WorldWideScience

Sample records for neurally adjusted ventilator

  1. Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction.

    Science.gov (United States)

    Schmidt, Matthieu; Kindler, Felix; Cecchini, Jérôme; Poitou, Tymothée; Morawiec, Elise; Persichini, Romain; Similowski, Thomas; Demoule, Alexandre

    2015-02-25

    The objective was to compare the impact of three assistance levels of different modes of mechanical ventilation; neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV), and pressure support ventilation (PSV) on major features of patient-ventilator interaction. PSV, NAVA, and PAV were set to obtain a tidal volume (VT) of 6 to 8 ml/kg (PSV₁₀₀, NAVA₁₀₀, and PAV₁₀₀) in 16 intubated patients. Assistance was further decreased by 50% (PSV₅₀, NAVA₅₀, and PAV₅₀) and then increased by 50% (PSV₁₅₀, NAVA₁₅₀, and PAV₁₅₀) with all modes. The three modes were randomly applied. Airway flow and pressure, electrical activity of the diaphragm (EAdi), and blood gases were measured. VT, peak EAdi, coefficient of variation of VT and EAdi, and the prevalence of the main patient-ventilator asynchronies were calculated. PAV and NAVA prevented the increase of VT with high levels of assistance (median 7.4 (interquartile range (IQR) 5.7 to 10.1) ml/kg and 7.4 (IQR, 5.9 to 10.5) ml/kg with PAV₁₅₀ and NAVA₁₅₀ versus 10.9 (IQR, 8.9 to 12.0) ml/kg with PSV₁₅₀, P PAV than with PSV at level₁₀₀ and level₁₅₀. The coefficient of variation of VT was higher with NAVA and PAV (19 (IQR, 14 to 31)% and 21 (IQR 16 to 29)% with NAVA₁₀₀ and PAV₁₀₀ versus 13 (IQR 11 to 18)% with PSV₁₀₀, P PAV and NAVA than with PSV (P PAV and PSV (P PAV and NAVA both prevent overdistention, improve neuromechanical coupling, restore the variability of the breathing pattern, and decrease patient-ventilator asynchrony in fairly similar ways compared with PSV. Further studies are needed to evaluate the possible clinical benefits of NAVA and PAV on clinical outcomes. Clinicaltrials.gov NCT02056093 . Registered 18 December 2013.

  2. Neurally adjusted ventilatory assist compared to other forms of triggered ventilation for neonatal respiratory support.

    Science.gov (United States)

    Rossor, Thomas E; Hunt, Katie A; Shetty, Sandeep; Greenough, Anne

    2017-10-27

    Effective synchronisation of infant respiratory effort with mechanical ventilation may allow adequate gas exchange to occur at lower peak airway pressures, potentially reducing barotrauma and volutrauma and development of air leaks and bronchopulmonary dysplasia. During neurally adjusted ventilatory assist ventilation (NAVA), respiratory support is initiated upon detection of an electrical signal from the diaphragm muscle, and pressure is provided in proportion to and synchronous with electrical activity of the diaphragm (EADi). Compared to other modes of triggered ventilation, this may provide advantages in improving synchrony. Primary• To determine whether NAVA, when used as a primary or rescue mode of ventilation, results in reduced rates of bronchopulmonary dysplasia (BPD) or death among term and preterm newborn infants compared to other forms of triggered ventilation• To assess the safety of NAVA by determining whether it leads to greater risk of intraventricular haemorrhage (IVH), periventricular leukomalacia, or air leaks when compared to other forms of triggered ventilation Secondary• To determine whether benefits of NAVA differ by gestational age (term or preterm)• To determine whether outcomes of cross-over trials performed during the first two weeks of life include peak pressure requirements, episodes of hypocarbia or hypercarbia, oxygenation index, and the work of breathing SEARCH METHODS: We performed searches of the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cohrane Library; MEDLINE via Ovid SP (January 1966 to March 2017); Embase via Ovid SP (January 1980 to March 2017); the Cumulative Index to Nursing and Allied Health Literature (CINAHL) via EBSCO host (1982 to March 2017); and the Web of Science (1985 to 2017). We searched abstracts from annual meetings of the Pediatric Academic Societies (PAS) (2000 to 2016); meetings of the European Society of Pediatric Research (published in Pediatric Research); and meetings of the

  3. Non-invasive ventilation with neurally adjusted ventilatory assist in newborns.

    Science.gov (United States)

    Stein, Howard; Beck, Jennifer; Dunn, Michael

    2016-06-01

    Neurally adjusted ventilatory assist (NAVA) is a mode of ventilation in which both the timing and degree of ventilatory assist are controlled by the patient. Since NAVA uses the diaphragm electrical activity (Edi) as the controller signal, it is possible to deliver synchronized non-invasive NAVA (NIV-NAVA) regardless of leaks and to monitor continuously patient respiratory pattern and drive. Advantages of NIV-NAVA over conventional modes include improved patient-ventilator interaction, reliable respiratory monitoring and self-regulation of respiratory support. In theory, these characteristics make NIV-NAVA an ideal mode to provide effective, appropriate non-invasive support to newborns with respiratory insufficiency. NIV-NAVA has been successfully used clinically in neonates as a mode of ventilation to prevent intubation, to allow early extubation, and as a novel way to deliver nasal continuous positive airway pressure. The use of NAVA in neonates is described with an emphasis on studies and clinical experience with NIV-NAVA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Noninvasive ventilation–neurally adjusted ventilator assist for management of acute exacerbation of chronic obstructive pulmonary disease

    Science.gov (United States)

    Hadda, Vijay; Shah, Tajamul Hussain; Madan, Karan; Mohan, Anant; Khilnani, Gopi C; Guleria, Randeep

    2018-01-01

    Patient–ventilator asynchrony is common with noninvasive ventilation (NIV) used for management of acute exacerbation of chronic obstructive pulmonary disease (COPD). Neurally adjusted ventilator assist (NAVA) is a mode of ventilatory support which can minimize the patient–ventilator asynchrony. Delivering NIV with NAVA (NIV–NAVA) during acute exacerbation of COPD seems a logical approach and may be useful in reducing patient–ventilator asynchrony. However, there are no published reports which describe the use of NIV–NAVA for management of acute exacerbation of COPD. We describe the successful management of a 56-year-old gentleman presenting to the emergency department of our hospital with acute exacerbation of COPD with hypercapnic respiratory failure with NIV–NAVA. PMID:29319038

  5. Noninvasive ventilation–neurally adjusted ventilator assist for management of acute exacerbation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Vijay Hadda

    2018-01-01

    Full Text Available Patient–ventilator asynchrony is common with noninvasive ventilation (NIV used for management of acute exacerbation of chronic obstructive pulmonary disease (COPD. Neurally adjusted ventilator assist (NAVA is a mode of ventilatory support which can minimize the patient–ventilator asynchrony. Delivering NIV with NAVA (NIV–NAVA during acute exacerbation of COPD seems a logical approach and may be useful in reducing patient–ventilator asynchrony. However, there are no published reports which describe the use of NIV–NAVA for management of acute exacerbation of COPD. We describe the successful management of a 56-year-old gentleman presenting to the emergency department of our hospital with acute exacerbation of COPD with hypercapnic respiratory failure with NIV–NAVA.

  6. A prospective crossover comparison of neurally adjusted ventilatory assist and pressure-support ventilation in a pediatric and neonatal intensive care unit population.

    LENUS (Irish Health Repository)

    Breatnach, Cormac

    2012-02-01

    OBJECTIVE: To compare neurally adjusted ventilatory assist ventilation with pressure-support ventilation. DESIGN: Prospective, crossover comparison study. SETTING: Tertiary care pediatric and neonatal intensive care unit. PATIENTS: Sixteen ventilated infants and children: mean age = 9.7 months (range = 2 days-4 yrs) and mean weight = 6.2 kg (range = 2.4-13.7kg). INTERVENTIONS: A modified nasogastric tube was inserted and correct positioning was confirmed. Patients were ventilated in pressure-support mode with a pneumatic trigger for a 30-min period and then in neurally adjusted ventilatory assist mode for up to 4 hrs. MEASUREMENTS AND MAIN RESULTS: Data collected for comparison included activating trigger (neural vs. pneumatic), peak and mean airway pressures, expired minute and tidal volumes, heart rate, respiratory rate, pulse oximetry, end-tidal CO2 and arterial blood gases. Synchrony was improved in neurally adjusted ventilatory assist mode with 65% (+\\/-21%) of breaths triggered neurally vs. 35% pneumatically (p < .001) and 85% (+\\/-8%) of breaths cycled-off neurally vs. 15% pneumatically (p = .0001). The peak airway pressure in neurally adjusted ventilatory assist mode was significantly lower than in pressure-support mode with a 28% decrease in pressure after 30 mins (p = .003) and 32% decrease after 3 hrs (p < .001). Mean airway pressure was reduced by 11% at 30 mins (p = .13) and 9% at 3 hrs (p = .31) in neurally adjusted ventilatory assist mode although this did not reach statistical significance. Patient hemodynamics and gas exchange remained stable for the study period. No adverse patient events or device effects were noted. CONCLUSIONS: In a neonatal and pediatric intensive care unit population, ventilation in neurally adjusted ventilatory assist mode was associated with improved patient-ventilator synchrony and lower peak airway pressure when compared with pressure-support ventilation with a pneumatic trigger. Ventilating patients in this new mode

  7. Assessing the Response to Inhaled Albuterol by Monitoring Patient Effort-Related Trends With a Servo-I Ventilator in Neurally Adjusted Ventilatory Assist Mode: A Case Presentation.

    Science.gov (United States)

    Snow, Timothy Matthew; Brinck, Matthew J

    2015-12-01

    Infants with chronic lung disease tend to be difficult to care for due to the heterogeneous nature of both their disease and the treatments required. Multiple types of medications, treatments, and nursing interventions are often needed to attain clinical success, and it is frequently difficult to discern which are effective versus the ones that offer no benefit. This article presents a case study that chronicles the care of an infant with chronic lung disease treated with albuterol. An innovative form of ventilation with monitoring of the electrical activity of the diaphragm with a special sensor-embedded catheter is used to assess the effectiveness of albuterol administration. This case study presents the monitoring of the effectiveness of albuterol in an infant with chronic lung disease measuring the electrical activity of the diaphragm catheter (Edi) and the various monitoring systems on the Servo-i ventilator in Neurally Adjusted Ventilatory Assist (NAVA) Mode. The clinicians followed various respiratory trends monitored by the Servo-i ventilator after albuterol dosing to document the clinical utility of using albuterol in this infant. The monitoring provided by NAVA showed an improvement in both lung mechanics and clinical condition immediately after albuterol administration. The infant had a positive response to albuterol dosing that subsequently led to reduced length of stay, reduced costs, and reduced family anxiety. This type of monitoring could help nurses and clinicians discern whether a given treatment or medication was effective. This method of clinical monitoring could provide a means to assess clinical utility of respiratory medications, treatments, and nursing interventions in certain populations of neonates and infants. The impact of objective monitoring on required sedation, weight gain, ventilator days, length of hospitalization, and overall hospital costs are other possible areas for future research.

  8. Neurally adjusted ventilatory assist decreases ventilator-induced lung injury and non-pulmonary organ dysfunction in rabbits with acute lung injury

    NARCIS (Netherlands)

    Brander, Lukas; Sinderby, Christer; Lecomte, François; Leong-Poi, Howard; Bell, David; Beck, Jennifer; Tsoporis, James N.; Vaschetto, Rosanna; Schultz, Marcus J.; Parker, Thomas G.; Villar, Jesús; Zhang, Haibo; Slutsky, Arthur S.

    2009-01-01

    OBJECTIVE: To determine if neurally adjusted ventilatory assist (NAVA) that delivers pressure in proportion to diaphragm electrical activity is as protective to acutely injured lungs (ALI) and non-pulmonary organs as volume controlled (VC), low tidal volume (Vt), high positive end-expiratory

  9. Learning-parameter adjustment in neural networks

    Science.gov (United States)

    Heskes, Tom M.; Kappen, Bert

    1992-06-01

    We present a learning-parameter adjustment algorithm, valid for a large class of learning rules in neural-network literature. The algorithm follows directly from a consideration of the statistics of the weights in the network. The characteristic behavior of the algorithm is calculated, both in a fixed and a changing environment. A simple example, Widrow-Hoff learning for statistical classification, serves as an illustration.

  10. An intelligent FFR with a self-adjustable ventilation fan.

    Science.gov (United States)

    Zhou, Song; Li, Hui; Shen, Shengnan; Li, Siyu; Wang, Wei; Zhang, Xiaotie; Yang, James

    2017-11-01

    This article presents an intelligent Filtering Facepiece Respirator (FFR) with a self-adjustable ventilation fan for improved comfort. The ventilation fan with an intelligent control aims to reduce temperature, relative humidity, and CO 2 concentrations inside the facepiece. Compared with a previous version of the FFR, the advantage of this new FFR is the intelligent control of the fan's rotation speed based on the change in temperature and relative humidity in the FFR dead space. The design of the control system utilizes an 8-bit, ultra-low power STC15W404AS microcontroller (HongJin technology, Shenzhen, China), and adopts a high-precision AM2320 device (AoSong electronic, Guangzhou, China) as temperature and relative humidity sensor so that control of temperature and relative humidity is realized in real time within the FFR dead space. The ventilation fan is intelligently driven and runs on a rechargeable lithium battery with a power-save mode that provides a correspondingly longer operational time. Meanwhile, the design is simplistic. Two experiments were performed to determine the best location to place the fan.

  11. [Successful weaning and extubation in the premature newborn using neurally adjusted ventilatory assist].

    Science.gov (United States)

    García-Muñoz Rodrigo, F; Rivero Rodríguez, S; Florido Rodríguez, A; Martín Cruz, F G; Díaz Pulido, R

    2015-01-01

    Invasive and non-invasive ventilation of the preterm newborn may be associated with local and systemic complications due to mechanical trauma to lung tissues and their inflammatory response. A key objective of any type of mechanical ventilation, therefore, is to reduce its duration and the side effects related to it. Neurally Adjusted Ventilatory Assist (NAVA) may improve synchronization between patient and ventilator and optimize the gas volume delivered to the lungs, according to the patient needs, eventually reducing volu- and biotrauma. Two preterm babies with severe respiratory distress syndrome are presented, who were successfully weaned and extubated with the help of this ventilatory system. Further studies are needed to assess whether short-term benefits are reflected in better outcomes in the long run. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  12. Clinical review: Update on neurally adjusted ventilatory assist - report of a round-table conference

    Science.gov (United States)

    2012-01-01

    Conventional mechanical ventilators rely on pneumatic pressure and flow sensors and controllers to detect breaths. New modes of mechanical ventilation have been developed to better match the assistance delivered by the ventilator to the patient's needs. Among these modes, neurally adjusted ventilatory assist (NAVA) delivers a pressure that is directly proportional to the integral of the electrical activity of the diaphragm recorded continuously through an esophageal probe. In clinical settings, NAVA has been chiefly compared with pressure-support ventilation, one of the most popular modes used during the weaning phase, which delivers a constant pressure from breath to breath. Comparisons with proportional-assist ventilation, which has numerous similarities, are lacking. Because of the constant level of assistance, pressure-support ventilation reduces the natural variability of the breathing pattern and can be associated with asynchrony and/or overinflation. The ability of NAVA to circumvent these limitations has been addressed in clinical studies and is discussed in this report. Although the underlying concept is fascinating, several important questions regarding the clinical applications of NAVA remain unanswered. Among these questions, determining the optimal NAVA settings according to the patient's ventilatory needs and/or acceptable level of work of breathing is a key issue. In this report, based on an investigator-initiated round table, we review the most recent literature on this topic and discuss the theoretical advantages and disadvantages of NAVA compared with other modes, as well as the risks and limitations of NAVA. PMID:22715815

  13. Clinical review: Update on neurally adjusted ventilatory assist--report of a round-table conference.

    Science.gov (United States)

    Terzi, Nicolas; Piquilloud, Lise; Rozé, Hadrien; Mercat, Alain; Lofaso, Frédéric; Delisle, Stéphane; Jolliet, Philippe; Sottiaux, Thierry; Tassaux, Didier; Roesler, Jean; Demoule, Alexandre; Jaber, Samir; Mancebo, Jordi; Brochard, Laurent; Richard, Jean-Christophe Marie

    2012-06-20

    Conventional mechanical ventilators rely on pneumatic pressure and flow sensors and controllers to detect breaths. New modes of mechanical ventilation have been developed to better match the assistance delivered by the ventilator to the patient's needs. Among these modes, neurally adjusted ventilatory assist (NAVA) delivers a pressure that is directly proportional to the integral of the electrical activity of the diaphragm recorded continuously through an esophageal probe. In clinical settings, NAVA has been chiefly compared with pressure-support ventilation, one of the most popular modes used during the weaning phase, which delivers a constant pressure from breath to breath. Comparisons with proportional-assist ventilation, which has numerous similarities, are lacking. Because of the constant level of assistance, pressure-support ventilation reduces the natural variability of the breathing pattern and can be associated with asynchrony and/or overinflation. The ability of NAVA to circumvent these limitations has been addressed in clinical studies and is discussed in this report. Although the underlying concept is fascinating, several important questions regarding the clinical applications of NAVA remain unanswered. Among these questions, determining the optimal NAVA settings according to the patient's ventilatory needs and/or acceptable level of work of breathing is a key issue. In this report, based on an investigator-initiated round table, we review the most recent literature on this topic and discuss the theoretical advantages and disadvantages of NAVA compared with other modes, as well as the risks and limitations of NAVA.

  14. Neurally adjusted ventilatory assist (NAVA) in preterm newborn infants with respiratory distress syndrome-a randomized controlled trial.

    Science.gov (United States)

    Kallio, Merja; Koskela, Ulla; Peltoniemi, Outi; Kontiokari, Tero; Pokka, Tytti; Suo-Palosaari, Maria; Saarela, Timo

    2016-09-01

    Neurally adjusted ventilatory assist (NAVA) improves patient-ventilator synchrony during invasive ventilation and leads to lower peak inspiratory pressures (PIP) and oxygen requirements. The aim of this trial was to compare NAVA with current standard ventilation in preterm infants in terms of the duration of invasive ventilation. Sixty infants born between 28 + 0 and 36 + 6 weeks of gestation and requiring invasive ventilation due to neonatal respiratory distress syndrome (RDS) were randomized to conventional ventilation or NAVA. The median durations of invasive ventilation were 34.7 h (quartiles 22.8-67.9 h) and 25.8 h (15.6-52.1 h) in the NAVA and control groups, respectively (P = 0.21). Lower PIPs were achieved with NAVA (P = 0.02), and the rapid reduction in PIP after changing the ventilation mode to NAVA made following the predetermined extubation criteria challenging. The other ventilatory and vital parameters did not differ between the groups. Frequent apneas and persistent pulmonary hypertension were conditions that limited the use of NAVA in 17 % of the patients randomized to the NAVA group. Similar cumulative doses of opiates were used in both groups (P = 0.71). NAVA was a safe and feasible ventilation mode for the majority of preterm infants suffering from RDS, but the traditional extubation criteria were not clinically applicable during NAVA. • NAVA improves patient-ventilator synchrony during invasive ventilation. • Lower airway pressures and oxygen requirements are achieved with NAVA during invasive ventilation in preterm infants by comparison with conventional ventilation. What is new: • Infants suffering from PPHN did not tolerate NAVA in the acute phase of their illness. • The traditional extubation criteria relying on inspiratory pressures and spontaneous breathing efforts were not clinically applicable during NAVA.

  15. Neurally adjusted ventilatory assist (NAVA) mode as an adjunct diagnostic tool in congenital central hypoventilation syndrome

    International Nuclear Information System (INIS)

    Rahmani, A.; Rehman, N.U.; Chedid, F.

    2013-01-01

    A full term female newborn was admitted to the neonatal intensive care unit (NICU) for continuous observation of apnea. Infant was noted to have apnea while asleep requiring intubation and mechanical ventilation. A video EEG was performed which demonstrated normal awake background without any seizure activity. Neurally adjusted ventilatory assist (NAVA) demonstrated the absence of electrical activity of the diaphragm (Edi) when the patient was in quiet phase of sleep. This finding on NAVA monitor raised the suspicion of central hypoventilation syndrome (CCHS) which was confirmed by genetic identification of the PHOX2B mutation. (author)

  16. Neurally adjusted ventilatory assist (NAVA) mode as an adjunct diagnostic tool in congenital central hypoventilation syndrome.

    Science.gov (United States)

    Rahmani, Aiman; Ur Rehman, Naveed; Chedid, Fares

    2013-02-01

    A full term female newborn was admitted to the neonatal intensive care unit (NICU) for continuous observation of apnea. Infant was noted to have apnea while asleep requiring intubation and mechanical ventilation. A video EEG was performed which demonstrated normal awake background without any seizure activity. Neurally adjusted ventilatory assist (NAVA) demonstrated the absence of electrical activity of the diaphragm (Edi) when the patient was in quiet phase of sleep. This finding on NAVA monitor raised the suspicion of central hypoventilation syndrome (CCHS) which was confirmed by genetic identification of the PHOX2B mutation.

  17. Radon mitigation with mechanical supply and exhaust ventilation adjusted by a pressure control unit

    International Nuclear Information System (INIS)

    Kokotti, H.; Keskikuru, T.; Kalliokoski, P.

    1993-01-01

    Effective ventilation and positive or low negative pressure indoors are suggested to low indoor radon levels. The aim of this study is to develop and to test an equipment, which makes it possible to achieve simultaneously effective ventilation and minimum outdoor-pressure difference. The unit includes mechanical supply and exhaust air fans, a exchanger and a pressure control unit in direct digital control (DDC), which adjusts continuously air exchange based on the pressure difference transmitter information. (orig.). (8 refs., 6 figs.)

  18. Case report: Non-invasive neurally adjusted ventilatory assist in a newborn with unilateral diaphragmatic paralysis.

    Science.gov (United States)

    Roosens, Sander; Derriks, Frank; Cools, Filip

    2016-11-01

    Diaphragmatic paralysis is a rare cause of respiratory distress in the newborn. In this paper, a patient with unilateral phrenic nerve injury after traumatic delivery is presented. The child inadequately responded to standard respiratory supportive measures. Non-invasive neurally adjusted ventilatory assist (NIV-NAVA®), providing an optimally synchronized respiratory support proportional to the effort of the patient, resulted in prompt clinical and biological improvement of the patient's respiratory condition. NAVA is a relatively new mode of ventilation in neonatal care. In this case of unilateral diaphragmatic paralysis, it provided an alternative strategy of non-invasive respiratory support avoiding prolonged mechanical ventilation. Pediatr Pulmonol. 2016;51:E37-E39. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Svendsen, Sv Aa Højgaard

    1999-01-01

    The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger.......The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger....

  20. Absence of inspiratory laryngeal constrictor muscle activity during nasal neurally adjusted ventilatory assist in newborn lambs.

    Science.gov (United States)

    Hadj-Ahmed, Mohamed Amine; Samson, Nathalie; Bussières, Marie; Beck, Jennifer; Praud, Jean-Paul

    2012-07-01

    In nonsedated newborn lambs, nasal pressure support ventilation (nPSV) can lead to an active glottal closure in early inspiration, which can limit lung ventilation and divert air into the digestive system, with potentially deleterious consequences. During volume control ventilation (nVC), glottal closure is delayed to the end of inspiration, suggesting that it is reflexly linked to the maximum value of inspiratory pressure. Accordingly, the aim of the present study was to test whether inspiratory glottal closure develops at the end of inspiration during nasal neurally adjusted ventilatory assist (nNAVA), an increasingly used ventilatory mode where maximal pressure is also reached at the end of inspiration. Polysomnographic recordings were performed in eight nonsedated, chronically instrumented lambs, which were ventilated with progressively increasing levels of nPSV and nNAVA in random order. States of alertness, diaphragm, and glottal muscle electrical activity, tracheal pressure, Spo(2), tracheal Pet(CO(2)), and respiratory inductive plethysmography were continuously recorded. Although phasic inspiratory glottal constrictor electrical activity appeared during nPSV in 5 of 8 lambs, it was never observed at any nNAVA level in any lamb, even at maximal achievable nNAVA levels. In addition, a decrease in Pco(2) was neither necessary nor sufficient for the development of inspiratory glottal constrictor activity. In conclusion, nNAVA does not induce active inspiratory glottal closure, in contrast to nPSV and nVC. We hypothesize that this absence of inspiratory activity is related to the more physiological airway pressurization during nNAVA, which tightly follows diaphragm electrical activity throughout inspiration.

  1. Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure.

    Science.gov (United States)

    Schmidt, Matthieu; Demoule, Alexandre; Cracco, Christophe; Gharbi, Alexandre; Fiamma, Marie-Noëlle; Straus, Christian; Duguet, Alexandre; Gottfried, Stewart B; Similowski, Thomas

    2010-03-01

    Neurally adjusted ventilatory assist (NAVA) is a partial ventilatory support mode where positive pressure is provided in relation to diaphragmatic electrical activity (EAdi). Central inspiratory activity is normally not monotonous, but it demonstrates short-term variability and complexity. The authors reasoned that NAVA should produce a more "natural" or variable breathing pattern than other modes. This study compared respiratory variability and complexity during pressure support ventilation (PSV) and NAVA. Flow and EAdi were recorded during routine PSV (tidal volume approximately 6-8 ml/kg) and four NAVA levels (1-4 cm H2O/microVEAdi) in 12 intubated patients. Breath-by-breath variability of flow and EAdi-related variables was quantified by the coefficient of variation (CV) and autocorrelation analysis. Complexity of flow and EAdi was described using noise titration, largest Lyapunov exponent, Kolmogorov-Sinai entropy, and three-dimensional phase portraits. Switching from PSV to NAVA increased the CV and decreased the autocorrelation for most flow-related variables in a dose-dependent manner (P Kolmogorov-Sinai entropy for flow were greater during NAVA than PSV and increased with NAVA level (P Kolmogorov-Sinai entropy for EAdi were not influenced by ventilator mode. Compared with PSV, NAVA increases the breathing pattern variability and complexity of flow, whereas the complexity of EAdi is unchanged. Whether this improves clinical outcomes remains to be determined.

  2. Technological development in mechanical ventilation.

    Science.gov (United States)

    Conti, Giorgio; Costa, Roberta

    2010-02-01

    Innovative modes of mechanical ventilation, mainly based on complex closed loop technologies, have been recently developed and are now available for clinical use. Proportional assist ventilation with load-adjustable gain factors and neurally adjusted ventilatory assist are innovative modes of mechanical ventilation delivering a level of assistance proportional to the patient's effort, thus improving patient-ventilator synchrony and potentially representing a real clinical advantage. Adaptive support ventilation is a ventilatory mode delivering assisted (pressure support ventilation-like) or controlled breathing cycles (pressure-controlled-like), related to a minute ventilation target set by the clinician and on automated measurements of the patient's respiratory mechanics. Noisy pressure support ventilation, finally, is a recently described experimental evolution of pressure support, with some improvement potentials, but no clinical application till now. The recently reported results with proportional assist ventilation with load-adjustable gain factors, neurally adjusted ventilatory assist, and adaptive support ventilation are, till now, mainly based on preliminary physiologic and clinical studies; although they seem to be promising, suggesting that closed loop-based modes could represent a real innovation in the field of mechanical ventilation, further clinical evaluation is needed before their widespread diffusion into clinical practice.

  3. Role of ventilation scintigraphy in diagnosis of acute pulmonary embolism: an evaluation using artificial neural networks

    International Nuclear Information System (INIS)

    Evander, Eva; Holst, Holger; Jaerund, Andreas; Wollmer, Per; Edenbrandt, Lars; Ohlsson, Mattias; Aastroem, Karl

    2003-01-01

    The purpose of this study was to assess the value of the ventilation study in the diagnosis of acute pulmonary embolism using a new automated method. Either perfusion scintigrams alone or two different combinations of ventilation/perfusion scintigrams were used as the only source of information regarding pulmonary embolism. A completely automated method based on computerised image processing and artificial neural networks was used for the interpretation. Three artificial neural networks were trained for the diagnosis of pulmonary embolism. Each network was trained with 18 automatically obtained features. Three different sets of features originating from three sets of scintigrams were used. One network was trained using features obtained from each set of perfusion scintigrams, including six projections. The second network was trained using features from each set of (joint) ventilation and perfusion studies in six projections. A third network was trained using features from the perfusion study in six projections combined with a single ventilation image from the posterior view. A total of 1,087 scintigrams from patients with suspected pulmonary embolism were used for network training. The test group consisted of 102 patients who had undergone both scintigraphy and pulmonary angiography. Performances in the test group were measured as area under the receiver operation characteristic curve. The performance of the neural network in interpreting perfusion scintigrams alone was 0.79 (95% confidence limits 0.71-0.86). When one ventilation image (posterior view) was added to the perfusion study, the performance was 0.84 (0.77-0.90). This increase was statistically significant (P=0.022). The performance increased to 0.87 (0.81-0.93) when all perfusion and ventilation images were used, and the increase in performance from 0.79 to 0.87 was also statistically significant (P=0.016). The automated method presented here for the interpretation of lung scintigrams shows a significant

  4. Newer nonconventional modes of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Preet Mohinder Singh

    2014-01-01

    Full Text Available The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient′s demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support, Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP, neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief.

  5. Variations in Case-Mix-Adjusted Duration of Mechanical Ventilation Among ICUs.

    Science.gov (United States)

    Kramer, Andrew A; Gershengorn, Hayley B; Wunsch, Hannah; Zimmerman, Jack E

    2016-06-01

    To develop a model that predicts the duration of mechanical ventilation and then to use this model to compare observed versus expected duration of mechanical ventilation across ICUs. Retrospective cohort analysis. Eighty-six eligible ICUs at 48 U.S. hospitals. ICU patients receiving mechanical ventilation on day 1 (n = 56,336) admitted from January 2013 to September 2014. None. We developed and validated a multivariable logistic regression model for predicting duration of mechanical ventilation using ICU day 1 patient characteristics. Mean observed minus expected duration of mechanical ventilation was then obtained across patients and for each ICU. The accuracy of the model was assessed using R. We defined better performing units as ICUs that had an observed minus expected duration of mechanical ventilation less than -0.5 days and a p value of less than 0.01; and poorer performing units as ICUs with an observed minus expected duration of mechanical ventilation greater than +0.5 days and a p value of less than 0.01. The factors accounting for the majority of the model's explanatory power were diagnosis (71%) and physiologic abnormalities (24%). For individual patients, the difference between observed and mean predicted duration of mechanical ventilation was 3.3 hours (95% CI, 2.8-3.9) with R equal to 21.6%. The mean observed minus expected duration of mechanical ventilation across ICUs was 3.8 hours (95% CI, 2.1-5.5), with R equal to 69.9%. Among the 86 ICUs, 66 (76.7%) had an observed mean mechanical ventilation duration that was within 0.5 days of predicted. Five ICUs had significantly (p mechanical ventilation, > 0.5 d) and 14 ICUs significantly (p mechanical ventilation, mechanical ventilation can accurately assess and compare duration of mechanical ventilation across ICUs, but cannot accurately predict an individual patient's mechanical ventilation duration. There are substantial differences in duration of mechanical ventilation across ICU and their

  6. A physiologic comparison of proportional assist ventilation with load-adjustable gain factors (PAV+) versus pressure support ventilation (PSV).

    Science.gov (United States)

    Costa, R; Spinazzola, G; Cipriani, F; Ferrone, G; Festa, O; Arcangeli, A; Antonelli, M; Proietti, R; Conti, G

    2011-09-01

    To compare patient-ventilator interaction during PSV and PAV+ in patients that are difficult to wean. This was a physiologic study involving 11 patients. During three consecutive trials (PSV first trial--PSV1, followed by PAV+, followed by a second PSV trial--PSV2, with the same settings as PSV1) we evaluated mechanical and patient respiratory pattern; inspiratory effort from excursion Pdi (swing(Pdi)), and pressure-time products of the transdiaphragmatic (PTPdi) pressures. Inspiratory (delay(trinsp)) and expiratory (delay(trexp)) trigger delays, time of synchrony (time(syn)), and asynchrony index (AI) were assessed. Compared to PAV+, during PSV trials, the mechanical inspiratory time (Ti(flow)) was significantly longer than patient inspiratory time (Ti(pat)) (p PAV+, significant comparing PAV+ and PSV2 (p PAV+ significantly reduced delay(trexp) (p PAV+ (p PAV+ than during PSV (p PAV+. PAV+ improves patient-ventilator interaction, significantly reducing the incidence of end-expiratory asynchrony and increasing the time of synchrony.

  7. Automatic adjustment of display window (gray-level condition) for MR images using neural networks

    International Nuclear Information System (INIS)

    Ohhashi, Akinami; Nambu, Kyojiro.

    1992-01-01

    We have developed a system to automatically adjust the display window width and level (WWL) for MR images using neural networks. There were three main points in the development of our system as follows: 1) We defined an index for the clarity of a displayed image, and called 'EW'. EW is a quantitative measure of the clarity of an image displayed in a certain WWL, and can be derived from the difference between gray-level with the WWL adjusted by a human expert and with a certain WWL. 2) We extracted a group of six features from a gray-level histogram of a displayed image. We designed two neural networks which are able to learn the relationship between these features and the desired output (teaching signal), 'EQ', which is normalized to 0 to 1.0 from EW. Two neural networks were used to share the patterns to be learned; one learns a variety of patterns with less accuracy, and the other learns similar patterns with accuracy. Learning was performed using a back-propagation method. As a result, the neural networks after learning are able to provide a quantitative measure, 'Q', of the clarity of images displayed in the designated WWL. 3) Using the 'Hill climbing' method, we have been able to determine the best possible WWL for a displaying image. We have tested this technique for MR brain images. The results show that this system can adjust WWL comparable to that adjusted by a human expert for the majority of test images. The neural network is effective for the automatic adjustment of the display window for MR images. We are now studying the application of this method to MR images of another regions. (author)

  8. Could LC-NE-Dependent Adjustment of Neural Gain Drive Functional Brain Network Reorganization?

    Directory of Open Access Journals (Sweden)

    Carole Guedj

    2017-01-01

    Full Text Available The locus coeruleus-norepinephrine (LC-NE system is thought to act at synaptic, cellular, microcircuit, and network levels to facilitate cognitive functions through at least two different processes, not mutually exclusive. Accordingly, as a reset signal, the LC-NE system could trigger brain network reorganizations in response to salient information in the environment and/or adjust the neural gain within its target regions to optimize behavioral responses. Here, we provide evidence of the co-occurrence of these two mechanisms at the whole-brain level, in resting-state conditions following a pharmacological stimulation of the LC-NE system. We propose that these two mechanisms are interdependent such that the LC-NE-dependent adjustment of the neural gain inferred from the clustering coefficient could drive functional brain network reorganizations through coherence in the gamma rhythm. Via the temporal dynamic of gamma-range band-limited power, the release of NE could adjust the neural gain, promoting interactions only within the neuronal populations whose amplitude envelopes are correlated, thus making it possible to reorganize neuronal ensembles, functional networks, and ultimately, behavioral responses. Thus, our proposal offers a unified framework integrating the putative influence of the LC-NE system on both local- and long-range adjustments of brain dynamics underlying behavioral flexibility.

  9. Clinical assessment of auto-positive end-expiratory pressure by diaphragmatic electrical activity during pressure support and neurally adjusted ventilatory assist.

    Science.gov (United States)

    Bellani, Giacomo; Coppadoro, Andrea; Patroniti, Nicolò; Turella, Marta; Arrigoni Marocco, Stefano; Grasselli, Giacomo; Mauri, Tommaso; Pesenti, Antonio

    2014-09-01

    Auto-positive end-expiratory pressure (auto-PEEP) may substantially increase the inspiratory effort during assisted mechanical ventilation. Purpose of this study was to assess whether the electrical activity of the diaphragm (EAdi) signal can be reliably used to estimate auto-PEEP in patients undergoing pressure support ventilation and neurally adjusted ventilatory assist (NAVA) and whether NAVA was beneficial in comparison with pressure support ventilation in patients affected by auto-PEEP. In 10 patients with a clinical suspicion of auto-PEEP, the authors simultaneously recorded EAdi, airway, esophageal pressure, and flow during pressure support and NAVA, whereas external PEEP was increased from 2 to 14 cm H2O. Tracings were analyzed to measure apparent "dynamic" auto-PEEP (decrease in esophageal pressure to generate inspiratory flow), auto-EAdi (EAdi value at the onset of inspiratory flow), and IDEAdi (inspiratory delay between the onset of EAdi and the inspiratory flow). The pressure necessary to overcome auto-PEEP, auto-EAdi, and IDEAdi was significantly lower in NAVA as compared with pressure support ventilation, decreased with increase in external PEEP, although the effect of external PEEP was less pronounced in NAVA. Both auto-EAdi and IDEAdi were tightly correlated with auto-PEEP (r = 0.94 and r = 0.75, respectively). In the presence of auto-PEEP at lower external PEEP levels, NAVA was characterized by a characteristic shape of the airway pressure. In patients with auto-PEEP, NAVA, compared with pressure support ventilation, led to a decrease in the pressure necessary to overcome auto-PEEP, which could be reliably monitored by the electrical activity of the diaphragm before inspiratory flow onset (auto-EAdi).

  10. Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control

    Science.gov (United States)

    Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming

    2018-01-01

    In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.

  11. Time to adjust to changes in ventilation settings varies significantly between different T-piece resuscitators, self-inflating bags, and manometer equipped self-inflating bags.

    Science.gov (United States)

    Hartung, Julia C; Dold, Simone K; Thio, Marta; tePas, Arjan; Schmalisch, Gerd; Roehr, Charles Christoph

    2014-06-01

    Resuscitation guidelines give no preference over use of self-inflating bags (SIBs) or T-piece resuscitators (TPR) for manual neonatal ventilation. We speculated that devices would differ significantly regarding time required to adjust to changed ventilation settings. This was a laboratory study. Time to adjust from baseline peak inflation pressure (PIP) (20 cmH2O) to target PIP (25 and 40 cmH2O), ability to adhere to predefined ventilation settings (PIP, PEEP, and inflation rate [IR]), and the variability within and between operators were assessed for a SIB without manometer, SIB with manometer (SIBM), and two TPRs. Adjustment time was significantly longer with TPRs, compared with SIB and SIBM. The SIBM and TPRs were manometer attached. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Neural Systems Underlying Perceptual Adjustment to Non-Standard Speech Tokens.

    Science.gov (United States)

    Myers, Emily B; Mesite, Laura M

    2014-10-01

    It has long been noted that listeners use top-down information from context to guide perception of speech sounds. A recent line of work employing a phenomenon termed 'perceptual learning for speech' shows that listeners use top-down information to not only resolve the identity of perceptually ambiguous speech sounds, but also to adjust perceptual boundaries in subsequent processing of speech from the same talker. Even so, the neural mechanisms that underlie this process are not well understood. Of particular interest is whether this type of adjustment comes about because of a retuning of sensitivities to phonetic category structure early in the neural processing stream or whether the boundary shift results from decision-related or attentional mechanisms further downstream. In the current study, neural activation was measured using fMRI as participants categorized speech sounds that were perceptually shifted as a result of exposure to these sounds in lexically-unambiguous contexts. Sensitivity to lexically-mediated shifts in phonetic categorization emerged in right hemisphere frontal and middle temporal regions, suggesting that the perceptual learning for speech phenomenon relies on the adjustment of perceptual criteria downstream from primary auditory cortex. By the end of the session, this same sensitivity was seen in left superior temporal areas, which suggests that a rapidly-adapting system may be accompanied by more slowly evolving shifts in regions of the brain related to phonetic processing.

  13. Combined use of Neurally Adjusted Ventilatory Assist (NAVA) and Vertical Expandable Prostethic Titanium Rib (VEPTR) in a patient with Spondylocostal dysostosis and associated bronchomalacia.

    Science.gov (United States)

    Pons-Odena, Martí; Verges, Alba; Arza, Natalia; Cambra, Francisco José

    2017-02-14

    Jarcho-Levin syndrome is a rare disorder characterised by defects in vertebral and costal segmentation of varying severity. Respiratory complications are the main cause of death or severe comorbidity due to a restrictive rib cage. A 3 months old infant with Spondylocostal dysostosis and associated bronchomalacia experiencing severe asynchrony during the weaning process is reported. The Neurally Adjusted Ventilatory Assist (NAVA) mode was used to improve adaptation to mechanical ventilation after Vertical Expandable Prosthetic Titanium Ribs (VEPTRs) were implanted. The synchrony achieved with the NAVA mode allowed a decrease of the sedoanalgesia he received. A follow-up CT scan showed a reduction in the volume of the posterobasal atelectasis. The evolution of this patient suggests that the combined use of VEPTR for thoracic expansion and ventilation using NAVA can favour the global improvement. This mode could be an option to consider in selected patients with difficult weaning from mechanical ventilation in paediatric intensive care units. 2017 BMJ Publishing Group Ltd.

  14. Data on respiratory variables in critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+

    Directory of Open Access Journals (Sweden)

    Dimitris Georgopoulos

    2016-09-01

    Full Text Available The data show respiratory variables in 108 critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+ after at least 36 h on passive mechanical ventilation. PAV+ was continued for 48 h until the patients met pre-defined criteria either for switching to controlled modes or for breathing without ventilator assistance. Data during passive mechanical ventilation and during PAV+ are reported. Data are acquired from the whole population, as well as from patients with and without acute respiratory distress syndrome. The reported variables are tidal volume, driving pressure (ΔP, the difference between static end-inspiratory plateau pressure and positive end-expiratory airway pressure, respiratory system compliance and resistance, and arterial blood gasses. The data are supplemental to our original research article, which described individual ΔP in these patients and examined how it related to ΔP when the same patients were ventilated with passive mechanical ventilation using the currently accepted lung-protective strategy “Driving pressure during assisted mechanical ventilation. Is it controlled by patient brain?” [1].

  15. Data on respiratory variables in critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+).

    Science.gov (United States)

    Georgopoulos, Dimitris; Xirouchaki, Nectaria; Tzanakis, Nikolaos; Younes, Magdy

    2016-09-01

    The data show respiratory variables in 108 critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+) after at least 36 h on passive mechanical ventilation. PAV+ was continued for 48 h until the patients met pre-defined criteria either for switching to controlled modes or for breathing without ventilator assistance. Data during passive mechanical ventilation and during PAV+ are reported. Data are acquired from the whole population, as well as from patients with and without acute respiratory distress syndrome. The reported variables are tidal volume, driving pressure (ΔP, the difference between static end-inspiratory plateau pressure and positive end-expiratory airway pressure), respiratory system compliance and resistance, and arterial blood gasses. The data are supplemental to our original research article, which described individual ΔP in these patients and examined how it related to ΔP when the same patients were ventilated with passive mechanical ventilation using the currently accepted lung-protective strategy "Driving pressure during assisted mechanical ventilation. Is it controlled by patient brain?" [1].

  16. Cost per QALY (quality-adjusted life year and lifetime cost of prolonged mechanical ventilation in Taiwan.

    Directory of Open Access Journals (Sweden)

    Mei-Chuan Hung

    Full Text Available INTRODUCTION: Patients who require prolonged mechanical ventilation (PMV are increasing and producing financial burdens worldwide. This study determines the cost per QALY (quality-adjusted life year, out-of-pocket expenses, and lifetime costs for PMV patients stratified by underlying diseases and cognition levels. METHODS: A nationwide sample of 50,481 patients with continual mechanical ventilation for more than 21 days was collected during 1997-2007. After stratifying the patients according to specific diagnoses, a latent class analysis (LCA was performed to categorise PMV patients with multiple co-morbidities into several homogeneous groups. The survival functions were estimated for individual groups using the Kaplan-Meier method and extrapolated to 300 months through a semi-parametric method. The survival functions were adjusted using an EQ-5D utility value derived from a convenience sample of 142 PMV patients to estimate quality-adjusted life expectancies (QALE. Another convenience sample of 165 patients was used to estimate the out-of-pocket expenses. The lifetime expenditures paid by the single-payer National Health Insurance (NHI system and patients' families were estimated by multiplying average monthly expenditures by the survival probabilities and summing the values over lifetime. RESULTS: PMV therapy costs more than 100,000 U.S. dollars (USD per QALY for all patients with poor cognition. For patients with partial cognition, PMV therapy costs less than 56,000 USD per QALY for those with liver cirrhosis, intracranial or spinal cord injuries, and 57,000-69,000 USD for patients with multiple co-morbidities under age of 65. The average lifetime cost of PMV was usually below 56,000 USD. The out-of-pocket expenses were often more than one-third of the total cost of treatment. CONCLUSIONS: PMV treatment for patients with poor cognition would cost more than 5 times Taiwan's GDP (gross domestic products, or less cost-effective. The out

  17. Cost per QALY (Quality-Adjusted Life Year) and Lifetime Cost of Prolonged Mechanical Ventilation in Taiwan

    Science.gov (United States)

    Hung, Mei-Chuan; Lu, Hsin-Ming; Chen, Likwang; Lin, Ming-Shian; Chen, Cheng-Ren; Yu, Chong-Jen; Wang, Jung-Der

    2012-01-01

    Introduction Patients who require prolonged mechanical ventilation (PMV) are increasing and producing financial burdens worldwide. This study determines the cost per QALY (quality-adjusted life year), out-of-pocket expenses, and lifetime costs for PMV patients stratified by underlying diseases and cognition levels. Methods A nationwide sample of 50,481 patients with continual mechanical ventilation for more than 21 days was collected during 1997–2007. After stratifying the patients according to specific diagnoses, a latent class analysis (LCA) was performed to categorise PMV patients with multiple co-morbidities into several homogeneous groups. The survival functions were estimated for individual groups using the Kaplan-Meier method and extrapolated to 300 months through a semi-parametric method. The survival functions were adjusted using an EQ-5D utility value derived from a convenience sample of 142 PMV patients to estimate quality-adjusted life expectancies (QALE). Another convenience sample of 165 patients was used to estimate the out-of-pocket expenses. The lifetime expenditures paid by the single-payer National Health Insurance (NHI) system and patients' families were estimated by multiplying average monthly expenditures by the survival probabilities and summing the values over lifetime. Results PMV therapy costs more than 100,000 U.S. dollars (USD) per QALY for all patients with poor cognition. For patients with partial cognition, PMV therapy costs less than 56,000 USD per QALY for those with liver cirrhosis, intracranial or spinal cord injuries, and 57,000–69,000 USD for patients with multiple co-morbidities under age of 65. The average lifetime cost of PMV was usually below 56,000 USD. The out-of-pocket expenses were often more than one-third of the total cost of treatment. Conclusions PMV treatment for patients with poor cognition would cost more than 5 times Taiwan's GDP (gross domestic products), or less cost-effective. The out-of-pocket expenses

  18. Automated interpretation of ventilation-perfusion lung scintigrams for the diagnosis of pulmonary embolism using artificial neural networks

    International Nuclear Information System (INIS)

    Holst, H.; Jaerund, A.; Traegil, K.; Evander, E.; Edenbrandt, L.; Aastroem, K.; Heyden, A.; Kahl, F.; Sparr, G.; Palmer, J.

