmark)

    Bentsen, Thomas; May, Tobias; Kressner, Abigail Anne

    2018-01-01

    Computational speech segregation attempts to automatically separate speech from noise. This is challenging in conditions with interfering talkers and low signal-to-noise ratios. Recent approaches have adopted deep neural networks and successfully demonstrated speech intelligibility improvements....... A selection of components may be responsible for the success with these state-of-the-art approaches: the system architecture, a time frame concatenation technique and the learning objective. The aim of this study was to explore the roles and the relative contributions of these components by measuring speech......, to a state-of-the-art deep neural network-based architecture. Another improvement of 13.9 percentage points was obtained by changing the learning objective from the ideal binary mask, in which individual time-frequency units are labeled as either speech- or noise-dominated, to the ideal ratio mask, where...

  20. Genetic learning in rule-based and neural systems

    Science.gov (United States)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  1. Bio-inspired Artificial Intelligence: А Generalized Net Model of the Regularization Process in MLP

    Directory of Open Access Journals (Sweden)

    Stanimir Surchev

    2013-10-01

    Full Text Available Many objects and processes inspired by the nature have been recreated by the scientists. The inspiration to create a Multilayer Neural Network came from human brain as member of the group. It possesses complicated structure and it is difficult to recreate, because of the existence of too many processes that require different solving methods. The aim of the following paper is to describe one of the methods that improve learning process of Artificial Neural Network. The proposed generalized net method presents Regularization process in Multilayer Neural Network. The purpose of verification is to protect the neural network from overfitting. The regularization is commonly used in neural network training process. Many methods of verification are present, the subject of interest is the one known as Regularization. It contains function in order to set weights and biases with smaller values to protect from overfitting.

  2. Operant Conditioning: A Minimal Components Requirement in Artificial Spiking Neurons Designed for Bio-Inspired Robot’s Controller

    Directory of Open Access Journals (Sweden)

    André eCyr

    2014-07-01

    Full Text Available We demonstrate the operant conditioning (OC learning process within a basic bio-inspired robot controller paradigm, using an artificial spiking neural network (ASNN with minimal component count as artificial brain. In biological agents, OC results in behavioral changes that are learned from the consequences of previous actions, using progressive prediction adjustment triggered by reinforcers. In a robotics context, virtual and physical robots may benefit from a similar learning skill when facing unknown environments with no supervision. In this work, we demonstrate that a simple ASNN can efficiently realise many OC scenarios. The elementary learning kernel that we describe relies on a few critical neurons, synaptic links and the integration of habituation and spike-timing dependent plasticity (STDP as learning rules. Using four tasks of incremental complexity, our experimental results show that such minimal neural component set may be sufficient to implement many OC procedures. Hence, with the described bio-inspired module, OC can be implemented in a wide range of robot controllers, including those with limited computational resources.

  3. Microflyers: inspiration from nature

    Science.gov (United States)

    Sirohi, Jayant

    2013-04-01

    Over the past decade, there has been considerable interest in miniaturizing aircraft to create a class of extremely small, robotic vehicles with a gross mass on the order of tens of grams and a dimension on the order of tens of centimeters. These are collectively refered to as micro aerial vehicles (MAVs) or microflyers. Because the size of microflyers is on the same order as that of small birds and large insects, engineers are turning to nature for inspiration. Bioinspired concepts make use of structural or aerodynamic mechanisms that are observed in insects and birds, such as elastic energy storage and unsteady aerodynamics. Biomimetic concepts attempt to replicate the form and function of natural flyers, such as flapping-wing propulsion and external appearance. This paper reviews recent developments in the area of man-made microflyers. The design space for microflyers will be described, along with fundamental physical limits to miniaturization. Key aerodynamic phenomena at the scale of microflyers will be highlighted. Because the focus is on bioinspiration and biomimetics, scaled-down versions of conventional aircraft, such as fixed wing micro air vehicles and microhelicopters will not be addressed. A few representative bioinspired and biomimetic microflyer concepts developed by researchers will be described in detail. Finally, some of the sensing mechanisms used by natural flyers that are being implemented in man-made microflyers will be discussed.

  4. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  5. The neural processing of voluntary completed, real and virtual violent and nonviolent computer game scenarios displaying predefined actions in gamers and nongamers.

    Science.gov (United States)

    Regenbogen, Christina; Herrmann, Manfred; Fehr, Thorsten

    2010-01-01

    Studies investigating the effects of violent computer and video game playing have resulted in heterogeneous outcomes. It has been assumed that there is a decreased ability to differentiate between virtuality and reality in people that play these games intensively. FMRI data of a group of young males with (gamers) and without (controls) a history of long-term violent computer game playing experience were obtained during the presentation of computer game and realistic video sequences. In gamers the processing of real violence in contrast to nonviolence produced activation clusters in right inferior frontal, left lingual and superior temporal brain regions. Virtual violence activated a network comprising bilateral inferior frontal, occipital, postcentral, right middle temporal, and left fusiform regions. Control participants showed extended left frontal, insula and superior frontal activations during the processing of real, and posterior activations during the processing of virtual violent scenarios. The data suggest that the ability to differentiate automatically between real and virtual violence has not been diminished by a long-term history of violent video game play, nor have gamers' neural responses to real violence in particular been subject to desensitization processes. However, analyses of individual data indicated that group-related analyses reflect only a small part of actual individual different neural network involvement, suggesting that the consideration of individual learning history is sufficient for the present discussion.

  6. Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition

    CERN Document Server

    Melin, Patricia

    2012-01-01

    This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural ne...

  7. Computational Intelligence in Intelligent Data Analysis

    CERN Document Server

    Nürnberger, Andreas

    2013-01-01

    Complex systems and their phenomena are ubiquitous as they can be found in biology, finance, the humanities, management sciences, medicine, physics and similar fields. For many problems in these fields, there are no conventional ways to mathematically or analytically solve them completely at low cost. On the other hand, nature already solved many optimization problems efficiently. Computational intelligence attempts to mimic nature-inspired problem-solving strategies and methods. These strategies can be used to study, model and analyze complex systems such that it becomes feasible to handle them. Key areas of computational intelligence are artificial neural networks, evolutionary computation and fuzzy systems. As only a few researchers in that field, Rudolf Kruse has contributed in many important ways to the understanding, modeling and application of computational intelligence methods. On occasion of his 60th birthday, a collection of original papers of leading researchers in the field of computational intell...

  8. Biologically inspired coupled antenna beampattern design

    Energy Technology Data Exchange (ETDEWEB)

    Akcakaya, Murat; Nehorai, Arye, E-mail: makcak2@ese.wustl.ed, E-mail: nehorai@ese.wustl.ed [Department of Electrical and Systems Engineering, Washington University in St Louis, St Louis, MO 63130 (United States)

    2010-12-15

    We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, which has been modeled by a pair of differential equations. In this paper, we first solve these differential equations governing the Ormia ochracea's ear response, and convert the response to the pre-specified radio frequencies. We then apply the converted response of the biological coupling in the array factor of a uniform linear array composed of finite-length dipole antennas, and also include the undesired electromagnetic coupling due to the proximity of the elements. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum array performance. In our numerical examples, we compute the radiation intensity of the designed system for binomial and uniform ordinary end-fire arrays, and demonstrate the improvement in the half-power beamwidth, sidelobe suppression and directivity of the radiation pattern due to the biologically inspired coupling.

  9. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  10. Kids Inspire Kids for STEAM

    OpenAIRE

    Fenyvesi, Kristof; Houghton, Tony; Diego-Mantecón, José Manuel; Crilly, Elizabeth; Oldknow, Adrian; Lavicza, Zsolt; Blanco, Teresa F.

    2017-01-01

    Abstract The goal of the Kids Inspiring Kids in STEAM (KIKS) project was to raise students' awareness towards the multi- and transdisciplinary connections between the STEAM subjects (Science, Technology, Engineering, Arts & Mathematics), and make the learning about topics and phenomena from these fields more enjoyable. In order to achieve these goals, KIKS project has popularized the STEAM-concept by projects based on the students inspiring other students-approach and by utilizing new tec...

