WorldWideScience

Sample records for neural sleep activity

  1. Deciphering Neural Codes of Memory during Sleep

    Science.gov (United States)

    Chen, Zhe; Wilson, Matthew A.

    2017-01-01

    Memories of experiences are stored in the cerebral cortex. Sleep is critical for consolidating hippocampal memory of wake experiences into the neocortex. Understanding representations of neural codes of hippocampal-neocortical networks during sleep would reveal important circuit mechanisms on memory consolidation, and provide novel insights into memory and dreams. Although sleep-associated ensemble spike activity has been investigated, identifying the content of memory in sleep remains challenging. Here, we revisit important experimental findings on sleep-associated memory (i.e., neural activity patterns in sleep that reflect memory processing) and review computational approaches for analyzing sleep-associated neural codes (SANC). We focus on two analysis paradigms for sleep-associated memory, and propose a new unsupervised learning framework (“memory first, meaning later”) for unbiased assessment of SANC. PMID:28390699

  2. Baseline Levels of Rapid Eye Movement Sleep May Protect Against Excessive Activity in Fear-Related Neural Circuitry.

    Science.gov (United States)

    Lerner, Itamar; Lupkin, Shira M; Sinha, Neha; Tsai, Alan; Gluck, Mark A

    2017-11-15

    Sleep, and particularly rapid eye movement sleep (REM), has been implicated in the modulation of neural activity following fear conditioning and extinction in both human and animal studies. It has long been presumed that such effects play a role in the formation and persistence of posttraumatic stress disorder, of which sleep impairments are a core feature. However, to date, few studies have thoroughly examined the potential effects of sleep prior to conditioning on subsequent acquisition of fear learning in humans. Furthermore, these studies have been restricted to analyzing the effects of a single night of sleep-thus assuming a state-like relationship between the two. In the current study, we used long-term mobile sleep monitoring and functional neuroimaging (fMRI) to explore whether trait-like variations in sleep patterns, measured in advance in both male and female participants, predict subsequent patterns of neural activity during fear learning. Our results indicate that higher baseline levels of REM sleep predict reduced fear-related activity in, and connectivity between, the hippocampus, amygdala and ventromedial PFC during conditioning. Additionally, skin conductance responses (SCRs) were weakly correlated to the activity in the amygdala. Conversely, there was no direct correlation between REM sleep and SCRs, indicating that REM may only modulate fear acquisition indirectly. In a follow-up experiment, we show that these results are replicable, though to a lesser extent, when measuring sleep over a single night just before conditioning. As such, baseline sleep parameters may be able to serve as biomarkers for resilience, or lack thereof, to trauma. SIGNIFICANCE STATEMENT Numerous studies over the past two decades have established a clear role of sleep in fear-learning processes. However, previous work has focused on the effects of sleep following fear acquisition, thus neglecting the potential effects of baseline sleep levels on the acquisition itself. The

  3. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    Science.gov (United States)

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  4. Neural decoding of visual imagery during sleep.

    Science.gov (United States)

    Horikawa, T; Tamaki, M; Miyawaki, Y; Kamitani, Y

    2013-05-03

    Visual imagery during sleep has long been a topic of persistent speculation, but its private nature has hampered objective analysis. Here we present a neural decoding approach in which machine-learning models predict the contents of visual imagery during the sleep-onset period, given measured brain activity, by discovering links between human functional magnetic resonance imaging patterns and verbal reports with the assistance of lexical and image databases. Decoding models trained on stimulus-induced brain activity in visual cortical areas showed accurate classification, detection, and identification of contents. Our findings demonstrate that specific visual experience during sleep is represented by brain activity patterns shared by stimulus perception, providing a means to uncover subjective contents of dreaming using objective neural measurement.

  5. Near scale-free dynamics in neural population activity of waking/sleeping rats revealed by multiscale analysis.

    Directory of Open Access Journals (Sweden)

    Leonid A Safonov

    Full Text Available A neuron embedded in an intact brain, unlike an isolated neuron, participates in network activity at various spatial resolutions. Such multiple scale spatial dynamics is potentially reflected in multiple time scales of temporal dynamics. We identify such multiple dynamical time scales of the inter-spike interval (ISI fluctuations of neurons of waking/sleeping rats by means of multiscale analysis. The time scale of large non-Gaussianity in the ISI fluctuations, measured with the Castaing method, ranges up to several minutes, markedly escaping the low-pass filtering characteristics of neurons. A comparison between neural activity during waking and sleeping reveals that non-Gaussianity is stronger during waking than sleeping throughout the entire range of scales observed. We find a remarkable property of near scale independence of the magnitude correlations as the primary cause of persistent non-Gaussianity. Such scale-invariance of correlations is characteristic of multiplicative cascade processes and raises the possibility of the existence of a scale independent memory preserving mechanism.

  6. Neural Markers of Responsiveness to the Environment in Human Sleep

    DEFF Research Database (Denmark)

    Andrillon, Thomas; Poulsen, Andreas Trier; Hansen, Lars Kai

    2016-01-01

    by Lempel-Ziv complexity (LZc), a measure shown to track arousal in sleep and anesthesia. Neural activity related to the semantic content of stimuli was conserved in light non-rapid eye movement (NREM) sleep. However, these processes were suppressed in deep NREM sleep and, importantly, also in REM sleep...... could be related to modulation in sleep depth. InREMsleep, however, this relationship was reversed.Wetherefore propose that, in REM sleep, endogenously generated processes compete with the processing of external input. Sleep can thus be seen as a self-regulated process in which external information can...... be processed in lighter stages but suppressed in deeper stages. Last, our results suggest drastically different gating mechanisms in NREM and REM sleep....

  7. Common features of neural activity during singing and sleep periods in a basal ganglia nucleus critical for vocal learning in a juvenile songbird.

    Directory of Open Access Journals (Sweden)

    Shin Yanagihara

    Full Text Available Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase.

  8. Neural activation within components of verbal working memory following sleep loss

    OpenAIRE

    McKenna, Benjamin Scott

    2011-01-01

    Total sleep deprivation (TSD) leads to neurobehavioral changes in experimental tasks of alertness, attention, learning, and motor responses. However, results from working memory (WM) studies are more equivocal. WM comprises multiple cognitive processes and the cerebral basis of this differential vulnerability is not known. The current experiment utilized tasks employing parametric manipulations within an event-related functional magnetic resonance imaging (fMRI) design to better understand th...

  9. Neural Plasticity Is Involved in Physiological Sleep, Depressive Sleep Disturbances, and Antidepressant Treatments

    Directory of Open Access Journals (Sweden)

    Meng-Qi Zhang

    2017-01-01

    Full Text Available Depression, which is characterized by a pervasive and persistent low mood and anhedonia, greatly impacts patients, their families, and society. The associated and recurring sleep disturbances further reduce patient’s quality of life. However, therapeutic sleep deprivation has been regarded as a rapid and robust antidepressant treatment for several decades, which suggests a complicated role of sleep in development of depression. Changes in neural plasticity are observed during physiological sleep, therapeutic sleep deprivation, and depression. This correlation might help us to understand better the mechanism underlying development of depression and the role of sleep. In this review, we first introduce the structure of sleep and the facilitated neural plasticity caused by physiological sleep. Then, we introduce sleep disturbances and changes in plasticity in patients with depression. Finally, the effects and mechanisms of antidepressants and therapeutic sleep deprivation on neural plasticity are discussed.

  10. Oscillations, neural computations and learning during wake and sleep.

    Science.gov (United States)

    Penagos, Hector; Varela, Carmen; Wilson, Matthew A

    2017-06-01

    Learning and memory theories consider sleep and the reactivation of waking hippocampal neural patterns to be crucial for the long-term consolidation of memories. Here we propose that precisely coordinated representations across brain regions allow the inference and evaluation of causal relationships to train an internal generative model of the world. This training starts during wakefulness and strongly benefits from sleep because its recurring nested oscillations may reflect compositional operations that facilitate a hierarchical processing of information, potentially including behavioral policy evaluations. This suggests that an important function of sleep activity is to provide conditions conducive to general inference, prediction and insight, which contribute to a more robust internal model that underlies generalization and adaptive behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice.

    Science.gov (United States)

    McKillop, Laura E; Fisher, Simon P; Cui, Nanyi; Peirson, Stuart N; Foster, Russell G; Wafford, Keith A; Vyazovskiy, Vladyslav V

    2018-04-18

    Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we

  12. Effects of sleep deprivation on neural functioning: an integrative review

    NARCIS (Netherlands)

    Boonstra, T.W.; Stins, J.F.; Daffertshofer, A.; Beek, P.J.

    2007-01-01

    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of

  13. Sleep modulates the neural substrates of both spatial and contextual memory consolidation.

    Directory of Open Access Journals (Sweden)

    Géraldine Rauchs

    Full Text Available It is known that sleep reshapes the neural representations that subtend the memories acquired while navigating in a virtual environment. However, navigation is not process-pure, as manifold learning components contribute to performance, notably the spatial and contextual memory constituents. In this context, it remains unclear whether post-training sleep globally promotes consolidation of all of the memory components embedded in virtual navigation, or rather favors the development of specific representations. Here, we investigated the effect of post-training sleep on the neural substrates of the consolidation of spatial and contextual memories acquired while navigating in a complex 3D, naturalistic virtual town. Using fMRI, we mapped regional cerebral activity during various tasks designed to tap either the spatial or the contextual memory component, or both, 72 h after encoding with or without sleep deprivation during the first post-training night. Behavioral performance was not dependent upon post-training sleep deprivation, neither in a natural setting that engages both spatial and contextual memory processes nor when looking more specifically at each of these memory representations. At the neuronal level however, analyses that focused on contextual memory revealed distinct correlations between performance and neuronal activity in frontal areas associated with recollection processes after post-training sleep, and in the parahippocampal gyrus associated with familiarity processes in sleep-deprived participants. Likewise, efficient spatial memory was associated with posterior cortical activity after sleep whereas it correlated with parahippocampal/medial temporal activity after sleep deprivation. Finally, variations in place-finding efficiency in a natural setting encompassing spatial and contextual elements were associated with caudate activity after post-training sleep, suggesting the automation of navigation. These data indicate that post

  14. Low Activity Microstates During Sleep.

    Science.gov (United States)

    Miyawaki, Hiroyuki; Billeh, Yazan N; Diba, Kamran

    2017-06-01

    To better understand the distinct activity patterns of the brain during sleep, we observed and investigated periods of diminished oscillatory and population spiking activity lasting for seconds during non-rapid eye movement (non-REM) sleep, which we call "LOW" activity sleep. We analyzed spiking and local field potential (LFP) activity of hippocampal CA1 region alongside neocortical electroencephalogram (EEG) and electromyogram (EMG) in 19 sessions from four male Long-Evans rats (260-360 g) during natural wake/sleep across the 24-hr cycle as well as data from other brain regions obtained from http://crcns.org.1,2. LOW states lasted longer than OFF/DOWN states and were distinguished by a subset of "LOW-active" cells. LOW activity sleep was preceded and followed by increased sharp-wave ripple activity. We also observed decreased slow-wave activity and sleep spindles in the hippocampal LFP and neocortical EEG upon LOW onset, with a partial rebound immediately after LOW. LOW states demonstrated activity patterns consistent with sleep but frequently transitioned into microarousals and showed EMG and LFP differences from small-amplitude irregular activity during quiet waking. Their likelihood decreased within individual non-REM epochs yet increased over the course of sleep. By analyzing data from the entorhinal cortex of rats,1 as well as the hippocampus, the medial prefrontal cortex, the postsubiculum, and the anterior thalamus of mice,2 obtained from http://crcns.org, we confirmed that LOW states corresponded to markedly diminished activity simultaneously in all of these regions. We propose that LOW states are an important microstate within non-REM sleep that provide respite from high-activity sleep and may serve a restorative function. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  15. Neural Consequences of Chronic Short Sleep: Reversible or Lasting?

    Directory of Open Access Journals (Sweden)

    Zhengqing Zhao

    2017-05-01

    Full Text Available Approximately one-third of adolescents and adults in developed countries regularly experience insufficient sleep across the school and/or work week interspersed with weekend catch up sleep. This common practice of weekend recovery sleep reduces subjective sleepiness, yet recent studies demonstrate that one weekend of recovery sleep may not be sufficient in all persons to fully reverse all neurobehavioral impairments observed with chronic sleep loss, particularly vigilance. Moreover, recent studies in animal models demonstrate persistent injury to and loss of specific neuron types in response to chronic short sleep (CSS with lasting effects on sleep/wake patterns. Here, we provide a comprehensive review of the effects of chronic sleep disruption on neurobehavioral performance and injury to neurons, astrocytes, microglia, and oligodendrocytes and discuss what is known and what is not yet established for reversibility of neural injury. Recent neurobehavioral findings in humans are integrated with animal model research examining long-term consequences of sleep loss on neurobehavioral performance, brain development, neurogenesis, neurodegeneration, and connectivity. While it is now clear that recovery of vigilance following short sleep requires longer than one weekend, less is known of the impact of CSS on cognitive function, mood, and brain health long term. From work performed in animal models, CSS in the young adult and short-term sleep loss in critical developmental windows can have lasting detrimental effects on neurobehavioral performance.

  16. The Effects of Experimental Manipulation of Sleep Duration on Neural Response to Food Cues.

    Science.gov (United States)

    Demos, Kathryn E; Sweet, Lawrence H; Hart, Chantelle N; McCaffery, Jeanne M; Williams, Samantha E; Mailloux, Kimberly A; Trautvetter, Jennifer; Owens, Max M; Wing, Rena R

    2017-11-01

    Despite growing literature on neural food cue responsivity in obesity, little is known about how the brain processes food cues following partial sleep deprivation and whether short sleep leads to changes similar to those observed in obesity. We used functional magnetic resonance imaging (fMRI) to test the hypothesis that short sleep leads to increased reward-related and decreased inhibitory control-related processing of food cues.In a within-subject design, 30 participants (22 female, mean age = 36.7 standard deviation = 10.8 years, body mass index range 20.4-40.7) completed four nights of 6 hours/night time-in-bed (TIB; short sleep) and four nights of 9 hours/night TIB (long sleep) in random counterbalanced order in their home environments. Following each sleep condition, participants completed an fMRI scan while viewing food and nonfood images.A priori region of interest analyses revealed increased activity to food in short versus long sleep in regions of reward processing (eg, nucleus accumbens/putamen) and sensory/motor signaling (ie, right paracentral lobule, an effect that was most pronounced in obese individuals). Contrary to the hypothesis, whole brain analyses indicated greater food cue responsivity during short sleep in an inhibitory control region (right inferior frontal gyrus) and ventral medial prefrontal cortex, which has been implicated in reward coding and decision-making (false discovery rate corrected q = 0.05).These findings suggest that sleep restriction leads to both greater reward and control processing in response to food cues. Future research is needed to understand the dynamic functional connectivity between these regions during short sleep and whether the interplay between these neural processes determines if one succumbs to food temptation. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  17. Active Neural Localization

    OpenAIRE

    Chaplot, Devendra Singh; Parisotto, Emilio; Salakhutdinov, Ruslan

    2018-01-01

    Localization is the problem of estimating the location of an autonomous agent from an observation and a map of the environment. Traditional methods of localization, which filter the belief based on the observations, are sub-optimal in the number of steps required, as they do not decide the actions taken by the agent. We propose "Active Neural Localizer", a fully differentiable neural network that learns to localize accurately and efficiently. The proposed model incorporates ideas of tradition...

  18. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Sleep-Active Neurons: Conserved Motors of Sleep

    Science.gov (United States)

    Bringmann, Henrik

    2018-01-01

    Sleep is crucial for survival and well-being. This behavioral and physiological state has been studied in all major genetically accessible model animals, including rodents, fish, flies, and worms. Genetic and optogenetic studies have identified several neurons that control sleep, making it now possible to compare circuit mechanisms across species. The “motor” of sleep across animal species is formed by neurons that depolarize at the onset of sleep to actively induce this state by directly inhibiting wakefulness. These sleep-inducing neurons are themselves controlled by inhibitory or activating upstream pathways, which act as the “drivers” of the sleep motor: arousal inhibits “sleep-active” neurons whereas various sleep-promoting “tiredness” pathways converge onto sleep-active neurons to depolarize them. This review provides the first overview of sleep-active neurons across the major model animals. The occurrence of sleep-active neurons and their regulation by upstream pathways in both vertebrate and invertebrate species suggests that these neurons are general and ancient components that evolved early in the history of nervous systems. PMID:29618588

  20. Functional structure of spontaneous sleep slow oscillation activity in humans.

    Directory of Open Access Journals (Sweden)

    Danilo Menicucci

    Full Text Available BACKGROUND: During non-rapid eye movement (NREM sleep synchronous neural oscillations between neural silence (down state and neural activity (up state occur. Sleep Slow Oscillations (SSOs events are their EEG correlates. Each event has an origin site and propagates sweeping the scalp. While recent findings suggest a SSO key role in memory consolidation processes, the structure and the propagation of individual SSO events, as well as their modulation by sleep stages and cortical areas have not been well characterized so far. METHODOLOGY/PRINCIPAL FINDINGS: We detected SSO events in EEG recordings and we defined and measured a set of features corresponding to both wave shapes and event propagations. We found that a typical SSO shape has a transition to down state, which is steeper than the following transition from down to up state. We show that during SWS SSOs are larger and more locally synchronized, but less likely to propagate across the cortex, compared to NREM stage 2. Also, the detection number of SSOs as well as their amplitudes and slopes, are greatest in the frontal regions. Although derived from a small sample, this characterization provides a preliminary reference about SSO activity in healthy subjects for 32-channel sleep recordings. CONCLUSIONS/SIGNIFICANCE: This work gives a quantitative picture of spontaneous SSO activity during NREM sleep: we unveil how SSO features are modulated by sleep stage, site of origin and detection location of the waves. Our measures on SSOs shape indicate that, as in animal models, onsets of silent states are more synchronized than those of neural firing. The differences between sleep stages could be related to the reduction of arousal system activity and to the breakdown of functional connectivity. The frontal SSO prevalence could be related to a greater homeostatic need of the heteromodal association cortices.

  1. Cueing vocabulary during sleep increases theta activity during later recognition testing.

    Science.gov (United States)

    Schreiner, Thomas; Göldi, Maurice; Rasch, Björn

    2015-11-01

    Neural oscillations in the theta band have repeatedly been implicated in successful memory encoding and retrieval. Several recent studies have shown that memory retrieval can be facilitated by reactivating memories during their consolidation during sleep. However, it is still unknown whether reactivation during sleep also enhances subsequent retrieval-related neural oscillations. We have recently demonstrated that foreign vocabulary cues presented during sleep improve later recall of the associated translations. Here, we examined the effect of cueing foreign vocabulary during sleep on oscillatory activity during subsequent recognition testing after sleep. We show that those words that were replayed during sleep after learning (cued words) elicited stronger centroparietal theta activity during recognition as compared to noncued words. The reactivation-induced increase in theta oscillations during later recognition testing might reflect a strengthening of individual memory traces and the integration of the newly learned words into the mental lexicon by cueing during sleep. © 2015 Society for Psychophysiological Research.

  2. Sleep deprivation alters functioning within the neural network underlying the covert orienting of attention.

    Science.gov (United States)

    Mander, Bryce A; Reid, Kathryn J; Davuluri, Vijay K; Small, Dana M; Parrish, Todd B; Mesulam, M-Marsel; Zee, Phyllis C; Gitelman, Darren R

    2008-06-27

    One function of spatial attention is to enable goal-directed interactions with the environment through the allocation of neural resources to motivationally relevant parts of space. Studies have shown that responses are enhanced when spatial attention is predictively biased towards locations where significant events are expected to occur. Previous studies suggest that the ability to bias attention predictively is related to posterior cingulate cortex (PCC) activation [Small, D.M., et al., 2003. The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. Neuroimage 18, 633-41]. Sleep deprivation (SD) impairs selective attention and reduces PCC activity [Thomas, M., et al., 2000. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J. Sleep Res. 9, 335-352]. Based on these findings, we hypothesized that SD would affect PCC function and alter the ability to predictively allocate spatial attention. Seven healthy, young adults underwent functional magnetic resonance imaging (fMRI) following normal rest and 34-36 h of SD while performing a task in which attention was shifted in response to peripheral targets preceded by spatially informative (valid), misleading (invalid), or uninformative (neutral) cues. When rested, but not when sleep-deprived, subjects responded more quickly to targets that followed valid cues than those after neutral or invalid cues. Brain activity during validly cued trials with a reaction time benefit was compared to activity in trials with no benefit. PCC activation was greater during trials with a reaction time benefit following normal rest. In contrast, following SD, reaction time benefits were associated with activation in the left intraparietal sulcus, a region associated with receptivity to stimuli at unexpected locations. These changes may render sleep-deprived individuals less able

  3. A sleep state in Drosophila larvae required for neural stem cell proliferation

    Science.gov (United States)

    Szuperak, Milan; Churgin, Matthew A; Borja, Austin J; Raizen, David M; Fang-Yen, Christopher

    2018-01-01

    Sleep during development is involved in refining brain circuitry, but a role for sleep in the earliest periods of nervous system elaboration, when neurons are first being born, has not been explored. Here we identify a sleep state in Drosophila larvae that coincides with a major wave of neurogenesis. Mechanisms controlling larval sleep are partially distinct from adult sleep: octopamine, the Drosophila analog of mammalian norepinephrine, is the major arousal neuromodulator in larvae, but dopamine is not required. Using real-time behavioral monitoring in a closed-loop sleep deprivation system, we find that sleep loss in larvae impairs cell division of neural progenitors. This work establishes a system uniquely suited for studying sleep during nascent periods, and demonstrates that sleep in early life regulates neural stem cell proliferation. PMID:29424688

  4. Losing Neutrality: The Neural Basis of Impaired Emotional Control without Sleep.

    Science.gov (United States)

    Simon, Eti Ben; Oren, Noga; Sharon, Haggai; Kirschner, Adi; Goldway, Noam; Okon-Singer, Hadas; Tauman, Rivi; Deweese, Menton M; Keil, Andreas; Hendler, Talma

    2015-09-23

    Sleep deprivation has been shown recently to alter emotional processing possibly associated with reduced frontal regulation. Such impairments can ultimately fail adaptive attempts to regulate emotional processing (also known as cognitive control of emotion), although this hypothesis has not been examined directly. Therefore, we explored the influence of sleep deprivation on the human brain using two different cognitive-emotional tasks, recorded using fMRI and EEG. Both tasks involved irrelevant emotional and neutral distractors presented during a competing cognitive challenge, thus creating a continuous demand for regulating emotional processing. Results reveal that, although participants showed enhanced limbic and electrophysiological reactions to emotional distractors regardless of their sleep state, they were specifically unable to ignore neutral distracting information after sleep deprivation. As a consequence, sleep deprivation resulted in similar processing of neutral and negative distractors, thus disabling accurate emotional discrimination. As expected, these findings were further associated with a decrease in prefrontal connectivity patterns in both EEG and fMRI signals, reflecting a profound decline in cognitive control of emotion. Notably, such a decline was associated with lower REM sleep amounts, supporting a role for REM sleep in overnight emotional processing. Altogether, our findings suggest that losing sleep alters emotional reactivity by lowering the threshold for emotional activation, leading to a maladaptive loss of emotional neutrality. Significance statement: Sleep loss is known as a robust modulator of emotional reactivity, leading to increased anxiety and stress elicited by seemingly minor triggers. In this work, we aimed to portray the neural basis of these emotional impairments and their possible association with frontal regulation of emotional processing, also known as cognitive control of emotion. Using specifically suited EEG and f

  5. Sleep

    Science.gov (United States)

    ... Institute (NHLBI). 1 Mood. Sleep affects your mood. Insufficient sleep can cause irritability that can lead to trouble with relationships, ... basics/understanding_sleep.htm#dynamic_activity Centers for Disease ... insufficient rest or sleep among adults—United States, 2008. MMWR, 58 (42), ...

  6. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems

    Directory of Open Access Journals (Sweden)

    Jun Kohyama

    2016-01-01

    Full Text Available There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life.

  7. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems.

    Science.gov (United States)

    Kohyama, Jun

    2016-01-29

    There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life.

  8. The sleep and circadian modulation of neural reward pathways: a protocol for a pair of systematic reviews.

    Science.gov (United States)

    Byrne, Jamie E M; Murray, Greg

    2017-12-02

    Animal research suggests that neural reward activation may be systematically modulated by sleep and circadian function. Whether humans also exhibit sleep and circadian modulation of neural reward pathways is unclear. This area is in need of further research, as it has implications for the involvement of sleep and circadian function in reward-related disorders. The aim of this paper is to describe the protocol for a pair of systematic literature reviews to synthesise existing literature related to (1) sleep and (2) circadian modulation of neural reward pathways in healthy human populations. A systematic review of relevant online databases (Scopus, PubMed, Web of Science, ProQuest, PsycINFO and EBSCOhost) will be conducted. Reference lists, relevant reviews and supplementary data will be searched for additional articles. Articles will be included if (a) they contain a sleep- or circadian-related predictor variable with a neural reward outcome variable, (b) use a functional magnetic resonance imaging protocol and (c) use human samples. Articles will be excluded if study participants had disorders known to affect the reward system. The articles will be screened by two independent authors. Two authors will complete the data extraction form, with two authors independently completing the quality assessment tool for the selected articles, with a consensus reached with a third author if needed. Narrative synthesis methods will be used to analyse the data. The findings from this pair of systematic literature reviews will assist in the identification of the pathways involved in the sleep and circadian function modulation of neural reward in healthy individuals, with implications for disorders characterised by dysregulation in sleep, circadian rhythms and reward function. PROSPERO CRD42017064994.

  9. Behavioral and neural concordance in parent-child dyadic sleep patterns.

    Science.gov (United States)

    Lee, Tae-Ho; Miernicki, Michelle E; Telzer, Eva H

    2017-08-01

    Sleep habits developed in adolescence shape long-term trajectories of psychological, educational, and physiological well-being. Adolescents' sleep behaviors are shaped by their parents' sleep at both the behavioral and biological levels. In the current study, we sought to examine how neural concordance in resting-state functional connectivity between parent-child dyads is associated with dyadic concordance in sleep duration and adolescents' sleep quality. To this end, we scanned both parents and their child (N=28 parent-child dyads; parent M age =42.8years; adolescent M age =14.9years; 14.3% father; 46.4% female adolescent) as they each underwent a resting-state scan. Using daily diaries, we also assessed dyadic concordance in sleep duration across two weeks. Our results show that greater daily concordance in sleep behavior is associated with greater neural concordance in default-mode network connectivity between parents and children. Moreover, greater neural and behavioral concordances in sleep is associated with more optimal sleep quality in adolescents. The current findings expand our understanding of dyadic concordance by providing a neurobiological mechanism by which parents and children share daily sleep behaviors. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Time delay between cardiac and brain activity during sleep transitions

    NARCIS (Netherlands)

    Long, X.; Arends, J.B.A.M.; Aarts, R.M.; Haakma, R.; Fonseca, P.; Rolink, J.

    2015-01-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by

  11. Beyond the neuropsychology of dreaming: Insights into the neural basis of dreaming with new techniques of sleep recording and analysis.

    Science.gov (United States)

    Cipolli, Carlo; Ferrara, Michele; De Gennaro, Luigi; Plazzi, Giuseppe

    2017-10-01

    Recent advances in electrophysiological [e.g., surface high-density electroencephalographic (hd-EEG) and intracranial recordings], video-polysomnography (video-PSG), transcranial stimulation and neuroimaging techniques allow more in-depth and more accurate investigation of the neural correlates of dreaming in healthy individuals and in patients with brain-damage, neurodegenerative diseases, sleep disorders or parasomnias. Convergent evidence provided by studies using these techniques in healthy subjects has led to a reformulation of several unresolved issues of dream generation and recall [such as the inter- and intra-individual differences in dream recall and the predictivity of specific EEG rhythms, such as theta in rapid eye movement (REM) sleep, for dream recall] within more comprehensive models of human consciousness and its variations across sleep/wake states than the traditional models, which were largely based on the neurophysiology of REM sleep in animals. These studies are casting new light on the neural bases (in particular, the activity of dorsal medial prefrontal cortex regions and hippocampus and amygdala areas) of the inter- and intra-individual differences in dream recall, the temporal location of specific contents or properties (e.g., lucidity) of dream experience and the processing of memories accessed during sleep and incorporated into dream content. Hd-EEG techniques, used on their own or in combination with neuroimaging, appear able to provide further important insights into how the brain generates not only dreaming during sleep but also some dreamlike experiences in waking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Plasticity during Sleep Is Linked to Specific Regulation of Cortical Circuit Activity

    Directory of Open Access Journals (Sweden)

    Niels Niethard

    2017-09-01

    Full Text Available Sleep is thought to be involved in the regulation of synaptic plasticity in two ways: by enhancing local plastic processes underlying the consolidation of specific memories and by supporting global synaptic homeostasis. Here, we briefly summarize recent structural and functional studies examining sleep-associated changes in synaptic morphology and neural excitability. These studies point to a global down-scaling of synaptic strength across sleep while a subset of synapses increases in strength. Similarly, neuronal excitability on average decreases across sleep, whereas subsets of neurons increase firing rates across sleep. Whether synapse formation and excitability is down or upregulated across sleep appears to partly depend on the cell’s activity level during wakefulness. Processes of memory-specific upregulation of synapse formation and excitability are observed during slow wave sleep (SWS, whereas global downregulation resulting in elimination of synapses and decreased neural firing is linked to rapid eye movement sleep (REM sleep. Studies of the excitation/inhibition balance in cortical circuits suggest that both processes are connected to a specific inhibitory regulation of cortical principal neurons, characterized by an enhanced perisomatic inhibition via parvalbumin positive (PV+ cells, together with a release from dendritic inhibition by somatostatin positive (SOM+ cells. Such shift towards increased perisomatic inhibition of principal cells appears to be a general motif which underlies the plastic synaptic changes observed during sleep, regardless of whether towards up or downregulation.

  13. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients.

    Science.gov (United States)

    Ebrahimi, Farideh; Mikaeili, Mohammad; Estrada, Edson; Nazeran, Homer

    2008-01-01

    Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage 1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage 1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 +/- 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 +/- 4.0%.

  14. Does self-perceived sleep reflect sleep estimated via activity monitors in professional rugby league athletes?

    Science.gov (United States)

    Caia, Johnpaul; Thornton, Heidi R; Kelly, Vincent G; Scott, Tannath J; Halson, Shona L; Cupples, Balin; Driller, Matthew W

    2018-07-01

    This study examined agreement between self-perceived sleep and sleep estimated via activity monitors in professional rugby league athletes. 63 athletes, from three separate teams wore actigraphy monitors for 10.3 ± 3.9 days. During the monitoring period, ratings of perceived sleep quality (on a 1-5 and 1-10 Likert scale), and an estimate of sleep duration were recorded daily. Agreement between sleep estimated via activity monitors and self-perceived sleep was examined using mean bias, Pearson correlation (r) and typical error of the estimate (TEE). 641 nights of sleep were recorded, with a very large, positive correlation observed between sleep duration estimated via activity monitors and subjective sleep duration (r = 0.85), and a TEE of 48 minutes. Mean bias revealed subjective sleep duration overestimated sleep by an average of 19.8 minutes. The relationship between sleep efficiency estimated via activity monitors and self-perceived sleep quality on a 1-5 (r = 0.22) and 1-10 Likert scale (r = 0.28) was limited. The outcomes of this investigation support the use of subjective measures to monitor sleep duration in rugby league athletes when objective means are unavailable. However, practitioners should be aware of the tendency of athletes to overestimate sleep duration.

  15. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case study.

    Science.gov (United States)

    Dresler, Martin; Wehrle, Renate; Spoormaker, Victor I; Koch, Stefan P; Holsboer, Florian; Steiger, Axel; Obrig, Hellmuth; Sämann, Philipp G; Czisch, Michael

    2012-07-01

    To investigate the neural correlates of lucid dreaming. Parallel EEG/fMRI recordings of night sleep. Sleep laboratory and fMRI facilities. Four experienced lucid dreamers. N/A. Out of 4 participants, one subject had 2 episodes of verified lucid REM sleep of sufficient length to be analyzed by fMRI. During lucid dreaming the bilateral precuneus, cuneus, parietal lobules, and prefrontal and occipito-temporal cortices activated strongly as compared with non-lucid REM sleep. In line with recent EEG data, lucid dreaming was associated with a reactivation of areas which are normally deactivated during REM sleep. This pattern of activity can explain the recovery of reflective cognitive capabilities that are the hallmark of lucid dreaming.

  16. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.

    Science.gov (United States)

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun

    2017-02-28

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.

  17. Quantifying Leg Movement Activity During Sleep.

    Science.gov (United States)

    Ferri, Raffaele; Fulda, Stephany

    2016-12-01

    Currently, 2 sets of similar rules for recording and scoring leg movement (LM) exist, including periodic LM during sleep (PLMS) and periodic LM during wakefulness. The former were published in 2006 by a task force of the International Restless Legs Syndrome Study Group, and the second in 2007 by the American Academy of Sleep Medicine. This article reviews the basic recording methods, scoring rules, and computer-based programs for PLMS. Less frequent LM activities, such as alternating leg muscle activation, hypnagogic foot tremor, high-frequency LMs, and excessive fragmentary myoclonus are briefly described. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Neurofeedback and the Neural Representation of Self: Lessons From Awake State and Sleep.

    Science.gov (United States)

    Ioannides, Andreas A

    2018-01-01

    Neurofeedback has been around for half a century, but despite some promising results it is not yet widely appreciated. Recently, some of the concerns about neurofeedback have been addressed with functional magnetic resonance imaging and magnetoencephalography adding their contributions to the long history of neurofeedback with electroencephalography. Attempts to address other concerns related to methodological issues with new experiments and meta-analysis of earlier studies, have opened up new questions about its efficacy. A key concern about neurofeedback is the missing framework to explain how improvements in very different and apparently unrelated conditions are achieved. Recent advances in neuroscience begin to address this concern. A particularly promising approach is the analysis of resting state of fMRI data, which has revealed robust covariations in brain networks that maintain their integrity in sleep and even anesthesia. Aberrant activity in three brain wide networks (i.e., the default mode, central executive and salience networks) has been associated with a number of psychiatric disorders. Recent publications have also suggested that neurofeedback guides the restoration of "normal" activity in these three networks. Using very recent results from our analysis of whole night MEG sleep data together with key concepts from developmental psychology, cloaked in modern neuroscience terms, a theoretical framework is proposed for a neural representation of the self, located at the core of a double onion-like structure of the default mode network. This framework fits a number of old and recent neuroscientific findings, and unites the way attention and memory operate in awake state and during sleep. In the process, safeguards are uncovered, put in place by evolution, before any interference with the core representation of self can proceed. Within this framework, neurofeedback is seen as set of methods for restoration of aberrant activity in large scale networks

  19. Neurofeedback and the Neural Representation of Self: Lessons From Awake State and Sleep

    Directory of Open Access Journals (Sweden)

    Andreas A. Ioannides

    2018-04-01

    Full Text Available Neurofeedback has been around for half a century, but despite some promising results it is not yet widely appreciated. Recently, some of the concerns about neurofeedback have been addressed with functional magnetic resonance imaging and magnetoencephalography adding their contributions to the long history of neurofeedback with electroencephalography. Attempts to address other concerns related to methodological issues with new experiments and meta-analysis of earlier studies, have opened up new questions about its efficacy. A key concern about neurofeedback is the missing framework to explain how improvements in very different and apparently unrelated conditions are achieved. Recent advances in neuroscience begin to address this concern. A particularly promising approach is the analysis of resting state of fMRI data, which has revealed robust covariations in brain networks that maintain their integrity in sleep and even anesthesia. Aberrant activity in three brain wide networks (i.e., the default mode, central executive and salience networks has been associated with a number of psychiatric disorders. Recent publications have also suggested that neurofeedback guides the restoration of “normal” activity in these three networks. Using very recent results from our analysis of whole night MEG sleep data together with key concepts from developmental psychology, cloaked in modern neuroscience terms, a theoretical framework is proposed for a neural representation of the self, located at the core of a double onion-like structure of the default mode network. This framework fits a number of old and recent neuroscientific findings, and unites the way attention and memory operate in awake state and during sleep. In the process, safeguards are uncovered, put in place by evolution, before any interference with the core representation of self can proceed. Within this framework, neurofeedback is seen as set of methods for restoration of aberrant activity in

  20. The effect of sleep deprivation on BOLD activity elicited by a divided attention task.

    Science.gov (United States)

    Jackson, Melinda L; Hughes, Matthew E; Croft, Rodney J; Howard, Mark E; Crewther, David; Kennedy, Gerard A; Owens, Katherine; Pierce, Rob J; O'Donoghue, Fergal J; Johnston, Patrick

    2011-06-01

    Sleep loss, widespread in today's society and associated with a number of clinical conditions, has a detrimental effect on a variety of cognitive domains including attention. This study examined the sequelae of sleep deprivation upon BOLD fMRI activation during divided attention. Twelve healthy males completed two randomized sessions; one after 27 h of sleep deprivation and one after a normal night of sleep. During each session, BOLD fMRI was measured while subjects completed a cross-modal divided attention task (visual and auditory). After normal sleep, increased BOLD activation was observed bilaterally in the superior frontal gyrus and the inferior parietal lobe during divided attention performance. Subjects reported feeling significantly more sleepy in the sleep deprivation session, and there was a trend towards poorer divided attention task performance. Sleep deprivation led to a down regulation of activation in the left superior frontal gyrus, possibly reflecting an attenuation of top-down control mechanisms on the attentional system. These findings have implications for understanding the neural correlates of divided attention and the neurofunctional changes that occur in individuals who are sleep deprived.

  1. Time delay between cardiac and brain activity during sleep transitions

    Science.gov (United States)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  2. The effect of exogenous cortisol during sleep on the behavioral and neural correlates of emotional memory consolidation in humans.

    Science.gov (United States)

    van Marle, Hein J F; Hermans, Erno J; Qin, Shaozheng; Overeem, Sebastiaan; Fernández, Guillén

    2013-09-01

    A host of animal work demonstrates that the retention benefit for emotionally aversive over neutral memories is regulated by glucocorticoid action during memory consolidation. Particularly, glucocorticoids may affect systems-level processes that promote the gradual reorganization of emotional memory traces. These effects remain largely uninvestigated in humans. Therefore, in this functional magnetic resonance imaging study we administered hydrocortisone during a polysomnographically monitored night of sleep directly after healthy volunteers studied negative and neutral pictures in a double-blind, placebo-controlled, between-subjects design. The following evening memory consolidation was probed during a recognition memory test in the MR scanner by assessing the difference in brain activity associated with memory for the consolidated items studied before sleep and new, unconsolidated items studied shortly before test (remote vs. recent memory paradigm). Hydrocortisone administration resulted in elevated cortisol levels throughout the experimental night with no group difference at recent encoding or test. Behaviorally, we showed that cortisol enhanced the difference between emotional and neutral consolidated memory, effectively prioritizing emotional memory consolidation. On a neural level, we found that cortisol reduced amygdala reactivity related to the retrieval of these same consolidated, negative items. These findings show that cortisol administration during first post-encoding sleep had a twofold effect on the first 24h of emotional memory consolidation. While cortisol prioritized recognition memory for emotional items, it reduced reactivation of the neural circuitry underlying emotional responsiveness during retrieval. These findings fit recent theories on emotional depotentiation following consolidation during sleep, although future research should establish the sleep-dependence of this effect. Moreover, our data may shed light on mechanisms underlying

  3. Sleep Spindles in the Right Hemisphere Support Awareness of Regularities and Reflect Pre-Sleep Activations.

    Science.gov (United States)

    Yordanova, Juliana; Kolev, Vasil; Bruns, Eike; Kirov, Roumen; Verleger, Rolf

    2017-11-01

    The present study explored the sleep mechanisms which may support awareness of hidden regularities. Before sleep, 53 participants learned implicitly a lateralized variant of the serial response-time task in order to localize sensorimotor encoding either in the left or right hemisphere and induce implicit regularity representations. Electroencephalographic (EEG) activity was recorded at multiple electrodes during both task performance and sleep, searching for lateralized traces of the preceding activity during learning. Sleep EEG analysis focused on region-specific slow (9-12 Hz) and fast (13-16 Hz) sleep spindles during nonrapid eye movement sleep. Fast spindle activity at those motor regions that were activated during learning increased with the amount of postsleep awareness. Independently of side of learning, spindle activity at right frontal and fronto-central regions was involved: there, fast spindles increased with the transformation of sequence knowledge from implicit before sleep to explicit after sleep, and slow spindles correlated with individual abilities of gaining awareness. These local modulations of sleep spindles corresponded to regions with greater presleep activation in participants with postsleep explicit knowledge. Sleep spindle mechanisms are related to explicit awareness (1) by tracing the activation of motor cortical and right-hemisphere regions which had stronger involvement already during learning and (2) by recruitment of individually consolidated processing modules in the right hemisphere. The integration of different sleep spindle mechanisms with functional states during wake collectively supports the gain of awareness of previously experienced regularities, with a special role for the right hemisphere. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  4. Unobtrusive sleep state measurements in preterm infants - A review

    NARCIS (Netherlands)

    Werth, J.V.S.W.; Atallah, L.; Andriessen, P.; Long, X.; Zwartkruis-Pelgrim, E.; Aarts, R.M.

    2017-01-01

    Sleep is important for the development of preterm infants. During sleep, neural connections are formed and the development of brain regions is triggered. In general, various rudimentary sleep states can be identified in the preterm infant, namely active sleep (AS), quiet sleep (QS) and intermediate

  5. Early and Later Life Stress Alter Brain Activity and Sleep in Rats

    Science.gov (United States)

    Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2013-01-01

    Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857

  6. Network-dependent modulation of brain activity during sleep.

    Science.gov (United States)

    Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki

    2014-09-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Sleep quality, sleep duration and physical activity in obese adolescents: effects of exercise training.