    2000-01-01

    The purpose of this study was to develop a completely automated method for the interpretation of ventilation-perfusion (V-P) lung scintigrams used in the diagnosis of pulmonary embolism. An artificial neural network was trained for the diagnosis of pulmonary embolism using 18 automatically obtained features from each set of V-P scintigrams. The techniques used to process the images included their alignment to templates, the construction of quotient images based on the ventilation and perfusion images, and the calculation of measures describing V-P mismatches in the quotient images. The templates represented lungs of normal size and shape without any pathological changes. Images that could not be properly aligned to the templates were detected and excluded automatically. After exclusion of those V-P scintigrams not properly aligned to the templates, 478 V-P scintigrams remained in a training group of consecutive patients with suspected pulmonary embolism, and a further 87 V-P scintigrams formed a separate test group comprising patients who had undergone pulmonary angiography. The performance of the neural network, measured as the area under the receiver operating characteristic curve, was 0.87 (95% confidence limits 0.82-0.92) in the training group and 0.79 (0.69-0.88) in the test group. It is concluded that a completely automated method can be used for the interpretation of V-P scintigrams. The performance of this method is similar to others previously presented, whereby features were extracted manually. (orig.)

  19. Efficient Training of Supervised Spiking Neural Network via Accurate Synaptic-Efficiency Adjustment Method.

    Science.gov (United States)

    Xie, Xiurui; Qu, Hong; Yi, Zhang; Kurths, Jurgen

    2017-06-01

    The spiking neural network (SNN) is the third generation of neural networks and performs remarkably well in cognitive tasks, such as pattern recognition. The temporal neural encode mechanism found in biological hippocampus enables SNN to possess more powerful computation capability than networks with other encoding schemes. However, this temporal encoding approach requires neurons to process information serially on time, which reduces learning efficiency significantly. To keep the powerful computation capability of the temporal encoding mechanism and to overcome its low efficiency in the training of SNNs, a new training algorithm, the accurate synaptic-efficiency adjustment method is proposed in this paper. Inspired by the selective attention mechanism of the primate visual system, our algorithm selects only the target spike time as attention areas, and ignores voltage states of the untarget ones, resulting in a significant reduction of training time. Besides, our algorithm employs a cost function based on the voltage difference between the potential of the output neuron and the firing threshold of the SNN, instead of the traditional precise firing time distance. A normalized spike-timing-dependent-plasticity learning window is applied to assigning this error to different synapses for instructing their training. Comprehensive simulations are conducted to investigate the learning properties of our algorithm, with input neurons emitting both single spike and multiple spikes. Simulation results indicate that our algorithm possesses higher learning performance than the existing other methods and achieves the state-of-the-art efficiency in the training of SNN.

  20. Advanced closed loops during mechanical ventilation (PAV, NAVA, ASV, SmartCare).

    Science.gov (United States)

    Lellouche, François; Brochard, Laurent

    2009-03-01

    New modes of mechanical ventilation with advanced closed loops are now available, and in the future these could assume a greater role in supporting critically ill patients in intensive care units (ICUs) for several reasons. Two modes of ventilation--proportional assist ventilation and neurally adjusted ventilatory assist--deliver assisted ventilation proportional to the patient's effort, improving patient-ventilator synchrony. Also, a few systems that automate the medical reasoning with advanced closed-loops, such as SmartCare and adaptive support ventilation, have the potential to improve knowledge transfer by continuously implementing automated protocols. Moreover, they may improve patient-ventilator interactions and outcomes, and provide a partial solution to the forecast clinician shortages by reducing ICU-related costs, time spent on mechanical ventilation, and staff workload. Preliminary studies are promising, and initial systems are currently being refined with increasing clinical experience. A new era of mechanical ventilation should emerge with these systems.

  1. Comparison of artificial neural network (ANN) and partial least squares (PLS) regression models for predicting respiratory ventilation: an exploratory study.

    Science.gov (United States)

    Lin, Ming-I Brandon; Groves, William A; Freivalds, Andris; Lee, Eun Gyung; Harper, Martin

    2012-05-01

    The objective of this study was to assess the potential for using artificial neural networks (ANN) to predict inspired minute ventilation (V(I)) during exercise activities. Six physiological/kinematic measurements obtained from a portable ambulatory monitoring system, along with individual's anthropometric and demographic characteristics, were employed as input variables to develop and optimize the ANN configuration with respect to reference values simultaneously measured using a pneumotachograph (PT). The generalization ability of the resulting two-hidden-layer ANN model was compared with a linear predictive model developed through partial least squares (PLS) regression, as well as other V(I) predictive models proposed in the literature. Using an independent dataset recorded from nine 80-min step tests, the results showed that the ANN-estimated V(I) was highly correlated (R(2) = 0.88) with V(I) measured by the PT, with a mean difference of approximately 0.9%. In contrast, the PLS and other regression-based models resulted in larger average errors ranging from 7 to 34%. In addition, the ANN model yielded estimates of cumulative total volume that were on average within 1% of reference PT measurements. Compared with established statistical methods, the proposed ANN model demonstrates the potential to provide improved prediction of respiratory ventilation in workplace applications for which the use of traditional laboratory-based instruments is not feasible. Further research should be conducted to investigate the performance of ANNs for different types of physical activity in larger and more varied worker populations.

  2. Adjustment and Prediction of Machine Factors Based on Neural Artificial Intelligence

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Amin, E.S.; Ibrahim, M.S.

    2009-01-01

    Since the discovery of x-ray, it is use in examination has become an integral part of medical diagnostic radiology. The use of X-ray is harmful to human beings but recent technological advances and regulatory constraints have made the medical Xray much safer than they were at the beginning of the 20th century. However, the potential benefits of the engineered safety features can not be fully realized unless the operators are aware of these safety features. The aim of this work is to adjust and predict x-ray machine factors (current and voltage) using neural artificial network in order to obtain effective dose within the range of dose limitation system and assure radiological safety.

  3. Adjustment and Prediction of X-Ray Machine Factors Based on Neural Artificial Inculcating

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Amin, E.S.; Ibrahim, M.S.

    2009-01-01

    Since the discovery of X-rays, their use in examination has become an integral part of medical diagnostic radiology. The use of X-rays is harmful to human beings but recent technological advances and regulatory constraints have made the medical X-rays much safer than they were at the beginning of the 20th century. However, the potential benefits of the engineered safety features can not be fully realized unless the operators are aware of these safety features. The aim of this work is to adjust and predict X-ray machine factors (current and voltage) using neural artificial network in order to obtain effective dose within the range of dose limitation system and assure radiological safety.

  4. IA method for measuring the amount of hoar frost formation in the recuperation channels of ventilation systems using the adjustable mathematical model of this process

    Directory of Open Access Journals (Sweden)

    Shilin Aleksandr

    2017-01-01

    Full Text Available The paper presents a method for measuring the amount of hoar frost formation in the recuperation channels of ventilation systems using the adjustable mathematical model of the hoar frost process. The principle is based on the fact that the contour of the adjustment of the hoar frost model is included in the measurement in accordance with the measured pressure drop, which is proportional to the amount of hoar frost. Unlike the known measurement methods, it is proposed to use the state variables of the mathematical model as the measured value. These state variables are not subject to non-deterministic interferences and random influences. The paper presents simulation results confirming the adequacy of the dynamic model. In conclusion, an example of the use of a recuperation channel in the defrost management system is given.

  5. Patient-Ventilator Dyssynchrony

    Directory of Open Access Journals (Sweden)

    Elvira-Markela Antonogiannaki

    2017-11-01

    Full Text Available In mechanically ventilated patients, assisted mechanical ventilation (MV is employed early, following the acute phase of critical illness, in order to eliminate the detrimental effects of controlled MV, most notably the development of ventilator-induced diaphragmatic dysfunction. Nevertheless, the benefits of assisted MV are often counteracted by the development of patient-ventilator dyssynchrony. Patient-ventilator dyssynchrony occurs when either the initiation and/or termination of mechanical breath is not in time agreement with the initiation and termination of neural inspiration, respectively, or if the magnitude of mechanical assist does not respond to the patient’s respiratory demand. As patient-ventilator dyssynchrony has been associated with several adverse effects and can adversely influence patient outcome, every effort should be made to recognize and correct this occurrence at bedside. To detect patient-ventilator dyssynchronies, the physician should assess patient comfort and carefully inspect the pressure- and flow-time waveforms, available on the ventilator screen of all modern ventilators. Modern ventilators offer several modifiable settings to improve patient-ventilator interaction. New proportional modes of ventilation are also very helpful in improving patient-ventilator interaction.

  6. A neural controller for online laser power adjustment during the heat therapy process in the presence of nanoparticles.

    Science.gov (United States)

    Razavi, S Ehsan

    2017-06-01

    The present research evaluated the efficiency of a control approach to control the temperature of a breast tumor mass in the presence of nanoparticles exposed to laser radiation. However, if the radiation is carried out in open loop manner it may result in excessive temperature rise healthy cells that exist in the vicinity of tumor's cells. This may lead to the death of healthy cells. So, using closed loop control methods is necessary to guarantee the preservation of healthy cells during the period of radiation. Therefore, in this study, an artificial neural network was trained as a controller. In other words, the trained neural network adjusted the laser power over a period of time in such a way that the temperature in the center of the tumor reached the desired level with an appropriate temporal behavior. The difference between the real temperature of the tumor and the desired temperature of it is the controller input, while the controller output determined the amount of laser power. The simulation studies were carried out using an appropriate physiological model in the presence of nanoparticles. First, Schrödinger equations were solved followed by the effective mass equation. Afterward the optimum number of nanoparticles to be used in the IR field was calculated. Next, the important electro-optical features related to the nanostructure, such as the absorption continuum and reflection continuum had been calculated. The neural network proposed controller was then evaluated through other simulation studies in the tumor mass model. The results showed a promising performance by the trained artificial neural network in adjusting radiated laser power for the desired temperature increase in the center of a tumor mass.

  7. : ventilators for noninvasive ventilation

    OpenAIRE

    Fauroux , Brigitte; Leroux , Karl; Desmarais , Gilbert; Isabey , Daniel; Clément , Annick; Lofaso , Frédéric; Louis , Bruno

    2008-01-01

    International audience; The aim of the present study was to evaluate the performance characteristics of all the ventilators proposed for home noninvasive positive-pressure ventilation in children in France. The ventilators (one volume-targeted, 12 pressure-targeted and four dual) were evaluated on a bench which simulated six different paediatric ventilatory patterns. For each ventilator, the quality of the inspiratory and expiratory trigger and the ability to reach and maintain the preset pre...

  8. Neural Mechanisms of Post-error Adjustments of Decision Policy in Parietal Cortex

    Science.gov (United States)

    Purcell, Braden A.; Kiani, Roozbeh

    2015-01-01

    SUMMARY Humans often slow down after mistakes (post-error slowing, PES), but the neural mechanism and adaptive role of PES remains controversial. We studied changes in the neural mechanisms of decision-making after errors in humans and monkeys that performed a motion-direction discrimination task. We found that PES is mediated by two factors: a reduction in sensitivity to sensory information and an increase in the decision bound. Both effects are implemented through dynamic changes in the decision-making process. Neuronal responses in the monkey lateral intraparietal area (LIP) revealed that bound changes are implemented by decreasing an evidence-independent urgency signal. They also revealed a reduction in the rate of evidence accumulation, reflecting reduced sensitivity. These changes in the bound and sensitivity provide a quantitative account of choices and response times. We suggest that PES reflects an adaptive increase of decision bound in anticipation of maladaptive reductions in sensitivity to incoming evidence. PMID:26804992

  9. Fate bias during neural regeneration adjusts dynamically without recapitulating developmental fate progression.

    Science.gov (United States)

    Ng Chi Kei, Jeremy; Currie, Peter David; Jusuf, Patricia Regina

    2017-07-13

    Regeneration of neurons in the central nervous system is poor in humans. In other vertebrates neural regeneration does occur efficiently and involves reactivation of developmental processes. Within the neural retina of zebrafish, Müller glia are the main stem cell source and are capable of generating progenitors to replace lost neurons after injury. However, it remains largely unknown to what extent Müller glia and neuron differentiation mirror development. Following neural ablation in the zebrafish retina, dividing cells were tracked using a prolonged labelling technique. We investigated to what extent extrinsic feedback influences fate choices in two injury models, and whether fate specification follows the histogenic order observed in development. By comparing two injury paradigms that affect different subpopulations of neurons, we found a dynamic adaptability of fate choices during regeneration. Both injuries followed a similar time course of cell death, and activated Müller glia proliferation. However, these newly generated cells were initially biased towards replacing specifically the ablated cell types, and subsequently generating all cell types as the appropriate neuron proportions became re-established. This dynamic behaviour has implications for shaping regenerative processes and ensuring restoration of appropriate proportions of neuron types regardless of injury or cell type lost. Our findings suggest that regenerative fate processes are more flexible than development processes. Compared to development fate specification we observed a disruption in stereotypical birth order of neurons during regeneration Understanding such feedback systems can allow us to direct regenerative fate specification in injury and diseases to regenerate specific neuron types in vivo.

  10. Mechanical Ventilation

    Science.gov (United States)

    ... ventilation is a life support treatment. A mechanical ventilator is a machine that helps people breathe when ... to breathe enough on their own. The mechanical ventilator is also called a ventilator , respirator, or breathing ...

  11. Ventilation systems

    International Nuclear Information System (INIS)

    Gossler

    1980-01-01

    The present paper deals with - controlled area ventilation systems - ventilation systems for switchgear-building and control-room - other ventilation systems for safety equipments - service systems for ventilation systems. (orig./RW)

  12. Neural adjustment in the activation of the lower leg muscles through daily physical exercises in community-based elderly persons.

    Science.gov (United States)

    Maejima, Hiroshi; Murase, Azusa; Sunahori, Hitoshi; Kanetada, Yuji; Otani, Takuya; Yoshimura, Osamu; Tobimatsu, Yoshiko

    2007-02-01

    Reflecting the rapidly aging population, community-based interventions in the form of physical exercise have been introduced to promote the health of elderly persons. Many investigation studies have focused on muscle strength in the lower leg as a potent indicator of the effect of physical exercises. The objective of this study was to assess the effect of long-term daily exercises on neural command in lower leg muscle activations. Twenty-six community-based elderly persons (13 men and 13 women; 69.8 +/- 0.5 years old) participated in this study. Daily exercise was comprised of walking for more than 30 min, stretching, muscle strengthening and balance exercise, and was continued for three months. Muscle strength and surface electromyography of the tibia anterior, rectus femoris, and biceps femoris were measured in maximum isometric voluntary contraction both before and after the intervention. The mean frequency of the firing of motor units was calculated based on fast Fourier transformation of the electromyography. As the results of the intervention, muscle strength increased significantly only in biceps femoris, whereas the mean frequency of motor units decreased significantly in every muscle, indicating that motor unit firing in lower frequency efficiently induces the same or greater strength compared with before the intervention. Thus, synchronization of motor units compensates for the lower frequency of motor unit firing to maintain muscular strength. In conclusion, long-term physical exercises in the elderly can modulate the neural adjustment of lower leg muscles to promote efficient output of muscle strength.

  13. Anaesthesia ventilators

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  14. Anaesthesia ventilators

    OpenAIRE

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bello...

  15. SU-F-E-09: Respiratory Signal Prediction Based On Multi-Layer Perceptron Neural Network Using Adjustable Training Samples

    International Nuclear Information System (INIS)

    Sun, W; Jiang, M; Yin, F

    2016-01-01

    Purpose: Dynamic tracking of moving organs, such as lung and liver tumors, under radiation therapy requires prediction of organ motions prior to delivery. The shift of moving organ may change a lot due to huge transform of respiration at different periods. This study aims to reduce the influence of that changes using adjustable training signals and multi-layer perceptron neural network (ASMLP). Methods: Respiratory signals obtained using a Real-time Position Management(RPM) device were used for this study. The ASMLP uses two multi-layer perceptron neural networks(MLPs) to infer respiration position alternately and the training sample will be updated with time. Firstly, a Savitzky-Golay finite impulse response smoothing filter was established to smooth the respiratory signal. Secondly, two same MLPs were developed to estimate respiratory position from its previous positions separately. Weights and thresholds were updated to minimize network errors according to Leverberg-Marquart optimization algorithm through backward propagation method. Finally, MLP 1 was used to predict 120∼150s respiration position using 0∼120s training signals. At the same time, MLP 2 was trained using 30∼150s training signals. Then MLP is used to predict 150∼180s training signals according to 30∼150s training signals. The respiration position is predicted as this way until it was finished. Results: In this experiment, the two methods were used to predict 2.5 minute respiratory signals. For predicting 1s ahead of response time, correlation coefficient was improved from 0.8250(MLP method) to 0.8856(ASMLP method). Besides, a 30% improvement of mean absolute error between MLP(0.1798 on average) and ASMLP(0.1267 on average) was achieved. For predicting 2s ahead of response time, correlation coefficient was improved from 0.61415 to 0.7098.Mean absolute error of MLP method(0.3111 on average) was reduced by 35% using ASMLP method(0.2020 on average). Conclusion: The preliminary results

  16. SU-F-E-09: Respiratory Signal Prediction Based On Multi-Layer Perceptron Neural Network Using Adjustable Training Samples

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W; Jiang, M; Yin, F [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Dynamic tracking of moving organs, such as lung and liver tumors, under radiation therapy requires prediction of organ motions prior to delivery. The shift of moving organ may change a lot due to huge transform of respiration at different periods. This study aims to reduce the influence of that changes using adjustable training signals and multi-layer perceptron neural network (ASMLP). Methods: Respiratory signals obtained using a Real-time Position Management(RPM) device were used for this study. The ASMLP uses two multi-layer perceptron neural networks(MLPs) to infer respiration position alternately and the training sample will be updated with time. Firstly, a Savitzky-Golay finite impulse response smoothing filter was established to smooth the respiratory signal. Secondly, two same MLPs were developed to estimate respiratory position from its previous positions separately. Weights and thresholds were updated to minimize network errors according to Leverberg-Marquart optimization algorithm through backward propagation method. Finally, MLP 1 was used to predict 120∼150s respiration position using 0∼120s training signals. At the same time, MLP 2 was trained using 30∼150s training signals. Then MLP is used to predict 150∼180s training signals according to 30∼150s training signals. The respiration position is predicted as this way until it was finished. Results: In this experiment, the two methods were used to predict 2.5 minute respiratory signals. For predicting 1s ahead of response time, correlation coefficient was improved from 0.8250(MLP method) to 0.8856(ASMLP method). Besides, a 30% improvement of mean absolute error between MLP(0.1798 on average) and ASMLP(0.1267 on average) was achieved. For predicting 2s ahead of response time, correlation coefficient was improved from 0.61415 to 0.7098.Mean absolute error of MLP method(0.3111 on average) was reduced by 35% using ASMLP method(0.2020 on average). Conclusion: The preliminary results

  17. Ventilation of nuclear power plants

    International Nuclear Information System (INIS)

    Madoyan, A.A.; Vlasik, V.F.

    1984-01-01

    Foundations and calculation methods of ventilation of rooms with different degree of heat and gas release with the change of operation mode of NPP main equipment, as well as problems of NPP site and adjoining area aerodynamics, have been presented. Systems of air ventilation and conditioning, cooling equipment, are considered. The main points of designing are described and determination of economic efficiency of the ventilation systems are made. Technical characteristics of the ventilators, conditioners, filters and air heaters used, are presented. Organization of adjustment, tests, operation and maintenance of the ventilation systems of NPP with RBMK and WWER-type reactors, is described

  18. Displacement ventilation

    DEFF Research Database (Denmark)

    Kosonen, Risto; Melikov, Arsen Krikor; Mundt, Elisabeth

    The aim of this Guidebook is to give the state-of-the art knowledge of the displacement ventilation technology, and to simplify and improve the practical design procedure. The Guidebook discusses methods of total volume ventilation by mixing ventilation and displacement ventilation and it gives...... insights of the performance of the displacement ventilation. It also shows practical case studies in some typical applications and the latest research findings to create good local micro-climatic conditions....

  19. School Achievements, Behavioural Adjustments and Health at Nine Years of Age in a Population of Infants Who Were Born Preterm or Required Prolonged Mechanical Ventilation.

    Science.gov (United States)

    Mohay, Heather; And Others

    The prevalence of subtle handicapping conditions, such as learning disabilities, behavior problems, and recurrent illness, in a population of 88 high-risk infants was investigated when the children reached 9 years of age. Infants had had birthweights of less than 1500 grams or had required prolonged mechanical ventilation in the neonatal period.…

  20. VENTILATION MODEL

    International Nuclear Information System (INIS)

    V. Chipman

    2002-01-01

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses

  1. Ventilation models

    Science.gov (United States)

    Skaaret, Eimund

    Calculation procedures, used in the design of ventilating systems, which are especially suited for displacement ventilation in addition to linking it to mixing ventilation, are addressed. The two zone flow model is considered and the steady state and transient solutions are addressed. Different methods of supplying air are discussed, and different types of air flow are considered: piston flow, plane flow and radial flow. An evaluation model for ventilation systems is presented.

  2. Industrial ventilation

    Science.gov (United States)

    Goodfellow, H. D.

    Industrial ventilation design methodology, using computers and using fluid dynamic models, is considered. It is noted that the design of a ventilation system must be incorporated into the plant design and layout at the earliest conceptual stage of the project. A checklist of activities concerning the methodology for the design of a ventilation system for a new facility is given. A flow diagram of the computer ventilation model shows a typical input, the initialization and iteration loop, and the output. The application of the fluid dynamic modeling techniques include external and internal flow fields, and individual sources of heat and contaminants. Major activities for a ventilation field test program are also addressed.

  3. Adjusting neural additional stabilizers for damping interarea oscillations; Ajuste de estabilizadores suplementares neurais para amortecimento de oscilacoes interareas

    Energy Technology Data Exchange (ETDEWEB)

    Furini, M.A.; Araujo, P.B. de; Pereira, A.L.S. [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Fac. de Engenharia. Dept. Engenharia Eletrica], Emails: mafurini@aluno.feis.unesp.br, percival@dee.feis.unesp.br, andspa@gmail.com

    2009-07-01

    This paper aims at analyzing the main operation and design of operationally robust controllers in order to damp the electromechanics oscillations type inter area. For this we used an intelligent control technique based on artificial neural networks, where a multilayer perceptron it was implemented. We used a symmetrical test system of four generators, ten bars and nine transmission lines to verify the performance of the power system stabilizers and power oscillation damping (POD) for the FACTS devices, unified power flow controller (UPFC), designed for neural networks. The results show the superiority in the operation and control of oscillations in power systems using UPFC equipped with the POD.

  4. Mine ventilation engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C.J.

    1981-01-01

    This book on mine ventilation covers psychometrics, airflow through roadways and ducts, natural ventilation, fans, instruments, ventilation surveys, auxiliary ventilation, air quality, and planning and economics.

  5. Demand Controlled Ventilation and Classroom Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  6. Demand controlled ventilation and classroom ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  7. Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  8. Behovstyret ventilation

    DEFF Research Database (Denmark)

    Afshari, Alireza; Heiselberg, Per; Reinhold, Claus

    2010-01-01

    I en nylig afsluttet undersøgelse er der udført en række målinger på otte udvalgte børneinstitutioner. Fire af disse med mekanisk ventilation og fire med naturlig ventilation. Formålet er at udvide den erfaringsbaserede viden om funktionen af naturlige og mekaniske ventilationsløsninger i...

  9. Ventilation Model

    International Nuclear Information System (INIS)

    Yang, H.

    1999-01-01

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future

  10. Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Mundt, M.; Mathisen, H. M.; Moser, M.

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-un...

  11. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  12. Mind your errors: evidence for a neural mechanism linking growth mind-set to adaptive posterror adjustments.

    Science.gov (United States)

    Moser, Jason S; Schroder, Hans S; Heeter, Carrie; Moran, Tim P; Lee, Yu-Hao

    2011-12-01

    How well people bounce back from mistakes depends on their beliefs about learning and intelligence. For individuals with a growth mind-set, who believe intelligence develops through effort, mistakes are seen as opportunities to learn and improve. For individuals with a fixed mind-set, who believe intelligence is a stable characteristic, mistakes indicate lack of ability. We examined performance-monitoring event-related potentials (ERPs) to probe the neural mechanisms underlying these different reactions to mistakes. Findings revealed that a growth mind-set was associated with enhancement of the error positivity component (Pe), which reflects awareness of and allocation of attention to mistakes. More growth-minded individuals also showed superior accuracy after mistakes compared with individuals endorsing a more fixed mind-set. It is critical to note that Pe amplitude mediated the relationship between mind-set and posterror accuracy. These results suggest that neural mechanisms indexing on-line awareness of and attention to mistakes are intimately involved in growth-minded individuals' ability to rebound from mistakes.

  13. Volume-Targeted Ventilation in the Neonate: Benchmarking Ventilators on an Active Lung Model.

    Science.gov (United States)

    Krieger, Tobias J; Wald, Martin

    2017-03-01

    Mechanically ventilated neonates have been observed to receive substantially different ventilation after switching ventilator models, despite identical ventilator settings. This study aims at establishing the range of output variability among 10 neonatal ventilators under various breathing conditions. Relative benchmarking test of 10 neonatal ventilators on an active neonatal lung model. Neonatal ICU. Ten current neonatal ventilators. Ventilators were set identically to flow-triggered, synchronized, volume-targeted, pressure-controlled, continuous mandatory ventilation and connected to a neonatal lung model. The latter was configured to simulate three patients (500, 1,500, and 3,500 g) in three breathing modes each (passive breathing, constant active breathing, and variable active breathing). Averaged across all weight conditions, the included ventilators delivered between 86% and 110% of the target tidal volume in the passive mode, between 88% and 126% during constant active breathing, and between 86% and 120% under variable active breathing. The largest relative deviation occurred during the 500 g constant active condition, where the highest output machine produced 147% of the tidal volume of the lowest output machine. All machines deviate significantly in volume output and ventilation regulation. These differences depend on ventilation type, respiratory force, and patient behavior, preventing the creation of a simple conversion table between ventilator models. Universal neonatal tidal volume targets for mechanical ventilation cannot be transferred from one ventilator to another without considering necessary adjustments.

  14. Discussion for management of ventilation system in uranium mines

    International Nuclear Information System (INIS)

    Li Xianjie; Ren Jianjun; Hu Penghua

    2014-01-01

    Radon exhaustion and ventilation are surely regarded as key links for safety production and radiation protection in underground uranium mines, and the crucial point to achieve safety production goals lies in timely and accurately adjusting and controlling of ventilation technical measures and ventilation system management with the changing operation conditions of mines. This paper proposes corresponding countermeasures based on the respectively systematical analysis of daily ventilation management, ventilation facilities and structures management, and ventilation system information management in uranium mines. Furthermore, standardized management approaches and suggestions are put forward to realize standardization of uranium mines' ventilation management and radon exhaustion technique. (authors)

  15. Personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    The thermal environment and air quality in buildings affects occupants' health, comfort and performance. The heating, ventilating and air-conditioning (HVAC) of buildings today is designed to provide a uniform room environment. However, large individual differences exist between occupants in regard...... microenvironment. Furthermore, HVAC systems should be designed to protect occupants from airborne transmission of infectious agents that may be present in exhaled air. Personalized ventilation is a new development in the field of HVAC and has the potential to fulfill the above requirements. This paper reviews...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analyzed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  16. Mixing Ventilation

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...

  17. Displacement Ventilation

    DEFF Research Database (Denmark)

    Bjørn, Erik; Mattsson, Magnus; Sandberg, Mats

    Full-scale experiments were made in a displacement ventilated room with two breathing thermal manikins to study the effect of movements and breathing on the vertical contaminant distribution, and on the personal exposure of occupants. Concentrations were measured with tracer gas equipment...

  18. Ventilation of gloveboxes and containment shells

    International Nuclear Information System (INIS)

    Guetron, R.

    1984-01-01

    In this paper are defined fundamental principles for the ventilation of containment enclosures and gloveboxes, and examined criteria required to maintain containment in normal or accidental conditions. Dimensioning of ventilation network and associated equipment (adjustement and filtering devices). Some examples are given [fr

  19. Bilevel vs ICU ventilators providing noninvasive ventilation: effect of system leaks: a COPD lung model comparison.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Hill, Nicholas S; Kacmarek, Robert M

    2009-08-01

    Noninvasive positive-pressure ventilation (NPPV) modes are currently available on bilevel and ICU ventilators. However, little data comparing the performance of the NPPV modes on these ventilators are available. In an experimental bench study, the ability of nine ICU ventilators to function in the presence of leaks was compared with a bilevel ventilator using the IngMar ASL5000 lung simulator (IngMar Medical; Pittsburgh, PA) set at a compliance of 60 mL/cm H(2)O, an inspiratory resistance of 10 cm H(2)O/L/s, an expiratory resistance of 20 cm H(2)O/ L/s, and a respiratory rate of 15 breaths/min. All of the ventilators were set at 12 cm H(2)O pressure support and 5 cm H(2)O positive end-expiratory pressure. The data were collected at baseline and at three customized leaks. At baseline, all of the ventilators were able to deliver adequate tidal volumes, to maintain airway pressure, and to synchronize with the simulator, without missed efforts or auto-triggering. As the leak was increased, all of the ventilators (except the Vision [Respironics; Murrysville, PA] and Servo I [Maquet; Solna, Sweden]) needed adjustment of sensitivity or cycling criteria to maintain adequate ventilation, and some transitioned to backup ventilation. Significant differences in triggering and cycling were observed between the Servo I and the Vision ventilators. The Vision and Servo I were the only ventilators that required no adjustments as they adapted to increasing leaks. There were differences in performance between these two ventilators, although the clinical significance of these differences is unclear. Clinicians should be aware that in the presence of leaks, most ICU ventilators require adjustments to maintain an adequate tidal volume.

  20. Mechanical ventilators in US acute care hospitals.

    Science.gov (United States)

    Rubinson, Lewis; Vaughn, Frances; Nelson, Steve; Giordano, Sam; Kallstrom, Tom; Buckley, Tim; Burney, Tabinda; Hupert, Nathaniel; Mutter, Ryan; Handrigan, Michael; Yeskey, Kevin; Lurie, Nicole; Branson, Richard

    2010-10-01

    The supply and distribution of mechanical ventilation capacity is of profound importance for planning for severe public health emergencies. However, the capability of US health systems to provide mechanical ventilation for children and adults remains poorly quantified. The objective of this study was to determine the quantity of adult and pediatric mechanical ventilators at US acute care hospitals. A total of 5,752 US acute care hospitals included in the 2007 American Hospital Association database were surveyed. We measured the quantities of mechanical ventilators and their features. Responding to the survey were 4305 (74.8%) hospitals, which accounted for 83.8% of US intensive care unit beds. Of the 52,118 full-feature mechanical ventilators owned by respondent hospitals, 24,204 (46.4%) are pediatric/neonatal capable. Accounting for nonrespondents, we estimate that there are 62,188 full-feature mechanical ventilators owned by US acute care hospitals. The median number of full-feature mechanical ventilators per 100,000 population for individual states is 19.7 (interquartile ratio 17.2-23.1), ranging from 11.9 to 77.6. The median number of pediatric-capable device full-feature mechanical ventilators per 100,000 population younger than 14 years old is 52.3 (interquartile ratio 43.1-63.9) and the range across states is 22.1 to 206.2. In addition, respondent hospitals reported owning 82,755 ventilators other than full-feature mechanical ventilators; we estimate that there are 98,738 devices other than full-feature ventilators at all of the US acute care hospitals. The number of mechanical ventilators per US population exceeds those reported by other developed countries, but there is wide variation across states in the population-adjusted supply. There are considerably more pediatric-capable ventilators than there are for adults only on a population-adjusted basis.

  1. Intensive care unit ventilation for the non-intensivist

    African Journals Online (AJOL)

    called volume support modes simply automate the adjustment of the supporting pressure to achieve a set tidal volume. Spontaneous effort is only of benefit if the patient effort is synchronous with the ventilator. If patients “fight” the ventilator, inadequate ventilation, barotrauma, and the need for excessive sedation occur.

  2. [VENTILOP survey. Survey in peroperative mechanical ventilation].

    Science.gov (United States)

    Fischer, F; Collange, O; Mahoudeau, G; Simon, M; Moussa, H; Thibaud, A; Steib, A; Pottecher, T; Mertes, M

    2014-06-01

    Mechanical ventilation can initiate ventilator-associated lung injury and postoperative pulmonary complications. The aim of this study was to evaluate (1) how mechanical ventilation was comprehended by anaesthetists (physician and nurses) and (2) the need for educational programs. A computing questionnary was sent by electronic-mail to the entire anaesthetist from Alsace region in France (297 physicians), and to a pool of 99 nurse anaesthetists. Mechanical ventilation during anaesthesia was considered as optimized when low tidal volume (6-8mL) of ideal body weight was associated with positive end expiratory pressure, FiO2 less than 50%, I/E adjustment and recruitment maneuvers. The participation rate was 50.5% (172 professionals). Only 2.3% of professionals used the five parameters for optimized ventilation. Majority of professionals considered that mechanical ventilation adjustment influenced the patients' postoperative outcome. Majority of the professionals asked for a specific educational program in the field of mechanical ventilation. Only 2.3% of professionals optimized mechanical ventilation during anaesthesia. Guidelines and specific educational programs in the field of mechanical ventilation are widely expected. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  3. Mechanical ventilator - infants

    Science.gov (United States)

    Ventilator - infants; Respirator - infants ... WHY IS A MECHANICAL VENTILATOR USED? A ventilator is used to provide breathing support for ill or immature babies. Sick or premature babies are often ...

  4. Temperature of gas delivered from ventilators.

    Science.gov (United States)

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  5. Home Ventilator Guide

    Science.gov (United States)

    HOME VENTILATOR GUIDE This project is made possible by a bequest from ventilator user Ira Holland. ©Copyright 2017 Post-Polio Health ... proper balance between the two. What is a ventilator? A ventilator, also known as a respirator, is ...

  6. VENTILATION NEEDS DURING CONSTRUCTION

    International Nuclear Information System (INIS)

    C.R. Gorrell

    1998-01-01

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options

  7. Variable mechanical ventilation.

    Science.gov (United States)

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini, Luiz Alberto; Friedman, Gilberto

    2017-01-01

    To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation.

  8. Non invasive spontaneous dual ventilation in critically ill patients with chronic obstructive pulmonary disease

    OpenAIRE

    Khaled Hussein

    2016-01-01

    Background: Effective non-invasive ventilation (NIV) is dependent on optimal ventilator settings for alveolar ventilation. Volume-assured pressure support (VAPS) is a mode of servoventilation, providing constant automatic adjustment of pressure support (PS) to achieve a target ventilation. Our aim is to evaluate the effectiveness of the new dual spontaneous mode of ventilation named intelligent volume assured pressure support (iVAPS) in comparison with conventional pressure support using S/T ...

  9. New evidence in one-lung ventilation.

    Science.gov (United States)

    Meleiro, H; Correia, I; Charco Mora, P

    2018-03-01

    Mechanical ventilation in thoracic surgery has undergone significant changes in recent years due to the implementation of the protective ventilation. This review will analyze recent ventilatory strategies in one-lung ventilation. A MEDLINE research was performed using Mesh term "One-Lung Ventilation" including randomized clinical trials, metanalysis, reviews and systematic reviews published in the last 6 years. Search was performed on 21st March 2017. A total of 75 articles were initially found. After title and abstract review 14 articles were included. Protective ventilation is not simply synonymous of low tidal volume ventilation, but it also includes routine use of PEEP and alveolar recruitment maneuver. New techniques are still in discussion namely PEEP adjustment, ratio inspiration:expiration, ideal type of anesthesia during one-lung ventilation and hypercapnic ventilation. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Mechanical Ventilation-induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes.

    Science.gov (United States)

    Goligher, Ewan C; Dres, Martin; Fan, Eddy; Rubenfeld, Gordon D; Scales, Damon C; Herridge, Margaret S; Vorona, Stefannie; Sklar, Michael C; Rittayamai, Nuttapol; Lanys, Ashley; Murray, Alistair; Brace, Deborah; Urrea, Cristian; Reid, W Darlene; Tomlinson, George; Slutsky, Arthur S; Kavanagh, Brian P; Brochard, Laurent J; Ferguson, Niall D

    2018-01-15

    Diaphragm dysfunction worsens outcomes in mechanically ventilated patients, but the clinical impact of potentially preventable changes in diaphragm structure and function caused by mechanical ventilation is unknown. To determine whether diaphragm atrophy developing during mechanical ventilation leads to prolonged ventilation. Diaphragm thickness was measured daily by ultrasound in adults requiring invasive mechanical ventilation; inspiratory effort was assessed by thickening fraction. The primary outcome was time to liberation from ventilation. Secondary outcomes included complications (reintubation, tracheostomy, prolonged ventilation, or death). Associations were adjusted for age, severity of illness, sepsis, sedation, neuromuscular blockade, and comorbidity. Of 211 patients enrolled, 191 had two or more diaphragm thickness measurements. Thickness decreased more than 10% in 78 patients (41%) by median Day 4 (interquartile range, 3-5). Development of decreased thickness was associated with a lower daily probability of liberation from ventilation (adjusted hazard ratio, 0.69; 95% confidence interval [CI], 0.54-0.87; per 10% decrease), prolonged ICU admission (adjusted duration ratio, 1.71; 95% CI, 1.29-2.27), and a higher risk of complications (adjusted odds ratio, 3.00; 95% CI, 1.34-6.72). Development of increased thickness (n = 47; 24%) also predicted prolonged ventilation (adjusted duration ratio, 1.38; 95% CI, 1.00-1.90). Decreasing thickness was related to abnormally low inspiratory effort; increasing thickness was related to excessive effort. Patients with thickening fraction between 15% and 30% (similar to breathing at rest) during the first 3 days had the shortest duration of ventilation. Diaphragm atrophy developing during mechanical ventilation strongly impacts clinical outcomes. Targeting an inspiratory effort level similar to that of healthy subjects at rest might accelerate liberation from ventilation.

  11. Effects of Multiple Ventilation Courses and Duration of Mechanical Ventilation on Respiratory Outcomes in Extremely Low-Birth-Weight Infants.

    Science.gov (United States)

    Jensen, Erik A; DeMauro, Sara B; Kornhauser, Michael; Aghai, Zubair H; Greenspan, Jay S; Dysart, Kevin C

    2015-11-01

    Extubation failure is common in extremely preterm infants. The current paucity of data on the adverse long-term respiratory outcomes associated with reinitiation of mechanical ventilation prevents assessment of the risks and benefits of a trial of extubation in this population. To evaluate whether exposure to multiple courses of mechanical ventilation increases the risk of adverse respiratory outcomes before and after adjustment for the cumulative duration of mechanical ventilation. We performed a retrospective cohort study of extremely low-birth-weight (ELBW; birth weight mechanical ventilation. Analysis was conducted between November 2014 and February 2015. Data were obtained from the Alere Neonatal Database. The primary study exposures were the cumulative duration of mechanical ventilation and the number of ventilation courses. The primary outcome was bronchopulmonary dysplasia (BPD) among survivors. Secondary outcomes were death, use of supplemental oxygen at discharge, and tracheostomy. We identified 3343 ELBW infants, of whom 2867 (85.8%) survived to discharge. Among the survivors, 1695 (59.1%) were diagnosed as having BPD, 856 (29.9%) received supplemental oxygen at discharge, and 31 (1.1%) underwent tracheostomy. Exposure to a greater number of mechanical ventilation courses was associated with a progressive increase in the risk of BPD and use of supplemental oxygen at discharge. Compared with a single ventilation course, the adjusted odds ratios for BPD ranged from 1.88 (95% CI, 1.54-2.31) among infants with 2 ventilation courses to 3.81 (95% CI, 2.88-5.04) among those with 4 or more courses. After adjustment for the cumulative duration of mechanical ventilation, the odds of BPD were only increased among infants exposed to 4 or more ventilation courses (adjusted odds ratio, 1.44; 95% CI, 1.04-2.01). The number of ventilation courses was not associated with increased risk of supplemental oxygen use at discharge after adjustment for the length of ventilation

  12. Tracer gas evaluations of push-pull ventilation system performance.

    Science.gov (United States)

    Ojima, Jun

    2009-01-01

    A push-pull ventilation system is effective for hazardous material exhaustion. Although a push-pull ventilation system has advantages over a local exhaust hood, some laborious adjustments are required. The pertinence of the adjustments is uncertain because it is difficult to evaluate the performance of a push-pull ventilation system quantitatively. In this study, a measurement of the capture efficiency of a push-pull ventilation system was carried out by means of a tracer gas method. The capture efficiency decreased to 39.3-78.5% when blockage material, a dummy worker and a cross draft, were set in the ventilation zone, but the efficiency was 95.1-97.9% when the cross draft was stopped. The results suggest that the uniform flow of a push-pull ventilation system will detour a blockage and the performance of the system will not be reduced unless a cross draft disturbs the uniform flow.

  13. Do new anesthesia ventilators deliver small tidal volumes accurately during volume-controlled ventilation?

    Science.gov (United States)

    Bachiller, Patricia R; McDonough, Joseph M; Feldman, Jeffrey M

    2008-05-01

    During mechanical ventilation of infants and neonates, small changes in tidal volume may lead to hypo- or hyperventilation, barotrauma, or volutrauma. Partly because breathing circuit compliance and fresh gas flow affect tidal volume delivery by traditional anesthesia ventilators in volume-controlled ventilation (VCV) mode, pressure-controlled ventilation (PCV) using a circle breathing system has become a common approach to minimizing the risk of mechanical ventilation for small patients, although delivered tidal volume is not assured during PCV. A new generation of anesthesia machine ventilators addresses the problems of VCV by adjusting for fresh gas flow and for the compliance of the breathing circuit. In this study, we evaluated the accuracy of new anesthesia ventilators to deliver small tidal volumes. Four anesthesia ventilator systems were evaluated to determine the accuracy of volume delivery to the airway during VCV at tidal volume settings of 100, 200, and 500 mL under different conditions of breathing circuit compliance (fully extended and fully contracted circuits) and lung compliance. A mechanical test lung (adult and infant) was used to simulate lung compliances ranging from 0.0025 to 0.03 L/cm H(2)O. Volumes and pressures were measured using a calibrated screen pneumotachograph and custom software. We tested the Smartvent 7900, Avance, and Aisys anesthesia ventilator systems (GE Healthcare, Madison, WI) and the Apollo anesthesia ventilator (Draeger Medical, Telford, PA). The Smartvent 7900 and Avance ventilators use inspiratory flow sensors to control the volume delivered, whereas the Aisys and Apollo ventilators compensate for the compliance of the circuit. We found that the anesthesia ventilators that use compliance compensation (Aisys and Apollo) accurately delivered both large and small tidal volumes to the airway of the test lung under conditions of normal and low lung compliance during VCV (ranging from 95.5% to 106.2% of the set tidal volume

  14. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...... momentum supply. In addition, this ventilation system uses a ceiling plenum to deliver air and requires less energy consumption for air transport than full-ducted systems. There is a growing interest in applying diffuse ceiling ventilation in offices and other commercial buildings due to the benefits from...... both thermal comfort and energy efficient aspects. The present study aims to characterize the air distribution and thermal comfort in the rooms with diffuse ceiling ventilation. Both the stand-alone ventilation system and its integration with a radiant ceiling system are investigated. This study also...

  15. Learning about ventilators

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000458.htm Learning about ventilators To use the sharing features on this page, ... fixed or changed. How Does Being on a Ventilator Feel? A person receives medicine to remain comfortable ...

  16. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    Science.gov (United States)

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  17. Ventilation of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    In this work an examination is made of ventilation problems in nuclear installations, of the fuel cycle or the handling of radioactive compounds. The study covers the detection of radioactive aerosols, purification, iodine trapping, ventilation equipment and its maintenance, engineering, safety of ventilation, fire efficiency, operation, regulations and normalization [fr

  18. [Structural adjustment, cultural adjustment?].

    Science.gov (United States)

    Dujardin, B; Dujardin, M; Hermans, I

    2003-12-01

    Over the last two decades, multiple studies have been conducted and many articles published about Structural Adjustment Programmes (SAPs). These studies mainly describe the characteristics of SAPs and analyse their economic consequences as well as their effects upon a variety of sectors: health, education, agriculture and environment. However, very few focus on the sociological and cultural effects of SAPs. Following a summary of SAP's content and characteristics, the paper briefly discusses the historical course of SAPs and the different critiques which have been made. The cultural consequences of SAPs are introduced and are described on four different levels: political, community, familial, and individual. These levels are analysed through examples from the literature and individual testimonies from people in the Southern Hemisphere. The paper concludes that SAPs, alongside economic globalisation processes, are responsible for an acute breakdown of social and cultural structures in societies in the South. It should be a priority, not only to better understand the situation and its determining factors, but also to intervene and act with strategies that support and reinvest in the social and cultural sectors, which is vital in order to allow for individuals and communities in the South to strengthen their autonomy and identify.

  19. Ventilation and ventilation/perfusion ratios

    International Nuclear Information System (INIS)

    Valind, S.O.

    1989-01-01

    The thesis is based on five different papers. The labelling of specific tracer compounds with positron emitting radionuclides enables a range of structural, physiological and biochemical parameters in the lung to be measured non-invasively, using positron emission tomography. This concept affords a unique opportunity for in vivo studies of different expressions of pulmonary pathophysiology at the regional level. The present thesis describes the application of positron emission tomography to the measurements of ventilation and ventilation/perfusion ratios using inert gas tracers, neon-19 and nitrogen-13 respectively. The validity of the methods applied was investigated with respect to the transport of inert gas tracers in the human lung. Both ventilation and the ventilation/perfusion ratio may be obtained with errors less than 10 % in the normal lung. In disease, however, errors may increase in those instances where the regional ventilation is very low or the intra-regional gas flow distribution is markedly nonuniform. A 2-3 fold increase in ventilation was demonstrated in normal nonsmoking subjects going from ventral to dorsal regions in the supine posture. These large regional differences could be well explained by the intrinsic elastic properties of lung tissue, considering the gravitational gradient in transpulmonary pressure. In asymptomatic smokers substantial regional ventilatroy abnormalities were found whilst the regional gas volume was similar in smokers and nonsmokers. The uncoupling between ventilation and gas volume probably reflects inflammatory changes in the airways. The regional differences in dV/dt/dQ/dt were relatively small and blood flow was largely matched to ventilation in the supine posture. However, small regions of lung with very low ventilation, unmatched by blood flow commonly exists in the most dependent parts of the lung in both smokers and nonsmokers. (29 illustrations, 7 tables, 113 references)

  20. Evaluation of ventilators for mouthpiece ventilation in neuromuscular disease.

    Science.gov (United States)

    Khirani, Sonia; Ramirez, Adriana; Delord, Vincent; Leroux, Karl; Lofaso, Frédéric; Hautot, Solène; Toussaint, Michel; Orlikowski, David; Louis, Bruno; Fauroux, Brigitte

    2014-09-01

    Daytime mouthpiece ventilation is a useful adjunct to nocturnal noninvasive ventilation (NIV) in patients with neuromuscular disease. The aims of the study were to analyze the practice of mouthpiece ventilation and to evaluate the performance of ventilators for mouthpiece ventilation. Practice of mouthpiece ventilation was assessed by a questionnaire, and the performance of 6 home ventilators with mouthpiece ventilation was assessed in a bench test using 24 different conditions per ventilator: 3 mouthpieces, a child and an adult patient profile, and 4 ventilatory modes. Questionnaires were obtained from 30 subjects (mean age 33 ± 11 y) using NIV for 12 ± 7 y. Fifteen subjects used NIV for > 20 h/day, and 11 were totally ventilator-dependent. The subject-reported benefits of mouthpiece ventilation were a reduction in dyspnea (73%) and fatigue (93%) and an improvement in speech (43%) and eating (27%). The bench study showed that none of the ventilators, even those with mouthpiece ventilation software, were able to deliver mouthpiece ventilation without alarms and/or autotriggering in each condition. Alarms and/or ineffective triggering or autotriggering were observed in 135 of the 198 conditions. The occurrence of alarms was more common with a large mouthpiece without a filter compared to a small mouthpiece with a filter (P ventilator. Subjects are satisfied with mouthpiece ventilation. Alarms are common with home ventilators, although less common in those with mouthpiece ventilation software. Improvements in home ventilators are needed to facilitate the expansion of mouthpiece ventilation. Copyright © 2014 by Daedalus Enterprises.