  11. A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface.

    Science.gov (United States)

    Romanelli, Pantaleo; Piangerelli, Marco; Ratel, David; Gaude, Christophe; Costecalde, Thomas; Puttilli, Cosimo; Picciafuoco, Mauro; Benabid, Alim; Torres, Napoleon

    2018-05-11

    OBJECTIVE Wireless technology is a novel tool for the transmission of cortical signals. Wireless electrocorticography (ECoG) aims to improve the safety and diagnostic gain of procedures requiring invasive localization of seizure foci and also to provide long-term recording of brain activity for brain-computer interfaces (BCIs). However, no wireless devices aimed at these clinical applications are currently available. The authors present the application of a fully implantable and externally rechargeable neural prosthesis providing wireless ECoG recording and direct cortical stimulation (DCS). Prolonged wireless ECoG monitoring was tested in nonhuman primates by using a custom-made device (the ECoG implantable wireless 16-electrode [ECOGIW-16E] device) containing a 16-contact subdural grid. This is a preliminary step toward large-scale, long-term wireless ECoG recording in humans. METHODS The authors implanted the ECOGIW-16E device over the left sensorimotor cortex of a nonhuman primate ( Macaca fascicularis), recording ECoG signals over a time span of 6 months. Daily electrode impedances were measured, aiming to maintain the impedance values below a threshold of 100 KΩ. Brain mapping was obtained through wireless cortical stimulation at fixed intervals (1, 3, and 6 months). After 6 months, the device was removed. The authors analyzed cortical tissues by using conventional histological and immunohistological investigation to assess whether there was evidence of damage after the long-term implantation of the grid. RESULTS The implant was well tolerated; no neurological or behavioral consequences were reported in the monkey, which resumed his normal activities within a few hours of the procedure. The signal quality of wireless ECoG remained excellent over the 6-month observation period. Impedance values remained well below the threshold value; the average impedance per contact remains approximately 40 KΩ. Wireless cortical stimulation induced movements of the upper

  12. Smart Nacre-inspired Nanocomposites.

    Science.gov (United States)

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An Improved Brain-Inspired Emotional Learning Algorithm for Fast Classification

    Directory of Open Access Journals (Sweden)

    Ying Mei

    2017-06-01

    Full Text Available Classification is an important task of machine intelligence in the field of information. The artificial neural network (ANN is widely used for classification. However, the traditional ANN shows slow training speed, and it is hard to meet the real-time requirement for large-scale applications. In this paper, an improved brain-inspired emotional learning (BEL algorithm is proposed for fast classification. The BEL algorithm was put forward to mimic the high speed of the emotional learning mechanism in mammalian brain, which has the superior features of fast learning and low computational complexity. To improve the accuracy of BEL in classification, the genetic algorithm (GA is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in the BEL neural network. The combinational algorithm named as GA-BEL has been tested on eight University of California at Irvine (UCI datasets and two well-known databases (Japanese Female Facial Expression, Cohn–Kanade. The comparisons of experiments indicate that the proposed GA-BEL is more accurate than the original BEL algorithm, and it is much faster than the traditional algorithm.

  14. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    Science.gov (United States)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  15. Recent advances in swarm intelligence and evolutionary computation

    CERN Document Server

    2015-01-01

    This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference f...

  16. Paradigms for biologically inspired design

    DEFF Research Database (Denmark)

    Lenau, T. A.; Metzea, A.-L.; Hesselberg, T.

    2018-01-01

    engineering, medical engineering, nanotechnology, photonics,environmental protection and agriculture. However, a major obstacle for the wider use of biologically inspired design isthe knowledge barrier that exist between the application engineers that have insight into how to design suitable productsand......Biologically inspired design is attracting increasing interest since it offers access to a huge biological repository of wellproven design principles that can be used for developing new and innovative products. Biological phenomena can inspireproduct innovation in as diverse areas as mechanical...... the biologists with detailed knowledge and experience in understanding how biological organisms function in theirenvironment. The biologically inspired design process can therefore be approached using different design paradigmsdepending on the dominant opportunities, challenges and knowledge characteristics...

  17. A Project-Based Biologically-Inspired Robotics Module

    Science.gov (United States)

    Crowder, R. M.; Zauner, K.-P.

    2013-01-01

    The design of any robotic system requires input from engineers from a variety of technical fields. This paper describes a project-based module, "Biologically-Inspired Robotics," that is offered to Electronics and Computer Science students at the University of Southampton, U.K. The overall objective of the module is for student groups to…

  18. The equilibrium of neural firing: A mathematical theory

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Sizhong, E-mail: lsz@fuyunresearch.org [Fuyun Research, Beijing, 100055 (China)

    2014-12-15

    Inspired by statistical thermodynamics, we presume that neuron system has equilibrium condition with respect to neural firing. We show that, even with dynamically changeable neural connections, it is inevitable for neural firing to evolve to equilibrium. To study the dynamics between neural firing and neural connections, we propose an extended communication system where noisy channel has the tendency towards fixed point, implying that neural connections are always attracted into fixed points such that equilibrium can be reached. The extended communication system and its mathematics could be useful back in thermodynamics.

  19. Combining two open source tools for neural computation (BioPatRec and Netlab) improves movement classification for prosthetic control.

    Science.gov (United States)

    Prahm, Cosima; Eckstein, Korbinian; Ortiz-Catalan, Max; Dorffner, Georg; Kaniusas, Eugenijus; Aszmann, Oskar C

    2016-08-31

    Controlling a myoelectric prosthesis for upper limbs is increasingly challenging for the user as more electrodes and joints become available. Motion classification based on pattern recognition with a multi-electrode array allows multiple joints to be controlled simultaneously. Previous pattern recognition studies are difficult to compare, because individual research groups use their own data sets. To resolve this shortcoming and to facilitate comparisons, open access data sets were analysed using components of BioPatRec and Netlab pattern recognition models. Performances of the artificial neural networks, linear models, and training program components were compared. Evaluation took place within the BioPatRec environment, a Matlab-based open source platform that provides feature extraction, processing and motion classification algorithms for prosthetic control. The algorithms were applied to myoelectric signals for individual and simultaneous classification of movements, with the aim of finding the best performing algorithm and network model. Evaluation criteria included classification accuracy and training time. Results in both the linear and the artificial neural network models demonstrated that Netlab's implementation using scaled conjugate training algorithm reached significantly higher accuracies than BioPatRec. It is concluded that the best movement classification performance would be achieved through integrating Netlab training algorithms in the BioPatRec environment so that future prosthesis training can be shortened and control made more reliable. Netlab was therefore included into the newest release of BioPatRec (v4.0).

  20. Inspiration fra NY-times

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye

    2015-01-01

    NY-times har en ugentlig klumme med gode råd. For nogle uger siden var ugens inspiration henvendt til lærere/undervisere og drejede sig om, hvordan man skaber taletid til alle uden at have favoritter og overse de mere stille elever.......NY-times har en ugentlig klumme med gode råd. For nogle uger siden var ugens inspiration henvendt til lærere/undervisere og drejede sig om, hvordan man skaber taletid til alle uden at have favoritter og overse de mere stille elever....

  1. The benefit of combining a deep neural network architecture with ideal ratio mask estimation in computational speech segregation to improve speech intelligibility.

    Science.gov (United States)

    Bentsen, Thomas; May, Tobias; Kressner, Abigail A; Dau, Torsten

    2018-01-01

    Computational speech segregation attempts to automatically separate speech from noise. This is challenging in conditions with interfering talkers and low signal-to-noise ratios. Recent approaches have adopted deep neural networks and successfully demonstrated speech intelligibility improvements. A selection of components may be responsible for the success with these state-of-the-art approaches: the system architecture, a time frame concatenation technique and the learning objective. The aim of this study was to explore the roles and the relative contributions of these components by measuring speech intelligibility in normal-hearing listeners. A substantial improvement of 25.4 percentage points in speech intelligibility scores was found going from a subband-based architecture, in which a Gaussian Mixture Model-based classifier predicts the distributions of speech and noise for each frequency channel, to a state-of-the-art deep neural network-based architecture. Another improvement of 13.9 percentage points was obtained by changing the learning objective from the ideal binary mask, in which individual time-frequency units are labeled as either speech- or noise-dominated, to the ideal ratio mask, where the units are assigned a continuous value between zero and one. Therefore, both components play significant roles and by combining them, speech intelligibility improvements were obtained in a six-talker condition at a low signal-to-noise ratio.