    Science.gov (United States)

    Mendelson, M; Borowik, A; Michallet, A-S; Perrin, C; Monneret, D; Faure, P; Levy, P; Pépin, J-L; Wuyam, B; Flore, P

    2016-02-01

    Decreased sleep duration and altered sleep quality are risk factors for obesity in youth. Structured exercise training has been shown to increase sleep duration and improve sleep quality. This study aimed at evaluating the impact of exercise training for improving sleep duration, sleep quality and physical activity in obese adolescents (OB). Twenty OB (age: 14.5 ± 1.5 years; body mass index: 34.0 ± 4.7 kg m(-2) ) and 20 healthy-weight adolescents (HW) completed an overnight polysomnography and wore an accelerometer (SenseWear Bodymedia) for 7 days. OB participated in a 12-week supervised exercise-training programme consisting of 180 min of exercise weekly. Exercise training was a combination of aerobic exercise and resistance training. Sleep duration was greater in HW compared with OB (P < 0.05). OB presented higher apnoea-hypopnoea index than HW (P < 0.05). Physical activity (average daily metabolic equivalent of tasks [METs]) by accelerometer was lower in OB (P < 0.05). After exercise training, obese adolescents increased their sleep duration (+64.4 min; effect size: 0.88; P = 0.025) and sleep efficiency (+7.6%; effect size: 0.76; P = 0.028). Physical activity levels were increased in OB as evidenced by increased steps per day and average daily METs (P < 0.05). Improved sleep duration was associated with improved average daily METs (r = 0.48, P = 0.04). The present study confirms altered sleep duration and quality in OB. Exercise training improves sleep duration, sleep quality and physical activity. © 2015 World Obesity.

  8. Automated sleep stage detection with a classical and a neural learning algorithm--methodological aspects.

    Science.gov (United States)

    Schwaibold, M; Schöchlin, J; Bolz, A

    2002-01-01

    For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.

  9. Windowed active sampling for reliable neural learning

    NARCIS (Netherlands)

    Barakova, E.I; Spaanenburg, L

    The composition of the example set has a major impact on the quality of neural learning. The popular approach is focused on extensive pre-processing to bridge the representation gap between process measurement and neural presentation. In contrast, windowed active sampling attempts to solve these

  10. Detection of different states of sleep in the rodents by the means of artificial neural networks

    Science.gov (United States)

    Musatov, Viacheslav; Dykin, Viacheslav; Pitsik, Elena; Pisarchik, Alexander

    2018-04-01

    This paper considers the possibility of classification of electroencephalogram (EEG) and electromyogram (EMG) signals corresponding to different phases of sleep and wakefulness of mice by the means of artificial neural networks. A feed-forward artificial neural network based on multilayer perceptron was created and trained on the data of one of the rodents. The trained network was used to read and classify the EEG and EMG data corresponding to different phases of sleep and wakefulness of the same mouse and other mouse. The results show a good recognition quality of all phases for the rodent on which the training was conducted (80-99%) and acceptable recognition quality for the data collected from the same mouse after a stroke.

  11. Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives

    Directory of Open Access Journals (Sweden)

    Mascetti GG

    2016-07-01

    Full Text Available Gian Gastone Mascetti Department of General Psychology, University of Padova, Padova, Italy Abstract: Sleep is a behavior characterized by a typical body posture, both eyes' closure, raised sensory threshold, distinctive electrographic signs, and a marked decrease of motor activity. In addition, sleep is a periodically necessary behavior and therefore, in the majority of animals, it involves the whole brain and body. However, certain marine mammals and species of birds show a different sleep behavior, in which one cerebral hemisphere sleeps while the other is awake. In dolphins, eared seals, and manatees, unihemispheric sleep allows them to have the benefits of sleep, breathing, thermoregulation, and vigilance. In birds, antipredation vigilance is the main function of unihemispheric sleep, but in domestic chicks, it is also associated with brain lateralization or dominance in the control of behavior. Compared to bihemispheric sleep, unihemispheric sleep would mean a reduction of the time spent sleeping and of the associated recovery processes. However, the behavior and health of aquatic mammals and birds does not seem at all impaired by the reduction of sleep. The neural mechanisms of unihemispheric sleep are unknown, but assuming that the neural structures involved in sleep in cetaceans, seals, and birds are similar to those of terrestrial mammals, it is suggested that they involve the interaction of structures of the hypothalamus, basal forebrain, and brain stem. The neural mechanisms promoting wakefulness dominate one side of the brain, while those promoting sleep predominates the other side. For cetaceans, unihemispheric sleep is the only way to sleep, while in seals and birds, unihemispheric sleep events are intermingled with bihemispheric and rapid eye movement sleep events. Electroencephalogram hemispheric asymmetries are also reported during bihemispheric sleep, at awakening, and at sleep onset, as well as being associated with a use

  12. Modulation of the Muscle Activity During Sleep in Cervical Dystonia.

    Science.gov (United States)

    Antelmi, Elena; Ferri, Raffaele; Provini, Federica; Scaglione, Cesa M L; Mignani, Francesco; Rundo, Francesco; Vandi, Stefano; Fabbri, Margherita; Pizza, Fabio; Plazzi, Giuseppe; Martinelli, Paolo; Liguori, Rocco

    2017-07-01

    Impaired sleep has been reported as an important nonmotor feature in dystonia, but so far, self-reported complaints have never been compared with nocturnal video-polysomnographic (PSG) recording, which is the gold standard to assess sleep-related disorders. Twenty patients with idiopathic isolated cervical dystonia and 22 healthy controls (HC) underwent extensive clinical investigations, neurological examination, and questionnaire screening for excessive daytime sleepiness and sleep-related disorders. A full-night video PSG was performed in both patients and HC. An ad hoc montage, adding electromyographic leads over the muscle affected with dystonia, was used. When compared to controls, patients showed significantly increased pathological values on the scale assessing self-reported complaints of impaired nocturnal sleep. Higher scores of impaired nocturnal sleep did not correlate with any clinical descriptors but for a weak correlation with higher scores on the scale for depression. On video-PSG, patients had significantly affected sleep architecture (with decreased sleep efficiency and increased sleep latency). Activity over cervical muscles disappears during all the sleep stages, reaching significantly decreased values when compared to controls both in nonrapid eye movements and rapid eye movements sleep. Patients with cervical dystonia reported poor sleep quality and showed impaired sleep architecture. These features however cannot be related to the persistence of muscle activity over the cervical muscles, which disappears in all the sleep stages, reaching significantly decreased values when compared to HC. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  13. Bedtime activities, sleep environment, and sleep/wake patterns of Japanese elementary school children.

    Science.gov (United States)

    Oka, Yasunori; Suzuki, Shuhei; Inoue, Yuich

    2008-01-01

    Bedtime activities, sleep environment, and their impact on sleep/wake patterns were assessed in 509 elementary school children (6-12 years of age; 252 males and 257 females). Television viewing, playing video games, and surfing the Internet had negative impact on sleep/wake parameters. Moreover, presence of a television set or video game in the child's bedroom increased their activity before bedtime. Time to return home later than 8 p.m. from after-school activity also had a negative impact on sleep/wake patterns. Health care practitioners should be aware of the potential negative impact of television, video games, and the Internet before bedtime, and also the possibility that late after-school activity can disturb sleep/wake patterns.

  14. Adolescent sleep quality measured during leisure activities

    Directory of Open Access Journals (Sweden)

    Kathy Sexton-Radek

    2013-07-01

    Full Text Available A one-week sleep monitoring by logs and actigraphs in preteens during summer camp was conducted. Campers aged 11-16 attended a two-week day camp that focused on the learning about science. Nine campers agreed to monitor their sleep and have their patterns explained (anonymously to other campers during the expert lecture by the author. The aim of the study was to identify the sleep quality in an adolescent group. All nine of the sleep logs and actigraphs denoted severe sleep deprivation. The findings from the logs and actigraphs denoted sever sleep deprivation. The expert lecturer provided basic information about sleep per the science designation of the day camp. A follow up session provided strategies to address sleep deprivation

  15. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  16. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep.

    Science.gov (United States)

    Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in

  17. Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives.

    Science.gov (United States)

    Mascetti, Gian Gastone

    2016-01-01

    Sleep is a behavior characterized by a typical body posture, both eyes' closure, raised sensory threshold, distinctive electrographic signs, and a marked decrease of motor activity. In addition, sleep is a periodically necessary behavior and therefore, in the majority of animals, it involves the whole brain and body. However, certain marine mammals and species of birds show a different sleep behavior, in which one cerebral hemisphere sleeps while the other is awake. In dolphins, eared seals, and manatees, unihemispheric sleep allows them to have the benefits of sleep, breathing, thermoregulation, and vigilance. In birds, antipredation vigilance is the main function of unihemispheric sleep, but in domestic chicks, it is also associated with brain lateralization or dominance in the control of behavior. Compared to bihemispheric sleep, unihemispheric sleep would mean a reduction of the time spent sleeping and of the associated recovery processes. However, the behavior and health of aquatic mammals and birds does not seem at all impaired by the reduction of sleep. The neural mechanisms of unihemispheric sleep are unknown, but assuming that the neural structures involved in sleep in cetaceans, seals, and birds are similar to those of terrestrial mammals, it is suggested that they involve the interaction of structures of the hypothalamus, basal forebrain, and brain stem. The neural mechanisms promoting wakefulness dominate one side of the brain, while those promoting sleep predominates the other side. For cetaceans, unihemispheric sleep is the only way to sleep, while in seals and birds, unihemispheric sleep events are intermingled with bihemispheric and rapid eye movement sleep events. Electroencephalogram hemispheric asymmetries are also reported during bihemispheric sleep, at awakening, and at sleep onset, as well as being associated with a use-dependent process (local sleep).

  18. Associative memory model with spontaneous neural activity

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  19. Sleep spindle activity in double cortex syndrome: a case report.

    Science.gov (United States)

    Sforza, Emilia; Marcoz, Jean-Pierre; Foletti, Giovanni

    2010-09-01

    Cortical dysgenesis is increasingly recognised as a cause of epilepsy. We report a case with double cortex heterotopia and secondarily generalized seizures with a generalised spike wave pattern. During the course of the disease, the child developed electrical status epilepticus in slow wave sleep. From the first examination, sleep pattern revealed increased frequency and amplitude of spindle activity, more evident in anterior areas. The role of the thalamocortical pathway in increased sleep spindle activity is discussed with emphasis on the possible role of altered thalamocortical pathways in abnormal cortical migration. A strong suspicion of cortical dysgenesis may therefore be based on specific EEG sleep patterns.

  20. Neural activation in stress-related exhaustion

    DEFF Research Database (Denmark)

    Gavelin, Hanna Malmberg; Neely, Anna Stigsdotter; Andersson, Micael

    2017-01-01

    The primary purpose of this study was to investigate the association between burnout and neural activation during working memory processing in patients with stress-related exhaustion. Additionally, we investigated the neural effects of cognitive training as part of stress rehabilitation. Fifty...... association between burnout level and working memory performance was found, however, our findings indicate that frontostriatal neural responses related to working memory were modulated by burnout severity. We suggest that patients with high levels of burnout need to recruit additional cognitive resources...... to uphold task performance. Following cognitive training, increased neural activation was observed during 3-back in working memory-related regions, including the striatum, however, low sample size limits any firm conclusions....

  1. Artificial neural networks for breathing and snoring episode detection in sleep sounds

    International Nuclear Information System (INIS)

    Emoto, Takahiro; Akutagawa, Masatake; Kinouchi, Yohsuke; Abeyratne, Udantha R; Chen, Yongjian; Kawata, Ikuji

    2012-01-01

    Obstructive sleep apnea (OSA) is a serious disorder characterized by intermittent events of upper airway collapse during sleep. Snoring is the most common nocturnal symptom of OSA. Almost all OSA patients snore, but not all snorers have the disease. Recently, researchers have attempted to develop automated snore analysis technology for the purpose of OSA diagnosis. These technologies commonly require, as the first step, the automated identification of snore/breathing episodes (SBE) in sleep sound recordings. Snore intensity may occupy a wide dynamic range (>95 dB) spanning from the barely audible to loud sounds. Low-intensity SBE sounds are sometimes seen buried within the background noise floor, even in high-fidelity sound recordings made within a sleep laboratory. The complexity of SBE sounds makes it a challenging task to develop automated snore segmentation algorithms, especially in the presence of background noise. In this paper, we propose a fundamentally novel approach based on artificial neural network (ANN) technology to detect SBEs. Working on clinical data, we show that the proposed method can detect SBE at a sensitivity and specificity exceeding 0.892 and 0.874 respectively, even when the signal is completely buried in background noise (SNR <0 dB). We compare the performance of the proposed technology with those of the existing methods (short-term energy, zero-crossing rates) and illustrate that the proposed method vastly outperforms conventional techniques. (paper)

  2. [Sleep apnea, CPAP therapy and work activity].

    Science.gov (United States)

    Balbi, Bruno; Carli, Sonia; Crevacore, Mirella; Godio, Massimo; Danioni, Alessandro; Sacco, Carlo; Braghiroli, Alberto

    2014-01-01

    Obstructive Sleep Apnea syndrome (OSAS) is largely prevalent among the general adult population, particularly among obese subjects. Diurnal somnolence is a characteristic feature of OSAS, one that can interfere on daily life of the patients and also on his/her work-related activities. Aim of this study was to evaluate the impact of OSAS, its symptoms and its therapy with Continuous Positive Airway Pressure (CPAP) may have on work-related activities. Fourty-eight subjects were studied, all > 18 years old and in a work-related age (women). There were 34 males and 14 females, 38 actively working, 3 unemployed, 7 not actively working. Before diagnosis the Epworth Sleepiness Scale (ESS) was 12 +/- 4, after the use of CPAP it was 4 +/- 4 (pwork activity was confirmed in all patients, as all employed patients were still working. Our data seem to indicate that not only OSAS interferes with working performance, mainly due to OSAS-related diurnal somnolence, but also that appropriate CPAP therapy, reinforced with educational activities and followed after one year, is able to ameliorate OSAS-related symptoms, potential cause of inefficiency an occupational risk at work.

  3. Slow Activity in Focal Epilepsy During Sleep and Wakefulness

    DEFF Research Database (Denmark)

    Pellegrino, Giovanni; Tombini, Mario; Curcio, Giuseppe

    2017-01-01

    Introduction We aimed to test differences between healthy subjects and patients with respect to slow wave activity during wakefulness and sleep. Methods Fifteen patients affected by nonlesional focal epilepsy originating within temporal areas and fourteen matched controls underwent a 24-hour EEG....... The effect was widespread for alpha band and above, while localized over the affected hemisphere for delta (sleep cycle 1, P = .006; sleep cycle 2, P = .008; sleep cycle 3, P = .017). The analysis of interhemispheric differences showed that the only frequency band stronger over the affected regions...

  4. Race modulates neural activity during imitation

    Science.gov (United States)

    Losin, Elizabeth A. Reynolds; Iacoboni, Marco; Martin, Alia; Cross, Katy A.; Dapretto, Mirella

    2014-01-01

    Imitation plays a central role in the acquisition of culture. People preferentially imitate others who are self-similar, prestigious or successful. Because race can indicate a person's self-similarity or status, race influences whom people imitate. Prior studies of the neural underpinnings of imitation have not considered the effects of race. Here we measured neural activity with fMRI while European American participants imitated meaningless gestures performed by actors of their own race, and two racial outgroups, African American, and Chinese American. Participants also passively observed the actions of these actors and their portraits. Frontal, parietal and occipital areas were differentially activated while participants imitated actors of different races. More activity was present when imitating African Americans than the other racial groups, perhaps reflecting participants' reported lack of experience with and negative attitudes towards this group, or the group's lower perceived social status. This pattern of neural activity was not found when participants passively observed the gestures of the actors or simply looked at their faces. Instead, during face-viewing neural responses were overall greater for own-race individuals, consistent with prior race perception studies not involving imitation. Our findings represent a first step in elucidating neural mechanisms involved in cultural learning, a process that influences almost every aspect of our lives but has thus far received little neuroscientific study. PMID:22062193

  5. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  6. Neighborhood Stress and Autonomic Nervous System Activity during Sleep.

    Science.gov (United States)

    Mellman, Thomas Alan; Bell, Kimberly Ann; Abu-Bader, Soleman Hassan; Kobayashi, Ihori

    2018-04-04

    Stressful neighborhood environments are known to adversely impact health and contribute to health disparities but underlying mechanisms are not well understood. Healthy sleep can provide a respite from sustained sympathetic nervous system (SNS) activity. Our objective was to evaluate relationships between neighborhood stress and nocturnal and daytime SNS and parasympathetic nervous system (PNS) activity. Eighty five urban-residing African Americans (56.5% female; mean age of 23.0) participated. Evaluation included surveys of neighborhood stress and sleep-related vigilance; and continuous ECG and actigraphic recording in participants' homes from which heart rate variability (HRV) analysis for low frequency/high frequency (LF/HF) ratio and normalized high frequency (nHF), as indicators of SNS and PNS activity, respectively, and total sleep time (TST), and wake after sleep onset were derived. All significant relationships with HRV measures were from the sleep period. Neighborhood disorder correlated negatively with nHF (r = -.24, p = .035). There were also significant correlations of HRV indices with sleep duration and sleep fears. Among females, LF/HF correlated with exposure to violence, r = .39, p = .008 and nHF with census tract rates for violent crime (r = -.35, p = .035). In a stepwise regression, TST accounted for the variance contributed by violent crime to nHF in the female participants. Further investigation of relationships between neighborhood environments and SNS/PNS balance during sleep and their consequences, and strategies for mitigating such effects would have implications for health disparities.

  7. Organization of the sleep-related neural systems in the brain of the minke whale (Balaenoptera acutorostrata).

    Science.gov (United States)

    Dell, Leigh-Anne; Karlsson, Karl Ae; Patzke, Nina; Spocter, Muhammad A; Siegel, Jerome M; Manger, Paul R

    2016-07-01

    The current study analyzed the nuclear organization of the neural systems related to the control and regulation of sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the minke whale, a mysticete cetacean. While odontocete cetaceans sleep in an unusual manner, with unihemispheric slow wave sleep (USWS) and suppressed REM sleep, it is unclear whether the mysticete whales show a similar sleep pattern. Previously, we detailed a range of features in the odontocete brain that appear to be related to odontocete-type sleep, and here present our analysis of these features in the minke whale brain. All neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals and the harbor porpoise were present in the minke whale, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity relates to the cholinergic, noradrenergic, serotonergic and orexinergic systems, and the GABAergic elements of these nuclei. Quantitative analysis revealed that the numbers of pontine cholinergic (274,242) and noradrenergic (203,686) neurons, and hypothalamic orexinergic neurons (277,604), are markedly higher than other large-brained bihemispheric sleeping mammals. Small telencephalic commissures (anterior, corpus callosum, and hippocampal), an enlarged posterior commissure, supernumerary pontine cholinergic and noradrenergic cells, and an enlarged peripheral division of the dorsal raphe nuclear complex of the minke whale, all indicate that the suite of neural characteristics thought to be involved in the control of USWS and the suppression of REM in the odontocete cetaceans are present in the minke whale. J. Comp. Neurol. 524:2018-2035, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Diagnostic REM sleep muscle activity thresholds in patients with idiopathic REM sleep behavior disorder with and without obstructive sleep apnea.

    Science.gov (United States)

    McCarter, Stuart J; St Louis, Erik K; Sandness, David J; Duwell, Ethan J; Timm, Paul C; Boeve, Bradley F; Silber, Michael H

    2017-05-01

    We aimed to determine whether visual and automated rapid eye movement (REM) sleep without atonia (RSWA) methods could accurately diagnose patients with idiopathic REM sleep behavior disorder (iRBD) and comorbid obstructive sleep apnea (OSA). In iRBD patients (n = 15) and matched controls (n = 30) with and without OSA, we visually analyzed RSWA phasic burst durations, phasic, tonic, and "any" muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and automated REM atonia index (RAI). Group RSWA metrics were analyzed with regression models. Receiver operating characteristic (ROC) curves were used to determine the best diagnostic cutoff thresholds for REM sleep behavior disorder (RBD). Both split-night and full-night polysomnographic studies were analyzed. All mean RSWA phasic burst durations and muscle activities were higher in iRBD patients than in controls (p sleep behavior disorder (PD-RBD), consistent with a common mechanism and presumed underlying etiology of synucleinopathy in both groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network.

    Science.gov (United States)

    Zhang, Junming; Wu, Yan

    2018-03-28

    Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.

  10. Sleeping dendrites: fiber-optic measurements of dendritic calcium activity in freely moving and sleeping animals

    Directory of Open Access Journals (Sweden)

    Julie Seibt

    2014-03-01

    Full Text Available Dendrites are the post-synaptic sites of most excitatory and inhibitory synapses in the brain, making them the main location of cortical information processing and synaptic plasticity. Although current hypotheses suggest a central role for sleep in proper cognitive function and brain plasticity, virtually nothing is known about changes in dendritic activity across the sleep-wake cycle and how waking experience modifies this activity. To start addressing these questions, we developed a method that allows long-term recordings of EEGs/EMG combined with in vivo cortical calcium (Ca2+ activity in freely moving and sleeping rats. We measured Ca2+ activity from populations of dendrites of layer (L 5 pyramidal neurons (n = 13 rats that we compared with Ca2+ activity from populations of neurons in L2/3 (n = 11 rats. L5 and L2/3 neurons were labelled using bolus injection of OGB1-AM or GCaMP6 (1. Ca2+ signals were detected using a fiber-optic system (cannula diameter = 400µm, transmitting the changes in fluorescence to a photodiode. Ca2+ fluctuations could then be correlated with ongoing changes in brain oscillatory activity during 5 major brain states: active wake [AW], quiet wake [QW], NREM, REM and NREM-REM transition (or intermediate state, [IS]. Our Ca2+ recordings show large transients in L5 dendrites and L2/3 neurons that oscillate predominantly at frequencies In summary, we show that this technique is successful in monitoring fluctuations in ongoing dendritic Ca2+ activity during natural brain states and allows, in principle, to combine behavioral measurement with imaging from various brain regions (e.g. deep structures in freely behaving animals. Using this method, we show that Ca2+ transients from populations of L2/3 neurons and L5 dendrites are deferentially regulated across the sleep/wake cycle, with dendritic activity being the highest during the IS sleep. Our correlation analysis suggests that specific sleep EEG activity during NREM and IS

  11. Organization of the sleep-related neural systems in the brain of the harbour porpoise (Phocoena phocoena).

    Science.gov (United States)

    Dell, Leigh-Anne; Patzke, Nina; Spocter, Muhammad A; Siegel, Jerome M; Manger, Paul R

    2016-07-01

    The present study provides the first systematic immunohistochemical neuroanatomical investigation of the systems involved in the control and regulation of sleep in an odontocete cetacean, the harbor porpoise (Phocoena phocoena). The odontocete cetaceans show an unusual form of mammalian sleep, with unihemispheric slow waves, suppressed REM sleep, and continuous bodily movement. All the neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals were present in the harbor porpoise, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity of nuclear organization relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements involved with these nuclei. Quantitative analysis of the cholinergic and noradrenergic nuclei of the pontine region revealed that in comparison with other mammals, the numbers of pontine cholinergic (126,776) and noradrenergic (122,878) neurons are markedly higher than in other large-brained bihemispheric sleeping mammals. The diminutive telencephalic commissures (anterior commissure, corpus callosum, and hippocampal commissure) along with an enlarged posterior commissure and supernumerary pontine cholinergic and noradrenergic neurons indicate that the control of unihemispheric slow-wave sleep is likely to be a function of interpontine competition, facilitated through the posterior commissure, in response to unilateral telencephalic input related to the drive for sleep. In addition, an expanded peripheral division of the dorsal raphe nuclear complex appears likely to play a role in the suppression of REM sleep in odontocete cetaceans. Thus, the current study provides several clues to the understanding of the neural control of the unusual sleep phenomenology present in odontocete cetaceans. J. Comp. Neurol. 524:1999-2017, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals

  12. Can Neural Activity Propagate by Endogenous Electrical Field?

    Science.gov (United States)

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic

  13. PHYSIOLOGIC PATTERNS OF SLEEP ON EEG, MASKING OF EPILEPTIFORM ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. Yu. Glukhova

    2013-01-01

    Full Text Available Physiologic patterns of sleep on EEG can sometimes be similar to epileptiform activity and even to the EEG pattern of epileptic seizures, but they have no connection to epilepsy and their incorrect interpretation may lead to overdiagnosis of epilepsy. These sleep patterns include vertex transients, K-complexes, hypnagogic hypersynchrony, 14 and 6 Hz positive bursts, wicket-potentials, etc. The main distinctive features of acute physiological phenomena of sleep unlike epileptiform activity are stereotyped, monomorphic morphology of waves, which frequently has rhythmic, arcuate pattern, often with change of lateralization, mainly dominated in the first stages of sleep (N1-N2, with their reduction in the deeper stages and transition to delta sleep (N3. The correct interpretation of physiological sharp-wave phenomena of sleep on EEG requires considerable training and experience of the physician. Our review includes a variety of physiological sleep patterns, which can mimic epileptiform activity on EEG, their criteria of diagnostic with demonstration of own illustrations of EEG.

  14. Pooling and correlated neural activity

    Directory of Open Access Journals (Sweden)

    Robert Rosenbaum

    2010-04-01

    Full Text Available Correlations between spike trains can strongly modulate neuronal activity and affect the ability of neurons to encode information. Neurons integrate inputs from thousands of afferents. Similarly, a number of experimental techniques are designed to record pooled cell activity. We review and generalize a number of previous results that show how correlations between cells in a population can be amplified and distorted in signals that reflect their collective activity. The structure of the underlying neuronal response can significantly impact correlations between such pooled signals. Therefore care needs to be taken when interpreting pooled recordings, or modeling networks of cells that receive inputs from large presynaptic populations. We also show that the frequently observed runaway synchrony in feedforward chains is primarily due to the pooling of correlated inputs.

  15. Chronotype influences activity circadian rhythm and sleep: differences in sleep quality between weekdays and weekend.

    Science.gov (United States)

    Vitale, Jacopo A; Roveda, Eliana; Montaruli, Angela; Galasso, Letizia; Weydahl, Andi; Caumo, Andrea; Carandente, Franca

    2015-04-01

    Several studies have shown the differences among chronotypes in the circadian rhythm of different physiological variables. Individuals show variation in their preference for the daily timing of activity; additionally, there is an association between chronotype and sleep duration/sleep complaints. Few studies have investigated sleep quality during the week days and weekends in relation to the circadian typology using self-assessment questionnaires or actigraphy. The purpose of this study was to use actigraphy to assess the relationship between the three chronotypes and the circadian rhythm of activity levels and to determine whether sleep parameters respond differently with respect to time (weekdays versus the weekend) in Morning-types (M-types), Neither-types (N-types) and Evening-types (E-types). The morningness-eveningness questionnaire (MEQ) was administered to 502 college students to determine their chronotypes. Fifty subjects (16 M-types, 15 N-types and 19 E-types) were recruited to undergo a 7-days monitoring period with an actigraph (Actiwacth® actometers, CNT, Cambridge, UK) to evaluate their sleep parameters and the circadian rhythm of their activity levels. To compare the amplitude and the acrophase among the three chronotypes, we used a one-way ANOVA followed by the Tukey-Kramer post-hoc test. To compare the Midline Estimating Statistic of Rhythm (MESOR) among the three chronotypes, we used a Kruskal-Wallis non-parametric test followed by pairwise comparisons that were performed using Dunn's procedure with a Bonferroni correction for multiple comparisons. The analysis of each sleep parameter was conducted using the mixed ANOVA procedure. The results showed that the chronotype was influenced by sex (χ(2) with p = 0.011) and the photoperiod at birth (χ(2) with p circadian rhythm of activity levels was influenced by the chronotype; second, the chronotype had a significant effect on sleep parameters: the E-types had a reduced sleep quality and

  16. Physical activity and sleep profiles in Finnish men and women.

    Science.gov (United States)

    Wennman, Heini; Kronholm, Erkki; Partonen, Timo; Tolvanen, Asko; Peltonen, Markku; Vasankari, Tommi; Borodulin, Katja

    2014-01-27

    Physical activity (PA) and sleep are related to cardiovascular diseases (CVD) and their risk factors. The interrelationship between these behaviors has been studied, but there remain questions regarding the association of different types of PA, such as occupational, commuting, and leisure time to sleep, including quality, duration and sufficiency. It is also unclear to what extent sleep affects peoples' PA levels and patterns. Our aim is to investigate the interrelationship between PA and sleep behaviors in the Finnish population, including employment status and gender. The study comprised population based data from the FINRISK 2012 Study. A stratified, random sample of 10,000 Finns, 25 to 74 years-old, were sent a questionnaire and an invitation to a health examination. The participation rate was 64% (n = 6,414). Latent class analysis was used to search for different underlying profiles of PA and sleep behavior in men and women, respectively. Models with one through five latent profiles were fitted to the data. Based on fit indicators, a four-class model for men and women, respectively, was decided to be the best fitted model. Four different profiles of PA and sleep were found in both men and women. The most common profile of men comprised 45% of the total participants, and in women, 47%. These profiles were distinguished by probabilities for high leisure time PA and sleep, subjectively rated as sufficient, as well as sleep duration of 7-7.9 hours. The least common profiles represented 5% (men) and 11% (women) of the population, and were characterized by probabilities for physical inactivity, short sleep, and evening type for women and morning type for men. There was also one profile in both genders characterized by likelihood for both high occupational PA and subjectively experienced insufficient sleep. The use of latent class analysis in investigating the interrelationship between PA and sleep is a novel perspective. The method provides information on the

  17. Characterization of physiological networks in sleep apnea patients using artificial neural networks for Granger causality computation

    Science.gov (United States)

    Cárdenas, Jhon; Orjuela-Cañón, Alvaro D.; Cerquera, Alexander; Ravelo, Antonio

    2017-11-01

    Different studies have used Transfer Entropy (TE) and Granger Causality (GC) computation to quantify interconnection between physiological systems. These methods have disadvantages in parametrization and availability in analytic formulas to evaluate the significance of the results. Other inconvenience is related with the assumptions in the distribution of the models generated from the data. In this document, the authors present a way to measure the causality that connect the Central Nervous System (CNS) and the Cardiac System (CS) in people diagnosed with obstructive sleep apnea syndrome (OSA) before and during treatment with continuous positive air pressure (CPAP). For this purpose, artificial neural networks were used to obtain models for GC computation, based on time series of normalized powers calculated from electrocardiography (EKG) and electroencephalography (EEG) signals recorded in polysomnography (PSG) studies.

  18. Relationship between sleep stages and nocturnal trapezius muscle activity.

    Science.gov (United States)

    Müller, Christian; Nicoletti, Corinne; Omlin, Sarah; Brink, Mark; Läubli, Thomas

    2015-06-01

    Former studies reported a relationship between increased nocturnal low level trapezius muscle activity and neck or shoulder pain but it has not been explored whether trapezius muscle relaxation is related to sleep stages. The goal of the present study was to investigate whether trapezius muscle activity is related to different sleep stages, as measured by polysomnography. Twenty one healthy subjects were measured on four consecutive nights in their homes, whereas the first night served as adaptation night. The measurements included full polysomnography (electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) and electrocardiography (ECG)), as well as surface EMG of the m. trapezius descendens of the dominant arm. Periods with detectable EMG activity of the trapezius muscle lasted on average 1.5% of the length of the nights and only in four nights it lasted longer than 5% of sleeping time. Neither rest time nor the length of periods with higher activity levels of the trapezius muscle did significantly differ between sleep stages. We found no evidence that nocturnal trapezius muscle activity is markedly moderated by the different sleep stages. Thus the results support that EMG measurements of trapezius muscle activity in healthy subjects can be carried out without concurrent polysomnographic recordings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sleep disorders and inflammatory disease activity: chicken or the egg?

    Science.gov (United States)

    Parekh, Parth J; Oldfield Iv, Edward C; Challapallisri, Vaishnavi; Ware, J Catsby; Johnson, David A

    2015-04-01

    Sleep dysfunction is a highly prevalent condition that has long been implicated in accelerating disease states characterized by having an inflammatory component such as systemic lupus erythematosus, HIV, and multiple sclerosis. Inflammatory bowel disease (IBD) is a chronic, debilitating disease that is characterized by waxing and waning symptoms, which are a direct result of increased circulating inflammatory cytokines. Recent studies have demonstrated sleep dysfunction and the disruption of the circadian rhythm to result in an upregulation of inflammatory cytokines. Not only does this pose a potential trigger for disease flares but also an increased risk of malignancy in this subset of patients. This begs to question whether or not there is a therapeutic role of sleep cycle and circadian rhythm optimization in the prevention of IBD flares. Further research is needed to clarify the role of sleep dysfunction and alterations of the circadian rhythm in modifying disease activity and also in reducing the risk of malignancy in patients suffering from IBD.

  20. Active reward processing during human sleep: insights from sleep-related eating disorder

    Directory of Open Access Journals (Sweden)

    Lampros ePerogamvros

    2012-11-01

    Full Text Available In this paper, we present two carefully documented cases of patients with sleep-related eating disorder (SRED, a parasomnia which is characterized by involuntary compulsive eating during the night and whose pathophysiology is not known. Using video-polysomnography and psychometric examination, we found that both patients present elevated novelty seeking and increased reward sensitivity on reward-related questionnaires. In light of new evidence on the mesolimbic dopaminergic implication in compulsive eating disorders, our findings suggest a role of an active reward system during sleep in the manifestation of SRED.

  1. Oscillatory brain activity in spontaneous and induced sleep stages in flies

    OpenAIRE

    Yap, Melvyn H. W.; Grabowska, Martyna J.; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C.; van Alphen, Bart; Shaw, Paul J.; van Swinderen, Bruno

    2017-01-01

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABAA ago...

  2. EPILEPTIC ENCEPHALOPATHY WITH CONTINUOUS SPIKES-WAVES ACTIVITY DURING SLEEP

    Directory of Open Access Journals (Sweden)

    E. D. Belousova

    2012-01-01

    Full Text Available The author represents the review and discussion of current scientific literature devoted to epileptic encephalopathy with continuous spikes-waves activity during sleep — the special form of partly reversible age-dependent epileptic encephalopathy, characterized by triad of symptoms: continuous prolonged epileptiform (spike-wave activity on EEG in sleep, epileptic seizures and cognitive disorders. The author describes the aspects of classification, pathogenesis and etiology, prevalence, clinical picture and diagnostics of this disorder, including the peculiar anomalies on EEG. The especial attention is given to approaches to the treatment of epileptic encephalopathy with continuous spikeswaves activity during sleep. Efficacy of valproates, corticosteroid hormones and antiepileptic drugs of other groups is considered. The author represents own experience of treatment this disorder with corticosteroids, scheme of therapy and assessment of efficacy.

  3. Vascular compliance limits during sleep deprivation and recovery sleep.

    Science.gov (United States)

    Phillips, Derrick J; Schei, Jennifer L; Rector, David M

    2013-10-01

    Our previous studies showed that evoked hemodynamic responses are smaller during wake compared to sleep; suggesting neural activity is associated with vascular expansion and decreased compliance. We explored whether prolonged activity during sleep deprivation may exacerbate vascular expansion and blunt hemodynamic responses. Evoked auditory responses were generated with periodic 65 dB speaker clicks over a 72-h period and measured with cortical electrodes. Evoked hemodynamic responses were measured simultaneously with optical techniques using three light-emitting diodes, and a photodiode. Animals were housed in separate 30×30×80 cm enclosures, tethered to a commutator system and maintained on a 12-h light/dark cycle. Food and water were available ad libitum. Seven adult female Sprague-Dawley rats. Following a 24-h baseline recording, sleep deprivation was initiated for 0 to 10 h by gentle handling, followed by a 24-h recovery sleep recording. Evoked electrical and hemodynamic responses were measured before, during, and after sleep deprivation. Following deprivation, evoked hemodynamic amplitudes were blunted. Steady-state oxyhemoglobin concentration increased during deprivation and remained high during the initial recovery period before returning to baseline levels after approximately 9-h. Sleep deprivation resulted in blood vessel expansion and decreased compliance while lower basal neural activity during recovery sleep may allow blood vessel compliance to recover. Chronic sleep restriction or sleep deprivation could push the vasculature to critical levels, limiting blood delivery, and leading to metabolic deficits with the potential for neural trauma.

  4. Why does serotonergic activity drastically decrease during REM sleep?

    Science.gov (United States)

    Sato, Kohji

    2013-10-01

    Here, I postulate two hypotheses that can explain the missing link between sleep and the serotonergic system in terms of spine homeostasis and memory consolidation. As dendritic spines contain many kinds of serotonin receptors, and the activation of serotonin receptors generally increases the number of spines in the cortex and hippocampus, I postulate that serotonin neurons are down-regulated during sleep to decrease spine number, which consequently maintains the total spine number at a constant level. Furthermore, since synaptic consolidation during REM sleep needs long-term potentiation (LTP), and serotonin is reported to inhibit LTP in the cortex, I postulate that serotonergic activity must drastically decrease during REM sleep to induce LTP and do memory consolidation. Until now, why serotonergic neurons show these dramatic changes in the sleep-wake cycle remains unexplained; however, making these hypotheses, I can confer physiological meanings on these dramatic changes of serotonergic neurons in terms of spine homeostasis and memory consolidation. Copyright © 2013. Published by Elsevier Ltd.

  5. Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network.

    Science.gov (United States)

    Urtnasan, Erdenebayar; Park, Jong-Uk; Joo, Eun-Yeon; Lee, Kyoung-Joung

    2018-04-23

    In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F 1 -score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.

  6. Differential effects of physical activity and sleep duration on cognitive function in young adults

    Directory of Open Access Journals (Sweden)

    Kazuko Kato

    2018-04-01

    Full Text Available Purpose: Although exercise and sleep duration habits are associated with cognitive function, their beneficial effects on cognitive function remain unclear. We aimed to examine the effect of sleep duration and daily physical activity on cognitive function, elucidating the neural mechanisms using near-infrared spectroscopy (NIRS. Methods: A total of 23 healthy young adults (age 22.0 ± 2.2 years participated in this study. Exercise amount was assessed using a uniaxial accelerometer. We evaluated total sleep time (TST and sleep efficiency by actigraphy. Cognitive function was tested using the N-back task, the Wisconsin Card Sorting Test (WCST, and the Continuous Performance Test–Identical Pairs (CPT-IP, and the cortical oxygenated hemoglobin levels during a word fluency task were measured with NIRS. Results: Exercise amount was significantly correlated with reaction time on 0- and 1-back tasks (r = −0.602, p = 0.002; r = −0.446, p = 0.033, respectively, whereas TST was significantly correlated with % corrects on the 2-back task (r = 0.486, p = 0.019. Multiple regression analysis, including exercise amount, TST, and sleep efficiency, revealed that exercise amount was the most significant factor for reaction time on 0- and 1-back tasks (β = −0.634, p = 0.002; β = −0.454, p = 0.031, respectively, and TST was the most significant factor for % corrects on the 2-back task (β = 0.542, p = 0.014. The parameter measured by WCST and CPT-IP was not significantly correlated with TST or exercise amount. Exercise amount, but not TST, was significantly correlated with the mean area under the NIRS curve in the prefrontal area (r = 0.492, p = 0.017. Conclusion: Exercise amount and TST had differential effects on working memory and cortical activation in the prefrontal area. Daily physical activity and appropriate sleep duration may play an important role in working memory. Keywords: Cortical

  7. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi B

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown......-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....... the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. METHODS: 10 iRBD patients, 10 PD patients with PD, 10 PD patients...

  8. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behaviour Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown...... in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....... the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. METHODS: 10 iRBD patients, 10 PD patients with PD, 10 PD patients...

  9. [Physical activity, sedentary leisure, short sleeping and childhood overweight].

    Science.gov (United States)

    Amigo Vázquez, Isaac; Busto Zapico, Raquel; Herrero Díez, Javier; Fernández Rodríguez, Concepción

    2008-11-01

    In this study, using the path analysis, the relation between physical activity, non-regulated activity, sedentary leisure, hours of sleeping, and the body mass index (BMI) was analyzed. The sample was made up of 103 students, 59 girls and 44 boys, aged between 9 and 10 1/2 years. An individual interview was performed in which the children were asked about the TV programs they watched each day of the week; the time they played with the console and the computer; the time dedicated to sports, games and other activities. The results showed that sedentary leisure (number of hours of TV, computer and console) maintains a significant and inverse relation with the hours of sleeping, non-regulated activity (games and others activities), and physical sport activity. The difference between the results of this study and the previous one is discussed, taking into account the recruitment procedure of the participants.

  10. Organization of the sleep-related neural systems in the brain of the river hippopotamus (Hippopotamus amphibius): A most unusual cetartiodactyl species.

    Science.gov (United States)

    Dell, Leigh-Anne; Patzke, Nina; Spocter, Muhammad A; Bertelsen, Mads F; Siegel, Jerome M; Manger, Paul R

    2016-07-01

    This study provides the first systematic analysis of the nuclear organization of the neural systems related to sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the river hippopotamus, one of the closest extant terrestrial relatives of the cetaceans. All nuclei involved in sleep regulation and control found in other mammals, including cetaceans, were present in the river hippopotamus, with no specific nuclei being absent, but novel features of the cholinergic system, including novel nuclei, were present. This qualitative similarity relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements of these nuclei. Quantitative analysis reveals that the numbers of pontine cholinergic (259,578) and noradrenergic (127,752) neurons, and hypothalamic orexinergic neurons (68,398) are markedly higher than in other large-brained mammals. These features, along with novel cholinergic nuclei in the intralaminar nuclei of the dorsal thalamus and the ventral tegmental area of the midbrain, as well as a major expansion of the hypothalamic cholinergic nuclei and a large laterodorsal tegmental nucleus of the pons that has both parvocellular and magnocellular cholinergic neurons, indicates an unusual sleep phenomenology for the hippopotamus. Our observations indicate that the hippopotamus is likely to be a bihemispheric sleeper that expresses REM sleep. The novel features of the cholinergic system suggest the presence of an undescribed sleep state in the hippopotamus, as well as the possibility that this animal could, more rapidly than other mammals, switch cortical electroencephalographic activity from one state to another. J. Comp. Neurol. 524:2036-2058, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Sleep, 24-hour activity rhythms, and brain structure : A population-based study

    NARCIS (Netherlands)

    L.A. Zuurbier (Lisette)

    2016-01-01

    markdownabstractIn this thesis, Chapter 2 focuses on sleep, 24-hour activity rhythms and health. Chapter 2.1 describes the influence of demographics, lifestyle and sleep on 24-hour activity rhythms. In Chapter 2.2 sleep and 24-hour activity rhythms are used to predict mortality. This chapter is

  12. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  13. Active voltammetric microsensors with neural signal processing

    Science.gov (United States)

    Vogt, Michael C.; Skubal, Laura R.