  1. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sublevel development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  2. Protective garment ventilation system

    Science.gov (United States)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  3. Design Principles for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....

  4. Convexity Adjustments

    DEFF Research Database (Denmark)

    M. Gaspar, Raquel; Murgoci, Agatha

    2010-01-01

    A convexity adjustment (or convexity correction) in fixed income markets arises when one uses prices of standard (plain vanilla) products plus an adjustment to price nonstandard products. We explain the basic and appealing idea behind the use of convexity adjustments and focus on the situations...

  5. Duration of Mechanical Ventilation in the Emergency Department

    Directory of Open Access Journals (Sweden)

    Lauren B. Angotti

    2017-07-01

    Full Text Available Introduction: Due to hospital crowding, mechanically ventilated patients are increasingly spending hours boarding in emergency departments (ED before intensive care unit (ICU admission. This study aims to evaluate the association between time ventilated in the ED and in-hospital mortality, duration of mechanical ventilation, ICU and hospital length of stay (LOS. Methods: This was a multi-center, prospective, observational study of patients ventilated in the ED, conducted at three academic Level I Trauma Centers from July 2011 to March 2013. All consecutive adult patients on invasive mechanical ventilation were eligible for enrollment. We performed a Cox regression to assess for a mortality effect for mechanically ventilated patients with each hour of increasing LOS in the ED and multivariable regression analyses to assess for independently significant contributors to in-hospital mortality. Our primary outcome was in-hospital mortality, with secondary outcomes of ventilator days, ICU LOS and hospital LOS. We further commented on use of lung protective ventilation and frequency of ventilator changes made in this cohort. Results: We enrolled 535 patients, of whom 525 met all inclusion criteria. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Using iterated Cox regression, a mortality effect occurred at ED time of mechanical ventilation > 7 hours, and the longer ED stay was also associated with a longer total duration of intubation. However, adjusted multivariable regression analysis demonstrated only older age and admission to the neurosciences ICU as independently associated with increased mortality. Of interest, only 23.8% of patients ventilated in the ED for over seven hours had changes made to their ventilator. Conclusion: In a prospective observational study of patients mechanically ventilated in the ED, there was a significant mortality benefit to

  6. Styret naturlig ventilation

    DEFF Research Database (Denmark)

    Morsing, S.; Strøm, J.S.

    Publikationen præsenterer et generelt dimensioneringsgrundlag for naturlig ventilation i husdyrstalde. Det er kontrolleret ved forsøg i slagtesvinestalde, hvor det ligeledes er undersøgt hvilken temperaturstabilitet, der kan opnås ved naturlig ventilation, samt produktions- og adfærdsmæssige...

  7. Natural Ventilation in Atria

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Heiselberg, Per; Hendriksen, Ole Juhl

    This case study comprises a monitoring programme as well as a Computational Fluid Dynamics (CFD) analysis of a natural ventilated atrium. The purpose has been to analyse the performance of a typical natural ventilation system in Denmark under both summer and winter conditions....

  8. Multifamily Ventilation Retrofit Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  9. Ventilation rates and health

    DEFF Research Database (Denmark)

    Sundell, Jan; Levin, H; Nazaroff, W W

    2011-01-01

    studies of the relationship between ventilation rates and health, especially in diverse climates, in locations with polluted outdoor air and in buildings other than offices. PRACTICAL IMPLICATIONS: Ventilation with outdoor air plays an important role influencing human exposures to indoor pollutants......The scientific literature through 2005 on the effects of ventilation rates on health in indoor environments has been reviewed by a multidisciplinary group. The group judged 27 papers published in peer-reviewed scientific journals as providing sufficient information on both ventilation rates...... and health effects to inform the relationship. Consistency was found across multiple investigations and different epidemiologic designs for different populations. Multiple health endpoints show similar relationships with ventilation rate. There is biological plausibility for an association of health outcomes...

  10. Survey execution to build a ventilation model, Australian style

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, J.A. [Dallas Mining Services Pty Ltd., Wollongong, NSW (Australia)

    2010-07-01

    Ventilation surveys and the development of a properly tuned ventilation model are important components of a modern underground mine safety management system to ensure the safety of miners. Such systems in Australia revolve around the routine application of risk based logic. However, assessing the risk in ventilation systems always changes. Designers of ventilation circuits therefore use ventilation modeling software as a key tool to facilitate the structured process. This paper emphasized the importance of measuring the underground circuit and replicating the measurements in a working model. The most commonly used modeling program in Australia is the Ventsim software which is available as a fully graphical 3D configuration as well as a 2D version. The value of the mine ventilation survey lies in the ability of the data to be accurately replicated on a mine ventilation model. As such, much thought must be given to the ventilation survey scope of work and overall process. The surveys must satisfy operational needs and must delineate the circuit to a level that will allow a model be to accurately assembled in order to determine when minor or major ventilation circuit adjustments are needed. 1 ref., 10 figs.

  11. Noninvasive versus invasive ventilation for acute respiratory failure in patients with hematologic malignancies: a 5-year multicenter observational survey.

    Science.gov (United States)

    Gristina, Giuseppe R; Antonelli, Massimo; Conti, Giorgio; Ciarlone, Alessia; Rogante, Silvia; Rossi, Carlotta; Bertolini, Guido

    2011-10-01

    Mortality is high among patients with hematologic malignancies admitted to intensive care units for acute respiratory failure. Early noninvasive mechanical ventilation seems to improve outcomes. To characterize noninvasive mechanical ventilation use in Italian intensive care units for acute respiratory failure patients with hematologic malignancies and its impact on outcomes vs. invasive mechanical ventilation. Retrospective analysis of observational data prospectively collected in 2002-2006 on 1,302 patients with hematologic malignancies admitted with acute respiratory failure to 158 Italian intensive care units. Mortality (intensive care unit and hospital) was assessed in patients treated initially with noninvasive mechanical ventilation vs. invasive mechanical ventilation and in those treated with invasive mechanical ventilation ab initio vs. after noninvasive mechanical ventilation failure. Findings were adjusted for propensity scores reflecting the probability of initial treatment with noninvasive mechanical ventilation. Few patients (21%) initially received noninvasive mechanical ventilation; 46% of these later required invasive mechanical ventilation. Better outcomes were associated with successful noninvasive mechanical ventilation (vs. invasive mechanical ventilation ab initio and vs. invasive mechanical ventilation after noninvasive mechanical ventilation failure), particularly in patients with acute lung injury/adult respiratory distress syndrome (mortality: 42% vs. 69% and 77%, respectively). Delayed vs. immediate invasive mechanical ventilation was associated with slightly but not significantly higher hospital mortality (65% vs. 58%, p=.12). After propensity-score adjustment, noninvasive mechanical ventilation was associated with significantly lower mortality than invasive mechanical ventilation. The population could not be stratified according to specific hematologic diagnoses. Furthermore, the study was observational, and treatment groups may have

  12. Ventilating Air-Conditioner

    Science.gov (United States)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  13. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    -cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... in applying diffuse ceiling ventilation in offices and other commercial buildings because of the benefits from both thermal comfort and energy efficiency aspects. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation and the design...

  14. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    OpenAIRE

    Sherman, Max H.

    2011-01-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outd...

  15. Why We Ventilate

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  16. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.

    2014-01-01

    As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...... on thermal comfort in the occupant zone. Another characteristic of this system is its lower pressure drop compared with conventional ventilation systems, which reduces the noise problem and, at the same time, the energy consumption of the fan can be reduced. This review is based on a number of experimental...... and numerical studies on diffuse ceiling ventilation. Performance in terms of thermal comfort, air quality, pressure drop as well as radiant cooling potential are examined. Finally, a discussion on the proper design of the suspended ceiling and plenum to achieve a uniform air distribution and surface...

  17. Fire, safety and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-02-01

    Correct ventilation in tunnel environments is vital for the comfort and safety of the people passing through. This article gives details of products from several manufacturers of safety rescue and fire fighting equipment, fire and fume detection equipment, special fire resistant materials, fire resistant hydraulic oils and fire dampers, and ventilation systems. Company addresses and fax numbers are supplied. 4 refs., 5 tabs., 10 photos.

  18. [Role of invasive and non-invasive ventilation in the treatment of acute respiratory failure].

    Science.gov (United States)

    Colombo, Sergio; Zangrillo, Alberto

    2010-01-01

    Mechanical ventilation is the most common invasive treatment for acute respiratory failure in intensive care units. According to non-intensivist clinicians, ventilation could be considered as a therapy for blood gas exchange, even though positive pressure ventilation can be extremely dangerous for injured lung tissue. Despite constant advances in ventilation software and modalities, aimed at optimizing patient/ventilator adjustment, the scientific community has addressed major attention in new protective strategies to ventilate the lung, trying to prevent and reduce life-threatening iatrogenic injuries that may derive from inappropriate use of mechanical ventilation. In this review we describe the main ventilation techniques as well as new emerging methodologies. The physiological bases on which the acute respiratory distress syndrome network has significantly changed the strategy for ventilation in patients with acute respiratory distress syndrome are also discussed. Non-invasive ventilation, including both continuous positive airway pressure and pressure support ventilation, is considered the gold standard for chronic obstructive pulmonary disease exacerbations. There is an increasing interest in the clinical use of non-invasive ventilation outside intensive care units. Although many studies have analyzed risks and benefits of non-invasive ventilation in the intensive care setting, feasibility and organization processes to perform this technique in the non-intensive wards, by preserving efficacy and safety, need to be debated.

  19. Overall Subsurface Ventilation Systems

    International Nuclear Information System (INIS)

    Thomas, Edward G.

    2000-01-01

    The purpose of this analysis is to provide a conceptual design for the Subsurface Ventilation System and address the construction, emplacement, monitoring, backfill, and closure ventilation phases. The design will be based on the recently established program requirements for transitioning to the Site Recommendation (SR) design as outlined by ''Approach to Implementing the Site Recommendation Baseline'' (Stroupe 2000) and the Monitored Geologic Repository Project Description Document (CRWMS M and O 1999d) (MGR). This analysis will summarize the ventilation concepts that have developed from the incorporation of recent changes to the Technical Baseline and describe changes to the conceptual ventilation design that have resulted from the thermal management requirements. Ventilation concepts presented in the Viability Assessment Design (VA Design) that have not changed are identified and included. The objective of this analysis is to provide a basis for the System Description Document (SDD) Section 2 that provides input to the SR Consideration Report. The scope of the analysis includes the following tasks: (1) Determine the number of primary shafts based on the emplacement airflow rate required to meet thermal goals and (2) Determine conceptual airflow networks for major repository phases including: Construction; Emplacement; Monitoring; and Closure. In addition evaluate: (1) Radon mitigation concerns and options; (2) Monitoring and control requirement changes needed to meet current guidelines; and (3) The impact on the ventilation system of a radiological release due to a potential subsurface fire involving a waste package

  20. Chiropractic Adjustment

    Science.gov (United States)

    ... Results Chiropractic adjustment can be effective in treating low back pain, although much of the research done shows only a modest benefit — similar to the results of more conventional treatments. Some studies suggest that spinal manipulation also may ...

  1. Chiropractic Adjustment

    Science.gov (United States)

    ... How you prepare No special preparation is required before a chiropractic adjustment. Chiropractic treatment may require a series of visits to your chiropractor. Ask your care provider about the frequency of visits and be ...

  2. Demand Controlled Ventilation in a Combined Ventilation and Radiator System

    OpenAIRE

    Hesaraki, Arefeh; Holmberg, Sture

    2013-01-01

    With growing concerns for efficient and sustainable energy treatment in buildings there is a need for balanced and intelligent ventilation solutions. This paper presents a strategy for demand controlled ventilation with ventilation radiators, a combined heating and ventilation system. The ventilation rate was decreased from normal requirements (per floor area) of 0.375 l·s-1·m-2 to 0.100 l·s-1·m-2 when the residence building was un-occupied. The energy saving potential due to decreased ventil...

  3. CFD and Ventilation Research

    DEFF Research Database (Denmark)

    Li, Y.; Nielsen, Peter V.

    2011-01-01

    of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize......There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... the growing need for CFD verification and validation, suggest on-going needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical...

  4. [Ventilator associated pneumonia].

    Science.gov (United States)

    Bellani, S; Nesci, M; Celotto, S; Lampati, L; Lucchini, A

    2003-04-01

    Ventilator associated pneumonia (VAP) is a nosocomial lower respiratory tract infection that ensues in critically ill patients undergoing mechanical ventilation. The reported incidence of VAP varies between 9% and 68% with a mortality ranging between 33% and 71%. Two key factors are implicated in the pathogenesis of VAP: bacterial colonization of the upper digestive-respiratory tract and aspiration of oral secretions into the trachea. Preventive measurements are advocated to reduce the incidence of VAP, such as selective decontamination of the digestive tract (SDD), supraglottic aspiration and positioning. Prompt recognition and treatment of established VAP has also been demostrated to affect outcome. Therefore, the knowledge of risk factors associated with the development of VAP and the implementation of strategies to prevent, diagnose and treat VAP are mainstems in the nursing of mechanically ventilated patients.

  5. Auxiliary mine ventilation manual

    International Nuclear Information System (INIS)

    Workplace Safety North

    2010-01-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  6. Using domiciliary non-invasive ventilator data downloads to inform clinical decision-making to optimise ventilation delivery and patient compliance.

    Science.gov (United States)

    Mansell, Stephanie K; Cutts, Steven; Hackney, Isobel; Wood, Martin J; Hawksworth, Kevin; Creer, Dean D; Kilbride, Cherry; Mandal, Swapna

    2018-01-01

    Ventilation parameter data from patients receiving home mechanical ventilation can be collected via secure data cards and modem technology. This can then be reviewed by clinicians and ventilator prescriptions adjusted. Typically available measures include tidal volume (V T ), leak, respiratory rate, minute ventilation, patient triggered breaths, achieved pressures and patient compliance. This study aimed to assess the potential impact of ventilator data downloads on management of patients requiring home non-invasive ventilation (NIV). A longitudinal within-group design with repeated measurements was used. Baseline ventilator data were downloaded, reviewed and adjustments made to optimise ventilation. Leak, V T and compliance data were collected for comparison at the first review and 3-7 weeks later. Ventilator data were monitored and amended remotely via a modem by a consultant physiotherapist between the first review and second appointment. Analysis of data from 52 patients showed increased patient compliance (% days used >4 hours) from 90% to 96% (p=0.007), increased usage from 6.53 to 6.94 hours (p=0.211) and a change in V T (9.4 vs 8.7 mL/kg/ideal body weight, p=0.022). There was no change in leak following review of NIV prescriptions (mean (SD): 43 (23.4) L/min vs 45 (19.9)L/min, p=0.272). Ventilator data downloads, via early remote assessment, can help optimise patient ventilation through identification of modifiable factors, in particular interface leak and ventilator prescriptions. However, a prospective study is required to assess whether using ventilator data downloads provides value in terms of patient outcomes and cost-effectiveness. The presented data will help to inform the design of such a study.

  7. Behovstyret ventilation til enfamiliehuse

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Drivsholm, Christian; Hansen, Mads Peter Rudolph

    Muligheden for behovsstyret ventilation i enfamiliehuse er undersøgt. To strategier er afprøvet i praksis: En relativ simpel og billig strategi og en relativ avanceret og dyr strategi. Den simple strategi regulerer luftskiftet ensartet for alle rum mellem et lavt eller højt niveau. Den avancerede...... ventilation efter gældende krav. Desuden kræver den simple regulering kun få sensorer og er således væsentlig billigere og enklere at implementere end den avancerede strategi....

  8. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...... and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain...

  9. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    -cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... and manufacturers and the users of diffuse ceiling technology. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation. It provides an overview of potential benefit and limitations of this technology. The benefits include high thermal comfort, high...

  10. Bench performance of ventilators during simulated paediatric ventilation.

    Science.gov (United States)

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  11. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  12. Noninvasive ventilation in withdrawal from mechanical ventilation.

    Science.gov (United States)

    Ferrer, Miquel; Sellares, Jacobo; Torres, Antoni

    2014-08-01

    Patients with chronic airflow obstruction and difficult or prolonged weaning are at increased risk for prolonged invasive mechanical ventilation (IMV). Several randomized controlled trials mainly conducted in patients who had pre-existing lung disease have shown that the use of noninvasive ventilation (NIV) to advance extubation in patients with difficult and prolonged weaning can result in reduced periods of endotracheal intubation, complication rates, and improved survival. Patients in these studies were hemodynamically stable, with a normal level of consciousness, no fever, and a preserved cough reflex. The use of NIV in the management of mixed populations with respiratory failure after extubation, including small proportions of chronic respiratory patients did not show clinical benefits included. By contrast, NIV immediately after extubation is effective in avoiding respiratory failure after extubation and improving survival in patients at risk for this complication, particularly those with chronic respiratory disorders, cardiac comorbidity, and hypercapnic respiratory failure. Finally, both continuous positive airway pressure and NIV can improve clinical outcomes in patients with postoperative acute respiratory failure, particularly abdominal and thoracic surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Salary adjustments

    CERN Multimedia

    HR Department

    2008-01-01

    In accordance with decisions taken by the Finance Committee and Council in December 2007, salaries are adjusted with effect from 1 January 2008. Scale of basic salaries and scale of stipends paid to fellows (Annex R A 5 and R A 6 respectively): increased by 0.71% with effect from 1 January 2008. As a result of the stability of the Geneva consumer price index, following elements do not increase: a) Family Allowance, Child Allowance and Infant Allowance (Annex R A 3). b) Reimbursement of education fees: maximum amounts of reimbursement (Annex R A 4.01) for the academic year 2007/2008. Related adjustments will be implemented, wherever applicable, to Paid Associates and Students. As in the past, the actual percentage increase of each salary position may vary, due to the application of a constant step value and the rounding effects. Human Resources Department Tel. 73566

  14. Salary adjustments

    CERN Multimedia

    HR Department

    2008-01-01

    In accordance with decisions taken by the Finance Committee and Council in December 2007, salaries are adjusted with effect from 1 January 2008. Scale of basic salaries and scale of stipends paid to fellows (Annex R A 5 and R A 6 respectively): increased by 0.71% with effect from 1 January 2008. As a result of the stability of the Geneva consumer price index, the following elements do not increase: a)\tFamily Allowance, Child Allowance and Infant Allowance (Annex R A 3); b)\tReimbursement of education fees: maximum amounts of reimbursement (Annex R A 4.01) for the academic year 2007/2008. Related adjustments will be applied, wherever applicable, to Paid Associates and Students. As in the past, the actual percentage increase of each salary position may vary, due to the application of a constant step value and rounding effects. Human Resources Department Tel. 73566

  15. Demand controlled ventilation; Behovsstyrt ventilasjon

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Henning Holm

    2006-07-01

    The terms CAV and VAV have been known terms for many years in the ventilation business. The terms are also included in building regulations, but the time is now right to focus on demand controlled ventilation (DCV). The new building regulations and the accompanying energy framework underline the need for a more nuanced thinking when it comes to controlling ventilation systems. Descriptions and further details of the ventilation systems are provided (ml)

  16. Shaft adjuster

    Science.gov (United States)

    Harry, Herbert H.

    1989-01-01

    Apparatus and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus.

  17. Battery life of portable home ventilators: effects of ventilator settings.

    Science.gov (United States)

    Falaize, Line; Leroux, Karl; Prigent, Hélène; Louis, Bruno; Khirani, Sonia; Orlikowski, David; Fauroux, Brigitte; Lofaso, Frédéric

    2014-07-01

    The battery life (BL) of portable home ventilator batteries is reported by manufacturers. The aim of this study was to evaluate the effects of ventilator mode, breathing frequency, PEEP, and leaks on the BL of 5 commercially available portable ventilators. The effects of the ventilator mode (volume controlled-continuous mandatory ventilation [VC-CMV] vs pressure support ventilation [PSV]), PEEP 5 cm H2O, breathing frequency (10, 15, and 20 breaths/min), and leaks during both volume-targeted ventilation and PSV on the BL of 5 ventilators (Elisée 150, Monnal T50, PB560, Vivo 50, and Trilogy 100) were evaluated. Each ventilator was ventilated with a test lung at a tidal volume of 700 ml and an inspiratory time of 1.2 s in the absence of leaks. Switching from PSV to VC-CMV or the addition of PEEP did not significantly change ventilator BL. The increase in breathing frequency from 10 to 20 breaths/min decreased the BL by 18 ± 11% (P = .005). Leaks were associated with an increase in BL during the VC-CMV mode (18 ± 20%, P = .04) but a decrease in BL during the PSV mode (-13 ± 15%, P = .04). The BL of home ventilators depends on the ventilator settings. BL is not affected by the ventilator mode (VC-CMV or PSV) or the addition of PEEP. BL decreases with an increase in breathing frequency and during leaks with a PSV mode, whereas leaks increase the duration of ventilator BL during VC-CMV. Copyright © 2014 by Daedalus Enterprises.

  18. Adjustable collimator

    International Nuclear Information System (INIS)

    Carlson, R.W.; Covic, J.; Leininger, G.

    1981-01-01

    In a rotating fan beam tomographic scanner there is included an adjustable collimator and shutter assembly. The assembly includes a fan angle collimation cylinder having a plurality of different length slots through which the beam may pass for adjusting the fan angle of the beam. It also includes a beam thickness cylinder having a plurality of slots of different widths for adjusting the thickness of the beam. Further, some of the slots have filter materials mounted therein so that the operator may select from a plurality of filters. Also disclosed is a servo motor system which allows the operator to select the desired fan angle, beam thickness and filter from a remote location. An additional feature is a failsafe shutter assembly which includes a spring biased shutter cylinder mounted in the collimation cylinders. The servo motor control circuit checks several system conditions before the shutter is rendered openable. Further, the circuit cuts off the radiation if the shutter fails to open or close properly. A still further feature is a reference radiation intensity monitor which includes a tuning-fork shaped light conducting element having a scintillation crystal mounted on each tine. The monitor is placed adjacent the collimator between it and the source with the pair of crystals to either side of the fan beam

  19. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, P.; Nielsen, Peter Vilhelm

    The main objective of ventilation is to provide good air quality for the occupants. For this purpose the necessary ventilating air change rate must be determined. Within displacement ventilation the estimation is closely related to the air flow rate in the thermal plumes when an air quality based...

  20. How to Plan Ventilation Systems.

    Science.gov (United States)

    Clarke, John H.

    1963-01-01

    Ventilation systems for factory safety demand careful planning. The increased heat loads and new processes of industry have introduced complex ventilation problems in--(1) ventilation supply, (2) duct work design, (3) space requirements, (4) hood face velocities, (5) discharge stacks, and (6) building eddies. This article describes and diagrams…

  1. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  2. Comparing the effects of rise time and inspiratory cycling criteria on 6 different mechanical ventilators.

    Science.gov (United States)

    Gonzales, Joshua F; Russian, Christopher J; Gregg Marshall, S; Collins, Kevin P

    2013-03-01

    Inspiratory rise time and cycling criteria are important settings in pressure support ventilation. The purpose of this study was to investigate the impact of minimum and maximum rise time and inspiratory cycling criteria settings on 6 new generation ventilators. Our hypothesis was there would be a difference in the exhaled tidal volume, inspiratory time, and peak flow among 6 different ventilators, based, on change in rise time and cycling criteria. The research utilized a breathing simulator and 4 different ventilator models. All mechanical ventilators were set to a spontaneous mode of ventilation with settings of pressure support 8 cm H2O and PEEP of 5 cm H2O. A minimum and maximum setting for rise time and cycling criteria were examined. Exhaled tidal volume, inspiratory time, and peak flow measurements were recorded for each simulation. Significant (P ventilator. Significant differences in exhaled tidal volume, inspiratory time, and peak flow were observed by adjusting rise time and cycling criteria. This research demonstrates that during pressure support ventilation strategy, adjustments in rise time and/or cycling criteria can produce changes in inspiratory parameters. Obviously, this finding has important implications for practitioners who utilize a similar pressure support strategy when conducting a ventilator wean. Additionally, this study outlines major differences among ventilator manufacturers when considering inspiratory rise time and cycling criteria.

  3. 46 CFR 116.610 - Ventilation ducts.

    Science.gov (United States)

    2010-10-01

    ... served by the ventilation duct for shutting off the passage of air through the ventilation duct in the... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation ducts. 116.610 Section 116.610 Shipping... Ventilation § 116.610 Ventilation ducts. (a) For the purposes of this section, a ventilation duct includes any...

  4. Omnidirectional ventilated acoustic barrier

    Science.gov (United States)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2017-11-01

    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  5. Lavt elforbrug til ventilation

    DEFF Research Database (Denmark)

    Jagemar, L.; Bergsøe, Niels Christian

    Rapporten giver gode råd om mulige energibesparelser og praktiske projekteringshensyn, som er forbundet med udformning af energieffektiv ventilation i ikke blot kontorbygninger, men i alle bygninger med komfortventilationsanlæg. I forbindelse med projektering af ventilationsanlæg har interessen...

  6. Understanding mechanical ventilators.

    Science.gov (United States)

    Chatburn, Robert L

    2010-12-01

    The respiratory care academic community has not yet adopted a standardized system for classifying and describing modes of ventilation. As a result, there is enough confusion that patient care, clinician education and even ventilator sales are all put at risk. This article summarizes a ventilator mode taxonomy that has been extensively published over the last 15 years. Specifically, the classification system has three components: a description of the control variables within breath; a description of the sequence of mandatory and spontaneous breaths; and a specification for the targeting scheme. This three-level specification provides scalability of detail to make the mode description appropriate for the particular need. At the bedside, we need only refer to a mode briefly using the first or perhaps first and second components. To distinguish between similar modes and brand names, we would need to include all components. This taxonomy uses the equation of motion for the respiratory system as the underlying theoretical framework. All terms relevant to describing modes of mechanical ventilation are defined in an extensive appendix.

  7. Mechanical ventilation of mice

    NARCIS (Netherlands)

    Schwarte, L. A.; Zuurbier, C. J.; Ince, C.

    2000-01-01

    Due to growing interest in murine functional genomics research, there is an increasing need for physiological stable in vivo murine models. Of special importance is support and control of ventilation by artificial respiration, which is difficult to execute as a consequence of the small size of the

  8. Passive stack ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, J.; Parkins, L.; Shaw, P.; Watkins, R. [Databuild, Birmingham (United Kingdom)

    1994-12-31

    The adequate ventilation of houses is essential for both the occupants and the building fabric. As air-tightness standards increase, background infiltration levels decrease and extra ventilation has to be designed into the building. Passive stack ventilation has many advantages - particularly when employed in low cost housing schemes -but it is essential that it performs satisfactorily. This paper give the results from monitoring two passive stack ventilation schemes. One scheme was a retrofit into refurbished local authority houses in which a package of energy efficiency measures had been taken and condensation had been a problem. The other series of tests were conducted on a new installation in a Housing Association development. Nine houses were monitored each of which had at least two passive vents. The results show air flow rates by the passive ducts equivalent to approximately 1 room air change per hour. The air flow in the ducts was influenced by both, internal to external temperature difference and wind speed and direction. (author)

  9. Elforbrug til mekanisk ventilation

    DEFF Research Database (Denmark)

    Olufsen, P.

    I Energi 2000 er ventilationsområdet udpeget som et af de områder, hvor der bør tages initiativ til at fremme elbesparelser. I rapporten beskrives og analyseres målinger af elforbruget til ventilation i 12 bygninger, der alle anvendes til administration eller lignende formål. På grundlag af...

  10. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  11. Ventil – ochrana stability

    Czech Academy of Sciences Publication Activity Database

    Řípa, Milan

    Červenec (2017) ISSN 2464-7888 Institutional support: RVO:61389021 Keywords : fusion * ITER * tokamak * valve * VAT * gyrotron Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://www.3pol.cz/cz/rubriky/jaderna-fyzika-a-energetika/2035-ventil-ochrana-stability

  12. Ventilation homogeneity improves with growth early in life.

    Science.gov (United States)

    Chakr, Valentina C; Llapur, Conrado J; Sarria, Edgar E; Mattiello, Rita; Kisling, Jeffrey; Tiller, Christina; Kimmel, Risa; Poindexter, Brenda; Tepper, Robert S

    2012-04-01

    Some studies have suggested that lung clearance index (LCI) is age-independent among healthy subjects early in life, which implies that ventilation distribution does not vary with growth. However, other studies of older children and adolescents suggest that ventilation becomes more homogenous with somatic growth. We describe a new technique to obtain multiple breath washout (MBWO) in sedated infants and toddlers using slow augmented inflation breaths that yields an assessment of LCI and the slope of phase III, which is another index of ventilation inhomogeneity. We evaluated whether ventilation becomes more homogenous with increasing age early in life, and whether infants with chronic lung disease of infancy (CLDI) have increased ventilation inhomogeneity relative to full-term controls (FT). FT (N = 28) and CLDI (N = 22) subjects between 3 and 28 months corrected-age were evaluated. LCI decreased with increasing age; however, there was no significant difference between the two groups (9.3 vs. 9.5; P = 0.56). Phase III slopes adjusted for expired volume (S(ND)) increased with increasing breath number during the washout and decreased with increasing age. There was no significant difference in S(ND) between full-term and CLDI subjects (211 vs. 218; P = 0.77). Our findings indicate that ventilation becomes more homogenous with lung growth and maturation early in life; however, there is no evidence that ventilation inhomogeneity is a significant component of the pulmonary pathophysiology of CLDI. Copyright © 2011 Wiley Periodicals, Inc.

  13. Jet Ventilation during Rigid Bronchoscopy in Adults: A Focused Review

    Directory of Open Access Journals (Sweden)

    Laurie Putz

    2016-01-01

    Full Text Available The indications for rigid bronchoscopy for interventional pulmonology have increased and include stent placements and transbronchial cryobiopsy procedures. The shared airway between anesthesiologist and pulmonologist and the open airway system, requiring specific ventilation techniques such as jet ventilation, need a good understanding of the procedure to reduce potentially harmful complications. Appropriate adjustment of the ventilator settings including pause pressure and peak inspiratory pressure reduces the risk of barotrauma. High frequency jet ventilation allows adequate oxygenation and carbon dioxide removal even in cases of tracheal stenosis up to frequencies of around 150 min−1; however, in an in vivo animal model, high frequency jet ventilation along with normal frequency jet ventilation (superimposed high frequency jet ventilation has been shown to improve oxygenation by increasing lung volume and carbon dioxide removal by increasing tidal volume across a large spectrum of frequencies without increasing barotrauma. General anesthesia with a continuous, intravenous, short-acting agent is safe and effective during rigid bronchoscopy procedures.

  14. Cough and ventilatory adjustments evoked by aerosolised capsaicin and distilled water (fog) in man.

    Science.gov (United States)

    Lavorini, Federico; Pantaleo, Tito; Geri, Pietro; Mutolo, Donatella; Pistolesi, Massimo; Fontana, Giovanni A

    2007-06-15

    Airway receptors mediate cough and ventilatory adjustments. Simultaneous assessment of cough sensory-motor components and changes in breathing pattern may provide insights into the receptor(s) prevailingly stimulated by inhaled irritants. Nineteen subjects inhaled capsaicin and fog up to threshold concentrations for cough. Cough intensity, respiratory sensations and changes in breathing pattern induced by the two irritants were compared. Capsaicin and fog cough threshold values did not correlate. Coughing induced by both agents was preceded by qualitatively similar sensations and by significant increases in minute ventilation and respiratory drive due to selective increases in tidal volume (Pfog and capsaicin cough threshold values suggests differences in the neural mechanisms activated. The selective increase in tidal volume suggests prevailing involvement of rapidly adapting receptors. The stronger sensations evoked by capsaicin may contribute to the higher cough frequency observed with this agent.

  15. Performance characteristics of seven bilevel mechanical ventilators in pressure-support mode with different cycling criteria: a comparative bench study.

    Science.gov (United States)

    Chen, Yuqing; Cheng, Kewen; Zhou, Xin

    2015-01-26

    Pressure support ventilation from a bilevel device is a standard technique for non-invasive home ventilation. A bench study was designed to compare the performance and patient-ventilator synchronization of 7 bilevel ventilators, in the presence of system leaks. Ventilators were connected to a Hans Rudolph Series 1101 lung simulator (compliance, 50 mL/cmH2O; expiratory resistance, 20 cmH2O/L/s; respiratory rate, 15 breaths/min; inspiratory time, 1.0 s). All ventilators were set at 15 cmH2O pressure support and 5 cmH2O positive end-expiratory pressure. Tests were conducted at 2 system leaks (12-15 and 25-28 L/min). The performance characteristics and patient-ventilator asynchrony were assessed, including flow, airway pressure, time, and workload. The Breas Vivo30 could not synchronize with the simulator (frequent auto-triggering) at a leak of 25-28 L/min, but provided stable assisted ventilation when the leak was 12-15 L/min. Missed efforts and back-up ventilation occurred for the Weinmann VENTImotion and Airox Smartair Plus, requiring adjustment of trigger effort. All ventilators had a short trigger delay time (ventilators, possibly due to software algorithm differences. Adjusting the cycling criteria settings can alter the shape of the inspiratory phase and peak expiratory flow, and improve patient-ventilator synchrony.

  16. Design Procedure for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Tjelflaat, Per Olaf

    Mechanical and natural ventilation systems have developed separately during many years. The natural next step in this development is development of ventilation concepts that utilises and combines the best features from each system into a new type of ventilation system - Hybrid Ventilation....... Buildings with hybrid ventilation often include other sustainable technologies and an energy optimisation requires an integrated approach in the design of the building and its mechanical systems. Therefore, the hybrid ventilation design procedure differs from the design procedure for conventional HVAC....... The first ideas on a design procedure for hybrid ventilation is presented and the different types of design methods, that is needed in different phases of the design process, is discussed....

  17. ASHRAE and residential ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  18. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  19. Purge ventilation operability

    International Nuclear Information System (INIS)

    Marella, J.R.

    1995-01-01

    A determination of minimum requirements for purge exhaust ventilation system operability has been performed. HLWE and HLW Regulatory Program personnel have evaluated the various scenarios of equipment conditions and HLWE has developed the requirements for purge exhaust systems. This report is provided to document operability requirements to assist Tank Farm personnel to determine whether a system is operable/inoperable and to define required compensatory actions

  20. Ventilation i industrien

    DEFF Research Database (Denmark)

    Valbjørn, O.

    I en række afsnit belyses problemer med træk, kulde, varme, og luftforurening på industriens arbejdspladser, og hvordan man ved ventilation og bygningsudformning kan bekæmpe disse gener. Hvert afsnit kan i princippet læses for sig, og anvisningen kan derfor bruges som håndbog, både af de der er...

  1. Harnessing natural ventilation benefits.

    Science.gov (United States)

    O'Leary, John

    2013-04-01

    Making sure that a healthcare establishment has a good supply of clean fresh air is an important factor in keeping patients, staff, and visitors, free from the negative effects of CO2 and other contaminants. John O'Leary of Trend Controls, a major international supplier of building energy management solutions (BEMS), examines the growing use of natural ventilation, and the health, energy-saving, and financial benefits, that it offers.

  2. Performance evaluation of ventilation radiators

    International Nuclear Information System (INIS)

    Myhren, Jonn Are; Holmberg, Sture

    2013-01-01

    A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust-ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions. The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and identify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered. The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20% without sacrificing ventilation efficiency or thermal comfort. Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught. -- Highlights: ► Low temperature heat emitters are currently of interest due to their potential for increasing energy efficiency. ► A ventilation radiator is a combined ventilation and heat emission unit which can be adapted to low temperature heating systems. ► We examine how ventilation radiators can be made to be more efficient in terms of energy consumption and thermal comfort. ► Current work focuses on heat transfer mechanisms and convection fin configuration of ventilation radiators

  3. Human response to ductless personalized ventilation coupled with displacement ventilation

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Veselý, Michal; Melikov, Arsen K.

    2012-01-01

    A human subject experiment was carried out to investigate the extent to which ductless personalized ventilation (DPV) in conjunction with displacement ventilation can improve perceived air quality (PAQ) and thermal comfort at elevated room air temperature in comparison with displacement ventilation......). During one hour exposure participants answered questionnaires regarding PAQ and thermal comfort. PAQ was significantly better with DPV than without DPV at the same background conditions. Thermal comfort improved when DPV was used. Combining DPV with displacement ventilation showed the potential...... for improving PAQ and thermal comfort when room air temperature is above the comfortable temperature range....

  4. A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input

    Directory of Open Access Journals (Sweden)

    Mario Collotta

    2014-07-01

    Full Text Available Heating, ventilating and air-conditioning (HVAC systems are typical non-linear time-variable multivariate systems with disturbances and uncertainties. In this paper, an approach based on a combined neuro-fuzzy model for dynamic and automatic regulation of indoor temperature is proposed. The proposed artificial neural network performs indoor temperatures forecasts that are used to feed a fuzzy logic control unit in order to manage the on/off switching of the HVAC system and the regulation of the inlet air speed. Moreover, the used neural network is optimized by the analytical calculation of the embedding parameters, and the goodness of this approach is tested through MATLAB. The fuzzy controller is driven by the indoor temperature forecasted by the neural network module and is able to adjust the membership functions dynamically, since thermal comfort is a very subjective factor and may vary even in the same subject. The paper shows some experimental results, through a real implementation in an embedded prototyping board, of the proposed approach in terms of the evolution of the inlet air speed injected by the fan coils, the indoor air temperature forecasted by the neural network model and the adjusting of the membership functions after receiving user feedback.

  5. Mechanical ventilation in neurosurgical patients

    Directory of Open Access Journals (Sweden)

    Keshav Goyal

    2013-01-01

    Full Text Available Mechanical ventilation significantly affects cerebral oxygenation and cerebral blood flow through changes in arterial carbon dioxide levels. Neurosurgical patients might require mechanical ventilation for correction and maintenance of changes in the pulmonary system that occur either due to neurosurgical pathology or following surgery during the acute phase. This review discusses the basics of mechanical ventilation relevant to the neurosurgeon in the day-to-day management of neurosurgical patient requiring artificial support of the respiration.

  6. 46 CFR 42.15-45 - Ventilators.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ventilators. 42.15-45 Section 42.15-45 Shipping COAST... Conditions of Assignment of Freeboard § 42.15-45 Ventilators. (a) Ventilators in position 1 or 2 to spaces... any ventilator exceeds 351/2 inches in height it shall be specially supported. (b) Ventilators passing...

  7. Design Principles for Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation....... The hybrid ventilation concepts, design challenges and principles are discussed and illustrated by four building examples....

  8. Monitoring during Mechnical Ventilation

    Directory of Open Access Journals (Sweden)

    Dean Hess

    1996-01-01

    Full Text Available Monitoring is a continuous, or nearly continuous, evaluation of the physiological function of a patient in real time to guide management decisions, including when to make therapeutic interventions and assessment of those interventions. Pulse oximeters pass two wavelengths of light through a pulsating vascular bed and determine oxygen saturation. The accuracy of pulse oximetry is about ±4%. Capnography measures carbon dioxide at the airway and displays a waveform called the capnogram. End-tidal PCO2 represents alveolar PCO2 and is determined by the ventilation-perfusion quotient. Use of end-tidal PCO2 as an indication of arterial PCO2 is often deceiving and incorrect in critically ill patients. Because there is normally very little carbon dioxide in the stomach, a useful application of capnography is the detection of esophageal intubation. Intra-arterial blood gas systems are available, but the clinical impact and cost effectiveness of these is unclear. Mixed venous oxygenation (PvO2 or SvO2 is a global indicator of tissue oxygenation and is affected by arterial oxygen content, oxygen consumption and cardiac output. Indirect calorimetry is the calculation of energy expenditure and respiratory quotient by the measurement of oxygen consumption and carbon dioxide production. A variety of mechanics can be determined in mechanically ventilated patients including resistance, compliance, auto-peak end-expiratory pressure (PEEP and work of breathing. The static pressure-volume curve can be used to identify lower and upper infection points, which can be used to determine the appropriate PEEP setting and to avoid alveolar overdistension. Although some forms of monitoring have become a standard of care during mechanical ventilation (eg, pulse oximetry, there is little evidence that use of any monitor affects patient outcome.

  9. Heating, ventilation and cooling

    CSIR Research Space (South Africa)

    Osburn, L

    2009-02-01

    Full Text Available will be comfortable in the temperature range between 21° an d 26° at a humidity ratio of 0.004. The temperature at which an individual is comfortable is dependant on a large number of different variables including humidity, air speed, outside temperature, as well..., increasing the fresh air ventilation rates is going to directly increase the energy load on the air conditioners as more air is requiring conditioning. SANS 10400-0 requires that 5l/s/person of outside air is provided for office spaces, while Green Star...

  10. Plane Stratified Flow in a Room Ventilated by Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.

    2004-01-01

    The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...

  11. Radioaerosol ventilation imaging in ventilator-dependent patients. Technical considerations

    International Nuclear Information System (INIS)

    Vezina, W.; Chamberlain, M.; Vinitski, S.; King, M.; Nicholson, R.; Morgan, W.K.

    1985-01-01

    The differentiation of pulmonary embolism (PE) from regional ventilatory abnormalities accompanied by reduced perfusion requires contemporary perfusion and ventilation studies. Distinguishing these conditions in ventilator-dependent patients is aided by administering a Tc-99m aerosol to characterize regional ventilation, and by performing a conventional Tc-99m MAA perfusion study. The technique uses a simple in-house constructed apparatus. Simple photographic techniques suffice, but computer subtraction of perfusion from the combined perfusion-ventilation image renders interpretation easier if aerosol administration follows perfusion imaging. Multiple defects can be examined in a single study. Excluding normal or near-normal perfusion studies, PE was thought to be present in eight of 16 patients after perfusion imaging alone, but in only one of eight after added aerosol imaging. Angiography confirmed the diagnosis in that patient. Of the eight patients who had abnormal perfusion but were thought unlikely to have PE from the perfusion study alone, two had normal ventilation, and subsequently were shown to have PE by angiography. Because angiography was only performed on patients who were thought to have a high probability of PE on sequential perfusion-ventilation imaging, the true incidence of PE may have been higher. Aerosol ventilation imaging is a useful adjunct to perfusion imaging in patients on ventilators. It requires an efficient delivery system, particularly if aerosol administration follows perfusion imaging, as it does in this study

  12. Planning an outing from hospital for ventilator-dependent children.

    Science.gov (United States)

    Gilgoff, I S; Helgren, J

    1992-10-01

    Returning ventilator-dependent children to the home environment has become a well-accepted occurrence. The success of a home program depends on careful pre-discharge planning in order to ensure the child's medical safety, and adequate preparation to ensure the child's and family's adjustment to an active community life after discharge. To achieve this, involvement in community activities must begin while the child is still in hospital. As part of a complete rehabilitation program, nine ventilator-dependent children were taken on an inpatient outing to Disneyland. The planning and goals of the outing are described.

  13. Performance of "ductless" personalized ventilation in conjunction with displacement ventilation: Impact of intake height

    DEFF Research Database (Denmark)

    Halvonova, B.; Melikov, Arsen Krikor

    2010-01-01

    The importance of the intake positioning height above the floor level on the performance of “ductless” personalized ventilation (“ductless” PV) in conjunction with displacement ventilation (DV) was examined with regard to the quality of inhaled air and of the thermal comfort provided. A typical...... supplied over the floor at four different heights, i.e. 2, 5, 10 and 20 cm and transported it direct to the breathing level. Moreover, two displacement airflow rates were used with a supply temperature adjusted in order to maintain an exhaust air temperature of 26 °C. Two pollution sources, namely air...... exhaled by one of the manikins and passive pollution on the table in front of the same manikin were simulated by constant dosing of tracer gases. The results show that the positioning of a “ductless” PV intake height up to 0.2 m above the floor will not significantly influence the quality of inhaled air...

  14. Emplacement ventilation system

    International Nuclear Information System (INIS)

    Vance, Robert W.

    2000-01-01

    This analysis updates design concepts for emplacement ventilation based upon the increased air flow required through the drift in the EDA II design (CRWMS M and O 1999a, Table O-6) and by current thermal modeling results compared to the VA design (DOE 1998, Section 4.2.4). It reviews the air pathway in the emplacement drift, describes three exhaust system options, discusses two air control options, and examines concepts for several system physical components including isolation doors, a portable shadow shield, and a partition in an exhaust main. The air path through the emplacement drift, itself, remains the same as described in the VA and EDA II design; that is, exhaust fans located on the surface pull air through an intake shaft into the subsurface repository. The ventilation air is distributed to the east and west mains by the cross-block drifts. From the mains, the air enters the emplacement drifts and flows to a central exhaust raise. The air then travels down an exhaust raise to the exhaust system

  15. Ventilator-associated pneumonia.

    Science.gov (United States)

    Shaw, Michael Jan

    2005-05-01

    This review summarises some of the notable papers on ventilator-associated pneumonia (VAP) from January 2003 to October 2004. Ventilator-associated pneumonia remains an important drain on hospital resources. All population groups are affected, but patients with VAP are more likely to be older, sicker, and male, with invasive medical devices in situ. Early VAP diagnosis is desirable to reduce VAP mortality and to retard emergence of multidrug-resistant microbes. This may be possible using preliminary culture results or intracellular organism in polymorphonuclear cells. In most intensive care units, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii are the commonest organisms isolated in VAP. However, causative organisms vary between and within hospitals. Consequently, individual intensive care units should develop empirical antibiotic policies to target the pathogenic bacteria prevalent in their patient populations. Preventative strategies aimed at reducing aerodigestive tract colonisation by pathogenic organisms, and also their subsequent aspiration, are becoming increasingly important. Educating medical staff about these simple measures is therefore pertinent. To reduce the occurrence of multidrug-resistant organisms, limiting the duration of antibiotic treatment to 8 days and antimicrobial rotation should be contemplated. Empirical therapy with antipseudomonal penicillins plus beta-lactamase inhibitors should be considered. If methicillin-resistant Staphylococcus aureus VAP is a possibility, linezolid may be better than vancomycin. Prevention remains the key to reducing VAP prevalence.

  16. Multifrequency Oscillatory Ventilation in the Premature Lung: Effects on Gas Exchange, Mechanics, and Ventilation Distribution.