  2. Semiconductor Devices Inspired By and Integrated With Biology

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John [University of Illinois

    2012-04-25

    Biology is curved, soft and elastic; silicon wafers are not. Semiconductor technologies that can bridge this gap in form and mechanics will create new opportunities in devices that adopt biologically inspired designs or require intimate integration with the human body. This talk describes the development of ideas for electronics that offer the performance of state-of-the-art, wafer- based systems but with the mechanical properties of a rubber band. We explain the underlying materials science and mechanics of these approaches, and illustrate their use in (1) bio- integrated, ‘tissue-like’ electronics with unique capabilities for mapping cardiac and neural electrophysiology, and (2) bio-inspired, ‘eyeball’ cameras with exceptional imaging properties enabled by curvilinear, Petzval designs.

  3. Bio-inspired grasp control in a robotic hand with massive sensorial input.

    Science.gov (United States)

    Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo

    2009-02-01

    The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

  4. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying.

    Science.gov (United States)

    Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-03-01

    Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Nature-Inspired and Energy Efficient Route Planning

    DEFF Research Database (Denmark)

    Schlichtkrull, Anders; Christensen, J. B. S.; Feld, T.

    2015-01-01

    Cars are responsible for substantial CO2 emission worldwide. Computers can help solve this problem by computing shortest routes on maps. A good example of this is the popular Google Maps service. However, such services often require the order of the stops on the route to be fixed. By not enforcing....... The app is aimed at private persons and small businesses. The app works by using a nature-inspired algorithm called Ant Colony Optimization....

  6. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  7. Phase Diagram of Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamed eSeyed-Allaei

    2015-03-01

    Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.

  8. In Search of Scientific Inspiration.

    Science.gov (United States)

    2017-01-12

    In the ever-expanding sea of scientific advances, how do you find inspiration for your own study? Cell editor Jiaying Tan talked with Mark Lemmon and Joseph (Yossi) Schlessinger about the importance of fueling your research creativity with the conceptual excitement and technical advance from the broad scientific field. An excerpt of the conversation appears below. Copyright © 2017. Published by Elsevier Inc.

  9. Inspiration: One Percent and Rising

    Science.gov (United States)

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop…

  10. LEGO-inspired drug design

    DEFF Research Database (Denmark)

    Thanh Tung, Truong; Dao, Trong Tuan; Grifell Junyent, Marta

    2018-01-01

    The fungal plasma membrane H+-ATPase (Pma1p) is a potential target for the discovery of new antifungal agents. Surprisingly, no structure-activity relationship studies for small molecules targeting Pma1p have been reported. Herein, we disclose a LEGO-inspired fragment assembly strategy for design...

  11. Inspiration til fremtidens naturfaglige uddannelser

    DEFF Research Database (Denmark)

    Busch, Henrik; Troelsen, Rie; Horst, Sebastian

    uddannelsesniveauer • at den naturfaglige uddannelseskultur styrkes • at lærerkompetencerne styrkes. Rapportens 2. bind - den selvstændige publikation Inspiration til fremtidens naturfaglige uddannelser • En antologi indeholder en række essays om væsentlige problemstillinger for naturfagene. Der er tidligere udsendt...

  12. Quantum computing

    OpenAIRE

    Burba, M.; Lapitskaya, T.

    2017-01-01

    This article gives an elementary introduction to quantum computing. It is a draft for a book chapter of the "Handbook of Nature-Inspired and Innovative Computing", Eds. A. Zomaya, G.J. Milburn, J. Dongarra, D. Bader, R. Brent, M. Eshaghian-Wilner, F. Seredynski (Springer, Berlin Heidelberg New York, 2006).

  13. Predicting Motivation: Computational Models of PFC Can Explain Neural Coding of Motivation and Effort-based Decision-making in Health and Disease.

    Science.gov (United States)

    Vassena, Eliana; Deraeve, James; Alexander, William H

    2017-10-01

    Human behavior is strongly driven by the pursuit of rewards. In daily life, however, benefits mostly come at a cost, often requiring that effort be exerted to obtain potential benefits. Medial PFC (MPFC) and dorsolateral PFC (DLPFC) are frequently implicated in the expectation of effortful control, showing increased activity as a function of predicted task difficulty. Such activity partially overlaps with expectation of reward and has been observed both during decision-making and during task preparation. Recently, novel computational frameworks have been developed to explain activity in these regions during cognitive control, based on the principle of prediction and prediction error (predicted response-outcome [PRO] model [Alexander, W. H., & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338-1344, 2011], hierarchical error representation [HER] model [Alexander, W. H., & Brown, J. W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27, 2354-2410, 2015]). Despite the broad explanatory power of these models, it is not clear whether they can also accommodate effects related to the expectation of effort observed in MPFC and DLPFC. Here, we propose a translation of these computational frameworks to the domain of effort-based behavior. First, we discuss how the PRO model, based on prediction error, can explain effort-related activity in MPFC, by reframing effort-based behavior in a predictive context. We propose that MPFC activity reflects monitoring of motivationally relevant variables (such as effort and reward), by coding expectations and discrepancies from such expectations. Moreover, we derive behavioral and neural model-based predictions for healthy controls and clinical populations with impairments of motivation. Second, we illustrate the possible translation to effort-based behavior of the HER model, an extended version of PRO

  14. A Tony Thomas-Inspired Guide to INSPIRE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  15. A Tony Thomas-Inspired Guide to INSPIRE

    International Nuclear Information System (INIS)

    O'Connell, Heath B.

    2010-01-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  16. A novel single neuron perceptron with universal approximation and XOR computation properties.

    Science.gov (United States)

    Lotfi, Ehsan; Akbarzadeh-T, M-R

    2014-01-01

    We propose a biologically motivated brain-inspired single neuron perceptron (SNP) with universal approximation and XOR computation properties. This computational model extends the input pattern and is based on the excitatory and inhibitory learning rules inspired from neural connections in the human brain's nervous system. The resulting architecture of SNP can be trained by supervised excitatory and inhibitory online learning rules. The main features of proposed single layer perceptron are universal approximation property and low computational complexity. The method is tested on 6 UCI (University of California, Irvine) pattern recognition and classification datasets. Various comparisons with multilayer perceptron (MLP) with gradient decent backpropagation (GDBP) learning algorithm indicate the superiority of the approach in terms of higher accuracy, lower time, and spatial complexity, as well as faster training. Hence, we believe the proposed approach can be generally applicable to various problems such as in pattern recognition and classification.

  17. Norsk inspiration til uddannelse og job

    DEFF Research Database (Denmark)

    Skovhus, Randi Boelskifte; Thomsen, Rie; Buhl, Rita

    2017-01-01

    Anmeldelse af bog om det norske fag Utdanningsvalg - inspiration til arbejde med uddannelse og job......Anmeldelse af bog om det norske fag Utdanningsvalg - inspiration til arbejde med uddannelse og job...