    1999-02-01

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical 'signatures' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration; the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  14. Telemetric Study of Sleep Architecture and Sleep Homeostasis in the Day-Active Tree Shrew Tupaia belangeri

    NARCIS (Netherlands)

    Coolen, Alex; Hoffmann, Kerstin; Barf, R. Paulien; Fuchs, Eberhard; Meerlo, Peter

    2012-01-01

    Study Objectives: In this study the authors characterized sleep architecture and sleep homeostasis in the tree shrew, Tupaia belangeri, a small, omnivorous, day-active mammal that is closely related to primates. Design: Adult tree shrews were individually housed under a 12-hr light/12-hr dark cycle

  15. Quantification of muscle activity during sleep for patients with neurodegenerative diseases

    DEFF Research Database (Denmark)

    Hanif, Umaer; Trap, Lotte; Jennum, Poul

    2015-01-01

    Idiopathic REM sleep behavior disorder (iRBD) is a very strong predictor for later development of Parkinson's disease (PD), and is characterized by REM sleep without atonia (RSWA), resulting in increased muscle activity during REM sleep. Abundant studies have shown the loss of atonia during REM...... sleep, but our aim was to investigate whether iRBD and PD patients have increased muscle activity in both REM and NREM sleep compared to healthy controls. This was achieved by developing a semi-automatic algorithm for quantification of mean muscle activity per second during all sleep stages...... to the different sleep stages and muscle activity beyond the threshold was counted. The results were evaluated statistically using the two-sided Mann-Whitney U-test. The results suggested that iRBD patients also exhibit distinctive muscle activity characteristics in NREM sleep, however not as evident as in REM...

  16. An Activity for Demonstrating the Concept of a Neural Circuit

    Science.gov (United States)

    Kreiner, David S.

    2012-01-01

    College students in two sections of a general psychology course participated in a demonstration of a simple neural circuit. The activity was based on a neural circuit that Jeffress proposed for localizing sounds. Students in one section responded to a questionnaire prior to participating in the activity, while students in the other section…

  17. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity.

    Science.gov (United States)

    Thomasson, Julien; Canini, Frédéric; Poly-Thomasson, Betty; Trousselard, Marion; Granon, Sylvie; Chauveau, Frédéric

    2017-12-01

    Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Identifying Emotions on the Basis of Neural Activation.

    Science.gov (United States)

    Kassam, Karim S; Markey, Amanda R; Cherkassky, Vladimir L; Loewenstein, George; Just, Marcel Adam

    2013-01-01

    We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  19. Identifying Emotions on the Basis of Neural Activation.

    Directory of Open Access Journals (Sweden)

    Karim S Kassam

    Full Text Available We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1 neural activation of the same individual in other trials, 2 neural activation of other individuals who experienced similar trials, and 3 neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  20. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Xin-Hong Xu

    Full Text Available GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1 constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  1. The effect of the neural activity on topological properties of growing neural networks.

    Science.gov (United States)

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  2. Sleep pattern and locomotor activity are impaired by doxorubicin in non-tumor-bearing rats.

    Science.gov (United States)

    Lira, Fabio Santos; Esteves, Andrea Maculano; Pimentel, Gustavo Duarte; Rosa, José Cesar; Frank, Miriam Kannebley; Mariano, Melise Oliveira; Budni, Josiane; Quevedo, João; Santos, Ronaldo Vagner Dos; de Mello, Marco Túlio

    2016-01-01

    We sought explore the effects of doxorubicin on sleep patterns and locomotor activity. To investigate these effects, two groups were formed: a control group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control or DOXO groups. The sleep patterns were examined by polysomnographic recording and locomotor activity was evaluated in an open-field test. In the light period, the total sleep time and slow wave sleep were decreased, while the wake after sleep onset and arousal were increased in the DOXO group compared with the control group (plocomotor activity.

  3. Nocturnal motor activity in fibromyalgia patients with poor sleep quality.

    Science.gov (United States)

    Hyyppä, M T; Kronholm, E

    1995-01-01

    Nocturnal motor activity was examined in long-term rehabilitation patients complaining of poor sleep and having fibromyalgia syndrome (N = 24) or other musculoskeletal disorders (N = 60) and compared with that in 91 healthy controls drawn from a random community sample. Self-reports on sleep complaints and habits were collected. The frequency of nocturnal body movements, the "apnoea" index and ratio of "quiet sleep" to total time in bed were measured using the Static Charge Sensitive Bed (SCSB) (BioMatt). As a group, patients with fibromyalgia syndrome did not differ from patients with other musculoskeletal disorders or from healthy controls in their nocturnal motor activity. The "apnoea" index was a little higher in the fibromyalgia group than in the healthy control group but did not differ from that of the group of other musculoskeletal patients. Further multivariate analyses adjusted for age, BMI, medication and "apnoea" index did not support the assumption that an increased nocturnal motor activity characterizes patients with fibromyalgia syndrome.

  4. Leg Movement Activity During Sleep in Adults With Attention-Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Corrado Garbazza

    2018-05-01

    Full Text Available Objectives: To conduct a first detailed analysis of the pattern of leg movement (LM activity during sleep in adult subjects with Attention-Deficit/Hyperactivity Disorder (ADHD compared to healthy controls.Methods: Fifteen ADHD patients and 18 control subjects underwent an in-lab polysomnographic sleep study. The periodic character of LMs was evaluated with established markers of “periodicity,” i.e., the periodicity index, intermovement intervals, and time distribution of LM during sleep, in addition to standard parameters such as the periodic leg movement during sleep index (PLMSI and the periodic leg movement during sleep arousal index (PLMSAI. Subjective sleep and psychiatric symptoms were assessed using several, self-administered, screening questionnaires.Results: Objective sleep parameters from the baseline night did not significantly differ between ADHD and control subjects, except for a longer sleep latency (SL, a longer duration of the periodic leg movements during sleep (PLMS in REM sleep and a higher PLMSI also in REM sleep. Data from the sleep questionnaires showed perception of poor sleep quality in ADHD patients.Conclusions: Leg movements during sleep in ADHD adults are not significantly more frequent than in healthy controls and the nocturnal motor events do not show an increased periodicity in these patients. The non-periodic character of LMs in ADHD has already been shown in children and seems to differentiate ADHD from other pathophysiological related conditions like restless legs syndrome (RLS or periodic limb movement disorder (PLMD. The reduced subjective sleep quality reported by ADHD adults contrasted with the normal objective polysomnographic parameters, which could suggest a sleep-state misperception in these individuals or more subtle sleep abnormalities not picked up by the traditional sleep staging.

  5. Neural activity associated with self-reflection.

    Science.gov (United States)

    Herwig, Uwe; Kaffenberger, Tina; Schell, Caroline; Jäncke, Lutz; Brühl, Annette B

    2012-05-24

    Self-referential cognitions are important for self-monitoring and self-regulation. Previous studies have addressed the neural correlates of self-referential processes in response to or related to external stimuli. We here investigated brain activity associated with a short, exclusively mental process of self-reflection in the absence of external stimuli or behavioural requirements. Healthy subjects reflected either on themselves, a personally known or an unknown person during functional magnetic resonance imaging (fMRI). The reflection period was initialized by a cue and followed by photographs of the respective persons (perception of pictures of oneself or the other person). Self-reflection, compared with reflecting on the other persons and to a major part also compared with perceiving photographs of one-self, was associated with more prominent dorsomedial and lateral prefrontal, insular, anterior and posterior cingulate activations. Whereas some of these areas showed activity in the "other"-conditions as well, self-selective characteristics were revealed in right dorsolateral prefrontal and posterior cingulate cortex for self-reflection; in anterior cingulate cortex for self-perception and in the left inferior parietal lobe for self-reflection and -perception. Altogether, cingulate, medial and lateral prefrontal, insular and inferior parietal regions show relevance for self-related cognitions, with in part self-specificity in terms of comparison with the known-, unknown- and perception-conditions. Notably, the results are obtained here without behavioural response supporting the reliability of this methodological approach of applying a solely mental intervention. We suggest considering the reported structures when investigating psychopathologically affected self-related processing.

  6. Activity patterns of cultured neural networks on micro electrode arrays

    NARCIS (Netherlands)

    Rutten, Wim; van Pelt, J.

    2001-01-01

    A hybrid neuro-electronic interface is a cell-cultured micro electrode array, acting as a neural information transducer for stimulation and/or recording of neural activity in the brain or the spinal cord (ventral motor region or dorsal sensory region). It consists of an array of micro electrodes on

  7. Consistently high sports/exercise activity is associated with better sleep quality, continuity and depth in midlife women: the SWAN sleep study.

    Science.gov (United States)

    Kline, Christopher E; Irish, Leah A; Krafty, Robert T; Sternfeld, Barbara; Kravitz, Howard M; Buysse, Daniel J; Bromberger, Joyce T; Dugan, Sheila A; Hall, Martica H

    2013-09-01

    To examine relationships between different physical activity (PA) domains and sleep, and the influence of consistent PA on sleep, in midlife women. Cross-sectional. Community-based. 339 women in the Study of Women's Health Across the Nation Sleep Study (52.1 ± 2.1 y). None. Sleep was examined using questionnaires, diaries and in-home polysomnography (PSG). PA was assessed in three domains (Active Living, Household/Caregiving, Sports/Exercise) using the Kaiser Physical Activity Survey (KPAS) up to 4 times over 6 years preceding the sleep assessments. The association between recent PA and sleep was evaluated using KPAS scores immediately preceding the sleep assessments. The association between the historical PA pattern and sleep was examined by categorizing PA in each KPAS domain according to its pattern over the 6 years preceding sleep assessments (consistently low, inconsistent/consistently moderate, or consistently high). Greater recent Sports/Exercise activity was associated with better sleep quality (diary "restedness" [P sleep continuity (diary sleep efficiency [SE; P = 0.02]) and depth (higher NREM delta electroencephalographic [EEG] power [P = 0.04], lower NREM beta EEG power [P Sports/Exercise activity was also associated with better Pittsburgh Sleep Quality Index scores (P = 0.02) and higher PSG-assessed SE (P sleep and Active Living or Household/Caregiving activity (either recent or historical pattern) were noted. Consistently high levels of recreational physical activity, but not lifestyle- or household-related activity, are associated with better sleep in midlife women. Increasing recreational physical activity early in midlife may protect against sleep disturbance in this population.

  8. Oscillatory brain activity in spontaneous and induced sleep stages in flies.

    Science.gov (United States)

    Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C; van Alphen, Bart; Shaw, Paul J; van Swinderen, Bruno

    2017-11-28

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABA A agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.

  9. Large-scale multielectrode recording and stimulation of neural activity

    International Nuclear Information System (INIS)

    Sher, A.; Chichilnisky, E.J.; Dabrowski, W.; Grillo, A.A.; Grivich, M.; Gunning, D.; Hottowy, P.; Kachiguine, S.; Litke, A.M.; Mathieson, K.; Petrusca, D.

    2007-01-01

    Large circuits of neurons are employed by the brain to encode and process information. How this encoding and processing is carried out is one of the central questions in neuroscience. Since individual neurons communicate with each other through electrical signals (action potentials), the recording of neural activity with arrays of extracellular electrodes is uniquely suited for the investigation of this question. Such recordings provide the combination of the best spatial (individual neurons) and temporal (individual action-potentials) resolutions compared to other large-scale imaging methods. Electrical stimulation of neural activity in turn has two very important applications: it enhances our understanding of neural circuits by allowing active interactions with them, and it is a basis for a large variety of neural prosthetic devices. Until recently, the state-of-the-art in neural activity recording systems consisted of several dozen electrodes with inter-electrode spacing ranging from tens to hundreds of microns. Using silicon microstrip detector expertise acquired in the field of high-energy physics, we created a unique neural activity readout and stimulation framework that consists of high-density electrode arrays, multi-channel custom-designed integrated circuits, a data acquisition system, and data-processing software. Using this framework we developed a number of neural readout and stimulation systems: (1) a 512-electrode system for recording the simultaneous activity of as many as hundreds of neurons, (2) a 61-electrode system for electrical stimulation and readout of neural activity in retinas and brain-tissue slices, and (3) a system with telemetry capabilities for recording neural activity in the intact brain of awake, naturally behaving animals. We will report on these systems, their various applications to the field of neurobiology, and novel scientific results obtained with some of them. We will also outline future directions

  10. Association between patterns of jaw motor activity during sleep and clinical signs and symptoms of sleep bruxism.

    Science.gov (United States)

    Yoshida, Yuya; Suganuma, Takeshi; Takaba, Masayuki; Ono, Yasuhiro; Abe, Yuka; Yoshizawa, Shuichiro; Sakai, Takuro; Yoshizawa, Ayako; Nakamura, Hirotaka; Kawana, Fusae; Baba, Kazuyoshi

    2017-08-01

    The aim of this study was to investigate the association between patterns of jaw motor activity during sleep and clinical signs and symptoms of sleep bruxism. A total of 35 university students and staff members participated in this study after providing informed consent. All participants were divided into either a sleep bruxism group (n = 21) or a control group (n = 14), based on the following clinical diagnostic criteria: (1) reports of tooth-grinding sounds for at least two nights a week during the preceding 6 months by their sleep partner; (2) presence of tooth attrition with exposed dentin; (3) reports of morning masticatory muscle fatigue or tenderness; and (4) presence of masseter muscle hypertrophy. Video-polysomnography was performed in the sleep laboratory for two nights. Sleep bruxism episodes were measured using masseter electromyography, visually inspected and then categorized into phasic or tonic episodes. Phasic episodes were categorized further into episodes with or without grinding sounds as evaluated by audio signals. Sleep bruxism subjects with reported grinding sounds had a significantly higher total number of phasic episodes with grinding sounds than subjects without reported grinding sounds or controls (Kruskal-Wallis/Steel-Dwass tests; P bruxism subjects with tooth attrition exhibited significantly longer phasic burst durations than those without or controls (Kruskal-Wallis/Steel-Dwass tests; P bruxism subjects with morning masticatory muscle fatigue or tenderness exhibited significantly longer tonic burst durations than those without or controls (Kruskal-Wallis/Steel-Dwass tests; P bruxism represents different aspects of jaw motor activity during sleep. © 2016 European Sleep Research Society.

  11. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  12. Formation and suppression of acoustic memories during human sleep.

    Science.gov (United States)

    Andrillon, Thomas; Pressnitzer, Daniel; Léger, Damien; Kouider, Sid

    2017-08-08

    Sleep and memory are deeply related, but the nature of the neuroplastic processes induced by sleep remains unclear. Here, we report that memory traces can be both formed or suppressed during sleep, depending on sleep phase. We played samples of acoustic noise to sleeping human listeners. Repeated exposure to a novel noise during Rapid Eye Movements (REM) or light non-REM (NREM) sleep leads to improvements in behavioral performance upon awakening. Strikingly, the same exposure during deep NREM sleep leads to impaired performance upon awakening. Electroencephalographic markers of learning extracted during sleep confirm a dissociation between sleep facilitating memory formation (light NREM and REM sleep) and sleep suppressing learning (deep NREM sleep). We can trace these neural changes back to transient sleep events, such as spindles for memory facilitation and slow waves for suppression. Thus, highly selective memory processes are active during human sleep, with intertwined episodes of facilitative and suppressive plasticity.Though memory and sleep are related, it is still unclear whether new memories can be formed during sleep. Here, authors show that people could learn new sounds during REM or light non-REM sleep, but that learning was suppressed when sounds were played during deep NREM sleep.

  13. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  14. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition

    Directory of Open Access Journals (Sweden)

    Siamak eSorooshyari

    2015-02-01

    Full Text Available Identifying the neuronal circuits and dynamics of sleep-to-wake transition is essential to understanding brain regulation of behavioral states, including sleep-wake cycles, arousal, and hyperarousal. Recent work by different laboratories has used optogenetics to determine the role of individual neuromodulators in state transitions. The optogenetically-driven data does not yet provide a multi-dimensional schematic of the mechanisms underlying changes in vigilance states. This work presents a modeling framework to interpret, assist, and drive research on the sleep-regulatory network. We identify feedback, redundancy, and gating hierarchy as three fundamental aspects of this model. The presented model is expected to expand as additional data on the contribution of each transmitter to a vigilance state becomes available. Incorporation of conductance-based models of neuronal ensembles into this model and existing models of cortical excitability will provide more comprehensive insight into sleep dynamics as well as sleep and arousal-related disorders.

  15. Association between Sleep Disturbances and Leisure Activities in the Elderly: A Comparison between Men and Women.

    Science.gov (United States)

    Hellström, Amanda; Hellström, Patrik; Willman, Ania; Fagerström, Cecilia

    2014-01-01

    It has been suggested that physical or social activity is associated with fewer sleep disturbances among elderly people. Women report more sleep disturbances than men, which could indicate a variation in activity patterns between the genders. The aim of this study was to investigate associations between sleep disturbances and leisure activities in men and women (n = 945) aged ≥60 years in a Swedish population. Sleep disturbances were measured using eight dichotomous questions and seventeen variables, covering a wide range of leisure activities. Few leisure activities were found to be associated with sleep disturbances and their importance decreased when the models were adjusted for confounders and gender interactions. After clustering the leisure activities and investigating individual activities, sociointellectual activities were shown to be significant for sleep. However, following adjustment for confounders and gender interactions, home maintenance was the only activity significant for sleep. Being a female increased the effect of home maintenance. Besides those leisure activities, poor/fair self-rated health (OR 7.50, CI: 4.27-11.81) and being female (OR 4.86, CI: 2.75-8.61) were found to have the highest association with poor sleep. Leisure activities pursued by elderly people should focus on activities of a sociointellectual nature, especially among women, to promote sleep.

  16. Association between Sleep Disturbances and Leisure Activities in the Elderly: A Comparison between Men and Women

    Directory of Open Access Journals (Sweden)

    Amanda Hellström

    2014-01-01

    Full Text Available It has been suggested that physical or social activity is associated with fewer sleep disturbances among elderly people. Women report more sleep disturbances than men, which could indicate a variation in activity patterns between the genders. The aim of this study was to investigate associations between sleep disturbances and leisure activities in men and women (n = 945 aged ≥60 years in a Swedish population. Sleep disturbances were measured using eight dichotomous questions and seventeen variables, covering a wide range of leisure activities. Few leisure activities were found to be associated with sleep disturbances and their importance decreased when the models were adjusted for confounders and gender interactions. After clustering the leisure activities and investigating individual activities, sociointellectual activities were shown to be significant for sleep. However, following adjustment for confounders and gender interactions, home maintenance was the only activity significant for sleep. Being a female increased the effect of home maintenance. Besides those leisure activities, poor/fair self-rated health (OR 7.50, CI: 4.27–11.81 and being female (OR 4.86, CI: 2.75–8.61 were found to have the highest association with poor sleep. Leisure activities pursued by elderly people should focus on activities of a sociointellectual nature, especially among women, to promote sleep.

  17. 24 Hours of Sleep, Sedentary Behavior, and Physical Activity with Nine Wearable Devices

    OpenAIRE

    Rosenberger, Mary E.; Buman, Matthew P.; Haskell, William L.; McConnell, Michael V.; Carstensen, Laura L.

    2016-01-01

    Getting enough sleep, exercising and limiting sedentary activities can greatly contribute to disease prevention and overall health and longevity. Measuring the full 24-hour activity cycle - sleep, sedentary behavior (SED), light intensity physical activity (LPA) and moderate-to-vigorous physical activity (MVPA) - may now be feasible using small wearable devices.

  18. Age-related influences of prior sleep on brain activation during verbal encoding

    Directory of Open Access Journals (Sweden)

    Michelle B Jonelis

    2012-04-01

    Full Text Available Disrupted sleep is more common in older adults (OA than younger adults (YA, often co-morbid with other conditions. How these sleep disturbances affect cognitive performance is an area of active study. We examined whether brain activation during verbal encoding correlates with sleep quantity and quality the night before testing in a group of healthy OA and YA. Twenty-seven OA (ages 59-82 and twenty-seven YA (ages 19-36 underwent one night of standard polysomnography. Twelve hours post-awakening, subjects performed a verbal encoding task while undergoing functional MRI. Analyses examined the group (OA vs. YA by prior sleep quantity (Total Sleep Time (TST or quality (Sleep Efficiency (SE interaction on cerebral activation, controlling for performance. Longer TST promoted higher levels of activation in the bilateral anterior parahippocampi in OA and lower activation levels in the left anterior parahippocampus in YA. Greater SE promoted higher activation levels in the left posterior parahippocampus and right inferior frontal gyrus in YA, but not in OA. The roles of these brain regions in verbal encoding suggest, in OA, longer sleep duration may facilitate functional compensation during cognitive challenges. By contrast, in YA, shorter sleep duration may necessitate functional compensation to maintain cognitive performance, similar to what is seen following acute sleep deprivation. Additionally, in YA, better sleep quality may improve semantic retrieval processes, thereby aiding encoding.

  19. Neural Activity Reveals Preferences Without Choices

    Science.gov (United States)

    Smith, Alec; Bernheim, B. Douglas; Camerer, Colin

    2014-01-01

    We investigate the feasibility of inferring the choices people would make (if given the opportunity) based on their neural responses to the pertinent prospects when they are not engaged in actual decision making. The ability to make such inferences is of potential value when choice data are unavailable, or limited in ways that render standard methods of estimating choice mappings problematic. We formulate prediction models relating choices to “non-choice” neural responses and use them to predict out-of-sample choices for new items and for new groups of individuals. The predictions are sufficiently accurate to establish the feasibility of our approach. PMID:25729468

  20. Repetitive hypoxia rapidly depresses cardio-respiratory responses during active sleep but not quiet sleep in the newborn lamb

    Science.gov (United States)

    Johnston, Renea V; Grant, Daniel A; Wilkinson, Malcolm H; Walker, Adrian M

    1999-01-01

    Arousal from sleep is an important protective response to hypoxia that becomes rapidly depressed in active sleep (AS) when hypoxia is repeated. This study questioned whether there might also be selective depression of cardio-respiratory responses to hypoxia during AS. Nine newborn lambs (7-22 days of age) were studied over three successive nights. The first and third nights were baseline studies (inspired oxygen fraction, Fi,O2= 0.21). During the second night, during every epoch of sleep, lambs were exposed to 60 s episodes of isocapnic hypoxia (Fi,O2= 0.10). During quiet sleep (QS), the probability of arousal in hypoxia exceeded the probability of spontaneous arousal (P ventilatory and blood pressure responses in AS, but not in QS. Selective depression of responses during AS may render the newborn particularly vulnerable to hypoxia in this state. PMID:10457072

  1. Neural mechanisms of vocal imitation: The role of sleep replay in shaping mirror neurons.

    Science.gov (United States)

    Giret, Nicolas; Edeline, Jean-Marc; Del Negro, Catherine

    2017-06-01

    Learning by imitation involves not only perceiving another individual's action to copy it, but also the formation of a memory trace in order to gradually establish a correspondence between the sensory and motor codes, which represent this action through sensorimotor experience. Memory and sensorimotor processes are closely intertwined. Mirror neurons, which fire both when the same action is performed or perceived, have received considerable attention in the context of imitation. An influential view of memory processes considers that the consolidation of newly acquired information or skills involves an active offline reprocessing of memories during sleep within the neuronal networks that were initially used for encoding. Here, we review the recent advances in the field of mirror neurons and offline processes in the songbird. We further propose a theoretical framework that could establish the neurobiological foundations of sensorimotor learning by imitation. We propose that the reactivation of neuronal assemblies during offline periods contributes to the integration of sensory feedback information and the establishment of sensorimotor mirroring activity at the neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Workplace bullying, sleep problems and leisure-time physical activity: a prospective cohort study.

    Science.gov (United States)

    Hansen, Åse Marie; Gullander, Maria; Hogh, Annie; Persson, Roger; Kolstad, Henrik A; Willert, Morten Vejs; Bonde, Jens Peter; Kaerlev, Linda; Rugulies, Reiner; Grynderup, Matias Brødsgaard

    2016-01-01

    Workplace bullying is a potent stressor that may increase sleep problems. Since physical fitness improves resilience to stress, it seems plausible that recreational physical activities may moderate the association between bullying and sleep. The study aimed to examine prospectively whether (i) bullying increases the risk of sleep problems, and (ii) the association between bullying and sleep problems is moderated by leisure-time physical activity (LTPA). The study sample comprised a cohort of public and private sector employees, who were enrolled into the Work Bullying and Harassment (WBH) cohort (N=3278) or the Psychosocial Risk Factors for Stress and Mental Disease (PRISME) cohort (N=4455). We measured workplace bullying using one question that was preceded by a definition of bullying. We used the Karolinska sleep questionnaire to assess sleep problems. The number of hours per week spent on LTPA estimated the degree of physical activity. Workplace bullying at baseline (T1) was associated with awakening problems and lack of restful sleep at follow-up (T2) but not with overall sleep problems and disturbed sleep. T1-LTPA did not moderate the association between T1-workplace bullying and T2-sleep problems. We found support that workplace bullying is related to development of T2-sleep problems, but this association seems not to be modified by LTPA.

  3. Interactions between sleeping position and feeding on cardiorespiratory activity in preterm infants.

    Science.gov (United States)

    Fifer, William P; Myers, Michael M; Sahni, Rakesh; Ohira-Kist, Kiyoko; Kashyap, Sudha; Stark, Raymond I; Schulze, Karl F

    2005-11-01

    Infants sleeping in the prone position are at greater risk for sudden infant death syndrome (SIDS). Sleep position-dependent changes in cardiorespiratory activity may contribute to this increased risk. Cardiorespiratory activity is also affected by feeding. Twenty prematurely-born infants were studied at 31-36 weeks postconceptional age while sleeping in the prone and supine positions. Heart rate, respiratory rate, and patterns of variability were recorded during interfeed intervals, and effects of position and time after feeding were analyzed by repeated measures analyses of variance. There were significant effects of both sleeping position and time after feeding. Heart rate is higher and heart period variability is lower in the prone position, and the effects of sleeping position on cardiac functioning are more pronounced during the middle of the intrafeed interval. In preterm infants, autonomic responses to nutrient processing modulate the cardiorespiratory effects of sleeping position. Prone sleeping risk may vary with time after feeding. Copyright 2005 Wiley Periodicals, Inc.

  4. Role of basal ganglia in sleep-wake regulation: neural circuitry and clinical significance

    Directory of Open Access Journals (Sweden)

    Ramalingam Vetrivelan

    2010-11-01

    Full Text Available Researchers over the last decade have made substantial progress towards understanding the roles of dopamine and the basal ganglia in the control of sleep-wake behavior. In this review, we outline recent advancements regarding dopaminergic modulation of sleep through the basal ganglia (BG and extra-BG sites. Our main hypothesis is that dopamine promotes sleep by its action on the D2 receptors in the BG and promotes wakefulness by its action on D1 and D2 receptors in the extra-BG sites. This hypothesis implicates dopamine depletion in the BG (such as in Parkinson’s disease in causing frequent nighttime arousal and overall insomnia. Furthermore, the arousal effects of psychostimulants (methamphetamine, cocaine and modafinil may be linked to the ventral periaquductal grey (vPAG dopaminergic circuitry targeting the extra-BG sleep-wake network.

  5. Analysis of EEG activity during sleep - brain hemisphere symmetry of two classes of sleep spindles

    Science.gov (United States)

    Smolen, Magdalena M.

    2009-01-01

    This paper presents automatic analysis of some selected human electroencephalographic patterns during deep sleep using the Matching Pursuit (MP) algorithm. The periodicity of deep sleep EEG patterns was observed by calculating autocorrelation functions of their percentage contributions. The study confirmed the increasing trend of amplitude-weighted average frequency of sleep spindles from frontal to posterior derivations. The dominant frequencies from the left and the right brain hemisphere were strongly correlated.

  6. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging.

    Science.gov (United States)

    Carroll, Judith E; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C; Yokomizo, Megumi; Seeman, Teresa; Irwin, Michael R

    2015-02-01

    Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Community-dwelling adults (n = 70) who were categorized as younger (25-39 y old, n = 21) and older (60-84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00-07:00), and recovery. Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. © 2015 Associated Professional Sleep Societies, LLC.

  7. Impact of Sleep and Its Disturbances on Hypothalamo-Pituitary-Adrenal Axis Activity

    Directory of Open Access Journals (Sweden)

    Marcella Balbo

    2010-01-01

    Full Text Available The daily rhythm of cortisol secretion is relatively stable and primarily under the influence of the circadian clock. Nevertheless, several other factors affect hypothalamo-pituitary-adrenal (HPA axis activity. Sleep has modest but clearly detectable modulatory effects on HPA axis activity. Sleep onset exerts an inhibitory effect on cortisol secretion while awakenings and sleep offset are accompanied by cortisol stimulation. During waking, an association between cortisol secretory bursts and indices of central arousal has also been detected. Abrupt shifts of the sleep period induce a profound disruption in the daily cortisol rhythm, while sleep deprivation and/or reduced sleep quality seem to result in a modest but functionally important activation of the axis. HPA hyperactivity is clearly associated with metabolic, cognitive and psychiatric disorders and could be involved in the well-documented associations between sleep disturbances and the risk of obesity, diabetes and cognitive dysfunction. Several clinical syndromes, such as insomnia, depression, Cushing's syndrome, sleep disordered breathing (SDB display HPA hyperactivity, disturbed sleep, psychiatric and metabolic impairments. Further research to delineate the functional links between sleep and HPA axis activity is needed to fully understand the pathophysiology of these syndromes and to develop adequate strategies of prevention and treatment.

  8. A Simple Quantum Neural Net with a Periodic Activation Function

    OpenAIRE

    Daskin, Ammar

    2018-01-01

    In this paper, we propose a simple neural net that requires only $O(nlog_2k)$ number of qubits and $O(nk)$ quantum gates: Here, $n$ is the number of input parameters, and $k$ is the number of weights applied to these parameters in the proposed neural net. We describe the network in terms of a quantum circuit, and then draw its equivalent classical neural net which involves $O(k^n)$ nodes in the hidden layer. Then, we show that the network uses a periodic activation function of cosine values o...

  9. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  10. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  11. The role of serotonin and norepinephrine in sleep-waking activity.

    Science.gov (United States)

    Morgane, P J; Stern, W C

    1975-11-01

    A critical review of the evidences relating the biogenic amines serotonin and norepinephrine to the states of slow-wave and rapid eye movement (REM) sleep is presented. Various alternative explanations for specific chemical regulation of the individual sleep states, including the phasic events of REM sleep, are evaluated within the overall framework of the monoamine theory of sleep. Several critical neuropsychopharmacological studies relating to metabolsim of the amines in relation to sleep-waking behavior are presented. Models of the chemical neuronal circuitry involved in sleep-waking activity are derived and interactions between several brainstem nuclei, particularly the raphé complex and locus coeruleus, are discussed. Activity in these aminergic systems in relation to oscillations in the sleep-waking cycles is evaluated. In particular, the assessment of single cell activity in specific chemical systems in relations to chemical models of sleep is reviewed. Overall, it appears that the biogenic amines, especially serotonin and norepinephrine, play key roles in the generation and maintenance of the sleep states. These neurotransmitters participate in some manner in the "triggering" processes necessary for actuating each sleep phase and in regulating the transitions from sleep to waking activity. The biogenic amines are, however, probably not "sleep factors" or direct inducers of the sleep states. Rather, they appear to be components of a multiplicity of interacting chemical circuitry in the brain whose activity maintains various chemical balances in different brain regions. Shifts in these balances appear to be involved in the triggering and maintenance of the various states comprising the vigilance continuum.

  12. Circadian Rhythms, Sleep Deprivation, and Human Performance

    Science.gov (United States)

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  13. The effect of sleep onset on upper airway muscle activity in patients with sleep apnoea versus controls

    Science.gov (United States)

    Fogel, Robert B; Trinder, John; White, David P; Malhotra, Atul; Raneri, Jill; Schory, Karen; Kleverlaan, Darci; Pierce, Robert J

    2005-01-01

    Pharyngeal dilator muscles are important in the pathophysiology of obstructive sleep apnoea syndrome (OSA). We have previously shown that during wakefulness, the activity of both the genioglossus (GGEMG) and tensor palatini (TPEMG) is greater in patients with OSA compared with controls. Further, EMG activity decreases at sleep onset, and the decrement is greater in apnoea patients than in healthy controls. In addition, it is known that the prevalence of OSA is greater in middle-aged compared with younger men. Thus, we had two goals in this study. First we compared upper airway muscle activity between young and middle-aged healthy men compared with men with OSA. We also explored the mechanisms responsible for the decrement in muscle activity at sleep onset in these groups. We investigated muscle activity, ventilation , and upper airway resistance (UAR) during wakefulness and sleep onset (transition from α to θ EEG activity) in all three groups. Measurements were obtained during basal breathing (BB) and nasal continuous positive airway pressure (CPAP) was applied to reduce negative pressure-mediated muscle activation). We found that during wakefulness there was a gradation of GGEMG and UAR (younger < older < OSA) and that muscle activity was reduced by the application of nasal CPAP (to a greater degree in the OSA patients). Although CPAP eliminated differences in UAR during wakefulness and sleep, GGEMG remained greater in the OSA patients. During sleep onset, a greater initial fall in GGEMG was seen in the OSA patients followed by subsequent muscle recruitment in the third to fifth breaths following the α to θ transition. On the CPAP night, and GGEMG still fell further in the OSA patients compared with control subjects. CPAP prevented the rise in UAR at sleep onset along with the associated recruitment in GGEMG. Differences in TPEMG among the groups were not significant. These data suggest that the middle-aged men had upper airway function midway between that of

  14. Sleep habits, food intake, and physical activity levels in normal and overweight and obese Malaysian children.

    Science.gov (United States)

    Firouzi, Somayyeh; Poh, Bee Koon; Ismail, Mohd Noor; Sadeghilar, Aidin

    2014-01-01

    This study aimed to determine the association between sleep habits (including bedtime, wake up time, sleep duration, and sleep disorder score) and physical characteristics, physical activity level, and food pattern in overweight and obese versus normal weight children. Case control study. 164 Malaysian boys and girls aged 6-€“12 years. Anthropometric measurements included weight, height, waist circumference, and body fat percentage. Subjects divided into normal weight (n = 82) and overweight/obese (n = 82) group based on World Health Organization 2007 BMI-for-age criteria and were matched one by one based on ethnicity, gender, and age plus minus one year. Questionnaires related to sleep habits, physical activity, and food frequency were proxy-reported by parents. Sleep disorder score was measured by Children Sleep Habit Questionnaire. Sleep disorder score and carbohydrate intake (%) to total energy intake were significantly higher in overweight/obese group (p < 0.01 and p < 0.05, respectively). After adjusting for age and gender, sleep disorder score was correlated with BMI (r = 0.275, p < 0.001), weight (r = 0.253, p < 0.001), and WC (r = 0.293, p < 0.001). Based on adjusted odd ratio, children with shortest sleep duration were found to have 4.5 times higher odds of being overweight/obese (odd ratio: 4.536, 95% CI: 1.912-€“8.898) compared to children with normal sleep duration. The odds of being overweight/obese in children with sleep disorder score higher than 48 were 2.17 times more than children with sleep disorder score less than 48. Children who sleep lees than normal amount, had poor sleep quality, and consumed more carbohydrates were at higher risk of overweight/obesity. © 2014 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.

  15. Characterization of sleep need dissipation using EEG based slow-wave activity analysis in two age groups

    NARCIS (Netherlands)

    Garcia-Molina, G.; Baehr, K.; Steele, B.; Tsoneva, T.K.; Pfundtner, S.; Mahadevan, A.; Papas, N.; Riedner, B.; Tononi, G.; White, D.

    2017-01-01

    Introduction: In the two-process model of sleep regulation, slow-wave activity (SWA, EEG power in the 0.5–4 Hz band) is a direct indicator of sleep need. SWA builds up during NREM sleep, declines before the onset of REM sleep, remains low during REM and the level of increase in successive NREM

  16. THE NEUROBIOLOGY OF SLEEP AND WAKEFULNESS

    Science.gov (United States)

    Schwartz, Michael D.; Kilduff, Thomas S.

    2015-01-01

    SYNOPSIS Since the discovery of Rapid Eye Movement (REM) sleep in the late 1950s, identification of the neural circuitry underlying wakefulness, sleep onset and the alternation between REM and non-REM (NREM) sleep has been an active area of investigation. Synchronization and desynchronization of cortical activity as detected in the electroencephalogram (EEG) is due to a corticothalamocortical loop, intrinsic cortical oscillators, monoaminergic and cholinergic afferent input to the thalamus, and the basal forebrain cholinergic input directly to the cortex. The monoaminergic and cholinergic systems are largely wake-promoting; the brainstem cholinergic nuclei are also involved in REM sleep regulation. These wake-promoting systems receive excitatory input from the hypothalamic hypocretin/orexin system. Sleep-promoting nuclei are GABAergic in nature and found in the preoptic area, brainstem and lateral hypothalamus. Although the pons is critical for the expression of REM sleep, recent research has suggested that melanin-concentrating hormone/GABAergic cells in the lateral hypothalamus "gate" REM sleep. The temporal distribution of sleep and wakefulness is due to interaction between the circadian system and the sleep homeostatic system. Although the hypothalamic suprachiasmatic nuclei contain the circadian pacemaker, the neural circuitry underlying the sleep homeostat is less clear. Prolonged wakefulness results in the accumulation of extracellular adenosine, possibly from glial sources, which is an important feedback molecule for the sleep homeostatic system. Cortical neuronal nitric oxide (nNOS) neurons may also play a role in propagating slow waves through the cortex in NREM sleep. Several neuropeptides and other neurochemicals likely play important roles in sleep/wake control. Although the control of sleep and wakefulness seemingly involves multiple redundant systems, each of these systems provides a vulnerability that can result in sleep/wake dysfunction that may

  17. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep.

    Directory of Open Access Journals (Sweden)

    Christelle Anaclet

    2010-01-01

    Full Text Available Rapid eye movement sleep (REMS is characterized by activation of the cortical and hippocampal electroencephalogram (EEG and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw phasic activity during REMS. The trigeminal motor nucleus (Mo5, which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt, but also from the adjacent paramedian reticular area (PMnR. On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS.To test our hypothesis, we measured masseter electromyogram (EMG, neck muscle EMG, electrooculogram (EOG and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt, but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS.These results indicate that (1 premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2 separate brainstem neural circuits control postural and cranial muscle

  18. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons

    DEFF Research Database (Denmark)

    Huitron-Resendiz, Salvador; Kristensen, Morten Pilgaard; Sánchez-Alavez, Manuel

    2005-01-01

    administration of UII into the PPT nucleus increases REM sleep without inducing changes in the cortical blood flow. Intracerebroventricular injection of UII enhances both REM sleep and wakefulness and reduces slow-wave sleep 2. Intracerebroventricular, but not local, administration of UII increases cortical...... dorsal tegmental nuclei. This distribution suggests that the UII system is involved in functions regulated by acetylcholine, such as the sleep-wake cycle. Here, we tested the hypothesis that UII influences cholinergic PPT neuron activity and alters rapid eye movement (REM) sleep patterns in rats. Local...... synaptic transmission because it persisted in the presence of TTX and antagonists of ionotropic glutamate, GABA, and glycine receptors. Collectively, these results suggest that UII plays a role in the regulation of REM sleep independently of its cerebrovascular actions by directly activating cholinergic...

  19. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.

    Science.gov (United States)

    Seibt, Julie; Richard, Clément J; Sigl-Glöckner, Johanna; Takahashi, Naoya; Kaplan, David I; Doron, Guy; de Limoges, Denis; Bocklisch, Christina; Larkum, Matthew E

    2017-09-25

    How sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep. Here, we report that calcium activity in populations of neocortical dendrites is increased and synchronised during oscillations in the spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in cell bodies of the same neurons and throughout the cortical column. Spindles during sleep have been suggested to be important for brain development and plasticity. Our results provide evidence for a physiological link of spindles in the cortex specific to dendrites, the main site of synaptic plasticity.Different stages of sleep, marked by particular electroencephalographic (EEG) signatures, have been linked to memory consolidation, but underlying mechanisms are poorly understood. Here, the authors show that dendritic calcium synchronisation correlates with spindle-rich sleep phases.

  20. Workplace bullying, sleep problems and leisure-time physical activity: a prospective cohort study

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Gullander, Maria; Hogh, Annie

    2015-01-01

    and Harassment (WBH) cohort (N=3278) or the Psychosocial Risk Factors for Stress and Mental Disease (PRISME) cohort (N=4455). We measured workplace bullying using one question that was preceded by a definition of bullying. We used the Karolinska sleep questionnaire to assess sleep problems. The number of hours......OBJECTIVES: Workplace bullying is a potent stressor that may increase sleep problems. Since physical fitness improves resilience to stress, it seems plausible that recreational physical activities may moderate the association between bullying and sleep. The study aimed to examine prospectively...... whether (i) bullying increases the risk of sleep problems, and (ii) the association between bullying and sleep problems is moderated by leisure-time physical activity (LTPA). METHODS: The study sample comprised a cohort of public and private sector employees, who were enrolled into the Work Bullying...

  1. Physical activity, sleep quality, and self-reported fatigue across the adult lifespan.

    Science.gov (United States)

    Christie, Anita D; Seery, Emily; Kent, Jane A

    2016-05-01

    Deteriorating sleep quality and increased fatigue are common complaints of old age, and poor sleep is associated with decreased quality of life and increased mortality rates. To date, little attention has been given to the potential effects of physical activity on sleep quality and fatigue in aging. The purpose of this study was to examine the relationships between activity, sleep and fatigue across the adult lifespan. Sixty community-dwelling adults were studied; 22 younger (21-29 years), 16 middle-aged (36-64 years), and 22 older (65-81 years). Physical activity was measured by accelerometer. Sleep quality was assessed using the Pittsburg Sleep Quality Index. Self-reported fatigue was evaluated with the Patient-Reported Outcomes Measurement Information System (PROMIS). Regression analysis revealed a positive relationship between activity and sleep quality in the older (r(2)=0.18, p=0.05), but not the younger (r(2) = 0.041, p = 0.35) or middle-aged (r(2) = 0.001, p = 0.93) groups. This association was mainly established by the relationship between moderate-vigorous activity and sleep quality (r(2)=0.37, p=0.003) in older adults. No association was observed between physical activity and self-reported fatigue in any of the groups (r(2) ≤ 0.14, p ≥ 0.15). However, an inverse relationship was found between sleep quality and fatigue in the older (r(2) = 0.29, p = 0.05), but not the younger or middle-aged (r(2) ≤ 0.13, p ≥ 0.10) groups. These results support the hypothesis that physical activity may be associated with sleep quality in older adults, and suggest that improved sleep may mitigate self-reported fatigue in older adults in a manner that is independent of activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Deep convolutional neural networks for interpretable analysis of EEG sleep stage scoring

    DEFF Research Database (Denmark)

    Vilamala, Albert; Madsen, Kristoffer Hougaard; Hansen, Lars K.