    Science.gov (United States)

    Kaczka, David W; Herrmann, Jacob; Zonneveld, C Elroy; Tingay, David G; Lavizzari, Anna; Noble, Peter B; Pillow, J Jane

    2015-12-01

    Despite the theoretical benefits of high-frequency oscillatory ventilation (HFOV) in preterm infants, systematic reviews of randomized clinical trials do not confirm improved outcomes. The authors hypothesized that oscillating a premature lung with multiple frequencies simultaneously would improve gas exchange compared with traditional single-frequency oscillatory ventilation (SFOV). The goal of this study was to develop a novel method for HFOV, termed "multifrequency oscillatory ventilation" (MFOV), which relies on a broadband flow waveform more suitable for the heterogeneous mechanics of the immature lung. Thirteen intubated preterm lambs were randomly assigned to either SFOV or MFOV for 1 h, followed by crossover to the alternative regimen for 1 h. The SFOV waveform consisted of a pure sinusoidal flow at 5 Hz, whereas the customized MFOV waveform consisted of a 5-Hz fundamental with additional energy at 10 and 15 Hz. Per standardized protocol, mean pressure at airway opening ((Equation is included in full-text article.)) and inspired oxygen fraction were adjusted as needed, and root mean square of the delivered oscillatory volume waveform (Vrms) was adjusted at 15-min intervals. A ventilatory cost function for SFOV and MFOV was defined as (Equation is included in full-text article.), where Wt denotes body weight. Averaged over all time points, MFOV resulted in significantly lower VC (246.9 ± 6.0 vs. 363.5 ± 15.9 ml mmHg kg) and (Equation is included in full-text article.)(12.8 ± 0.3 vs. 14.1 ± 0.5 cm H2O) compared with SFOV, suggesting more efficient gas exchange and enhanced lung recruitment at lower mean airway pressures. Oscillation with simultaneous multiple frequencies may be a more efficient ventilator modality in premature lungs compared with traditional single-frequency HFOV.

  17. Effect of an automatic triggering and cycling system on comfort and patient-ventilator synchrony during pressure support ventilation.

    Science.gov (United States)

    Vasconcelos, Renata dos S; Melo, Luíz Henrique de P; Sales, Raquel P; Marinho, Liégina S; Deulefeu, Flávio C; Reis, Ricardo C; Alves-de-Almeida, Mirizana; Holanda, Marcelo A

    2013-01-01

    The digital Auto-Trak™ system is a technology capable of automatically adjusting the triggering and cycling mechanisms during pressure support ventilation (PSV). To compare Auto-Trak with conventional settings in terms of patient-ventilator synchrony and discomfort. Twelve healthy volunteers underwent PSV via the mouth by breathing through an endotracheal tube. In the conventional setting, a pressure support of 8 cm H2O with flow cycling (25% peak inspiratory flow) and a sensitivity of 1 cm H2O was adjusted. In Auto-Trak the triggering and cycling were automatically set. Discomfort, effort of breathing, and the asynchrony index (AI) were assessed. In a complementary bench study, the inspiratory and expiratory time delays were quantified for both settings in three mechanical models: 'normal', obstructive (COPD), and restrictive (ARDS), using the ASL 5000 simulator. In the volunteer study the AI and the discomfort scores did not differ statistically between the two settings. In the bench investigation the use of Auto-Trak was associated with a greater triggering delay in the COPD model and earlier expiratory cycling in the ARDS model but with no asynchronic events. Use of the Auto-Trak system during PSV showed similar results in comparison to the conventional adjustments with respect to patient-ventilator synchrony and discomfort in simulated conditions of invasive mechanical ventilation. Copyright © 2013 S. Karger AG, Basel.

  18. Free Convection Personalized Ventilation (FCPV)

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Normally we supply fresh air to a room with a diffuser, and this air is distributed in the room according to different principles as: mixing ventilation, displacement ventilation etc. That means we have to supply a very large amount of air to the whole room, although a person in the room totally ...

  19. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... to be the only possible approach to obtain the volume flow in: thermal plumes in ventilated rooms....

  20. Inhalation therapy in mechanical ventilation

    Science.gov (United States)

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  1. Heliox allows for lower minute volume ventilation in an animal model of ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Charlotte J Beurskens

    Full Text Available BACKGROUND: Helium is a noble gas with a low density, allowing for lower driving pressures and increased carbon dioxide (CO2 diffusion. Since application of protective ventilation can be limited by the development of hypoxemia or acidosis, we hypothesized that therefore heliox facilitates ventilation in an animal model of ventilator-induced lung injury. METHODS: Sprague-Dawley rats (N=8 per group were mechanically ventilated with heliox (50% oxygen; 50% helium. Controls received a standard gas mixture (50% oxygen; 50% air. VILI was induced by application of tidal volumes of 15 mL kg(-1; lung protective ventilated animals were ventilated with 6 mL kg(-1. Respiratory parameters were monitored with a pneumotach system. Respiratory rate was adjusted to maintain arterial pCO2 within 4.5-5.5 kPa, according to hourly drawn arterial blood gases. After 4 hours, bronchoalveolar lavage fluid (BALF was obtained. Data are mean (SD. RESULTS: VILI resulted in an increase in BALF protein compared to low tidal ventilation (629 (324 vs. 290 (181 μg mL(-1; p<0.05 and IL-6 levels (640 (8.7 vs. 206 (8.7 pg mL(-1; p<0.05, whereas cell counts did not differ between groups after this short course of mechanical ventilation. Ventilation with heliox resulted in a decrease in mean respiratory minute volume ventilation compared to control (123 ± 0.6 vs. 146 ± 8.9 mL min(-1, P<0.001, due to a decrease in respiratory rate (22 (0.4 vs. 25 (2.1 breaths per minute; p<0.05, while pCO2 levels and tidal volumes remained unchanged, according to protocol. There was no effect of heliox on inspiratory pressure, while compliance was reduced. In this mild lung injury model, heliox did not exert anti-inflammatory effects. CONCLUSIONS: Heliox allowed for a reduction in respiratory rate and respiratory minute volume during VILI, while maintaining normal acid-base balance. Use of heliox may be a useful approach when protective tidal volume ventilation is limited by the development of

  2. Cardiac gated ventilation

    Science.gov (United States)

    Hanson, C. William, III; Hoffman, Eric A.

    1995-05-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. We evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50msec scan aperture. Multislice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. We observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a nonfailing model of the heart.

  3. Solar ventilation and tempering

    Science.gov (United States)

    Adámek, Karel; Pavlů, Miloš; Bandouch, Milan

    2014-08-01

    The paper presents basic information about solar panels, designed, realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window, facade, chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring, autumn) prolongs the period without classical heating of the room or building, in winter the classical heating is supported. In the summer period the system, furnished with chimney, can exhaust inner warm air together with necessary cooling of the system by gravity circulation, only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

  4. Inhibitory Effect of Nasal Intermittent Positive Pressure Ventilation on Gastroesophageal Reflux.

    Directory of Open Access Journals (Sweden)

    Danny Cantin

    Full Text Available Non-invasive intermittent positive pressure ventilation can lead to esophageal insufflations and in turn to gastric distension. The fact that the latter induces transient relaxation of the lower esophageal sphincter implies that it may increase gastroesophageal refluxes. We previously reported that nasal Pressure Support Ventilation (nPSV, contrary to nasal Neurally-Adjusted Ventilatory Assist (nNAVA, triggers active inspiratory laryngeal closure. This suggests that esophageal insufflations are more frequent in nPSV than in nNAVA. The objectives of the present study were to test the hypotheses that: i gastroesophageal refluxes are increased during nPSV compared to both control condition and nNAVA; ii esophageal insufflations occur more frequently during nPSV than nNAVA. Polysomnographic recordings and esophageal multichannel intraluminal impedance pHmetry were performed in nine chronically instrumented newborn lambs to study gastroesophageal refluxes, esophageal insufflations, states of alertness, laryngeal closure and respiration. Recordings were repeated without sedation in control condition, nPSV (15/4 cmH2O and nNAVA (~ 15/4 cmH2O. The number of gastroesophageal refluxes recorded over six hours, expressed as median (interquartile range, decreased during both nPSV (1 (0, 3 and nNAVA [1 (0, 3] compared to control condition (5 (3, 10, (p < 0.05. Meanwhile, the esophageal insufflation index did not differ between nPSV (40 (11, 61 h-1 and nNAVA (10 (9, 56 h-1 (p = 0.8. In conclusion, nPSV and nNAVA similarly inhibit gastroesophageal refluxes in healthy newborn lambs at pressures that do not lead to gastric distension. In addition, the occurrence of esophageal insufflations is not significantly different between nPSV and nNAVA. The strong inhibitory effect of nIPPV on gastroesophageal refluxes appears identical to that reported with nasal continuous positive airway pressure.

  5. Non-invasive ventilation improves respiratory distress in children with acute viral bronchiolitis: a systematic review.

    Science.gov (United States)

    Combret, Yann; Prieur, Guillaume; LE Roux, Pascal; Médrinal, Clément

    2017-06-01

    Non-invasive ventilation (NIV) is a common treatment for bronchiolitis. However, consensus concerning its efficacy is lacking. The aim of this systematic review was to assess NIV effectiveness to reduce respiratory distress. Secondary objectives were to summarize the effects of NIV, identify predictive factors for failure and describe settings and applications. Literature searches were conducted in MEDLINE/PubMed, PEDro, Cochrane, EMBASE, CINAHL, Web of Science, UpToDate, and SuDoc from 1990 to April 2015. Randomized controlled trials, controlled non-randomized trials and prospective studies of NIV (continuous positive airway pressure [CPAP], bi-level CPAP, or neurally-adjusted ventilator assist) for bronchiolitis in infants younger than 2 years were included. Fourteen studies were included, for a total of 379 children. Of these, 357 were treated with NIV as first intention. Respiratory distress, heart rate, respiratory rate and respiratory effort improved (P<0.05). Results were inconclusive regarding prevention of endotracheal intubation. Few adverse events were reported. NIV reduced carbon dioxide pressure (pCO2) in 10 studies. Two randomized controlled studies reported a decrease of 7 mmHg in pCO2 (P<0.05). Predictive factors of NIV failure were apneas, high pCO2, young age, low weight, elevated heart rate and high pediatric risk of mortality score. NIV is mostly administered through a nasal mask, nasal cannula or helmet, with an initial expiratory positive airway pressure of 7 cmH2O. NIV shows promising results for the reduction of respiratory distress in acute viral bronchiolitis, as shown in several recent studies. However, there is a lack of robust studies to confirm this.

  6. Mechanical ventilation: invasive versus noninvasive.

    Science.gov (United States)

    Brochard, L

    2003-11-01

    Mechanical ventilation is the most widely used supportive technique in intensive care units. Several forms of external support for respiration have long been described to assist the failing ventilatory pump, and access to lower airways through tracheostomy or endotracheal tubes had constituted a major advance in the management of patients with respiratory distress. More recently, however, new "noninvasive" ventilation (NIV) techniques, using patient/ventilator interfaces in the form of facial masks, have been designed. The reasons for promoting NIV include a better understanding of the role of ventilatory pump failure in the indications for mechanical ventilation, the development of ventilatory modalities able to work in synchrony with the patient, and the extensive recognition of complications associated with endotracheal intubation and standard mechanical ventilation. NIV has been used primarily for patients with acute hypercapnic ventilatory failure, and especially for acute exacerbation of chronic obstructive pulmonary disease. In this population, the use of NIV is associated with a marked reduction in the need for endotracheal intubation, a decrease in complication rate, a reduced duration of hospital stay and a substantial reduction in hospital mortality. Similar benefits have also been demonstrated in patients with asphyxic forms of acute cardiogenic pulmonary oedema. In patients with primarily hypoxemic forms of respiratory failure, the level of success of NIV is more variable, but major benefits have also been demonstrated in selected populations with no contraindications such as multiple organ failure, loss of consciousness or haemodynamic instability. One important factor in success seems to be the early delivery of noninvasive ventilation during the course of respiratory failure. Noninvasive ventilation allows many of the complications associated with mechanical ventilation to be avoided, especially the occurrence of nosocomial infections. The current

  7. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  8. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  9. Enteral Nutrition and Acid-Suppressive Therapy in the PICU: Impact on the Risk of Ventilator-Associated Pneumonia.

    Science.gov (United States)

    Albert, Ben D; Zurakowski, David; Bechard, Lori J; Priebe, Gregory P; Duggan, Christopher P; Heyland, Daren K; Mehta, Nilesh M

    2016-10-01

    Enteral nutrition has been implicated as a risk factor for ventilator-associated pneumonia. We explored the prevalence of ventilator-associated pneumonia and its association with clinical and nutrition-related therapies in mechanically ventilated children. Prospective, multicenter, cohort study. Fifty-nine PICU in 15 countries. Children less than 18 years old, mechanically ventilated for more than 48 hours. None. Multivariable logistic regression to determine factors associated with ventilator-associated pneumonia. Data are presented as median (interquartile range) or counts (%). We enrolled 1,245 subjects (45% women; 42% surgical), age 20 months (4-84 mo), and duration of mechanical ventilation 7 days (3-13 d). Culture-positive ventilator-associated pneumonia was diagnosed in 80 patients (6.4%); duration of mechanical ventilation for this subgroup was 17 days (8-39 d). Enteral nutrition was delivered in 985 patients (79%), initiated within 48 hours in 592 patients (60%), and via postpyloric route in 354 patients (36%). Acid-suppressive agents were used in 763 patients (61%). The duration of enteral nutrition (p = 0.21), route (gastric vs postpyloric) of delivery (p = 0.94), severity of illness (p = 0.17), and diagnostic category on admission (p = 0.31) were not associated with ventilator-associated pneumonia. After adjusting for enteral nutrition days, illness severity, and site, ventilator-associated pneumonia was significantly associated with mechanical ventilation more than 10 days (odds ratio, 3.7; 95% CI, 2.2-6.5; p associated pneumonia was diagnosed in 6.5% of mechanically ventilated children in a heterogeneous multicenter cohort. We did not find a link between enteral nutrition duration or route of delivery and ventilator-associated pneumonia. In addition to duration of mechanical ventilation and length of PICU stay, the use of acid-suppressive therapy independently increased the likelihood of developing ventilator-associated pneumonia in this population

  10. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD....... The guidebook is also written for people working with CFD which have to be more aware of how this numerical method is applied in the area of ventilation. The guidebook has, for example, chapters that are very important for CFD quality control in general and for the quality control of ventilation related...

  11. Lecture Notes on Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The main task of the ventilation system or the air-conditioning system is to supply· and remove air and airborne materials and to supply or remove heat from a room. The necessary level of fresh air will be supplied to· a room by a ventilation system, and heat from equipment or solar radiation can...... be removed by an air-conditioning system. An industrial ventilation system may both take care of the occupants' comfort and the industrial processes in the area....

  12. 46 CFR 45.131 - Ventilators.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ventilators. 45.131 Section 45.131 Shipping COAST GUARD....131 Ventilators. (a) Ventilators passing through superstructures other than enclosed superstructures must have coamings of steel or equivalent material at the freeboard deck. (b) Ventilators in position 1...

  13. Climate control of natural ventilated pig houses

    NARCIS (Netherlands)

    Bontsema, J.; Straten, van G.; Salomons, L.; Klooster, van 't C.E.

    1996-01-01

    Ventilation in pig houses is important for maintaining a good climate for the welfare of animals and humans and for an optimal production. Mechanical ventilation has a good performance, since the ventilation rate can easily be controlled, but it is energy demanding, whereas natural ventilation is

  14. Design of Energy Efficient Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The focus in the development has for both systems been to minimise energy consumption while maintaining a comfortable and healthy indoor environment. The natural next step in this development is to develop ventilation concepts that utilises and combines the best features from each system......[Mechanical and natural ventilation] into a new type of ventilation system- Hybrid Ventilation....

  15. Preoperational test report, vent building ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  16. Concentration Distribution in a Mixing Ventilated Room

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Pedersen, D.N.; Nielsen, Peter V.

    2001-01-01

    Today there is an increasing focus on the importance of a proper ventilation system to obtain good working conditions in the term of air and thermal quality to ensure high productivity. Different ventilation principles are used, e.g., mixing ventilation and displacement ventilation. In order to e...

  17. Non-invasive mechanical ventilation: the benefits of the BiPAP system.

    Science.gov (United States)

    Teba, L; Marks, P; Benzo, R

    1996-01-01

    Many of the complications with endotracheal intubation and invasive mechanical ventilation can be avoided with the use of non-invasive mechanical ventilation (NIMV). This technique has been especially successful in treating patients with acute respiratory failure (ARF). NIMV improves gas exchange, avoids complications caused by endotracheal intubation, and allows patients to talk and take medications orally. This article reviews our experiences treating 27 patients with ARF with a BiPAP (bi-level positive airway pressure) ventilator. This is a portable unit which allows for selection of different modes of ventilation and adjustment of inspiratory and expiratory pressures. Non-invasive mechanical ventilation should be considered in patients presenting with ARF who are hemodynamically stable and in whom spontaneous breathing is preserved.

  18. Use of Adaptive Support Ventilation (ASV in Ventilator Associated Pneumonia (VAP - A Case Report

    Directory of Open Access Journals (Sweden)

    Bipphy Kath

    2009-01-01

    Full Text Available Prolonged ventilation leads to a higher incidence of ventilator associated pneumonia(VAP resulting in ventilator dependency, increased costs and subsequent weaning failures. Prevention and aggressive treatment of VAP alongwith patient friendly newer modes of ventilation like adaptive support ventilation go a long way in successful management of these cases.

  19. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Power ventilation systems except machinery space ventilation systems. Each power ventilation system must...

  20. The role of ventilation. 2 v. Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    The 78 papers which constitute the proceedings of the conference are presented in two volumes. The papers in the first volume cover sessions dealing with the following broad topics: ventilation strategies; indoor air quality; energy impact of ventilation; building design for optimum ventilation; ventilation and energy. Volume 2 also covers ventilation strategies and ventilation and energy, and in addition: calculation, measurement and design tools; measurement and modelling. Separate abstract have been prepared for 4 papers in Volume 1 which deal with the role of ventilation in mitigating the hazard of radon in buildings. (UK)

  1. Influence of tidal volume on ventilation inhomogeneity assessed by electrical impedance tomography during controlled mechanical ventilation

    International Nuclear Information System (INIS)

    Becher, T; Kott, M; Schädler, D; Vogt, B; Meinel, T; Weiler, N; Frerichs, I

    2015-01-01

    The global inhomogeneity (GI) index is a parameter of ventilation inhomogeneity that can be calculated from images of tidal ventilation distribution obtained by electrical impedance tomography (EIT). It has been suggested that the GI index may be useful for individual adjustment of positive end-expiratory pressure (PEEP) and for guidance of ventilator therapy. The aim of the present work was to assess the influence of tidal volume (V T ) on the GI index values. EIT data from 9 patients with acute respiratory distress syndrome ventilated with a low and a high V T of 5   ±   1 (mean  ±  SD) and 9   ±   1 ml kg −1 predicted body weight at a high and a low level of PEEP (PEEP high , PEEP low ) were analyzed. PEEP high and PEEP low were set 2 cmH 2 O above and 5 cmH 2 O below the lower inflection point of a quasi-static pressure volume loop, respectively. The lower inflection point was identified at 8.1   ±   1.4 (mean  ±  SD) cmH 2 O, resulting in a PEEP high of 10.1   ±   1.4 and a PEEP low of 3.1   ±   1.4 cmH 2 O. At PEEP high , we found no significant trend in GI index with low V T when compared to high V T (0.49   ±   0.15 versus 0.44   ±   0.09, p = 0.13). At PEEP low , we found a significantly higher GI index with low V T compared to high V T (0.66   ±   0.19 versus 0.59   ±   0.17, p = 0.01). When comparing the PEEP levels, we found a significantly lower GI index at PEEP high both for high and low V T . We conclude that high V T may lead to a lower GI index, especially at low PEEP settings. This should be taken into account when using the GI index for individual adjustment of ventilator settings. (paper)

  2. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  3. ENERGY STAR Certified Ventilating Fans

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of...

  4. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted......, with an average of 1.1 kJ/m3. The yearly mean SFP based on estimated runtime is approx. 0.8 kJ/m3. The case shows the unlocked potential that lies within mechanical ventilation for nearzero energy consuming buildings....

  5. Prevention of Ventilator-Associated Pneumonia: The Multimodal Approach of the Spanish ICU "Pneumonia Zero" Program.

    Science.gov (United States)

    Álvarez-Lerma, Francisco; Palomar-Martínez, Mercedes; Sánchez-García, Miguel; Martínez-Alonso, Montserrat; Álvarez-Rodríguez, Joaquín; Lorente, Leonardo; Arias-Rivera, Susana; García, Rosa; Gordo, Federico; Añón, José M; Jam-Gatell, Rosa; Vázquez-Calatayud, Mónica; Agra, Yolanda

    2018-02-01

    The "Pneumonia Zero" project is a nationwide multimodal intervention based on the simultaneous implementation of a comprehensive evidence-based bundle measures to prevent ventilator-associated pneumonia in critically ill patients admitted to the ICU. Prospective, interventional, and multicenter study. A total of 181 ICUs throughout Spain. All patients admitted for more than 24 hours to the participating ICUs between April 1, 2011, and December 31, 2012. Ten ventilator-associated pneumonia prevention measures were implemented (seven were mandatory and three highly recommended). The database of the National ICU-Acquired Infections Surveillance Study (Estudio Nacional de Vigilancia de Infecciones Nosocomiales [ENVIN]) was used for data collection. Ventilator-associated pneumonia rate was expressed as incidence density per 1,000 ventilator days. Ventilator-associated pneumonia rates from the incorporation of the ICUs to the project, every 3 months, were compared with data of the ENVIN registry (April-June 2010) as the baseline period. Ventilator-associated pneumonia rates were adjusted by characteristics of the hospital, including size, type (public or private), and teaching (postgraduate) or university-affiliated (undergraduate) status. The 181 participating ICUs accounted for 75% of all ICUs in Spain. In a total of 171,237 ICU admissions, an artificial airway was present on 505,802 days (50.0% of days of stay in the ICU). A total of 3,474 ventilator-associated pneumonia episodes were diagnosed in 3,186 patients. The adjusted ventilator-associated pneumonia incidence density rate decreased from 9.83 (95% CI, 8.42-11.48) per 1,000 ventilator days in the baseline period to 4.34 (95% CI, 3.22-5.84) after 19-21 months of participation. Implementation of the bundle measures included in the "Pneumonia Zero" project resulted in a significant reduction of more than 50% of the incidence of ventilator-associated pneumonia in Spanish ICUs. This reduction was sustained 21 months

  6. Reverse ventilation--perfusion mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients.

  7. Ventilation Model and Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    V. Chipman

    2003-07-18

    This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

  8. Wind Extraction for Natural Ventilation

    Science.gov (United States)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  9. Ventilation Model and Analysis Report

    International Nuclear Information System (INIS)

    Chipman, V.

    2003-01-01

    This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity

  10. TS LOOP ALCOVE VENTILATION ANALYSIS

    International Nuclear Information System (INIS)

    T.M. Lahnalampi

    2000-01-01

    The scope of this analysis is to examine the existing, constructor installed, physical ventilation installations located in each of the Exploratory Studies Facility (ESF) Topopah Springs (TS) Loop Alcoves No.1, No.2, No.3, No.4, No.6, and No.7. Alcove No.5 is excluded from the scope of this analysis since it is an A/E design system. Each ventilation installation will be analyzed for the purpose of determining if requirements for acceptance into the A/E design technical baseline have been met. The ventilation installations will be evaluated using Occupational Safety and Health Administration (OSHA) standards and Exploratory Studies Facility Design Requirements (ESFDR) (YMP 1997) requirements. The end product will be a technical analysis that will define ventilation installation compliance issues, any outstanding field changes, and use-as-is design deviations that are required to bring the ventilation installations into compliance with requirements for acceptance into the A/E design technical baseline. The analysis will provide guidance for alcove ventilation component design modifications to be developed to correct any deficient components that do not meet minimum requirements and standards

  11. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  12. Ventilator-associated Pneumonia in Neonatal Intensive Care Unit Due to Chryseobacterium indologenes.

    Science.gov (United States)

    Antonello, Vicente S; Daht, Priscila; Polli, Janaína; Gross, Milton; Colvero, Maurício

    2017-12-01

    Ventilator-associated pneumonia represents one of the most common nosocomial infections in neonatal intensive care units, increasing morbidity and mortality and associated costs. The authors report the case of a neonatal patient with ventilator-associated pneumonia secondary to Chryseobacterium indologenes and a review of the literature. The most effective empiric treatment for C. indologenes infection remains unclear due to limited data in the literature, and therefore, therapy should be adjusted in accordance with the result of the susceptibility profile.

  13. Impact of Prolonged Mechanical Ventilation in Very Low Birth Weight Infants: Results From a National Cohort Study.

    Science.gov (United States)

    Choi, Young-Bin; Lee, Juyoung; Park, Jisun; Jun, Yong Hoon

    2018-03-01

    To evaluate the in-hospital consequences of prolonged respiratory support with invasive mechanical ventilation in very low birth weight infants. A cohort study was performed using prospectively collected data from 69 neonatal intensive care units participating in the Korean national registry. In total, 3508 very low birth weight infants born between January 1, 2013 and December 31, 2014 were reviewed. The adjusted hazard ratio for death increased significantly for infants who received mechanical ventilation for more than 2 weeks compared with those were mechanically ventilated for 7 days or less. The individual mortality rate increased after 8 weeks, reaching 50% and 60% at 14 and 16 weeks of cumulative mechanical ventilation, respectively. After adjusting for potential confounders, the cumulative duration of mechanical ventilation was associated with a clinically significant increase in the odds of bronchopulmonary dysplasia and pulmonary hypertension. Mechanical ventilation exposure for longer than 2 weeks, compared with 7 days or less, was associated with retinopathy of prematurity requiring laser coagulation and periventricular leukomalacia. The odds of abnormal auditory screening test results were significantly increased in infants who needed mechanical ventilation for more than 4 weeks. A longer cumulative duration of mechanical ventilation was associated with increased lengths of hospitalization and parenteral nutrition and a higher probability of discharge with poor achievement of physical growth. Although mechanical ventilation is a life-saving intervention for premature infants, these results indicate that it is associated with negative consequences when applied for prolonged periods. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Impact of Fire Ventilation on General Ventilation in the Building

    Science.gov (United States)

    Zender-Świercz, Ewa; Telejko, Marek

    2017-10-01

    The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.

  15. Influence of Persons' Movements on Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Brohus, Henrik; Hyldig, Mikkel; Kamper, Simon

    2008-01-01

    Most often the ventilation effectiveness of a ventilated room is determined without considering the influence of persons´ movements. Even though the main reason for supplying the ventilation may be to create a healthy and productive environment for the occupants, their own influence...... on the ventilation is usually disregarded. This paper presents results from a systematic investigation of the movements´ influence on the ventilation effectiveness using human subjects combined with tracer gas measurements. Several typical "movements" are defined and carefully repeated to determine the influence...... of different kinds of movement compared with the case of no movements. It is found that mixing ventilation is considerably more robust compared with displacement ventilation. At the same time it is found that displacement ventilation on average is more effective than mixing ventilation when movements prevail...

  16. Evaluation of a computerized system for mechanical ventilation of infants.

    Science.gov (United States)

    Tehrani, Fleur T; Abbasi, Soraya

    2009-04-01

    To evaluate a computerized system for mechanical ventilation of infants. FLEX is a computerized system that includes the features of a patented mode known as adaptive-support ventilation (ASV). In addition, it has many other features including adjustment of positive end-expiratory pressure (PEEP), fraction of inspired oxygen (F(IO2)), minute ventilation, and control of weaning. It is used as an open-loop decision support system or as a closed-loop technique. Blood gas and ventilation data were collected from 12 infants in the neonatal intensive care at baseline and at the next round of evaluation. This data were input to open-loop version of FLEX. The system recommendations were compared to clinical determinations. FLEX recommended values for ventilation were on the average within 25% and 16.5% of the measured values at baseline and at the next round of evaluation, respectively. For F(IO2) and PEEP, FLEX recommended values were in general agreement with the clinical settings. FLEX recommendations for weaning were the same as the clinical determinations 50% of the time at baseline and 55% of the time at the next round of evaluation. FLEX did not recommend weaning for infants with weak spontaneous breathing effort or those who showed signs of dyspnea. A computerized system for mechanical ventilation is evaluated for treatment of infants. The results of the study show that the system has good potential for use in neonatal ventilatory care. Further refinements can be made in the system for very low-birth-weight infants.

  17. Trigger performance of mid-level ICU mechanical ventilators during assisted ventilation: a bench study.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Kacmarek, Robert M

    2008-09-01

    To compare the triggering performance of mid-level ICU mechanical ventilators with a standard ICU mechanical ventilator. Experimental bench study. The respiratory care laboratory of a university-affiliated teaching hospital. A computerized mechanical lung model, the IngMar ASL5000. Ten mid-level ICU ventilators were compared to an ICU ventilator at two levels of lung model effort, three combinations of respiratory mechanics (normal, COPD and ARDS) and two modes of ventilation, volume and pressure assist/control. A total of 12 conditions were compared. Performance varied widely among ventilators. Mean inspiratory trigger time was ventilators. The mean inspiratory delay time (time from initiation of the breath to return of airway pressure to baseline) was longer than that for the ICU ventilator for all tested ventilators except one. The pressure drop during triggering (Ptrig) was comparable with that of the ICU ventilator for only two ventilators. Expiratory Settling Time (time for pressure to return to baseline) had the greatest variability among ventilators. Triggering differences among these mid-level ICU ventilators and with the ICU ventilator were identified. Some of these ventilators had a much poorer triggering response with high inspiratory effort than the ICU ventilator. These ventilators do not perform as well as ICU ventilators in patients with high ventilatory demand.

  18. Artificial Ventilation-Induced Acute Lung Lesion: Experimental, Morphological Study

    Directory of Open Access Journals (Sweden)

    A. M. Golubev

    2006-01-01

    Full Text Available Objective: to elucidate the pattern of morphological changes in the lung during artificial ventilation.Materials and methods. Experiments were carried out on 30 non-inbred albino male rats weighing 250—320 g. The anesthetized animals were ventilated for 1—4 hours by a TSE Animal Respirator at a flow of 0.6—4 l/min, a respiration rate of 60 min, a tidal volume of 10—12 ml, and a peak inspiratory pressure of 100—400 mm H2O. Artificial ventilation was not made in control animals. Following 1, 2, and 3 hours and 1, 1.5, 2, and 3 days, the anesthetized animals were withdrawn from the experiment through cardiac vascular fascicle ligation. Lung pieces were fixed in neural 4% formalin and embedded in paraffin. Histological sections were stained with hematoxylin-eosin and the periodic acid Schiff reaction was performed. Morphometric studies were conducted and the data were then statistically processed (Student’s t-test.Results. An hour after artificial ventilation, the interalveolar septa were thickened due to edema and cellular infiltration. There were microatelectases. The bronchioles were deformed; their lumens contained desquamated epithelium and mucus. The alveolar lumens contained red blood cells and macrophages. Perivascular connective tissue was edematous and exhibited epithelial desquamation. Later on, the observed changes increased. There were individual differences in the rate of morphological changes during artificial ventilation (AV.Conclusion. AV is followed by the development of structural changes that are typical of acute lung lesion. 

  19. Tidal ventilation distribution during pressure-controlled ventilation and pressure support ventilation in post-cardiac surgery patients.

    Science.gov (United States)

    Blankman, P; VAN DER Kreeft, S M; Gommers, D

    2014-09-01

    Inhomogeneous ventilation is an important contributor to ventilator-induced lung injury. Therefore, this study examines homogeneity of lung ventilation by means of electrical impedance tomography (EIT) measurements during pressure-controlled ventilation (PCV) and pressure support ventilation (PSV) using the same ventilation pressures. Twenty mechanically ventilated patients were studied after cardiac surgery. On arrival at the intensive care unit, ventilation distribution was measured with EIT just above the diaphragm for 15 min. After awakening, PCV was switched to PSV and EIT measurements were again recorded. Tidal impedance variation, a measure of tidal volume, increased during PSV compared with PCV, despite using the same ventilation pressures (P = 0.045). The distribution of tidal ventilation to the dependent lung region was more pronounced during PSV compared with PCV, especially during the first half of the inspiration. An even distribution of tidal ventilation between the dependent and non-dependent lung regions was seen during PCV at lower tidal volumes (tidal volumes (≥ 8 ml/kg). In addition, the distribution of tidal ventilation was predominantly distributed to the dependent lung during PSV at low tidal volumes. In post-cardiac surgery patients, PSV showed improved ventilation of the dependent lung region due to the contribution of the diaphragm activity, which is even more pronounced during lower assist levels. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. Noxious gases in rabbit housing systems: effects of cross and longitudinal ventilation

    Directory of Open Access Journals (Sweden)

    Francesco da Borso

    2016-12-01

    Full Text Available Animal welfare is a matter of increasing interest due to ethical and economical worries regarding animal rights and the sustainability of meat production. Ammonia, carbon dioxide, and methane can be produced in the livestock buildings and, if not adequately controlled by ventilation, can be dangerous for animals and farmers. The aim of the present paper is to study the effects of different ventilation systems in rabbit buildings based on the temporal patterns and the spatial distribution of these noxious gases. The experimental measurements were conducted in two rabbit farms with genetically homogeneous animals subjected to the same diet. Two buildings with different forced ventilation layouts (cross ventilation - building A and longitudinal ventilation - building B were subjected to the monitoring of indoor environmental conditions (temperature, relative humidity, ammonia, carbon dioxide, methane over a whole year. In both the buildings, ventilation was adjusted automatically by means of electronic control units, which were controlled by temperature sensors, located at the centre of the buildings. Gas concentrations inside the buildings followed clearly defined sinusoidal patterns on a daily basis with the highest values reached in winter during the morning hours for ammonia and during the night hours for carbon dioxide and methane. In particular, ammonia revealed a maximum concentration of 30.7 mg m–3 in building A (cross ventilation and 12.9 mg m–3 in building B (longitudinal ventilation, whereas the minimum values were 6.0 and 4.2 mg m–3, in building A and B, respectively. As a consequence, daily mean concentrations of noxious gases, solely could not be considered representative of the actual conditions of air quality in the buildings. The airflow direction clearly influenced the spatial concentration of ammonia, which showed different patterns in the two buildings. In building A, the highest ammonia concentration was in a diffuse

  1. Residential ventilation standards scoping study

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  2. Air Distribution in a Furnished Room Ventilated by Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, June Richter; Nielsen, Peter V.; Svidt, Kjeld

    Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations of the furnit......Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations...

  3. Hospitals' Patterns of Use of Noninvasive Ventilation in Patients With Asthma Exacerbation.

    Science.gov (United States)

    Stefan, Mihaela S; Nathanson, Brian H; Priya, Aruna; Pekow, Penelope S; Lagu, Tara; Steingrub, Jay S; Hill, Nicholas S; Goldberg, Robert J; Kent, David M; Lindenauer, Peter K

    2016-03-01

    Limited data are available on the use of noninvasive ventilation in patients with asthma exacerbations. The objective of this study was to characterize hospital patterns of noninvasive ventilation use in patients with asthma and to evaluate the association with the use of invasive mechanical ventilation and case fatality rate. This cross-sectional study used an electronic medical record dataset, which includes comprehensive pharmacy and laboratory results from 58 hospitals. Data on 13,558 patients admitted from 2009 to 2012 were analyzed. Initial noninvasive ventilation (NIV) or invasive mechanical ventilation (IMV) was defined as the first ventilation method during hospitalization. Hospital-level risk-standardized rates of NIV among all admissions with asthma were calculated by using a hierarchical regression model. Hospitals were grouped into quartiles of NIV to compare the outcomes. Overall, 90.3% of patients with asthma were not ventilated, 4.0% were ventilated with NIV, and 5.7% were ventilated with IMV. Twenty-two (38%) hospitals did not use NIV for any included admissions. Hospital-level adjusted NIV rates varied considerably (range, 0.4-33.1; median, 5.2%). Hospitals in the highest quartile of NIV did not have lower IMV use (5.4% vs 5.7%), but they did have a small but significantly shorter length of stay. Higher NIV rates were not associated with lower risk-adjusted case fatality rates. Large variation exists in hospital use of NIV for patients with an acute exacerbation of asthma. Higher hospital rates of NIV use does not seem to be associated with lower IMV rates. These results indicate a need to understand contextual and organizational factors contributing to this variability. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  4. Long-Term Outcomes and Health Care Utilization after Prolonged Mechanical Ventilation.

    Science.gov (United States)

    Hill, Andrea D; Fowler, Robert A; Burns, Karen E A; Rose, Louise; Pinto, Ruxandra L; Scales, Damon C

    2017-03-01

    Limited data are available to characterize the long-term outcomes and associated costs for patients who require prolonged mechanical ventilation (PMV; defined here as mechanical ventilation for longer than 21 d). To examine the association between PMV and mortality, health care utilization, and costs after critical illness. Population-based cohort study of adults who received mechanical ventilation in an intensive care unit (ICU) in Ontario, Canada between 2002 and 2013. We used linked administrative databases to determine discharge disposition, and ascertain 1-year mortality (primary outcome), readmissions to hospital and ICU, and health care costs for hospital survivors. Overall, 11,594 (5.4%) patients underwent PMV, with 42.4% of patients dying in the hospital (vs. 27.6% of patients who did not undergo prolonged ventilation; P ventilation were more frequently discharged to other facilities or home with health care support (84.8 vs. 43.5%, P ventilation had higher rates of hospital readmission (47.2 vs. 37.7%; adjusted odds ratio = 1.20; 95% confidence interval = 1.14-1.26), ICU readmission (19.0 vs. 11.6%; adjusted odds ratio = 1.49; 95% confidence interval: 1.39, 1.60), and total health care costs: median (interquartile range) Can $32,526 ($20,821-$56,102) versus Can $13,657 ($5,946-$38,022). Increasing duration of mechanical ventilation was associated with higher mortality and health care utilization. Critically ill patients who undergo mechanical ventilation in an ICU for longer than 21 days have high in-hospital mortality and greater postdischarge mortality, health care utilization, and health care costs compared with patients who undergo mechanical ventilation for a shorter period of time.

  5. Noninvasive ventilation in immunosuppressed patients.

    Science.gov (United States)

    Namendys-Silva, Silvio A; Hernández-Garay, Marisol; Herrera-Gómez, Angel

    2010-03-01

    In immunosuppressed patients (ISP) with acute respiratory failure (ARF), invasive mechanical ventilation (IMV) is associated with high mortality rate. Noninvasive ventilation (NIV) is a type of mechanical ventilation that does not require an artificial airway. It has seen increasing use in critically ill patients to avoid endotracheal intubation. Acute respiratory failure due to pulmonary infections is an important cause of illness in ISP and their treatment. Immunosuppressive treatments have showed an increase not only in the survival but also in the susceptibility to infection. Several authors have underlined the worst prognosis for neutropenic patients with ARF requiring endotracheal intubation and IMV. The NIV seems to be an interesting alternative in ISP because of the lower risk of complications; it prevents endotracheal intubation and its associated complications with survival benefits in this population.

  6. Neuromuscular disorders and chronic ventilation.

    Science.gov (United States)

    Alexiou, Stamatia; Piccione, Joseph

    2017-08-01

    Morbidity and mortality have decreased in patients with neuromuscular disease due to implementation of therapies to augment cough and improve ventilation. Infants with progressive neuromuscular disease will eventually develop respiratory complications as a result of muscle weakness and their inability to compensate during periods of increased respiratory loads. The finding of nocturnal hypercapnia is often the trigger for initiating non-invasive ventilation and studies have shown that its use not only may improve sleep-disordered breathing, but also that it may have an effect on daytime function, symptoms related to hypercapnia, and partial pressure of CO 2 . It is important to understand the respiratory physiology of this population and to understand the benefits and limitations of assisted ventilation. Copyright © 2017. Published by Elsevier Ltd.

  7. Air ventilation/controlling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1997-12-12

    When all electricity supply from the outside of a power plant are lost, a power generator directly connected to an emergency steam turbine which is driven by steams introduced from a nuclear reactor is driven to supply electricity required in the power plant. Cool water prepared by a refrigerator is used as cooling water in an air ventilation/controlling facility of a room equipped with the power generating facility. As the refrigerator, a refrigerator of an existent emergency air cooling water system for an auxiliary air ventilation/controlling equipment is used. This can extend the period of time till the temperature of the room where the power generator is disposed exceeds the temperature range capable of keeping the integrity of the power generator even when all the AC power supply are lost to inactivate the function of the air ventilation/controlling system. (I.S.)

  8. Nebulized antibiotics in mechanically ventilated patients: roadmap and challenges.

    Science.gov (United States)

    Poulakou, G; Siakallis, G; Tsiodras, S; Arfaras-Melainis, A; Dimopoulos, G

    2017-03-01

    Nebulized antibiotics use has become common practice in the therapeutics of pneumonia in cystic fibrosis patients. There is an increasing interest in their use for respiratory infections in mechanically ventilated (MV) patients in order to a) overcome pharmacokinetic issues in the lung compartment with traditional systemic antibiotic use and b) prevent the emergence of multi-drug-resistant (MDR) pathogens. Areas covered: The beneficial effects of antibiotic nebulization in MV patients e.g. increasing efficacy, reduced toxicity and prevention of resistance are described. Physicochemical parameters of optimal lung deposition, characteristics of currently available nebulizers, practical aspects of the procedure, including drug preparation and adjustments of ventilator and circuit parameter are presented. Antibiotics used in nebulized route, along with efficacy in various clinical indications and safety issues are reviewed. Expert commentary: The safety of nebulization of antibiotics has been proven in numerous studies; efficacy as adjunctive treatment to intravenous regimens or as monotherapy has been demonstrated in ventilator-associated pneumonia or ventilator-associated tracheobronchitis due to MDR or susceptible pathogens. However, due to the heterogeneity of studies, multiple meta-analyses fail to demonstrate a clear effect. Clarification of indications, standardization of technique and implementation of clinical practice guidelines, based on new large-scale trials will lead to the optimal use of nebulized antibiotics.

  9. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  10. Percutaneous Transtracheal Jet Ventilation with Various Upper Airway Obstruction

    Directory of Open Access Journals (Sweden)

    Tomoki Doi

    2015-01-01

    Full Text Available A “cannot-ventilate, cannot-intubate” situation is critical. In difficult airway management, transtracheal jet ventilation (TTJV has been recommended as an invasive procedure, but specialized equipment is required. However, the influence of upper airway resistance (UAR during TTJV has not been clarified. The aim of this study was to compare TTJV using a manual jet ventilator (MJV and the oxygen flush device of the anesthetic machine (AM. We made a model lung offering variable UAR by adjustment of tracheal tube size that can ventilate through a 14-G cannula. We measured side flow due to the Venturi effect during TTJV, inspired tidal volume (TVi, and expiratory time under various inspiratory times. No Venturi effect was detected during TTJV with either device. With the MJV, TVi tended to increase in proportion to UAR. With AM, significant variations in TVi was not detected with changes in any UAR. In conclusion, UAR influenced forward flow of TTJV in the model lung. The influence of choked flow from the Venturi effect was minimal under all UAR settings with the MJV, but the AM could not deliver sufficient flow.

  11. [Pressure support ventilation and proportional assist ventilation during weaning from mechanical ventilation].

    Science.gov (United States)

    Aguirre-Bermeo, H; Bottiroli, M; Italiano, S; Roche-Campo, F; Santos, J A; Alonso, M; Mancebo, J

    2014-01-01

    To compare tolerance, duration of mechanical ventilation (MV) and clinical outcomes during weaning from MV in patients subjected to either pressure support ventilation (PSV) or proportional assist ventilation (PAV). A prospective, observational study was carried out. Intensive Care Unit. A total of 40 consecutive subjects were allocated to either the PSV or the PAV group until each group contained 20 patients. Patients were included in the study when they met the criteria to begin weaning and the attending physician decided to initiate the weaning process. The physician selected the modality and set the ventilatory parameters. None. Demographic data, respiratory mechanics, ventilatory parameters, duration of MV, and clinical outcomes (reintubation, tracheostomy, mortality). Baseline characteristics were similar in both groups. No significant differences were observed between the PSV and PAV groups in terms of the total duration of MV (10 [5-18] vs. 9 [7-19] days; P=.85), reintubation (5 [31%] vs. 3 [19%]; P=.69), or mortality (4 [20%] vs. 5 [25%] deaths; P=1). Eight patients (40%) in the PSV group and 6 patients (30%) in the PAV group (P=.74) required a return to volume assist-control ventilation due to clinical deterioration. Tolerance, duration of MV and clinical outcomes during weaning from mechanical ventilation were similar in PSV and PAV. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  12. Limiting volume with modern ventilators.

    Science.gov (United States)

    Wing, Thomas J; Haan, Lutana; Ashworth, Lonny J; Anderson, Jeff

    2015-06-01

    The acute respiratory distress syndrome (ARDS) network low tidal-volume study comparing tidal volumes of 12 ml/kg versus 6 ml/kg was published in 2000. The study was stopped early as data revealed a 22% relative reduction in mortality rate when using 6 ml/kg tidal volume. The current generation of critical care ventilators allows the tidal volume to be set during volume-targeted, assist/control (volume A/C); however, some ventilators include options that may prevent the tidal volume from being controlled. The purpose of this bench study was to evaluate the delivered tidal volume, when these options are active, in a spontaneously breathing lung model using an electronic breathing simulator. Four ventilators were evaluated: CareFusion AVEA (AVEA), Dräger Evita® XL (Evita XL), Covidien Puritan Bennett® 840(TM) (PB 840), and Maquet SERVO-i (SERVO-i). Each ventilator was connected to the Hans Rudolph Electronic Breathing Simulator at an amplitude of 0 cm H2O and then 10 cm H2O. All four ventilators were set to deliver volume A/C, tidal volume 400 ml, respiratory rate 20 bpm, positive end-expiratory pressure 5 cm H2O, peak flowrate 60 L/min. The displayed tidal volume was recorded for each ventilator at the above settings with additional options OFF and then ON. The AVEA has two options in volume A/C: demand breaths and V-sync. When activated, these options allow the patient to exceed the set tidal volume. When using the Evita XL, the option AutoFlow can be turned ON or OFF, and when this option is ON, the tidal volume may vary. The PB 840 does not have any additional options that affect volume delivery, and it maintains the set tidal volume regardless of patient effort. The SERVO-i's demand valve allows additional flow if the patient's inspiratory flowrate exceeds the set flowrate, increasing the delivered tidal volume; this option can be turned OFF with the latest software upgrade. Modern ventilators have an increasing number of optional settings. These settings may

  13. Human versus Computer Controlled Selection of Ventilator Settings: An Evaluation of Adaptive Support Ventilation and Mid-Frequency Ventilation

    Directory of Open Access Journals (Sweden)

    Eduardo Mireles-Cabodevila

    2012-01-01

    Full Text Available Background. There are modes of mechanical ventilation that can select ventilator settings with computer controlled algorithms (targeting schemes. Two examples are adaptive support ventilation (ASV and mid-frequency ventilation (MFV. We studied how different clinician-chosen ventilator settings are from these computer algorithms under different scenarios. Methods. A survey of critical care clinicians provided reference ventilator settings for a 70 kg paralyzed patient in five clinical/physiological scenarios. The survey-derived values for minute ventilation and minute alveolar ventilation were used as goals for ASV and MFV, respectively. A lung simulator programmed with each scenario’s respiratory system characteristics was ventilated using the clinician, ASV, and MFV settings. Results. Tidal volumes ranged from 6.1 to 8.3 mL/kg for the clinician, 6.7 to 11.9 mL/kg for ASV, and 3.5 to 9.9 mL/kg for MFV. Inspiratory pressures were lower for ASV and MFV. Clinician-selected tidal volumes were similar to the ASV settings for all scenarios except for asthma, in which the tidal volumes were larger for ASV and MFV. MFV delivered the same alveolar minute ventilation with higher end expiratory and lower end inspiratory volumes. Conclusions. There are differences and similarities among initial ventilator settings selected by humans and computers for various clinical scenarios. The ventilation outcomes are the result of the lung physiological characteristics and their interaction with the targeting scheme.