  18. Ships - inspiring objects in architecture

    Science.gov (United States)

    Marczak, Elzbieta

    2017-10-01

    Sea-going vessels have for centuries fascinated people, not only those who happen to work at sea, but first and foremost, those who have never set foot aboard a ship. The environment in which ships operate is reminiscent of freedom and countless adventures, but also of hard and interesting maritime working life. The famous words of Pompey: “Navigare necesseest, vivere non estnecesse” (sailing is necessary, living - is not necessary), which he pronounced on a stormy sea voyage, arouse curiosity and excitement, inviting one to test the truth of this saying personally. It is often the case, however, that sea-faring remains within the realm of dreams, while the fascination with ships demonstrates itself through a transposition of naval features onto land constructions. In such cases, ship-inspired motifs bring alive dreams and yearnings as well as reflect tastes. Tourism is one of the indicators of people’s standard of living and a measure of a society’s civilisation. Maritime tourism has been developing rapidly in recent decades. A sea cruise offers an insight into life at sea. Still, most people derive their knowledge of passenger vessels and their furnishings from the mass media. Passenger vessels, also known as “floating cities,” are described as majestic and grand, while their on-board facilities as luxurious, comfortable, exclusive and inaccessible to common people on land. Freight vessels, on the other hand, are described as enormous objects which dwarf the human being into insignificance. This article presents the results of research intended to answer the following questions: what makes ships a source of inspiration for land architecture? To what extent and by what means do architects draw on ships in their design work? In what places can we find structures inspired by ships? What ships inspire architects? This article presents examples of buildings, whose design was inspired by the architecture and structural details of sea vessels. An analysis of

  19. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  20. Continuum robot arms inspired by cephalopods

    Science.gov (United States)

    Walker, Ian D.; Dawson, Darren M.; Flash, Tamar; Grasso, Frank W.; Hanlon, Roger T.; Hochner, Binyamin; Kier, William M.; Pagano, Christopher C.; Rahn, Christopher D.; Zhang, Qiming M.

    2005-05-01

    In this paper, we describe our recent results in the development of a new class of soft, continuous backbone ("continuum") robot manipulators. Our work is strongly motivated by the dexterous appendages found in cephalopods, particularly the arms and suckers of octopus, and the arms and tentacles of squid. Our ongoing investigation of these animals reveals interesting and unexpected functional aspects of their structure and behavior. The arrangement and dynamic operation of muscles and connective tissue observed in the arms of a variety of octopus species motivate the underlying design approach for our soft manipulators. These artificial manipulators feature biomimetic actuators, including artificial muscles based on both electro-active polymers (EAP) and pneumatic (McKibben) muscles. They feature a "clean" continuous backbone design, redundant degrees of freedom, and exhibit significant compliance that provides novel operational capacities during environmental interaction and object manipulation. The unusual compliance and redundant degrees of freedom provide strong potential for application to delicate tasks in cluttered and/or unstructured environments. Our aim is to endow these compliant robotic mechanisms with the diverse and dexterous grasping behavior observed in octopuses. To this end, we are conducting fundamental research into the manipulation tactics, sensory biology, and neural control of octopuses. This work in turn leads to novel approaches to motion planning and operator interfaces for the robots. The paper describes the above efforts, along with the results of our development of a series of continuum tentacle-like robots, demonstrating the unique abilities of biologically-inspired design.

  1. Forecasting the EMU inflation rate: Linear econometric vs. non-linear computational models using genetic neural fuzzy systems

    DEFF Research Database (Denmark)

    Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric

    2004-01-01

    This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...

  2. Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Cha, Kenny H.; Richter, Caleb D.

    2017-12-01

    Transfer learning in deep convolutional neural networks (DCNNs) is an important step in its application to medical imaging tasks. We propose a multi-task transfer learning DCNN with the aim of translating the ‘knowledge’ learned from non-medical images to medical diagnostic tasks through supervised training and increasing the generalization capabilities of DCNNs by simultaneously learning auxiliary tasks. We studied this approach in an important application: classification of malignant and benign breast masses. With Institutional Review Board (IRB) approval, digitized screen-film mammograms (SFMs) and digital mammograms (DMs) were collected from our patient files and additional SFMs were obtained from the Digital Database for Screening Mammography. The data set consisted of 2242 views with 2454 masses (1057 malignant, 1397 benign). In single-task transfer learning, the DCNN was trained and tested on SFMs. In multi-task transfer learning, SFMs and DMs were used to train the DCNN, which was then tested on SFMs. N-fold cross-validation with the training set was used for training and parameter optimization. On the independent test set, the multi-task transfer learning DCNN was found to have significantly (p  =  0.007) higher performance compared to the single-task transfer learning DCNN. This study demonstrates that multi-task transfer learning may be an effective approach for training DCNN in medical imaging applications when training samples from a single modality are limited.

  3. Computationally assisted screening and design of cell-interactive peptides by a cell-based assay using peptide arrays and a fuzzy neural network algorithm.

    Science.gov (United States)

    Kaga, Chiaki; Okochi, Mina; Tomita, Yasuyuki; Kato, Ryuji; Honda, Hiroyuki

    2008-03-01

    We developed a method of effective peptide screening that combines experiments and computational analysis. The method is based on the concept that screening efficiency can be enhanced from even limited data by use of a model derived from computational analysis that serves as a guide to screening and combining the model with subsequent repeated experiments. Here we focus on cell-adhesion peptides as a model application of this peptide-screening strategy. Cell-adhesion peptides were screened by use of a cell-based assay of a peptide array. Starting with the screening data obtained from a limited, random 5-mer library (643 sequences), a rule regarding structural characteristics of cell-adhesion peptides was extracted by fuzzy neural network (FNN) analysis. According to this rule, peptides with unfavored residues in certain positions that led to inefficient binding were eliminated from the random sequences. In the restricted, second random library (273 sequences), the yield of cell-adhesion peptides having an adhesion rate more than 1.5-fold to that of the basal array support was significantly high (31%) compared with the unrestricted random library (20%). In the restricted third library (50 sequences), the yield of cell-adhesion peptides increased to 84%. We conclude that a repeated cycle of experiments screening limited numbers of peptides can be assisted by the rule-extracting feature of FNN.

  4. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans.

    Science.gov (United States)

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-04-26

    Converging reports indicate that face images are processed through specialized neural networks in the brain -i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches.

  5. Mapping the 2017 Eclipse: Education, Navigation, Inspiration

    Science.gov (United States)

    Zeiler, M.

    2015-12-01

    Eclipse maps are a unique vessel of knowledge. At a glance, they communicate the essential knowledge of where and when to successfully view a total eclipse of the sun. An eclipse map also provides detailed knowledge of eclipse circumstances superimposed on the highway system for optimal navigation, especially in the event that weather forces relocation. Eclipse maps are also a vital planning tool for solar physicists and astrophotographers capturing high-resolution imagery of the solar corona. Michael Zeiler will speak to the role of eclipse maps in educating the American public and inspiring people to make the effort to reach the path of totality for the sight of a lifetime. Michael will review the role of eclipse maps in astronomical research and discuss a project under development, the 2017 Eclipse Atlas for smartphones, tablets, and desktop computers.

  6. Training and Validating a Deep Convolutional Neural Network for Computer-Aided Detection and Classification of Abnormalities on Frontal Chest Radiographs.

    Science.gov (United States)

    Cicero, Mark; Bilbily, Alexander; Colak, Errol; Dowdell, Tim; Gray, Bruce; Perampaladas, Kuhan; Barfett, Joseph

    2017-05-01

    Convolutional neural networks (CNNs) are a subtype of artificial neural network that have shown strong performance in computer vision tasks including image classification. To date, there has been limited application of CNNs to chest radiographs, the most frequently performed medical imaging study. We hypothesize CNNs can learn to classify frontal chest radiographs according to common findings from a sufficiently large data set. Our institution's research ethics board approved a single-center retrospective review of 35,038 adult posterior-anterior chest radiographs and final reports performed between 2005 and 2015 (56% men, average age of 56, patient type: 24% inpatient, 39% outpatient, 37% emergency department) with a waiver for informed consent. The GoogLeNet CNN was trained using 3 graphics processing units to automatically classify radiographs as normal (n = 11,702) or into 1 or more of cardiomegaly (n = 9240), consolidation (n = 6788), pleural effusion (n = 7786), pulmonary edema (n = 1286), or pneumothorax (n = 1299). The network's performance was evaluated using receiver operating curve analysis on a test set of 2443 radiographs with the criterion standard being board-certified radiologist interpretation. Using 256 × 256-pixel images as input, the network achieved an overall sensitivity and specificity of 91% with an area under the curve of 0.964 for classifying a study as normal (n = 1203). For the abnormal categories, the sensitivity, specificity, and area under the curve, respectively, were 91%, 91%, and 0.962 for pleural effusion (n = 782), 82%, 82%, and 0.868 for pulmonary edema (n = 356), 74%, 75%, and 0.850 for consolidation (n = 214), 81%, 80%, and 0.875 for cardiomegaly (n = 482), and 78%, 78%, and 0.861 for pneumothorax (n = 167). Current deep CNN architectures can be trained with modest-sized medical data sets to achieve clinically useful performance at detecting and excluding common pathology on chest radiographs.