    2017-01-01

    to purse for an automatic stage scoring based on machine learning techniques have been carried out over the last years. In this work, we resort to multitaper spectral analysis to create visually interpretable images of sleep patterns from EEG signals as inputs to a deep convolutional network trained...... to solve visual recognition tasks. As a working example of transfer learning, a system able to accurately classify sleep stages in new unseen patients is presented. Evaluations in a widely-used publicly available dataset favourably compare to state-of-the-art results, while providing a framework for visual...

  3. Effects of selective REM sleep deprivation on prefrontal gamma activity and executive functions.

    Science.gov (United States)

    Corsi-Cabrera, M; Rosales-Lagarde, A; del Río-Portilla, Y; Sifuentes-Ortega, R; Alcántara-Quintero, B

    2015-05-01

    Given that the dorsolateral prefrontal cortex is involved in executive functions and is deactivated and decoupled from posterior associative regions during REM sleep, that Gamma temporal coupling involved in information processing is enhanced during REM sleep, and that adult humans spend about 90 min of every 24h in REM sleep, it might be expected that REM sleep deprivation would modify Gamma temporal coupling and have a deteriorating effect on executive functions. We analyzed EEG Gamma activity and temporal coupling during implementation of a rule-guided task before and after REM sleep deprivation and its effect on verbal fluency, flexible thinking and selective attention. After two nights in the laboratory for adaptation, on the third night subjects (n=18) were randomly assigned to either selective REM sleep deprivation effectuated by awakening them at each REM sleep onset or, the same number of NREM sleep awakenings as a control for unspecific effects of sleep interruptions. Implementation of abstract rules to guide behavior required greater activation and synchronization of Gamma activity in the frontopolar regions after REM sleep reduction from 20.6% at baseline to just 3.93% of total sleep time. However, contrary to our hypothesis, both groups showed an overall improvement in executive task performance and no effect on their capacity to sustain selective attention. These results suggest that after one night of selective REM sleep deprivation executive functions can be compensated by increasing frontal activation and they still require the participation of supervisory control by frontopolar regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Neural Activity During The Formation Of A Giant Auditory Synapse

    NARCIS (Netherlands)

    M.C. Sierksma (Martijn)

    2018-01-01

    markdownabstractThe formation of synapses is a critical step in the development of the brain. During this developmental stage neural activity propagates across the brain from synapse to synapse. This activity is thought to instruct the precise, topological connectivity found in the sensory central

  5. Sociodemographic Characteristics and Waking Activities and their Role in the Timing and Duration of Sleep

    Science.gov (United States)

    Basner, Mathias; Spaeth, Andrea M.; Dinges, David F.

    2014-01-01

    Study Objectives: Chronic sleep restriction is prevalent in the U.S. population and associated with increased morbidity and mortality. The primary reasons for reduced sleep are unknown. Using population data on time use, we sought to identify individual characteristics and behaviors associated with short sleep that could be targeted for intervention programs. Design: Analysis of the American Time Use Survey (ATUS). Setting: Cross-sectional annual survey conducted by the U.S. Bureau of Labor Statistics. Participants: Representative cohort (N = 124,517) of Americans 15 years and older surveyed between 2003 and 2011. Interventions: None. Measurements and Results: Telephone survey of activities over 24 hours. Relative to all other waking activities, paid work time was the primary waking activity exchanged for sleep. Time spent traveling, which included commuting to/from work, and immediate pre- and post-sleep activities (socializing, grooming, watching TV) were also reciprocally related to sleep duration. With every hour that work or educational training started later in the morning, sleep time increased by approximately 20 minutes. Working multiple jobs was associated with the highest odds for sleeping ≤ 6 hours on weekdays (adjusted OR 1.61, 95% CI 1.44; 1.81). Self-employed respondents were less likely to be short sleepers compared to private sector employees (OR 0.83, 95% CI 0.72; 0.95). Sociodemographic characteristics associated with paid work (age 25-64, male sex, high income, and employment per se) were consistently associated with short sleep. Conclusions: U.S. population time use survey findings suggest that interventions to increase sleep time should concentrate on delaying the morning start time of work and educational activities (or making them more flexible), increasing sleep opportunities, and shortening morning and evening commute times. Reducing the need for multiple jobs may increase sleep time, but economic disincentives from working fewer hours

  6. Self-organized dynamical complexity in human wakefulness and sleep: Different critical brain-activity feedback for conscious and unconscious states

    Science.gov (United States)

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.

  7. Multiclass classification of obstructive sleep apnea/hypopnea based on a convolutional neural network from a single-lead electrocardiogram.

    Science.gov (United States)

    Urtnasan, Erdenebayar; Park, Jong-Uk; Lee, Kyoung-Joung

    2018-05-24

    In this paper, we propose a convolutional neural network (CNN)-based deep learning architecture for multiclass classification of obstructive sleep apnea and hypopnea (OSAH) using single-lead electrocardiogram (ECG) recordings. OSAH is the most common sleep-related breathing disorder. Many subjects who suffer from OSAH remain undiagnosed; thus, early detection of OSAH is important. In this study, automatic classification of three classes-normal, hypopnea, and apnea-based on a CNN is performed. An optimal six-layer CNN model is trained on a training dataset (45,096 events) and evaluated on a test dataset (11,274 events). The training set (69 subjects) and test set (17 subjects) were collected from 86 subjects with length of approximately 6 h and segmented into 10 s durations. The proposed CNN model reaches a mean -score of 93.0 for the training dataset and 87.0 for the test dataset. Thus, proposed deep learning architecture achieved a high performance for multiclass classification of OSAH using single-lead ECG recordings. The proposed method can be employed in screening of patients suspected of having OSAH. © 2018 Institute of Physics and Engineering in Medicine.

  8. [The bidirectional relationship between physical activity and sleep in depressed versus non-depressed individuals].

    Science.gov (United States)

    Oude Oosterik, N A M; Bouwmans, M E J; de Groot, I W; Bos, E H; de Jonge, P

    Sleep and physical activity are related, but the direction of this relationship is unclear and it is not known whether the direction differs in depressed and non-depressed persons. To study the bidirectional relationship between physical activity and sleep in daily life by making repeated measurements in depressed and non-depressed people. Every day for 30 consecutive days each depressed (N = 27) and non-depressed (N = 27) participant in our study had to complete an electronic questionnaire relating to subjective sleep quality and sleep duration and were required to wear an accelerometer that recorded physical activity. Multi-level analysis showed that an increase in subjective sleep duration resulted in a decrease in physical activity. The differences between individuals with regard to the direction and strength of this relationship were significant. Changes in physical activity did not predict changes in sleep quality or sleep duration. We did not find any differences in the relationships for depressed and non-depressed participants. Change in sleep duration predicts change in physical activity, although there was significant heterogeneity in the results for individuals. Our findings underline the importance of further research and of the development of interventions that are tailored to the precise needs of the individual patient.

  9. Right hemisphere neural activations in the recall of waking fantasies and of dreams.

    Science.gov (United States)

    Benedetti, Francesco; Poletti, Sara; Radaelli, Daniele; Ranieri, Rebecca; Genduso, Valeria; Cavallotti, Simone; Castelnovo, Anna; Smeraldi, Enrico; Scarone, Silvio; D'Agostino, Armando

    2015-10-01

    The story-like organization of dreams is characterized by a pervasive bizarreness of events and actions that resembles psychotic thought, and largely exceeds that observed in normal waking fantasies. Little is known about the neural correlates of the confabulatory narrative construction of dreams. In this study, dreams, fantasies elicited by ambiguous pictorial stimuli, and non-imaginative first- and third-person narratives from healthy participants were recorded, and were then studied for brain blood oxygen level-dependent functional magnetic resonance imaging on a 3.0-Tesla scanner while listening to their own narrative reports and attempting a retrieval of the corresponding experience. In respect to non-bizarre reports of daytime activities, the script-driven recall of dreams and fantasies differentially activated a right hemisphere network including areas in the inferior frontal gyrus, and superior and middle temporal gyrus. Neural responses were significantly greater for fantasies than for dreams in all regions, and inversely proportional to the degree of bizarreness observed in narrative reports. The inferior frontal gyrus, superior and middle temporal gyrus have been implicated in the semantic activation, integration and selection needed to build a coherent story representation and to resolve semantic ambiguities; in deductive and inferential reasoning; in self- and other-perspective taking, theory of mind, moral and autobiographical reasoning. Their degree of activation could parallel the level of logical robustness or inconsistency experienced when integrating information and mental representations in the process of building fantasy and dream narratives. © 2015 European Sleep Research Society.

  10. Computerized monitoring of physical activity and sleep in postoperative abdominal surgery patients

    DEFF Research Database (Denmark)

    Bisgaard, T; Kjaersgaard, M; Bernhard, A

    1999-01-01

    OBJECTIVE: Assessment of early postoperative activity is important in the documentation of improvements of peri-operative care. This study was designed to validate computerized activity-based monitoring of physical activity and sleep (actigraphy) in patients after abdominal surgery. METHODS...... physical activity and sleep-wake cycles after major abdominal surgery.......: The study included twelve hospitalized patients after major abdominal surgery studied on day 2 to 4 after operation and twelve unhospitalized healthy volunteers. Measurements were performed for 24 consecutive hours. The actigraphy measurements were compared with self-reported activity- and sleep...

  11. On the need of objective vigilance monitoring: Effects of sleep loss on target detection and task-negative activity using combined EEG/fMRI

    Directory of Open Access Journals (Sweden)

    Michael eCzisch

    2012-04-01

    Full Text Available Sleep loss affects attention by reducing levels of arousal and alertness. The neural mechanisms underlying the compensatory efforts of the brain to maintain attention and performance after sleep deprivation are not fully understood. Previous neuroimaging studies of sleep deprivation have not been able to exclude the effects of reduced arousal and vigilance when examining cerebral responses to cognitive challenges. Here, we used a simultaneous electroencephalography (EEG and functional magnetic resonance imaging (fMRI approach to study the effects of 36 hours of total sleep deprivation (TSD. Specifically, we focused on changes in selective attention processes as induced by an active acoustic oddball task, with the ability to isolate runs with objective EEG signs of high or reduced vigilance. At high vigilance, task-related activity appears to be sustained by compensatory co-activation of insular regions, but task-negative activity in the right posterior node of the default mode network is altered following TSD. When EEG shows signs of reduced vigilance, task-positive activity was massively impaired, but task-negative activation was showing levels comparable with the control condition after a well-rested night. Our results suggest that loss of strict anti-correlation between task-positive and task-negative activation reflects the effects of TSD, while the actual state of vigilance and task performance either affects task-related or task-negative activity.

  12. Neural activation toward erotic stimuli in homosexual and heterosexual males.

    Science.gov (United States)

    Kagerer, Sabine; Klucken, Tim; Wehrum, Sina; Zimmermann, Mark; Schienle, Anne; Walter, Bertram; Vaitl, Dieter; Stark, Rudolf

    2011-11-01

    Studies investigating sexual arousal exist, yet there are diverging findings on the underlying neural mechanisms with regard to sexual orientation. Moreover, sexual arousal effects have often been confounded with general arousal effects. Hence, it is still unclear which structures underlie the sexual arousal response in homosexual and heterosexual men. Neural activity and subjective responses were investigated in order to disentangle sexual from general arousal. Considering sexual orientation, differential and conjoint neural activations were of interest. The functional magnetic resonance imaging (fMRI) study focused on the neural networks involved in the processing of sexual stimuli in 21 male participants (11 homosexual, 10 heterosexual). Both groups viewed pictures with erotic content as well as aversive and neutral stimuli. The erotic pictures were subdivided into three categories (most sexually arousing, least sexually arousing, and rest) based on the individual subjective ratings of each participant. Blood oxygen level-dependent responses measured by fMRI and subjective ratings. A conjunction analysis revealed conjoint neural activation related to sexual arousal in thalamus, hypothalamus, occipital cortex, and nucleus accumbens. Increased insula, amygdala, and anterior cingulate gyrus activation could be linked to general arousal. Group differences emerged neither when viewing the most sexually arousing pictures compared with highly arousing aversive pictures nor compared with neutral pictures. Results suggest that a widespread neural network is activated by highly sexually arousing visual stimuli. A partly distinct network of structures underlies sexual and general arousal effects. The processing of preferred, highly sexually arousing stimuli recruited similar structures in homosexual and heterosexual males. © 2011 International Society for Sexual Medicine.

  13. Characterising infant inter-breath interval patterns during active and quiet sleep using recurrence plot analysis.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M

    2009-01-01

    Breathing patterns are characteristically different between active and quiet sleep states in infants. It has been previously identified that breathing dynamics are governed by a non-linear controller which implies the need for a nonlinear analytical tool. Further, it has been shown that quantified nonlinear variables are different between adult sleep states. This study aims to determine whether a nonlinear analytical tool known as recurrence plot analysis can characterize breath intervals of active and quiet sleep states in infants. Overnight polysomnograms were obtained from 32 healthy infants. The 6 longest periods each of active and quiet sleep were identified and a software routine extracted inter-breath interval data for recurrence plot analysis. Determinism (DET), laminarity (LAM) and radius (RAD) values were calculated for an embedding dimension of 4, 6, 8 and 16, and fixed recurrence of 0.5, 1, 2, 3.5 and 5%. Recurrence plots exhibited characteristically different patterns for active and quiet sleep. Active sleep periods typically had higher values of RAD, DET and LAM than for quiet sleep, and this trend was invariant to a specific choice of embedding dimension or fixed recurrence. These differences may provide a basis for automated sleep state classification, and the quantitative investigation of pathological breathing patterns.

  14. Improvement in Physical Activity in Persons With Obstructive Sleep Apnea Treated With Continuous Positive Airway Pressure.

    Science.gov (United States)

    Jean, Raymonde E; Duttuluri, Manideep; Gibson, Charlisa D; Mir, Sadaf; Fuhrmann, Katherine; Eden, Edward; Supariwala, Azhar

    2017-03-01

    Exercise improves sleep quality, yet people with untreated obstructive sleep apnea (OSA) may engage in less physical activity (PA) due to fatigue and daytime sleepiness. We examined changes in PA and sleep quality before and after treatment with continuous positive airway pressure (CPAP) in OSA patients. In this prospective longitudinal study, persons with a primary diagnosis of OSA were enrolled at a community-based hospital in New York City. At 3 time intervals pre- and post-CPAP (3-8 months), we measured sleep quality using validated questionnaires, perceived PA using the International Physical Activity Questionnaire (IPAQ), and actual PA using pedometer steps per day. We sought to investigate how CPAP use and changes in sleep quality impacted the number of steps taken, as recorded in pedometer steps. In total, 62 patients were enrolled in the study from March 2012 to July 2014. In all, patients averaged 53 years of age, and 26 patients (42%) were female. Among all participants, 86% of persons had moderate to severe sleep apnea (AHI ≥15). Approximately 73% of participants were compliant with CPAP use. Poor sleep quality correlated with lower actual PA (P = .004) at baseline. At 3 and 7 months, there was significant improvement in sleep quality (Δ -2.63 ± 3.4 and Δ -3.5 ± 3.8; P improvement in sleep quality and actual PA.

  15. Functional role of diverse changes in sympathetic nerve activity in regulating arterial pressure during REM sleep.

    Science.gov (United States)

    Yoshimoto, Misa; Yoshida, Ikue; Miki, Kenju

    2011-08-01

    This study aimed to investigate whether REM sleep evoked diverse changes in sympathetic outflows and, if so, to elucidate why REM sleep evokes diverse changes in sympathetic outflows. Male Wistar rats were chronically implanted with electrodes to measure renal (RSNA) and lumbar sympathetic nerve activity (LSNA), electroencephalogram, electromyogram, and electrocardiogram, and catheters to measure systemic arterial and central venous pressure; these parameters were measured simultaneously and continuously during the sleep-awake cycle in the same rat. REM sleep resulted in a step reduction in RNSA by 36.1% ± 2.7% (P sleep. In contrast to REM sleep, RSNA, LSNA, systemic arterial pressure, and heart rate increased in a unidirectional manner associated with increases in physical activity levels in the order from NREM sleep, quiet awake, moving, and grooming state. Thus, the relationship between RSNA vs. LSNA and systemic arterial pressure vs. heart rate observed during REM sleep was dissociated compared with that obtained during the other behavioral states. It is suggested that the diverse changes in sympathetic outflows during REM sleep may be needed to increase systemic arterial pressure by balancing vascular resistance between muscles and vegetative organs without depending on the heart.

  16. Biomechanics-based active control of bedding support properties and its influence on sleep.

    Science.gov (United States)

    Van Deun, D; Verhaert, V; Willemen, T; Wuyts, J; Verbraecken, J; Exadaktylos, V; Haex, B; Vander Sloten, J

    2012-01-01

    Proper body support plays an import role in the recuperation of our body during sleep. Therefore, this study uses an automatically adapting bedding system that optimises spinal alignment throughout the night by altering the stiffness of eight comfort zones. The aim is to investigate the influence of such a dynamic sleep environment on objective and subjective sleep parameters. The bedding system contains 165 sensors that measure mattress indentation. It also includes eight actuators that control the comfort zones. Based on the measured mattress indentation, body movements and posture changes are detected. Control of spinal alignment is established by fitting personalized human models in the measured indentation. A total of 11 normal sleepers participated in this study. Sleep experiments were performed in a sleep laboratory where subjects slept three nights: a first night for adaptation, a reference night and an active support night (in counterbalanced order). Polysomnographic measurements were recorded during the nights, combined with questionnaires aiming at assessing subjective information. Subjective information on sleep quality, daytime quality and perceived number of awakenings shows significant improvements during the active support (ACS) night. Objective results showed a trend towards increased slow wave sleep. On the other hand, it was noticed that % N1-sleep was significantly increased during ACS night, while % N2-sleep was significantly decreased. No prolonged N1 periods were found during or immediately after steering.

  17. Understanding the Implications of Neural Population Activity on Behavior

    Science.gov (United States)

    Briguglio, John

    Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests

  18. Forecasting Flare Activity Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Hernandez, T.

    2017-12-01

    Current operational flare forecasting relies on human morphological analysis of active regions and the persistence of solar flare activity through time (i.e. that the Sun will continue to do what it is doing right now: flaring or remaining calm). In this talk we present the results of applying deep Convolutional Neural Networks (CNNs) to the problem of solar flare forecasting. CNNs operate by training a set of tunable spatial filters that, in combination with neural layer interconnectivity, allow CNNs to automatically identify significant spatial structures predictive for classification and regression problems. We will start by discussing the applicability and success rate of the approach, the advantages it has over non-automated forecasts, and how mining our trained neural network provides a fresh look into the mechanisms behind magnetic energy storage and release.

  19. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.

    Science.gov (United States)

    Irwin, Michael R; Wang, Minge; Campomayor, Capella O; Collado-Hidalgo, Alicia; Cole, Steve

    2006-09-18

    Inflammation is associated with increased risk of cardiovascular disorders, arthritis, diabetes mellitus, and mortality. The effects of sleep loss on the cellular and genomic mechanisms that contribute to inflammatory cytokine activity are not known. In 30 healthy adults, monocyte intracellular proinflammatory cytokine production was repeatedly assessed during the day across 3 baseline periods and after partial sleep deprivation (awake from 11 pm to 3 am). We analyzed the impact of sleep loss on transcription of proinflammatory cytokine genes and used DNA microarray analyses to characterize candidate transcription-control pathways that might mediate the effects of sleep loss on leukocyte gene expression. In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor alpha was significantly greater compared with morning levels following uninterrupted sleep. In addition, sleep loss induced a more than 3-fold increase in transcription of interleukin 6 messenger RNA and a 2-fold increase in tumor necrosis factor alpha messenger RNA. Bioinformatics analyses suggested that the inflammatory response was mediated by the nuclear factor kappaB inflammatory signaling system as well as through classic hormone and growth factor response pathways. Sleep loss induces a functional alteration of the monocyte proinflammatory cytokine response. A modest amount of sleep loss also alters molecular processes that drive cellular immune activation and induce inflammatory cytokines; mapping the dynamics of sleep loss on molecular signaling pathways has implications for understanding the role of sleep in altering immune cell physiologic characteristics. Interventions that target sleep might constitute new strategies to constrain inflammation with effects on inflammatory disease risk.

  20. Sleep and alertness during alternating monophasic and polyphasic rest-activity cycles.

    Science.gov (United States)

    Porcú, S; Casagrande, M; Ferrara, M; Bellatreccia, A

    1998-07-01

    People involved in shift work often have to face altered patterns of sleep and wakefulness. This is particularly true for schedules involving night shifts and/or fragmentation of duty periods throughout the 24-hr day. In such conditions, it can be difficult to obtain satisfactory periods of sleep, and sleepiness on duty is a frequent and dangerous occurrence. The aim of this study was to evaluate sleep and wakefulness periods of subjects whose work schedule was characterized by an alternation of 2 hours of activity and 4 hours of rest (sleep allowed), repeated 4 times throughout the 24-hr day. This schedule was alternated with 24 hours off duty. Nine healthy male volunteers were monitored by means of ambulatory polysomnography while attending their 24-hr rest-activity schedule. Sleep periods were visually scored according to standard criteria. Wake periods were visually scored using both 30 s and 5 s epochs in order to reveal episodes of drowsiness and/or microsleep. Results showed that total sleep time was substantially reduced as compared to the usual 7-8 hour monophasic nocturnal sleep. Subjects did not sleep during the first rest period (11.00-15.00). Time in sleep linearly increased in the course of the 3 remaining rest periods. Normal sleep stage distribution was substantially spared only in the last rest period (3.00-7.00 a.m.). With regard to duty periods, only a few microsleeps were detected and their number did not significantly vary across the four 2-hr activity periods. In conclusion, this rest-activity schedule, despite the considerable sleep reduction, allowed maintaining good levels of vigilance as shown by the virtual absence of EEG microsleeps. Whether future research will prove that this regimen does not cause an impairment of performance, it should be a suitable strategy for the management of continuous operations.

  1. Typology of nonlinear activity waves in a layered neural continuum.

    Science.gov (United States)

    Koch, Paul; Leisman, Gerry

    2006-04-01

    Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).

  2. Analysis of automated quantification of motor activity in REM sleep behaviour disorder

    DEFF Research Database (Denmark)

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle

    2015-01-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing...... baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters...... were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep...

  3. Quality of sleep, physical activity and fatigue in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Løppenthin, Katrine; Esbensen, Bente Appel; Jennum, Poul Jørgen

    2012-01-01

    a rheumatology outpatient clinic were recruited consecutively to participate in an observational cross-sectional study. The self-administered questionnaire covered the Health Assessment Questionnaire (HAQ), Visual Analogue Scale (VAS) for pain and fatigue, Physical Activity Scale (PAS), Multidimensional Fatigue...... to Physical Activity (PA) and fatigue. Understanding PA, fatigue and the impact on sleep disturbances could illuminate ways to promote sufficient sleep in RA patients. Thus, the aim of this study was to examine the association between sleep disturbance, PA, and fatigue. Methods A total of 500 RA patients from...... of 58 years), and 80% were women. The mean disease duration was 14 years and mean DAS score was 2.7. The prevalence of poor sleep quality was 61 %. Higher level of general fatigue, mental fatigue, physical fatigue, reduced activity and reduced motivation was reported in patients with poor sleep quality...

  4. Sociodemographic characteristics and waking activities and their role in the timing and duration of sleep.

    Science.gov (United States)

    Basner, Mathias; Spaeth, Andrea M; Dinges, David F

    2014-12-01

    Chronic sleep restriction is prevalent in the U.S. population and associated with increased morbidity and mortality. The primary reasons for reduced sleep are unknown. Using population data on time use, we sought to identify individual characteristics and behaviors associated with short sleep that could be targeted for intervention programs. Analysis of the American Time Use Survey (ATUS). Cross-sectional annual survey conducted by the U.S. Bureau of Labor Statistics. Representative cohort (N = 124,517) of Americans 15 years and older surveyed between 2003 and 2011. None. Telephone survey of activities over 24 hours. Relative to all other waking activities, paid work time was the primary waking activity exchanged for sleep. Time spent traveling, which included commuting to/ from work, and immediate pre- and post-sleep activities (socializing, grooming, watching TV) were also reciprocally related to sleep duration. With every hour that work or educational training started later in the morning, sleep time increased by approximately 20 minutes. Working multiple jobs was associated with the highest odds for sleeping ≤6 hours on weekdays (adjusted OR 1.61, 95% CI 1.44; 1.81). Self-employed respondents were less likely to be short sleepers compared to private sector employees (OR 0.83, 95% CI 0.72; 0.95). Sociodemographic characteristics associated with paid work (age 25-64, male sex, high income, and employment per se) were consistently associated with short sleep. U.S. population time use survey findings suggest that interventions to increase sleep time should concentrate on delaying the morning start time of work and educational activities (or making them more flexible), increasing sleep opportunities, and shortening morning and evening commute times. Reducing the need for multiple jobs may increase sleep time, but economic disincentives from working fewer hours will need to be offset. Raising awareness of the importance of sufficient sleep for health and safety may

  5. Cultured Neural Networks: Optimization of Patterned Network Adhesiveness and Characterization of their Neural Activity

    Directory of Open Access Journals (Sweden)

    W. L. C. Rutten

    2006-01-01

    Full Text Available One type of future, improved neural interface is the “cultured probe”. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA on a planar substrate, each electrode being covered and surrounded by a local circularly confined network (“island” of cultured neurons. The main purpose of the local networks is that they act as biofriendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron–electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this paper, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to “islands” surrounding an electrode site. Additional coating of neurophobic, polyimide-coated substrate by triblock-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular “island” networks. For connected islands, the larger the island diameter (50, 100 or 150 μm, the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV, which is two weeks later than in unpatterned networks.

  6. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: Hypothalamic Peptidergic Sleep and Wake-Regulatory Neurons

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2018-02-01

    Full Text Available Neuron populations of the lateral hypothalamus which synthesize the orexin (OX/hypocretin or melanin-concentrating hormone (MCH peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT, also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b. parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomysnatalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction and MCH neurons (about 54% reduction was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively, which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN region and the thalamic paraventricular nucleus (PVT, densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic

  7. Deep sleep after social stress: NREM sleep slow-wave activity is enhanced in both winners and losers of a conflict.

    Science.gov (United States)

    Kamphuis, Jeanine; Lancel, Marike; Koolhaas, Jaap M; Meerlo, Peter

    2015-07-01

    Sleep is considered to be a recovery process of prior wakefulness. Not only duration of the waking period affects sleep architecture and sleep EEG, the quality of wakefulness is also highly important. Studies in rats have shown that social defeat stress, in which experimental animals are attacked and defeated by a dominant conspecific, is followed by an acute increase in NREM sleep EEG slow wave activity (SWA). However, it is not known whether this effect is specific for the stress of social defeat or a result of the conflict per se. In the present experiment, we examined how sleep is affected in both the winners and losers of a social conflict. Sleep-wake patterns and sleep EEG were recorded in male wild-type Groningen rats that were subjected to 1h of social conflict in the middle of the light phase. All animals were confronted with a conspecific of similar aggression level and the conflict took place in a neutral arena where both individuals had an equal chance to either win or lose the conflict. NREM sleep SWA was significantly increased after the social conflict compared to baseline values and a gentle stimulation control condition. REM sleep was significantly suppressed in the first hours after the conflict. Winners and losers did not differ significantly in NREM sleep time, NREM sleep SWA and REM sleep time immediately after the conflict. Losers tended to have slightly more NREM sleep later in the recovery period. This study shows that in rats a social conflict with an unpredictable outcome has quantitatively and qualitatively largely similar acute effects on subsequent sleep in winners and losers. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Triethylene glycol, an active component of Ashwagandha (Withania somnifera leaves, is responsible for sleep induction.

    Directory of Open Access Journals (Sweden)

    Mahesh K Kaushik

    Full Text Available Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10-30 mg/mouse manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy.

  9. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction.

    Science.gov (United States)

    Kaushik, Mahesh K; Kaul, Sunil C; Wadhwa, Renu; Yanagisawa, Masashi; Urade, Yoshihiro

    2017-01-01

    Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera) has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10-30 mg/mouse) manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy.

  10. Associations between physical activity, sedentary time, sleep duration and daytime sleepiness in US adults.

    Science.gov (United States)

    McClain, James J; Lewin, Daniel S; Laposky, Aaron D; Kahle, Lisa; Berrigan, David

    2014-09-01

    To examine the associations between objectively measured physical activity (PA) or sedentary behavior and self-reported sleep duration or daytime sleepiness in a nationally representative sample of healthy US adults (N=2128). We report analyses of four aspects of sedentary behavior and PA derived from accelerometry data (minutes of sedentary time, activity counts/minute, Minutes of Moderate and Vigorous PA [MVPA], and MVPA in 10-minute bouts) versus self-report of sleep duration and frequency of daytime sleepiness from the 2005-2006 National Health and Nutrition Examination Survey. Age and sex dependence of associations between PA and sleep were observed. Aspects of PA were significantly lower in adults reporting more frequent daytime sleepiness in younger (20-39) and older (≥ 60) age groups, but not in middle-aged (40-59), respondents. In younger respondents, PA increased with sleep duration, but in middle aged and older respondents PA was either unrelated to sleep duration or lower in those reporting ≥ 8 h of sleep. Objectively measured sedentary time showed limited evidence of associations with sleep duration. Further research delineating the relationships between sleep and PA is important because both activities have been implicated in diverse health outcomes as well as in the etiology of obesity. Published by Elsevier Inc.

  11. A Preliminary Investigation of Accelerometer-Derived Sleep and Physical Activity Following Sport-Related Concussion.

    Science.gov (United States)

    Sufrinko, Alicia M; Howie, Erin K; Elbin, R J; Collins, Michael W; Kontos, Anthony P

    2018-03-29

    Describe changes in postconcussion activity levels and sleep throughout recovery in a sample of pediatric sport-related concussion (SRC) patients, and examine the predictive value of accelerometer-derived activity and sleep on subsequent clinical outcomes at a follow-up clinic visit. Outpatient concussion clinic. Twenty athletes aged 12 to 19 years with diagnosed SRC. Prospective study including visit 1 (sleep across recovery. Symptom, neurocognitive, and vestibular/oculomotor scores; sleep and activity data (Actigraph GT3x+) RESULTS:: The maximum intensity of physical activity increased (P = .009) and time in bed decreased throughout recovery (P = .026). Several physical activity metrics from 0 to 6 days postinjury were predictive of worse vestibular/oculomotor scores at visit 2 (P sleep 0 to 6 days postinjury were associated with worse reaction time at visit 2 (P sleep change from the acute to subacute postinjury time period in adolescent SRC patients. In our small sample, excess physical activity and poor sleep the first week postinjury may be associated with worse outcomes at follow-up in the subacute stage of recovery. This study further supported the feasibility of research utilizing wearable technology in concussion patients, and future research in a large, diverse sample of concussion patients examined at concise time intervals postinjury is needed.

  12. On the origin of reproducible sequential activity in neural circuits

    Science.gov (United States)

    Afraimovich, V. S.; Zhigulin, V. P.; Rabinovich, M. I.

    2004-12-01

    Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.

  13. Neural activity predicts attitude change in cognitive dissonance.

    Science.gov (United States)

    van Veen, Vincent; Krug, Marie K; Schooler, Jonathan W; Carter, Cameron S

    2009-11-01

    When our actions conflict with our prior attitudes, we often change our attitudes to be more consistent with our actions. This phenomenon, known as cognitive dissonance, is considered to be one of the most influential theories in psychology. However, the neural basis of this phenomenon is unknown. Using a Solomon four-group design, we scanned participants with functional MRI while they argued that the uncomfortable scanner environment was nevertheless a pleasant experience. We found that cognitive dissonance engaged the dorsal anterior cingulate cortex and anterior insula; furthermore, we found that the activation of these regions tightly predicted participants' subsequent attitude change. These effects were not observed in a control group. Our findings elucidate the neural representation of cognitive dissonance, and support the role of the anterior cingulate cortex in detecting cognitive conflict and the neural prediction of attitude change.

  14. Death and rebirth of neural activity in sparse inhibitory networks

    Science.gov (United States)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  15. Neural activity when people solve verbal problems with insight.

    Directory of Open Access Journals (Sweden)

    Mark Jung-Beeman

    2004-04-01

    Full Text Available People sometimes solve problems with a unique process called insight, accompanied by an "Aha!" experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1 revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2 revealed a sudden burst of high-frequency (gamma-band neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them.

  16. Endogenous Opiates in the Nucleus Tractus Solitarius Mediate Electroacupuncture-Induced Sleep Activities in Rats

    Directory of Open Access Journals (Sweden)

    Chiung-Hsiang Cheng

    2011-01-01

    Full Text Available Electroacupuncture (EA possesses various therapeutic effects, including alleviation of pain, reduction of inflammation and improvement of sleep disturbance. The mechanisms of EA on sleep improvement, however, remain to be determined. It has been stated in ancient Chinese literature that the Anmian (EX17 acupoint is one of the trigger points that alleviates insomnia. We previously demonstrated that EA stimulation of Anmian acupoints in rats during the dark period enhances non-rapid eye movement (NREM sleep, which involves the induction of cholinergic activity in the nucleus tractus solitarius (NTS. In addition to cholinergic activation of the NTS, activation of the endogenous opioidergic system may also be a mechanism by which acupuncture affects sleep. Therefore, this study was designed to investigate the involvement of the NTS opioidergic system in EA-induced alterations in sleep. Our present results indicate that EA of Anmian acupoints increased NREM sleep, but not rapid eye movement sleep, during the dark period in rats. This enhancement in NREM sleep was dose-dependently blocked by microinjection of opioid receptor antagonist, naloxone, and the μ-opioid receptor antagonist, naloxonazine, into the NTS; administrations of δ-receptor antagonist, natrindole, and the κ-receptor antagonist, nor-binaltrophimine, however, did not affect EA-induced alterations in sleep. Furthermore, β-endorphin was significantly increased in both the brainstem and hippocampus after the EA stimuli, an effect blocked by administration of the muscarinic antagonist scopolamine into the NTS. Our findings suggest that mechanisms of EA-induced NREM sleep enhancement may be mediated, in part, by cholinergic activation, stimulation of the opiodergic neurons to increase the concentrations of β-endorphin and the involvement of the μ-opioid receptors.

  17. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep

    OpenAIRE

    Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale ...

  18. Activation of inactivation process initiates rapid eye movement sleep.

    Science.gov (United States)

    Mallick, Birendra Nath; Singh, Abhishek; Khanday, Mudasir Ahmad

    2012-06-01

    Interactions among REM-ON and REM-OFF neurons form the basic scaffold for rapid eye movement sleep (REMS) regulation; however, precise mechanism of their activation and cessation, respectively, was unclear. Locus coeruleus (LC) noradrenalin (NA)-ergic neurons are REM-OFF type and receive GABA-ergic inputs among others. GABA acts postsynaptically on the NA-ergic REM-OFF neurons in the LC and presynaptically on the latter's projection terminals and modulates NA-release on the REM-ON neurons. Normally during wakefulness and non-REMS continuous release of NA from the REM-OFF neurons, which however, is reduced during the latter phase, inhibits the REM-ON neurons and prevents REMS. At this stage GABA from substantia nigra pars reticulate acting presynaptically on NA-ergic terminals on REM-ON neurons withdraws NA-release causing the REM-ON neurons to escape inhibition and being active, may be even momentarily. A working-model showing neurochemical-map explaining activation of inactivation process, showing contribution of GABA-ergic presynaptic inhibition in withdrawing NA-release and dis-inhibition induced activation of REM-ON neurons, which in turn activates other GABA-ergic neurons and shutting-off REM-OFF neurons for the initiation of REMS-generation has been explained. Our model satisfactorily explains yet unexplained puzzles (i) why normally REMS does not appear during waking, rather, appears following non-REMS; (ii) why cessation of LC-NA-ergic-REM-OFF neurons is essential for REMS-generation; (iii) factor(s) which does not allow cessation of REM-OFF neurons causes REMS-loss; (iv) the association of changes in levels of GABA and NA in the brain during REMS and its deprivation and associated symptoms; v) why often dreams are associated with REMS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Application of neural networks to seismic active control

    International Nuclear Information System (INIS)

    Tang, Yu.

    1995-01-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads

  20. Rest-activity rhythm and sleep characteristics associated with depression symptom severity in strained dementia caregivers.

    Science.gov (United States)

    Smagula, Stephen F; Krafty, Robert T; Taylor, Briana J; Martire, Lynn M; Schulz, Richard; Hall, Martica H

    2017-12-01

    Depression is associated with disturbances to sleep and the 24-h sleep-wake pattern (known as the rest-activity rhythm: RAR). However, there remains a need to identify the specific sleep/RAR correlates of depression symptom severity in population subgroups, such as strained dementia caregivers, who are at elevated risk for major depressive disorder. We assessed the cross-sectional associations of sleep/RARs with non-sleep depression symptom severity among 57 (mean age: 74 years, standard deviation: 7.4) strained dementia caregivers who were currently without clinical depression. We derived sleep measures from polysomnography and actigraphy, modelled RARs using a sigmoidally transformed cosine curve and measured non-sleep depression symptom severity using the Hamilton Depression Rating Scale (HRDS) with sleep items removed. The following sleep-wake measures were associated with greater depression symptom severity (absolute Spearman's correlations ranged from 0.23 to 0.32): more time awake after sleep onset (WASO), higher RAR middle level (mesor), relatively shorter active periods (alpha), earlier evening settling time (down-mesor) and less steep RARs (beta). In multivariable analysis, high WASO and low RAR beta were associated independently with depression symptom severity. Predicted non-sleep HDRS means (95% confidence intervals) in caregivers with and without these characteristics were: normal WASO/beta = 3.7 (2.3-5.0), high WASO/normal beta = 5.5 (3.5-7.6), normal WASO/low beta = 6.3 (3.6-8.9) and high WASO/low beta = 8.1 (5.3-10.9). Thus, in our sample of strained caregivers, greater sleep fragmentation (WASO) and less sustained/sharply segregated resting and active periods (low RAR beta) correlate uniquely with depression symptom severity. Longitudinal studies are needed to establish whether these independent sleep-wake correlates of depression symptoms explain heightened depression risk in dementia caregivers. © 2017 European Sleep Research Society.

  1. Management of sleep-time masticatory muscle activity using stabilisation splints affects psychological stress.

    Science.gov (United States)

    Takahashi, H; Masaki, C; Makino, M; Yoshida, M; Mukaibo, T; Kondo, Y; Nakamoto, T; Hosokawa, R

    2013-12-01

    To treat sleep bruxism (SB), symptomatic therapy using stabilisation splints (SS) is frequently used. However, their effects on psychological stress and sleep quality have not yet been examined fully. The objective of this study was to clarify the effects of SS use on psychological stress and sleep quality. The subjects (11 men, 12 women) were healthy volunteers. A crossover design was used. Sleep measurements were performed for three consecutive days or longer without (baseline) or with an SS or palatal splint (PS), and data for the final day were evaluated. We measured masseter muscle activity during sleep using portable electromyography to evaluate SB. Furthermore, to compare psychological stress before and after sleep, assessments were made based on STAI-JYZ and the measurement of salivary chromogranin A. To compare each parameter among the three groups (baseline, SS and PS), Friedman's and Dunn's tests were used. From the results of the baseline measurements, eight subjects were identified as high group and 15 as low group. Among the high group, a marked decrease in the number of bruxism events per hour and an increase in the difference in the total STAI Y-1 scores were observed in the SS group compared with those at baseline (P sleep stages. SS use may be effective in reducing the number of SB events, while it may increase psychological stress levels, and SS use did not apparently influence sleep stages. © 2013 John Wiley & Sons Ltd.

  2. Masticatory Muscle Sleep Background EMG Activity is Elevated in Myofascial TMD Patients

    Science.gov (United States)

    Raphael, Karen G.; Janal, Malvin N.; Sirois, David A.; Dubrovsky, Boris; Wigren, Pia E.; Klausner, Jack J.; Krieger, Ana C.; Lavigne, Gilles J.

    2013-01-01

    Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n=124) with a demographically matched control group without TMD (n=46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artifacts were removed. Results indicated that median background EMG during these non SB-event periods was significantly higher (pcases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0–10 numerical scale) on post sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. PMID:24237356

  3. Masticatory muscle sleep background electromyographic activity is elevated in myofascial temporomandibular disorder patients.

    Science.gov (United States)

    Raphael, K G; Janal, M N; Sirois, D A; Dubrovsky, B; Wigren, P E; Klausner, J J; Krieger, A C; Lavigne, G J

    2013-12-01

    Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n = 124) with a demographically matched control group without TMD (n = 46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artefacts were removed. Results indicated that median background EMG during these non-SB event periods was significantly higher (P cases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0-10 numerical scale) on post-sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. © 2013 John Wiley & Sons Ltd.

  4. Abnormal metabolic network activity in REM sleep behavior disorder.

    Science.gov (United States)

    Holtbernd, Florian; Gagnon, Jean-François; Postuma, Ron B; Ma, Yilong; Tang, Chris C; Feigin, Andrew; Dhawan, Vijay; Vendette, Mélanie; Soucy, Jean-Paul; Eidelberg, David; Montplaisir, Jacques

    2014-02-18

    To determine whether the Parkinson disease-related covariance pattern (PDRP) expression is abnormally increased in idiopathic REM sleep behavior disorder (RBD) and whether increased baseline activity is associated with greater individual risk of subsequent phenoconversion. For this cohort study, we recruited 2 groups of RBD and control subjects. Cohort 1 comprised 10 subjects with RBD (63.5 ± 9.4 years old) and 10 healthy volunteers (62.7 ± 8.6 years old) who underwent resting-state metabolic brain imaging with (18)F-fluorodeoxyglucose PET. Cohort 2 comprised 17 subjects with RBD (68.9 ± 4.8 years old) and 17 healthy volunteers (66.6 ± 6.0 years old) who underwent resting brain perfusion imaging with ethylcysteinate dimer SPECT. The latter group was followed clinically for 4.6 ± 2.5 years by investigators blinded to the imaging results. PDRP expression was measured in both RBD groups and compared with corresponding control values. PDRP expression was elevated in both groups of subjects with RBD (cohort 1: p abnormalities in subjects with idiopathic RBD are associated with a greater likelihood of subsequent phenoconversion to a progressive neurodegenerative syndrome.