  14. Liquid lung ventilation as an alternative ventilatory support

    NARCIS (Netherlands)

    S.J.C. Verbrugge (Serge); D.A.M.P.J. Gommers (Diederik); B.F. Lachmann (Burkhard)

    1995-01-01

    textabstractThe concept of liquid ventilation has evolved in recent years into the concept of partial liquid ventilation. In this technique, conventional mechanical ventilation is combined with intratracheal perfluorocarbon administration. Partial liquid ventilation is a promising technique for

  15. Ventilation effectiveness : health benefits of heat recovery ventilators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-08-15

    Studies have shown that the installation of a heat recovery ventilator (HRV) in homes in northern Canada could improve indoor air quality and the respiratory health of inhabitants. Low ventilation rates are common in many homes in the North because the climate is severe, homes are smaller and lack basements, and occupancies are higher, leading to unhealthy indoor air quality. Northern communities also have a high rate of respiratory infections. HRVs recover much of the energy used to ventilate, which is desirable in cold regions with high heating costs. For the study, the test sample was divided into two types of houses, notably houses with active HRVs and those with control HRVs that were installed and operated but that did not function. The study results showed that HRVs provided increased ventilation. Complaints by residents about HRV noise, discomfort, or low humidity were common but equally spread between those with active and placebo HRVs. The study showed that the system design needs to be improved to better suit the needs of Inuit families. The nature of northern housing presents installation and maintenance challenges. It is hard to retrofit HRV ducting inside small, existing houses, and building supplies arrive infrequently, so detailed planning and careful take-offs of all supplies and materials must be done well in advance of construction. In addition, contractors are hard to locate and have variable expertise, and there is little technical follow-up. Robust technical support by local contractors and housing authorities is therefore important. 2 refs.

  16. Perioperative lung protective ventilation in obese patients

    NARCIS (Netherlands)

    Fernandez-Bustamante, Ana; Hashimoto, Soshi; Serpa Neto, Ary; Moine, Pierre; Vidal Melo, Marcos F.; Repine, John E.

    2015-01-01

    The perioperative use and relevance of protective ventilation in surgical patients is being increasingly recognized. Obesity poses particular challenges to adequate mechanical ventilation in addition to surgical constraints, primarily by restricted lung mechanics due to excessive adiposity, frequent

  17. Improvements of uranium mine ventilation system

    International Nuclear Information System (INIS)

    Liu Changrong; Zhou Xinghuo; Liu Zehua; Wang Zhiyong

    2007-01-01

    Ventilation has been proved to be a main method to eliminate radon and its daughters in uranium mines. According to the practical rectifications of uranium mine ventilation system, the improved measures are summarized. (authors)

  18. Advanced Illness: Feeding Tubes and Ventilators

    Science.gov (United States)

    ... are here Home Advanced Illness: Feeding Tubes and Ventilators Order this publication Printer-friendly version Introduction Families ... a Family Meeting for additional help. Pneumonia and Ventilators One of the other choices a patient or ...

  19. Probabilistic Analysis Methods for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Frier, Christian; Heiselberg, Per

    This paper discusses a general approach for the application of probabilistic analysis methods in the design of ventilation systems. The aims and scope of probabilistic versus deterministic methods are addressed with special emphasis on hybrid ventilation systems. A preliminary application...

  20. The School Advanced Ventilation Engineering Software (SAVES)

    Science.gov (United States)

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  1. Artificial humidification for the mechanically ventilated patient.

    Science.gov (United States)

    Selvaraj, N

    Caring for patients who are mechanically ventilated poses many challenges for critical care nurses. It is important to humidify the patient's airways artificially to prevent complications such as ventilator-associated pneumonia. There is no gold standard to determine which type of humidification is best for patients who are artificially ventilated. This article provides an overview of commonly used artificial humidification for mechanically ventilated patients and discusses nurses' responsibilities in caring for patients receiving artificial humidification.

  2. Artificial humidification for the mechanically ventilated patient

    OpenAIRE

    Selvaraj, Nelson

    2010-01-01

    Caring for patients who are mechanically ventilated poses many\\ud challenges for critical care nurses. It is important to humidify the\\ud patient’s airways artificially to prevent complications such as\\ud ventilator-associated pneumonia. There is no gold standard to\\ud determine which type of humidification is best for patients who\\ud are artificially ventilated. This article provides an overview of\\ud commonly used artificial humidification for mechanically ventilated\\ud patients and discuss...

  3. Building ventilation, state of the art, prospective

    International Nuclear Information System (INIS)

    1995-10-01

    This conference is composed of 21 communications and 21 posters in the domain of building ventilation and indoor air quality; the main themes are: indoor air quality assessment and optimization; performance enhancement and optimization of ventilation systems and equipment; ventilation systems for renovated and rehabilitated buildings; French and European regulations, standardizations and certifications; experimental and numerical simulation studies concerning ventilation systems, air flow, temperature distribution, air quality, radon decontamination, thermal comfort and acoustic levels in buildings

  4. Performance comparison of 15 transport ventilators.

    Science.gov (United States)

    Chipman, Daniel W; Caramez, Maria P; Miyoshi, Eriko; Kratohvil, Joseph P; Kacmarek, Robert M

    2007-06-01

    Numerous mechanical ventilators are designed and marketed for use in patient transport. The complexity of these ventilators differs considerably, but very few data exist to compare their operational capabilities. Using bench and animal models, we studied 15 currently available transport ventilators with regard to their physical characteristics, gas consumption (duration of an E-size oxygen cylinder), battery life, ease of use, need for compressed gas, ability to deliver set ventilation parameters to a test lung under 3 test conditions, and ability to maintain ventilation and oxygenation in normal and lung-injured sheep. Most of the ventilators tested were relatively simple to operate and had clearly marked controls. Oxygen cylinder duration ranged from 30 min to 77 min. Battery life ranged from 70 min to 8 hours. All except 3 of the ventilators were capable of providing various F(IO2) values. Ten of the ventilators had high-pressure and patient-disconnect alarms. Only 6 of the ventilators were able to deliver all settings as specifically set on the ventilator during the bench evaluation. Only 4 of the ventilators were capable of maintaining ventilation, oxygenation, and hemodynamics in both the normal and the lung-injured sheep. Only 2 of the ventilators met all the trial targets in all the bench and animal tests. With many of the ventilators, certain of the set ventilation parameters were inaccurate (differed by > 10% from the values from a cardiopulmonary monitor). The physical characteristics and high gas consumption of some of these ventilators may render them less desirable for patient transport.

  5. Neural engineering

    CERN Document Server

    2013-01-01

    Neural Engineering, 2nd Edition, contains reviews and discussions of contemporary and relevant topics by leading investigators in the field. It is intended to serve as a textbook at the graduate and advanced undergraduate level in a bioengineering curriculum. This principles and applications approach to neural engineering is essential reading for all academics, biomedical engineers, neuroscientists, neurophysiologists, and industry professionals wishing to take advantage of the latest and greatest in this emerging field.

  6. Intelligent ventilation in the intensive care unit

    African Journals Online (AJOL)

    Results. During the study period, 1 220 patients were ventilated in the MICU. Most patients (84%) were ventilated with ASV on admission. The median duration of ventilation with ASV was 6 days. The weaning success rate was 81%, and tracheostomy was required in 13%. Sixty-eight patients (6%) with severe hypoxia and ...

  7. Ventilation in Commercial and Residential Buildings

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    A number of areas have to be considered in connection with indoor air quality and ventilation. The selection of ventilation principle and components in the ventilation system will have influence on the indoor air quality and this subject will be discussed on the following pages. The main object o...

  8. 21 CFR 868.5895 - Continuous ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous ventilator. 868.5895 Section 868.5895...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5895 Continuous ventilator. (a) Identification. A continuous ventilator (respirator) is a device intended to mechanically control or assist...

  9. 14 CFR 252.9 - Ventilation systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ventilation systems. 252.9 Section 252.9... REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever the ventilation system is not fully functioning. Fully functioning for this purpose means operating so...

  10. Decisional responsibility for mechanical ventilation and weaning

    DEFF Research Database (Denmark)

    Rose, Louise; Blackwood, Bronagh; Egerod, Ingrid

    2011-01-01

    Optimal management of mechanical ventilation and weaning requires dynamic and collaborative decision making to minimize complications and avoid delays in the transition to extubation. In the absence of collaboration, ventilation decision making may be fragmented, inconsistent, and delayed. Our...... objective was to describe the professional group with responsibility for key ventilation and weaning decisions and to examine organizational characteristics associated with nurse involvement....

  11. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  12. Non-invasive mechanical ventilation

    African Journals Online (AJOL)

    Nicky

    failure may benefit from a trial of NIV. Increased work of breathing, as noted by use of accessory breathing. SAJCC. 10. July 2005, V ol. 21, No. 1. University of Manitoba and Manitoba Institute of Child Health, Winnipeg, Canada. B Louise Giles, MD, FRCPC. Non-invasive ventilation (NIV) is a modality of providing airway and ...

  13. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    Ventilation systems with vertical displacement flow have been used in industrial areas with extensive heat loads for many years. Hot and contaminant air is carried directly from the occupied zone towards the ceiling by hot processes and other activities which create a natural convection flow....

  14. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...

  15. ENERGY STAR Certified Ventilating Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of October 1, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=vent_fans.pr_crit_vent_fans

  16. Displacement Ventilation in Hospital Environments

    DEFF Research Database (Denmark)

    Li, Yuguo; Nielsen, Peter V.; Sandberg, Mats

    2011-01-01

    Hospital differ from conventional buildings in terms of ventilation needs. Exhaled infectious droplets or droplet nuclei of an infected patient need to be removed in general wards, waiting areas and isolation rooms to minimize transmission to health-care workers, other patients and visitors...

  17. International Ventilation Cooling Application Database

    DEFF Research Database (Denmark)

    Holzer, Peter; Psomas, Theofanis Ch.; OSullivan, Paul

    2016-01-01

    The currently running International Energy Agency, Energy and Conservation in Buildings, Annex 62 Ventilative Cooling (VC) project, is coordinating research towards extended use of VC. Within this Annex 62 the joint research activity of International VC Application Database has been carried out, ...

  18. Cardiogenic oscillation induced ventilator autotriggering

    Directory of Open Access Journals (Sweden)

    Narender Kaloria

    2015-01-01

    Full Text Available Cardiogenic oscillation during mechanical ventilation can auto-trigger the ventilator resembling patient initiated breadth. This gives a false sense of intact respiratory drive and determination brain death, even if other tests are positive, is not appropriate in such a situation. It will prolong the ICU stay and confound the brain-death determination. In this case report, we describe a 35 year old man who was brought to the hospital after many hours of critical delay following multiple gun shot injuries. The patient suffered a cardiac arrest while on the way from another hospital. After an emergency laparotomy, patient was shifted to Intensive Care Unit (ICU with Glasgow Coma Scale (GCS score of E1VTM1 and was mechanically ventilated. Despite absence of brainstem reflexes, the ventilator continued to be triggered on continuous positive airway pressure (CPAP mode and the patient maintained normal oxygen saturation and acceptable levels of carbon dioxide. An apnoea test confirmed absent respiratory drive. Ventilatory waveform graph analysis, revealed cardiogenic oscillation as the cause for autotrigerring.

  19. Ventilator-induced lung injury.

    Science.gov (United States)

    Ricard, J D; Dreyfuss, D; Saumon, G

    2003-08-01

    During mechanical ventilation, high end-inspiratory lung volume (whether it be because of large tidal volume (VT) and/or high levels of positive end-expiratory pressure) results in a permeability type pulmonary oedema, called ventilator-induced lung injury (VILI). Previous injury sensitises lung to mechanical ventilation. This experimental concept has recently received a resounding clinical illustration after a 22% reduction of mortality was observed in acute respiratory distress syndrome patients whose VT had been reduced. In addition, it has been suggested that repetitive opening and closing of distal units at low lung volume could induce lung injury but this notion has been challenged both conceptually and clinically after the negative results of the Acute Respiratory Distress Syndrome clinical Network Assessment of Low tidal Volume and Elevated end-expiratory volume to Obviate Lung Injury (ARDSNet ALVEOLI) study. Experimentally and clinically, involvement of inflammatory cytokines in VILI has not been unequivocally demonstrated. Cellular response to mechanical stretch has been increasingly investigated, both on the epithelial and the endothelial side. Lipid membrane trafficking has been thought to be a means by which cells respond to stress failure. Alterations in the respiratory system pressure/volume curve during ventilator-induced lung injury that include decrease in compliance and position of the upper inflection point are due to distal obstruction of airways that reduce aerated lung volume. Information from this curve could help avoid potentially harmful excessive tidal volume reduction.

  20. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  1. Pulmonary ventilation/perfusion scan

    Science.gov (United States)

    ... to stop eating (fast), be on a special diet, or take any medicines before the test. A chest x-ray is usually done before or after a ventilation and perfusion scan. You wear a hospital gown or comfortable clothing that does not have ...

  2. Risk factors for ventilator-associated pneumonia in neonatal intensive care unit patients.

    Science.gov (United States)

    Kawanishi, Fumiko; Yoshinaga, Masami; Morita, Michiyo; Shibata, Yuriko; Yamada, Tomoyuki; Ooi, Yukimasa; Ukimura, Akira

    2014-10-01

    Ventilator-associated pneumonia (VAP) is a serious complication in neonatal patients on mechanical ventilation. The objective of this study was to examine the incidence and risk factors associated with VAP, particularly in every 7-day versus every 14-day ventilator circuit changes, in a neonatal intensive care unit (NICU). Seventy-one neonates hospitalized in the NICU were enrolled. First, the neonates were divided into groups with and without VAP. On univariate logistic regression analyses, prolonged mechanical ventilation, frequent re-intubation, low gestational age, and low birth weight (BW) were significant risk factors for VAP development. After adjustments for other variables, only BW <626 g was a significant independent predictor for VAP in NICU infants. Second, to examine the effect of the frequency of changing ventilator circuits on the incidence of VAP, circuit changes were compared between the every 7-day group and the every 14-day group. The incidence of VAP per 1000 ventilator days was 9.66 for the every 7-day group and 8.08 for the every 14-day group, and there was no significant difference between the 2 groups. BW <626 g was a significant independent predictor of VAP, and decreasing the frequency of ventilator circuit changes from every 7 days to 14 days had no adverse effect on the VAP rate in the NICU. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Ajuste do modelo de Schumacher e Hall e aplicação de redes neurais artificiais para estimar volume de árvores de eucalipto Adjustment of the Schumacher and Hall model and application of artificial neural networks to estimate volume of eucalypt trees

    Directory of Open Access Journals (Sweden)

    Mayra Luiza Marques da Silva

    2009-12-01

    Full Text Available Objetivou-se, neste trabalho, avaliar o ajuste do modelo volumétrico de Schumacher e Hall por diferentes algoritmos, bem como a aplicação de redes neurais artificiais para estimação do volume de madeira de eucalipto em função do diâmetro a 1,30 m do solo (DAP, da altura total (Ht e do clone. Foram utilizadas 21 cubagens de povoamentos de clones de eucalipto com DAP variando de 4,5 a 28,3 cm e altura total de 6,6 a 33,8 m, num total de 862 árvores. O modelo volumétrico de Schumacher e Hall foi ajustado nas formas linear e não linear, com os seguintes algoritmos: Gauss-Newton, Quasi-Newton, Levenberg-Marquardt, Simplex, Hooke-Jeeves Pattern, Rosenbrock Pattern, Simplex, Hooke-Jeeves e Rosenbrock, utilizado simultaneamente com o método Quasi-Newton e com o princípio da Máxima Verossimilhança. Diferentes arquiteturas e modelos (Multilayer Perceptron MLP e Radial Basis Function RBF de redes neurais artificiais foram testados, sendo selecionadas as redes que melhor representaram os dados. As estimativas dos volumes foram avaliadas por gráficos de volume estimado em função do volume observado e pelo teste estatístico L&O. Assim, conclui-se que o ajuste do modelo de Schumacher e Hall pode ser usado na sua forma linear, com boa representatividade e sem apresentar tendenciosidade; os algoritmos Gauss-Newton, Quasi-Newton e Levenberg-Marquardt mostraram-se eficientes para o ajuste do modelo volumétrico de Schumacher e Hall, e as redes neurais artificiais apresentaram boa adequação ao problema, sendo elas altamente recomendadas para realizar prognose da produção de florestas plantadas.This research aimed at evaluating the adjustment of Schumacher and Hall volumetric model by different algorithms and the application of artificial neural networks to estimate the volume of wood of eucalyptus according to the diameter at breast height (DBH, total height (Ht of the clone. For such, 21 scalings of stands of eucalyptus clones were used with

  4. Analyze of Ventilator Associated Pneumonia

    Directory of Open Access Journals (Sweden)

    Aysel Sunnetcioglu

    2014-03-01

    Full Text Available Aim: Ventilator-associated pneumonia (VAP is the infection that is an important cause of morbidity and mortality developed in patients whom the invasive mechanical ventilation (MV were performed in intensive care units (ICU. In this study, the factors of VAP developing in patients whom the mechanical ventilation of ICU performed, antibiotic susceptibility to these factors and determining the risk factors were aimed. Material and Method: Between January 2009 and March 2013, 79 cases, followed with the mechanical ventilation for at least for 48 hours and developed VAP, were retrospectively reviewed at Anesthesiology and Intensive Care Unit of Reanimation at Faculty of Medicine at Yuzuncu Yil University, performing endotracheal intubation. The cases were evaluated in terms of microorganisms, antibiotic susceptibility and risk factors. Results: The rate of our VAP speed was calculated to be 19.68 on the day of 1000 ventilator. While a single microorganism could be isolated in 81.1% of the 74 VAP cases whose the active pathogen could be isolated, two or more than two microorganisms were isolated in 18.9% of them.While 83 of the strains (90.2% were gram-negative bacteria, 7 of them (7.6% were gram-positive bacteria. Acinetobacter spp. (40.2% was most commonly isolated as a gram-negative factor, but methicillin-resistant S. aureus (4.3% was isolated as a gram-positive factor. It was determined that the isolated factors in VAP cases were significantly resistant to the broad-spectrum antibiotics. Discussion: As a result, in patients with high-risk factors for the development of VAP, early and appropriate empirical antibiotic treatment should be started according to the results of the sensitivity of the unit and for the multi-drug-resistant microorganisms with common and high mortality.

  5. Annual Adjustment Factors

    Data.gov (United States)

    Department of Housing and Urban Development — The Department of Housing and Urban Development establishes the rent adjustment factors - called Annual Adjustment Factors (AAFs) - on the basis of Consumer Price...

  6. Short-term airing by natural ventilation

    DEFF Research Database (Denmark)

    Perino, Marco; Heiselberg, Per

    2009-01-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates...... that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ....... traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates...

  7. Minute Ventilation Limitations of Two Field Transport Ventilators.

    Science.gov (United States)

    Szpisjak, Dale F; Horn, Gregory; Shalov, Samuel; Abes, Alvin Angelo; Van Decar, Lauren

    2017-01-01

    Knowledge of transport ventilator performance impacts patient safety. This study compared minute ventilation (V E ) of the MOVES and Uni-Vent 731 when ventilating the VentAid Training Test Lung with compliance (C) ranging from 0.02 to 0.10 L/cm H 2 O and three different airway resistances (R) (none, Rp5, or Rp20). Tidal volume (V T ) was 800 ± 25 mL. Respiratory rate was increased to ventilator's maximum or until auto-PEEP > 5 cm H 2 O. Respiratory parameters were recorded with the RSS 100HR Research Pneumotach. Data were reported as median (interquartile range). Peak inspiratory pressure (PIP) of the Uni-Vent and MOVES ranged from 22.3 (22.2-22.5) to 82.6 (82.2-83.2) and 20.8 (20.6-20.9) to 50.6 (50.2-50.9) cm H 2 O, respectively. V E of the Uni-Vent and MOVES ranged from 17.7 (17.7-17.7) to 31.5 (31.5-31.5) and 11.3 (10.5-11.3) to 20.2 (19.7-20.5) L/min, respectively. Linear regression demonstrated strong, negative correlation of V E with PIP for the MOVES (V E [L/min] = 26 - 0.31 × PIP [cm H 2 O], r = -0.97) but weak, positive correlation for the Uni-Vent (r = 0.05). Uni-Vent V E exceeded MOVES V E under each test condition (p = 0.0002). If patient V E requirements exceed those predicted by the MOVES regression equation, then using the Uni-Vent should be considered. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  8. Occupant Interactions and Effectiveness of Natural Ventilation Strategies in Contemporary New Housing in Scotland, UK

    Directory of Open Access Journals (Sweden)

    Tim Sharpe

    2015-07-01

    Full Text Available The need to reduce carbon emissions and fuel poverty has led to increased building envelope air tightness, intended to reduce uncontrolled ventilation heat losses. Ventilation strategies in dwellings still allow the use of trickle ventilators in window frames for background ventilation. The extent to which this results in “healthy” Indoor Air Quality (IAQ in recently constructed dwellings was a concern of regulators in Scotland. This paper describes research to explore this. First a review of literature was conducted, then data on occupant interactions with ventilation provisions (windows, doors, trickle vents gathered through an interview-based survey of 200 recently constructed dwellings, and measurements made on a sample of 40 of these. The main measured parameter discussed here is CO2 concentration. It was concluded after the literature review that 1000 ppm absolute was a reasonable threshold to use for “adequate” ventilation. The occupant survey found that there was very little occupant interaction with the trickle ventilators e.g., in bedrooms 63% were always closed, 28% always open, and in only 9% of cases occupants intervened to make occasional adjustments. In the measured dwellings average bedroom CO2 levels of 1520 ppm during occupied (night time hours were observed. Where windows were open the average bedroom CO2 levels were 972 ppm. With windows closed, the combination of “trickle ventilators open plus doors open” gave an average of 1021 ppm. “Trickle ventilators open” gave an average of 1571 ppm. All other combinations gave averages of 1550 to 2000 ppm. Ventilation rates and air change rates were estimated from measured CO2 levels, for all dwellings calculated ventilation rate was less than 8 L/s/p, in 42% of cases calculated air change rate was less than 0.5 ach. It was concluded that trickle ventilation as installed and used is ineffective in meeting desired ventilation rates, evidenced by high CO2 levels reported

  9. Summary of human responses to ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Seppanen, Olli A.; Fisk, William J.

    2004-06-01

    The effects of ventilation on indoor air quality and health is a complex issue. It is known that ventilation is necessary to remove indoor generated pollutants from indoor air or dilute their concentration to acceptable levels. But, as the limit values of all pollutants are not known, the exact determination of required ventilation rates based on pollutant concentrations and associated risks is seldom possible. The selection of ventilation rates has to be based also on epidemiological research (e.g. Seppanen et al., 1999), laboratory and field experiments (e.g. CEN 1996, Wargocki et al., 2002a) and experience (e.g. ECA 2003). Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated as summarized by Seppdnen (2003). Ventilation may bring indoors harmful substances that deteriorate the indoor environment. Ventilation also affects air and moisture flow through the building envelope and may lead to moisture problems that deteriorate the structures of the building. Ventilation changes the pressure differences over the structures of building and may cause or prevent the infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. Ventilation can be implemented with various methods which may also affect health (e.g. Seppdnen and Fisk, 2002, Wargocki et al., 2002a). In non residential buildings and hot climates, ventilation is often integrated with air-conditioning which makes the operation of ventilation system more complex. As ventilation is used for many purposes its health effects are also various and complex. This paper summarizes the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus of the paper is on office-type working environment and residential buildings. In the industrial premises the problems of air quality are usually

  10. Use of Respiratory Support in the Biphase Ventilation Airway Mode in the Newborn

    Directory of Open Access Journals (Sweden)

    S. N. Koval

    2006-01-01

    Full Text Available Biphasic positive airway pressure (BIPAP (also known as DuoPAP, BiLevel, BiVent, PCV+, SPAP is a mode of ventilation with cycling variations between two continuous positive airway pressure levels. It is a mixture of pressure controlled ventilation and spontaneous breathing, which is unrestricted in each phase of the respiratory cycle. The volume displacement caused by the difference between Phigh and Plow airway pressure level. The phase time ratio (PTR — the BIPAP frequency is calculated as the ratio between the durations of the two pressure phases, a PTR greater than 1:1 is called APRV (airway pressure release ventilation. In patients with ARDS maintained spontaneous breathing with BIPAP resulted in lower venous admixture and better arterial blood oxygenation as compared with A/C. Only a few studies with BIPAP have been performed in newborn and infants until now. We studied the use of BIPAP in newborn (body mass > 3kg and randomised 40 patients with respiratory failure for ventilation with BIPAP (n=20 or conventional mechanical ventilatory support (assist-control A/C — synchronised intermittent mandatory ventilation (SIMV (n=20. The Pediatric Risk of Mortality score (PRISM were collected for each patient. Fentanyl, diazepam, GABA were used as sedatives and adjusted in accordance with the Cook scale. We compared ventilatory parameters, information pertaining to pulmonary function and oxygen delivery, cardiac output, additional descriptors of organ system functions, duration and complications of ventilation and number and dosages of sedatives administered. All the patients that we intended to ventilate with BIPAP were successfully ventilated, we can conclude that biphasic ventilatory support suitable mode of ventilation for newborn with a decreased need of analgetics and sedatives than A/C. Finally, BIPAP is an a effective safe, and easy to use for personal mode of mechanical ventilatory support in newborn. 

  11. Evaluation of transport ventilators at mild simulated altitude: a bench study in a hypobaric chamber.

    Science.gov (United States)

    Boussen, Salah; Coulange, Mathieu; Fournier, Marc; Gainnier, Marc; Michelet, Pierre; Micoli, Christophe; Negrel, Lionel

    2014-08-01

    Previous studies on ventilators used for air transport showed significant effects of altitude, in particular with regard to accuracy of the tidal volume (VT) and breathing frequency. The aim of the study was to evaluate transport ventilators under hypobaric conditions. We conducted a bench study of 6 transport ventilators in a Comex hypobaric chamber to simulate mild altitude (1,500 m [4,920 feet] and 2,500 m [8,200 feet]). The ventilators were connected to a test lung to evaluate their accuracy: (1) to deliver a set VT under normal resistance and compliance conditions at F(IO2) = 0.6 and 1, (2) to establish a set PEEP (0, 5, 10, and 15 cm H2O), and (3) to establish a set inspiratory pressure in pressure controlled mode, (4) at a F(IO2) setting, and (5) and at a frequency setting. Four ventilators kept an average relative error in VT of ventilator was affected by the altitude only at F(IO2) = 1. The Osiris 3 ventilator had > 40% error even at 1,500 m. We found no change in frequency as a function of altitude for any ventilators studied. No clinically important differences were found between all altitudes with the PEEP or inspiratory pressure setting. Although F(IO2) was affected by altitude, the average error did not exceed 11%, and it is unclear whether this fact is an experimental artifact. We have shown that most of the new transport ventilators tested require no setting adjustment at moderate altitude and are as safe at altitude as at sea level under normal respiratory conditions. Older technologies still deliver more volume with altitude in volumetric mode.

  12. Ventilation, indoor air quality, and human health and comfort in dwellings and day-care centers

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, R.

    1995-12-31

    The objective of the study was to assess the actual ventilation and indoor air quality in the Finnish building stock (dwellings and day-care centers) with special reference to the existing guideline values. Furthermore, the objective was to evaluate the occurrence of symptoms and perceptions among occupants (adult residents, children, workers) in relation to ventilation system, ventilation rate and dampness. The measurements of ventilation and indoor air quality in the dwellings and day-care centers included ventilation rate, CO{sub 2} concentration, and temperature and humidity. Self- and parent-administered questionnaires were distributed to the occupants inquiring their personal characteristics, occurrence of symptoms of interest, perceived indoor air quality and details of their home and work environments. Airflows and air change rates varied remarkably both in the dwellings and day-care centers. In the majority of the dwellings and day-care centers, the Finnish guideline values of ventilation rates were not achieved. No consistent associations were observed between the magnitude of mechanical ventilation rates and the occurrence of eye, respiratory, skin and general symptoms, that is, symptoms of sick building syndrome (SBS) among the day-care workers. The results indicate that there is much room for improvement in the ventilation and indoor air quality of Finnish dwellings and day-care centers. The control of ventilation, temperature and humidity and the prevention of water damage are important issues on which to concentrate in the future. There is need to improve the quality in all phases of construction: design, installation, adjustment, operation, and maintenance

  13. Central chemoreceptors and neural mechanisms of cardiorespiratory control

    Directory of Open Access Journals (Sweden)

    T.S. Moreira

    2011-09-01

    Full Text Available The arterial partial pressure (P CO2 of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.

  14. Benefits of non invasive ventilation.

    Science.gov (United States)

    Millar, D; Kirpalani, H

    2004-10-01

    Mechanical ventilation of the newborn infant has increased neonatal survival. However, this increased survival has come at the expense of increased morbidity, in the form of bronchopulmonary dysplasia, and at the cost of an expensive technology. Continuous positive airway pressure (CPAP) is accepted as conferring clinical benefit in supporting the recently extubated preterm infant and in the management of apnea of prematurity. Attention is now being drawn to physiologic and clinical evidence to support CPAP use, with or without early surfactant, as a primary treatment of hyaline membrane disease. The purpose of this review is to explore these proposed benefits of non invasive ventilation and place them in the context of current clinical evidence.

  15. Stockpiling Ventilators for Influenza Pandemics.

    Science.gov (United States)

    Huang, Hsin-Chan; Araz, Ozgur M; Morton, David P; Johnson, Gregory P; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-06-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response.

  16. Stockpiling Ventilators for Influenza Pandemics

    OpenAIRE

    Huang, Hsin-Chan; Araz, Ozgur M.; Morton, David P.; Johnson, Gregory P.; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-01-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, ...

  17. Development of a Residential Integrated Ventilation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  18. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  19. Effect of body position on ventilation distribution in ventilated preterm infants.

    Science.gov (United States)

    Hough, Judith L; Johnston, Leanne; Brauer, Sandy; Woodgate, Paul; Schibler, Andreas

    2013-02-01

    Positioning is considered vital to the maintenance of good lung ventilation by optimizing oxygen transport and gas exchange in ventilated premature infants. Previous studies suggest that the prone position is advantageous; however, no data exist on regional ventilation distribution for this age group. To investigate the effect of body position on regional ventilation distribution in ventilated and nonventilated preterm infants using electrical impedance tomography. Randomized crossover study design. Neonatal ICU. A total of 24 ventilated preterm infants were compared with six spontaneously breathing preterm infants. Random assignment of the order of the positions supine, prone, and quarter prone. Ventilation distribution was measured with regional impedance amplitudes and global inhomogeneity indices using electrical impedance tomography. In the spontaneously breathing infants, regional impedance amplitudes were increased in the posterior compared with the anterior lung (p < 0.01) and in the right compared with the left lung (p = 0.03). No differences were found in the ventilated infants. Ventilation was more inhomogeneous in the ventilated compared with the healthy infants (p < 0.01). Assessment of temporal regional lung filling showed that the posterior lung filled earlier than the anterior lung in the spontaneously breathing infants (p < 0.02) whereas in the in the ventilated infants the right lung filled before the left lung (p < 0.01). In contrast to previous studies showing that ventilation is distributed to the nondependent lung in infants and children, this study shows that gravity has little effect on regional ventilation distribution.

  20. Trajectories and Prognosis of Older Patients Who Have Prolonged Mechanical Ventilation After High-Risk Surgery.

    Science.gov (United States)

    Nabozny, Michael J; Barnato, Amber E; Rathouz, Paul J; Havlena, Jeffrey A; Kind, Amy J; Ehlenbach, William J; Zhao, Qianqian; Ronk, Katie; Smith, Maureen A; Greenberg, Caprice C; Schwarze, Margaret L

    2016-06-01

    Surgical patients often receive routine postoperative mechanical ventilation with excellent outcomes. However, older patients who receive prolonged mechanical ventilation may have a significantly different long-term trajectory not fully captured in 30-day postoperative metrics. The objective of this study is to describe patterns of mortality and hospitalization for Medicare beneficiaries 66 years old and older who have major surgery with and without prolonged mechanical ventilation. Retrospective cohort study. Hospitals throughout the United States. Five percent random national sample of elderly Medicare beneficiaries (age ≥ 66 yr) who underwent 1 of 227 operations previously defined as high risk during an inpatient stay at an acute care hospital between January 1, 2005, and November 30, 2009. None. We identified 117,917 episodes for older patients who had high-risk surgery; 4% received prolonged mechanical ventilation during the hospitalization. Patients who received prolonged mechanical ventilation had higher 1-year mortality rate than patients who did not have prolonged ventilation (64% [95% CI, 62-65%] vs 17% [95% CI, 16.4-16.9%]). Thirty-day survivors who received prolonged mechanical ventilation had a 1-year mortality rate of 47% (95% CI, 45-48%). Thirty-day survivors who did not receive prolonged ventilation were more likely to be discharged home than patients who received prolonged ventilation 71% versus 10%. Patients who received prolonged ventilation and were not discharged by postoperative day 30 had a substantially increased 1-year mortality (adjusted hazard ratio, 4.39 [95% CI, 3.29-5.85]) compared with patients discharged home by day 30. Hospitalized 30-day survivors who received prolonged mechanical ventilation and died within 6 months of their index procedure spent the majority of their remaining days hospitalized. Older patients who require prolonged mechanical ventilation after high-risk surgery and survive 30 days have a significant 1-year risk

  1. Application of CPM procedures in mine ventilation

    International Nuclear Information System (INIS)

    Wang, Y.J.; Mutmansky, J.M.

    1982-01-01

    Mine ventilation analysis is an engineering discipline that can be considered a branch of the body of science known as network analysis. Likewise, the group of engineering procedures known as the critical path method (CPM) is considered a branch of network analysis. It is therefore not surprising that mine ventilation network analysis and CPM have many similarities. These similarities are useful in analyzing several types of mine ventilation problems and will be utilized in this paper. The analogy between the free split in a ventilation circuit and the critical path in a scheduling network has been recognized by Owili-Eger (1973). While this was recognized as a property of a general ventilation network, many important applications to controlled-splitting problems also exist. The mathematical procedures necessary to apply CPM and network methods have previously been presented (Wang, 1981; Wang, 1982). This paper will illustrate the implementation of these methods by application to mine ventilation networks

  2. Comparative performances analysis of neonatal ventilators.

    Science.gov (United States)

    Baldoli, Ilaria; Tognarelli, Selene; Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Cecchi, Francesca; Gentile, Marzia; Sigali, Emilio; Ghirri, Paolo; Boldrini, Antonio; Menciassi, Arianna; Laschi, Cecilia; Cuttano, Armando

    2015-02-08

    Mechanical ventilation is a therapeutic action for newborns with respiratory diseases but may have side effects. Correct equipment knowledge and training may limit human errors. We aimed to test different neonatal mechanical ventilators' performances by an acquisition module (a commercial pressure sensor plus an isolated chamber and a dedicated software). The differences (ΔP) between peak pressure values and end-expiration pressure were investigated for each ventilator. We focused on discrepancies among measured and imposed pressure data. A statistical analysis was performed. We investigated the measured/imposed ΔP relation. The ΔP do not reveal univocal trends related to ventilation setting parameters and the data distributions were non-Gaussian. Measured ΔP represent a significant parameter in newborns' ventilation, due to the typical small volumes. The investigated ventilators showed different tendencies. Therefore, a deep specific knowledge of the intensive care devices is mandatory for caregivers to correctly exploit their operating principles.

  3. Demand controlled ventilation in a bathroom

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Topp, Claus

    2008-01-01

    consumption during periods where the demand for ventilation is low and poor indoor climate during periods where the demand for ventilation is high. Controlling the ventilation rate by demand can improve the energy performance of the ventilation system and the indoor climate. This paper compares the indoor...... climate and energy consumption of a Constant Air Volume (CAV) system and a Demand Controlled Ventilation (DCV) system for two different bathroom designs. The air change rate of the CAV system corresponded to 0.5h-1. The ventilation rate of the DCV system was controlled by occupancy and by the relative....... The indoor climate and the energy consumption were estimated based on a simplified calculation of the variation of the water content within the bathroom during a day. The results showed that the DCV system controlled by occupancy and relative humidity had an improved energy performance and an improved indoor...

  4. Use of nondepolarizing neuromuscular blocking agents in mechanically ventilated patients.

    Science.gov (United States)

    Buck, M L; Reed, M D

    1991-01-01

    The pharmacology and history of development of nondepolarizing neuromuscular blocking agents are presented, and the pharmacokinetics and pharmacodynamics of these agents, administration guidelines for mechanically ventilated patients, adverse effects, factors affecting paralysis, and methods for blockade reversal are reviewed. Nondepolarizing neuromuscular blocking agents (tubocurarine, metocurine, pancuronium, vecuronium, and atracurium) are frequently used to induce prolonged pharmacologic paralysis in patients in the intensive-care unit (ICU). These agents are poorly absorbed after oral administration and must be administered by injection, preferably by the i.v. route. Individualized adjustment of the dose is necessary to maintain the desired degree of paralysis. Dosing modifications may be necessary in patients with underlying renal or hepatic diseases and in pediatric and geriatric patients. Patients with thermal burns require larger doses of these drugs than other patients. These agents can cause several important adverse effects, including histamine release, cardiovascular changes, and muscle atrophy. Pathophysiologic variables and drug interactions can affect the degree of paralysis. Generally, patients no longer requiring paralysis in the ICU will be allowed to spontaneously regain muscle function after drug therapy has been discontinued. If the effects of the nondepolarizing neuromuscular blocking agents must be reversed more rapidly, acetylcholinesterase-inhibiting agents such as physostigmine, neostigmine, pyridostigmine, and edrophonium can be used. Nondepolarizing neuromuscular blocking agents can be used to paralyze mechanically ventilated patients, facilitating optimal oxygenation and ventilation.

  5. Predicting the lung compliance of mechanically ventilated patients via statistical modeling

    International Nuclear Information System (INIS)

    Ganzert, Steven; Kramer, Stefan; Guttmann, Josef

    2012-01-01

    To avoid ventilator associated lung injury (VALI) during mechanical ventilation, the ventilator is adjusted with reference to the volume distensibility or ‘compliance’ of the lung. For lung-protective ventilation, the lung should be inflated at its maximum compliance, i.e. when during inspiration a maximal intrapulmonary volume change is achieved by a minimal change of pressure. To accomplish this, one of the main parameters is the adjusted positive end-expiratory pressure (PEEP). As changing the ventilator settings usually produces an effect on patient's lung mechanics with a considerable time delay, the prediction of the compliance change associated with a planned change of PEEP could assist the physician at the bedside. This study introduces a machine learning approach to predict the nonlinear lung compliance for the individual patient by Gaussian processes, a probabilistic modeling technique. Experiments are based on time series data obtained from patients suffering from acute respiratory distress syndrome (ARDS). With a high hit ratio of up to 93%, the learned models could predict whether an increase/decrease of PEEP would lead to an increase/decrease of the compliance. However, the prediction of the complete pressure–volume relation for an individual patient has to be improved. We conclude that the approach is well suitable for the given problem domain but that an individualized feature selection should be applied for a precise prediction of individual pressure–volume curves. (paper)

  6. Ventilation patterns of the songbird lung/air sac system during different behaviors.

    Science.gov (United States)

    Mackelprang, Rebecca; Goller, Franz

    2013-10-01

    Unidirectional, continuous airflow through the avian lung is achieved through an elaborate air sac system with a sequential, posterior to anterior ventilation pattern. This classical model was established through various approaches spanning passively ventilated systems to mass spectrometry analysis of tracer gas flow into various air sacs during spontaneous breathing in restrained ducks. Information on flow patterns in other bird taxa is missing, and these techniques do not permit direct tests of whether the basic flow pattern can change during different behaviors. Here we use thermistors implanted into various locations of the respiratory system to detect small pulses of tracer gas (helium) to reconstruct airflow patterns in quietly breathing and behaving (calling, wing flapping) songbirds (zebra finch and yellow-headed blackbird). The results illustrate that the basic pattern of airflow in these two species is largely consistent with the model. However, two notable differences emerged. First, some tracer gas arrived in the anterior set of air sacs during the inspiration during which it was inhaled, suggesting a more rapid throughput through the lung than previously assumed. Second, differences in ventilation between the two anterior air sacs emerged during calling and wing flapping, indicating that adjustments in the flow pattern occur during dynamic behaviors. It is unclear whether this modulation in ventilation pattern is passive or active. This technique for studying ventilation patterns during dynamic behaviors proves useful for establishing detailed timing of airflow and modulation of ventilation in the avian respiratory system.

  7. The Influence of Fluid Overload on the Length of Mechanical Ventilation in Pediatric Congenital Heart Surgery.

    Science.gov (United States)

    Sampaio, Tatiana Z A L; O'Hearn, Katie; Reddy, Deepti; Menon, Kusum

    2015-12-01

    Fluid overload and prolonged mechanical ventilation lead to worse outcomes in critically ill children. However, the association between these variables in children following congenital heart surgery is unknown. The objectives of this study were to describe the association between fluid overload and duration of mechanical ventilation, oxygen requirement and radiologic findings of pulmonary and chest wall edema. This study is a retrospective chart review of patients who underwent congenital heart surgery between June 2010 and December 2013. Univariate and multivariate associations between maximum cumulative fluid balance and length of mechanical ventilation and OI were tested using the Spearman correlation test and multiple linear regression models, respectively. There were 85 eligible patients. Maximum cumulative fluid balance was associated with duration of mechanical ventilation (adjusted analysis beta coefficient = 0.53, CI 0.38-0.66, P mechanical ventilation (P = 0.012 and 0.014, respectively). Fluid overload is associated with prolonged duration of mechanical ventilation and PICU length of stay after congenital heart surgery. Fluid overload was also associated with physiological markers of respiratory restriction. A randomized controlled trial of a restrictive versus liberal fluid replacement strategy is necessary in this patient population, but in the meantime, accumulating observational evidence suggests that cautious use of fluid in the postoperative care may be warranted.

  8. Prevention of ventilator-associated pneumonia

    OpenAIRE

    J. Oliveira; C. Zagalo; P. Cavaco-Silva

    2014-01-01

    Invasive mechanical ventilation (IMV) represents a risk factor for the development of ventilator-associated pneumonia (VAP), which develops at least 48 h after admission in patients ventilated through tracheostomy or endotracheal intubation. VAP is the most frequent intensive-care-unit (ICU)-acquired infection among patients receiving IMV. It contributes to an increase in hospital mortality, duration of MV and ICU and length of hospital stay. Therefore, it worsens the condition of the critica...

  9. Mechanical ventilation during extracorporeal membrane oxygenation

    OpenAIRE

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-01

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported re...

  10. Statins STAT for (over)ventilated patients?

    OpenAIRE

    Kuebler, Wolfgang M

    2010-01-01

    A decade after the introduction of lung-protective ventilation strategies with low tidal volumes, the adverse effects of mechanical ventilation remain a scientific and clinical challenge. This situation has fueled the search for adjuvant pharmacological strategies to advance the benefit of protective ventilation in an additive or synergistic manner. In a recent issue of Critical Care, M?ller and coworkers demonstrate convincingly that the initiation of high-dose simvastatin treatment prior to...

  11. Implementation of ventilation in existing schools

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Petersen, Steffen

    Present paper analyses the best-practice solutions for classrooms’ ventilation that fit the objective of quick and inexpensive implementation. The paper decomposes the relations between ventilation and building into manageable elements and analyzes them. The analyses are performed qualitatively......; they evaluate both scientific and practical implementation The analyses lead to a list of criteria associated with the implementation of ventilation in existing schools. Generic retrofitting scenarios which prioritize energy savings, indoor climate and building/facade integration are assembled and illustrated...

  12. 46 CFR 153.312 - Ventilation system standards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation system standards. 153.312 Section 153.312... Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation system must meet the following: (a) A ventilation system exhaust duct must discharge no less than 10 m...

  13. A NEW EXHAUST VENTILATION SYSTEM DESIGN SOFTWARE

    Directory of Open Access Journals (Sweden)

    H. Asilian Mahabady

    2007-09-01

    Full Text Available A Microsoft Windows based ventilation software package is developed to reduce time-consuming and boring procedure of exhaust ventilation system design. This program Assure accurate and reliable air pollution control related calculations. Herein, package is tentatively named Exhaust Ventilation Design Software which is developed in VB6 programming environment. Most important features of Exhaust Ventilation Design Software that are ignored in formerly developed packages are Collector design and fan dimension data calculations. Automatic system balance is another feature of this package. Exhaust Ventilation Design Software algorithm for design is based on two methods: Balance by design (Static pressure balance and design by Blast gate. The most important section of software is a spreadsheet that is designed based on American Conference of Governmental Industrial Hygienists calculation sheets. Exhaust Ventilation Design Software is developed so that engineers familiar with American Conference of Governmental Industrial Hygienists datasheet can easily employ it for ventilation systems design. Other sections include Collector design section (settling chamber, cyclone, and packed tower, fan geometry and dimension data section, a unit converter section (that helps engineers to deal with units, a hood design section and a Persian HTML help. Psychometric correction is also considered in Exhaust Ventilation Design Software. In Exhaust Ventilation Design Software design process, efforts are focused on improving GUI (graphical user interface and use of programming standards in software design. Reliability of software has been evaluated and results show acceptable accuracy.

  14. Concentration Distribution in a Mixing Ventilated Room

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Pedersen, D. N.; Nielsen, Peter Vilhelm

    2001-01-01

    Today there is an increasing focus on the importance of a proper ventilation system to obtain good working conditions in the term of air and thermal quality to ensure high productivity. Different ventilation principles are used, e.g., mixing ventilation and displacement ventilation. In order...... that the air is fully mixed. The objective of this work is to determine the influence of the location of a pollutant, temperature differences and whether the room is furnished or not. It is also investigated if it is sufficient to determine the mean concentration in the room to determine the personal exposure...

  15. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  16. A neuro-fuzzy controller for the estimation of tidal volume and respiration frequency ventilator settings for COPD patients ventilated in control mode.