  7. Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-08-31

    insect brain, allow these animals to fly with damaged wings, order of body mass payloads (e.g., foraging bees with a load of pollen , blood satiated...The research focus addressed two broad, complementary research areas : autonomous systems concepts inspired by the behavior and neurobiology...UL 46 19b. TELEPHONE NUMBER (include area code) 850 883-1887 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 iii Table of

  8. Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data.

    Science.gov (United States)

    Ching, Travers; Zhu, Xun; Garmire, Lana X

    2018-04-01

    Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.

  9. Compression of deep convolutional neural network for computer-aided diagnosis of masses in digital breast tomosynthesis

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny

    2018-02-01

    Deep-learning models are highly parameterized, causing difficulty in inference and transfer learning. We propose a layered pathway evolution method to compress a deep convolutional neural network (DCNN) for classification of masses in DBT while maintaining the classification accuracy. Two-stage transfer learning was used to adapt the ImageNet-trained DCNN to mammography and then to DBT. In the first-stage transfer learning, transfer learning from ImageNet trained DCNN was performed using mammography data. In the second-stage transfer learning, the mammography-trained DCNN was trained on the DBT data using feature extraction from fully connected layer, recursive feature elimination and random forest classification. The layered pathway evolution encapsulates the feature extraction to the classification stages to compress the DCNN. Genetic algorithm was used in an iterative approach with tournament selection driven by count-preserving crossover and mutation to identify the necessary nodes in each convolution layer while eliminating the redundant nodes. The DCNN was reduced by 99% in the number of parameters and 95% in mathematical operations in the convolutional layers. The lesion-based area under the receiver operating characteristic curve on an independent DBT test set from the original and the compressed network resulted in 0.88+/-0.05 and 0.90+/-0.04, respectively. The difference did not reach statistical significance. We demonstrated a DCNN compression approach without additional fine-tuning or loss of performance for classification of masses in DBT. The approach can be extended to other DCNNs and transfer learning tasks. An ensemble of these smaller and focused DCNNs has the potential to be used in multi-target transfer learning.

  10. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study

    Directory of Open Access Journals (Sweden)

    Arianna eLaCroix

    2015-08-01

    Full Text Available The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel’s Shared Syntactic Integration Resource Hypothesis (SSIRH and Koelsch’s neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music versus speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music.

  11. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study

    Science.gov (United States)

    LaCroix, Arianna N.; Diaz, Alvaro F.; Rogalsky, Corianne

    2015-01-01

    The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent) music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel's Shared Syntactic Integration Resource Hypothesis (SSIRH) and Koelsch's neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET) literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music vs. speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music. PMID:26321976

  12. The emergence of two anti-phase oscillatory neural populations in a computational model of the Parkinsonian globus pallidus

    Directory of Open Access Journals (Sweden)

    Robert John Merrison-Hort

    2013-12-01

    Full Text Available Experiments in rodent models of Parkinson's Disease have demonstrated a prominent increase of oscillatory firing patterns in neurons within the Parkinsonian globus pallidus (GP which may underlie some of the motor symptoms of the disease. There are two main pathways from the cortex to GP: via the striatum and via the subthalamic nucleus (STN, but it is not known how these inputs sculpt the pathological pallidal firing patterns. To study this we developed a novel neural network model of conductance-based spiking pallidal neurons with cortex-modulated input from STN neurons. Our results support the hypothesis that entrainment occurs primarily via the subthalamic pathway. We find that as a result of the interplay between excitatory input from the STN and mutual inhibitory coupling between GP neurons, a homogeneous population of GP neurons demonstrates a self-organising dynamical behaviour where two groups of neurons emerge: one spiking in-phase with the cortical rhythm and the other in anti-phase. This finding mirrors what is seen in recordings from the GP of rodents that have had Parkinsonism induced via brain lesions. Our model also includes downregulation of Hyperpolarization-activated Cyclic Nucleotide-gated (HCN channels in response to burst firing of GP neurons, since this has been suggested as a possible mechanism for the emergence of Parkinsonian activity. We found that the downregulation of HCN channels provides even better correspondence with experimental data but that it is not essential in order for the two groups of oscillatory neurons to appear. We discuss how the influence of inhibitory striatal input will strengthen our results.

  13. Modeling of Groundwater Resources Heavy Metals Concentration Using Soft Computing Methods: Application of Different Types of Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Meysam Alizamir

    2017-09-01

    Full Text Available Nowadays, groundwater resources play a vital role as a source of drinking water in arid and semiarid regions and forecasting of pollutants content in these resources is very important. Therefore, this study aimed to compare two soft computing methods for modeling Cd, Pb and Zn concentration in groundwater resources of Asadabad Plain, Western Iran. The relative accuracy of several soft computing models, namely multi-layer perceptron (MLP and radial basis function (RBF for forecasting of heavy metals concentration have been investigated. In addition, Levenberg-Marquardt, gradient descent and conjugate gradient training algorithms were utilized for the MLP models. The ANN models for this study were developed using MATLAB R 2014 Software program. The MLP performs better than the other models for heavy metals concentration estimation. The simulation results revealed that MLP model was able to model heavy metals concentration in groundwater resources favorably. It generally is effectively utilized in environmental applications and in the water quality estimations. In addition, out of three algorithms, Levenberg-Marquardt was better than the others were. This study proposed soft computing modeling techniques for the prediction and estimation of heavy metals concentration in groundwater resources of Asadabad Plain. Based on collected data from the plain, MLP and RBF models were developed for each heavy metal. MLP can be utilized effectively in applications of prediction of heavy metals concentration in groundwater resources of Asadabad Plain.

  14. Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation

    Directory of Open Access Journals (Sweden)

    Chunqing Li

    2012-01-01

    Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.

  15. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    Directory of Open Access Journals (Sweden)

    Dennis eGoldschmidt

    2014-01-01

    Full Text Available Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS and a late, reflex signal (unconditioned stimulus, UCS, both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment.

  16. A Pruning Neural Network Model in Credit Classification Analysis

    Directory of Open Access Journals (Sweden)

    Yajiao Tang

    2018-01-01

    Full Text Available Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency.

  17. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  18. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model.

    Science.gov (United States)

    Murali, Reena; John, Philips George; Peter S, David

    2015-05-15

    The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model

  19. The quest for a Quantum Neural Network

    OpenAIRE

    Schuld, M.; Sinayskiy, I.; Petruccione, F.

    2014-01-01

    With the overwhelming success in the field of quantum information in the last decades, the "quest" for a Quantum Neural Network (QNN) model began in order to combine quantum computing with the striking properties of neural computing. This article presents a systematic approach to QNN research, which so far consists of a conglomeration of ideas and proposals. It outlines the challenge of combining the nonlinear, dissipative dynamics of neural computing and the linear, unitary dynamics of quant...