  5. Stress, Sleep and Depressive Symptoms in Active Duty Military Personnel.

    Science.gov (United States)

    Chou, Han-Wei; Tzeng, Wen-Chii; Chou, Yu-Ching; Yeh, Hui-Wen; Chang, Hsin-An; Kao, Yu-Chen; Huang, San-Yuan; Yeh, Chin-Bin; Chiang, Wei-Shan; Tzeng, Nian-Sheng

    2016-08-01

    The military is a unique occupational group and, because of this, military personnel face different kinds of stress than civilian populations. Sleep problems are an example. The purpose of this study was to investigate the relationship between sleep problems, depression level and coping strategies among military personnel. In this cross-sectional study, military personnel completed the Beck Depression Inventory, the Pittsburgh Sleep Quality Index and the Jalowiec Coping Scale. An evaluation of the test scores showed that officers had better sleep quality and fewer depressive symptoms than enlisted personnel. Military personnel with higher educational levels and less physical illness also had fewer depressive symptoms. Officers and noncommissioned officers preferred problem-focused strategies. Those with higher Beck Depression Inventory and Pittsburgh Sleep Quality Index scores and those who drank alcohol frequently preferred affective-focused strategies. Our results revealed that sleep quality, physical illness and alcohol consumption were associated with the mental health of military personnel. Treating these factors may improve the mental health of military personnel and enhance effective coping strategies. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  6. Sleep Tips: 7 Steps to Better Sleep

    Science.gov (United States)

    ... turn every night. Consider simple tips for better sleep, from setting a sleep schedule to including physical activity in your daily ... factors that can interfere with a good night's sleep — from work stress and family responsibilities to unexpected ...

  7. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  8. Sleep Disturbances in Newborns

    OpenAIRE

    Yasova Barbeau, Daphna; Weiss, Michael D.

    2017-01-01

    The purpose of this review is to serve as an introduction to understanding sleep in the fetus, the preterm neonate and the term neonate. Sleep appears to have numerous important roles, particularly in the consolidation of new information. The sleep cycle changes over time, neonates spend the most time in active sleep and have a progressive shortening of active sleep and lengthening of quiet sleep. Additionally, the sleep cycle is disrupted by many things including disease state and environmen...

  9. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay.

    Directory of Open Access Journals (Sweden)

    J Matthew Mahoney

    Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.

  10. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Directory of Open Access Journals (Sweden)

    Christopher L Buckley

    2018-01-01

    Full Text Available During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results

  11. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Science.gov (United States)

    Buckley, Christopher L; Toyoizumi, Taro

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence

  12. A comparison of passive and active estimates of sleep in a cohort with schizophrenia.

    Science.gov (United States)

    Staples, Patrick; Torous, John; Barnett, Ian; Carlson, Kenzie; Sandoval, Luis; Keshavan, Matcheri; Onnela, Jukka-Pekka

    2017-10-16

    Sleep abnormalities are considered an important feature of schizophrenia, yet convenient and reliable sleep monitoring remains a challenge. Smartphones offer a novel solution to capture both self-reported and objective measures of sleep in schizophrenia. In this three-month observational study, 17 subjects with a diagnosis of schizophrenia currently in treatment downloaded Beiwe, a platform for digital phenotyping, on their personal Apple or Android smartphones. Subjects were given tri-weekly ecological momentary assessments (EMAs) on their own smartphones, and passive data including accelerometer, GPS, screen use, and anonymized call and text message logs was continuously collected. We compare the in-clinic assessment of sleep quality, assessed with the Pittsburgh Sleep Questionnaire Inventory (PSQI), to EMAs, as well as sleep estimates based on passively collected accelerometer data. EMAs and passive data classified 85% (11/13) of subjects as exhibiting high or low sleep quality compared to the in-clinic assessments among subjects who completed at least one in-person PSQI. Phone-based accelerometer data used to infer sleep duration was moderately correlated with subject self-assessment of sleep duration (r = 0.69, 95% CI 0.23-0.90). Active and passive phone data predicts concurrent PSQI scores for all subjects with mean average error of 0.75 and future PSQI scores with a mean average error of 1.9, with scores ranging from 0-14. These results suggest sleep monitoring via personal smartphones is feasible for subjects with schizophrenia in a scalable and affordable manner. SMARTPHONES CAN TRACK SCHIZOPHRENIA-RELATED SLEEP ABNORMALITIES: Smartphones may one-day offer accessible, clinically-useful insights into schizophrenia patients' sleep quality. Despite the clinical relevance of sleep to disease severity, monitoring technologies still evade convenience and reliability. In search of a preferential method, a group of Harvard University researchers led by Patrick

  13. Sleep: A Health Imperative

    Science.gov (United States)

    Luyster, Faith S.; Strollo, Patrick J.; Zee, Phyllis C.; Walsh, James K.

    2012-01-01

    Chronic sleep deficiency, defined as a state of inadequate or mistimed sleep, is a growing and underappreciated determinant of health status. Sleep deprivation contributes to a number of molecular, immune, and neural changes that play a role in disease development, independent of primary sleep disorders. These changes in biological processes in response to chronic sleep deficiency may serve as etiological factors for the development and exacerbation of cardiovascular and metabolic diseases and, ultimately, a shortened lifespan. Sleep deprivation also results in significant impairments in cognitive and motor performance which increase the risk of motor vehicle crashes and work-related injuries and fatal accidents. The American Academy of Sleep Medicine and the Sleep Research Society have developed this statement to communicate to national health stakeholders the current knowledge which ties sufficient sleep and circadian alignment in adults to health. Citation: Luyster FS; Strollo PJ; Zee PC; Walsh JK. Sleep: a health imperative. SLEEP 2012;35(6):727-734. PMID:22654183

  14. Fear Extinction Memory Consolidation Requires Potentiation of Pontine-Wave Activity during REM Sleep

    Science.gov (United States)

    Datta, Subimal; O'Malley, Matthew W .

    2013-01-01

    Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372

  15. A Narrative Review: Actigraphy as an Objective Assessment of Perioperative Sleep and Activity in Pediatric Patients

    Directory of Open Access Journals (Sweden)

    Nicole Conrad

    2017-04-01

    Full Text Available Sleep is an important component of pediatric health and is crucial for cognitive development. Actigraphy is a validated, objective tool to capture sleep and movement data that is increasingly being used in the perioperative context. The aim of this review is to present recent pediatric studies that utilized actigraphy in the perioperative period, highlight gaps in the literature, and provide recommendations for future research. A literature search was completed using OVID and PubMed databases and articles were selected for inclusion based on relevance to the topic. The literature search resulted in 13 papers that utilized actigraphic measures. Results of the review demonstrated that actigraphy has been used to identify predictors and risk factors for poor postoperative sleep, examine associations among perioperative pain and sleep patterns, and assess activity and energy expenditure in both inpatient and outpatient settings. We propose expansion of actigraphy research to include assessment of sleep via actigraphy to: predict functional recovery in pediatric populations, to study postoperative sleep in high-risk pediatric patients, to test the efficacy of perioperative interventions, and to assess outcomes in special populations for which self-report data on sleep and activity is difficult to obtain.

  16. Sleep duration's association with diet, physical activity, mental status, and weight among Korean high school students.

    Science.gov (United States)

    Lee, Jounghee

    2017-01-01

    Sleep deprivation is a critical public health problem, especially in Korean adolescents. This study aimed to identify the association between sleep duration and dietary behaviors, physical activity, mental status, and nutritional status among high school students in South Korea. Based on the data collected from the 2014 Korea Youth Risk Behavior Web-based Survey, 31,407 high school students who met the inclusion criteria were selected and the association between sleep duration and selected health risk factors was identified using multivariable logistic regression models. The average daily sleep duration was 5.7 hours, and the mean BMI was 21.3 kg/m2. Participants with shorter durations of sleep (=7 hours of sleep) were more likely to feel sad or hopeless (adjusted OR, 1.09; 95% CI, 1.00-1.18), have suicidal ideation (adjusted OR, 1.13; 95% CI, 1.01-1.27), and feel much or very much stressed (adjusted OR, 1.82; 95% CI, 1.66-2.00). Moreover, shorter sleep was associated with less frequent muscle-strengthening exercises, >=3 times per week (adjusted OR, 0.86; 95% CI, 0.78-0.94), and more frequent cracker consumption, >=3 times per week (adjusted OR, 1.24; 95% CI, 1.13-1.35). High school students in South Korea suffer from extreme sleep deprivation; only 16% of the students were found to have >=7 hours of sleep during weekdays. Sleep education should be provided to students to improve their physical and mental health.

  17. Physical activity and the association with fatigue and sleep in Danish patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Loppenthin, K.; Esbensen, B. A.; Østergaard, M.

    2015-01-01

    . An inverse univariate association was found between moderate to vigorous physical activity, and fatigue (MFI mental, MFI activity, MFI physical and MFI general), sleep, diabetes, depression, pain, patient global assessment, HAQ and disease activity. The multivariate prediction model demonstrated that fatigue......The aim of this study was to examine physical activity behavior in patients with rheumatoid arthritis and to identify potential correlates of regular physical activity including fatigue, sleep, pain, physical function and disease activity. A total of 443 patients were recruited from a rheumatology...... outpatient clinic and included in this cross-sectional study. Physical activity was assessed by a four-class questionnaire, in addition to the Physical Activity Scale. Other instruments included the Multidimensional Fatigue Inventory (MFI), the Pittsburgh Sleep Quality Index and the Health Assessment...

  18. Physical activity, sedentary behaviour and sleep in COPD guidelines: A systematic review

    Science.gov (United States)

    Effing, Tanja W; Olds, Timothy; Williams, Marie T

    2017-01-01

    Objectives: Physical activity, sedentary and sleep behaviours have strong associations with health. This systematic review aimed to identify how clinical practice guidelines (CPGs) for the management of chronic obstructive pulmonary disease (COPD) report specific recommendations and strategies for these movement behaviours. Methods: A systematic search of databases (Medline, Scopus, CiNAHL, EMbase, Clinical Guideline), reference lists and websites identified current versions of CPGs published since 2005. Specific recommendations and strategies concerning physical activity, sedentary behaviour and sleep were extracted verbatim. The proportions of CPGs providing specific recommendations and strategies were reported. Results: From 2370 citations identified, 35 CPGs were eligible for inclusion. Of these, 21 (60%) provided specific recommendations for physical activity, while none provided specific recommendations for sedentary behaviour or sleep. The most commonly suggested strategies to improve movement behaviours were encouragement from a healthcare provider (physical activity n = 20; sedentary behaviour n = 2) and referral for a diagnostic sleep study (sleep n = 4). Conclusion: Since optimal physical activity, sedentary behaviour and sleep durations and patterns are likely to be associated with mitigating the effects of COPD, as well as with general health and well-being, there is a need for further COPD-specific research, consensus and incorporation of recommendations and strategies into CPGs. PMID:28774202

  19. Efficient universal computing architectures for decoding neural activity.

    Directory of Open Access Journals (Sweden)

    Benjamin I Rapoport

    Full Text Available The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain- machine interfaces (BMIs. Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain- machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than [Formula: see text]. We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA implementation of this portion

  20. American time use survey: sleep time and its relationship to waking activities.

    Science.gov (United States)

    Basner, Mathias; Fomberstein, Kenneth M; Razavi, Farid M; Banks, Siobhan; William, Jeffrey H; Rosa, Roger R; Dinges, David F

    2007-09-01

    To gain some insight into how various behavioral (lifestyle) factors influence sleep duration, by investigation of the relationship of sleep time to waking activities using the American Time Use Survey (ATUS). Cross-sectional data from ATUS, an annual telephone survey of a population sample of US citizens who are interviewed regarding how they spent their time during a 24-hour period between 04:00 on the previous day and 04:00 on the interview day. Data were pooled from the 2003, 2004, and 2005 ATUS databases involving N=47,731 respondents older than 14 years of age. N/A. Adjusted multiple linear regression models showed that the largest reciprocal relationship to sleep was found for work time, followed by travel time, which included commute time. Only shorter than average sleepers (socializing, relaxing, and engaging in leisure activities, while both short ( or =8.5 h) watched more TV than the average sleeper. The extent to which sleep time was exchanged for waking activities was also shown to depend on age and gender. Sleep time was minimal while work time was maximal in the age group 45-54 yr, and sleep time increased both with lower and higher age. Work time, travel time, and time for socializing, relaxing, and leisure are the primary activities reciprocally related to sleep time among Americans. These activities may be confounding the frequently observed association between short and long sleep on one hand and morbidity and mortality on the other hand and should be controlled for in future studies.

  1. Task-dependent modulation of oscillatory neural activity during movements

    DEFF Research Database (Denmark)

    Herz, D. M.; Christensen, M. S.; Reck, C.

    2011-01-01

    connectivity was strongest between central and cerebellar regions. Our results show that neural coupling within motor networks is modulated in distinct frequency bands depending on the motor task. They provide evidence that dynamic causal modeling in combination with EEG source analysis is a valuable tool......Neural oscillations in different frequency bands have been observed in a range of sensorimotor tasks and have been linked to coupling of spatially distinct neurons. The goal of this study was to detect a general motor network that is activated during phasic and tonic movements and to study the task......-dependent modulation of frequency coupling within this network. To this end we recorded 122-multichannel EEG in 13 healthy subjects while they performed three simple motor tasks. EEG data source modeling using individual MR images was carried out with a multiple source beamformer approach. A bilateral motor network...

  2. Spindle frequency activity in the sleep EEG: individual differences and topographic distribution.

    Science.gov (United States)

    Werth, E; Achermann, P; Dijk, D J; Borbély, A A

    1997-11-01

    The brain topography of EEG power spectra in the frequency range of sleep spindles was investigated in 34 sleep recordings from 20 healthy young men. Referential (F3-A2, C3-A2, P3-A2 and O1-A2) and bipolar derivations (F3-C3, C3-P3 and P3-O1) along the anteroposterior axis were used. Sleep spindles gave rise to a distinct peak in the EEG power spectrum. The distribution of the peak frequencies pooled over subjects and derivations showed a bimodal pattern with modes at 11.5 and 13.0 Hz, and a trough at 12.25 Hz. The large inter-subject variation in peak frequency (range: 1.25 Hz) contrasted with the small intra-subject variation between derivations, non-REM sleep episodes and different nights. In some individuals and/or some derivations, only a single spindle peak was present. The topographic distributions from referential and bipolar recordings showed differences. The power showed a declining trend over consecutive non-REM sleep episodes in the low range of spindle frequency activity and a rising trend in the high range. The functional and topographic heterogeneity of sleep spindles in conjunction with the intra-subject stability of their frequency are important characteristics for the analysis of sleep regulation on the basis of the EEG.

  3. Automatic REM Sleep Detection Associated with Idiopathic REM Sleep Behavior Disorder

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Sørensen, Gertrud Laura; Sørensen, Helge Bjarup Dissing

    2011-01-01

    Rapid eye movement sleep Behavior Disorder (RBD) is a strong early marker of later development of Parkinsonism. Currently there are no objective methods to identify and discriminate abnormal from normal motor activity during REM sleep. Therefore, a REM sleep detection without the use of chin...... electromyography (EMG) is useful. This is addressed by analyzing the classification performance when implementing two automatic REM sleep detectors. The first detector uses the electroencephalography (EEG), electrooculography (EOG) and EMG to detect REM sleep, while the second detector only uses the EEG and EOG......, an automatic computerized REM detection algorithm has been implemented, using wavelet packet combined with artificial neural network. Results: When using the EEG, EOG and EMG modalities, it was possible to correctly classify REM sleep with an average Area Under Curve (AUC) equal to 0:900:03 for normal subjects...

  4. The relationship between physical activity, sleep duration and depressive symptoms in older adults: The English Longitudinal Study of Ageing (ELSA

    Directory of Open Access Journals (Sweden)

    Victoria Garfield

    2016-12-01

    Full Text Available Research to date suggests that physical activity (PA is associated with distinct aspects of sleep, but studies have predominantly focused on sleep quality, been carried out in younger adults, and have not accounted for many covariates. Of particular interest is also the reported relationship between physical activity and depression in older adults and as such, their associations with sleep duration. Here we examine the cross-sectional relation between physical activity and sleep duration in a community-dwelling sample of 5265 older adults from the English Longitudinal Study of Ageing. We analysed the data using multiple regression, with physical activity as a categorical exposure and sleep duration a continuous outcome, as well as testing the interaction between physical activity and depressive symptoms, which was significant (p  0.05. Our findings suggest that a potentially effective way of improving sleep in older adults with depressive symptoms is via physical activity interventions.

  5. Stilbene Glucoside, a Putative Sleep Promoting Constituent from Polygonum multiflorum Affects Sleep Homeostasis by Affecting the Activities of Lactate Dehydrogenase and Salivary Alpha Amylase.

    Science.gov (United States)

    Wei, Qian; Ta, Guang; He, Wenjing; Wang, Wei; Wu, Qiucheng

    2017-01-01

    Chinese herbal medicine (CHM) has been used for treating insomnia for centuries. The most used CHM for insomnia was Polygonum multiflorum. However, the molecular mechanism for CHM preventing insomnia is unknown. Stilbene glucoside (THSG), an important active component of P. multiflorum, may play an important role for treating insomnia. To test the hypothesis, Kunming mice were treated with different dosages of THSG. To examine the sleep duration, a computer-controlled sleep-wake detection system was implemented. Electroencephalogram (EEG) and electromyogram (EMG) electrodes were implanted to determine sleep-wake state. RT-PCR and Western blot was used to measure the levels of lactate dehydrogenase (LDH) and saliva alpha amylase. Spearman's rank correlation coefficient was used to identify the strength of correlation between the variables. The results showed that THSG significantly prolonged the sleep time of the mice (palpha amylase (palpha amylase (pamylase were negatively associated with sleep duration (palpha amylase.

  6. Physical Activity in Relation to Sleep Among Community-Dwelling Older Adults in China.

    Science.gov (United States)

    Li, Junxin; Yang, Binbin; Varrasse, Miranda; Ji, Xiaopeng; Wu, MaoChun; Li, Manman; Li, Kun

    2018-02-27

    This cross-sectional study was conducted to describe physical activity and sleep in 290 community-dwelling Chinese older adults and to examine the association between physical activity and poor sleep outcomes. Almost half of the sample were poor sleepers. The majority of the sample regularly participated in walking, some household activity and light sports; yet, only a small portion were involved in work-related activity or in strenuous sports. A greater level of overall physical activity [Odds Ratio (OR) =0.79, 95% confidence interval (CI) = (0.73,0.86)], leisure-time exercise [OR=0.77, 95%CI=(0.68,0.85)], and household activity [OR=0.66, 95%CI= (0.56,0.78)] were associated with reduced likelihood of being poor sleepers and other poor sleep outcomes, independent of covariates including age, sex, education, family income, the number of children, drinking, and sleep hygiene. Future larger scale studies that incorporate both objective and subjective measures are needed to further examine the association and to explore the effects of different types of activity on sleep and other well-beings in older adults.

  7. Impact of traumatic brain injury on sleep structure, electrocorticographic activity and transcriptome in mice.

    Science.gov (United States)

    Sabir, Meriem; Gaudreault, Pierre-Olivier; Freyburger, Marlène; Massart, Renaud; Blanchet-Cohen, Alexis; Jaber, Manar; Gosselin, Nadia; Mongrain, Valérie

    2015-07-01

    Traumatic brain injury (TBI), including mild TBI (mTBI), is importantly associated with vigilance and sleep complaints. Because sleep is required for learning, plasticity and recovery, we here evaluated the bidirectional relationship between mTBI and sleep with two specific objectives: (1) Test that mTBI rapidly impairs sleep-wake architecture and the dynamics of the electrophysiological marker of sleep homeostasis (i.e., non-rapid eye movement sleep delta (1-4Hz) activity); (2) evaluate the impact of sleep loss following mTBI on the expression of plasticity markers that have been linked to sleep homeostasis and on genome-wide gene expression. A closed-head injury model was used to perform a 48h electrocorticographic (ECoG) recording in mice submitted to mTBI or Sham surgery. mTBI was found to immediately decrease the capacity to sustain long bouts of wakefulness as well as the amplitude of the time course of ECoG delta activity during wakefulness. Significant changes in ECoG spectral activity during wakefulness, non-rapid eye movement and rapid eye movement sleep were observed mainly on the second recorded day. A second experiment was performed to measure gene expression in the cerebral cortex and hippocampus after a mTBI followed either by two consecutive days of 6h sleep deprivation (SD) or of undisturbed behavior (quantitative PCR and next-generation sequencing). mTBI modified the expression of genes involved in immunity, inflammation and glial function (e.g., chemokines, glial markers) and SD changed that of genes linked to circadian rhythms, synaptic activity/neuronal plasticity, neuroprotection and cell death and survival. SD appeared to affect gene expression in the cerebral cortex more importantly after mTBI than Sham surgery including that of the astrocytic marker Gfap, which was proposed as a marker of clinical outcome after TBI. Interestingly, SD impacted the hippocampal expression of the plasticity elements Arc and EfnA3 only after mTBI. Overall, our

  8. Disturbances in the circadian pattern of activity and sleep after laparoscopic versus open abdominal surgery

    DEFF Research Database (Denmark)

    Gögenur, Ismail; Bisgaard, Thue; Burgdorf, Stefan

    2008-01-01

    BACKGROUND: Studies on the circadian variation in bodily functions and sleep are important for understanding the pathophysiological processes in the postoperative period. We aimed to investigate changes in the circadian variation in activity after minimally invasive surgery (laparoscopic...... scale (sleep quality, general well-being and pain) and fatigue was measured by a ten-point fatigue scale. The activity levels of the patients were monitored by actigraphy (a wrist-worn device measuring patient activity). Measures of circadian activity level [interday stability (IS), intraday variability...

  9. Effect of experimental change in children's sleep duration on television viewing and physical activity.

    Science.gov (United States)

    Hart, C N; Hawley, N; Davey, A; Carskadon, M; Raynor, H; Jelalian, E; Owens, J; Considine, R; Wing, R R

    2017-12-01

    Paediatric observational studies demonstrate associations between sleep, television viewing and potential changes in daytime activity levels. To determine whether experimental changes in sleep lead to changes in children's sedentary and physical activities. Using a within-subject counterbalanced design, 37 children 8-11 years old completed a 3-week study. Children slept their typical amount during a baseline week and were then randomized to increase or decrease mean time in bed by 1.5 h/night for 1 week; the alternate schedule was completed the final week. Children wore actigraphs on their non-dominant wrist and completed 3-d physical activity recalls each week. Children reported watching more television (p television viewing and decreased mean activity levels. Although additional time awake may help to counteract negative effects of short sleep, increases in reported sedentary activities could contribute to weight gain over time. © 2016 World Obesity Federation.

  10. The effects of gratitude expression on neural activity.

    Science.gov (United States)

    Kini, Prathik; Wong, Joel; McInnis, Sydney; Gabana, Nicole; Brown, Joshua W

    2016-03-01

    Gratitude is a common aspect of social interaction, yet relatively little is known about the neural bases of gratitude expression, nor how gratitude expression may lead to longer-term effects on brain activity. To address these twin issues, we recruited subjects who coincidentally were entering psychotherapy for depression and/or anxiety. One group participated in a gratitude writing intervention, which required them to write letters expressing gratitude. The therapy-as-usual control group did not perform a writing intervention. After three months, subjects performed a "Pay It Forward" task in the fMRI scanner. In the task, subjects were repeatedly endowed with a monetary gift and then asked to pass it on to a charitable cause to the extent they felt grateful for the gift. Operationalizing gratitude as monetary gifts allowed us to engage the subjects and quantify the gratitude expression for subsequent analyses. We measured brain activity and found regions where activity correlated with self-reported gratitude experience during the task, even including related constructs such as guilt motivation and desire to help as statistical controls. These were mostly distinct from brain regions activated by empathy or theory of mind. Also, our between groups cross-sectional study found that a simple gratitude writing intervention was associated with significantly greater and lasting neural sensitivity to gratitude - subjects who participated in gratitude letter writing showed both behavioral increases in gratitude and significantly greater neural modulation by gratitude in the medial prefrontal cortex three months later. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Physical activity, sleep duration and metabolic health in children fluctuate with the lunar cycle

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael; Hjorth, Mads Fiil; Damsgaard, Camilla Trab

    2015-01-01

    Behaviours of several animal species have been linked to lunar periodicity. Evidence for such links in humans is weak; however, recently, shorter sleep duration was reported around full moon in two small samples of adults. As restrictions in sleep duration have been shown to adversely affect...... and sleep as well as 2000 measurements of different cardiometabolic risk factors, including insulin sensitivity, appetite hormones and blood pressure, during nine lunar phases. During the period around full moon, children were 5.0 and 3.2 min per day less active, slept 2.4 and 4.1 min per night longer, had...... compared with days around half moon (both P sleep is responsible for the metabolic alterations observed around full moon. However, we have no understanding of potential mechanisms that may mediate a potential true link between childhood...

  12. Sleep Quality Prediction From Wearable Data Using Deep Learning.

    Science.gov (United States)

    Sathyanarayana, Aarti; Joty, Shafiq; Fernandez-Luque, Luis; Ofli, Ferda; Srivastava, Jaideep; Elmagarmid, Ahmed; Arora, Teresa; Taheri, Shahrad

    2016-11-04

    The importance of sleep is paramount to health. Insufficient sleep can reduce physical, emotional, and mental well-being and can lead to a multitude of health complications among people with chronic conditions. Physical activity and sleep are highly interrelated health behaviors. Our physical activity during the day (ie, awake time) influences our quality of sleep, and vice versa. The current popularity of wearables for tracking physical activity and sleep, including actigraphy devices, can foster the development of new advanced data analytics. This can help to develop new electronic health (eHealth) applications and provide more insights into sleep science. The objective of this study was to evaluate the feasibility of predicting sleep quality (ie, poor or adequate sleep efficiency) given the physical activity wearable data during awake time. In this study, we focused on predicting good or poor sleep efficiency as an indicator of sleep quality. Actigraphy sensors are wearable medical devices used to study sleep and physical activity patterns. The dataset used in our experiments contained the complete actigraphy data from a subset of 92 adolescents over 1 full week. Physical activity data during awake time was used to create predictive models for sleep quality, in particular, poor or good sleep efficiency. The physical activity data from sleep time was used for the evaluation. We compared the predictive performance of traditional logistic regression with more advanced deep learning methods: multilayer perceptron (MLP), convolutional neural network (CNN), simple Elman-type recurrent neural network (RNN), long short-term memory (LSTM-RNN), and a time-batched version of LSTM-RNN (TB-LSTM). Deep learning models were able to predict the quality of sleep (ie, poor or good sleep efficiency) based on wearable data from awake periods. More specifically, the deep learning methods performed better than traditional logistic regression. “CNN had the highest specificity and

  13. Comparison of quantitative EEG characteristics of quiet and active sleep in newborns.

    Science.gov (United States)

    Paul, Karel; Krajca, Vladimír; Roth, Zdenek; Melichar, Jan; Petránek, Svojmil

    2003-11-01

    The aim of the present study was to verify whether the proposed method of computer-supported EEG analysis is able to differentiate the EEG activity in quiet sleep (QS) from that in active sleep (AS) in newborns. A quantitative description of the neonatal EEG may contribute to a more exact evaluation of the functional state of the brain, as well as to a refinement of diagnostics of brain dysfunction manifesting itself frequently as 'dysrhythmia' or 'dysmaturity'. Twenty-one healthy newborns (10 full-term and 11 pre-term) were examined polygraphically (EEG-eight channels, respiration, ECG, EOG and EMG) in the course of sleep. From each EEG record, two 5-min samples (one from QS and one from AS) were subject to an off-line computerized analysis. The obtained data were averaged with respect to the sleep state and to the conceptional age. The number of variables was reduced by means of factor analysis. All factors identified by factor analysis were highly significantly influenced by sleep states in both developmental periods. Likewise, a comparison of the measured variables between QS and AS revealed many statistically significant differences. The variables describing (a) the number and length of quasi-stationary segments, (b) voltage and (c) power in delta and theta bands contributed to the greatest degree to the differentiation of EEGs between both sleep states. The presented method of the computerized EEG analysis which has good discriminative potential is adequately sensitive and describes the neonatal EEG with convenient accuracy.

  14. A simple method for estimating the entropy of neural activity

    International Nuclear Information System (INIS)

    Berry II, Michael J; Tkačik, Gašper; Dubuis, Julien; Marre, Olivier; Da Silveira, Rava Azeredo

    2013-01-01

    The number of possible activity patterns in a population of neurons grows exponentially with the size of the population. Typical experiments explore only a tiny fraction of the large space of possible activity patterns in the case of populations with more than 10 or 20 neurons. It is thus impossible, in this undersampled regime, to estimate the probabilities with which most of the activity patterns occur. As a result, the corresponding entropy—which is a measure of the computational power of the neural population—cannot be estimated directly. We propose a simple scheme for estimating the entropy in the undersampled regime, which bounds its value from both below and above. The lower bound is the usual ‘naive’ entropy of the experimental frequencies. The upper bound results from a hybrid approximation of the entropy which makes use of the naive estimate, a maximum entropy fit, and a coverage adjustment. We apply our simple scheme to artificial data, in order to check their accuracy; we also compare its performance to those of several previously defined entropy estimators. We then apply it to actual measurements of neural activity in populations with up to 100 cells. Finally, we discuss the similarities and differences between the proposed simple estimation scheme and various earlier methods. (paper)

  15. 24 Hours of Sleep, Sedentary Behavior, and Physical Activity with Nine Wearable Devices

    Science.gov (United States)

    Rosenberger, Mary E.; Buman, Matthew P.; Haskell, William L.; McConnell, Michael V.; Carstensen, Laura L.

    2015-01-01

    Getting enough sleep, exercising and limiting sedentary activities can greatly contribute to disease prevention and overall health and longevity. Measuring the full 24-hour activity cycle - sleep, sedentary behavior (SED), light intensity physical activity (LPA) and moderate-to-vigorous physical activity (MVPA) - may now be feasible using small wearable devices. PURPOSE This study compares nine devices for accuracy in 24-hour activity measurement. METHODS Adults (N=40, 47% male) wore nine devices for 24-hours: Actigraph GT3X+, activPAL, Fitbit One, GENEactiv, Jawbone Up, LUMOback, Nike Fuelband, Omron pedometer, and Z-Machine. Comparisons (to standards) were made for total sleep time (Z-machine), time spent in SED (activPAL), LPA (GT3x+), MVPA (GT3x+), and steps (Omron). Analysis included mean absolute percent error, equivalence testing, and Bland-Altman plots. RESULTS Error rates ranged from 8.1–16.9% for sleep; 9.5–65.8% for SED; 19.7–28.0% for LPA; 51.8–92% for MVPA; and 14.1–29.9% for steps. Equivalence testing indicated only two comparisons were significantly equivalent to standards: the LUMOback for sedentary behavior and the GT3X+ for sleep. Bland-Altman plots indicated GT3X+ had the closest measurement for sleep, LUMOback for sedentary behavior, GENEactiv for LPA, Fitbit for MVPA and GT3X+ for steps. CONCLUSIONS Currently, no device accurately captures activity data across the entire 24-hour day, but the future of activity measurement should aim for accurate 24-hour measurement as a goal. Researchers should continue to select measurement devices based on their primary outcomes of interest. PMID:26484953

  16. Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites

    Directory of Open Access Journals (Sweden)

    Bogdan C. Raducanu

    2017-10-01

    Full Text Available We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm and 12 reference pixels (20 µm × 80 µm, densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678. Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission.

  17. Rest-activity circadian rhythm and sleep quality in patients with binge eating disorder.

    Science.gov (United States)

    Roveda, E; Montaruli, A; Galasso, L; Pesenti, C; Bruno, E; Pasanisi, P; Cortellini, M; Rampichini, S; Erzegovesi, S; Caumo, A; Esposito, F

    2018-02-01

    Recent findings suggest that altered rest-activity circadian rhythms (RARs) are associated with a compromised health status. RARs abnormalities have been observed also in several pathological conditions, such as cardiovascular, neurological, and cancer diseases. Binge eating disorder (BED) is the most common eating disorder, with a prevalence of 3.5% in women and 2% in men. BED and its associate obesity and motor inactivity could induce RARs disruption and have negative consequences on health-related quality of life. However, the circadian RARs and sleep behavior in patients with BED has been so far assessed only by questionnaires. Therefore, the purpose of this study was to determine RARs and sleep parameters by actigraphy in patients with BED compared to a body mass index-matched control group (Ctrl). Sixteen participants (eight obese women with and eight obese women without BED diagnosis) were recruited to undergo 5-day monitoring period by actigraphy (MotionWatch 8®, CamNtech, Cambridge, UK) to evaluate RARs and sleep parameters. In order to determine the RARs, the actigraphic data were analyzed using the single cosinor method. The rhythmometric parameters of activity levels (MESOR, amplitude and acrophase) were then processed with the population mean cosinor. The Actiwatch Sleep Analysis Software (Cambridge Neurotecnology, Cambridge, UK) evaluated the sleep patterns. In each participant, we considered seven sleep parameters (sleep onset: S-on; sleep offset: S-off; sleep duration: SD; sleep latency: SL; movement and fragmentation index: MFI; immobility time: IT; sleep efficiency: SE) calculated over a period of five nights. The population mean cosinor applied to BED and Ctrl revealed the presence of a significant circadian rhythm in both groups (p < 0.001). The MESOR (170.0 vs 301.6 a.c., in BED and Ctrl, respectively; p < 0.01) and amplitude (157.66 vs 238.19 a.c., in BED and Ctrl, respectively p < 0.05) differed significantly between the two groups

  18. translin Is Required for Metabolic Regulation of Sleep.

    Science.gov (United States)

    Murakami, Kazuma; Yurgel, Maria E; Stahl, Bethany A; Masek, Pavel; Mehta, Aradhana; Heidker, Rebecca; Bollinger, Wesley; Gingras, Robert M; Kim, Young-Joon; Ja, William W; Suter, Beat; DiAngelo, Justin R; Keene, Alex C

    2016-04-04

    Dysregulation of sleep or feeding has enormous health consequences. In humans, acute sleep loss is associated with increased appetite and insulin insensitivity, while chronically sleep-deprived individuals are more likely to develop obesity, metabolic syndrome, type II diabetes, and cardiovascular disease. Conversely, metabolic state potently modulates sleep and circadian behavior; yet, the molecular basis for sleep-metabolism interactions remains poorly understood. Here, we describe the identification of translin (trsn), a highly conserved RNA/DNA binding protein, as essential for starvation-induced sleep suppression. Strikingly, trsn does not appear to regulate energy stores, free glucose levels, or feeding behavior suggesting the sleep phenotype of trsn mutant flies is not a consequence of general metabolic dysfunction or blunted response to starvation. While broadly expressed in all neurons, trsn is transcriptionally upregulated in the heads of flies in response to starvation. Spatially restricted rescue or targeted knockdown localizes trsn function to neurons that produce the tachykinin family neuropeptide Leucokinin. Manipulation of neural activity in Leucokinin neurons revealed these neurons to be required for starvation-induced sleep suppression. Taken together, these findings establish trsn as an essential integrator of sleep and metabolic state, with implications for understanding the neural mechanism underlying sleep disruption in response to environmental perturbation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Well-Being Tracking via Smartphone-Measured Activity and Sleep: Cohort Study.

    Science.gov (United States)

    DeMasi, Orianna; Feygin, Sidney; Dembo, Aluma; Aguilera, Adrian; Recht, Benjamin

    2017-10-05

    Automatically tracking mental well-being could facilitate personalization of treatments for mood disorders such as depression and bipolar disorder. Smartphones present a novel and ubiquitous opportunity to track individuals' behavior and may be useful for inferring and automatically monitoring mental well-being. The aim of this study was to assess the extent to which activity and sleep tracking with a smartphone can be used for monitoring individuals' mental well-being. A cohort of 106 individuals was recruited to install an app on their smartphone that would track their well-being with daily surveys and track their behavior with activity inferences from their phone's accelerometer data. Of the participants recruited, 53 had sufficient data to infer activity and sleep measures. For this subset of individuals, we related measures of activity and sleep to the individuals' well-being and used these measures to predict their well-being. We found that smartphone-measured approximations for daily physical activity were positively correlated with both mood (P=.004) and perceived energy level (PSleep duration was positively correlated with mood (P=.02) but not energy. Our measure for sleep disturbance was not found to be significantly related to either mood or energy, which could imply too much noise in the measurement. Models predicting the well-being measures from the activity and sleep measures were found to be significantly better than naive baselines (Psleep inferred from smartphone activity were strongly related to and somewhat predictive of participants' well-being. Whereas the improvement over naive models was modest, it reaffirms the importance of considering physical activity and sleep for predicting mood and for making automatic mood monitoring a reality. ©Orianna DeMasi, Sidney Feygin, Aluma Dembo, Adrian Aguilera, Benjamin Recht. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 05.10.2017.

  20. Associations among self-perceived work and life stress, trouble sleeping, physical activity, and body weight among Canadian adults.

    Science.gov (United States)

    Sampasa-Kanyinga, Hugues; Chaput, Jean-Philippe

    2017-03-01

    We investigated the associations among self-perceived work and life stress, trouble sleeping, physical activity and body weight among Canadian adults, and tested whether trouble sleeping and physical activity moderated the relationship between work/life stress and body weight, and whether work/life stress and physical activity moderated the relationship between trouble sleeping and body weight. Data on 13,926 Canadian adults aged 20years and older were derived from the nationally representative 2012 Canadian Community Health Survey. After adjusting for age, sex, education level, household income, marital status and job insecurity, self-perceived work and life stress and trouble sleeping were associated with a higher BMI. The associations of work and life stress with higher BMI were independent of trouble sleeping and physical activity in addition to other covariates, while that of trouble sleeping and higher BMI was independent of work and life stress. Results further indicated that trouble sleeping among inactive participants was related to a higher BMI; however, this relationship was almost null for adults who self-reported being physically active for about 8h/week. These findings suggest that work and life stress are both associated with excess weight in adults, regardless of physical activity level, while the link of trouble sleeping with BMI varies by physical activity level. Future research is necessary to determine whether reducing work and life stress and improving sleep habits would benefit the prevention of weight gain and obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Sleep Sleeping Patch

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Sleep Sleeping Patch is a new kind of external patch based on modern sleep medicine research achievements, which uses the internationally advanced transdermal therapeutic system (TTS). The Sleep Sleeping Patch transmits natural sleep inducers such as peppermint and liquorice extracts and melatonin through the skin to induce sleep. Clinical research proves that the Sleep Sleeping Patch can effectively improve insomnia and the quality of sleep. Highly effective: With the modern TTS therapy,

  2. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep.

    Directory of Open Access Journals (Sweden)

    Reto Huber

    2007-03-01

    Full Text Available Sleep slow wave activity (SWA is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning.To test this hypothesis directly, we used transcranial magnetic stimulation (TMS in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1+/-17.4%, p<0.01, n = 10. Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep.These results provide direct evidence for a link between plastic changes and the local regulation of sleep need.

  3. Interrelationships of Physical Activity and Sleep with Cardiovascular Risk Factors: a Person-Oriented Approach.

    Science.gov (United States)

    Wennman, Heini; Kronholm, Erkki; Partonen, Timo; Tolvanen, Asko; Peltonen, Markku; Vasankari, Tommi; Borodulin, Katja

    2015-12-01

    Associations of behaviorally modifiable factors like physical activity (PA), sedentary behaviors, and sleep with cardiovascular diseases (CVDs) are complicated. We examined whether membership in latent classes (LCs) differentiated by PA and sleep profiles (real-life clustering of behaviors in population subgroups) associate with metabolic risk factors and CVD risk. The National FINRISK 2012 Study comprise a cross-sectional sample of 10,000 Finns aged 25 to 74 years. Analyses included participants with complete data on a health questionnaire, a health examination, who had no prevalent CVD (n = 4031). LCs with PA and sleep profiles were previously defined using latent class analysis. Ten metabolic risk factors and the Framingham 10-year CVD risk score were compared between the LCs. PA and sleep class profiles were substantially similar for genders. Compared to LC-1, with a profile including high PA and sufficient sleep, membership in LC-4, with a profile including sedentariness and insufficient sleep was associated with high metabolic risk factors in women but not in men. In women, also membership in LC-2, with a profile including light PA, sufficient sleep, and high sedentariness was associated with high metabolic risk factors. The Framingham 10-year CVD risk score was highest in LCs 2 and 4 in both genders. Membership in LCs differentiated by PA and sleep profiles was associated with metabolic risk factors merely in women, suggesting gender differences in the interrelationships of health behaviors and metabolic risk factors. Total CVD risk differed between the LCs despite of gender; however, the effect was small.

  4. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion.

    Science.gov (United States)

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-09-01

    Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. © 2014 Associated Professional Sleep Societies, LLC.

  5. Normal weight children have higher cognitive performance – Independent of physical activity, sleep, and diet

    DEFF Research Database (Denmark)

    Hjorth, Mads F.; Sørensen, Louise B.; Andersen, Rikke

    2016-01-01

    % of expected learning within one school year (P breakfast consumption, fewer sleep problems, higher CRF, less total physical activity, more sedentary time, and less light physical activity were associated with higher cognitive performance independently of each other in at least one of the three...

  6. Partial Sleep Deprivation Reduces the Efficacy of Orexin-A to Stimulate Physical Activity and Energy Expenditure.

    Science.gov (United States)

    DePorter, Danielle P; Coborn, Jamie E; Teske, Jennifer A

    2017-10-01

    Sufficient sleep is required for weight maintenance. Sleep deprivation due to noise exposure stimulates weight gain by increasing hyperphagia and reducing energy expenditure (EE). Yet the mechanistic basis underlying the weight gain response is unclear. Orexin-A promotes arousal and negative energy balance, and orexin terminals project to the ventrolateral preoptic area (VLPO), which is involved in sleep-to-wake transitions. To determine whether sleep deprivation reduces orexin function in VLPO and to test the hypothesis that sleep deprivation would attenuate the orexin-A-stimulated increase in arousal, physical activity (PA), and EE. Electroencephalogram, electromyogram, distance traveled, and EE were determined in male Sprague-Dawley rats following orexin-A injections into VLPO both before and after acute (12-h) and chronic (8 h/d, 9 d) sleep deprivation by noise exposure. Orexin-A in the VLPO significantly increased arousal, PA, total EE, and PA-related EE and reduced sleep and respiratory quotient before sleep deprivation. In contrast to after acute sleep deprivation in which orexin-A failed to stimulate EE during PA only, orexin-A failed to significantly increase arousal, PA, fat oxidation, total EE, and PA-related EE after chronic sleep deprivation. Sleep deprivation may reduce sensitivity to endogenous stimuli that enhance EE due to PA and thus stimulate weight gain. © 2017 The Obesity Society.

  7. Deep Recurrent Neural Networks for Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Abdulmajid Murad

    2017-11-01

    Full Text Available Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM and k-nearest neighbors (KNN. Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs and CNNs.