    Science.gov (United States)

    Tzavaras, A; Weller, P R; Spyropoulos, B

    2007-01-01

    Patients with chronic obstructive pulmonary disease (COPD) are characterized by increased work of breathing (WOB) and ventilatory muscle dysfunction. Mechanical ventilation is applied to unload the WOB; rest respiratory muscles decrease arterial partial pressure of carbon dioxide (PaCO2) and treat hypoxemia. Since patients' needs are not static, ventilator settings have to be adjusted regularly. The aim of the present study was the development and evaluation of a neuro-fuzzy controller, that utilizes non-invasively acquired parameters for the determination of the appropriate tidal volume (VT) and respiration frequency (RR) ventilator settings for COPD patients. Forty three (43) hours of non-invasively monitored physiology parameters and ventilator settings, from four (4) different COPD patients ventilated in control mode, were collected in two (2) General Hospitals in Greece. Recorded data were randomly allocated into two sets, namely training set (60%) and evaluation set (40%). A neuro-fuzzy controller was developed and trained, by employing the training set. The controller utilizes non-invasively measured parameters, namely oxygen saturation (SpO2), lung compliance (C) and resistance (R), Peak Inspiratory pressure (PIP) and Plateau pressure (Pplateau), for predicting appropriate VT and RR settings. The developed neuro-fuzzy controller was tested against evaluation set. The Mean Square Error of the tidal volume and the respiration rate was 0.222 ml/Kgr and 1.21 breaths per minute (bpm) respectively.

  17. Boundary conditions for the use of personal ventilation over mixing ventilation in open plan offices

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    2013-01-01

    This paper investigates the boundary conditions for choosing a combined Personal Ventilation (PV) and Mixing Ventilation (MV) over conventional mixing ventilation in an office with multiple workers. A simplified procedure for annual performance assessment of PV/MV systems in terms of air quality,...

  18. [Nasal CPAP versus mechanical ventilation in 28 to 32-week preterm infants with early surfactant administration].

    Science.gov (United States)

    Pérez, Luis Alfonso; González, Diana Marcela; Álvarez, Karen Margarita de Jesús; Díaz-Martínez, Luis Alfonso

    2014-01-01

    Continuous positive airway pressure (CPAP) is useful in low birth weight infants with respiratory distress, but it is not known if it is a better alternative to mechanical ventilation after early pulmonary surfactant administration. To compare the incidence of adverse events in 28 to 32-week newborns with respiratory distress managed with mechanical ventilation or CPAP after early surfactant administration. In total, 176 newborns were treated with CPAP and 147 with mechanical ventilation, all with Apgar scores >3 at five minutes and without apnea. The incidence of CPAP failure was 6.5% (95% CI: 11.3-22.8%); 29 patients died: 7 with CPAP (4.0%) and 22 with mechanical ventilation (15.0%, pCPAP versus mechanical ventilation was 0.27 (95% CI: 0.12-0.61), but after adjusting for confounding factors, CPAP use did not imply a higher risk of dying (RR=0.60; 95% CI: 0.29-1.24). Mechanical ventilation fatality rate was 5.70 (95% CI: 3.75-8.66) deaths/1,000 days-patient, while with CPAP it was 1.37 (95% CI: 0.65-2.88, pCPAP than with mechanical ventilation (RR=0.71; 95% CI: 0.54-0.96), as were intracranial hemorrhage (RR=0.28, 95% CI: 0.09-0.84) and sepsis (RR=0.67; 95%CI: 0.52-0.86), and it was similar for air leaks (RR=2.51; 95% CI: 0.83-7.61) and necrotizing enterocolitis (RR=1.68, 95% CI: 0.59-4.81). CPAP exposure of premature infants with respiratory distress syndrome is protective against chronic lung disease, intraventricular hemorrhage and sepsis compared to mechanical ventilation. No differences were observed regarding air leak syndrome or death.

  19. ADJUSTABLE CHIP HOLDER

    DEFF Research Database (Denmark)

    2009-01-01

    An adjustable microchip holder for holding a microchip is provided having a plurality of displaceable interconnection pads for connecting the connection holes of a microchip with one or more external devices or equipment. The adjustable microchip holder can fit different sizes of microchips with ...

  20. Diaphragm Pacing as a Rehabilitative Tool for Patients With Pompe Disease Who Are Ventilator-Dependent: Case Series.

    Science.gov (United States)

    Smith, Barbara K; Fuller, David D; Martin, A Daniel; Lottenberg, Lawrence; Islam, Saleem; Lawson, Lee Ann; Onders, Raymond P; Byrne, Barry J

    2016-05-01

    Pompe disease is an inherited disorder notable for severe, progressive ventilatory compromise. Although ventilatory failure has been attributed to myofiber dysfunction secondary to diaphragmatic glycogen accumulation, neural involvement of the phrenic motor system is also a prominent feature. Direct diaphragm pacing supplements respiratory function in other disorders of the phrenic motor system. Accordingly, it is hypothesized that augmented neuromuscular activity via diaphragm pacing would promote weaning from mechanical ventilation in patients with Pompe disease who are unresponsive to conventional, muscle-directed treatments. Three patients with Pompe disease developed diaphragm paresis that resulted in chronic mechanical ventilation dependence. After preoperative inspiratory muscle strengthening exercises failed to improve function, fine-wire pacing electrodes were laparoscopically implanted into the diaphragm. Diaphragm conditioning was initiated the first postoperative week and consisted of gradual increases in stimulation parameters, lengthening of stimulation sessions, and ventilator weaning. Ventilation and intramuscular electromyographic activity were recorded periodically during conditioning to quantify diaphragm neuromuscular function. During paced breathing without mechanical ventilation, tidal volumes increased, and 2 patients were weaned from daytime ventilator dependence within the first 3 months of pacing, which has been sustained over the long-term. A third patient reduced reliance on daytime ventilation, but weaning was delayed by malacia of the large airways. In all patients, pacing appeared to facilitate spontaneous phrenic motor unit activity during independent breathing without ventilator or pacer support. The findings are consistent with the view that diaphragm pacing has potential rehabilitative value to reduce reliance on mechanical ventilation in people with Pompe disease, but further study is needed. Diaphragm pacing represents a

  1. Performances of domiciliary ventilators compared by using a parametric procedure

    Directory of Open Access Journals (Sweden)

    Fresnel Emeline

    2016-12-01

    Performances of domiciliary ventilators strongly depend not only on the breathing dynamics but also on the ventilator strategy. One given ventilator may be more adequate than another one for a given patient.

  2. Hypercapnia attenuates ventilator-induced diaphragm atrophy and modulates dysfunction

    NARCIS (Netherlands)

    Schellekens, W.J.M.; Hees, H.W.H. van; Kox, M.; Linkels, M.; Acuna, G.L.; Dekhuijzen, P.N.R.; Scheffer, G.J.; Hoeven, J.G. van der; Heunks, L.M.A.

    2014-01-01

    INTRODUCTION: Diaphragm weakness induced by prolonged mechanical ventilation may contribute to difficult weaning from the ventilator. Hypercapnia is an accepted side effect of low tidal volume mechanical ventilation, but the effects of hypercapnia on respiratory muscle function are largely unknown.

  3. Frequently Asked Questions about Ventilator-Associated Pneumonia

    Science.gov (United States)

    ... Vaccine Safety Frequently Asked Questions about Ventilator-associated Pneumonia Recommend on Facebook Tweet Share Compartir What is a Ventilator-associated Pneumonia (VAP)? Ventilator-associated pneumonia (VAP) is a lung ...

  4. Neuromuscular paralysis for newborn infants receiving mechanical ventilation

    NARCIS (Netherlands)

    Cools, F.; Offringa, M.

    2005-01-01

    BACKGROUND: Ventilated newborn infants breathing in asynchrony with the ventilator are at risk for complications during mechanical ventilation, such as pneumothorax or intraventricular hemorrhage, and are exposed to more severe barotrauma, which consequently could impair their clinical outcome.

  5. FGF Signaling Transforms Non-neural Ectoderm into Neural Crest

    OpenAIRE

    Yardley, Nathan; García-Castro, Martín I.

    2012-01-01

    The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in respons...

  6. Lung ventilation imaging with TECHNEGAS

    International Nuclear Information System (INIS)

    Bunko, Hisashi; Seto, Mikito; Kuji, Ichiei; Miyauchi, Tsutomu; Hisada, Kinichi

    1991-01-01

    In order to optimize inhalation method for lung ventilation imaging with Tc-99m-gas (TECHNEGAS), relation between lung deposition of TECHNEGAS and inhalation method was evaluated. Submaximal inhalation with breath-holding (BH), continuous submaximal inhalation (C) and tidal inhalation (TV) were compared in 35 patients (36 studies) with various lung diseases. Mean lung deposition of TECHNEGAS was 6.6-7.4%/LD in BH group and was significantly higher than other groups of inhalation method (p<0.05-0.001). Lung deposition increased according to the times of inhalation in C group. TV group resulted in the lowest lung deposition which was the same as 5 times of inhalation in C group. Lung/filter ratio (L/F) was highest in BH group. Image quality of TECHNEGAS was significantly better in BH group. Hot spot in central airway was seen in 15% of patients. All of them was in TV or C groups. In order to improve lung deposition and image quality of the TECHNEGAS, sufficient breath-holding was important. L/F seemed to be the index of effective inhalation of the TECHNEGAS. TV was suitable for poorly cooperative or dyspneic patients. TECHNEGAS was useful for evaluation of lung ventilation to provide good quality image with safety and simplicity. (author)

  7. Dynamic Behaviour of Ventilated Hydrofoils.

    Science.gov (United States)

    Kjeldsen, Morten; Arndt, Roger; Wosnik, Martin

    2006-11-01

    In certain types of pumping applications oscillations are induced by operation with liquids containing a free gas load. In order to understand the physics of this process, a series of tests with a ventilated A 2D NACA 0015 hydrofoil were performed in the water tunnel at the St. Anthony Falls Laboratory of the University of Minnesota. The special bubble removal feature of the water tunnel allowed continuous ventilation without experiencing visible bubbles upstream the hydrofoil. These studies build on previous work on cavitation-induced oscillations. Gas injection studies were made over a range of gas flow rates and test section pressure. The results clearly show that lift oscillations increase in intensity when the gas load is increased. The point of maximum unsteadiness is also associated the rapid decline of the foil performance as measured as average lift. Further increase of the gas injection load gives a steady behaviour with almost no lift. These experiments are compared with traditional cavitation experiments. The similarities between gas injection- and cavitation induced unsteadiness on the hydrofoil are many, but the amplitude of lift oscillations found on the foil with gas injection corresponds to about 50% of that found for cavitating hydrofoils. The fact that the oscillations are periodic leads to the consideration of both passive and active control.

  8. Trends in mechanical ventilation: are we ventilating our patients in the best possible way?

    Directory of Open Access Journals (Sweden)

    Raffaele L. Dellaca’

    2017-06-01

    To learn how mechanical ventilation developed in recent decades and to provide a better understanding of the actual technology and practice. To learn how and why interdisciplinary research and competences are necessary for providing the best ventilation treatment to patients. To understand which are the most relevant technical limitations in modern mechanical ventilators that can affect their performance in delivery of the treatment. To better understand and classify ventilation modes. To learn the classification, benefits, drawbacks and future perspectives of automatic ventilation tailoring algorithms.

  9. Thermal comfort of seated occupants in rooms with personalized ventilation combined with mixing or displacement ventilation

    DEFF Research Database (Denmark)

    Forejt, L.; Melikov, Arsen Krikor; Cermak, Radim

    2004-01-01

    The performance of two personalized ventilation systems combined with mixing or displacement ventilation was studied under different conditions in regard to thermal comfort of seated occupants. The cooling performance of personalized ventilation was found to be independent of room air distribution....... Differences between the personalized air terminal devices were identified in terms of the cooling distribution over the manikin¿s body. The personalized ventilation supplying air from the front towards the face provided a more uniform cooling of the body than the personalized ventilation supplying air from...

  10. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    Science.gov (United States)

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure.

  11. Healthcare Technology Management (HTM) of mechanical ventilators by clinical engineers.

    Science.gov (United States)

    Yoshioka, Jun; Nakane, Masaki; Kawamae, Kaneyuki

    2014-01-01

    Mechanical ventilator failures expose patients to unacceptable risks, and maintaining mechanical ventilator safety is an important issue. We examined the usefulness of maintaining mechanical ventilators by clinical engineers (CEs) using a specialized calibrator. These evaluations and the ability to make in-house repairs proved useful for obviating the need to rent ventilators which, in turn, might prove faulty themselves. The CEs' involvement in maintaining mechanical ventilators is desirable, ensures prompt service, and, most importantly, enhances safe management of mechanical ventilators.

  12. Lung-protective ventilation in neonatology

    NARCIS (Netherlands)

    van Kaam, Anton

    2011-01-01

    Ventilator-induced lung injury (VILI) is considered an important risk factor in the development of bronchopulmonary dysplasia (BPD) and is primarily caused by overdistension (volutrauma) and repetitive opening and collapse (atelectrauma) of terminal lung units. Lung-protective ventilation should

  13. Preoperational test report, primary ventilation system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  14. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...

  15. YMP Engineered Barrier Systems Scaled Ventilation Testing

    Energy Technology Data Exchange (ETDEWEB)

    S.D. Dunn; B. Lowry; B. Walsh; J.D. Mar; C. Howard; R. Johnston; T. Williams

    2002-11-22

    Yucca Mountain, approximately 100 miles northwest of Las Vegas, Nevada, has been selected as the site for the nation's first geologic repository for high level nuclear waste. The Yucca Mountain Project (YMP) is currently developing the design for the underground facilities. Ventilation is a key component of the design as a way to maintain the desired thermal conditions in the emplacement drifts prior to closure. As a means of determining the effects of continuous ventilation on heat removal from the emplacement drifts two series of scaled ventilation tests have been performed. Both test series were performed in the DOE/North Las Vegas Atlas facility. The tests provided scaled (nominally 25% of the full scale emplacement drift design) thermal and flow process data that will be used to validate YMP heat and mass transport codes. The Phase I Ventilation Test series evaluated the ability of ambient ventilation air to remove energy under varying flow and input power conditions. The Phase II Ventilation Test series evaluated the ability of pre-conditioned ventilation air to remove energy under varying flow, input temperature and moisture content, and simulated waste package input power conditions. Twenty-two distinct ventilation tests were run.

  16. Preoperational test report, primary ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  17. Ventilation in low energy housing retrofits

    NARCIS (Netherlands)

    Mlecnik, E.

    2008-01-01

    According to the definition, passive houses in Europe meet a target energy demand for heating of less than 15 kWh per square meter and per year. This low level for the heating demand is based on heating by a small post-heater in the hygienic ventilation system at 52 °C maximum, while the ventilation

  18. Evaporation Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    -scale ventilated room when the emission is fully or partly evaporation controlled. The objective of the present research work has been to investigate the change of emission rates from small-scale experiments to full-scale ventilated rooms and to investigate the influence of the local air velocity field near...

  19. Hybrid ventilation systems and high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Utzinger, D.M. [Wisconsin Univ., Milwaukee, WI (United States). School of Architecture and Urban Planning

    2009-07-01

    This paper described hybrid ventilation design strategies and their impact on 3 high performance buildings located in southern Wisconsin. The Hybrid ventilation systems combined occupant controlled natural ventilation with mechanical ventilation systems. Natural ventilation was shown to provide adequate ventilation when appropriately designed. Proper control integration of natural ventilation into hybrid systems was shown to reduce energy consumption in high performance buildings. This paper also described the lessons learned from the 3 buildings. The author served as energy consultant on all three projects and had the responsibility of designing and integrating the natural ventilation systems into the HVAC control strategy. A post occupancy evaluation of building energy performance has provided learning material for architecture students. The 3 buildings included the Schlitz Audubon Nature Center completed in 2003; the Urban Ecology Center completed in 2004; and the Aldo Leopold Legacy Center completed in 2007. This paper included the size, measured energy utilization intensity and percentage of energy supplied by renewable solar power and bio-fuels on site for each building. 6 refs., 2 tabs., 6 figs.

  20. Echocardiographic evaluation during weaning from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Luciele Medianeira Schifelbain

    2011-01-01

    Full Text Available INTRODUCTION: Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. OBJECTIVES: To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T-tube; and comparing patient subgroups: success vs. failure in weaning. METHODS: Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T-tube. Pressure support ventilation vs. T-tube and weaning success vs. failure were compared using ANOVA and Student's t-test. The level of significance was p<0.05. RESULTS: Twenty-four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T-tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. CONCLUSION: No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T-tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients

  1. Weaning newborn infants from mechanical ventilation

    OpenAIRE

    Paolo Biban; Marcella Gaffuri; Stefania Spaggiari; Davide Silvagni; Federico Zaglia; Pierantonio Santuz

    2013-01-01

    Invasive mechanical ventilation is a life-saving procedure which is largely used in neonatal intensive care units, particularly in very premature newborn infants. However, this essential treatment may increase mortality and cause substantial morbidity, including lung or airway injuries, unplanned extubations, adverse hemodynamic effects, analgosedative dependency and severe infectious complications, such as ventilator-associated pneumonia. Therefore, limiting the duration of airway intubation...

  2. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas ov...

  3. Ventilation During Bronchoscopy: the Oxygen Injector Technique ...

    African Journals Online (AJOL)

    Ventilation During Bronchoscopy: the Oxygen Injector Technique. HMC Kean. Abstract. The Sanders oxygen injector technique of bronchoscopic ventilation is discussed and the principle underlying the method is explained. A short study confirmed the effectiveness and safety of the technique, and the advantages over other ...

  4. New modes of assisted mechanical ventilation.

    Science.gov (United States)

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  5. Energy Analysis of the Ductless Personalized Ventilation

    DEFF Research Database (Denmark)

    Lelong, Cyril; Dalewski, Mariusz; Melikov, Arsen Krikor

    2013-01-01

    This study explores the impact of different occupancy profiles on the potential energy savings due to using ductless personalized ventilation (DPV) combined with displacement ventilation. Energy simulations were performed with the dynamic simulation software IDA-ICE in order to investigate optimal...

  6. Standardization of pulmonary ventilation technique using volume-controlled ventilators in rats with congenital diaphragmatic hernia

    Directory of Open Access Journals (Sweden)

    Rodrigo Melo Gallindo

    Full Text Available OBJECTIVE: To standardize a technique for ventilating rat fetuses with Congenital Diaphragmatic Hernia (CDH using a volume-controlled ventilator. METHODS: Pregnant rats were divided into the following groups: a control (C; b exposed to nitrofen with CDH (CDH; and c exposed to nitrofen without CDH (N-. Fetuses of the three groups were randomly divided into the subgroups ventilated (V and non-ventilated (N-V. Fetuses were collected on day 21.5 of gestation, weighed and ventilated for 30 minutes using a volume-controlled ventilator. Then the lungs were collected for histological study. We evaluated: body weight (BW, total lung weight (TLW, left lung weight (LLW, ratios TLW / BW and LLW / BW, morphological histology of the airways and causes of failures of ventilation. RESULTS: BW, TLW, LLW, TLW / BW and LLW / BW were higher in C compared with N- (p 0.05. The morphology of the pulmonary airways showed hypoplasia in groups N- and CDH, with no difference between V and N-V (p <0.05. The C and N- groups could be successfully ventilated using a tidal volume of 75 ìl, but the failure of ventilation in the CDH group decreased only when ventilated with 50 ìl. CONCLUSION: Volume ventilation is possible in rats with CDH for a short period and does not alter fetal or lung morphology.

  7. Assisted Ventilation in Patients with Acute Respiratory Distress Syndrome: Lung-distending Pressure and Patient-Ventilator Interaction

    NARCIS (Netherlands)

    Doorduin, J.; Sinderby, C.A.; Beck, J.; Hoeven, J.G. van der; Heunks, L.M.

    2015-01-01

    BACKGROUND: In patients with acute respiratory distress syndrome (ARDS), the use of assisted mechanical ventilation is a subject of debate. Assisted ventilation has benefits over controlled ventilation, such as preserved diaphragm function and improved oxygenation. Therefore, higher level of

  8. Performance of ductless personalized ventilation in conjunction with displacement ventilation

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Melikov, Arsen Krikor; Vesely, Michal

    2014-01-01

    perception of the environment. The subjects could control the position of the DPV supply diffuser and the personalized air flow (air velocity). The use of DPV improved perceived air quality and thermal comfort compared to displacement ventilation alone. At 26 °C and 29 °C the percentage dissatisfied with air......, increased eye dryness sensation was reported by 30% of subjects. The personalized air flow selected by nearly 80% of the subjects at 26 °C was between 10 and 20 l/s corresponding to the target air velocity of 1.2–1.7 m/s. At 29 °C almost 90% of subjects chose a personalized air flow between 15 and 20 l/s (1...

  9. MULTI-FREQUENCY OSCILLATORY VENTILATION IN THE PREMATURE LUNG: EFFECTS ON GAS EXCHANGE, MECHANICS, AND VENTILATION DISTRIBUTION

    Science.gov (United States)

    Kaczka, David W.; Herrmann, Jacob; Zonneveld, C. Elroy; Tingay, David G.; Lavizzari, Anna; Noble, Peter B.; Pillow, J. Jane

    2015-01-01

    Background Despite the theoretical benefits of high-frequency oscillatory ventilation (HFOV) in preterm infants, systematic reviews of randomized clinical trials do not confirm improved outcomes. We hypothesized that oscillating a premature lung with multiple frequencies simultaneously would improve gas exchange compared to traditional single-frequency oscillatory ventilation (SFOV). The goal of this study was to develop a novel method for HFOV, termed ‘multi-frequency oscillatory ventilation’ (MFOV), which relies on a broadband flow waveform more suitable for the heterogeneous mechanics of the immature lung. Methods Thirteen intubated preterm lambs were randomized to either SFOV or MFOV for 1 hour, followed by crossover to the alternative regimen for 1 hour. The SFOV waveform consisted of a pure sinusoidal flow at 5 Hz, while the customized MFOV waveform consisted of a 5 Hz fundamental with additional energy at 10 and 15 Hz. Per standardized protocol, mean pressure at airway opening (P̅ao) and inspired O2 fraction were adjusted as needed, and root mean square of the delivered oscillatory volume waveform (Vrms) was adjusted 15-minute intervals. A ventilatory cost function for SFOV and MFOV was defined as VC=(Vrms2PaCO2)Wt−1, where Wt denotes body weight. Results Averaged over all time points, MFOV resulted in significantly lower VC (246.9±6.0 vs. 363.5±15.9 mL2 mmHg kg−1) and P̅ao (12.8±0.3 vs. 14.1±0.5 cmH2O) compared to SFOV, suggesting more efficient gas exchange and enhanced lung recruitment at lower mean airway pressures. Conclusions Oscillation with simultaneous multiple frequencies may be a more efficient ventilator modality in premature lungs compared to traditional single-frequency HFOV. PMID:26495977

  10. Modelling and Simulation of Volume Controlled Mechanical Ventilation System

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Volume controlled mechanical ventilation system is a typical time-delay system, which is applied to ventilate patients who cannot breathe adequately on their own. To illustrate the influences of key parameters of the ventilator on the dynamics of the ventilated respiratory system, this paper firstly derived a new mathematical model of the ventilation system; secondly, simulation and experimental results are compared to verify the mathematical model; lastly, the influences of key parameters of ventilator on the dynamics of the ventilated respiratory system are carried out. This study can be helpful in the VCV ventilation treatment and respiratory diagnostics.

  11. An intelligent control system for ventilators.

    Science.gov (United States)

    Wang, C S; Shaw, D; Jih, K S

    1998-10-01

    This study reports on a ventilator system that consists of several intelligent modules for controlling ventilator operation. These modules are software programs in two controllers. One controller is a personal computer used for diagnoses, determining settings and checking the effects of settings. The other controller is a single-chip microprocessor in a ventilator that controls the ventilator's settings in accordance with the computer settings. After setting up the system, an artificial lung model simulating a patient's lung is used to test the system. The result of test run indicated that it always responds to a patient's lung condition in a stable manner. Thus, the proposed system with its intelligent modules may assist clinicians in caring for patients and managing ventilator operation.

  12. Functionality of Ventilated Facades: Protection of Insulation

    Directory of Open Access Journals (Sweden)

    Petrichenko Mikhail

    2016-01-01

    Full Text Available This article discusses about methods of construction of the ventilated facades. The ventilated facade is not only the element of facing, it is the supporting structure. Their main objective - creation of air ventilating space between a facade and an external wall of the building. Moving of air in this gap protects a heater from destruction, interfering with a moisture congestion. In addition, the ventilated facade protect the building from aggressive influence of external environment, have a sound and thermal insulation properties. There are several problems of systems of the ventilated facades connected with an application of a heater. For more effective using it is necessary to minimize contact of a heater with environment.

  13. Mechanisms of natural ventilation in livestock buildings

    DEFF Research Database (Denmark)

    Rong, Li; Bjerg, Bjarne Schmidt; Batzanas, Thomas

    2016-01-01

    Studies on the mechanisms of natural ventilation in livestock buildings are reviewed and influences on discharge and pressure coefficients are discussed. Compared to studies conducted on buildings for human occupation and industrial buildings which focus on thermal comfort, ventilation systems......, indoor air quality, building physics and energy etc., our understanding of the mechanisms involved in natural ventilation of livestock buildings are still limited to the application of the orifice equation. It has been observed that the assumptions made for application of the orifice equation...... are not valid for wind-induced cross ventilation through large openings. This review identifies that the power balance model, the concept of stream tube and the local dynamic similarity model has helped in the fundamental understanding of wind-induced natural ventilation in buildings for human occupation...

  14. Mechanical Ventilation: State of the Art.

    Science.gov (United States)

    Pham, Tài; Brochard, Laurent J; Slutsky, Arthur S

    2017-09-01

    Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  15. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  16. A computerized aid in ventilating neonates

    DEFF Research Database (Denmark)

    Arrøe, M

    1991-01-01

    A computer program for ventilating neonates using a volume controlled ventilator is presented. The program proposes directions for changes of ventilator settings decided from the actual arterial blood gas samples and ventilator settings. The program deals with up to six babies at the same time...... and contains a continuous evaluation of the last six values of pCO2 and pO2 resulting in statements and warnings in potentially harmful situations. The program is consistent with the written instructions of the department. The ventilator treatment of 30 premature babies is evaluated retrospectively using...... the program, showing a total agreement of 37.5%, lowest among the babies who died in respiratory insufficiency. The advantage of the use of the program is discussed....

  17. Adjustment of macroeconomic imbalances

    Directory of Open Access Journals (Sweden)

    Georgeta Barbulescu

    2013-03-01

    Full Text Available The global financial and economic crisis was the factor that triggered the adjustment of macroeconomic imbalances accumulated in Romania. The current account deficit and budget deficit were two major structural imbalances that have created a high vulnerability for the economy and explained the extent of economic contraction in Romania during the economic crisis. This article identifies the main causes that lead to the need for fiscal adjustment both in the EU and in Romania, as well as main effects of adjustments in respect of their experience in recent years. The article deals with this topic, because the current topical debate in the field of fiscal adjustments implemented both in the EU and our country, and their need for economic activity aimed at economic recovery.

  18. Price adjustment clauses : report.

    Science.gov (United States)

    2012-10-01

    Price adjustment mechanisms exist to account for fluctuations in commodity or labor prices and have : been used for highway construction in 47 states. They are useful in stabilizing bid prices in times of : economic uncertainty and preventing default...

  19. Mechanical ventilation during extracorporeal membrane oxygenation.

    Science.gov (United States)

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-21

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.

  20. Effect of heat and moisture exchangers on the prevention of ventilator-associated pneumonia in critically ill patients.

    Science.gov (United States)

    Auxiliadora-Martins, M; Menegueti, M G; Nicolini, E A; Alkmim-Teixeira, G C; Bellissimo-Rodrigues, F; Martins-Filho, O A; Basile-Filho, A

    2012-12-01

    Ventilator-associated pneumonia (VAP) remains one of the major causes of infection in the intensive care unit (ICU) and is associated with the length of hospital stay, duration of mechanical ventilation, and use of broad-spectrum antibiotics. We compared the frequency of VAP 10 months prior to (pre-intervention group) and 13 months after (post-intervention group) initiation of the use of a heat and moisture exchanger (HME) filter. This is a study with prospective before-and-after design performed in the ICU in a tertiary university hospital. Three hundred and fourteen patients were admitted to the ICU under mechanical ventilation, 168 of whom were included in group HH (heated humidifier) and 146 in group HME. The frequency of VAP per 1000 ventilator-days was similar for both the HH and HME groups (18.7 vs 17.4, respectively; P = 0.97). Duration of mechanical ventilation (11 vs 12 days, respectively; P = 0.48) and length of ICU stay (11 vs 12 days, respectively; P = 0.39) did not differ between the HH and HME groups. The chance of developing VAP was higher in patients with a longer ICU stay and longer duration of mechanical ventilation. This finding was similar when adjusted for the use of HME. The use of HME in intensive care did not reduce the incidence of VAP, the duration of mechanical ventilation, or the length of stay in the ICU in the study population.

  1. Effect of heat and moisture exchangers on the prevention of ventilator-associated pneumonia in critically ill patients

    Science.gov (United States)

    Auxiliadora-Martins, M.; Menegueti, M.G.; Nicolini, E.A.; Alkmim-Teixeira, G.C.; Bellissimo-Rodrigues, F.; Martins-Filho, O.A.; Basile-Filho, A.

    2012-01-01

    Ventilator-associated pneumonia (VAP) remains one of the major causes of infection in the intensive care unit (ICU) and is associated with the length of hospital stay, duration of mechanical ventilation, and use of broad-spectrum antibiotics. We compared the frequency of VAP 10 months prior to (pre-intervention group) and 13 months after (post-intervention group) initiation of the use of a heat and moisture exchanger (HME) filter. This is a study with prospective before-and-after design performed in the ICU in a tertiary university hospital. Three hundred and fourteen patients were admitted to the ICU under mechanical ventilation, 168 of whom were included in group HH (heated humidifier) and 146 in group HME. The frequency of VAP per 1000 ventilator-days was similar for both the HH and HME groups (18.7 vs 17.4, respectively; P = 0.97). Duration of mechanical ventilation (11 vs 12 days, respectively; P = 0.48) and length of ICU stay (11 vs 12 days, respectively; P = 0.39) did not differ between the HH and HME groups. The chance of developing VAP was higher in patients with a longer ICU stay and longer duration of mechanical ventilation. This finding was similar when adjusted for the use of HME. The use of HME in intensive care did not reduce the incidence of VAP, the duration of mechanical ventilation, or the length of stay in the ICU in the study population. PMID:23044627

  2. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... into account and the temperature excess and the velocity distribution are calculated by use of an extrapolation method. In the case with a concentrated heat source (dia 50mm, 343W) and nearly uniform surroundings the model of a plume above a point heat source is verified. It represents a borderline case...... with the smallest entrainment factor and the smallest angle of spread. Due to the measuring method and data processing the velocity and temperature excess profiles are observed more narrowly than those reported by previous authors. In the case with an extensive heat source (dia 400mm, lOOW) the model of a plume...

  3. General design guide for ventilation systems for fuel reprocessing plants, September 1975

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    General safety, occupied area ventilation systems, process area ventilation systems, exhaust ventilation and filtration systems, ventilation system construction and layout ventilation system testing and monitoring, and the quality assurance program are discussed

  4. Parameter estimation of an artificial respiratory system under mechanical ventilation following a noisy regime

    Directory of Open Access Journals (Sweden)

    Marcus Henrique Victor Júnior

    Full Text Available Abstract Introduction: This work concerns the assessment of a novel system for mechanical ventilation and a parameter estimation method in a bench test. The tested system was based on a commercial mechanical ventilator and a personal computer. A computational routine was developed do drive the mechanical ventilator and a parameter estimation method was utilized to estimate positive end-expiratory pressure, resistance and compliance of the artificial respiratory system. Methods The computational routine was responsible for establishing connections between devices and controlling them. Parameters such as tidal volume, respiratory rate and others can be set for standard and noisy ventilation regimes. Ventilation tests were performed directly varying parameters in the system. Readings from a calibrated measuring device were the basis for analysis. Adopting a first-order linear model, the parameters could be estimated and the outcomes statistically analysed. Results Data acquisition was effective in terms of sample frequency and low noise content. After filtering, cycle detection and estimation took place. Statistics of median, mean and standard deviation were calculated, showing consistent matching with adjusted values. Changes in positive end-expiratory pressure statistically imply changes in compliance, but not the opposite. Conclusion The developed system was satisfactory in terms of clinical parameters. Statistics exhibited consistent relations between adjusted and estimated values, besides precision of the measurements. The system is expected to be used in animals, with a view to better understand the benefits of noisy ventilation, by evaluating the estimated parameters and performing cross relations among blood gas, ultrasonography and electrical impedance tomography.

  5. Education on Patient-Ventilator Synchrony, Clinicians' Knowledge Level, and Duration of Mechanical Ventilation.

    Science.gov (United States)

    Lynch-Smith, Donna; Thompson, Carol Lynn; Pickering, Rexann G; Wan, Jim Y

    2016-11-01

    Improved recognition of patient-ventilator asynchrony may reduce duration of mechanical ventilation. To evaluate the effects of education about patient-ventilator synchrony on clinicians' level of knowledge and patients' mean duration of mechanical ventilation. A quasi-experimental 1-group pretest-posttest study was performed in a 16-bed intensive care unit. Analysis included 33 clinicians and 97 ventilator patients. The intervention consisted of PowerPoint lectures on patient-ventilator synchrony. Data included test scores before and after the education, scores on the Acute Physiology and Chronic Health Evaluation II, and mean duration of mechanical ventilation. Differences in scores before and after education, mean duration of mechanical ventilation, and mean health evaluation scores before and after education were determined by using t tests. Of the 33 clinicians, 17 were registered nurses and 16 were respiratory therapists. Posttest scores were 63% higher than pretest scores (P mechanical ventilation of 5.4 (SD, 4.6) days. After the lecture, 50 patients had a mean health evaluation score of 24.6 (SD, 8.2) and mean duration of mechanical ventilation of 4.8 (SD, 4.3) days. Mean health evaluation score was marginally higher after the lecture (P = .054). Mean duration of mechanical ventilation did not differ (P = .54). Clinicians' test scores increased significantly after patient-ventilator synchrony lectures. Mean duration of mechanical ventilation decreased by 0.6 days and health evaluation scores were marginally higher after the lectures. ©2016 American Association of Critical-Care Nurses.

  6. Oral mask ventilation is more effective than face mask ventilation after nasal surgery.

    Science.gov (United States)

    Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat

    2016-06-01

    To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Efficacy of respiratory muscle training in weaning of mechanical ventilation in patients with mechanical ventilation for 48hours or more: A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Sandoval Moreno, L M; Casas Quiroga, I C; Wilches Luna, E C; García, A F

    2018-02-02

    To evaluate the efficacy of respiratory muscular training in the weaning of mechanical ventilation and respiratory muscle strength in patients on mechanical ventilation of 48hours or more. Randomized controlled trial of parallel groups, double-blind. Ambit: Intensive Care Unit of a IV level clinic in the city of Cali. 126 patients in mechanical ventilation for 48hours or more. The experimental group received daily a respiratory muscle training program with treshold, adjusted to 50% of maximal inspiratory pressure, additional to standard care, conventional received standard care of respiratory physiotherapy. MAIN INTEREST VARIABLES: weaning of mechanical ventilation. Other variables evaluated: respiratory muscle strength, requirement of non-invasive mechanical ventilation and frequency of reintubation. intention-to-treat analysis was performed with all variables evaluated and analysis stratified by sepsis condition. There were no statistically significant differences in the median weaning time of the MV between the groups or in the probability of extubation between groups (HR: 0.82 95% CI: 0.55-1.20 P=.29). The maximum inspiratory pressure was increased in the experimental group on average 9.43 (17.48) cmsH20 and in the conventional 5.92 (11.90) cmsH20 (P=.48). The difference between the means of change in maximal inspiratory pressure was 0.46 (P=.83 95%CI -3.85 to -4.78). respiratory muscle training did not demonstrate efficacy in the reduction of the weaning period of mechanical ventilation nor in the increase of respiratory muscle strength in the study population. Registered study at ClinicalTrials.gov (NCT02469064). Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  8. Optimization on Emergency Longitudinal Ventilation Design

    Science.gov (United States)

    Se, Camby M. K.; Yuen, Richard K. K.; Cheung, Sherman C. P.; Tu, Jiyuan

    2010-05-01

    Emergency ventilation design in longitudinally ventilated vehicular tunnels is vital to provide safe egress route for tunnel user under fire situations. In this study, the influences of the location of active fan groups on the upstream velocity are investigated using Computational Fluid Dynamics (CFD) techniques. The numeric model was firstly validated again the experimental data from Memorial Tunnel Fire Ventilation Test Program (MTFVTP). Based on the validated model, parametric studies were then preformed attempting to establish a semi-empirical correlation between the location of fan groups and the upstream velocity. In the presence of solid fire, it was found that the buoyant force by the fire source and inertial force by the fans interact with each other and resulted in a "leveling-off" characteristic when the inertial force is no longer dominating. Such interaction re-distributed the ventilation flow direction and sequentially reduces the magnitude of the upstream velocity. In other word, the industrial practice of activating furthest fan group may not be able to prevent the backlayering as a consequence of solid fires. Fans closer to the fire source are recommended to be activated for preventing the hazard of backlayering. Furthermore, through the parametric study, location of ventilation fans is found to have significant effect on the upstream velocity. Such finding suggests that other geometrical parameters could also impose adverse effects to the ventilation system. Existing empirical equation could be insufficient to cover all possible ventilation design scenarios.

  9. Variation in Definition of Prolonged Mechanical Ventilation.

    Science.gov (United States)

    Rose, Louise; McGinlay, Michael; Amin, Reshma; Burns, Karen Ea; Connolly, Bronwen; Hart, Nicholas; Jouvet, Philippe; Katz, Sherri; Leasa, David; Mawdsley, Cathy; McAuley, Danny F; Schultz, Marcus J; Blackwood, Bronagh

    2017-10-01

    Consistency of definitional criteria for terminology applied to describe subject cohorts receiving mechanical ventilation within ICU and post-acute care settings is important for understanding prevalence, risk stratification, effectiveness of interventions, and projections for resource allocation. Our objective was to quantify the application and definition of terms for prolonged mechanical ventilation. We conducted a scoping review of studies (all designs except single-case study) reporting a study population (adult and pediatric) using the term prolonged mechanical ventilation or a synonym. We screened 5,331 references, reviewed 539 full-text references, and excluded 120. Of the 419 studies (representing 38 countries) meeting inclusion criteria, 297 (71%) reported data on a heterogeneous subject cohort, and 66 (16%) included surgical subjects only (46 of those 66, 70% cardiac surgery). Other studies described COPD (16, 4%), trauma (22, 5%), neuromuscular (17, 4%), and sepsis (1, 0.2%) cohorts. A total of 741 terms were used to refer to the 419 study cohorts. The most common terms were: prolonged mechanical ventilation (253, 60%), admission to specialized unit (107, 26%), and long-term mechanical ventilation (79, 19%). Some authors (282, 67%) defined their cohorts based on duration of mechanical ventilation, with 154 studies (55%) using this as the sole criterion. We identified 37 different durations of ventilation ranging from 5 h to 1 y, with > 21 d being the most common (28 of 282, 7%). For studies describing a surgical cohort, minimum ventilation duration required for inclusion was ≥ 24 h for 20 of 66 studies (30%). More than half of all studies (237, 57%) did not provide a reason/rationale for definitional criteria used, with only 28 studies (7%) referring to a consensus definition. We conclude that substantial variation exists in the terminology and definitional criteria for cohorts of subjects receiving prolonged mechanical ventilation. Standardization of

  10. Positive outcome of average volume-assured pressure support mode of a Respironics V60 Ventilator in acute exacerbation of chronic obstructive pulmonary disease: a case report

    Directory of Open Access Journals (Sweden)

    Okuda Miyuki

    2012-09-01

    Full Text Available Abstract Introduction We were able to treat a patient with acute exacerbation of chronic obstructive pulmonary disease who also suffered from sleep-disordered breathing by using the average volume-assured pressure support mode of a Respironics V60 Ventilator (Philips Respironics: United States. This allows a target tidal volume to be set based on automatic changes in inspiratory positive airway pressure. This removed the need to change the noninvasive positive pressure ventilation settings during the day and during sleep. The Respironics V60 Ventilator, in the average volume-assured pressure support mode, was attached to our patient and improved and stabilized his sleep-related hypoventilation by automatically adjusting force to within an acceptable range. Case presentation Our patient was a 74-year-old Japanese man who was hospitalized for treatment due to worsening of dyspnea and hypoxemia. He was diagnosed with acute exacerbation of chronic obstructive pulmonary disease and full-time biphasic positive airway pressure support ventilation was initiated. Our patient was temporarily provided with portable noninvasive positive pressure ventilation at night-time following an improvement in his condition, but his chronic obstructive pulmonary disease again worsened due to the recurrence of a respiratory infection. During the initial exacerbation, his tidal volume was significantly lower during sleep (378.9 ± 72.9mL than while awake (446.5 ± 63.3mL. A ventilator that allows ventilation to be maintained by automatically adjusting the inspiratory force to within an acceptable range was attached in average volume-assured pressure support mode, improving his sleep-related hypoventilation, which is often associated with the use of the Respironics V60 Ventilator. Polysomnography performed while our patient was on noninvasive positive pressure ventilation revealed obstructive sleep apnea syndrome (apnea-hypopnea index = 14, suggesting that his chronic

  11. Influence of inspiratory muscle training on weaning patients from mechanical ventilation: a systematic review

    Directory of Open Access Journals (Sweden)

    Márcia Souza Volpe

    Full Text Available Abstract Introduction: The inability of respiratory muscles to generate force and endurance is recognized as an important cause of failure in weaning patients from invasive mechanical ventilation (IMV. Thus, inspiratory muscle training (IMT might be an interesting treatment option for patients with prolonged IMV weaning. Objective: The aim of this systematic literature review was to evaluate the effectiveness of inspiratory muscle training in weaning patients from mechanical ventilation and to identify the most effective type of training for this particular purpose. Methods: We searched PubMed, LILACS, PEDro and Web of Science for randomized clinical trials published in English or Portuguese from January 1990 until March 2015. Results: Eighty-nine studies were identified of which five were selected. A total of 267 patients participated in the five randomized clinical trials analyzed here. IMV duration before onset of training varied greatly among subjects. Three studies performed IMT using a threshold device and two studies used adjustments of ventilator pressure sensitivity. Four studies have shown that IMT resulted in a significant increase in inspiratory maximal pressure. Only two studies, however, have reported that IMT resulted in higher success rates in weaning patients from IMV. One study has found that patients showed a shorter ventilator weaning duration after IMT. Conclusion: IMT using pressure threshold devices results in increased inspiratory muscle strength and can therefore be considered a more effective treatment option and with the potential to optimize ventilator weaning success in patients at risk of prolonged IMV.

  12. Weaning newborn infants from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Paolo Biban

    2013-06-01

    Full Text Available Invasive mechanical ventilation is a life-saving procedure which is largely used in neonatal intensive care units, particularly in very premature newborn infants. However, this essential treatment may increase mortality and cause substantial morbidity, including lung or airway injuries, unplanned extubations, adverse hemodynamic effects, analgosedative dependency and severe infectious complications, such as ventilator-associated pneumonia. Therefore, limiting the duration of airway intubation and mechanical ventilator support is crucial for the neonatologist, who should aim to a shorter process of discontinuing mechanical ventilation as well as an earlier appreciation of readiness for spontaneous breathing trials. Unfortunately, there is scarce information about the best ways to perform an effective weaning process in infants undergoing mechanical ventilation, thus in most cases the weaning course is still based upon the individual judgment of the attending clinician. Nonetheless, some evidence indicate that volume targeted ventilation modes are more effective in reducing the duration of mechanical ventilation than traditional pressure limited ventilation modes, particularly in very preterm babies. Weaning and extubation directly from high frequency ventilation could be another option, even though its effectiveness, when compared to switching and subsequent weaning and extubating from conventional ventilation, is yet to be adequately investigated. Some data suggest the use of weaning protocols could reduce the weaning time and duration of mechanical ventilation, but better designed prospective studies are still needed to confirm these preliminary observations. Finally, the implementation of short spontaneous breathing tests in preterm infants has been shown to be beneficial in some centres, favoring an earlier extubation at higher ventilatory settings compared with historical controls, without worsening the extubation failure rate. Further

  13. Potential of Natural Ventilation in Shopping Centres

    DEFF Research Database (Denmark)

    Diederichsen, Alice; Friis, Kristina; Brohus, Henrik

    2008-01-01

    ) in shopping centres with focus on both the achieved IEQ and energy consumptions for air movement. By thermal building simulations it is found that there exists an interesting potential for hybrid ventilation of shopping centres, which can lead to great savings in the electrical energy consumptions......The indoor environmental quality (IEQ) is a fundamental requirement for a well performing shopping centre. This paper contains a pilot study of the potential of using hybrid ventilation (a combination of automatically controlled natural and mechanical ventilation - respectively NV and MV...

  14. Preoperational test report, primary ventilation condensate system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-01-29

    Preoperational test report for Primary Ventilation Condensate System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides a collection point for condensate generated by the W-030 primary vent offgas cooling system serving tanks AYIOI, AY102, AZIOI, AZI02. The system is located inside a shielded ventilation equipment cell and consists of a condensate seal pot, sampling features, a drain line to existing Catch Tank 241-AZ-151, and a cell sump jet pump. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  15. Secretion management in the mechanically ventilated patient.

    Science.gov (United States)

    Branson, Richard D

    2007-10-01

    Secretion management in the mechanically ventilated patient includes routine methods for maintaining mucociliary function, as well as techniques for secretion removal. Humidification, mobilization of the patient, and airway suctioning are all routine procedures for managing secretions in the ventilated patient. Early ambulation of the post-surgical patient and routine turning of the ventilated patient are common secretion-management techniques that have little supporting evidence of efficacy. Humidification is a standard of care and a requisite for secretion management. Both active and passive humidification can be used. The humidifier selected and the level of humidification required depend on the patient's condition and the expected duration of intubation. In patients with thick, copious secretions, heated humidification is superior to a heat and moisture exchanger. Airway suctioning is the most important secretion removal technique. Open-circuit and closed-circuit suctioning have similar efficacy. Instilling saline prior to suctioning, to thin the secretions or stimulate a cough, is not supported by the literature. Adequate humidification and as-needed suctioning are the foundation of secretion management in the mechanically ventilated patient. Intermittent therapy for secretion removal includes techniques either to simulate a cough, to mechanically loosen secretions, or both. Patient positioning for secretion drainage is also widely used. Percussion and postural drainage have been widely employed for mechanically ventilated patients but have not been shown to reduce ventilator-associated pneumonia or atelectasis. Manual hyperinflation and insufflation-exsufflation, which attempt to improve secretion removal by simulating a cough, have been described in mechanically ventilated patients, but neither has been studied sufficiently to support routine use. Continuous lateral rotation with a specialized bed reduces atelectasis in some patients, but has not been shown

  16. Special Considerations in Neonatal Mechanical Ventilation.

    Science.gov (United States)

    Dalgleish, Stacey; Kostecky, Linda; Charania, Irina

    2016-12-01

    Care of infants supported with mechanical ventilation is complex, time intensive, and requires constant vigilance by an expertly prepared health care team. Current evidence must guide nursing practice regarding ventilated neonates. This article highlights the importance of common language to establish a shared mental model and enhance clear communication among the interprofessional team. Knowledge regarding the underpinnings of an open lung strategy and the interplay between the pathophysiology and individual infant's response to a specific ventilator strategy is most likely to result in a positive clinical outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of different rhizosphere ventilation treatment on water and ...