  20. AER synthetic generation in hardware for bio-inspired spiking systems

    Science.gov (United States)

    Linares-Barranco, Alejandro; Linares-Barranco, Bernabe; Jimenez-Moreno, Gabriel; Civit-Balcells, Anton

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) convert conventional frame-based video stream in the computer into AER and inject it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. This paper addresses the problem of converting, in a computer, a conventional frame-based video stream into the spike event based representation AER. There exist several proposed software methods for synthetic generation of AER for bio-inspired systems. This paper presents a hardware implementation for one method, which is based on Linear-Feedback-Shift-Register (LFSR) pseudo-random number generation. The sequence of events generated by this hardware, which follows a Poisson distribution like a biological neuron, has been reconstructed using two AER integrator cells. The error of reconstruction for a set of images that produces different traffic loads of event in the AER bus is used as evaluation criteria. A VHDL description of the method, that includes the Xilinx PCI Core, has been implemented and tested using a general purpose PCI-AER board. This PCI-AER board has been developed by authors, and uses

  1. Space as an inspiring context

    Science.gov (United States)

    Stancu, Cristina

    2017-04-01

    Using space as context to inspire science education tapps into the excitement of generations of discovering the unknown resulting in unprecedented public participation. Educators are finding exciting and age appropiate materials for their class that explore science, technology, engineering and mathematics. Possible misconceptions are highlighted so that teachers may plan lessons to facilitate correct conceptual understanding. With a range of hands-on learning experiences, Web materials and online ,opportunities for students, educators are invited to take a closer look to actual science missions. This session leverages resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on various space agencies programs.

  2. Natural photonics for industrial inspiration.

    Science.gov (United States)

    Parker, Andrew R

    2009-05-13

    There are two considerations for optical biomimetics: the diversity of submicrometre architectures found in the natural world, and the industrial manufacture of these. A review exists on the latter subject, where current engineering methods are considered along with those of the natural cells. Here, on the other hand, I will provide a modern review of the different categories of reflectors and antireflectors found in animals, including their optical characterization. The purpose of this is to inspire designers within the $2 billion annual optics industry.

  3. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand.

    Science.gov (United States)

    Soekadar, Surjo R; Witkowski, Matthias; Vitiello, Nicola; Birbaumer, Niels

    2015-06-01

    The loss of hand function can result in severe physical and psychosocial impairment. Thus, compensation of a lost hand function using assistive robotics that can be operated in daily life is very desirable. However, versatile, intuitive, and reliable control of assistive robotics is still an unsolved challenge. Here, we introduce a novel brain/neural-computer interaction (BNCI) system that integrates electroencephalography (EEG) and electrooculography (EOG) to improve control of assistive robotics in daily life environments. To evaluate the applicability and performance of this hybrid approach, five healthy volunteers (HV) (four men, average age 26.5 ± 3.8 years) and a 34-year-old patient with complete finger paralysis due to a brachial plexus injury (BPI) used EEG (condition 1) and EEG/EOG (condition 2) to control grasping motions of a hand exoskeleton. All participants were able to control the BNCI system (BNCI control performance HV: 70.24 ± 16.71%, BPI: 65.93 ± 24.27%), but inclusion of EOG significantly improved performance across all participants (HV: 80.65 ± 11.28, BPI: 76.03 ± 18.32%). This suggests that hybrid BNCI systems can achieve substantially better control over assistive devices, e.g., a hand exoskeleton, than systems using brain signals alone and thus may increase applicability of brain-controlled assistive devices in daily life environments.

  4. Computational vision

    CERN Document Server

    Wechsler, Harry

    1990-01-01

    The book is suitable for advanced courses in computer vision and image processing. In addition to providing an overall view of computational vision, it contains extensive material on topics that are not usually covered in computer vision texts (including parallel distributed processing and neural networks) and considers many real applications.

  5. STICK: Spike Time Interval Computational Kernel, a Framework for General Purpose Computation Using Neurons, Precise Timing, Delays, and Synchrony.

    Science.gov (United States)

    Lagorce, Xavier; Benosman, Ryad

    2015-11-01

    There has been significant research over the past two decades in developing new platforms for spiking neural computation. Current neural computers are primarily developed to mimic biology. They use neural networks, which can be trained to perform specific tasks to mainly solve pattern recognition problems. These machines can do more than simulate biology; they allow us to rethink our current paradigm of computation. The ultimate goal is to develop brain-inspired general purpose computation architectures that can breach the current bottleneck introduced by the von Neumann architecture. This work proposes a new framework for such a machine. We show that the use of neuron-like units with precise timing representation, synaptic diversity, and temporal delays allows us to set a complete, scalable compact computation framework. The framework provides both linear and nonlinear operations, allowing us to represent and solve any function. We show usability in solving real use cases from simple differential equations to sets of nonlinear differential equations leading to chaotic attractors.

  6. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...

  7. Detection strategies for extreme mass ratio inspirals

    International Nuclear Information System (INIS)

    Cornish, Neil J

    2011-01-01

    The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near-horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these extreme mass ratio inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for tens of thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between genetic algorithms and Markov chain Monte Carlo techniques, along with several time-saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.

  8. Adaptation and hybridization in computational intelligence

    CERN Document Server

    Jr, Iztok

    2015-01-01

      This carefully edited book takes a walk through recent advances in adaptation and hybridization in the Computational Intelligence (CI) domain. It consists of ten chapters that are divided into three parts. The first part illustrates background information and provides some theoretical foundation tackling the CI domain, the second part deals with the adaptation in CI algorithms, while the third part focuses on the hybridization in CI. This book can serve as an ideal reference for researchers and students of computer science, electrical and civil engineering, economy, and natural sciences that are confronted with solving the optimization, modeling and simulation problems. It covers the recent advances in CI that encompass Nature-inspired algorithms, like Artificial Neural networks, Evolutionary Algorithms and Swarm Intelligence –based algorithms.  

  9. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    Directory of Open Access Journals (Sweden)

    Eduard eGrinke

    2015-10-01

    Full Text Available Walking animals, like insects, with little neural computing can effectively perform complex behaviors. They can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a walking robot is a challenging task. In this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors in the network to generate different turning angles with short-term memory for a biomechanical walking robot. The turning information is transmitted as descending steering signals to the locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations as well as escaping from sharp corners or deadlocks. Using backbone joint control embedded in the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments.

  10. An immune-inspired semi-supervised algorithm for breast cancer diagnosis.

    Science.gov (United States)

    Peng, Lingxi; Chen, Wenbin; Zhou, Wubai; Li, Fufang; Yang, Jin; Zhang, Jiandong

    2016-10-01

    Breast cancer is the most frequently and world widely diagnosed life-threatening cancer, which is the leading cause of cancer death among women. Early accurate diagnosis can be a big plus in treating breast cancer. Researchers have approached this problem using various data mining and machine learning techniques such as support vector machine, artificial neural network, etc. The computer immunology is also an intelligent method inspired by biological immune system, which has been successfully applied in pattern recognition, combination optimization, machine learning, etc. However, most of these diagnosis methods belong to a supervised diagnosis method. It is very expensive to obtain labeled data in biology and medicine. In this paper, we seamlessly integrate the state-of-the-art research on life science with artificial intelligence, and propose a semi-supervised learning algorithm to reduce the need for labeled data. We use two well-known benchmark breast cancer datasets in our study, which are acquired from the UCI machine learning repository. Extensive experiments are conducted and evaluated on those two datasets. Our experimental results demonstrate the effectiveness and efficiency of our proposed algorithm, which proves that our algorithm is a promising automatic diagnosis method for breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction CMS distributed computing system performed well during the 2011 start-up. The events in 2011 have more pile-up and are more complex than last year; this results in longer reconstruction times and harder events to simulate. Significant increases in computing capacity were delivered in April for all computing tiers, and the utilisation and load is close to the planning predictions. All computing centre tiers performed their expected functionalities. Heavy-Ion Programme The CMS Heavy-Ion Programme had a very strong showing at the Quark Matter conference. A large number of analyses were shown. The dedicated heavy-ion reconstruction facility at the Vanderbilt Tier-2 is still involved in some commissioning activities, but is available for processing and analysis. Facilities and Infrastructure Operations Facility and Infrastructure operations have been active with operations and several important deployment tasks. Facilities participated in the testing and deployment of WMAgent and WorkQueue+Request...

  12. COMPUTING

    CERN Multimedia

    P. McBride

    The Computing Project is preparing for a busy year where the primary emphasis of the project moves towards steady operations. Following the very successful completion of Computing Software and Analysis challenge, CSA06, last fall, we have reorganized and established four groups in computing area: Commissioning, User Support, Facility/Infrastructure Operations and Data Operations. These groups work closely together with groups from the Offline Project in planning for data processing and operations. Monte Carlo production has continued since CSA06, with about 30M events produced each month to be used for HLT studies and physics validation. Monte Carlo production will continue throughout the year in the preparation of large samples for physics and detector studies ramping to 50 M events/month for CSA07. Commissioning of the full CMS computing system is a major goal for 2007. Site monitoring is an important commissioning component and work is ongoing to devise CMS specific tests to be included in Service Availa...