  8. Copper is an endogenous modulator of neural circuit spontaneous activity.

    Science.gov (United States)

    Dodani, Sheel C; Firl, Alana; Chan, Jefferson; Nam, Christine I; Aron, Allegra T; Onak, Carl S; Ramos-Torres, Karla M; Paek, Jaeho; Webster, Corey M; Feller, Marla B; Chang, Christopher J

    2014-11-18

    For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.

  9. Neural activity in the hippocampus during conflict resolution.

    Science.gov (United States)

    Sakimoto, Yuya; Okada, Kana; Hattori, Minoru; Takeda, Kozue; Sakata, Shogo

    2013-01-15

    This study examined configural association theory and conflict resolution models in relation to hippocampal neural activity during positive patterning tasks. According to configural association theory, the hippocampus is important for responses to compound stimuli in positive patterning tasks. In contrast, according to the conflict resolution model, the hippocampus is important for responses to single stimuli in positive patterning tasks. We hypothesized that if configural association theory is applicable, and not the conflict resolution model, the hippocampal theta power should be increased when compound stimuli are presented. If, on the other hand, the conflict resolution model is applicable, but not configural association theory, then the hippocampal theta power should be increased when single stimuli are presented. If both models are valid and applicable in the positive patterning task, we predict that the hippocampal theta power should be increased by presentation of both compound and single stimuli during the positive patterning task. To examine our hypotheses, we measured hippocampal theta power in rats during a positive patterning task. The results showed that hippocampal theta power increased during the presentation of a single stimulus, but did not increase during the presentation of a compound stimulus. This finding suggests that the conflict resolution model is more applicable than the configural association theory for describing neural activity during positive patterning tasks. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Deep Recurrent Neural Networks for Human Activity Recognition.

    Science.gov (United States)

    Murad, Abdulmajid; Pyun, Jae-Young

    2017-11-06

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.

  11. Differences in activity of cytochrome C oxidase in brain between sleep and wakefulness.

    Science.gov (United States)

    Nikonova, Elena V; Vijayasarathy, Camasamudram; Zhang, Lin; Cater, Jacqueline R; Galante, Raymond J; Ward, Stephen E; Avadhani, Narayan G; Pack, Allan I

    2005-01-01

    Increased mRNA level of subunit 1 cytochrome c oxidase (COXI) during wakefulness and after short-term sleep deprivation has been described in brain. We hypothesized that this might contribute to increased activity of cytochrome oxidase (COX) enzyme during wakefulness, as part of the mechanisms to provide sufficient amounts of adenosine triphosphate to meet increased neuronal energy demands. COX activity was measured in isolated mitochondria from different brain regions in groups of rats with 3 hours of spontaneous sleep, 3 hours of spontaneous wake, and 3 hours of sleep deprivation. The group with 3 hours of spontaneous wake was added to delineate the circadian component of changes in the enzyme activity. Northern blot analysis was performed to examine the mRNA levels of 2 subunits of the enzyme COXI and COXIV, encoded by mitochondrial and nuclear DNA, respectively. Laboratory of Biochemistry, Department of Animal Biology, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania. 2-month-old male Fischer rats (N = 21) implanted for polygraphic recording. For COX activity, there was a main effect by analysis of variance of experimental group (P sleep-deprived groups as compared to the sleep group. A main effect of brain region was also significant (P sleep. There is an increase in COX activity after both 3 hours of spontaneous wake and 3 hours of sleep deprivation as compared with 3 hours of spontaneous sleep in diverse brain regions, which could be, in part, explained by the increased levels of bigenomic transcripts of the enzyme. This likely contributes to increased adenosine triphosphate production during wakefulness. ADP, adenosine diphosphate; ATP, adenosine triphosphate; COXI, cytochrome c oxidase subunit 1 mRNA; COX, cytochrome c oxidase (protein); CREB, cyclic AMP response element binding protein; DNA, deoxyribonucleic acid; EDTA, ethylenediaminetetraacetic acid; EEG, electroencephalography; EMG, electromyography; GABP, GA binding

  12. Preparatory neural activity predicts performance on a conflict task.

    Science.gov (United States)

    Stern, Emily R; Wager, Tor D; Egner, Tobias; Hirsch, Joy; Mangels, Jennifer A

    2007-10-24

    Advance preparation has been shown to improve the efficiency of conflict resolution. Yet, with little empirical work directly linking preparatory neural activity to the performance benefits of advance cueing, it is not clear whether this relationship results from preparatory activation of task-specific networks, or from activity associated with general alerting processes. Here, fMRI data were acquired during a spatial Stroop task in which advance cues either informed subjects of the upcoming relevant feature of conflict stimuli (spatial or semantic) or were neutral. Informative cues decreased reaction time (RT) relative to neutral cues, and cues indicating that spatial information would be task-relevant elicited greater activity than neutral cues in multiple areas, including right anterior prefrontal and bilateral parietal cortex. Additionally, preparatory activation in bilateral parietal cortex and right dorsolateral prefrontal cortex predicted faster RT when subjects responded to spatial location. No regions were found to be specific to semantic cues at conventional thresholds, and lowering the threshold further revealed little overlap between activity associated with spatial and semantic cueing effects, thereby demonstrating a single dissociation between activations related to preparing a spatial versus semantic task-set. This relationship between preparatory activation of spatial processing networks and efficient conflict resolution suggests that advance information can benefit performance by leading to domain-specific biasing of task-relevant information.

  13. On the need of objective vigilance monitoring: effects of sleep loss on target detection and task-negative activity using combined EEG/fMRI

    NARCIS (Netherlands)

    Czisch, M.; Wehrle, R.; Harsay, H.A.; Wetter, T.C.; Holsboer, F.; Sämann, P.G.; Drummond, S.P.A.

    2012-01-01

    Sleep loss affects attention by reducing levels of arousal and alertness. The neural mechanisms underlying the compensatory efforts of the brain to maintain attention and performance after sleep deprivation (SD) are not fully understood. Previous neuroimaging studies of SD have not been able to

  14. Effects of physical activity at work and life-style on sleep in workers from an Amazonian Extractivist Reserve

    Directory of Open Access Journals (Sweden)

    Andressa Juliane Martins

    2016-10-01

    Full Text Available Physical activity has been recommended as a strategy for improving sleep. Nevertheless, physical effort at work might not be not the ideal type of activity to promote sleep quality. The aim of this study was to evaluate the effects of type of job (low vs. high physical effort and life-style on sleep of workers from an Amazonian Extractivist Reserve, Brazil. A cross-sectional study of 148 low physical activity (factory workers and 340 high physical activity (rubber tappers was conducted between September and November 2011. The workers filled out questionnaires collecting data on demographics (sex, age, occupation, marital status and children, health (reported morbidities, sleep disturbances, musculoskeletal pain and body mass index and life-style (smoking, alcohol use and practice of leisure-time physical activity. Logistic regression models were applied with the presence of sleep disturbances as the primary outcome variable. The prevalence of sleep disturbances among factory workers and rubber tappers was 15.5% and 27.9%, respectively. The following independent variables of the analysis were selected based on a univariate model (p40 years, and having musculoskeletal pain (≥5 symptoms. Rubber tapper work, owing to greater physical effort, pain and musculoskeletal fatigue, was associated with sleep disturbances. Being female and older than 40 years were also predictors of poor sleep. In short, these findings suggest that demanding physical exertion at work may not improve sleep quality.

  15. Medical Imaging for Understanding Sleep Regulation

    Science.gov (United States)

    Wong, Kenneth

    2011-10-01

    Sleep is essential for the health of the nervous system. Lack of sleep has a profound negative effect on cognitive ability and task performance. During sustained military operations, soldiers often suffer from decreased quality and quantity of sleep, increasing their susceptibility to neurological problems and limiting their ability to perform the challenging mental tasks that their missions require. In the civilian sector, inadequate sleep and overt sleep pathology are becoming more common, with many detrimental impacts. There is a strong need for new, in vivo studies of human brains during sleep, particularly the initial descent from wakefulness. Our research team is investigating sleep using a combination of magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalography (EEG). High resolution MRI combined with PET enables localization of biochemical processes (e.g., metabolism) to anatomical structures. MRI methods can also be used to examine functional connectivity among brain regions. Neural networks are dynamically reordered during different sleep stages, reflecting the disconnect with the waking world and the essential yet unconscious brain activity that occurs during sleep.[4pt] In collaboration with Linda Larson-Prior, Washington University; Alpay Ozcan, Virginia Tech; Seong Mun, Virginia Tech; and Zang-Hee Cho, Gachon University.

  16. Social power and approach-related neural activity.

    Science.gov (United States)

    Boksem, Maarten A S; Smolders, Ruud; De Cremer, David

    2012-06-01

    It has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motivation has been found to be associated with increased relative left-sided frontal brain activity, while withdrawal motivation has been associated with increased right sided activations. We measured EEG activity while subjects engaged in a task priming either high or low social power. Results show that high social power is indeed associated with greater left-frontal brain activity compared to low social power, providing the first neural evidence for the theory that high power is associated with approach-related motivation. We propose a framework accounting for differences in both approach motivation and goal-directed behaviour associated with different levels of power.

  17. Co-activated yet disconnected-Neural correlates of eye closures when trying to stay awake.

    Science.gov (United States)

    Ong, Ju Lynn; Kong, Danyang; Chia, Tiffany T Y; Tandi, Jesisca; Thomas Yeo, B T; Chee, Michael W L

    2015-09-01

    Spontaneous eye-closures that herald sleep onset become more frequent when we are sleep deprived. Although these are typically associated with decreased responsiveness to external stimuli, it is less clear what occurs in the brain at these transitions to drowsiness and light sleep. To investigate this, task-free fMRI of sleep-deprived participants was acquired. BOLD activity associated with periods of spontaneously occurring eye closures were marked and analyzed. We observed concurrent and extensive hypnagogic co-activation of the extrastriate visual, auditory, and somatosensory cortices as well as the default mode network, consistent with internal sensory activity without external stimulation. Co-activation of fronto-parietal areas known to mediate attentional control could correspond with participants resisting sleep or additional engagement of mental imagery. This constellation of signal changes differed from those elicited by cued eye closures of similar duration and distribution in the same, rested participants. They also differ from signal changes associated with mind-wandering and consolidated light sleep. Concurrent with the observed event-related changes, eye closures elicited additional reduction in functional connectivity within nodes of the DMN and DAN, superposed on already reduced connectivity associated with sleep deprivation. There was concurrent deactivation of the thalamus during eye-closure during the sleep-deprived state but almost similar changes occurred in the well-rested state that may also be relevant. These findings highlight the dynamic shifts in brain activity and connectivity at border between wakefulness and sleep. Copyright © 2015. Published by Elsevier Inc.

  18. Modulation of Neural Activity during Guided Viewing of Visual Art.

    Science.gov (United States)

    Herrera-Arcos, Guillermo; Tamez-Duque, Jesús; Acosta-De-Anda, Elsa Y; Kwan-Loo, Kevin; de-Alba, Mayra; Tamez-Duque, Ulises; Contreras-Vidal, Jose L; Soto, Rogelio

    2017-01-01

    Mobile Brain-Body Imaging (MoBI) technology was deployed to record multi-modal data from 209 participants to examine the brain's response to artistic stimuli at the Museo de Arte Contemporáneo (MARCO) in Monterrey, México. EEG signals were recorded as the subjects walked through the exhibit in guided groups of 6-8 people. Moreover, guided groups were either provided with an explanation of each art piece (Guided-E), or given no explanation (Guided-NE). The study was performed using portable Muse (InteraXon, Inc, Toronto, ON, Canada) headbands with four dry electrodes located at AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL) control condition devoid of artistic stimuli and selected his/her favorite piece of art (FP) during the guided tour. In this study, we report data related to participants' demographic information and aesthetic preference as well as effects of art viewing on neural activity (EEG) in a select subgroup of 18-30 year-old subjects (Nc = 25) that generated high-quality EEG signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and presence or absence of art explanation were also analyzed. After denoising, clustering of spectral EEG models was used to identify neural patterns associated with BL and FP conditions. Results indicate statistically significant suppression of beta band frequencies (15-25 Hz) in the prefrontal electrodes (AF7 and AF8) during appreciation of subjects' favorite painting, compared to the BL condition, which was significantly different from EEG responses to non-favorite paintings (NFP). No significant differences in brain activity in relation to the presence or absence of explanation during exhibit tours were found. Moreover, a frontal to posterior asymmetry in neural activity was observed, for both BL and FP conditions. These findings provide new information about frequency-related effects of preferred art viewing in brain activity, and support the view that art appreciation is

  19. Functional neuroimaging insights into the physiology of human sleep.

    Science.gov (United States)

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre

    2010-12-01

    Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep.

  20. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning.

    Science.gov (United States)

    Nokia, Miriam S; Mikkonen, Jarno E; Penttonen, Markku; Wikgren, Jan

    2012-01-01

    Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4-8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval (ITI), when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs.

  1. Characterization of K-complexes and slow wave activity in a neural mass model.

    Directory of Open Access Journals (Sweden)

    Arne Weigenand

    2014-11-01

    Full Text Available NREM sleep is characterized by two hallmarks, namely K-complexes (KCs during sleep stage N2 and cortical slow oscillations (SOs during sleep stage N3. While the underlying dynamics on the neuronal level is well known and can be easily measured, the resulting behavior on the macroscopic population level remains unclear. On the basis of an extended neural mass model of the cortex, we suggest a new interpretation of the mechanisms responsible for the generation of KCs and SOs. As the cortex transitions from wake to deep sleep, in our model it approaches an oscillatory regime via a Hopf bifurcation. Importantly, there is a canard phenomenon arising from a homoclinic bifurcation, whose orbit determines the shape of large amplitude SOs. A KC corresponds to a single excursion along the homoclinic orbit, while SOs are noise-driven oscillations around a stable focus. The model generates both time series and spectra that strikingly resemble real electroencephalogram data and points out possible differences between the different stages of natural sleep.

  2. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.

    Science.gov (United States)

    Rodriguez, Alexander V; Funk, Chadd M; Vyazovskiy, Vladyslav V; Nir, Yuval; Tononi, Giulio; Cirelli, Chiara

    2016-12-07

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal "fatigue": high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the "fatigue" accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire

  3. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state

    Science.gov (United States)

    Winder, Aaron T.; Echagarruga, Christina; Zhang, Qingguang; Drew, Patrick J.

    2017-01-01

    Spontaneous fluctuations in hemodynamic signals in the absence of a task or overt stimulation are used to infer neural activity. We tested this coupling by simultaneously measuring neural activity and changes in cerebral blood volume (CBV) in the somatosensory cortex of awake, head-fixed mice during periods of true rest, and during whisker stimulation and volitional whisking. Here we show that neurovascular coupling was similar across states, and large spontaneous CBV changes in the absence of sensory input were driven by volitional whisker and body movements. Hemodynamic signals during periods of rest were weakly correlated with neural activity. Spontaneous fluctuations in CBV and vessel diameter persisted when local neural spiking and glutamatergic input was blocked, and during blockade of noradrenergic receptors, suggesting a non-neuronal origin for spontaneous CBV fluctuations. Spontaneous hemodynamic signals reflect a combination of behavior, local neural activity, and putatively non-neural processes. PMID:29184204

  4. Involvement of autonomic nervous activity changes in gastroesophageal reflux in neonates during sleep and wakefulness.

    Directory of Open Access Journals (Sweden)

    Djamal-Dine Djeddi

    Full Text Available BACKGROUND: It has been suggested that disturbed activity of the autonomic nervous system is one of the factors involved in gastroesophageal reflux (GER in adults. We sought to establish whether transient ANS dysfunction (as assessed by heart rate variability is associated with the occurrence of GER events in neonates during sleep and wakefulness. METHODS: Nineteen neonates with suspected GER underwent simultaneous, synchronized 12-hour polysomnography and esophageal multichannel impedance-pH monitoring. We compared changes in HRV parameters during three types of periods (control and prior to and during reflux with respect to the vigilance state. RESULTS: The vigilance state influenced the distribution of GER events (P<0.001, with 53.4% observed during wakefulness, 37.6% observed during active sleep and only 9% observed during quiet sleep. A significant increase in the sympathovagal ratio (+32%, P=0.013 was observed in the period immediately prior to reflux (due to a 15% reduction in parasympathetic activity (P=0.017, relative to the control period. This phenomenon was observed during both wakefulness and active sleep. CONCLUSION: Our results showed that GER events were preceded by a vigilance-state-independent decrease in parasympathetic tone. This suggests that a pre-reflux change in ANS activity is one of the factors contributing to the mechanism of reflux in neonates.

  5. Cholinergic Oculomotor Nucleus Activity Is Induced by REM Sleep Deprivation Negatively Impacting on Cognition.

    Science.gov (United States)

    Santos, Patrícia Dos; Targa, Adriano D S; Noseda, Ana Carolina D; Rodrigues, Lais S; Fagotti, Juliane; Lima, Marcelo M S

    2017-09-01

    Several efforts have been made to understand the involvement of rapid eye movement (REM) sleep for cognitive processes. Consolidation or retention of recognition memories is severely disrupted by REM sleep deprivation (REMSD). In this regard, pedunculopontine tegmental nucleus (PPT) and other brainstem nuclei, such as pontine nucleus (Pn) and oculomotor nucleus (OCM), appear to be candidates to take part in this REM sleep circuitry with potential involvement in cognition. Therefore, the objective of this study was to investigate a possible association between the performance of Wistar rats in a declarative memory and PPT, Pn, and OCM activities after different periods of REMSD. We examined c-Fos and choline acetyltransferase (ChaT) expressions as indicators of neuronal activity as well as a familiarity-based memory test. The animals were distributed in groups: control, REMSD, and sleep rebound (REB). At the end of the different REMSD (24, 48, 72, and 96 h) and REB (24 h) time points, the rats were immediately tested in the object recognition test and then the brains were collected. Results indicated that OCM neurons presented an increased activity, due to ChaT-labeling associated with REMSD that negatively correlated (r = -0.32) with the cognitive performance. This suggests the existence of a cholinergic compensatory mechanism within the OCM during REMSD. We also showed that 24 h of REMSD impacted similarly in memory, compared to longer periods of REMSD. These data extend the notion that REM sleep is influenced by areas other than PPT, i.e., Pn and OCM, which could be key players in both sleep processes and cognition.

  6. Efficacy of physical activity counseling plus sleep restriction therapy on the patients with chronic insomnia

    Directory of Open Access Journals (Sweden)

    Wang J

    2015-10-01

    Full Text Available Jihui Wang, Guangxia Yin, Guanying Li, Wenjing Liang, Qinling Wei Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China Objective: Lack of physical activity (PA is common in patients with chronic insomnia. Studies to increase PA and decrease sedentary behavior in those patients are limited. Therefore, we investigated the efficacy of “PA counseling combined with sleep restriction (SR therapy (PASR” vs only SR in the patients with chronic insomnia. Methods: Seventy-one outpatients were assigned to either PASR (n=35, consisting of four weekly PA counseling sessions based on 5A model (assess, advise, agree, assist, and arrange + SR, or SR (n=36, consisting of four weekly SR. International Physical Activity Questionnaire (Chinese version and pedometer-based daily steps were evaluated as the primary endpoints. Insomnia Severity Index, Epworth Sleepiness Scale, Fatigue Scale-14, and Sleep Diary were evaluated as the secondary endpoints. Results: The results showed that the patients in the PASR group gained more benefits than the SR group in terms of PA level and pedometer-based daily steps (all P<0.05. Better improvements of the study group were also shown in Epworth Sleepiness Scale, Fatigue Scale-14, and Sleep efficiency (all P<0.05. Conclusion: We conclude that PA counseling based on 5A model combined with SR cannot only effectively increase the PA levels but also improve the sleep quality for patients with chronic insomnia. Keywords: behavioral therapy, physical activity, sleep disorders, sleep restriction, counseling

  7. Self-reported empathy and neural activity during action imitation and observation in schizophrenia

    Directory of Open Access Journals (Sweden)

    William P. Horan

    2014-01-01

    Conclusions: Although patients with schizophrenia demonstrated largely normal patterns of neural activation across the finger movement and facial expression tasks, they reported decreased self perceived empathy and failed to show the typical relationship between neural activity and self-reported empathy seen in controls. These findings suggest that patients show a disjunction between automatic neural responses to low level social cues and higher level, integrative social cognitive processes involved in self-perceived empathy.

  8. Sleeping, TV, Cognitively Stimulating Activities, Physical Activity, and Attention-Deficit Hyperactivity Disorder Symptom Incidence in Children: A Prospective Study.

    Science.gov (United States)

    Peralta, Gabriela P; Forns, Joan; García de la Hera, Manuela; González, Llúcia; Guxens, Mònica; López-Vicente, Mónica; Sunyer, Jordi; Garcia-Aymerich, Judith

    2018-04-01

    To analyze associations between time spent sleeping, watching TV, engaging in cognitively stimulating activities, and engaging in physical activity, all at 4 years, and (1) attention-deficit/hyperactivity disorder (ADHD) symptoms and (2) behavior problems, both assessed at 7 years, in ADHD-free children at baseline. In total, 817 participants of the Infancia y Medio Ambiente birth cohort, without ADHD at baseline, were included. At the 4-year follow-up, parents reported the time that their children spent sleeping, watching TV, engaging in cognitively stimulating activities, and engaging in physical activity. At the 7-year follow-up, parents completed the Conners' Parent Rating Scales and the Strengths and Difficulties Questionnaire, which measure ADHD symptoms and behavior problems, respectively. Negative binomial regression models were used to assess associations between the activities at 4 years and ADHD symptoms and behavior problems at 7 years. Children (48% girls) spent a median (p25-p75) of 10 (10-11) hours per day sleeping, 1.5 (0.9-2) hours per day watching TV, 1.4 (0.9-1.9) hours per day engaging in cognitively stimulating activities, and 1.5 (0.4-2.3) hours per day engaging in physical activity. Longer sleep duration (>10 hours per day) was associated with a lower ADHD symptom score (adjusted incidence rate ratio = 0.97, 95% confidence interval, 0.95-1.00). Longer time spent in cognitively stimulating activities (>1 hours per day) was associated with lower scores of both ADHD symptoms (0.96, 0.94-0.98) and behavior problems (0.89, 0.83-0.97). Time spent watching TV and engaging in physical activity were not associated with either outcomes. A shorter sleep duration and less time spent in cognitively stimulating activities were associated with an increased risk of developing ADHD symptoms and behavior problems.

  9. Natural lecithin promotes neural network complexity and activity

    Science.gov (United States)

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-01-01

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called “essential” fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications. PMID:27228907

  10. Natural lecithin promotes neural network complexity and activity.

    Science.gov (United States)

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-05-27

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called "essential" fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications.

  11. Neural activity reveals perceptual grouping in working memory.

    Science.gov (United States)

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  12. Increased frontal sleep slow wave activity in adolescents with major depression

    Directory of Open Access Journals (Sweden)

    Noemi Tesler

    2016-01-01

    Full Text Available Sleep slow wave activity (SWA, the major electrophysiological characteristic of deep sleep, mirrors both cortical restructuring and functioning. The incidence of Major Depressive Disorder (MDD substantially rises during the vulnerable developmental phase of adolescence, where essential cortical restructuring is taking place. The goal of this study was to assess characteristics of SWA topography in adolescents with MDD, in order to assess abnormalities in both cortical restructuring and functioning on a local level. All night high-density EEG was recorded in 15 patients meeting DSM-5 criteria for MDD and 15 sex- and age-matched healthy controls. The actual symptom severity was assessed using the Children's Depression Rating Scale—Revised (CDRS-R. Topographical power maps were calculated based on the average SWA of the first non-rapid eye movement (NREM sleep episode. Depressed adolescents exhibited significantly more SWA in a cluster of frontal electrodes compared to controls. SWA over frontal brain regions correlated positively with the CDRS-R subscore “morbid thoughts”. Self-reported sleep latency was significantly higher in depressed adolescents compared to controls whereas sleep architecture did not differ between the groups. Higher frontal SWA in depressed adolescents may represent a promising biomarker tracing cortical regions of intense use and/or restructuring.

  13. Food Patterns According to Sociodemographics, Physical Activity, Sleeping and Obesity in Portuguese Children

    Science.gov (United States)

    Moreira, Pedro; Santos, Susana; Padrão, Patrícia; Cordeiro, Tânia; Bessa, Mariana; Valente, Hugo; Barros, Renata; Teixeira, Vitor; Mitchell, Vanessa; Lopes, Carla; Moreira, André

    2010-01-01

    Our study aimed to describe the association between food patterns and gender, parental education, physical activity, sleeping and obesity in 1976 children aged 5−10 years old. Dietary intake was measured by a semi quantitative food frequency questionnaire; body mass index was calculated and categorized according to the IOTF classification. Factor analysis and generalized linear models were applied to identify food patterns and their associations. TV viewing and male gender were significant positive predictors for fast-food, sugar sweetened beverages and pastry pattern, while a higher level of maternal education and longer sleeping duration were positively associated with a dietary patterns that included fruit and vegetables. PMID:20617022

  14. Food Patterns According to Sociodemographics, Physical Activity, Sleeping and Obesity in Portuguese Children

    Directory of Open Access Journals (Sweden)

    Carla Lopes

    2010-03-01

    Full Text Available Our study aimed to describe the association between food patterns and gender, parental education, physical activity, sleeping and obesity in 1976 children aged 5−10 years old. Dietary intake was measured by a semi quantitative food frequency questionnaire; body mass index was calculated and categorized according to the IOTF classification. Factor analysis and generalized linear models were applied to identify food patterns and their associations. TV viewing and male gender were significant positive predictors for fast-food, sugar sweetened beverages and pastry pattern, while a higher level of maternal education and longer sleeping duration were positively associated with a dietary patterns that included fruit and vegetables.

  15. Effects of Near-Infrared Laser on Neural Cell Activity

    International Nuclear Information System (INIS)

    Mochizuki-Oda, Noriko; Kataoka, Yosky; Yamada, Hisao; Awazu, Kunio

    2004-01-01

    Near-infrared laser has been used to relieve patients from various kinds of pain caused by postherpetic neuralgesia, myofascial dysfunction, surgical and traumatic wound, cancer, and rheumatoid arthritis. Clinically, He-Ne (λ=632.8 nm, 780 nm) and Ga-Al-As (805 ± 25 nm) lasers are used to irradiate trigger points or nerve ganglion. However the precise mechanisms of such biological actions of the laser have not yet been resolved. Since laser therapy is often effective to suppress the pain caused by hyperactive excitation of sensory neurons, interactions with laser light and neural cells are suggested. As neural excitation requires large amount of energy liberated from adenosine triphosphate (ATP), we examined the effect of 830-nm laser irradiation on the energy metabolism of the rat central nervous system and isolated mitochondria from brain. The diode laser was applied for 15 min with irradiance of 4.8 W/cm2 on a 2 mm-diameter spot at the brain surface. Tissue ATP content of the irradiated area in the cerebral cortex was 19% higher than that of the non-treated area (opposite side of the cortex), whereas the ADP content showed no significant difference. Irradiation at another wavelength (652 nm) had no effect on either ATP or ADP contents. The temperature of the brain tissue was increased 4.5-5.0 deg. C during the irradiation of both 830-nm and 652-nm laser light. Direct irradiation of the mitochondrial suspension did not show any wavelength-dependent acceleration of respiration rate nor ATP synthesis. These results suggest that the increase in tissue ATP content did not result from the thermal effect, but from specific effect of the laser operated at 830 nm. Electrophysiological studies showed the hyperpolarization of membrane potential of isolated neurons and decrease in membrane resistance with irradiation of the laser, suggesting an activation of potassium channels. Intracellular ATP is reported to regulate some kinds of potassium channels. Possible mechanisms

  16. Observations on muscle activity in REM sleep behavior disorder assessed with a semi-automated scoring algorithm

    DEFF Research Database (Denmark)

    Jeppesen, Jesper; Otto, Marit; Frederiksen, Yoon

    2018-01-01

    OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is defined by dream enactment due to a failure of normal muscle atonia. Visual assessment of this muscle activity is time consuming and rater-dependent. METHODS: An EMG computer algorithm for scoring 'tonic', 'phasic' and 'any......' submental muscle activity during REM sleep was evaluated compared with human visual ratings. Subsequently, 52 subjects were analyzed with the algorithm. Duration and maximal amplitude of muscle activity, and self-awareness of RBD symptoms were assessed. RESULTS: The computer algorithm showed high congruency...... sleep without atonia. CONCLUSIONS: Our proposed algorithm was able to detect and rate REM sleep without atonia allowing identification of RBD. Increased duration and amplitude of muscle activity bouts were characteristics of RBD. Quantification of REM sleep without atonia represents a marker of RBD...

  17. Disturbed sleep and activity in toddlers with early signs of attention deficit hyperactivity disorder (ADHD)

    DEFF Research Database (Denmark)

    Bundgaard, Anne Katrine F.; Asmussen, Jette; Pedersen, Nadia S.

    2018-01-01

    This study investigated whether early signs of attention deficit hyperactivity disorder (ADHD) in toddlers aged 2-3 years are associated with disturbed sleep and activity levels. Participants were recruited from the Odense Child Cohort, and children scoring above the 93rd percentile on the ADHD...

  18. Concurrent Associations between Physical Activity, Screen Time, and Sleep Duration with Childhood Obesity.

    Science.gov (United States)

    Laurson, Kelly R; Lee, Joey A; Gentile, Douglas A; Walsh, David A; Eisenmann, Joey C

    2014-01-01

    Aim. To examine the simultaneous influence of physical activity, screen time, and sleep duration recommendations on the odds of childhood obesity (including overweight). Methods. Physical activity was assessed via pedometer and screen time, and sleep duration were assessed via survey in a cross sectional sample of 674 children (aged 7-12 years) from two Midwestern communities in the fall of 2005. Participants were cross tabulated into four groups depending on how many recommendations were being met (0, 1, 2, or all 3). Linear and logistic regression were used to examine the influence of physical activity, screen time and sleep duration on obesity and interactions among the three variables. Results. Children achieving all three recommendations simultaneously (9.2% of total sample) were the least likely to be obese. Approximately 16% of boys and 9% of girls achieving all recommendations were overweight or obese compared to 53% of boys and 42.5% of girls not achieving any. Conclusions. The odds of obesity increased in a graded manner for each recommendation which was not met. Meeting all three recommendations appears to have a protective effect against obesity. Continued efforts are warranted to promote healthy lifestyle behaviors that include meeting physical activity, screen time, and sleep duration recommendations concurrently.

  19. Influence of Day Length and Physical Activity on Sleep Patterns in Older Icelandic Men and Women

    DEFF Research Database (Denmark)

    Brychta, Robert J; Arnardóttir, Nanna Ýr; Jóhannsson, Erlingur

    2016-01-01

    Study Objectives: To identify cross-sectional and seasonal patterns of sleep and physical activity (PA) in community-dwelling, older Icelandic adults using accelerometers. Methods: A seven-day free-living protocol of 244 (110 female) adults aged 79.7 +/- 4.9 years was conducted as part of a larger...

  20. The importance of physical activity and sleep for affect on stressful days: Two intensive longitudinal studies.

    Science.gov (United States)

    Flueckiger, Lavinia; Lieb, Roselind; Meyer, Andrea H; Witthauer, Cornelia; Mata, Jutta

    2016-06-01

    We investigated the potential stress-buffering effect of 3 health behaviors-physical activity, sleep quality, and snacking-on affect in the context of everyday life in young adults. In 2 intensive longitudinal studies with up to 65 assessment days over an entire academic year, students (Study 1, N = 292; Study 2, N = 304) reported stress intensity, sleep quality, physical activity, snacking, and positive and negative affect. Data were analyzed using multilevel regression analyses. Stress and positive affect were negatively associated; stress and negative affect were positively associated. The more physically active than usual a person was on a given day, the weaker the association between stress and positive affect (Study 1) and negative affect (Studies 1 and 2). The better than usual a person's sleep quality had been during the previous night, the weaker the association between stress and positive affect (Studies 1 and 2) and negative affect (Study 2). The association between daily stress and positive or negative affect did not differ as a function of daily snacking (Studies 1 and 2). On stressful days, increasing physical activity or ensuring high sleep quality may buffer adverse effects of stress on affect in young adults. These findings suggest potential targets for health-promotion and stress-prevention programs, which could help reduce the negative impact of stress in young adults. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Activity, Sleep and Cognition After Fast-Track Hip or Knee Arthroplasty

    DEFF Research Database (Denmark)

    Krenk, Lene; Jennum, Poul; Kehlet, Henrik

    2013-01-01

    Optimized perioperative care after total hip and knee arthroplasty (THA/TKA) has decreased length of stay (LOS) but data on activity, sleep and cognition after discharge are limited. We included 20 patients ≥60years undergoing THA/TKA, monitoring them for 3days preoperatively and 9days...

  2. Relationships between sleeping habits, sedentary leisure activities and childhood overweight and obesity.

    Science.gov (United States)

    Busto-Zapico, Raquel; Amigo-Vázquez, Isaac; Peña-Suárez, Elsa; Fernández-Rodríguez, Concepción

    2014-01-01

    The aim of this study is to show how sedentary leisure activities and a decrease in hours of sleep interact to lead to an increase in the body mass index (BMI) in children. A random sample of 291 nine-year-old and ten-year-old schoolchildren from Asturias (Spain) was taken. A cross-sectional design was used, the children's weight and height were measured and an individual interview was carried out. Using path analysis, a model was tested in which bedtime, the number of hours spent sleeping and sedentary leisure activities were the independent variables and the BMI was the dependent variable. The results show that sedentary leisure activities and hours spent sleeping are predictors of a greater BMI in children. Moreover, the effect of the time spent sleeping is mediated by sedentary leisure activities. That is to say, it is those children who go to bed late and who use that extra time to watch the television or play with the computer that tend to have a greater BMI. Attention should be drawn to the importance of this fact and to the implications it may have for education and children's health.

  3. Evaluating the Workload of On-Call Psychiatry Residents: Which Activities Are Associated with Sleep Loss?

    Science.gov (United States)

    Cooke, Brian K.; Cooke, Erinn O.; Sharfstein, Steven S.

    2012-01-01

    Objective: The purpose of this study was to review the workload inventory of on-call psychiatry residents and to evaluate which activities were associated with reductions in on-call sleep. Method: A prospective cohort study was conducted, following 20 psychiatry residents at a 231-bed psychiatry hospital, from July 1, 2008 through June 30, 2009.…

  4. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Science.gov (United States)

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  5. Triangular relationship between sleep spindle activity, general cognitive ability and the efficiency of declarative learning.

    Directory of Open Access Journals (Sweden)

    Caroline Lustenberger

    Full Text Available EEG sleep spindle activity (SpA during non-rapid eye movement (NREM sleep has been reported to be associated with measures of intelligence and overnight performance improvements. The reticular nucleus of the thalamus is generating sleep spindles in interaction with thalamocortical connections. The same system enables efficient encoding and processing during wakefulness. Thus, we examined if the triangular relationship between SpA, measures of intelligence and declarative learning reflect the efficiency of the thalamocortical system. As expected, SpA was associated with general cognitive ability, e.g. information processing speed. SpA was also associated with learning efficiency, however, not with overnight performance improvement in a declarative memory task. SpA might therefore reflect the efficiency of the thalamocortical network and can be seen as a marker for learning during encoding in wakefulness, i.e. learning efficiency.

  6. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  7. Physical Activity, Sleep, and BMI Percentile in Rural and Urban Ugandan Youth.

    Science.gov (United States)

    Christoph, Mary J; Grigsby-Toussaint, Diana S; Baingana, Rhona; Ntambi, James M

    Uganda is experiencing a dual burden of over- and undernutrition, with overweight prevalence increasing while underweight remains common. Potential weight-related factors, particularly physical activity, sleep, and rural/urban status, are not currently well understood or commonly assessed in Ugandan youth. The purpose of this study was to pilot test a survey measuring weight-related factors in rural and urban Ugandan schoolchildren. A cross-sectional survey measured sociodemographics, physical activity, sleep patterns, and dietary factors in 148 rural and urban schoolchildren aged 11-16 in central Uganda. Height and weight were objectively measured. Rural and urban youth were compared on these factors using χ 2 and t tests. Regression was used to identify correlates of higher body mass index (BMI) percentile in the full sample and nonstunted youth. Youth were on average 12.1 ± 1.1 years old; underweight (10%) was more common than overweight (1.4%). Self-reported sleep duration and subjective sleep quality did not differ by rural/urban residence. Rural children overall had higher BMI percentile and marginally higher stunting prevalence. In adjusted analyses in both the full and nonstunted samples, higher BMI percentile was related to living in a rural area, higher frequency of physical activity, and higher subjective sleep quality; it was negatively related to being active on weekends. In the full sample, higher BMI percentile was also related to female gender, whereas in nonstunted youth, higher BMI was related to age. BMI percentile was unrelated to sedentary time, performance of active chores and sports, and dietary factors. This study is one of the first to pilot test a survey assessing weight-related factors, particularly physical activity and sleep, in Ugandan schoolchildren. BMI percentile was related to several sociodemographic, sleep, and physical activity factors among primarily normal-weight school children in Uganda, providing a basis for

  8. Choline acetyltransferase expression during periods of behavioral activity and across natural sleep-wake states in the basal forebrain.

    Science.gov (United States)

    Greco, M A; McCarley, R W; Shiromani, P J

    1999-01-01

    The present study examined whether the expression of the messenger RNA encoding the protein responsible for acetylcholine synthesis is associated with sleep-wakefulness. Choline acetyltransferase messenger RNA levels were analysed using a semi-quantitative assay in which reverse transcription was coupled to complementary DNA amplification using the polymerase chain reaction. To examine the relationship between steady-state messenger RNA and behavioral activity, rats were killed during the day (4.00 p.m.) or night (4.00 a.m.), and tissue from the vertical and horizontal limbs of the diagonal bands of Broca was analysed. Choline acetyltransferase messenger RNA levels were higher during the day than during the night. The second study examined more closely the association between choline acetyltransferase messenger RNA levels and individual bouts of wakefulness, slow-wave sleep or rapid eye movement sleep. Choline acetyltransferase messenger RNA levels were low during wakefulness, intermediate in slow-wave sleep and high during rapid eye movement sleep. In contrast, protein activity, measured at a projection site of cholinergic neurons of the basal forebrain, was higher during wakefulness than during sleep. These findings suggest that choline acetyltransferase protein and messenger RNA levels exhibit an inverse relationship during sleep and wakefulness. The increased messenger RNA expression during sleep is consistent with a restorative function of sleep.

  9. Brain mechanisms that control sleep and waking

    Science.gov (United States)

    Siegel, Jerome

    This review paper presents a brief historical survey of the technological and early research that laid the groundwork for recent advances in sleep-waking research. A major advance in this field occurred shortly after the end of World War II with the discovery of the ascending reticular activating system (ARAS) as the neural source in the brain stem of the waking state. Subsequent research showed that the brain stem activating system produced cortical arousal via two pathways: a dorsal route through the thalamus and a ventral route through the hypothalamus and basal forebrain. The nuclei, pathways, and neurotransmitters that comprise the multiple components of these arousal systems are described. Sleep is now recognized as being composed of two very different states: rapid eye movements (REMs) sleep and non-REM sleep. The major findings on the neural mechanisms that control these two sleep states are presented. This review ends with a discussion of two current views on the function of sleep: to maintain the integrity of the immune system and to enhance memory consolidation.

  10. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Science.gov (United States)

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  11. Control of upper airway muscle activity in younger versus older men during sleep onset

    Science.gov (United States)

    Fogel, Robert B; White, David P; Pierce, Robert J; Malhotra, Atul; Edwards, Jill K; Dunai, Judy; Kleverlaan, Darci; Trinder, John

    2003-01-01

    Pharyngeal dilator muscles are clearly important in the pathophysiology of obstructive sleep apnoea syndrome (OSA). We have previously shown that the activity of both the genioglossus (GGEMG) and tensor palatini (TPEMG) are decreased at sleep onset, and that this decrement in muscle activity is greater in the apnoea patient than in healthy controls. We have also previously shown this decrement to be greater in older men when compared with younger ones. In order to explore the mechanisms responsible for this decrement in muscle activity nasal continuous positive airway pressure (CPAP) was applied to reduce negative pressure mediated muscle activation. We then investigated the effect of sleep onset (transition from predominantly α to predominantly θ EEG activity) on ventilation, upper airway muscle activation and upper airway resistance (UAR) in middle-aged and younger healthy men. We found that both GGEMG and TPEMG were reduced by the application of nasal CPAP during wakefulness, but that CPAP did not alter the decrement in activity in either muscle seen in the first two breaths following an α to θ transition. However, CPAP prevented both the rise in UAR at sleep onset that occurred on the control night, and the recruitment in GGEMG seen in the third to fifth breaths following the α to θ transition. Further, GGEMG was higher in the middle-aged men than in the younger men during wakefulness and was decreased more in the middle-aged men with the application of nasal CPAP. No differences were seen in TPEMG between the two age groups. These data suggest that the initial sleep onset reduction in upper airway muscle activity is due to loss of a ‘wakefulness’ stimulus, rather than to loss of responsiveness to negative pressure. In addition, it suggests that in older men, higher wakeful muscle activity is due to an anatomically more collapsible upper airway with more negative pressure driven muscle activation. Sleep onset per se does not appear to have a greater

  12. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    Science.gov (United States)

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  13. Associations of sedentary time and moderate-vigorous physical activity with sleep-disordered breathing and polysomnographic sleep in community-dwelling adults.