    African Journals Online (AJOL)

    user

    2011-02-07

    Feb 7, 2011 ... ventilation can promote photosynthesis, metabolites and accumulation of ... artificial ventilation, thereby setting different ventilation frequency .... light conditions. Effects of different rhizosphere ventilation treatment on plant height. Effects of different irrigation on plant height, in conditions of a certain ...

  18. Effects of different rhizosphere ventilation treatment on water and ...

    African Journals Online (AJOL)

    The objective of this study was to explore the effects of different rhizosphere ventilation treatment on water and nutrients absorption of maize. The pot experiment was conducted using three methods: no ventilation, two day ventilation and four day ventilation, under conditions of the different levels of irrigation methods.

  19. 33 CFR 183.610 - Powered ventilation system.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Powered ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.610 Powered ventilation system... must: (1) Be open to the atmosphere, or (2) Be ventilated by an exhaust blower system. (b) Each exhaust...

  20. 46 CFR 153.310 - Ventilation system type.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation system type. 153.310 Section 153.310... Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent forced ventilation system of the exhaust type. ...

  1. 33 CFR 183.620 - Natural ventilation system.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...

  2. Adjustable continence balloons

    DEFF Research Database (Denmark)

    Kjær, Line; Fode, Mikkel; Nørgaard, Nis

    2012-01-01

    . Fourteen patients (12%) ended up with an artificial sphincter or a urethral sling. Sixty patients (63%) experienced no discomfort and 58 (61%) reported being dry or markedly improved. Overall, 50 patients (53%) reported being very or predominantly satisfied. Conclusions. Adjustable continence balloons seem...

  3. Sustainable urban regime adjustments

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Jensen, Jens Stissing; Elle, Morten

    2013-01-01

    The endogenous agency that urban governments increasingly portray by making conscious and planned efforts to adjust the regimes they operate within is currently not well captured in transition studies. There is a need to acknowledge the ambiguity of regime enactment at the urban scale. This direc...

  4. Psychological Adjustment and Homosexuality.

    Science.gov (United States)

    Gonsiorek, John C.

    In this paper, the diverse literature bearing on the topic of homosexuality and psychological adjustment is critically reviewed and synthesized. The first chapter discusses the most crucial methodological issue in this area, the problem of sampling. The kinds of samples used to date are critically examined, and some suggestions for improved…

  5. Can mechanical ventilation strategies reduce chronic lung disease?

    Science.gov (United States)

    Donn, Steven M; Sinha, Sunil K

    2003-12-01

    Chronic lung disease (CLD) continues to be a significant complication in newborn infants undergoing mechanical ventilation for respiratory failure. Although the aetiology of CLD is multifactorial, specific factors related to mechanical ventilation, including barotrauma, volutrauma and atelectrauma, have been implicated as important aetiologic mechanisms. This article discusses the ways in which these factors might be manipulated by various mechanical ventilatory strategies to reduce ventilator-induced lung injury. These include continuous positive airway pressure, permissive hypercapnia, patient-triggered ventilation, volume-targeted ventilation, proportional assist ventilation, high-frequency ventilation and real-time monitoring.

  6. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  7. 46 CFR 194.20-5 - Ventilation.

    Science.gov (United States)

    2010-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-5... expected. Ventilation exhaust outlets shall terminate more than 6 feet from any opening to the interior...

  8. Adaptive Intelligent Ventilation Noise Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for quiet on-orbit crew quarters (CQ), Physical Optics Corporation (POC) proposes to develop a new Adaptive Intelligent Ventilation Noise...

  9. Adaptive Intelligent Ventilation Noise Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA needs for quiet crew volumes in a space habitat, Physical Optics Corporation (POC) proposes to develop a new Adaptive Intelligent Ventilation Noise...

  10. Ventilation Guidance for Spray Polyurethane Foam Application

    Science.gov (United States)

    Properly designed ventilation can reduce airborne levels of aerosols, mists, and vapors generated during spray application and can help protect SPF applicators, helpers, and others who may be working in adjacent areas.

  11. Modelling of Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The effectiveness of natural ventilation, i.e. its ability to ensure indoor air quality and passive cooling in a building, depends greatly on the design process. Mechanical ventilation systems can be designed separately from the design of the building in which they are installed. They can also...... be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building, since the building itself and its components are the elements that can reduce or increase air movement...... as well as influence the air content (dust, pollution etc.). Architects and engineers need to acquire qualitative and quantitative information about the interactions between building characteristics and natural ventilation in order to design buildings and systems consistent with a passive low...

  12. Design of Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The effectiveness of natural ventilation, i.e. its ability to ensure indoor air quality and passive cooling in a building, depends greatly on the design process. Mechanical ventilation systems can be designed separately from the design of the building in which they are installed. They can also...... be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building, since the building itself and its components are the elements that can reduce or increase air movement...... as well as influence the air content (dust, pollution etc.). Architects and engineers need to acquire qualitative and quantitative information about the interactions between building characteristics and natural ventilation in order to design buildings and systems consistent with a passive low...

  13. Performance of displacement ventilation in practice

    DEFF Research Database (Denmark)

    Naidenov, K.; Pitchurov, G.; Langkilde, Gunnar

    2002-01-01

    This paper presents results of a field study in offices with displacement ventilation. It comprises detailed physical measurements of the thermal environment and collection of occupants´ response at 227 workplaces. The results, both physical measurements and human response, identified draught as ...... ventilation principle. This will ensure proper and efficient operation of the system and occupants´ satisfaction.......This paper presents results of a field study in offices with displacement ventilation. It comprises detailed physical measurements of the thermal environment and collection of occupants´ response at 227 workplaces. The results, both physical measurements and human response, identified draught...... as the major local discomfort in the rooms with displacement ventilation. Twenty-three percent of the occupants were daily bothered by draught. In some buildings the maintenance personnel tried to improve occupants´ thermal comfort by raising the supply air temperature or office workers themselves blocked...

  14. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...... continuously by a mass spectrometer. Signals from this instrument, together with gas-volume signals from the ventilator, were fed to a computer for calculation of VO2 and VCO2. Twenty to 120 min were required to reach a stable level, depending on the patient's size and circulatory response. Similar results...... were obtained by computer simulation using a five-compartment model of CO2 stores. These experiments indicate that measuring VO2 (for calculation of metabolic respiratory quotient [RQ]) in ventilated patients should occur after the patients maintain a 60-min period of stable body temperature...

  15. Comfort parameters - Ventilation of a subway wagon

    Science.gov (United States)

    Petr, Pavlíček; Ladislav, Tříska

    2017-09-01

    Research and development of a ventilation system is being carried out as a part of project TA04030774 of the Technology Agency of the Czech Republic. Name of the project is "Research and Development of Mass-optimized Components for Rail Vehicles". Problems being solved are development and testing of a new concept for ventilation systems for public transport vehicles. The main improvements should be a reduction of the mass of the whole system, easy installation and reduction of the noise of the ventilation system. This article is focused on the comfort parameters in a subway wagon (measurement and evaluation carried out on a function sample in accordance with the regulations). The input to the project is a ventilator hybrid casing for a subway wagon, which was manufactured and tested during the Ministry of Industry and Trade project TIP FR-TI3/449.

  16. Mechanical ventilation and mobilization: comparison between genders.

    Science.gov (United States)

    Daniel, Christiane Riedi; Alessandra de Matos, Carla; Barbosa de Meneses, Jessica; Bucoski, Suzane Chaves Machado; Fréz, Andersom Ricardo; Mora, Cintia Teixeira Rossato; Ruaro, João Afonso

    2015-04-01

    [Purpose] To investigate the impact of gender on mobilization and mechanical ventilation in hospitalized patients in an intensive care unit. [Subjects and Methods] A retrospective cross-sectional study was conducted of the medical records of 105 patients admitted to a general intensive care unit. The length of mechanical ventilation, length of intensive care unit stay, weaning, time to sitting out of bed, time to performing active exercises, and withdrawal of sedation exercises were evaluated in addition to the characteristics of individuals, reasons for admission and risk scores. [Results] Women had significantly lower values APACHE II scores, duration of mechanical ventilation, time to withdrawal of sedation and time to onset of active exercises. [Conclusion] Women have a better functional response when admitted to the intensive care unit, spending less time ventilated and performing active exercises earlier.

  17. 46 CFR 111.15-10 - Ventilation.

    Science.gov (United States)

    2010-10-01

    .... (3) Each blower must have a non-sparking fan. (4) The power ventilation system must be interlocked... vertical; and (iv) That has no appliances, such as flame arresters, that impede free passage of air or gas...

  18. Control of autonomous robot using neural networks

    Science.gov (United States)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  19. Humidification of inspired gases during mechanical ventilation.

    Science.gov (United States)

    Gross, J L; Park, G R

    2012-04-01

    Humidification of inspired gas is mandatory for all mechanically ventilated patients to prevent secretion retention, tracheal tube blockage and adverse changes occurring to the respiratory tract epithelium. However, the debate over "ideal" humidification continues. Several devices are available that include active and passive heat and moisture exchangers and hot water humidifiers Each have their advantages and disadvantages in mechanically ventilated patients. This review explores each device in turn and defines their role in clinical practice.

  20. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    Zwijnenburg, A.

    1989-01-01

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  1. Ventilation and filtration of active buildings

    International Nuclear Information System (INIS)

    Nixon, J.D.; Chapman, E.J.

    1976-01-01

    Over the last twenty years considerable experience has accumulated on the ventilation of buildings handling radioactive materials. It has been recognized that there is a need to establish a UKAEA code of practice in the light of this experience for the future use of designers and operators in this field. This report attempts a lay down some of the principles governing the design of ventilation systems and, from the existing background data, to establish some of the basic design criteria. (author)

  2. Sensor-based demand controlled ventilation

    Energy Technology Data Exchange (ETDEWEB)

    De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  3. Computer codes for ventilation in nuclear facilities

    International Nuclear Information System (INIS)

    Mulcey, P.

    1987-01-01

    In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr

  4. Perioperative lung protective ventilation in obese patients

    OpenAIRE

    Fernandez-Bustamante, Ana; Hashimoto, Soshi; Serpa Neto, Ary; Moine, Pierre; Vidal Melo, Marcos F; Repine, John E

    2015-01-01

    The perioperative use and relevance of protective ventilation in surgical patients is being increasingly recognized. Obesity poses particular challenges to adequate mechanical ventilation in addition to surgical constraints, primarily by restricted lung mechanics due to excessive adiposity, frequent respiratory comorbidities (i.e. sleep apnea, asthma), and concerns of postoperative respiratory depression and other pulmonary complications. The number of surgical patients with obesity is increa...

  5. Weaning a patient from mechanical ventilation.

    Science.gov (United States)

    Weilitz, P B

    1993-08-01

    The process of weaning a patient from mechanical ventilation is complex. Assessment of respiratory mechanics, oxygenation and ventilation, medical problems, nutrition, physical therapy and psychologic needs are important prior to developing the weaning plan. The weaning technique should be individualized to the patient and may be combined with other techniques for optimal outcome. Successful weaning depends on the nurse's attention to detail, careful assessment of patient responses to weaning trials, and coordination of and collaboration with other healthcare team members.

  6. Healthcare Technology Management (HTM) of mechanical ventilators by clinical engineers

    OpenAIRE

    Yoshioka, Jun; Nakane, Masaki; Kawamae, Kaneyuki

    2014-01-01

    Mechanical ventilator failures expose patients to unacceptable risks, and maintaining mechanical ventilator safety is an important issue. We examined the usefulness of maintaining mechanical ventilators by clinical engineers (CEs) using a specialized calibrator. These evaluations and the ability to make in-house repairs proved useful for obviating the need to rent ventilators which, in turn, might prove faulty themselves. The CEs' involvement in maintaining mechanical ventilators is desirable...

  7. Liquid lung ventilation as an alternative ventilatory support

    OpenAIRE

    Verbrugge, Serge; Gommers, Diederik; Lachmann, Burkhard

    1995-01-01

    textabstractThe concept of liquid ventilation has evolved in recent years into the concept of partial liquid ventilation. In this technique, conventional mechanical ventilation is combined with intratracheal perfluorocarbon administration. Partial liquid ventilation is a promising technique for improving gas exchange during mechanical ventilation in neonatal and acute respiratory distress syndrome. The initial data showed no adverse effects on the cardiovascular system, and histological studi...

  8. Non-invasive ventilation for cystic fibrosis.

    Science.gov (United States)

    Moran, Fidelma; Bradley, Judy M; Piper, Amanda J

    2017-02-20

    Non-invasive ventilation may be a means to temporarily reverse or slow the progression of respiratory failure in cystic fibrosis by providing ventilatory support and avoiding tracheal intubation. Using non-invasive ventilation, in the appropriate situation or individuals, can improve lung mechanics through increasing airflow and gas exchange and decreasing the work of breathing. Non-invasive ventilation thus acts as an external respiratory muscle. This is an update of a previously published review. To compare the effect of non-invasive ventilation versus no non-invasive ventilation in people with cystic fibrosis for airway clearance, during sleep and during exercise. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. We searched the reference lists of each trial for additional publications possibly containing other trials.Most recent search: 08 August 2016. Randomised controlled trials comparing a form of pressure preset or volume preset non-invasive ventilation to no non-invasive ventilation used for airway clearance or during sleep or exercise in people with acute or chronic respiratory failure in cystic fibrosis. Three reviewers independently assessed trials for inclusion criteria and methodological quality, and extracted data. Ten trials met the inclusion criteria with a total of 191 participants. Seven trials evaluated single treatment sessions, one evaluated a two-week intervention, one evaluated a six-week intervention and one a three-month intervention. It is only possible to blind trials of airway clearance and overnight ventilatory support to the outcome assessors. In most of the trials we judged there was an unclear risk of bias with regards to blinding due to inadequate descriptions. The six-week trial was the only one judged to have a low risk of bias for all

  9. Natural ventilation of interconnected boxes

    Science.gov (United States)

    Flynn, Morris R.; Caulfield, Colm P.

    2005-11-01

    We examine the natural ventilation flow which occurs when a source of buoyancy is confined within a forced room with three vents: one low level exterior vent; and high and low level vents to an unforced room, which in turn has a high level exterior vent. This generalizes toward more realistic building planforms the classic single room flow considered by Linden et al. (1990). The steady state flow in the forced room is very similar to the single room case, with a well-mixed buoyant layer whose relative depth is determined purely by the vent geometry. However, it is essential to consider the system's time history to identify even the steady state properties of the flow in the unforced room. The development of a vertically stratified buoyant layer in the unforced room is inevitable; its depth depends in a non-trivial way on the cross-sectional areas of not only all the vents, but also the two rooms. We compare the predictions of a hierarchy of numerical models with the results of analogue laboratory experiments, demonstrating the critical role played by the developing vertical stratification in the unforced room.

  10. Daily Goals Formulation and Enhanced Visualization of Mechanical Ventilation Variance Improves Mechanical Ventilation Score.

    Science.gov (United States)

    Walsh, Brian K; Smallwood, Craig; Rettig, Jordan; Kacmarek, Robert M; Thompson, John; Arnold, John H

    2017-03-01

    The systematic implementation of evidence-based practice through the use of guidelines, checklists, and protocols mitigates the risks associated with mechanical ventilation, yet variation in practice remains prevalent. Recent advances in software and hardware have allowed for the development and deployment of an enhanced visualization tool that identifies mechanical ventilation goal variance. Our aim was to assess the utility of daily goal establishment and a computer-aided visualization of variance. This study was composed of 3 phases: a retrospective observational phase (baseline) followed by 2 prospective sequential interventions. Phase I intervention comprised daily goal establishment of mechanical ventilation. Phase II intervention was the setting and monitoring of daily goals of mechanical ventilation with a web-based data visualization system (T3). A single score of mechanical ventilation was developed to evaluate the outcome. The baseline phase evaluated 130 subjects, phase I enrolled 31 subjects, and phase II enrolled 36 subjects. There were no differences in demographic characteristics between cohorts. A total of 171 verbalizations of goals of mechanical ventilation were completed in phase I. The use of T3 increased by 87% from phase I. Mechanical ventilation score improved by 8.4% in phase I and 11.3% in phase II from baseline ( P = .032). The largest effect was in the low risk V T category, with a 40.3% improvement from baseline in phase I, which was maintained at 39% improvement from baseline in phase II ( P = .01). mechanical ventilation score was 9% higher on average in those who survived. Daily goal formation and computer-enhanced visualization of mechanical ventilation variance were associated with an improvement in goal attainment by evidence of an improved mechanical ventilation score. Further research is needed to determine whether improvements in mechanical ventilation score through a targeted, process-oriented intervention will lead to

  11. Automatic temperature adjustment apparatus

    Science.gov (United States)

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  12. Effect of a nurse-implemented sedation protocol on the incidence of ventilator-associated pneumonia.

    Science.gov (United States)

    Quenot, Jean-Pierre; Ladoire, Sylvain; Devoucoux, Fabrice; Doise, Jean-Marc; Cailliod, Romain; Cunin, Nicole; Aubé, Hervé; Blettery, Bernard; Charles, Pierre Emmanuel

    2007-09-01

    To determine whether the use of a nurse-implemented sedation protocol could reduce the incidence of ventilator-associated pneumonia in critically ill patients. Two-phase (before-after), prospective, controlled study. University-affiliated, 11-bed medical intensive care unit. Patients requiring mechanical ventilation for >or=48 hrs and sedative infusion with midazolam or propofol alone. During the control phase, sedatives were adjusted according to the physician's decision. During the protocol phase, sedatives were adjusted according to a protocol developed by a multidisciplinary team including nurses and physicians. The protocol was based on the Cambridge scale, and sedation level was adjusted every 3 hrs by the nurses. Standard practices, including weaning from the ventilator and diagnosis of VAP, were the same during both study phases. A total of 423 patients were enrolled (control group, n = 226; protocol group, n = 197). The incidence of VAP was significantly lower in the protocol group compared with the control group (6% and 15%, respectively, p = .005). By univariate analysis (log-rank test), only use of a nurse-implemented protocol was significantly associated with a decrease of incidence of VAP (p < .01). A nurse-implemented protocol was found to be independently associated with a lower incidence of VAP after adjustment on Simplified Acute Physiology Score II in the multivariate Cox proportional hazards model (hazard rate, 0.81; 95% confidence interval, 0.62-0.95; p = .03). The median duration of mechanical ventilation was significantly shorter in the protocol group (4.2 days; interquartile range, 2.1-9.5) compared with the control group (8 days; interquartile range, 2.2-22.0; p = .001), representing a 52% relative reduction. Extubation failure was more frequently observed in the control group compared with the protocol group (13% and 6%, respectively, p = .01). There was no significant difference in in-hospital mortality (38% vs. 45% in the protocol vs

  13. Accuracy of tidal volume delivered by home mechanical ventilation during mouthpiece ventilation

    Science.gov (United States)

    Prigent, Helene; Falaize, Line; Leroux, Karl; Santos, Dante; Vaugier, Isabelle; Orlikowski, David; Lofaso, Frederic

    2016-01-01

    The aim of our study was to evaluate efficacy and reliability of currently available ventilators for mouthpiece ventilation (MPV). Five life-support home ventilators were assessed in a bench test using different settings simulating the specificities of MPV, such as intermittent circuit disconnection and presence of continuous leaks. The intermittent disconnection of the circuit caused relevant swings in the delivered tidal volume (VT), showing a VT overshoot during the disconnection periods and a VT decrease when the interface was reconnected to the test lung. The five ventilators showed substantial differences in the number of respiratory cycles necessary to reach a stable VT in the volume-controlled setting, ranging from 1.3 ± 0.6 to 7.3 ± 1.2 cycles. These differences were less accentuated in the volume-assisted setting (MPV-dedicated mode, when available). Our data show large differences in the capacity of the different ventilators to deal with the rapidly changing respiratory load features that characterize MPV, which can be further accentuated according to the used ventilator setting. The dedicated MPV modes allow improvement in the performance of ventilators only in some defined situations. This has practical consequences for the choice of the ventilator to be used for MPV in a specific patient. PMID:27146811

  14. Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel

    Science.gov (United States)

    Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei

    2018-03-01

    In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.

  15. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC).

    Science.gov (United States)

    Kneyber, Martin C J; de Luca, Daniele; Calderini, Edoardo; Jarreau, Pierre-Henri; Javouhey, Etienne; Lopez-Herce, Jesus; Hammer, Jürg; Macrae, Duncan; Markhorst, Dick G; Medina, Alberto; Pons-Odena, Marti; Racca, Fabrizio; Wolf, Gerhard; Biban, Paolo; Brierley, Joe; Rimensberger, Peter C

    2017-12-01

    Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children. The European Society for Paediatric and Neonatal Intensive Care initiated a consensus conference of international European experts in paediatric mechanical ventilation to provide recommendations using the Research and Development/University of California, Los Angeles, appropriateness method. An electronic literature search in PubMed and EMBASE was performed using a combination of medical subject heading terms and text words related to mechanical ventilation and disease-specific terms. The Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) consisted of a panel of 15 experts who developed and voted on 152 recommendations related to the following topics: (1) general recommendations, (2) monitoring, (3) targets of oxygenation and ventilation, (4) supportive measures, (5) weaning and extubation readiness, (6) normal lungs, (7) obstructive diseases, (8) restrictive diseases, (9) mixed diseases, (10) chronically ventilated patients, (11) cardiac patients and (12) lung hypoplasia syndromes. There were 142 (93.4%) recommendations with "strong agreement". The final iteration of the recommendations had none with equipoise or disagreement. These recommendations should help to harmonise the approach to paediatric mechanical ventilation and can be proposed as a standard-of-care applicable in daily clinical practice and clinical research.

  16. Hydrostatic Hyperbaric Chamber Ventilation System

    Science.gov (United States)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  17. Regenerative Blower for EVA Suit Ventilation Fan

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  18. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  19. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  20. Convexity Adjustments for ATS Models

    DEFF Research Database (Denmark)

    Murgoci, Agatha; Gaspar, Raquel M.

    . As a result we classify convexity adjustments into forward adjustments and swaps adjustments. We, then, focus on affine term structure (ATS) models and, in this context, conjecture convexity adjustments should be related of affine functionals. In the case of forward adjustments, we show how to obtain exact...... formulas. Concretely for LIBOR in arrears (LIA) contracts, we derive the system of Riccatti ODE-s one needs to compute to obtain the exact adjustment. Based upon the ideas of Schrager and Pelsser (2006) we are also able to derive general swap adjustments useful, in particular, when dealing with constant...

  1. Downhole adjustable bent assemblies

    International Nuclear Information System (INIS)

    Askew, W.E.

    1992-01-01

    This patent describes downhole adjustable apparatus for creating a bend angle in order to affect the inclination of a drilled borehole. It comprises an upper tubular member having an upper portion and a lower portion; lower tubular member having an upper portion and a lower portion; one of the portions being received within the other for relative rotational movement about an axis that is inclined with respect to the the longitudinal axes of the members, whereby in a first rotational position the longitudinal axes have one geometrical relationship, and in a second rotational position the longitudinal axes have a second, different geometrical relationship

  2. Primary length standard adjustment

    Science.gov (United States)

    Ševčík, Robert; Guttenová, Jana

    2007-04-01

    This paper deals with problems and techniques connected with primary length standard adjusting, which includes disassembling of the device and by use of the secondary laser with collimated beam and diffraction laws successively reassembling of the laser. In the reassembling process the device was enhanced with substituting the thermal grease cooling of cold finger by copper socket cooler. This improved external cooling system enables more effective cooling of molecular iodine in the cell, which allows better pressure stability of iodine vapor and easier readjustment of the system.

  3. A Porcine Model for Initial Surge Mechanical Ventilator Assessment and Evaluation of Two Limited Function Ventilators

    Science.gov (United States)

    Dickson, Robert P; Hotchkin, David L; Lamm, Wayne JE; Hinkson, Carl; Pierson, David J; Glenny, Robb W; Rubinson, Lewis

    2013-01-01

    Objective To adapt an animal model of acute lung injury for use as a standard protocol for a screening, initial evaluation of limited function, or “surge,” ventilators for use in mass casualty scenarios. Design Prospective, experimental animal study. Setting University research laboratory. Subjects 12 adult pigs. Interventions 12 spontaneously breathing pigs (6 in each group) were subjected to acute lung injury/acute respiratory distress syndrome (ALI/ARDS) via pulmonary artery infusion of oleic acid. Following development of respiratory failure, animals were mechanically ventilated with a limited function ventilator (Simplified Automatic Ventilator [SAVe] I or II; Automedx) for one hour or until the ventilator could not support the animal. The limited function ventilator was then exchanged for a full function ventilator (Servo 900C; Siemens). Measurements and Main Results Reliable and reproducible levels of ALI/ARDS were induced. The SAVe I was unable to adequately oxygenate 5 animals, with PaO2 (52.0 ± 11.1 torr) compared to the Servo (106.0 ± 25.6 torr; p=0.002). The SAVe II was able to oxygenate and ventilate all 6 animals for one hour with no difference in PaO2 (141.8 ± 169.3 torr) compared to the Servo (158.3 ± 167.7 torr). Conclusions We describe a novel in vivo model of ALI/ARDS that can be used to initially screen limited function ventilators considered for mass respiratory failure stockpiles, and is intended to be combined with additional studies to defintively assess appropriateness for mass respiratory failure. Specifically, during this study we demonstrate that the SAVe I ventilator is unable to provide sufficient gas exchange, while the SAVe II, with several more functions, was able to support the same level of hypoxemic respiratory failure secondary to ALI/ARDS for one hour. PMID:21187747

  4. [A comparison of leak compensation in six acute care ventilators during non-invasive ventilation].

    Science.gov (United States)

    Hu, X S; Wang, Y; Wang, Z T; Yan, P; Zhang, X G; Zhao, S F; Xie, F; Gu, H J; Xie, L X

    2017-02-12

    Objective: To compare the ability of leak compensation in 6 medical ventilators during non-invasive ventilation. Methods: Six medical ventilators were selected, including 3 non-invasive ventilators (V60, Flexo and Stellar150), and 3 invasive ventilators(Avea, Servo I and BellaVist). Using a lung simulator, the ability of leak compensation was evaluated during triggering and cycling in 2 respiratory mechanics conditions (high airway resistance condition and high elastance resistance condition), and each condition was performed under 2 PEEP levels (4, and 8 cmH(2)O, 1 mmHg=0.098 kPa) at 4 air leak level conditions (L0: 2-3 L/min, L1: 8-10 L/min, L2: 22-27 L/min, L3: 35-40 L/min). Results: In the high elastance resistance condition (L2, L3)with different leak levels, the number of auto-triggering and miss-triggering of the non-invasive ventilator Flexo was significantly less than those of the others (L2: 1, 1; L3: 1.67, 1.33, P ventilators ( P ventilators (1, 0.67, 0, P ventilators in both high airway resistance and high elastance resistance conditions with L0 and L1 leak levels and PEEP levels [ARDS, PEEP=4: (109.8±1.8) ms, (112.0±0.6) ms; ARDS, PEEP=8: (103.1±0.7) ms, (109.7±0.7) ms; COPD, PEEP=4: (207.3±1.1) ms, (220.8±1.1) ms; COPD, PEEP=8: (195.6±6.7) ms, (200.0±1.2) ms , P ventilators could be synchronized, among which V60, Stellar150 and Flexo presented a good performance features in specific conditions.

  5. Effect Of Ventilation On Chronic Health Risks In Schools And Offices

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Srinandini [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-04

    This study provides a risk assessment for chronic health risks from inhalation exposure to indoor air pollutants in offices and schools with a focus how ventilation impacts exposures to, and risks from, volatile organic compounds (VOCs) and particulate matter (PM2.5). We estimate how much health risks could change with varying ventilation rates under two scenarios: (i) halving the measured ventilation rates and (ii) doubling the measured ventilation rates. For the hazard characterization we draw upon prior papers that identified pollutants potentially affecting health with indoor air concentrations responsive to changes in ventilation rates. For exposure assessment we determine representative concentrations of pollutants using data available in current literature and model changes in exposures with changes in ventilation rates. As a metric of disease burden, we use disability adjusted life years (DALYs) to address both cancer and non-cancer effects. We also compare exposures to guidelines published by regulatory agencies to assess chronic health risks. Chronic health risks are driven primarily by particulate matter exposure, with an estimated baseline disease burden of 150 DALYs per 100,000 people in offices and 140 DALYs per 100,000 people in schools. Study results show that PM2.5-related DALYs are not very sensitive to changes in ventilation rates. Filtration is more effective at controlling PM2.5 concentrations and health effects. Non-cancer health effects contribute only a small fraction of the overall chronic health burden of populations in offices and schools (<1 DALY per 100,000 people). Cancer health effects dominate the disease burden in schools (3 DALYs per 100,000) and offices (5 DALYs per 100,000), with formaldehyde being the primary risk driver. In spite of large uncertainties in toxicological data and dose-response modeling, our results support the finding that ventilation rate changes do not have significant impacts on estimated chronic disease

  6. Influence of two different sitting positions on postural adjustments in children with spastic diplegia

    NARCIS (Netherlands)

    Brogren, E; Forssberg, H; Hadders-Algra, M

    The present study addressed the question whether the deviant postural adjustments in children with spastic diplegia can be attributed to their crouched sitting position or primarily to their neural deficit. Postural adjustments during sitting in an erect and in a crouched position on a movable

  7. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is

  8. Association of Increasing Use of Mechanical Ventilation Among Nursing Home Residents With Advanced Dementia and Intensive Care Unit Beds.

    Science.gov (United States)

    Teno, Joan M; Gozalo, Pedro; Khandelwal, Nita; Curtis, J Randall; Meltzer, David; Engelberg, Ruth; Mor, Vincent

    2016-12-01

    Mechanical ventilation may be lifesaving, but in certain persons, such as those with advanced dementia, it may prolong patient suffering without a clear survival benefit. To describe the use and outcomes of mechanical ventilation and its association with the increasing numbers of intensive care unit (ICU) beds in the United States for patients with advanced dementia residing in a nursing home 120 days before that hospital admission. This retrospective cohort study evaluated Medicare beneficiaries with advanced dementia hospitalized from January 1, 2000, to December 31, 2013, using the Minimum Data Set assessments linked with Medicare part A claims. A hospital fixed-effect, multivariable logistic regression model examined the effect of changes in ICU beds within individual hospitals and the likelihood of receiving mechanical ventilation, controlling for patients' demographic characteristics, function, and comorbidities. Mechanical ventilation. From 2000 to 2013, a total of 635 008 hospitalizations of 380 060 eligible patients occurred (30.5% male and 69.5% female; mean [SD] age, 84.4 [7.4] years). Use of mechanical ventilation increased from 39 per 1000 hospitalizations in 2000 to 78 per 1000 hospitalizations in 2013 (P mechanical ventilation (ie, adjusted odds ratio per 10 ICU bed increase, 1.06; 95% CI, 1.05-1.07). In 2013, hospitals in the top decile in the number of ICU beds were reimbursed $9611.89 per hospitalization compared with $8050.24 per hospitalization in the lower decile (P mechanical ventilation over time without substantial improvement in survival. This increase in the use of mechanical ventilation was associated with an increase in the number of ICU beds within a hospital.

  9. Ventilation system for 99Mo production apparatus

    International Nuclear Information System (INIS)

    Izumo, Mishiroku; Okane, Shougo; Sorita, Takami; Aoyama, Saburou

    1978-04-01

    In production of 20 Ci 99 Mo from 235 U fission, about 120 Ci of radioiodine ( 131 I, 132 I, and 133 I) is involved. To remove airborne radioiodine from the exhaust air from production apparatus and minimize radioiodine release to the atmosphere, the ventilation system is equipped with 2 units of Model-FD charcoal filter (KI 3 -Impregnated charcoal 2 inch thick of Barnebey-Cheney Co.). From September 1976 to December 1977, 21 runs of 99 Mo production involving airborne radioiodine were carried out. The ventilation system was operated continuously for the whole 15 months period; variation in removal efficiency of airborne radioiodine from the exhaust air stream was observed. In the runs valuable experiences were gained in operation and maintenance of the ventilation system including activated charcoal filter and health-physics management of such facility. Following are the results: (1) Airborne radioiodine from 99 Mo production apparatus is reduced to 10 -3 % of the original quantity. (2) When the ventilation system is operated at a maximum air flow rate through the filter, the average efficiency during 15 months is over 98%. (3) Airborne radioiodine released from 99 Mo production apparatus to the ventilation system is less than 5% particulate iodine and alkyl iodines and more than 95% inorganic iodine. (4) Airborne radioiodine released from the stack is less than 28 μCi/run, which is below the limit in regulations on Radioisotope Production Laboratory. (auth.)

  10. Underground ventilation remote monitoring and control system

    International Nuclear Information System (INIS)

    Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

    1995-01-01

    This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system

  11. Optimized mine ventilation on demand (OMVOD)

    International Nuclear Information System (INIS)

    Anderson, M.

    2009-01-01

    This paper provided an overview of the Optimized Mine Ventilation on Demand (OMVOD) system that is being installed at Xstrata Nickel Rim South Project and at Vale Inco's Totten Mine in Sudbury. The OMVOD system is designed to dynamically monitor and control air quality and quantity in real time and dilute and remove hazardous substances including diesel particulate matter (DPM), carbon monoxide (CO) and nitrous oxide (NO 2 ). It is also designed to control the thermal environment and provide ventilation for humans as well as mobile equipment engine combustion according to regulatory standards. The paper highlighted the OMVOD system optimization of energy, air quality measurement and control and production management of the mines through real time dynamic automation. Topics of discussion included real-time tracking and monitoring of diesel equipment; real-time tracking of underground miners; real-time evaluation of mine ventilation networks; and real-time control and optimization of ventilation equipment. ABB and Simsmart Technologies have joined forces to provide underground mining customers with a ventilation optimization solution. Simsmart's OMVOD provides proven real time/dynamic automation technology to significantly reduce energy costs, provide health and safety benefits as well as major capital cost savings while realizing an increase in production.

  12. Computational fluid dynamics in ventilation: Practical approach

    Science.gov (United States)

    Fontaine, J. R.

    The potential of computation fluid dynamics (CFD) for conceiving ventilation systems is shown through the simulation of five practical cases. The following examples are considered: capture of pollutants on a surface treating tank equipped with a unilateral suction slot in the presence of a disturbing air draft opposed to suction; dispersion of solid aerosols inside fume cupboards; performances comparison of two general ventilation systems in a silkscreen printing workshop; ventilation of a large open painting area; and oil fog removal inside a mechanical engineering workshop. Whereas the two first problems are analyzed through two dimensional numerical simulations, the three other cases require three dimensional modeling. For the surface treating tank case, numerical results are compared to laboratory experiment data. All simulations are carried out using EOL, a CFD software specially devised to deal with air quality problems in industrial ventilated premises. It contains many analysis tools to interpret the results in terms familiar to the industrial hygienist. Much experimental work has been engaged to validate the predictions of EOL for ventilation flows.

  13. Adjustment disorder: current perspectives

    Directory of Open Access Journals (Sweden)

    Zelviene P

    2018-01-01

    Full Text Available Paulina Zelviene, Evaldas Kazlauskas Department of Clinical and Organizational Psychology, Vilnius University, Vilnius, Lithuania Abstract: Adjustment disorder (AjD is among the most often diagnosed mental disorders in clinical practice. This paper reviews current status of AjD research and discusses scientific and clinical issues associated with AjD. AjD has been included in diagnostic classifications for over 50 years. Still, the diagnostic criteria for AjD remain vague and cause difficulties to mental health professionals. Controversies in definition resulted in the lack of reliable and valid measures of AjD. Epidemiological data on prevalence of AjD is scarce and not reliable because prevalence data are biased by the diagnostic algorithm, which is usually developed for each study, as no established diagnostic standards for AjD are available. Considerable changes in the field of AjD could follow after the release of the 11th edition of International Classification of Diseases (ICD-11. A new AjD symptom profile was introduced in ICD-11 with 2 main symptoms as follows: 1 preoccupation and 2 failure to adapt. However, differences between the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and ICD-11 AjD diagnostic criteria could result in diverse research findings in the future. The best treatment approach for AjD remains unclear, and further treatment studies are needed to provide AjD treatment guidelines to clinicians. Keywords: adjustment disorder, review, diagnosis, prevalence, treatment, DSM, ICD

  14. Continuously adjustable Pulfrich spectacles

    Science.gov (United States)

    Jacobs, Ken; Karpf, Ron

    2011-03-01

    A number of Pulfrich 3-D movies and TV shows have been produced, but the standard implementation has inherent drawbacks. The movie and TV industries have correctly concluded that the standard Pulfrich 3-D implementation is not a useful 3-D technique. Continuously Adjustable Pulfrich Spectacles (CAPS) is a new implementation of the Pulfrich effect that allows any scene containing movement in a standard 2-D movie, which are most scenes, to be optionally viewed in 3-D using inexpensive viewing specs. Recent scientific results in the fields of human perception, optoelectronics, video compression and video format conversion are translated into a new implementation of Pulfrich 3- D. CAPS uses these results to continuously adjust to the movie so that the viewing spectacles always conform to the optical density that optimizes the Pulfrich stereoscopic illusion. CAPS instantly provides 3-D immersion to any moving scene in any 2-D movie. Without the glasses, the movie will appear as a normal 2-D image. CAPS work on any viewing device, and with any distribution medium. CAPS is appropriate for viewing Internet streamed movies in 3-D.

  15. Prevention of Ventilator-Associated Pneumonia: The Multimodal Approach of the Spanish ICU “Pneumonia Zero” Program*

    Science.gov (United States)

    Palomar-Martínez, Mercedes; Sánchez-García, Miguel; Martínez-Alonso, Montserrat; Álvarez-Rodríguez, Joaquín; Lorente, Leonardo; Arias-Rivera, Susana; García, Rosa; Gordo, Federico; Añón, José M.; Jam-Gatell, Rosa; Vázquez-Calatayud, Mónica; Agra, Yolanda

    2018-01-01

    Objectives: The “Pneumonia Zero” project is a nationwide multimodal intervention based on the simultaneous implementation of a comprehensive evidence-based bundle measures to prevent ventilator-associated pneumonia in critically ill patients admitted to the ICU. Design: Prospective, interventional, and multicenter study. Setting: A total of 181 ICUs throughout Spain. Patients: All patients admitted for more than 24 hours to the participating ICUs between April 1, 2011, and December 31, 2012. Intervention: Ten ventilator-associated pneumonia prevention measures were implemented (seven were mandatory and three highly recommended). The database of the National ICU-Acquired Infections Surveillance Study (Estudio Nacional de Vigilancia de Infecciones Nosocomiales [ENVIN]) was used for data collection. Ventilator-associated pneumonia rate was expressed as incidence density per 1,000 ventilator days. Ventilator-associated pneumonia rates from the incorporation of the ICUs to the project, every 3 months, were compared with data of the ENVIN registry (April–June 2010) as the baseline period. Ventilator-associated pneumonia rates were adjusted by characteristics of the hospital, including size, type (public or private), and teaching (postgraduate) or university-affiliated (undergraduate) status. Measurements and Main Results: The 181 participating ICUs accounted for 75% of all ICUs in Spain. In a total of 171,237 ICU admissions, an artificial airway was present on 505,802 days (50.0% of days of stay in the ICU). A total of 3,474 ventilator-associated pneumonia episodes were diagnosed in 3,186 patients. The adjusted ventilator-associated pneumonia incidence density rate decreased from 9.83 (95% CI, 8.42–11.48) per 1,000 ventilator days in the baseline period to 4.34 (95% CI, 3.22–5.84) after 19–21 months of participation. Conclusions: Implementation of the bundle measures included in the “Pneumonia Zero” project resulted in a significant reduction of more than

  16. Control strategies for demand controlled ventilation in dwellings

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Drivsholm, Christian

    2011-01-01

    Ventilation of Danish and many other European dwellings has in the past mainly been achieved by natural ventilation or mechanical exhaust systems. Requirements for energy efficiency is changing this picture and mechanical ventilation with balanced exhaust and supply, efficient heat recovery...... high. Too low ventilation rate results in poor air quality for the occupants and moisture risk. Too high ventilation rate results in unnecessary energy consumption. This paper presents results from a study where demand controlled ventilation was installed in an existing single family house...

  17. Increasing ventilator surge capacity in disasters: ventilation of four adult-human-sized sheep on a single ventilator with a modified circuit.

    Science.gov (United States)

    Paladino, Lorenzo; Silverberg, Mark; Charchaflieh, Jean G; Eason, Julie K; Wright, Brian J; Palamidessi, Nicholas; Arquilla, Bonnie; Sinert, Richard; Manoach, Seth

    2008-04-01

    Recent manmade and natural disasters have focused attention on the need to provide care to large groups of patients. Clinicians, ethicists, and public health officials have been particularly concerned about mechanical ventilator surge capacity and have suggested stock-piling ventilators, rationing, and providing manual ventilation. These possible solutions are complex and variously limited by legal, monetary, physical, and human capital restraints. We conducted a study to determine if a single mechanical ventilator can adequately ventilate four adult-human-sized sheep for 12h. We utilized a four-limbed ventilator circuit connected in parallel. Four 70-kg sheep were intubated, sedated, administered neuromuscular blockade and placed on a single ventilator for 12h. The initial ventilator settings were: synchronized intermittent mandatory ventilation with 100% oxygen at 16 breaths/min and tidal volume of 6 ml/kg combined sheep weight. Arterial blood gas, heart rate, and mean arterial pressure measurements were obtained from all four sheep at time zero and at pre-determined times over the course of 12h. The ventilator and modified circuit successfully oxygenated and ventilated the four sheep for 12h. All sheep remained hemodynamically stable. It is possible to ventilate four adult-human-sized sheep on a single ventilator for at least 12h. This technique has the potential to improve disaster preparedness by expanding local ventilator surge capacity until emergency supplies can be delivered from central stockpiles. Further research should be conducted on ventilating individuals with different lung compliances and on potential microbial cross-contamination.

  18. Introduction to neural networks

    CERN Document Server

    James, Frederick E

    1994-02-02

    1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.

  19. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  20. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  1. [Methodology in non-invasive ventilation].

    Science.gov (United States)

    Gómez Grande, M L; Abdel-Hadi Alvarez, H; Martínez Migallón, M; Del Campo Tejedor, R

    2008-01-01

    Objective during the application of noninvasive ventilation (NIV) in acute respiratory failure is, as occurs in conventional mechanical ventilation, to improve gas exchange. Expiratory pressure is applied to favour recruitment of collapsed alveoli, improving oxygenation. Inspiratory pressure use on airway aids respiratory muscle rest and decrease respiratory work, which has a direct repercussion in decreasing oxygen consumption. The NIV preserves defence mechanisms of the patients airway intact, which noticeably decreases appearance of mechanical ventilation associated pneumonia, with subsequent benefit in health care cost, stay and morbidity-mortality. We have reviewed the literature available regarding respiratory modes used in NIV, patient monitoring, humidification, and inhaled drug administration. However, the benefits of NIV are obtained when success of the technique is reached; this is depending on patients' collaboration, adequate indication, underlying disease, material resources available, and mainly, training and dedication of the personnel applying the respiratory support.

  2. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed......Because of large stores of CO2 in different body tissues, metabolic change cannot be detected by measuring gas exchange until the CO2 stores have adapted to the new situation. Similarly, changes in the CO2 stores not due to metabolic alterations, may lead to error in gas exchange measurements. We...... were obtained by computer simulation using a five-compartment model of CO2 stores. These experiments indicate that measuring VO2 (for calculation of metabolic respiratory quotient [RQ]) in ventilated patients should occur after the patients maintain a 60-min period of stable body temperature...

  3. Optimized ventilation-on-demand (VOD)

    Energy Technology Data Exchange (ETDEWEB)

    Masse, M. [Simsmart Technologies Inc., Brossard, PQ (Canada); Cervinka, A. [Newtrax Technologies Inc., Montreal, PQ (Canada)

    2008-07-01

    This presentation described how the combination of 2 innovative technologies can help optimize mine ventilation. Newtrax Technologies has developed a self-contained battery-powered wireless electronic system designed to operate in harsh industrial environments, including underground mines. Simsmart Technologies has created an advanced process and control simulation based design tool used in industrial applications, including mine ventilation systems. This presentation described the system components and how they work. These included the wireless mesh network designed for dynamic diesel machinery tracking and operating status monitoring; the real-time ventilation model and fan speed optimizer; the OPC server for information interchange; the OPC linkage to existing control infrastructure; a human machine interface that provide data archiving capability; live MS-Excel to interrogate the simulation, controls and optimizer; and, the battery-powered network mesh that provides SCADA functionality to route optimized setpoints. Details of the user interface were also provided. 1 tab., 20 figs.

  4. Ventilation safety of facilities comprising nuclear reactors

    International Nuclear Information System (INIS)

    Guirlet, J.

    1982-01-01

    The reliability of the ventilation is one of the most important aspects in the prevention of the nuisances that a nuclear installation can provide, since the ventilation is located at the last barrier. A certain number of essential points have been recalled here. But it is necessary to bear in mind other requirements such as the limitation in the number of crossovers, the answers to be found should the system fail, the need to show that ventilation systems do not in themselves bring other nuisances such as noise, irradiation or contamination hazards, likelyhood of recycling the contamination, vibrations, fire. Finally, it is absolutely essential, right from the project stage, that the design ensures that very good accessibility, very easy dismantling and handling, as well as all the facilities needed to make sure of the initial and periodic tests, are guaranteed [fr

  5. Improving comfort and health with personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    microenvironment. Furthermore, HVAC systems should be designed to protect occupants from airborne transmission of infectious agents that may be present in exhaled air. Personalized ventilation is a new development in the field of HVAC and has the potential to fulfil the above requirements. This paper reviews......The thermal environment and air quality in buildings affects occupants¿ health, comfort and performance. The heating, ventilating and air-conditioning (HVAC) of buildings today is designed to provide a uniform room environment. However, large individual differences exist between occupants in regard...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analysed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  6. Personal Exposure in Displacement Ventilated Rooms

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter Vilhelm

    1996-01-01

    Personal exposure in a displacement ventilated room is examined. The stratified flow and the considerable concentration gradients necessitate an improvement of the widely used fully mixing compartmental approach. The exposure of a seated and a standing person in proportion to the stratification...... height is examined by means of full-scale measurements. A breathing thermal manikin is used to simulate a person. It is found that the flow in the boundary layer around a person is able to a great extent to entrain and transport air from below the breathing zone. In the case of non-passive, heated...... in the lower part of the room close to the occupant. A personal exposure model for displacement ventilated rooms is proposed. The model takes the influence of gradients and the human thermal boundary layer into account. Two new quantities describing the interaction between a person and the ventilation...