  13. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview During the past three months activities were focused on data operations, testing and re-enforcing shift and operational procedures for data production and transfer, MC production and on user support. Planning of the computing resources in view of the new LHC calendar in ongoing. Two new task forces were created for supporting the integration work: Site Commissioning, which develops tools helping distributed sites to monitor job and data workflows, and Analysis Support, collecting the user experience and feedback during analysis activities and developing tools to increase efficiency. The development plan for DMWM for 2009/2011 was developed at the beginning of the year, based on the requirements from the Physics, Computing and Offline groups (see Offline section). The Computing management meeting at FermiLab on February 19th and 20th was an excellent opportunity discussing the impact and for addressing issues and solutions to the main challenges facing CMS computing. The lack of manpower is particul...

  14. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  15. INSPIRE 2012 da Istanbul a Firenze

    Directory of Open Access Journals (Sweden)

    Mauro Salvemini

    2012-09-01

    Full Text Available DURING THE CONFERENCE HELD IN  ISTANBUL IN  2012 INSPIRE  THE  NEWS  THAT  MOST  IMPRESSED ITALIANS PRESENT,  EVEN THOSE IN THE PUBLIC ADMINISTRATION , WAS THAT THE NEXT  INSPIRE CONFERENCE WILL TAKE PLACE IN  FLORENCEDurante la conferenza INSPIRE 2012 svoltasi ad Istanbul la notizia che ha maggiormente colpito gli italiani presenti, anche quelli della pubblica amministrazione , è stata che la prossima Conferenza INSPIRE si svolgerà a Firenze dal 23 al 27 giugno 2013.

  16. INSPIRE 2012 da Istanbul a Firenze

    Directory of Open Access Journals (Sweden)

    Mauro Salvemini

    2012-09-01

    Full Text Available DURING THE CONFERENCE HELD IN  ISTANBUL IN  2012 INSPIRE  THE  NEWS  THAT  MOST  IMPRESSED ITALIANS PRESENT,  EVEN THOSE IN THE PUBLIC ADMINISTRATION , WAS THAT THE NEXT  INSPIRE CONFERENCE WILL TAKE PLACE IN  FLORENCE Durante la conferenza INSPIRE 2012 svoltasi ad Istanbul la notizia che ha maggiormente colpito gli italiani presenti, anche quelli della pubblica amministrazione , è stata che la prossima Conferenza INSPIRE si svolgerà a Firenze dal 23 al 27 giugno 2013.

  17. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    Science.gov (United States)

    Kornyshev, Alexei A.

    2010-10-01

    The conference 'From DNA-Inspired Physics to Physics-Inspired Biology' (1-5 June 2009, International Center for Theoretical Physics, Trieste, Italy) that myself and two former presidents of the American Biophysical Society—Wilma Olson (Rutgers University) and Adrian Parsegian (NIH), with the support of an ICTP team (Ralf Gebauer (Local Organizer) and Doreen Sauleek (Conference Secretary)), have organized was intended to establish stronger links between the biology and physics communities on the DNA front. The relationships between them were never easy. In 1997, Adrian published a paper in Physics Today ('Harness the Hubris') summarizing his thoughts about the main obstacles for a successful collaboration. The bottom line of that article was that physicists must seriously learn biology before exploring it and even having an interpreter, a friend or co-worker, who will be cooperating with you and translating the problems of biology into a physical language, may not be enough. He started his story with a joke about a physicist asking a biologist: 'I want to study the brain. Tell me something about it!' Biologist: 'First, the brain consists of two parts, and..' Physicist: 'Stop. You have told me too much.' Adrian listed a few direct avenues where physicists' contributions may be particularly welcome. This gentle and elegantly written paper caused, however, a stormy reaction from Bob Austin (Princeton), published together with Adrian's notes, accusing Adrian of forbidding physicists to attack big questions in biology straightaway. Twelve years have passed and many new developments have taken place in the biologist-physicist interaction. This was something I addressed in my opening conference speech, with my position lying somewhere inbetween Parsegian's and Austin's, which is briefly outlined here. I will first recall certain precepts or 'dogmas' that fly in the air like Valkyries, poisoning those relationships. Since the early seventies when I was a first year Ph

  18. Real-Time Accumulative Computation Motion Detectors

    Directory of Open Access Journals (Sweden)

    Saturnino Maldonado-Bascón

    2009-12-01

    Full Text Available The neurally inspired accumulative computation (AC method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively.

  19. Learning text representation using recurrent convolutional neural network with highway layers

    OpenAIRE

    Wen, Ying; Zhang, Weinan; Luo, Rui; Wang, Jun

    2016-01-01

    Recently, the rapid development of word embedding and neural networks has brought new inspiration to various NLP and IR tasks. In this paper, we describe a staged hybrid model combining Recurrent Convolutional Neural Networks (RCNN) with highway layers. The highway network module is incorporated in the middle takes the output of the bi-directional Recurrent Neural Network (Bi-RNN) module in the first stage and provides the Convolutional Neural Network (CNN) module in the last stage with the i...

  20. COMPUTING

    CERN Multimedia

    I. Fisk

    2013-01-01

    Computing activity had ramped down after the completion of the reprocessing of the 2012 data and parked data, but is increasing with new simulation samples for analysis and upgrade studies. Much of the Computing effort is currently involved in activities to improve the computing system in preparation for 2015. Operations Office Since the beginning of 2013, the Computing Operations team successfully re-processed the 2012 data in record time, not only by using opportunistic resources like the San Diego Supercomputer Center which was accessible, to re-process the primary datasets HTMHT and MultiJet in Run2012D much earlier than planned. The Heavy-Ion data-taking period was successfully concluded in February collecting almost 500 T. Figure 3: Number of events per month (data) In LS1, our emphasis is to increase efficiency and flexibility of the infrastructure and operation. Computing Operations is working on separating disk and tape at the Tier-1 sites and the full implementation of the xrootd federation ...

  1. [Nikola Tesla: flashes of inspiration].

    Science.gov (United States)

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions.

  2. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  3. Program Helps Simulate Neural Networks

    Science.gov (United States)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  4. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  5. Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jennifer L Collinger

    2014-02-01

    Full Text Available After spinal cord injury (SCI, motor commands from the brain are unable to reach peripheral nerves and muscles below the level of the lesion. Action observation, in which a person observes someone else performing an action, has been used to augment traditional rehabilitation paradigms. Similarly, action observation can be used to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface (BCI even when the user cannot generate overt movements. BCIs use brain signals to control external devices to replace functions that have been lost due to SCI or other motor impairment. Previous studies have reported congruent motor cortical activity during observed and overt movements using magnetoencephalography (MEG and functional magnetic resonance imaging (fMRI. Recent single-unit studies using intracortical microelectrodes also demonstrated that a large number of motor cortical neurons had similar firing rate patterns between overt and observed movements. Given the increasing interest in electrocorticography (ECoG-based BCIs, our goal was to identify whether action observation-related cortical activity could be recorded using ECoG during grasping tasks. Specifically, we aimed to identify congruent neural activity during observed and executed movements in both the sensorimotor rhythm (10-40 Hz and the high-gamma band (65-115 Hz which contains significant movement-related information. We observed significant motor-related high-gamma band activity during action observation in both able-bodied individuals and one participant with a complete C4 SCI. Furthermore, in able-bodied participants, both the low and high frequency bands demonstrated congruent activity between action execution and observation. Our results suggest that action observation could be an effective and critical procedure for deriving the mapping from ECoG signals to intended movement for an ECoG-based BCI system for individuals with

  6. Towards building hybrid biological/in silico neural networks for motor neuroprosthetic control

    Directory of Open Access Journals (Sweden)