    Science.gov (United States)

    Kline, Christopher E; Krafty, Robert T; Mulukutla, Suresh; Hall, Martica H

    2017-05-01

    The purpose of this study was to evaluate the relationship between daytime activity (sedentary time, moderate- to vigorous-intensity physical activity [MVPA]) and indices of polysomnographically (PSG) assessed sleep, including sleep-disordered breathing (SDB). One hundred and thirty-six adults (65% female, 59.8 ± 9.1 years, body mass index [BMI] 30.3 ± 6.9 kg m -2 ) provided daily estimates of time spent in light-, moderate-, and vigorous-intensity activity for 6-14 days (mean 9.9 ± 1.8 days) prior to laboratory PSG. Daily sedentary time was calculated as the amount of time spent awake and not in light-, moderate-, or vigorous-intensity activity; time spent in moderate- and vigorous-intensity activity were combined for MVPA. Indices of PSG sleep included timing (sleep midpoint), duration (total sleep time), continuity (sleep efficiency), depth (% slow-wave sleep), and SDB (apnea-hypopnea index [AHI]). Using median splits of sedentary time and MVPA, analyses of covariance examined their relationship with sleep following adjustment for age, sex, race, employment, education, BMI, existing cardiovascular disease, depression history, and mean daily wake time. Binary logistic regression examined the odds of having at least mild-severity SDB (AHI ≥ 5) according to sedentary time, MVPA, and their combination. Adults with above-median sedentary time (i.e., >841.9 min/day) had significantly greater AHI (P = .04) and lower odds of mild SDB (P = .03) compared to adults with low sedentary time; adults with high MVPA (>30.5 min/day) had significantly lower AHI compared to adults with low MVPA (P = .04). When examined in the same model, adults with high sedentary time and low MVPA had significantly higher AHI (P < .01) and higher odds of having mild SDB (P = .03) than all the other groups. No other sleep measures were related to sedentary time, MVPA, or their combination. Sedentary time and MVPA were associated with SDB. Whether reducing sedentary

  14. Experienced Mindfulness Meditators Exhibit Higher Parietal-Occipital EEG Gamma Activity during NREM Sleep

    Science.gov (United States)

    Ferrarelli, Fabio; Smith, Richard; Dentico, Daniela; Riedner, Brady A.; Zennig, Corinna; Benca, Ruth M.; Lutz, Antoine; Davidson, Richard J.; Tononi, Giulio

    2013-01-01

    Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25–40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function. PMID:24015304

  15. Physical Activity, Mind Wandering, Affect, and Sleep: An Ecological Momentary Assessment.

    Science.gov (United States)

    Fanning, Jason; Mackenzie, Michael; Roberts, Sarah; Crato, Ines; Ehlers, Diane; McAuley, Edward

    2016-08-31

    A considerable portion of daily thought is spent in mind wandering. This behavior has been related to positive (eg, future planning, problem solving) and negative (eg, unhappiness, impaired cognitive performance) outcomes. Based on previous research suggesting future-oriented (ie, prospective) mind wandering may support autobiographical planning and self-regulation, this study examined associations between hourly mind wandering and moderate-to-vigorous physical activity (MVPA), and the impact of affect and daily sleep on these relations. College-aged adults (N=33) participated in a mobile phone-delivered ecological momentary assessment study for 1 week. Sixteen hourly prompts assessing mind wandering and affect were delivered daily via participants' mobile phones. Perceived sleep quality and duration was assessed during the first prompt each day, and participants wore an ActiGraph accelerometer during waking hours throughout the study week. Study findings suggest present-moment mind wandering was positively associated with future MVPA (P=.03), and this relationship was moderated by affective state (P=.04). Moreover, excessive sleep the previous evening was related to less MVPA across the following day (P=.007). Further, mind wandering was positively related to activity only among those who did not oversleep (P=.007). Together, these results have implications for multiple health behavior interventions targeting physical activity, affect, and sleep. Researchers may also build on this work by studying these relationships in the context of other important behaviors and psychosocial factors (eg, tobacco use, depression, loneliness).

  16. Sleep duration, schedule and quality among urban Chinese children and adolescents: associations with routine after-school activities.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Jiang

    Full Text Available BACKGROUND: With rapid urbanization accompanied by lifestyle changes, children and adolescents living in metropolitan areas are faced with many time use choices that compete with sleep. This study reports on the sleep hygiene of urban Chinese school students, and investigates the relationship between habitual after-school activities and sleep duration, schedule and quality on a regular school day. METHODS: Cross-sectional, school-based survey of school children (Grades 4-8 living in Shanghai, China, conducted in 2011. Self-reported data were collected on students' sleep duration and timing, sleep quality, habitual after-school activities (i.e. homework, leisure-time physical activity, recreational screen time and school commuting time, and potential correlates. RESULTS: Mean sleep duration of this sample (mean age: 11.5-years; 48.6% girls was 9 hours. Nearly 30% of students reported daytime tiredness. On school nights, girls slept less (p<0.001 and went to bed later (p<0.001, a sex difference that was more pronounced in older students. Age by sex interactions were observed for both sleep duration (p=0.005 and bedtime (p=0.002. Prolonged time spent on homework and mobile phone playing was related to shorter sleep duration and later bedtime. Adjusting for all other factors, with each additional hour of mobile phone playing, the odds of daytime tiredness and having difficulty maintaining sleep increased by 30% and 27% among secondary students, respectively. CONCLUSION: There are sex differences in sleep duration, schedule and quality. Habitual activities had small but significant associations with sleep hygiene outcomes especially among secondary school students. Intervention strategies such as limiting children's use of electronic screen devices after school are implicated.

  17. Integration of active devices on smart polymers for neural interfaces

    Science.gov (United States)

    Avendano-Bolivar, Adrian Emmanuel

    The increasing ability to ever more precisely identify and measure neural interactions and other phenomena in the central and peripheral nervous systems is revolutionizing our understanding of the human body and brain. To facilitate further understanding, more sophisticated neural devices, perhaps using microelectronics processing, must be fabricated. Materials often used in these neural interfaces, while compatible with these fabrication processes, are not optimized for long-term use in the body and are often orders of magnitude stiffer than the tissue with which they interact. Using the smart polymer substrates described in this work, suitability for processing as well as chronic implantation is demonstrated. We explore how to integrate reliable circuitry onto these flexible, biocompatible substrates that can withstand the aggressive environment of the body. To increase the capabilities of these devices beyond individual channel sensing and stimulation, active electronics must also be included onto our systems. In order to add this functionality to these substrates and explore the limits of these devices, we developed a process to fabricate single organic thin film transistors with mobilities up to 0.4 cm2/Vs and threshold voltages close to 0V. A process for fabricating organic light emitting diodes on flexible substrates is also addressed. We have set a foundation and demonstrated initial feasibility for integrating multiple transistors onto thin-film flexible devices to create new applications, such as matrix addressable functionalized electrodes and organic light emitting diodes. A brief description on how to integrate waveguides for their use in optogenetics is addressed. We have built understanding about device constraints on mechanical, electrical and in vivo reliability and how various conditions affect the electronics' lifetime. We use a bi-layer gate dielectric using an inorganic material such as HfO 2 combined with organic Parylene-c. A study of

  18. Active sleep is associated with the face preference in the newborns who familiarized with a responsive face.

    Science.gov (United States)

    Cecchini, Marco; Iannoni, Maria Elena; Aceto, Paola; Baroni, Eleonora; Di Vito, Cinzia; Lai, Carlo

    2017-11-01

    Aim of this study was to investigate the preferential looking behaviour, subsequent to a familiarization task (8-min) with a previously responsive or motionless face, before and after a sleep cycle. Moreover, the role of the active sleep in memory consolidation of the responsive or motionless faces was explored. Hypotheses were that the newborns undergoing a motionless familiarization will exhibit a novelty effect (preference for the novel face) whereas the newborns undergoing a responsive familiarization will show a familiarity effect (preference for the known face) before and after the sleep cycle; moreover, the amount of active sleep will be associated with the looking time at the known face after a sleep cycle. Forty-five healthy full-term newborns were randomly assigned to two groups (group 1: motionless-familiarization and group 2: responsive-familiarization); in both groups newborns were video-recorded during four post-familiarization face-preference tasks, two of them performed before and two after a sleep cycle. During the pre-sleep-trials, there was not a significant preference for one face in both groups. During the post-sleep trials, the newborns showed a clear preference for the novel face. This effect was more evident in group 1. Only in group 2 there was a significant positive correlation between the active sleep duration and the looking duration at the known-face during the post-sleep trials (r=0.41; p=0.040). Multiple regression confirmed that only in the group 2 the total duration of the active sleep was associated with the looking duration at the known-face during the post-sleep trials (Adjusted R 2 =0.13; β=0.41; t=2.2; p=0.040). Findings showed that in newborns the face representation can be recalled after a sleep cycle. Moreover, the amount of the active sleep predicted the post-sleep looking toward the known-face only in the newborns who interactively familiarized with the face. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Forehead Skin Blood Flow in Normal Neonates during Active and Quiet Sleep, Measured with a Diode Laser Doppler Instrument

    NARCIS (Netherlands)

    Suichies, H.E.; Aarnoudse, J.G.; Okken, A.; Jentink, H.W.; de Mul, F.F.M.; Greve, Jan

    1988-01-01

    Changes in forehead skin blood flow during active and quiet sleep were determined in 16 healthy neonates using a recently developed semi-conductor laser Doppler flow meter without light conducting fibres. Measurements were carried out at a postnatal age varying from 5 hours to 7 days. The two sleep

  20. Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female.

    Science.gov (United States)

    Isaac, R Elwyn; Li, Chenxi; Leedale, Amy E; Shirras, Alan D

    2010-01-07

    Quiescence, or a sleep-like state, is a common and important feature of the daily lives of animals from both invertebrate and vertebrate taxa, suggesting that sleep appeared early in animal evolution. Recently, Drosophila melanogaster has been shown to be a relevant and powerful model for the genetic analysis of sleep behaviour. The sleep architecture of D. melanogaster is sexually dimorphic, with females sleeping much less than males during day-time, presumably because reproductive success requires greater foraging activity by the female as well as the search for egg-laying sites. However, this loss of sleep and increase in locomotor activity will heighten the risk for the female from environmental and predator hazards. In this study, we show that virgin females can minimize this risk by behaving like males, with an extended afternoon 'siesta'. Copulation results in the female losing 70 per cent of day-time sleep and becoming more active. This behaviour lasts for at least 8 days after copulation and is abolished if the mating males lack sex peptide (SP), normally present in the seminal fluid. Our results suggest that SP is the molecular switch that promotes wakefulness in the post-mated female, a change of behaviour compatible with increased foraging and egg-laying activity. The stress resulting from SP-dependent sleep deprivation might be an important contribution to the toxic side-effects of male accessory gland products that are known to reduce lifespan in post-mated females.

  1. Activation of postnatal neural stem cells requires nuclear receptor TLX.

    Science.gov (United States)

    Niu, Wenze; Zou, Yuhua; Shen, Chengcheng; Zhang, Chun-Li

    2011-09-28

    Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mispositioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroduction of ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner, and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways.

  2. Sociocultural patterning of neural activity during self-reflection.

    Science.gov (United States)

    Ma, Yina; Bang, Dan; Wang, Chenbo; Allen, Micah; Frith, Chris; Roepstorff, Andreas; Han, Shihui

    2014-01-01

    Western cultures encourage self-construals independent of social contexts, whereas East Asian cultures foster interdependent self-construals that rely on how others perceive the self. How are culturally specific self-construals mediated by the human brain? Using functional magnetic resonance imaging, we monitored neural responses from adults in East Asian (Chinese) and Western (Danish) cultural contexts during judgments of social, mental and physical attributes of themselves and public figures to assess cultural influences on self-referential processing of personal attributes in different dimensions. We found that judgments of self vs a public figure elicited greater activation in the medial prefrontal cortex (mPFC) in Danish than in Chinese participants regardless of attribute dimensions for judgments. However, self-judgments of social attributes induced greater activity in the temporoparietal junction (TPJ) in Chinese than in Danish participants. Moreover, the group difference in TPJ activity was mediated by a measure of a cultural value (i.e. interdependence of self-construal). Our findings suggest that individuals in different sociocultural contexts may learn and/or adopt distinct strategies for self-reflection by changing the weight of the mPFC and TPJ in the social brain network.

  3. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI.

    Science.gov (United States)

    Bilevicius, Elena; Kolesar, Tiffany A; Kornelsen, Jennifer

    2016-04-19

    To assess the neural activity associated with mindfulness-based alterations of pain perception. The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2), unpleasantness (n = 5), and intensity (n = 5), and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  4. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  5. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    Science.gov (United States)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  6. Sleep and physical activity: a survey of people with inflammatory arthritis and their engagement by health professionals in rheumatology in Ireland.

    Science.gov (United States)

    McKenna, Sean; Donnelly, Alan; Fraser, Alexander; Kennedy, Norelee

    2017-06-02

    Sleep is important in maintaining the body's circadian rhythm and in maintaining health. Aim was to investigate sleep and physical activity among people who have inflammatory arthritis and their engagement with Health Professionals. Members from a national charitable organisation for patients with arthritis and a national rheumatology health professionals society were invited to participate in separate cross-sectional surveys hosted on SurveyMonkey (R)TM . Ninety people responded and report an average of 5.7 (SD 1.46) hours sleep per night. A majority (61%) report their sleep quality as bad, with 31% taking medications at least once a week to help sleep. There was a statistically significant association between longer years with symptoms, taking medication at least once a week and limited in their activities, when rating their sleep quality as bad. Twenty eight (65%) health professional's responded with 53% discussing sleep with their patients. People with inflammatory arthritis report low sleep with those having symptoms longer, taking medications regularly and having limitations with their activities, reporting poorer sleep quality. Only half of health professionals discuss sleep. More research is needed in investigating poor sleep quality, disturbances, and physical activity in order to promote health and well-being in this population. Implications for Rehabilitation People with inflammatory arthritis fall far below the National Sleep Foundations' "sleep needs spectrum", which is concerning as those who have reduced levels of sleep have been associated with decreased quality of life and physical function. Due to the importance of receiving sufficient sleep, there is a need to develop education and training for health professionals in the importance of engaging their patients in their sleep quality and disturbances. The effects of physical activity interventions on poor sleep need to be examined to show if it is a positive non-pharmacological treatment approach

  7. The sleeping brain as a complex system.

    Science.gov (United States)

    Olbrich, Eckehard; Achermann, Peter; Wennekers, Thomas

    2011-10-13

    'Complexity science' is a rapidly developing research direction with applications in a multitude of fields that study complex systems consisting of a number of nonlinear elements with interesting dynamics and mutual interactions. This Theme Issue 'The complexity of sleep' aims at fostering the application of complexity science to sleep research, because the brain in its different sleep stages adopts different global states that express distinct activity patterns in large and complex networks of neural circuits. This introduction discusses the contributions collected in the present Theme Issue. We highlight the potential and challenges of a complex systems approach to develop an understanding of the brain in general and the sleeping brain in particular. Basically, we focus on two topics: the complex networks approach to understand the changes in the functional connectivity of the brain during sleep, and the complex dynamics of sleep, including sleep regulation. We hope that this Theme Issue will stimulate and intensify the interdisciplinary communication to advance our understanding of the complex dynamics of the brain that underlies sleep and consciousness.

  8. Sleep duration moderates the association between insula activation and risky decisions under stress in adolescents and adults.

    Science.gov (United States)

    Uy, Jessica Phuong; Galván, Adriana

    2017-01-27

    Insufficient sleep has been associated with increased risk-taking and poor decision-making, enhanced physiological responses to stress, and attenuated anterior insula (AI) activity to risk. The AI has also been linked to risky decision-making under acute stress. However, it is yet unknown how naturalistic sleep habits affect risky decision-making and AI activity when individuals feel stressed. In the current study, a daily diary approach was used to document participants' daily stress. Adolescents and adults reported their recent sleep duration and completed two fMRI visits during which they performed a risky decision-making task: once each when they endorsed a high and low level of stress. Results revealed that, regardless of age, individuals who reported receiving more sleep took fewer non-advantageous risks during high stress relative to those who reported receiving fewer hours of sleep per night while sleep duration was not associated with risky behavior under low stress. Among individuals who reported less sleep, those who exhibited reduced AI activation during risk-taking under high stress also took more disadvantageous risks whereas this effect was attenuated for those who reported longer sleep duration. Moreover, longer sleep duration was associated with greater functional coupling between the AI and dorsolateral prefrontal cortex (DLPFC) under high stress whereas sleep duration was not associated with AI-DLPFC functional coupling under low stress. These findings suggest that naturalistic sleep duration may amplify the effects of daily stress and alter risky decision-making behavior through interactions with the AI. Copyright © 2016. Published by Elsevier Ltd.

  9. The Biology of REM Sleep

    Science.gov (United States)

    Peever, John; Fuller, Patrick M.

    2018-01-01

    Considerable advances in our understanding of the mechanisms and functions of rapid-eye-movement (REM) sleep have occurred over the past decade. Much of this progress can be attributed to the development of new neuroscience tools that have enabled high-precision interrogation of brain circuitry linked with REM sleep control, in turn revealing how REM sleep mechanisms themselves impact processes such as sensorimotor function. This review is intended to update the general scientific community about the recent mechanistic, functional and conceptual developments in our current understanding of REM sleep biology and pathobiology. Specifically, this review outlines the historical origins of the discovery of REM sleep, the diversity of REM sleep expression across and within species, the potential functions of REM sleep (e.g., memory consolidation), the neural circuits that control REM sleep, and how dysfunction of REM sleep mechanisms underlie debilitating sleep disorders such as REM sleep behaviour disorder and narcolepsy. PMID:26766231

  10. SPR imaging combined with cyclic voltammetry for the detection of neural activity

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-03-01

    Full Text Available Surface plasmon resonance (SPR detects changes in refractive index at a metal-dielectric interface. In this study, SPR imaging (SPRi combined with cyclic voltammetry (CV was applied to detect neural activity in isolated bullfrog sciatic nerves. The neural activities induced by chemical and electrical stimulation led to an SPR response, and the activities were recorded in real time. The activities of different parts of the sciatic nerve were recorded and compared. The results demonstrated that SPR imaging combined with CV is a powerful tool for the investigation of neural activity.

  11. Physiological Sleep Propensity Might Be Unaffected by Significant Variations in Self-Reported Well-Being, Activity, and Mood

    Directory of Open Access Journals (Sweden)

    Arcady A. Putilov

    2015-01-01

    Full Text Available Background and Objective. Depressive state is often associated with such physical symptoms as general weakness, fatigue, tiredness, slowness, reduced activity, low energy, and sleepiness. The involvement of the sleep-wake regulating mechanisms has been proposed as one of the plausible explanations of this association. Both physical depressive symptoms and increased physiological sleep propensity can result from disordered and insufficient sleep. In order to avoid the influence of disordered and insufficient sleep, daytime and nighttime sleepiness were tested in winter depression characterized by normal night sleep duration and architecture. Materials and Methods. A total sample consisted of 6 healthy controls and 9 patients suffered from depression in the previous winter season. Sleep latency was determined across 5 daytime and 4 nighttime 20-min attempts to nap in summer as well as in winter before and after a week of 2-hour evening treatment with bright light. Results and Conclusions. Patients self-reported abnormally lowered well-being, activity, and mood only in winter before the treatment. Physiological sleep propensity was neither abnormal nor linked to significant changes in well-being, activity, and mood following the treatment and change in season. It seems unlikely that the mechanisms regulating the sleep-wake cycle contributed to the development of the physical depressive symptoms.

  12. The influence of autonomic interventions on the sleep-wake-related changes in gastric myoelectrical activity in rats.

    Science.gov (United States)

    Huang, Y M; Yang, C C H; Lai, C J; Kuo, T B J

    2011-06-01

    Significant changes in autonomic activity occur at sleep-wake transitions and constitute an ideal setting for investigating the modulatory role of the autonomic nervous system on gastric myoelectrical activity (GMA). Using continuous power spectral analysis of electroencephalogram, electromyogram, and electrogastromyogram (EGMG) data from freely moving rats that had undergone chemical sympathetomy and/or truncal vagotomy, sleep-wake-related fluctuations in GMA were compared among the intervention groups. The pattern and extent of fluctuations in EGMG power across the sleep-wake states was blunted most significantly in rats undergoing both chemical sympathectomy and truncal vagotomy. The effect of these interventions also varied with respect to the transition between different sleep-wake states. The most prominent influences were observed between active waking and quiet sleep and between paradoxical sleep and quiet sleep. The sleep-wake-related fluctuations in EGMG power are a result of joint contributions from both sympathetic and vagal innervation. Vagotomy mainly resulted in a reduction in EGMG power, while the role of sympathetic innervation was unveiled by vagotomy and this was reflected most obviously in the extent of the fluctuations in EGMG power. © 2011 Blackwell Publishing Ltd.

  13. Emotion disrupts neural activity during selective attention in psychopathy.

    Science.gov (United States)

    Sadeh, Naomi; Spielberg, Jeffrey M; Heller, Wendy; Herrington, John D; Engels, Anna S; Warren, Stacie L; Crocker, Laura D; Sutton, Bradley P; Miller, Gregory A

    2013-03-01

    Dimensions of psychopathy are theorized to be associated with distinct cognitive and emotional abnormalities that may represent unique neurobiological risk factors for the disorder. This hypothesis was investigated by examining whether the psychopathic personality dimensions of fearless-dominance and impulsive-antisociality moderated neural activity and behavioral responses associated with selective attention and emotional processing during an emotion-word Stroop task in 49 adults. As predicted, the dimensions evidenced divergent selective-attention deficits and sensitivity to emotional distraction. Fearless-dominance was associated with disrupted attentional control to positive words, and activation in right superior frontal gyrus mediated the relationship between fearless-dominance and errors to positive words. In contrast, impulsive-antisociality evidenced increased behavioral interference to both positive and negative words and correlated positively with recruitment of regions associated with motivational salience (amygdala, orbitofrontal cortex, insula), emotion regulation (temporal cortex, superior frontal gyrus) and attentional control (dorsal anterior cingulate cortex). Individuals high on both dimensions had increased recruitment of regions related to attentional control (temporal cortex, rostral anterior cingulate cortex), response preparation (pre-/post-central gyri) and motivational value (orbitofrontal cortex) in response to negative words. These findings provide evidence that the psychopathy dimensions represent dual sets of risk factors characterized by divergent dysfunction in cognitive and affective processes.

  14. Generalized activity equations for spiking neural network dynamics

    Directory of Open Access Journals (Sweden)

    Michael A Buice

    2013-11-01

    Full Text Available Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales - the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.

  15. Differential Activation Patterns of fMRI in Sleep-Deprived Brain: Restoring Effects of Acupuncture

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2014-01-01

    Full Text Available Previous studies suggested a remediation role of acupuncture in insomnia, and acupuncture also has been used in insomnia empirically and clinically. In this study, we employed fMRI to test the role of acupuncture in sleep deprivation (SD. Sixteen healthy volunteers (8 males were recruited and scheduled for three fMRI scanning procedures, one following the individual’s normal sleep and received acupuncture SP6 (NOR group and the other two after 24 h of total SD with acupuncture on SP6 (SD group or sham (Sham group. The sessions were counterbalanced approximately two weeks apart. Acupuncture stimuli elicited significantly different activation patterns of three groups. In NOR group, the right superior temporal lobe, left inferior parietal lobule, and left postcentral gyrus were activated; in SD group, the anterior cingulate cortex, bilateral insula, left basal ganglia, and thalamus were significantly activated while, in Sham group, the bilateral thalamus and left cerebellum were activated. Different activation patterns suggest a unique role of acupuncture on SP6 in remediation of SD. SP6 elicits greater and anatomically different activations than those of sham stimuli; that is, the salience network, a unique interoceptive autonomic circuit, may indicate the mechanism underlying acupuncture in restoring sleep deprivation.

  16. What if? Neural activity underlying semantic and episodic counterfactual thinking.

    Science.gov (United States)

    Parikh, Natasha; Ruzic, Luka; Stewart, Gregory W; Spreng, R Nathan; De Brigard, Felipe

    2018-05-25

    Counterfactual thinking (CFT) is the process of mentally simulating alternative versions of known facts. In the past decade, cognitive neuroscientists have begun to uncover the neural underpinnings of CFT, particularly episodic CFT (eCFT), which activates regions in the default network (DN) also activated by episodic memory (eM) recall. However, the engagement of DN regions is different for distinct kinds of eCFT. More plausible counterfactuals and counterfactuals about oneself show stronger activity in DN regions compared to implausible and other- or object-focused counterfactuals. The current study sought to identify a source for this difference in DN activity. Specifically, self-focused counterfactuals may also be more plausible, suggesting that DN core regions are sensitive to the plausibility of a simulation. On the other hand, plausible and self-focused counterfactuals may involve more episodic information than implausible and other-focused counterfactuals, which would imply DN sensitivity to episodic information. In the current study, we compared episodic and semantic counterfactuals generated to be plausible or implausible against episodic and semantic memory reactivation using fMRI. Taking multivariate and univariate approaches, we found that the DN is engaged more during episodic simulations, including eM and all eCFT, than during semantic simulations. Semantic simulations engaged more inferior temporal and lateral occipital regions. The only region that showed strong plausibility effects was the hippocampus, which was significantly engaged for implausible CFT but not for plausible CFT, suggestive of binding more disparate information. Consequences of these findings for the cognitive neuroscience of mental simulation are discussed. Published by Elsevier Inc.

  17. Optimal Hierarchical Modular Topologies for Producing Limited Sustained Activation of Neural Networks

    OpenAIRE

    Kaiser, Marcus; Hilgetag, Claus C.

    2010-01-01

    An essential requirement for the representation of functional patterns in complex neural networks, such as the mammalian cerebral cortex, is the existence of stable regimes of network activation, typically arising from a limited parameter range. In this range of limited sustained activity (LSA), the activity of neural populations in the network persists between the extremes of either quickly dying out or activating the whole network. Hierarchical modular networks were previously found to show...

  18. Exponential stability of Cohen-Grossberg neural networks with a general class of activation functions

    International Nuclear Information System (INIS)

    Wan Anhua; Wang Miansen; Peng Jigen; Qiao Hong

    2006-01-01

    In this Letter, the dynamics of Cohen-Grossberg neural networks model are investigated. The activation functions are only assumed to be Lipschitz continuous, which provide a much wider application domain for neural networks than the previous results. By means of the extended nonlinear measure approach, new and relaxed sufficient conditions for the existence, uniqueness and global exponential stability of equilibrium of the neural networks are obtained. Moreover, an estimate for the exponential convergence rate of the neural networks is precisely characterized. Our results improve those existing ones

  19. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation.

    Science.gov (United States)

    Sameiro-Barbosa, Catia M; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system.

  20. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation

    Science.gov (United States)

    Sameiro-Barbosa, Catia M.; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306

  1. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    Directory of Open Access Journals (Sweden)

    Francisco J Urbano

    2014-10-01

    Full Text Available The pedunculopontine nucleus (PPN is a major component of the reticular activating system (RAS that regulates waking and REM sleep, states of high frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine pedunculopontine nucleus (PPN, intralaminar parafascicular nucleus (Pf, and pontine Subcoeruleus nucleus dorsalis (SubCD. Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that, 1 the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, 2 neuronal calcium sensor (NCS-1 protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, 3 leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and 4 following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high frequency activity related to waking and REM sleep by elements of the RAS.

  2. Diagnostic thresholds for quantitative REM sleep phasic burst duration, phasic and tonic muscle activity, and REM atonia index in REM sleep behavior disorder with and without comorbid obstructive sleep apnea.

    Science.gov (United States)

    McCarter, Stuart J; St Louis, Erik K; Duwell, Ethan J; Timm, Paul C; Sandness, David J; Boeve, Bradley F; Silber, Michael H

    2014-10-01

    We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. We visually analyzed RSWA phasic burst durations, phasic, "any," and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. N/A. Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. N/A. All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. © 2014 Associated Professional Sleep Societies, LLC.

  3. Seasonal variation in physical activity, sedentary behaviour and sleep in a sample of UK adults.

    Science.gov (United States)

    O'Connell, Sophie E; Griffiths, Paula L; Clemes, Stacy A

    2014-01-01

    Physical activity (PA), sedentary behaviour (SB), sleep and diet have all been associated with increased risk for chronic disease. Seasonality is often overlooked as a determinant of these behaviours in adults. Currently, no study has simultaneously monitored these behaviours in UK adults to assess seasonal variation. The present study investigated whether PA, SB, sleep and diet differed over season in UK adults. Forty-six adults (72% female; age = 41.7 ± 14.4 years, BMI = 24.9 ± 4.4 kg/m(2)) completed four 7-day monitoring periods; one during each season of the year. The ActiGraph GT1M was used to monitor PA and SB. Daily sleep diaries monitored time spent in bed (TIB) and total sleep time (TST). The European Prospective Investigation of Cancer (EPIC) food frequency questionnaire (FFQ) assessed diet. Repeated measures ANOVAs were used to identify seasonal differences in behaviours. Light-intensity PA was significantly higher in summer and spring (p diet (p > 0.05). Findings support the concept that health promotion campaigns need to encourage year-round participation in light intensity PA, whilst limiting SB, particularly during the winter months.

  4. Ostriches sleep like platypuses.

    Directory of Open Access Journals (Sweden)

    John A Lesku

    Full Text Available Mammals and birds engage in two distinct states of sleep, slow wave sleep (SWS and rapid eye movement (REM sleep. SWS is characterized by slow, high amplitude brain waves, while REM sleep is characterized by fast, low amplitude waves, known as activation, occurring with rapid eye movements and reduced muscle tone. However, monotremes (platypuses and echidnas, the most basal (or 'ancient' group of living mammals, show only a single sleep state that combines elements of SWS and REM sleep, suggesting that these states became temporally segregated in the common ancestor to marsupial and eutherian mammals. Whether sleep in basal birds resembles that of monotremes or other mammals and birds is unknown. Here, we provide the first description of brain activity during sleep in ostriches (Struthio camelus, a member of the most basal group of living birds. We found that the brain activity of sleeping ostriches is unique. Episodes of REM sleep were delineated by rapid eye movements, reduced muscle tone, and head movements, similar to those observed in other birds and mammals engaged in REM sleep; however, during REM sleep in ostriches, forebrain activity would flip between REM sleep-like activation and SWS-like slow waves, the latter reminiscent of sleep in the platypus. Moreover, the amount of REM sleep in ostriches is greater than in any other bird, just as in platypuses, which have more REM sleep than other mammals. These findings reveal a recurring sequence of steps in the evolution of sleep in which SWS and REM sleep arose from a single heterogeneous state that became temporally segregated into two distinct states. This common trajectory suggests that forebrain activation during REM sleep is an evolutionarily new feature, presumably involved in performing new sleep functions not found in more basal animals.

  5. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    Directory of Open Access Journals (Sweden)

    Tommaso eFellin

    2012-08-01

    Full Text Available Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit.

  6. Fast neutron spectra determination by threshold activation detectors using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Koohi-Fayegh, R.; Setayeshi, S.; Ghiassi-Nejad, M.

    2004-01-01

    Neural network method was used for fast neutron spectra unfolding in spectrometry by threshold activation detectors. The input layer of the neural networks consisted of 11 neurons for the specific activities of neutron-induced nuclear reaction products, while the output layers were fast neutron spectra which had been subdivided into 6, 8, 10, 12, 15 and 20 energy bins. Neural network training was performed by 437 fast neutron spectra and corresponding threshold activation detector readings. The trained neural network have been applied for unfolding 50 spectra, which were not in training sets and the results were compared with real spectra and unfolded spectra by SANDII. The best results belong to 10 energy bin spectra. The neural network was also trained by detector readings with 5% uncertainty and the response of the trained neural network to detector readings with 5%, 10%, 15%, 20%, 25% and 50% uncertainty was compared with real spectra. Neural network algorithm, in comparison with other unfolding methods, is very fast and needless to detector response matrix and any prior information about spectra and also the outputs have low sensitivity to uncertainty in the activity measurements. The results show that the neural network algorithm is useful when a fast response is required with reasonable accuracy

  7. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes.

    Science.gov (United States)

    Du, Mingde; Xu, Xianchen; Yang, Long; Guo, Yichuan; Guan, Shouliang; Shi, Jidong; Wang, Jinfen; Fang, Ying

    2018-05-15

    Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The neural basis of the bystander effect--the influence of group size on neural activity when witnessing an emergency.

    Science.gov (United States)

    Hortensius, Ruud; de Gelder, Beatrice

    2014-06-01

    Naturalistic observation and experimental studies in humans and other primates show that observing an individual in need automatically triggers helping behavior. The aim of the present study is to clarify the neurofunctional basis of social influences on individual helping behavior. We investigate whether when participants witness an emergency, while performing an unrelated color-naming task in an fMRI scanner, the number of bystanders present at the emergency influences neural activity in regions related to action preparation. The results show a decrease in activity with the increase in group size in the left pre- and postcentral gyri and left medial frontal gyrus. In contrast, regions related to visual perception and attention show an increase in activity. These results demonstrate the neural mechanisms of social influence on automatic action preparation that is at the core of helping behavior when witnessing an emergency. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Neural activity associated with metaphor comprehension: spatial analysis.

    Science.gov (United States)

    Sotillo, María; Carretié, Luis; Hinojosa, José A; Tapia, Manuel; Mercado, Francisco; López-Martín, Sara; Albert, Jacobo

    2005-01-03

    Though neuropsychological data indicate that the right hemisphere (RH) plays a major role in metaphor processing, other studies suggest that, at least during some phases of this processing, a RH advantage may not exist. The present study explores, through a temporally agile neural signal--the event-related potentials (ERPs)--, and through source-localization algorithms applied to ERP recordings, whether the crucial phase of metaphor comprehension presents or not a RH advantage. Participants (n=24) were submitted to a S1-S2 experimental paradigm. S1 consisted of visually presented metaphoric sentences (e.g., "Green lung of the city"), followed by S2, which consisted of words that could (i.e., "Park") or could not (i.e., "Semaphore") be defined by S1. ERPs elicited by S2 were analyzed using temporal principal component analysis (tPCA) and source-localization algorithms. These analyses revealed that metaphorically related S2 words showed significantly higher N400 amplitudes than non-related S2 words. Source-localization algorithms showed differential activity between the two S2 conditions in the right middle/superior temporal areas. These results support the existence of an important RH contribution to (at least) one phase of metaphor processing and, furthermore, implicate the temporal cortex with respect to that contribution.

  10. Trait motivation moderates neural activation associated with goal pursuit.

    Science.gov (United States)

    Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Sutton, Bradley P; Heller, Wendy

    2012-06-01

    Research has indicated that regions of left and right dorsolateral prefrontal cortex (DLPFC) are involved in integrating the motivational and executive function processes related to, respectively, approach and avoidance goals. Given that sensitivity to pleasant and unpleasant stimuli is an important feature of conceptualizations of approach and avoidance motivation, it is possible that these regions of DLPFC are preferentially activated by valenced stimuli. The present study tested this hypothesis by using a task in which goal pursuit was threatened by distraction from valenced stimuli while functional magnetic resonance imaging data were collected. The analyses examined whether the impact of trait approach and avoidance motivation on the neural processes associated with executive function differed depending on the valence or arousal level of the distractor stimuli. The present findings support the hypothesis that the regions of DLPFC under investigation are involved in integrating motivational and executive function processes, and they also indicate the involvement of a number of other brain areas in maintaining goal pursuit. However, DLPFC did not display differential sensitivity to valence.

  11. The Relationship between Obesity, Sleep and Physical Activity in Chinese Preschool Children.

    Science.gov (United States)

    Ji, Meimei; Tang, Amber; Zhang, Yefu; Zou, Jiaojiao; Zhou, Guangyu; Deng, Jing; Yang, Lina; Li, Mingzhi; Chen, Jihua; Qin, Hong; Lin, Qian

    2018-03-15

    Pediatric overweight and obesity has become a major public health problem in China. The goal of this study is to understand overweight and obesity in preschool children in Changsha City in the context of their sleep and physical activity. These results offer feasible proposals to reduce levels of overweight and obesity among preschool children. A total of 112 preschoolers aged three to six years old were investigated using multiple stage stratified cluster sampling and simple random sampling. Questionnaires were used to collect general information about children and their families. Body mass index (BMI) was used as an indicator of overweight and obesity. Age- and sex-specific cutoff values for Chinese children and adolescents were used to determine child weight status. Children's sedentary time was reported by caregivers, while physical activity and sleep were recorded using fitness bracelets (Misfit Shine 2). The prevalence of childhood overweight and obesity were 15.2% and 9.8% respectively. Preschool-aged children travelled 11,111 ± 3357 and 10,350 ± 2973 steps per day on weekdays and weekends respectively. The number of daily steps was not statistically different between weekdays and weekends. The amount of time spent daily doing vigorous activity on weekdays and weekends was significantly different, with an average time of 20.5 ± 31.6 min and 10.3 ± 15.3 min respectively ( p = 0.002). Furthermore, 10.7% and 50.9% of children used screens for more than two hours on weekdays and weekends respectively ( p preschool children in this study. Students also demonstrated poor sleep and physical activity habits. Future research is necessary to explore the relationship between sleep, physical activity and weight status for young children in China.

  12. Self-reported empathy and neural activity during action imitation and observation in schizophrenia.

    Science.gov (United States)

    Horan, William P; Iacoboni, Marco; Cross, Katy A; Korb, Alex; Lee, Junghee; Nori, Poorang; Quintana, Javier; Wynn, Jonathan K; Green, Michael F

    2014-01-01

    Although social cognitive impairments are key determinants of functional outcome in schizophrenia their neural bases are poorly understood. This study investigated neural activity during imitation and observation of finger movements and facial expressions in schizophrenia, and their correlates with self-reported empathy. 23 schizophrenia outpatients and 23 healthy controls were studied with functional magnetic resonance imaging (fMRI) while they imitated, executed, or simply observed finger movements and facial emotional expressions. Between-group activation differences, as well as relationships between activation and self-reported empathy, were evaluated. Both patients and controls similarly activated neural systems previously associated with these tasks. We found no significant between-group differences in task-related activations. There were, however, between-group differences in the correlation between self-reported empathy and right inferior frontal (pars opercularis) activity during observation of facial emotional expressions. As in previous studies, controls demonstrated a positive association between brain activity and empathy scores. In contrast, the pattern in the patient group reflected a negative association between brain activity and empathy. Although patients with schizophrenia demonstrated largely normal patterns of neural activation across the finger movement and facial expression tasks, they reported decreased self perceived empathy and failed to show the typical relationship between neural activity and self-reported empathy seen in controls. These findings suggest that patients show a disjunction between automatic neural responses to low level social cues and higher level, integrative social cognitive processes involved in self-perceived empathy.

  13. Quantifying Infra-slow Dynamics of Spectral Power and Heart Rate in Sleeping Mice.

    Science.gov (United States)

    Fernandez, Laura M J; Lecci, Sandro; Cardis, Romain; Vantomme, Gil; Béard, Elidie; Lüthi, Anita

    2017-08-02

    Three vigilance states dominate mammalian life: wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. As more neural correlates of behavior are identified in freely moving animals, this three-fold subdivision becomes too simplistic. During wakefulness, ensembles of global and local cortical activities, together with peripheral parameters such as pupillary diameter and sympathovagal balance, define various degrees of arousal. It remains unclear the extent to which sleep also forms a continuum of brain states-within which the degree of resilience to sensory stimuli and arousability, and perhaps other sleep functions, vary gradually-and how peripheral physiological states co-vary. Research advancing the methods to monitor multiple parameters during sleep, as well as attributing to constellations of these functional attributes, is central to refining our understanding of sleep as a multifunctional process during which many beneficial effects must be executed. Identifying novel parameters characterizing sleep states will open opportunities for novel diagnostic avenues in sleep disorders. We present a procedure to describe dynamic variations of mouse non-REM sleep states via the combined monitoring and analysis of electroencephalogram (EEG)/electrocorticogram (ECoG), electromyogram (EMG), and electrocardiogram (ECG) signals using standard polysomnographic recording techniques. Using this approach, we found that mouse non-REM sleep is organized into cycles of coordinated neural and cardiac oscillations that generate successive 25-s intervals of high and low fragility to external stimuli. Therefore, central and autonomic nervous systems are coordinated to form behaviorally distinct sleep states during consolidated non-REM sleep. We present surgical manipulations for polysomnographic (i.e., EEG/EMG combined with ECG) monitoring to track these cycles in the freely sleeping mouse, the analysis to quantify their dynamics, and the acoustic stimulation protocols to

  14. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    Science.gov (United States)

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  15. Recovery from Unrecognized Sleep Loss Accumulated in Daily Life Improved Mood Regulation via Prefrontal Suppression of Amygdala Activity

    Directory of Open Access Journals (Sweden)

    Yuki Motomura

    2017-06-01

    Full Text Available Many modern people suffer from sleep debt that has accumulated in everyday life but is not subjectively noticed [potential sleep debt (PSD]. Our hypothesis for this study was that resolution of PSD through sleep extension optimizes mood regulation by altering the functional connectivity between the amygdala and prefrontal cortex. Fifteen healthy male participants underwent an experiment consisting of a baseline (BL evaluation followed by two successive interventions, namely, a 9-day sleep extension followed by one night of total sleep deprivation (TSD. Tests performed before and after the interventions included a questionnaire on negative mood and neuroimaging with arterial spin labeling MRI for evaluating regional cerebral blood flow (rCBF and functional connectivity. Negative mood and amygdala rCBF were significantly reduced after sleep extension compared with BL. The amygdala had a significant negative functional connectivity with the medial prefrontal cortex (FCamg–MPFC, and this negative connectivity was greater after sleep extension than at BL. After TSD, these indices reverted to the same level as at BL. An additional path analysis with structural equation modeling showed that the FCamg–MPFC significantly explained the amygdala rCBF and that the amygdala rCBF significantly explained the negative mood. These findings suggest that the use of our sleep extension protocol normalized amygdala activity via negative amygdala–MPFC functional connectivity. The resolution of unnoticed PSD may improve mood by enhancing frontal suppression of hyperactivity in the amygdala caused by PSD accumulating in everyday life.

  16. Slow wave activity and slow oscillations in sleepwalkers and controls: effects of 38 h of sleep deprivation.

    Science.gov (United States)

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2013-08-01

    Sleepwalkers have been shown to have an unusually high number of arousals from slow wave sleep and lower slow wave activity (SWA) power during the night than controls. Because sleep deprivation increases the frequency of slow wave sleep (SWS) arousals in sleepwalkers, it may also affect the expression of the homeostatic process to a greater extent than shown previously. We thus investigated SWA power as well as slow wave oscillation (SWO) density in 10 sleepwalkers and nine controls at baseline and following 38 h of sleep deprivation. There was a significant increase in SWA during participants' recovery sleep, especially during their second non-rapid eye movement (NREM) period. SWO density was similarly increased during recovery sleep's first two NREM periods. A fronto-central gradient in SWA and SWO was also present on both nights. However, no group differences were noted on any of the 2 nights on SWA or SWO. This unexpected result may be related to the heterogeneity of sleepwalkers as a population, as well as our small sample size. SWA pressure after extended sleep deprivation may also result in a ceiling effect in both sleepwalkers and controls. © 2013 European Sleep Research Society.

  17. Food Patterns According to Sociodemographics, Physical Activity, Sleeping and Obesity in Portuguese Children

    OpenAIRE

    Moreira; Santos; Padrão; Cordeiro; Bessa; Valente; Barros; Teixeira; Mitchell; Lopes; Moreira

    2010-01-01

    Our study aimed to describe the association between food patterns and gender, parental education, physical activity, sleeping and obesity in 1976 children aged 5−10 years old. Dietary intake was measured by a semi quantitative food frequency questionnaire; body mass index was calculated and categorized according to the IOTF classification. Factor analysis and generalized linear models were applied to identify food patterns and their associations. TV viewing and male gender were significant po...