  7. Cellular phone interference with the operation of mechanical ventilators.

    Science.gov (United States)

    Shaw, Cheryl I; Kacmarek, Robert M; Hampton, Rickey L; Riggi, Vincent; El Masry, Ashraf; Cooper, Jeffrey B; Hurford, William E

    2004-04-01

    To determine whether a cellular phone would interfere with the operation of mechanical ventilators. Laboratory study. University medical center. Fourteen mechanical ventilators. We evaluated change in operation and malfunction of the mechanical ventilators. The cellular phone (Nokia 6120i) was computer controlled, operating at 828.750 MHz analog modulation. It was operated at 16, 40, 100, 250, and 600 mW, 30 cm from the floor and 30, 15, and ventilator. Six of the 14 ventilators tested malfunctioned when a cellular phone at maximum power output was placed ventilating when the cellular phone at maximum power output was placed ventilator. One ventilator doubled the ventilatory rate and another increased the displayed tidal volume from 350 to 1033 mL. In one of the infant ventilators, displayed tidal volume increased from 21 to 100 mL. In another ventilator, the high respiratory rate alarm sounded but the rate had not changed. In a controlled laboratory setting, cellular phones placed in close proximity to some commercially available intensive care ventilators can cause malfunctions, including irrecoverable cessation of ventilation. This is most likely to occur if the cellular phone is or =3 feet from all medical devices. The current electromagnetic compatibility standards for mechanical ventilators are inadequate to prevent malfunction. Manufacturers should ensure that their products are not affected by wireless technology even when placed immediately next to the device.

  8. A regulator for pressure-controlled total-liquid ventilation.

    Science.gov (United States)

    Robert, Raymond; Micheau, Philippe; Avoine, Olivier; Beaudry, Benoit; Beaulieu, Alexandre; Walti, Hervé

    2010-09-01

    Total-liquid ventilation (TLV) is an innovative experimental method of mechanical-assisted ventilation in which lungs are totally filled and then ventilated with a tidal volume of perfluorochemical liquid by using a dedicated liquid ventilator. Such a novel medical device must resemble other conventional ventilators: it must be able to conduct controlled-pressure ventilation. The objective was to design a robust controller to perform pressure-regulated expiratory flow and to implement it on our latest liquid-ventilator prototype (Inolivent-4). Numerical simulations, in vitro experiments, and in vivo experiments in five healthy term newborn lambs have demonstrated that it was efficient to generate expiratory flows while avoiding collapses. Moreover, the in vivo results have demonstrated that our liquid ventilator can maintain adequate gas exchange, normal acid-base equilibrium, and achieve greater minute ventilation, better oxygenation and CO2 extraction, while nearing flow limits. Hence, it is our suggestion to perform pressure-controlled ventilation during expiration with minute ventilation equal or superior to 140 mL x min(-1) x kg(-1) in order to ensure PaCO2 below 55 mmHg. From a clinician's point of view, pressure-controlled ventilation greatly simplifies the use of the liquid ventilator, which will certainly facilitate its introduction in intensive care units for clinical applications.

  9. Factors Predicting Ventilator Dependence in Patients with Ventilator-Associated Pneumonia

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Tseng

    2012-01-01

    Full Text Available Objectives. To determine risk factors associated with ventilator dependence in patients with ventilator-associated pneumonia (VAP. Study Design. A retrospective study was conducted at Chang Gung Memorial Hospital, Kaohsiung, from January 1, 2007 to January 31, 2008. Methods. This study evaluated 163 adult patients (aged ≥18 years. Eligibility was evaluated according to the criterion for VAP, Sequential Organ Failure Assessment (SOFA score, Acute Physiological Assessment and Chronic Health Evaluation II (APACHE II score. Oxygenation index, underlying comorbidities, septic shock status, previous tracheostomy status, and factors related to pneumonia were collected for analysis. Results. Of the 163 VAP patients in the study, 90 patients survived, yielding a mortality rate of 44.8%. Among the 90 surviving patients, only 36 (40% had been weaned off ventilators at the time of discharge. Multivariate logistic regression analysis was used to identify underlying factors such as congestive cardiac failure (P=0.009, initial high oxygenation index value (P=0.04, increased SOFA scores (P=0.01, and increased APACHE II scores (P=0.02 as independent predictors of ventilator dependence. Results from the Kaplan-Meier method indicate that initial therapy with antibiotics could increase the ventilator weaning rate (log Rank test, P<0.001. Conclusions. Preexisting cardiopulmonary function, high APACHE II and SOFA scores, and high oxygenation index were the strongest predictors of ventilator dependence. Initial empiric antibiotic treatment can improve ventilator weaning rates at the time of discharge.

  10. Can Tracheostomy Improve Outcome and Lower Resource Utilization for Patients with Prolonged Mechanical Ventilation?

    Science.gov (United States)

    Yuan, Ciou-Rong; Lan, Tzuo-Yun; Tang, Gau-Jun

    2015-01-01

    Background: It is not clear whether the benefits of tracheostomy remain the same in the population. This study aimed to better examine the effect of tracheostomy on clinical outcome among prolonged ventilator patients. Methods: Data were from the medical claims data in Taiwan. A total of 3880 patients with ventilator use for more than 14 days between 2005 and 2009 were identified. Among them, 645 patients with tracheostomy conducted within 30 days of ventilator use were compared to 2715 patients without tracheostomy on death during hospitalization and study period, and successful weaning and medical utilization during hospitalization. Cox proportional hazards and linear regression models were used to examine the associations between tracheostomy and the main outcomes. Results: The tracheostomy rate was 30%, and 55% of tracheostomies were performed within 30 days of mechanical ventilation. After adjustments, patients with tracheostomy were at a lower risk of death during hospitalization (hazard ratio [HR] =0.51; 95% confidence interval [CI] =0.43–0.61) and 5-year observation (HR = 0.73; 95% CI = 0.66–0.81), and a lower probability of successful weaning (HR = 0.88; 95% CI = 0.79–0.99). Higher medical use was also observed in patients with tracheostomy. Conclusions: The beneficial effect for tracheostomy observed in our data was the reduction of death. However, patients with tracheostomy were less likely to wean and more likely to consume medical resources. PMID:26415799

  11. The influence of the endotracheal tube cuff on the occurrence of ventilator-associated pneumonia

    Directory of Open Access Journals (Sweden)

    Marko Kučan

    2015-09-01

    Full Text Available Introduction: An endotracheal tube enables patient ventilation, but also presents a risk of complications. The accumulation of subglottic secretions above the cuff may cause ventilatorassociated pneumonia. The purpose of the article is to establish the effect of the endotracheal tube cuff (shape and material, method of inflation, verifying and maintaining pressure on the incidence of ventilator-associated pneumonia. Methods: A descriptive method with a systematic review of domestic and foreign literature was used. The literature was retrieved from electronic databases and the cooperative bibliographic/catalogue database. According to eligibility criteria, sixteen original scientific articles published in the last ten years were finally used. Data were processed with qualitative content analysis. Results: Cuff inflation control with a manometer and continuous measuring and adjustment of cuff pressure with modern equipment were found to be the safest methods. According to the articles on shape and material, conical polyurethane cuffs provide the best sealing. Discussion and conclusion: Ventilator-associated pneumonia is a serious complication in mechanically ventilated patients. Maintaining appropriate cuff pressure proved to be a very effective preventive measure. The research presented here is limited by the small number of available articles. Further research is needed before practical applications are attempted.

  12. Transient natural ventilation of a room with a distributed heat source

    Science.gov (United States)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.

  13. Toothbrushing may reduce ventilator-associated pneumonia.

    Science.gov (United States)

    Yusuf, Huda

    2013-09-01

    The databases Embase, Medline, CINAHL, the Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, clinical trials.gov and controlled-trials.com were searched. Reference lists of reviewed articles and eligible trials were also searched, and toothpaste and toothbrush manufactures were contacted. Randomised controlled trials in adults over 18 years receiving mechanical ventilation were included where any kind of oral care involving toothbrushing was compared with any other kind of oral care or control with or without toothbrushing. Data were extracted in duplicate and quality assessed using the Cochrane risk of bias tool. The results were combined using a random effects model. The main outcome was VAP. Six trials involving a total of 1408 patients were included. The risk of bias was high in four trials, low in one and unclear in the other. In four trials, there was a trend toward lower ventilator-associated pneumonia rates (risk ratio, 0.77; 95% confidence interval, 0.50-1.21; p = 0.26). The only trial with low risk of bias suggested that toothbrushing significantly reduced ventilator-associated pneumonia (risk ratio, 0.26; 95% confidence interval, 0.10-0.67; p = 0.006). Use of chlorhexidine antisepsis seems to attenuate the effect of toothbrushing on ventilator-associated pneumonia (p for the interaction = 0.02). One trial comparing electric vs. manual toothbrushing showed no difference in ventilator-associated pneumonia rates (risk ratio, 0.96; 95% confidence interval, 0.47-1.96; p = 0.91). Toothbrushing did not impact on length of ICU stay, or ICU or hospital mortality. In summary, randomised trials to date show that toothbrushing is associated with a trend toward lower rates of VAP in intubated, mechanically ventilated critically ill patients. There is no clear difference between electric and manual toothbrushing. Toothbrushing has no effect on ICU mortality, hospital mortality, or ICU length of stay.

  14. Noninvasive ventilation in acute respiratory failure

    Directory of Open Access Journals (Sweden)

    Mas A

    2014-08-01

    Full Text Available Arantxa Mas, Josep MasipCritical Care Department, Consorci Sanitari Integral (CSI, Hospital Sant Joan Despí Moisès Broggi and Hospital General de l’Hospitalet, University of Barcelona, Barcelona, SpainAbstract: After the institution of positive-pressure ventilation, the use of noninvasive ventilation (NIV through an interface substantially increased. The first technique was continuous positive airway pressure; but, after the introduction of pressure support ventilation at the end of the 20th century, this became the main modality. Both techniques, and some others that have been recently introduced and which integrate some technological innovations, have extensively demonstrated a faster improvement of acute respiratory failure in different patient populations, avoiding endotracheal intubation and facilitating the release of conventional invasive mechanical ventilation. In acute settings, NIV is currently the first-line treatment for moderate-to-severe chronic obstructive pulmonary disease exacerbation as well as for acute cardiogenic pulmonary edema and should be considered in immunocompromised patients with acute respiratory insufficiency, in difficult weaning, and in the prevention of postextubation failure. Alternatively, it can also be used in the postoperative period and in cases of pneumonia and asthma or as a palliative treatment. NIV is currently used in a wide range of acute settings, such as critical care and emergency departments, hospital wards, palliative or pediatric units, and in pre-hospital care. It is also used as a home care therapy in patients with chronic pulmonary or sleep disorders. The appropriate selection of patients and the adaptation to the technique are the keys to success. This review essentially analyzes the evidence of benefits of NIV in different populations with acute respiratory failure and describes the main modalities, new devices, and some practical aspects of the use of this technique. Keywords

  15. Advanced design of local ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, I. [VTT Manufacturing Technology, Espoo (Finland). Safety Technology

    1997-12-31

    Local ventilation is widely used in industry for controlling airborne contaminants. However, the present design practices of local ventilation systems are mainly based on empirical equations and do not take quantitatively into account the various factors affecting the performance of these systems. The aim of this study was to determine the applicability and limitations of more advanced fluid mechanical methods to the design and development of local ventilation systems. The most important factors affecting the performance of local ventilation systems were determined and their effect was studied in a systematic manner. The numerical calculations were made with the FLUENT computer code and they were verified by laboratory experiments, previous measurements or analytical solutions. The results proved that the numerical calculations can provide a realistic simulation of exhaust openings, effects of ambient air flows and wake regions. The experiences with the low-velocity local supply air showed that these systems can also be modelled fairly well. The results were used to improve the efficiency and thermal comfort of a local ventilation unit and to increase the effective control range of exhaust hoods. In the simulation of the interaction of a hot buoyant source and local exhaust, the predicted capture efficiencies were clearly higher than those observed experimentally. The deviations between measurements and non-isothermal flow calculations may have partly been caused by the inability to achieve grid independent solutions. CFD simulations is an advanced and flexible tool for designing and developing local ventilation. The simulations can provide insight into the time-averaged flow field which may assist us in understanding the observed phenomena and to explain experimental results. However, for successful calculations the applicability and limitations of the models must be known. (orig.) 78 refs.

  16. Ventilation-perfusion distribution in normal subjects.

    Science.gov (United States)

    Beck, Kenneth C; Johnson, Bruce D; Olson, Thomas P; Wilson, Theodore A

    2012-09-01

    Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.

  17. Metric adjusted skew information

    DEFF Research Database (Denmark)

    Hansen, Frank

    2008-01-01

    establish a connection between the geometrical formulation of quantum statistics as proposed by Chentsov and Morozova and measures of quantum information as introduced by Wigner and Yanase and extended in this article. We show that the set of normalized Morozova-Chentsov functions describing the possible......We extend the concept of Wigner-Yanase-Dyson skew information to something we call "metric adjusted skew information" (of a state with respect to a conserved observable). This "skew information" is intended to be a non-negative quantity bounded by the variance (of an observable in a state......) that vanishes for observables commuting with the state. We show that the skew information is a convex function on the manifold of states. It also satisfies other requirements, proposed by Wigner and Yanase, for an effective measure-of-information content of a state relative to a conserved observable. We...

  18. Adjusting to the Emergent

    DEFF Research Database (Denmark)

    Revsbæk, Line

    In her doctoral thesis Line Revsbæk explores newcomer innovation related to organizational entry processes in a changing organization. She introduces process philosophy and complexity theory to research on organizational socialization and newcomer innovation. The study challenges assumptions...... of ‘adjusting to the emergent’. Newcomer innovation is portrayed as carrying a variety of possible significations, such as unintentional innovation effects of newcomer’s proactive self-socializing behavior; an inspirational basis for designing innovation-generating employee induction; ‘resonant instances......’ of newcomers enacting the organizational emergent. The study throws light on the informal socialization in work-related interactions between newcomers and veterans and reveals professional relational histories, as well as the relationship between veteran coworker and hiring manager, to be important aspects...

  19. READING A NEURAL CODE

    NARCIS (Netherlands)

    BIALEK, W; RIEKE, F; VANSTEVENINCK, RRD; WARLAND, D

    1991-01-01

    Traditional approaches to neural coding characterize the encoding of known stimuli in average neural responses. Organisms face nearly the opposite task - extracting information about an unknown time-dependent stimulus from short segments of a spike train. Here the neural code was characterized from

  20. artificial neural network (ann)

    African Journals Online (AJOL)

    2004-08-18

    Aug 18, 2004 ... forecasting models and artificial intelligence techniques and have become one of the major research fields (Kher and Joshin, 2003). (a) Artificial Neural Network and Electrical Load. Prediction. Neural network analysis is an Artificial Intelligence. (AI) approach to mathematical modeling. Neural. Networks ...

  1. The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation.

    Science.gov (United States)

    Hess, Dean R

    2012-06-01

    For many patients with chronic respiratory failure requiring ventilator support, noninvasive ventilation (NIV) is preferable to invasive support by tracheostomy. Currently available evidence does not support the use of nocturnal NIV in unselected patients with stable COPD. Several European studies have reported benefit for high intensity NIV, in which setting of inspiratory pressure and respiratory rate are selected to achieve normocapnia. There have also been studies reporting benefit for the use of NIV as an adjunct to exercise training. NIV may be useful as an adjunct to airway clearance techniques in patients with cystic fibrosis. Accumulating evidence supports the use of NIV in patients with obesity hypoventilation syndrome. There is considerable observational evidence supporting the use of NIV in patients with chronic respiratory failure related to neuromuscular disease, and one randomized controlled trial reported that the use of NIV was life-prolonging in patients with amyotrophic lateral sclerosis. A variety of interfaces can be used to provide NIV in patients with stable chronic respiratory failure. The mouthpiece is an interface that is unique in this patient population, and has been used with success in patients with neuromuscular disease. Bi-level pressure ventilators are commonly used for NIV, although there are now a new generation of intermediate ventilators that are portable, have a long battery life, and can be used for NIV and invasive applications. Pressure support ventilation, pressure controlled ventilation, and volume controlled ventilation have been used successfully for chronic applications of NIV. New modes have recently become available, but their benefits await evidence to support their widespread use. The success of NIV in a given patient population depends on selection of an appropriate patient, selection of an appropriate interface, selection of an appropriate ventilator and ventilator settings, the skills of the clinician, the

  2. Determinants of Receiving Palliative Care and Ventilator Withdrawal Among Patients With Prolonged Mechanical Ventilation.

    Science.gov (United States)

    Chen, Yang-Ching; Fan, Hsien-Yu; Curtis, J Randall; Lee, Oscar Kuang-Sheng; Liu, Chih-Kuang; Huang, Sheng-Jean

    2017-10-01

    Increasing numbers of patients with prolonged mechanical ventilation generates a tremendous strain on healthcare systems. Patients with prolonged mechanical ventilation suffer from long-term poor quality of life. However, no study has ever explored the willingness to receive palliative care or terminal withdrawal and the factors influencing willingness. Cross-sectional study. Five different hospitals of Taipei City Hospital system. Adult patients with ventilatory support for more than 60 days. None. We identified the family members of 145 consecutive patients with prolonged mechanical ventilation in five hospitals of Taipei City Hospital system and enrolled family members for 106 patients (73.1%). We collected information from patient families' regarding concepts (knowledge, attitude, and experiences) of palliative care, caregiver burden, family function, patient quality of life, and physician-family communications. From the medical record, we obtained duration of hospitalization, consciousness level, disease severity, medical cost, and the presence of do-not-resuscitate orders. The vast majority of family members agreed with the concept of palliative care (90.4%) with 17.3% of the family members agreeing to ventilator withdrawal currently and 67.5% terminally in anticipation of death. Approximately half of the family members regretted having chosen prolonged mechanical ventilation (56.7%). Reduced patient quality of life and increased family understanding of palliative care significantly associated with increased caregiver willingness to endorse palliative care and withdraw life-sustaining agents in anticipation of death. Longer duration of ventilator usage and hospitalization was associated with increased feelings of regret about choosing prolonged mechanical ventilation. During prolonged mechanical ventilation, physicians should thoroughly discuss its benefits and burdens. Families should be given the opportunity to discuss the circumstances under which they

  3. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    Directory of Open Access Journals (Sweden)

    Xianming Zhang

    Full Text Available It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS, but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS.Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB and abdominal muscle paralysis group (BIPAPAP. All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment.For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml and oxygenation index (293±36 vs. 226±31 mmHg, lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7 and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9 in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1.Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  4. Preoperational test report, recirculation ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  5. Sedation and analgesia to facilitate mechanical ventilation.

    Science.gov (United States)

    Nemergut, Michael E; Yaster, Myron; Colby, Christopher E

    2013-09-01

    Regardless of age, health care professionals have a professional and ethical obligation to provide safe and effective analgesia to patients undergoing painful procedures. Historically, newborns, particularly premature and sick infants, have been undertreated for pain. Intubation of the trachea and mechanical ventilation are ubiquitous painful procedures in the neonatal intensive care unit that are poorly assessed and treated. The authors review the use of sedation and analgesia to facilitate endotracheal tube placement and mechanical ventilation. Controversies regarding possible adverse neurodevelopmental outcomes after sedative and anesthetic exposure and in the failure to treat pain is also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Short Term Airing by Natural Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Perino, M.

    2010-01-01

    principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected...... airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective...... and can provide both acceptable IAQ and thermal comfort conditions in buildings....

  7. No-sedation during mechanical ventilation

    DEFF Research Database (Denmark)

    Laerkner, Eva; Stroem, Thomas; Toft, Palle

    2016-01-01

    patients with daily wake up, and also to estimate economic consequences of a no-sedation strategy. DESIGN AND METHODS: Data were collected during a prospective trial of 140 mechanically ventilated patients randomized to either no-sedation or to sedation with daily wake up. From day 1 to 7 in the intensive......BACKGROUND: Evidence is growing that less or no-sedation is possible and beneficial for patients during mechanical ventilation. AIM: To investigate if there was a difference in patient consciousness and nursing workload comparing a group of patients receiving no-sedation with a group of sedated...

  8. Efficient ventilation in school buildings. Design guidebook; Ventilation performante dans les ecoles. Guide de conception

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This guidebook aims at giving practical advices for the design of ventilation systems for school buildings in order to maintain air quality levels and energy consumptions conformable with the real needs: 1 - the specific problem of schools (various types of rooms, particular indoor pollutions); 2 - main criteria to consider (air quality and hygiene, hygro-thermal comfort, ventilation efficiency, acoustic comfort, energy mastery); 3 - main existing solutions (simple-flux blow-off or blow-in mechanical ventilation systems, dual-flux systems, air conditioning systems); 4 - choice of an adapted solution (selection criteria, global solution for the school); setting-up and follow-up (rules, training, maintenance). (J.S.)

  9. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  10. Hypoxia in a neonate caused by intermittent positive pressure ventilation.

    OpenAIRE

    Beddis, I R; Silverman, M

    1980-01-01

    A newborn baby receiving mechanical ventilation was noted to have an extremely variable degree of hypoxia, despite the administration of 100% oxygen. The hypoxia was relieved rapidly when mechanical ventilation was withdrawn.

  11. Lung Transplantation for Ventilator-Dependent Respiratory Failure

    NARCIS (Netherlands)

    Vermeijden, J. Wytze; Zijlstra, Jan G.; Erasmus, Michiel E.; van der Bij, Wim; Verschuuren, Erik A.

    Introduction: Lung transplantation of patients on mechanical ventilation is controversial, but successful transplantation of these patients has been reported. This report describes our institutional experience with lung transplantation of mechanically Ventilated patients since 2003. Methods: A

  12. 46 CFR 153.316 - Special cargo pumproom ventilation rate.

    Science.gov (United States)

    2010-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.316 Special cargo pumproom ventilation rate. When Table 1...

  13. Ventilation systems in houses. Special issue; Woonhuisventilatie. Special

    Energy Technology Data Exchange (ETDEWEB)

    Op ' t Veld, P.; Van der Aa, A. [Cauberg-Huygen Raadgevend Ingenieurs, Rotterdam (Netherlands); Verschoor, M.J.E. [Afdeling Koudetechniek en Warmtepompen, TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands); Van Gulik, L.H. [Itho, Scheidam (Netherlands); Van der Mark, K.; Overman, P. [AGPO, Breda (Netherlands); Roemer, J.C.; Schuitema, R. [ECN Duurzame Energie in de Gebouwde Omgeving DEGO, Petten (Netherlands); Weterings, M. [GGD voor Rotterdam e.o., Rotterdam (Netherlands); Rosenmai, T.; Rasmussen, S. [Copenhagen Business School, Copenhagen (Denmark); Vollebregt, R. [Bureau Kent, Utrecht (Netherlands); Smeets, L.J.M. [Nederlandse onderneming voor energie en milieu Novem, Utrecht (Netherlands)

    2001-06-01

    In 10 articles attention is paid to several aspects with respect to ventilation of houses. This issue includes an overview of suppliers of high-efficiency heat recovering balanced ventilation systems.

  14. A comparison of leak compensation in acute care ventilators during noninvasive and invasive ventilation: a lung model study.

    Science.gov (United States)

    Oto, Jun; Chenelle, Christopher T; Marchese, Andrew D; Kacmarek, Robert M

    2013-12-01

    Although leak compensation has been widely introduced to acute care ventilators to improve patient-ventilator synchronization in the presence of system leaks, there are no data on these ventilators' ability to prevent triggering and cycling asynchrony. The goal of this study was to evaluate the ability of leak compensation in acute care ventilators during invasive and noninvasive ventilation (NIV). Using a lung simulator, the impact of system leaks was compared on 7 ICU ventilators and 1 dedicated NIV ventilator during triggering and cycling at 2 respiratory mechanics (COPD and ARDS models) settings, various modes of ventilation (NIV mode [pressure support ventilation], and invasive mode [pressure support and continuous mandatory ventilation]), and 2 PEEP levels (5 and 10 cm H(2)O). Leak levels used were up to 35-36 L/min in NIV mode and 26-27 L/min in invasive mode. Although all of the ventilators were able to synchronize with the simulator at baseline, only 4 of the 8 ventilators synchronized to all leaks in NIV mode, and 2 of the 8 ventilators in invasive mode. The number of breaths to synchronization was higher during increasing than during decreasing leak. In the COPD model, miss-triggering occurred more frequently and required a longer time to stabilize tidal volume than in the ARDS model. The PB840 required fewer breaths to synchronize in both invasive and noninvasive modes, compared with the other ventilators (P ventilators. The PB840 and the V60 were the only ventilators to acclimate to all leaks, but there were differences in performance between these 2 ventilators. It is not clear if these differences have clinical importance.

  15. An approach to adjustment of relativistic mean field model parameters

    Directory of Open Access Journals (Sweden)

    Bayram Tuncay

    2017-01-01

    Full Text Available The Relativistic Mean Field (RMF model with a small number of adjusted parameters is powerful tool for correct predictions of various ground-state nuclear properties of nuclei. Its success for describing nuclear properties of nuclei is directly related with adjustment of its parameters by using experimental data. In the present study, the Artificial Neural Network (ANN method which mimics brain functionality has been employed for improvement of the RMF model parameters. In particular, the understanding capability of the ANN method for relations between the RMF model parameters and their predictions for binding energies (BEs of 58Ni and 208Pb have been found in agreement with the literature values.

  16. Comparison of two modes of ventilation after fast-track cardiac surgery: Adaptive support ventilation versus synchronized intermittent mandatory ventilation

    International Nuclear Information System (INIS)

    Aghadavoudi, O.

    2012-01-01

    Objective: There is substantial debate regarding the appropriate protocol for ventilatory management in fast-track cardiac anesthesia (FTCA). This study was carried out to assess and compare the risks and benefits of respiratory weaning based on adaptive support ventilation (ASV) and synchronized intermittent mandatory ventilation (SIMV) after uncomplicated cardiac surgery. Methodology: In a randomized clinical trial, after receiving approval of the Department Research Committee and informed consent from study subjects, 100 patients undergoing elective coronary artery bypass graft (CABG) surgery with cardiopulmonary bypass (CPB) were enrolled during a 4-month period at a university-based hospital. After surgery and admission to the intensive care unit (ICU), patients were randomized to ASV and SIMV groups. Arterial blood gas (ABG) and hemodynamic variables, respiratory and ventilator characteristics including lung compliance, rapid shallow breathing index (RSBI), tidal volume (TV), respiratory rate (RR), peak inspiratory pressure (P peak), mean airway pressure (p mean), Pao2/FIo2, duration of mechanical ventilation and tracheal intubation, and length of ICU stay were recorded and compared between the two groups. The data were analyzed in 82 patients after considering the exclusion criteria. Results: There were no differences between ASV and SIMV groups in demographics and preoperative characteristics. The duration of tracheal intubation and the length of ICU stay were similar in both groups. There were no statistically and clinically relevant differences between the two groups in ABG, hemodynamic changes, and respiratory and ventilator characteristics during ICU stay. Conclusion: Although ASV may facilitate postoperative respiratory management in FTCA, both ASV and SIMV provide similarly safe and practicable respiratory weaning in the cardiac ICU. The evaluation of potential advantages in patient outcomes and resource utilization of respiratory weaning based on ASV

  17. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-02-09

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. [Glutamate signaling and neural plasticity].

    Science.gov (United States)

    Watanabe, Masahiko

    2013-07-01

    Proper functioning of the nervous system relies on the precise formation of neural circuits during development. At birth, neurons have redundant synaptic connections not only to their proper targets but also to other neighboring cells. Then, functional neural circuits are formed during early postnatal development by the selective strengthening of necessary synapses and weakening of surplus connections. Synaptic connections are also modified so that projection fields of active afferents expand at the expense of lesser ones. We have studied the molecular mechanisms underlying these activity-dependent prunings and the plasticity of synaptic circuitry using gene-engineered mice defective in the glutamatergic signaling system. NMDA-type glutamate receptors are critically involved in the establishment of the somatosensory pathway ascending from the brainstem trigeminal nucleus to the somatosensory cortex. Without NMDA receptors, whisker-related patterning fails to develop, whereas lesion-induced plasticity occurs normally during the critical period. In contrast, mice lacking the glutamate transporters GLAST or GLT1 are selectively impaired in the lesion-induced critical plasticity of cortical barrels, although whisker-related patterning itself develops normally. In the developing cerebellum, multiple climbing fibers initially innervating given Purkinje cells are eliminated one by one until mono-innervation is achieved. In this pruning process, P/Q-type Ca2+ channels expressed on Purkinje cells are critically involved by the selective strengthening of single main climbing fibers against other lesser afferents. Therefore, the activation of glutamate receptors that leads to an activity-dependent increase in the intracellular Ca2+ concentration plays a key role in the pruning of immature synaptic circuits into functional circuits. On the other hand, glutamate transporters appear to control activity-dependent plasticity among afferent fields, presumably through adjusting

  19. Adolescent Mothers' Adjustment to Parenting.

    Science.gov (United States)

    Samuels, Valerie Jarvis; And Others

    1994-01-01

    Examined adolescent mothers' adjustment to parenting, self-esteem, social support, and perceptions of baby. Subjects (n=52) responded to questionnaires at two time periods approximately six months apart. Mothers with higher self-esteem at Time 1 had better adjustment at Time 2. Adjustment was predicted by Time 2 variables; contact with baby's…

  20. Ventilator induced lung injury (VILI) in acute respiratory distress ...

    African Journals Online (AJOL)

    The lung protective ventilation strategy- Low tidal volume ventilation has shown some reduction in mortality in patients with ARDS but mortality is still high in patient with severe ARDS secondary to Pneumocystis jiroveci pneumonia (PJP) despite of lung protective ventilation strategy. In patients with Severe ARDS due to PJP ...

  1. Experimental Analysis and Model Validation of an Opaque Ventilated Facade

    DEFF Research Database (Denmark)

    López, F. Peci; Jensen, Rasmus Lund; Heiselberg, Per

    2012-01-01

    Natural ventilation is a convenient way of reducing energy consumption in buildings. In this study an experimental module of an opaque ventilated façade (OVF) was built and tested for assessing its potential of supplying free ventilation and air preheating for the building. A numerical model was ...

  2. 21 CFR 868.5935 - External negative pressure ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External negative pressure ventilator. 868.5935 Section 868.5935 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ventilator. (a) Identification. An external negative pressure ventilator (e.g., iron lung, cuirass) is a...

  3. 21 CFR 868.5915 - Manual emergency ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual emergency ventilator. 868.5915 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5915 Manual emergency ventilator. (a) Identification. A manual emergency ventilator is a device, usually incorporating a bag and valve, intended to...

  4. Effect of repository underground ventilation on emplacement drift temperature control

    International Nuclear Information System (INIS)

    Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K.

    1996-01-01

    The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management ampersand Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management

  5. 46 CFR 171.118 - Automatic ventilators and side ports.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Automatic ventilators and side ports. 171.118 Section 171.118 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... Bulkhead or Weather Deck § 171.118 Automatic ventilators and side ports. (a) An automatic ventilator must...

  6. 21 CFR 868.5925 - Powered emergency ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered emergency ventilator. 868.5925 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5925 Powered emergency ventilator. (a) Identification. A powered emergency ventilator is a demand valve or inhalator intended to provide emergency...

  7. Study on the applicability of the desk displacement ventilation concept

    NARCIS (Netherlands)

    Loomans, Marcel G.L.C.

    1999-01-01

    This paper summarizes an experimental and numerical study into a ventilation concept that combines displacement ventilation with task conditioning, the so-called desk displacement ventilation (DDV) concept. The study uses steady-state and transient results to discuss the applicability of the DDV

  8. Study on the applicability of the desk replacement ventilation concept

    NARCIS (Netherlands)

    Loomans, M.G.L.C.

    1999-01-01

    This paper summarizes an experimental and numerical study into a ventilation concept that combines displacement ventilation with task conditioning, the so-called desk displace-ment ventilation (DDV) concept. The study uses steady-state and transient results to discuss the applicability of the DDV

  9. Analysis on present radon ventilation situation of Chinese uranium mines

    International Nuclear Information System (INIS)

    Li Xianjie; Hu Penghua

    2010-01-01

    Mine Ventilation is the most important way in lowering radon of uranium mines. At present, radon and radon daughter concentration of underground air is 3∼5 times higher than any other air concentration of foreign uranium mines, as the same input for Protective Ventilation between Chinese uranium mines with compaction methodology and international advanced uranium mines. In this passage, through the analysis of Ventilation Radon Reduction status in Chinese uranium mines and the comparison of advantages and shortcomings between variety of ventilation and radon reduction, it illuminated the reasons of higher radon and radon daughter concentration in Chinese uranium mines and put forward some problems in three aspects, which are Ventilation Radon Reduction Theory, Ventilation Radon Reduction Measures and Ventilation Management. And to above problems, this passage put forward some proposals and measures about some aspects, such as strengthen examination and verification and monitoring practical situation, making clear ventilation plan, in according to mining sequence strictly, training Ventilation technician forcefully, enhance Ventilation System management, development of Ventilation Radon Reduction technology research in uranium mines and carrying out ventilation equipments as soon as possible in further and so on. (authors)

  10. 46 CFR 38.20-10 - Ventilation-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... Ventilation § 38.20-10 Ventilation—T/ALL. (a) A power ventilation system shall be provided for compartments containing pumps, compressors, pipes, control spaces, etc. connected with the cargo handling facilities... the ventilation system associated with the compartment. Inlets to exhaust ducts shall be provided and...

  11. 46 CFR 58.01-45 - Machinery space, ventilation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure tha...

  12. Control of Airborne Infectious Diseases in Ventilated Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2009-01-01

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air is sup...

  13. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: General. 154.1200 Section... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a...

  14. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: Standards. 154.1205... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a...

  15. Perceived Air Quality in a Displacement Ventilated Room

    DEFF Research Database (Denmark)

    Brohus, Henrik; Knudsen, Henrik Nellemose; Nielsen, Peter V.

    in a displacement ventilated room was determined directly by asking humans about how they perceived the air quality. A trained sensory panel comprising 12 subjects assessed the perceived air quality immediately after entering a climate chamber. The experiments showed that the perceived air quality...... in the displacement ventilated chamber was substantially better than in the case of mixing ventilation....

  16. Ventilation measurements as an adjunct to radon measurements in buildings

    International Nuclear Information System (INIS)

    Knutson, E.O.; Franklin, H.

    1977-01-01

    The concentration of radon in a building is a function of the radon sources within the building and of the building's ventilation characteristics. To complement its radon measurement program, HASL is currently assessing apparatus and procedures for measuring building ventilation. Results are reported from ventilation measurements made in the laboratory and in a residential building

  17. Air Distribution and Ventilation Effectiveness in a room with Floor/Ceiling Heating and Mixing/Displacement Ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2014-01-01

    vertical air temperature differences and air velocities for different hybrid systems are less than 3 C and 0.2 m/s when supply air temperature is 19 C, air change rate is 4.2 h-1, and heated surface temperature of floor/ceiling heating system is 25 C. Ventilation effectiveness of mixing ventilation system...... combined with floor/ceiling heating systems is approximately equal to 1.0, and ventilation effectiveness of displacement ventilation system combined with floor/ceiling heating systems ranges from 1.0 to 1.2. The floor/ceiling heating systems combined with mixing ventilation system have more uniform indoor...... air distribution but smaller ventilation effectiveness compared with the floor/ceiling heating systems combined with displacement ventilation system. With regard to the building heat loss increased by non-uniform indoor air distribution and small ventilation effectiveness, there should be an optimal...

  18. Thermal comfort and ventilation effectiveness in an office room with radiant floor cooling and displacement ventilation

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2016-01-01

    conditions, varying the nominal air change rate from 4.5h-1 down to 1.5h-1. Contaminant removal and mean-age-of-air measurements were performed to characterize the ventilation effectiveness and air velocity; air and operative temperature profiles were measured, together with thermal manikin equivalent...... temperatures, to evaluate the thermal environment. The combined system was able to achieve good ventilation effectiveness close to a heat source, so that in the occupant's breathing zone the ventilation effectiveness was significantly better than for ideal mixing, even at a nominal air change rate as low as 1......% at the highest nominal air change rate of 4.5h-1, even for an occupant sitting 1 meter in front of the supply diffuser, the local thermal discomfort occasioned by the excessive vertical temperature differences gives chilled ceilings the advantage over chilled floors for use with displacement ventilation....

  19. Numerical simulation and comparison of two ventilation methods for a restaurant - displacement vs mixed flow ventilation

    Science.gov (United States)

    Chitaru, George; Berville, Charles; Dogeanu, Angel

    2018-02-01

    This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.

  20. Biphasic cuirass ventilation is better than bag-valve mask ventilation for resuscitation following organophosphate poisoning

    Directory of Open Access Journals (Sweden)

    Ilan Gur

    2015-01-01

    Conclusions: The noninvasive, easy-to-operate Biphasic Cuirass Ventilation device was effective in reducing OP-induced mortality and might be advantageous in an organophosphate mass casualty event. This finding should be validated in further investigations.

  1. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    continuously by a mass spectrometer. Signals from this instrument, together with gas-volume signals from the ventilator, were fed to a computer for calculation of VO2 and VCO2. Twenty to 120 min were required to reach a stable level, depending on the patient's size and circulatory response. Similar results...

  2. 14 CFR 25.831 - Ventilation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ventilation. 25.831 Section 25.831 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... temperature must not exceed the values shown in the following graph after any improbable failure condition...

  3. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    in all projections as well as in rotating volume images based upon maximum intensity projections. Probabilistic interpretation of V/Q SPECT should be replaced by a holistic interpretation strategy on the basis of all relevant information about the patient and all ventilation/perfusion patterns. PE...

  4. Project Design Concept - Primary Ventilation System

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    Tank Farm Restoration and Safe Operation (TFRSO), Project W-3 14 was established to provide upgrades that would improve the reliability and extend the system life of portions of the waste transfer, electrical, ventilation, instrumentation and control systems for the Hanford Site Tank Farms. An assessment of the tank farm system was conducted and the results are documented in system assessment reports. Based on the deficiencies identified in the tank farm system assessment reports, and additional requirements analysis performed in support of the River Protection Project (RPP), an approved scope for the TFRSO effort was developed and documented in the Upgrade Scope Summary Report (USSR), WHC-SD-W314-RPT-003, Rev. 4. The USSR establishes the need for the upgrades and identifies the specific equipment to be addressed by this project. This Project Design Concept (PDC) is in support of the Phase 2 upgrades and provides an overall description of the operations concept for the W-314 Primary Ventilation Systems. Actual specifications, test requirements, and procedures are not included in this PDC. The PDC is a ''living'' document, which will be updated throughout the design development process to provide a progressively more detailed description of the W-314 Primary Ventilation Systems design. The Phase 2 upgrades to the Primary Ventilation Systems shall ensure that the applicable current requirements are met for: Regulatory Compliance; Safety; Mission Requirements; Reliability; and Operational Requirements

  5. Simulation of forced-ventilation fires

    International Nuclear Information System (INIS)

    Krause, F.R.; Gregory, W.S.

    1982-01-01

    Fire hazard descriptions and compartment fire models are assessed as input to airflow network analysis methods that simulate the exposure of ventilation system components to fire products. The assessment considered the availability of hazard descriptions and models for predicting simultaneous heat and mass release at special compartment openings that are characterized by a one-dimensional and controllable volumetric flux

  6. Computational Fluid Dynamics in Ventilation Design

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2008-01-01

    This paper is based on the new REHVA Guidebook Computational Fluid  Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people...

  7. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening and...

  8. Teaching Alveolar Ventilation with Simple, Inexpensive Models

    Science.gov (United States)

    DiCarlo, Stephen E.

    2008-01-01

    When teaching and learning about alveolar ventilation with our class of 300 first-year medical students, we use four simple, inexpensive "models." The models, which encourage research-oriented learning and help our students to understand complex ideas, are distributed to the students before class. The students anticipate something new every day,…

  9. A Novel Model for Sewer Ventilation

    DEFF Research Database (Denmark)

    Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning; Vollertsen, Jes

    2013-01-01

    Based on the naturally occurring gas CO2 the dynamics of natural ventilation and gas flow was studied in an intercepting sewer receiving wastewater from a pressure main. A deterministic physiochemical model including description of release of CO2 into the sewer gas phase was built and validated...

  10. Including Children Dependent on Ventilators in School.

    Science.gov (United States)

    Levine, Jack M.

    1996-01-01

    Guidelines for including ventilator-dependent children in school are offered, based on experience with six such students at a New York State school. Guidelines stress adherence to the medical management plan, the school-family partnership, roles of the social worker and psychologist, orientation, transportation, classroom issues, and steps toward…

  11. Improving underground ventilation conditions in coal mines

    CSIR Research Space (South Africa)

    Meyer, CF

    1993-11-01

    Full Text Available The aim of this project was to establish the needs of the industry with regard to bord and pillar ventilation requirements. In addition, the aim was to establish whether sufficient research has already been done by the mining industry and if further...

  12. Ventilators in ICU: A boon or burden

    Directory of Open Access Journals (Sweden)

    Man Mohan Mehndiratta

    2016-01-01

    Full Text Available Background and Aims: Ventilator-associated pneumonia (VAP is a major challenge in intensive care units (ICUs. This challenge is even more discernible in a neurological setting owing to the predispositions of patients. Data on VAP in the neurology and neurosurgery ICUs (NNICUs are scanty in developing countries. This study was conducted to find out the occurrence of VAP, its risk factors, microbiological profile, and antibiotic resistance in patients admitted to the NNICU of a tertiary care institute in India. Materials and Methods: Endotracheal aspirate and blood samples were collected from 100 patients admitted to the NNICU. Complete blood count, microscopic examination, culture and sensitivity testing of aspirate were done. Chest x-ray was also performed to aid in the diagnosis of VAP. Results: Incidence rate of VAP was found to be 24%. Acinetobacter baumannii was the most common pathogen (24.3% isolated from patients with VAP, and all of these isolates were sensitive to meropenem. Duration of mechanical ventilation (P < 0.0001 and associated comorbid illness (P = 0.005 were found to be significantly associated with VAP, and the duration of mechanical ventilation was found to be the only independent risk factor (P < 0.0001. Conclusions: This study highlights the risks and microbiological perspective of ventilator use among neurology patients so that adequate preventive strategies can be adopted on time.

  13. VRML Programs for Room Ventilation Applications

    DEFF Research Database (Denmark)

    Nielsen, Anker

    Cheap 3D models for visualization of room ventilation applications are now available. VRML (Virtu~l Reality Modelling Language) is found to be a good format to describe buildings, rooms and furniture. A 3D model in VRML can be placed on a World Wide Web (www) page and others can see the model...

  14. Sensory source strength of used ventilation filters

    DEFF Research Database (Denmark)

    Clausen, Geo; Alm, Ole Martin; Fanger, Povl Ole

    2002-01-01

    A two-year-old filter was placed in a ventilation system recirculating the air in an experimental space. Via glass tubes supplied with a small fan it was possible to extract air upstream and downstream of the filter to an adjacent room. A panel could thus perform sensory assessments of the air from...

  15. A Medical Student Workshop in Mechanical Ventilation.

    Science.gov (United States)

    And Others; Kushins, Lawrence G.

    1980-01-01

    In order to teach applied respiratory physiology to medical students, the anesthesiology faculty at the University of Florida College of Medicine has designed and implemented a course that includes a laboratory workshop in mechanical ventilation of an animal model that allows students to apply and expand their knowledge. (JMD)

  16. Aerosol delivery in intubated, mechanically ventilated patients

    International Nuclear Information System (INIS)

    MacIntyre, N.R.; Silver, R.M.; Miller, C.W.; Schuler, F.; Coleman, R.E.

    1985-01-01

    To study the effects of respiratory failure and mechanical ventilation on aerosol delivery to the lungs, nuclear scans were performed after aerosolization of 5 to 9 mCi of Tc-99m diethylenetriamine pentaacetic acid in seven stable, intubated, and mechanically ventilated patients. The radioactivity reaching the lungs was 2.9 +/- .7% (mean +/- SD) of the administered dose, an amount significantly less than that in three healthy nonintubated subjects and also less than what would be expected in nonintubated subjects from other published reports. A subsequent study was performed in 15 additional mechanically ventilated patients who were receiving aerosolized bronchodilators through their endotracheal tube. In these patients, heart rate and lung mechanical function values before and after treatment were not significantly different. It is concluded from these studies that aerosol delivery in mechanically ventilated patients is significantly reduced and that this is probably due to a combination of suboptimal breathing pattern, intrinsic airway disease, and the endotracheal tube functioning as both a site for aerosol deposition through impaction as well as a barrier to gastrointestinal absorption

  17. Ductless personalized ventilation with local air cleaning

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Vesely, Michal; Melikov, Arsen Krikor

    2012-01-01

    An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks was equip......An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks...... was equipped with an activated carbon filter installed at the air intake, while the DPV at the second desk was without such a filter. The air temperature in the occupied zone (1.1 m above the floor) was 29 °C. The pollution load in the room was simulated by PVC floor covering. The subjects assessed...... acceptability of air quality, odour intensity and air freshness at both desks in random order. Lower odour intensity and higher air freshness was reported at the desk with DPV with the activated carbon filter. The results suggest that using local air cleaning devices integrated with DPV may improve perceived...

  18. Diaphragm Dysfunction in Mechanically Ventilated Patients.

    Science.gov (United States)

    Dot, Irene; Pérez-Teran, Purificación; Samper, Manuel-Andrés; Masclans, Joan-Ramon

    2017-03-01

    Muscle involvement is found in most critical patients admitted to the intensive care unit (ICU). Diaphragmatic muscle alteration, initially included in this category, has been differentiated in recent years, and a specific type of muscular dysfunction has been shown to occur in patients undergoing mechanical ventilation. We found this muscle dysfunction to appear in this subgroup of patients shortly after the start of mechanical ventilation, observing it to be mainly associated with certain control modes, and also with sepsis and/or multi-organ failure. Although the specific etiology of process is unknown, the muscle presents oxidative stress and mitochondrial changes. These cause changes in protein turnover, resulting in atrophy and impaired contractility, and leading to impaired functionality. The term 'ventilator-induced diaphragm dysfunction' was first coined by Vassilakopoulos et al. in 2004, and this phenomenon, along with injury cause by over-distention of the lung and barotrauma, represents a challenge in the daily life of ventilated patients. Diaphragmatic dysfunction affects prognosis by delaying extubation, prolonging hospital stay, and impairing the quality of life of these patients in the years following hospital discharge. Ultrasound, a non-invasive technique that is readily available in most ICUs, could be used to diagnose this condition promptly, thus preventing delays in starting rehabilitation and positively influencing prognosis in these patients. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Ventilator associated pneumonia and infection control

    NARCIS (Netherlands)

    Alp, E.; Voss, A.

    2006-01-01

    Ventilator associated pneumonia (VAP) is the leading cause of morbidity and mortality in intensive care units. The incidence of VAP varies from 7% to 70% in different studies and the mortality rates are 20-75% according to the study population. Aspiration of colonized pathogenic microorganisms on

  20. Survival after Pneumocystis jirovecii pneumonia requiring ventilation ...

    African Journals Online (AJOL)

    Pneumocystis pneumonia (PCP) in patients with the human immunodeficiency virus (HIV) is associated with a high mortality rate, which increases substantially with the need for mechanical ventilation. Local experience of patients with PCP admitted to the intensive care unit has revealed mortality rates close to 100%.