    Mehmet eKocaturk

    2015-08-01

    Full Text Available In this article, we introduce the Bioinspired Neuroprosthetic Design Environment (BNDE as a practical platform for the development of novel brain machine interface (BMI controllers which are based on spiking model neurons. We built the BNDE around a hard real-time system so that it is capable of creating simulated synapses from extracellularly recorded neurons to model neurons. In order to evaluate the practicality of the BNDE for neuroprosthetic control experiments, a novel, adaptive BMI controller was developed and tested using real-time closed-loop simulations. The present controller consists of two in silico medium spiny neurons which receive simulated synaptic inputs from recorded motor cortical neurons. In the closed-loop simulations, the recordings from the cortical neurons were imitated using an external, hardware-based neural signal synthesizer. By implementing a reward-modulated spike timing-dependent plasticity rule, the controller achieved perfect target reach accuracy for a two target reaching task in one dimensional space. The BNDE combines the flexibility of software-based spiking neural network (SNN simulations with powerful online data visualization tools and is a low-cost, PC-based and all-in-one solution for developing neurally-inspired BMI controllers. We believe the BNDE is the first implementation which is capable of creating hybrid biological/in silico neural networks for motor neuroprosthetic control and utilizes multiple CPU cores for computationally intensive real-time SNN simulations.

  7. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion An activity that is still in progress is computing for the heavy-ion program. The heavy-ion events are collected without zero suppression, so the event size is much large at roughly 11 MB per event of RAW. The central collisions are more complex and...

  8. COMPUTING

    CERN Multimedia

    M. Kasemann P. McBride Edited by M-C. Sawley with contributions from: P. Kreuzer D. Bonacorsi S. Belforte F. Wuerthwein L. Bauerdick K. Lassila-Perini M-C. Sawley

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the comput...

  9. Business Inspiration: Small Business Leadership in Recovery?

    Science.gov (United States)

    Rae, David; Price, Liz; Bosworth, Gary; Parkinson, Paul

    2012-01-01

    Business Inspiration was a short, action-centred leadership and innovation development programme designed for owners and managers of smaller firms to address business survival and repositioning needs arising from the UK's economic downturn. The article examines the design and delivery of Business Inspiration and the impact of the programme on…

  10. Inspiration til undervisning på museer

    DEFF Research Database (Denmark)

    Hyllested, Trine Elisabeth

    2015-01-01

    collection and arrangement of knowledge meant to give a general view of, to inspire and to develop teaching at museums in Denmark......collection and arrangement of knowledge meant to give a general view of, to inspire and to develop teaching at museums in Denmark...

  11. Advanced Applications of Neural Networks and Artificial Intelligence: A Review

    OpenAIRE

    Koushal Kumar; Gour Sundar Mitra Thakur

    2012-01-01

    Artificial Neural Network is a branch of Artificial intelligence and has been accepted as a new computing technology in computer science fields. This paper reviews the field of Artificial intelligence and focusing on recent applications which uses Artificial Neural Networks (ANN’s) and Artificial Intelligence (AI). It also considers the integration of neural networks with other computing methods Such as fuzzy logic to enhance the interpretation ability of data. Artificial Neural Networks is c...

  12. Computational Composites

    DEFF Research Database (Denmark)

    Vallgårda, Anna K. A.

    to understand the computer as a material like any other material we would use for design, like wood, aluminum, or plastic. That as soon as the computer forms a composition with other materials it becomes just as approachable and inspiring as other smart materials. I present a series of investigations of what...... Computational Composite, and Telltale). Through the investigations, I show how the computer can be understood as a material and how it partakes in a new strand of materials whose expressions come to be in context. I uncover some of their essential material properties and potential expressions. I develop a way...

  13. Phase diagram of spiking neural networks.

    Science.gov (United States)

    Seyed-Allaei, Hamed

    2015-01-01

    In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters - excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli.

  14. COMPUTING

    CERN Multimedia

    P. McBride

    It has been a very active year for the computing project with strong contributions from members of the global community. The project has focused on site preparation and Monte Carlo production. The operations group has begun processing data from P5 as part of the global data commissioning. Improvements in transfer rates and site availability have been seen as computing sites across the globe prepare for large scale production and analysis as part of CSA07. Preparations for the upcoming Computing Software and Analysis Challenge CSA07 are progressing. Ian Fisk and Neil Geddes have been appointed as coordinators for the challenge. CSA07 will include production tests of the Tier-0 production system, reprocessing at the Tier-1 sites and Monte Carlo production at the Tier-2 sites. At the same time there will be a large analysis exercise at the Tier-2 centres. Pre-production simulation of the Monte Carlo events for the challenge is beginning. Scale tests of the Tier-0 will begin in mid-July and the challenge it...

  15. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction During the past six months, Computing participated in the STEP09 exercise, had a major involvement in the October exercise and has been working with CMS sites on improving open issues relevant for data taking. At the same time operations for MC production, real data reconstruction and re-reconstructions and data transfers at large scales were performed. STEP09 was successfully conducted in June as a joint exercise with ATLAS and the other experiments. It gave good indication about the readiness of the WLCG infrastructure with the two major LHC experiments stressing the reading, writing and processing of physics data. The October Exercise, in contrast, was conducted as an all-CMS exercise, where Physics, Computing and Offline worked on a common plan to exercise all steps to efficiently access and analyze data. As one of the major results, the CMS Tier-2s demonstrated to be fully capable for performing data analysis. In recent weeks, efforts were devoted to CMS Computing readiness. All th...

  16. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion The Tier 0 infrastructure was able to repack and promptly reconstruct heavy-ion collision data. Two copies were made of the data at CERN using a large CASTOR disk pool, and the core physics sample was replicated ...

  17. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

    Introduction Computing continued with a high level of activity over the winter in preparation for conferences and the start of the 2012 run. 2012 brings new challenges with a new energy, more complex events, and the need to make the best use of the available time before the Long Shutdown. We expect to be resource constrained on all tiers of the computing system in 2012 and are working to ensure the high-priority goals of CMS are not impacted. Heavy ions After a successful 2011 heavy-ion run, the programme is moving to analysis. During the run, the CAF resources were well used for prompt analysis. Since then in 2012 on average 200 job slots have been used continuously at Vanderbilt for analysis workflows. Operations Office As of 2012, the Computing Project emphasis has moved from commissioning to operation of the various systems. This is reflected in the new organisation structure where the Facilities and Data Operations tasks have been merged into a common Operations Office, which now covers everything ...

  18. COMPUTING

    CERN Multimedia

    M. Kasemann

    CCRC’08 challenges and CSA08 During the February campaign of the Common Computing readiness challenges (CCRC’08), the CMS computing team had achieved very good results. The link between the detector site and the Tier0 was tested by gradually increasing the number of parallel transfer streams well beyond the target. Tests covered the global robustness at the Tier0, processing a massive number of very large files and with a high writing speed to tapes.  Other tests covered the links between the different Tiers of the distributed infrastructure and the pre-staging and reprocessing capacity of the Tier1’s: response time, data transfer rate and success rate for Tape to Buffer staging of files kept exclusively on Tape were measured. In all cases, coordination with the sites was efficient and no serious problem was found. These successful preparations prepared the ground for the second phase of the CCRC’08 campaign, in May. The Computing Software and Analysis challen...

  19. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction The first data taking period of November produced a first scientific paper, and this is a very satisfactory step for Computing. It also gave the invaluable opportunity to learn and debrief from this first, intense period, and make the necessary adaptations. The alarm procedures between different groups (DAQ, Physics, T0 processing, Alignment/calibration, T1 and T2 communications) have been reinforced. A major effort has also been invested into remodeling and optimizing operator tasks in all activities in Computing, in parallel with the recruitment of new Cat A operators. The teams are being completed and by mid year the new tasks will have been assigned. CRB (Computing Resource Board) The Board met twice since last CMS week. In December it reviewed the experience of the November data-taking period and could measure the positive improvements made for the site readiness. It also reviewed the policy under which Tier-2 are associated with Physics Groups. Such associations are decided twice per ye...

  20. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the co...