  18. Means of processing information on motor activity of patient during sleep

    Science.gov (United States)

    Gorbunov, A. V.; Egorov, V. S.; Neprokin, A. V.

    2018-05-01

    Information about the physical activity of a person during sleep is an important component of information about the state of one’s nervous system, the interpretation of which can be used for disease monitoring, diagnostics and prediction of diseases of the nervous system. This will significantly reduce the risks of disability and improve the quality of life of the patient in accordance with the concept of mobile telemedicine (mHealth).

  19. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study.

    Science.gov (United States)

    Jones, Stephanie G; Riedner, Brady A; Smith, Richard F; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J; Benca, Ruth M

    2014-02-01

    Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Sleep laboratory. Nine subjects with AHI > 10 and nine matched controls. N/A. Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.

  20. Evaluation of the Performance of Feedforward and Recurrent Neural Networks in Active Cancellation of Sound Noise

    Directory of Open Access Journals (Sweden)

    Mehrshad Salmasi

    2012-07-01

    Full Text Available Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in noise attenuation are compared. We use Elman network as a recurrent neural network. For simulations, noise signals from a SPIB database are used. In order to compare the networks appropriately, equal number of layers and neurons are considered for the networks. Moreover, training and test samples are similar. Simulation results show that feedforward and recurrent neural networks present good performance in noise cancellation. As it is seen, the ability of recurrent neural network in noise attenuation is better than feedforward network.

  1. Activity in part of the neural correlates of consciousness reflects integration.

    Science.gov (United States)

    Eriksson, Johan

    2017-10-01

    Integration is commonly viewed as a key process for generating conscious experiences. Accordingly, there should be increased activity within the neural correlates of consciousness when demands on integration increase. We used fMRI and "informational masking" to isolate the neural correlates of consciousness and measured how the associated brain activity changed as a function of required integration. Integration was manipulated by comparing the experience of hearing simple reoccurring tones to hearing harmonic tone triplets. The neural correlates of auditory consciousness included superior temporal gyrus, lateral and medial frontal regions, cerebellum, and also parietal cortex. Critically, only activity in left parietal cortex increased significantly as a function of increasing demands on integration. We conclude that integration can explain part of the neural activity associated with the generation conscious experiences, but that much of associated brain activity apparently reflects other processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A cross-sectional cluster analysis of the combined association of physical activity and sleep with sociodemographic and health characteristics in mid-aged and older adults.

    Science.gov (United States)

    Rayward, Anna T; Duncan, Mitch J; Brown, Wendy J; Plotnikoff, Ronald C; Burton, Nicola W

    2017-08-01

    This study aimed to identify how different patterns of physical activity, sleep duration and sleep quality cluster together, and to examine how the identified clusters differ in terms of socio-demographic and health characteristics. Participants were adults from Brisbane, Australia, aged 42-72 years who reported their physical activity, sleep duration, sleep quality, socio-demographic and health characteristics in 2011 (n=5854). Two-step Cluster Analyses were used to identify clusters. Cluster differences in socio-demographic and health characteristics were examined using chi square tests (phealth characteristics and a high proportion of participants with low physical activity. Physical activity, sleep duration and sleep quality cluster together in distinct patterns and clusters of poor behaviours are associated with poor health status. Multiple health behaviour change interventions which target both physical activity and sleep should be prioritised to improve health outcomes in mid-aged adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study.

    Science.gov (United States)

    Riedner, Brady A; Goldstein, Michael R; Plante, David T; Rumble, Meredith E; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M

    2016-04-01

    To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4-8 Hz) and alpha (8-12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. © 2016 Associated Professional Sleep Societies, LLC.

  4. Recent progress of neuroimaging studies on sleeping brain

    International Nuclear Information System (INIS)

    Sasaki, Yuka

    2012-01-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed. (author)

  5. [Recent progress of neuroimaging studies on sleeping brain].

    Science.gov (United States)

    Sasaki, Yuka

    2012-06-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed.

  6. Dreaming of a Learning Task Is Associated with Enhanced Sleep-Dependent Memory Consolidation

    OpenAIRE

    Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph A.; Stickgold, Robert

    2010-01-01

    It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a...

  7. Sleep and Learning

    Science.gov (United States)

    Margoliash, Daniel

    2010-03-01

    The neural basis of cognition represents a grand challenge problem involving multiple disciplines and approaches to the analysis of behavior. Song learning by juvenile songbirds such as zebra finches has proven to have considerable utility for exploring how behavior is represented at multiple levels of brain function. As classically described, young birds are exposed to a ``tutor'' (adult) song and commit that song to memory early in life, then engage in an extended period (weeks) of plastic singing as they slowly learn to match vocal output to the tutor song memory via auditory feedback. In recent years, the role of sleep in learning processes has been actively explored. Young birds isolated from adult songs, then suddenly given access to such songs at circa 40 days of age, show a sudden change in their singing behavior starting on the day following first exposure. Such birds sing songs that have less structure in the mornings than do the songs sung in the afternoons before or after that morning. This fluctuation is directly the result of sleep (not circadian rhythm), and the magnitude of fluctuation is positively correlated with the ultimate similarity to the tutor song. Examining spontaneous neuronal activity in certain brain structures during the night in sleeping adults shows ``replay'' of the patterns of activity the same neurons exhibit during daytime singing, and ``preplay'' of new patterns that will first be incorporated into daytime singing the following day. In experiments on juveniles, nighttime neuronal activity shows dramatic changes associated with song learning, even on the night after the first day of tutor song exposure (preceding changes in singing behavior). Offline processing, especially sleep, has been well documented to participate in memory consolidation in a very broad range of behaviors including in humans. Placing the bird song results in a theoretical framework thereby helps to inform a very broad range of phenomena.

  8. Sleep Duration, Sedentary Behavior, Physical Activity, and Quality of Life after Inpatient Stroke Rehabilitation.

    Science.gov (United States)

    Ezeugwu, Victor E; Manns, Patricia J

    2017-09-01

    The aim of this study was to describe accelerometer-derived sleep duration, sedentary behavior, physical activity, and quality of life and their association with demographic and clinical factors within the first month after inpatient stroke rehabilitation. Thirty people with stroke (mean ± standard deviation, age: 63.8 ± 12.3 years, time since stroke: 3.6 ± 1.1 months) wore an activPAL3 Micro accelerometer (PAL Technologies, Glasgow, Scotland) continuously for 7 days to measure whole-day activity behavior. The Stroke Impact Scale and the Functional Independence Measure were used to assess quality of life and function, respectively. Sleep duration ranged from 6.6 to 11.6 hours/day. Fifteen participants engaged in long sleep greater than 9 hours/day. Participants spent 74.8% of waking hours in sedentary behavior, 17.9% standing, and 7.3% stepping. Of stepping time, only a median of 1.1 (interquartile range: .3-5.8) minutes were spent walking at a moderate-to-vigorous intensity (≥100 steps/minute). The time spent sedentary, the stepping time, and the number of steps differed significantly by the hemiparetic side (P stroke. There were moderate to strong correlations between the stepping time and the number of steps with gait speed (Spearman r = .49 and .61 respectively, P stroke, and cognition were not significant. People with stroke sleep for longer than the normal duration, spend about three quarters of their waking hours in sedentary behaviors, and engage in minimal walking following stroke rehabilitation. Our findings provide a rationale for the development of behavior change strategies after stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. Normal weight children have higher cognitive performance - Independent of physical activity, sleep, and diet.

    Science.gov (United States)

    Hjorth, Mads F; Sørensen, Louise B; Andersen, Rikke; Dyssegaard, Camilla B; Ritz, Christian; Tetens, Inge; Michaelsen, Kim F; Astrup, Arne; Egelund, Niels; Sjödin, Anders

    2016-10-15

    Aside from the health consequences, observational studies indicate that being overweight may also negatively affect cognitive function. However, existing evidence has to a large extent not controlled for the possible confounding effect of having different lifestyles. Therefore, the objective was to examine the independent associations between weight status and lifestyle indicators with cognitive performance in 8-11year old Danish children. The analyses included 828 children (measured in 2011-2012) each having one to three measurement occasions separated by approximately 100days. Dietary intake, physical activity, sedentary time, and sleep duration were measured using dietary records and accelerometers. The Children's Sleep Habits Questionnaire was used to access sleep problems and the Andersen test was carried out to estimate cardio-respiratory fitness (CRF). Weight status (underweight, normal weight, and overweight/obese) was defined according to body mass index and cognitive performance was assessed using the d2-test of attention, a reading test, and a math test. A linear mixed model including a number of fixed and random effects was used to test associations between lifestyle indicators as well as BMI category and cognitive performance. After adjustment for demographics, socioeconomics, and multiple lifestyle indicators, normal weight children had higher cognitive test scores than overweight/obese and underweight children of up to 89% and 48% of expected learning within one school year (Pbreakfast consumption, fewer sleep problems, higher CRF, less total physical activity, more sedentary time, and less light physical activity were associated with higher cognitive performance independently of each other in at least one of the three cognitive tests (Pperformance compared to overweight/obese as well as underweight children, independent of multiple lifestyle indicators. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Sleep deprivation: cardiovascular effects for anesthesiologists

    Directory of Open Access Journals (Sweden)

    Ali Dabbagh

    2016-03-01

    Full Text Available Sleep and anesthesia have some common or "overlapping" neural pathways. Both involve wakefulness; while they are not the same; anesthesia is an iatrogenic, reversible, pharmacologic-based coma; which could affect the CNS neural pathways at many levels. In the current era of modern anesthesiology, the practice and science of anesthesia is composed of 4 basic elements; (1: 1. hypnosis (i.e. iatrogenic pharmacologicinduced coma 2. amnesia (not to remember the events of the operation 3. analgesia (being painless 4. akinesia (lack of movements to stimuli The first two ingredients of anesthesia could have common points with sleep. Thalamic nuclei are involved both in sleep and anesthesia (2, 3; though, they are not the same phenomena (4. However, could there be any clinical concern if some of our patients have abnormalities in sleep? In fact, the effects of sleep deprivation have long been studied in patients undergoing anesthesia for surgical operations (4, 5. Sleep deprivation causes altered neurohumoral activity, neuroendocrine dysregulations, abnormalities in the immune system and impairments in cardiac autonomic function (6, 7. Sleep deprivation may affect the clinical effects of the anesthetics or it may create unpredicted changes in the clinical response to a determined dose of anesthetic drugs (8. In this volume of the Journal, Choopani et al have published their results regarding sleep deprivation; they have demonstrated that in rats, if sleep deprivation is induced prior to an ischemia/reperfusion event, it can increase the chance for ventricular tachycardia and ventricular fibrillation; also, they have shown that this untoward effect could be eliminated using chemical sympathectomy (9. In clinical practice, the main message from this study could be that when anesthesiologists perform anesthesia for their patients, they should be aware of effects of acute or chronic sleep deprivation. Undoubtedly, sleep deprivation could occur during the

  11. Healthy People 2020: Sleep Health

    Science.gov (United States)

    ... improve health, productivity, wellness, quality of life, and safety on roads and in the workplace. Overview Poor sleep health ... adopt strategies that reduce risks to health and safety. Without sleep health education, individuals often prioritize other activities over sleep and ...

  12. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  13. Anisotropy of ongoing neural activity in the primate visual cortex

    Directory of Open Access Journals (Sweden)

    Maier A

    2014-09-01

    Full Text Available Alexander Maier,1 Michele A Cox,1 Kacie Dougherty,1 Brandon Moore,1 David A Leopold2 1Department of Psychology, College of Arts and Science, Vanderbilt University, Nashville, TN, USA; 2Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA Abstract: The mammalian neocortex features distinct anatomical variation in its tangential and radial extents. This review consolidates previously published findings from our group in order to compare and contrast the spatial profile of neural activity coherence across these distinct cortical dimensions. We focus on studies of ongoing local field potential (LFP data obtained simultaneously from multiple sites in the primary visual cortex in two types of experiments in which electrode contacts were spaced either along the cortical surface or at different laminar positions. These studies demonstrate that across both dimensions the coherence of ongoing LFP fluctuations diminishes as a function of interelectrode distance, although the nature and spatial scale of this falloff is very different. Along the cortical surface, the overall LFP coherence declines gradually and continuously away from a given position. In contrast, across the cortical layers, LFP coherence is discontinuous and compartmentalized as a function of depth. Specifically, regions of high LFP coherence fall into discrete superficial and deep laminar zones, with an abrupt discontinuity between the granular and infragranular layers. This spatial pattern of ongoing LFP coherence is similar when animals are at rest and when they are engaged in a behavioral task. These results point to the existence of partially segregated laminar zones of cortical processing that extend tangentially within the laminar compartments and are thus oriented orthogonal to the cortical columns. We interpret these electrophysiological observations in light of the known anatomical organization of

  14. Temporal and bi-directional associations between sleep duration and physical activity/sedentary time in children: An international comparison.

    Science.gov (United States)

    Lin, Yingyi; Tremblay, Mark S; Katzmarzyk, Peter T; Fogelholm, Mikael; Hu, Gang; Lambert, Estelle V; Maher, Carol; Maia, Jose; Olds, Timothy; Sarmiento, Olga L; Standage, Martyn; Tudor-Locke, Catrine; Chaput, Jean-Philippe

    2018-06-01

    The purpose of this multinational and cross-sectional study was to investigate whether nighttime sleep duration was associated with physical activity (PA) and sedentary time (SED) the following day, whether daytime PA/SED were associated with sleep duration the subsequent night, and whether the associations were modified by sex and study sites. Data from 5779 children aged 9-11years were analyzed. A waist-worn Actigraph GT3X+ accelerometer was used to assess children's 24-h movement behaviours for 7days, i.e. sleep duration, total SED, light-intensity physical activity (LPA), and moderate- to vigorous-intensity physical activity (MVPA). Multilevel linear regression models were used to account for the repeated measures nested within participants (there were up to 7 sleep→PA/SED and PA/SED→sleep pairings per participant) and schools, and adjusted for covariates. To facilitate interpretation, all sleep and PA/SED variables were standardized. Results showed that the relationship between sleep and PA/SED is bi-directional in this international sample of children. Specifically, for each one standard deviation (SD) unit increase in sleep duration, SED the following day decreased by 0.04 SD units, while LPA and MVPA increased by 0.04 and 0.02 SD units, respectively. Sleep duration decreased by 0.02 SD units and increased by 0.04 SD units for each one SD unit increase in SED and MVPA, respectively. Sleep duration was not affected by changes in LPA. These associations differed across sex and study sites in both directions. However, since the observed effect sizes are subtle, public health initiatives should consider the clinical and practical relevance of these findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. What drives slow wave activity during early non-REM sleep: Learning during prior wake or effort?

    Directory of Open Access Journals (Sweden)

    Ziyang Li

    Full Text Available What is the function of sleep in humans? One claim is that sleep consolidates learning. Slow wave activity (SWA, i.e. slow oscillations of frequency < 4 Hz, has been observed in electroencephalograms (EEG during sleep; it increases with prior wakefulness and decreases with sleep. Studies have claimed that increase in SWA in specific regions of the sleeping brain is correlated with overnight improved performance, i.e. overnight consolidation, on a demanding motor learning task. We wondered if SWA change during sleep is attributable to overnight consolidation or to metabolic demand. Participants executed out-and-back movements to a target using a pen-like cursor with their dominant hand while the target and cursor position were displayed on a screen. They trained on three different conditions on separate nights, differing in the amount and degree of rotation between the actual hand movement direction and displayed cursor movement direction. In the no-rotation (NR condition, there was no rotation. In the single rotation (SR condition, the amount of rotation remained the same throughout, and performance improved both across pre-sleep training and after sleep, i.e. overnight consolidation occurred; in the random rotation (RR condition, the amount of rotation varied randomly from trial to trial, and no overnight consolidation occurred; SR and RR were cognitively demanding. The average EEG power density of SWA for the first 30 min. of non-rapid eye movement sleep after training was computed. Both SR and RR elicited increase in SWA in the parietal region; furthermore, the topographic distribution of SWA in each was remarkably similar. No correlation was found between the overnight performance improvement on SR and the SWA change in the parietal region on measures of learning. Our results argue that regulation of SWA in early sleep is associated with high levels of cognitive effort during prior wakefulness, and not just overnight consolidation.

  16. The Relationship between Obesity, Sleep and Physical Activity in Chinese Preschool Children

    Directory of Open Access Journals (Sweden)

    Meimei Ji

    2018-03-01

    Full Text Available Background: Pediatric overweight and obesity has become a major public health problem in China. The goal of this study is to understand overweight and obesity in preschool children in Changsha City in the context of their sleep and physical activity. These results offer feasible proposals to reduce levels of overweight and obesity among preschool children. Methods: A total of 112 preschoolers aged three to six years old were investigated using multiple stage stratified cluster sampling and simple random sampling. Questionnaires were used to collect general information about children and their families. Body mass index (BMI was used as an indicator of overweight and obesity. Age- and sex-specific cutoff values for Chinese children and adolescents were used to determine child weight status. Children’s sedentary time was reported by caregivers, while physical activity and sleep were recorded using fitness bracelets (Misfit Shine 2. Results: The prevalence of childhood overweight and obesity were 15.2% and 9.8% respectively. Preschool-aged children travelled 11,111 ± 3357 and 10,350 ± 2973 steps per day on weekdays and weekends respectively. The number of daily steps was not statistically different between weekdays and weekends. The amount of time spent daily doing vigorous activity on weekdays and weekends was significantly different, with an average time of 20.5 ± 31.6 min and 10.3 ± 15.3 min respectively (p = 0.002. Furthermore, 10.7% and 50.9% of children used screens for more than two hours on weekdays and weekends respectively (p < 0.001. Children slept for significantly longer on weekends (8.3 ± 0.9 h than on weekdays (8.1 ± 0.7 h (p = 0.037. A significantly higher proportion of students also fell asleep before 10:00 p.m. on weekends (26.8% compared to weekdays (15.2% (p < 0.001. Parent’s BMI values were positively correlated with child BMI, the monthly household income was negatively associated with child BMI. Male children were

  17. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation.

    Science.gov (United States)

    Lee, Michael L; Katsuyama, Ângela M; Duge, Leanne S; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J; de la Iglesia, Horacio O

    2016-11-01

    Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. © 2016 Associated Professional Sleep Societies, LLC.

  18. Evaluation of the Performance of Feedforward and Recurrent Neural Networks in Active Cancellation of Sound Noise

    OpenAIRE

    Mehrshad Salmasi; Homayoun Mahdavi-Nasab

    2012-01-01

    Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in n...

  19. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  20. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

    OpenAIRE

    Francisco Javier Ordóñez; Daniel Roggen

    2016-01-01

    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we pro...

  1. Effects of sleep on memory for conditioned fear and fear extinction

    Science.gov (United States)

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. REM may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep’s effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. PMID:25894546

  2. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.

    Science.gov (United States)

    Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W

    2016-03-30

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to

  3. Physical activity, sleep pattern and energy expenditure in double-handed offshore sailing.

    Science.gov (United States)

    Galvani, C; Ardigò, L P; Alberti, M; Daniele, F; Capelli, C

    2015-12-01

    The aim of the present study was to quantify total energy expenditure, activity energy expenditure and time spent at three levels of physical activity (low, moderate, high intensity) in four two-person crews during a 500-mile double-handed sailing regatta. Physical activity intensity and energy expenditure were assessed during a 500-nautical-mile double-handed offshore competition in eight male sailors (46.3±3.4 years; 180±13 cm; 85.4±12.5 kg). During the whole regatta, they wore an activity monitor that estimated energy expenditure and minutes spent at each level of intensity (sedentary, 6.0 METs). The sailors spent longer periods (Penergy expenditure was 14.26±1.89 MJ/day and the activity energy expenditure was 5.06±1.42 MJ/day. Activity energy expenditure was significantly correlated with total sleep time, boat speed, and distance covered each day (Penergy expenditure was more likely a consequence of the short and rare periods of sleep during the competition rather than of the bouts of moderate and vigorous physical activities.

  4. Dissimilarity of slow-wave activity enhancement by torpor and sleep deprivation in a hibernator

    NARCIS (Netherlands)

    Strijkstra, AM; Daan, S

    1998-01-01

    Sleep regulation processes have been hypothesized to be involved in function and timing of arousal episodes in hibernating ground squirrels. We investigated the importance of sleep regulation during arousal episodes by sleep deprivation experiments. After sleep deprivation of 4, 12, and 24 h,

  5. 24-h actigraphic monitoring of motor activity, sleeping and eating behaviors in underweight, normal weight, overweight and obese children.

    Science.gov (United States)

    Martoni, Monica; Carissimi, Alicia; Fabbri, Marco; Filardi, Marco; Tonetti, Lorenzo; Natale, Vincenzo

    2016-12-01

    Within a chronobiological perspective, the present study aimed to describe 24 h of sleep-wake cycle, motor activity, and food intake patterns in different body mass index (BMI) categories of children through 7 days of actigraphic recording. Height and weight were objectively measured for BMI calculation in a sample of 115 Italian primary schoolchildren (10.21 ± 0.48 years, 62.61 % females). According to BMI values, 2.60 % were underweight, 61.70 % were of normal weight, 29.60 % were overweight and 6.10 % were obese. Participants wore a wrist actigraph continuously for 7 days to record motor activity and describe sleep-wake patterns. In addition, participants were requested to push the event-marker button of the actigraph each time they consumed food to describe their circadian eating patterns. BMI group differences were found for sleep quantity (i.e. midpoint of sleep and amplitude), while sleep quality, 24-h motor activity and food intake patterns were similar between groups. Regression analyses showed that BMI was negatively predicted by sleep duration on schooldays. BMI was also predicted by motor activity and by food intake frequencies recorded at particular times of day during schooldays and at the weekend. The circadian perspective seems to provide promising insight into childhood obesity, but this aspect needs to be further explored.

  6. Neural Activity during Encoding Predicts False Memories Created by Misinformation

    Science.gov (United States)

    Okado, Yoko; Stark, Craig E. L.

    2005-01-01

    False memories are often demonstrated using the misinformation paradigm, in which a person's recollection of a witnessed event is altered after exposure to misinformation about the event. The neural basis of this phenomenon, however, remains unknown. The authors used fMRI to investigate encoding processes during the viewing of an event and…

  7. Voltage Estimation in Active Distribution Grids Using Neural Networks

    DEFF Research Database (Denmark)

    Pertl, Michael; Heussen, Kai; Gehrke, Oliver

    2016-01-01

    the observability of distribution systems has to be improved. To increase the situational awareness of the power system operator data driven methods can be employed. These methods benefit from newly available data sources such as smart meters. This paper presents a voltage estimation method based on neural networks...

  8. Active Control of Sound based on Diagonal Recurrent Neural Network

    NARCIS (Netherlands)

    Jayawardhana, Bayu; Xie, Lihua; Yuan, Shuqing

    2002-01-01

    Recurrent neural network has been known for its dynamic mapping and better suited for nonlinear dynamical system. Nonlinear controller may be needed in cases where the actuators exhibit the nonlinear characteristics, or in cases when the structure to be controlled exhibits nonlinear behavior. The

  9. C-fos expression in the pons and medulla of the cat during carbachol-induced active sleep.

    Science.gov (United States)

    Yamuy, J; Mancillas, J R; Morales, F R; Chase, M H

    1993-06-01

    Microinjection of carbachol into the rostral pontine tegmentum of the cat induces a state that is comparable to naturally occurring active (REM, rapid eye movement) sleep. We sought to determine, during this pharmacologically induced behavioral state, which we refer to as active sleep-carbachol, the distribution of activated neuron within the pons and medulla using c-fos immunocytochemistry as a functional marker. Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited higher numbers of c-fos-expressing neurons in (1) the medial and portions of the lateral reticular formation of the pons and medulla, (2) nuclei in the dorsolateral rostral pons, (3) various raphe nuclei, including the dorsal, central superior, magnus, pallidus, and obscurus, (4) the medial and lateral vestibular, prepositus hypoglossi, and intercalatus nuclei, and (5) the abducens nuclei. On the other hand, the mean number of c-fos-expressing neurons found in the masseter, facial, and hypoglossal nuclei was lower in carbachol-injected than in control cats. The data indicate that c-fos expression can be employed as a marker of state-dependent neuronal activity. The specific sites in which there were greater numbers of c-fos-expressing neurons during active sleep-carbachol are discussed in relation to the state of active sleep, as well as the functional role that these sites play in generating the various physiological patterns of activity that occur during this state.

  10. Aircraft noise effects on sleep: a systematic comparison of EEG awakenings and automatically detected cardiac activations

    International Nuclear Information System (INIS)

    Basner, Mathias; Müller, Uwe; Elmenhorst, Eva-Maria; Kluge, Götz; Griefahn, Barbara

    2008-01-01

    Polysomnography is the gold standard for investigating noise effects on sleep, but data collection and analysis are sumptuous and expensive. We recently developed an algorithm for the automatic identification of cardiac activations associated with cortical arousals, which uses heart rate information derived from a single electrocardiogram (ECG) channel. We hypothesized that cardiac activations can be used as estimates for EEG awakenings. Polysomnographic EEG awakenings and automatically detected cardiac activations were systematically compared using laboratory data of 112 subjects (47 male, mean ± SD age 37.9 ± 13 years), 985 nights and 23 855 aircraft noise events (ANEs). The probability of automatically detected cardiac activations increased monotonically with increasing maximum sound pressure levels of ANEs, exceeding the probability of EEG awakenings by up to 18.1%. If spontaneous reactions were taken into account, exposure–response curves were practically identical for EEG awakenings and cardiac activations. Automatically detected cardiac activations may be used as estimates for EEG awakenings. More investigations are needed to further validate the ECG algorithm in the field and to investigate inter-individual differences in its ability to predict EEG awakenings. This inexpensive, objective and non-invasive method facilitates large-scale field studies on the effects of traffic noise on sleep

  11. The fiber-optic imaging and manipulation of neural activity during animal behavior.

    Science.gov (United States)

    Miyamoto, Daisuke; Murayama, Masanori

    2016-02-01

    Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Sleep physiology and sleep disorders in childhood

    Directory of Open Access Journals (Sweden)

    El Shakankiry HM

    2011-09-01

    Full Text Available Hanan M El ShakankiryKing Fahd University Hospital, Al Dammam University, Al Khobar, Kingdom of Saudi ArabiaAbstract: Sleep has long been considered as a passive phenomenon, but it is now clear that it is a period of intense brain activity involving higher cortical functions. Overall, sleep affects every aspect of a child's development, particularly higher cognitive functions. Sleep concerns are ranked as the fifth leading concern of parents. Close to one third of all children suffer from sleep disorders, the prevalence of which is increased in certain pediatric populations, such as children with special needs, children with psychiatric or medical diagnoses and children with autism or pervasive developmental disorders. The paper reviews sleep physiology and the impact, classification, and management of sleep disorders in the pediatric age group.Keywords: sleep physiology, sleep disorders, childhood, epilepsy

  13. Detection of Nocturnal Slow Wave Sleep Based on Cardiorespiratory Activity in Healthy Adults.

    Science.gov (United States)

    Long, Xi; Fonseca, Pedro; Aarts, Ronald M; Haakma, Reinder; Rolink, Jerome; Leonhardt, Steffen

    2017-01-01

    Human slow wave sleep (SWS) during bedtime is paramount for energy conservation and memory consolidation. This study aims at automatically detecting SWS from nocturnal sleep using cardiorespiratory signals that can be acquired with unobtrusive sensors in a home-based scenario. From the signals, time-dependent features are extracted for continuous 30-s epochs. To reduce the measuring noise, body motion artifacts, and/or within-subject variability in physiology conveyed by the features, and thus, enhance the detection performance, we propose to smooth the features over each night using a spline fitting method. In addition, it was found that the changes in cardiorespiratory activity precede the transitions between SWS and the other sleep stages (non-SWS). To this matter, a novel scheme is proposed that performs the SWS detection for each epoch using the feature values prior to that epoch. Experiments were conducted with a large dataset of 325 overnight polysomnography (PSG) recordings using a linear discriminant classifier and tenfold cross validation. Features were selected with a correlation-based method. Results show that the performance in classifying SWS and non-SWS can be significantly improved when smoothing the features and using the preceding feature values of 5-min earlier. We achieved a Cohen's Kappa coefficient of 0.57 (at an accuracy of 88.8%) using only six selected features for 257 recordings with a minimum of 30-min overnight SWS that were considered representative of their habitual sleeping pattern at home. These features included the standard deviation, low-frequency spectral power, and detrended fluctuation of heartbeat intervals as well as the variations of respiratory frequency and upper and lower respiratory envelopes. A marked drop in Kappa to 0.21 was observed for the other nights with SWS time of less than 30 min, which were found to more likely occur in elderly. This will be the future challenge in cardiorespiratory-based SWS detection.

  14. Rapid eye movement (REM sleep deprivation reduces rat frontal cortex acetylcholinesterase (EC 3.1.1.7 activity

    Directory of Open Access Journals (Sweden)

    Camarini R.

    1997-01-01

    Full Text Available Rapid eye movement (REM sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase controls acetylcholine (Ach availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12. Two additional groups, a home-cage control (N = 6 and a large platform control (N = 6, were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant, membrane-bound (100,000 g pellet and soluble (100,000 g supernatant Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1 in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8. There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2. Our results

  15. Sleep: The hebbian reinforcement of the local inhibitory synapses.

    Science.gov (United States)

    Touzet, Claude

    2015-09-01

    Sleep is ubiquitous among the animal realm, and represents about 30% of our lives. Despite numerous efforts, the reason behind our need for sleep is still unknown. The Theory of neuronal Cognition (TnC) proposes that sleep is the period of time during which the local inhibitory synapses (in particular the cortical ones) are replenished. Indeed, as long as the active brain stays awake, hebbian learning guarantees that efficient inhibitory synapses lose their efficiency – just because they are efficient at avoiding the activation of the targeted neurons. Since hebbian learning is the only known mechanism of synapse modification, it follows that to replenish the inhibitory synapses' efficiency, source and targeted neurons must be activated together. This is achieved by a local depolarization that may travel (wave). The period of time during which such slow waves are experienced has been named the "slow-wave sleep" (SWS). It is cut into several pieces by shorter periods of paradoxical sleep (REM) which activity resembles that of the awake state. Indeed, SWS – because it only allows local neural activation – decreases the excitatory long distance connections strength. To avoid losing the associations built during the awake state, these long distance activations are played again during the REM sleep. REM and SWS sleeps act together to guarantee that when the subject awakes again, his inhibitory synaptic efficiency is restored and his (excitatory) long distance associations are still there. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  17. [Pharmacology of a new sleep inducer, 1H-1,2,4-triazolyl benzophenone derivative, 450191-S (II). Sleep-inducing activity and effect on the motor system].

    Science.gov (United States)

    Yamamoto, K; Matsushita, A; Sawada, T; Naito, Y; Yoshimura, K; Takesue, H; Utsumi, S; Kawasaki, K; Hirono, S; Koshida, H

    1984-07-01

    The sleep-inducing activity and effect on the motor system of the 1H-1,2,4-triazolyl benzophenone derivative 450191-S were examined behaviorally, electroencephalographically and electro-physiologically with various species of animals and were compared with those of diazepam, nitrazepam, estazolam and triazolam. In the rhesus monkey, rabbit and rat with chronically indwelling brain electrodes, 0.6 to 3 mg/kg, p.o. of 450191-S caused a shorter latency of sleep onset, an increase of and a stable continuity of slow wave deep sleep (SWDS) with higher amplitude, and the appearance of clear spindle bursts in the slow wave light sleeping (SWLS) state with little muscle relaxation. Animals treated with nitrazepam and/or estazolam showed a smaller increase in SWDS and its unstable continuity with remarkable disturbance of gait. The doses needed to induce sleep in the rhesus monkey were 0.6 to 1 mg/kg p.o. for 450191-S, 3 mg/kg for nitrazepam, 1 mg/kg for estazolam and 0.3 mg/kg for triazolam. The cat treated with 450191-S showed the phenomena caused by benzodiazepines (BDZ), i.e., behavioral excitation and decrease of frequencies in the hippocampal theta waves. The suppressive effects of 450191-S on the EEG arousal reaction and/or blood pressure elevation induced by hypothalamic stimulation in the rabbit suggested that the inhibitory effects acted on the posterior hypothalamus to the limbic system. The inhibitory effect of 450191-S on the amygdaloid kindling in the rat was as potent as those of diazepam and nitrazepam. Successive daily oral administration of both 3 mg/kg of 450191-S and/or 3 to 6 mg/kg of nitrazepam for 15 days in the rabbit caused slight decrease of SWDS and increase of fast wave (REM) sleep (FWS). During the withdrawal period of both compounds, a slight but insignificant increase in the waking state was noticed for 1 to 2 days, but not a rebound increase of FWS. Intravenously administered 450191-S showed the same action as BDZ on the spinal reflex and the

  18. [Association between hours of television watched, physical activity, sleep and excess weight among young adults].

    Science.gov (United States)

    Martínez-Moyá, María; Navarrete-Muñoz, Eva M; García de la Hera, Manuela; Giménez-Monzo, Daniel; González-Palacios, Sandra; Valera-Gran, Desirée; Sempere-Orts, María; Vioque, Jesús

    2014-01-01

    To explore the association between excess weight or body mass index (BMI) and the time spent watching television, self-reported physical activity and sleep duration in a young adult population. We analyzed cross-sectional baseline data of 1,135 participants (17-35 years old) from the project Dieta, salud y antropometría en población universitaria (Diet, Health and Anthrompmetric Variables in Univeristy Students). Information about time spent watching television, sleep duration, self-reported physical activity and self-reported height and weight was provided by a baseline questionnaire. BMI was calculated as kg/m(2) and excess of weight was defined as ≥25. We used multiple logistic regression to explore the association between excess weight (no/yes) and independent variables, and multiple linear regression for BMI. The prevalence of excess weight was 13.7% (11.2% were overweight and 2.5% were obese). A significant positive association was found between excess weight and a greater amount of time spent watching television. Participants who reported watching television >2h a day had a higher risk of excess weight than those who watched television ≤1h a day (OR=2.13; 95%CI: 1.37-3.36; p-trend: 0.002). A lower level of physical activity was associated with an increased risk of excess weight, although the association was statistically significant only in multiple linear regression (p=0.037). No association was observed with sleep duration. A greater number of hours spent watching television and lower physical activity were significantly associated with a higher BMI in young adults. Both factors are potentially modifiable with preventive strategies. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.

  19. Increased EEG sigma and beta power during NREM sleep in primary insomnia.

    Science.gov (United States)

    Spiegelhalder, Kai; Regen, Wolfram; Feige, Bernd; Holz, Johannes; Piosczyk, Hannah; Baglioni, Chiara; Riemann, Dieter; Nissen, Christoph

    2012-12-01

    The hyperarousal model of primary insomnia suggests that a deficit of attenuating arousal during sleep might cause the experience of non-restorative sleep. In the current study, we examined EEG spectral power values for standard frequency bands as indices of cortical arousal and sleep protecting mechanisms during sleep in 25 patients with primary insomnia and 29 good sleeper controls. Patients with primary insomnia demonstrated significantly elevated spectral power values in the EEG beta and sigma frequency band during NREM stage 2 sleep. No differences were observed in other frequency bands or during REM sleep. Based on prior studies suggesting that EEG beta activity represents a marker of cortical arousal and EEG sleep spindle (sigma) activity is an index of sleep protective mechanisms, our findings may provide further evidence for the concept that a simultaneous activation of wake-promoting and sleep-protecting neural activity patterns contributes to the experience of non-restorative sleep in primary insomnia. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Carotid body (Thermoreceptors, sympathetic neural activation, and cardiometabolic disease

    Directory of Open Access Journals (Sweden)

    Rodrigo Iturriaga

    Full Text Available The carotid body (CB is the main peripheral chemoreceptor that senses the arterial PO2, PCO2 and pH. In response to hypoxemia, hypercapnia and acidosis, carotid chemosensory discharge elicits reflex respiratory, autonomic and cardiovascular adjustments. The classical construct considers the CB as the main peripheral oxygen sensor, triggering reflex physiological responses to acute hypoxemia and facilitating the ventilatory acclimation to chronic hypoxemia at high altitude. However, a growing body of experimental evidence supports the novel concept that an abnormally enhanced CB chemosensory input to the brainstem contributes to overactivation of the sympathetic nervous system, and consequent pathology. Indeed, the CB has been implicated in several diseases associated with increases in central sympathetic outflow. These include hypertension, heart failure, sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. Indeed, ablation of the CB has been proposed for the treatment of severe and resistant hypertension in humans. In this review, we will analyze and discuss new evidence supporting an important role for the CB chemoreceptor in the progression of autonomic and cardiorespiratory alterations induced by heart failure, obstructive sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome.

  1. Physical activity, health, body mass index, sleeping habits and body complaints in Australian senior high school students.

    Science.gov (United States)

    Alricsson, Marie; Domalewski, Debra; Romild, Ulla; Asplund, Ragnar

    2008-01-01

    Adolescents in the industrial world are becoming less physically active and are increasingly adopting a sedentary life-style in front of computers and television screens. to determine self-related health, physical activity, sleeping habits, prevalence of overweight, and body complaints in Australian senior high school students. Participants were 466 high school students aged 15-17 years enrolled in academic and vocational programs. A questionnaire was completed at two senior high schools with questions about weight and height, health, physical activity, type of physical activity/sport, intensity, sleeping habits, and possible injuries or complaints during the last three months. Seventy seven percent of the high school students participated in sports on a regular basis. Compared with vocational programs, more males and females in academic programs participated in sports (71% and 80% respectively) (p = .036). Males reported significantly better health than females (p sleep was reported in 82.1% of males and in 76.6% of females. In males, 44.3% were often sleepy in the daytime (females 56.6%, p sleep are factors with significant positive effect on good health, whereas overweight is a negative factor. Proper sleep habits and higher physical activity levels should be promoted among high school students, and TV viewing time and video game use restricted. Additionally, schools should provide opportunities for young people to participate in a wider range of physical activities that address their individual needs while promoting the health benefits of engaging in regular exercise.

  2. Genetic Dissociation of Daily Sleep and Sleep Following Thermogenetic Sleep Deprivation in Drosophila.

    Science.gov (United States)

    Dubowy, Christine; Moravcevic, Katarina; Yue, Zhifeng; Wan, Joy Y; Van Dongen, Hans P A; Sehgal, Amita

    2016-05-01

    Sleep rebound-the increase in sleep that follows sleep deprivation-is a hallmark of homeostatic sleep regulation that is conserved across the animal kingdom. However, both the mechanisms that underlie sleep rebound and its relationship to habitual daily sleep remain unclear. To address this, we developed an efficient thermogenetic method of inducing sleep deprivation in Drosophila that produces a substantial rebound, and applied the newly developed method to assess sleep rebound in a screen of 1,741 mutated lines. We used data generated by this screen to identify lines with reduced sleep rebound following thermogenetic sleep deprivation, and to probe the relationship between habitual sleep amount and sleep following thermogenetic sleep deprivation in Drosophila. To develop a thermogenetic method of sleep deprivation suitable for screening, we thermogenetically stimulated different populations of wake-promoting neurons labeled by Gal4 drivers. Sleep rebound following thermogenetically-induced wakefulness varies across the different sets of wake-promoting neurons that were stimulated, from very little to quite substantial. Thermogenetic activation of neurons marked by the c584-Gal4 driver produces both strong sleep loss and a substantial rebound that is more consistent within genotypes than rebound following mechanical or caffeine-induced sleep deprivation. We therefore used this driver to induce sleep deprivation in a screen of 1,741 mutagenized lines generated by the Drosophila Gene Disruption Project. Flies were subjected to 9 h of sleep deprivation during the dark period and released from sleep deprivation 3 h before lights-on. Recovery was measured over the 15 h following sleep deprivation. Following identification of lines with reduced sleep rebound, we characterized baseline sleep and sleep depth before and after sleep deprivation for these hits. We identified two lines that consistently exhibit a blunted increase in the duration and depth of sleep after

  3. Causal Learning and Explanation of Deep Neural Networks via Autoencoded Activations

    OpenAIRE

    Harradon, Michael; Druce, Jeff; Ruttenberg, Brian

    2018-01-01

    Deep neural networks are complex and opaque. As they enter application in a variety of important and safety critical domains, users seek methods to explain their output predictions. We develop an approach to explaining deep neural networks by constructing causal models on salient concepts contained in a CNN. We develop methods to extract salient concepts throughout a target network by using autoencoders trained to extract human-understandable representations of network activations. We then bu...

  4. Self-reported empathy and neural activity during action imitation and observation in schizophrenia

    OpenAIRE

    Horan, William P.; Iacoboni, Marco; Cross, Katy A.; Korb, Alex; Lee, Junghee; Nori, Poorang; Quintana, Javier; Wynn, Jonathan K.; Green, Michael F.

    2014-01-01

    Introduction: Although social cognitive impairments are key determinants of functional outcome in schizophrenia their neural bases are poorly understood. This study investigated neural activity during imitation and observation of finger movements and facial expressions in schizophrenia, and their correlates with self-reported empathy. Methods: 23 schizophrenia outpatients and 23 healthy controls were studied with functional magnetic resonance imaging (fMRI) while they imitated, executed, o...

  5. Abnormal baseline brain activity in Parkinson's disease with and without REM sleep behavior disorder: A resting-state functional MRI study.

    Science.gov (United States)

    Li, Dan; Huang, Peiyu; Zang, Yufeng; Lou, Yuting; Cen, Zhidong; Gu, Quanquan; Xuan, Min; Xie, Fei; Ouyang, Zhiyuan; Wang, Bo; Zhang, Minming; Luo, Wei

    2017-09-01

    To investigate the differences in spontaneous brain activity between Parkinson's disease (PD) patients with rapid eye movement sleep behavior disorder (RBD), PD patients without RBD, and normal controls, which may shed new light on the neural mechanism of RBD. Eighteen PD patients with RBD, 16 patients without RBD, and 19 age- and gender-matched normal controls underwent clinical assessment and functional magnetic resonance imaging (fMRI) with a 3.0T scanner. Resting-state fMRI scans were collected using an echo planar imaging sequence. Amplitude of low-frequency fluctuations (ALFF) were calculated to measure spontaneous brain activity in each subject. Compared with PD patients without RBD, patients with RBD exhibited significantly decreased ALFF values (P abnormalities. Our findings provide additional insight into the neural mechanism of RBD and may drive future research to develop better treatment. 3 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2017;46:697-703. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Lifestyle Habits: Diet, physical activity and sleep duration among Omani adolescents.

    Science.gov (United States)

    Kilani, Hashem; Al-Hazzaa, Hazzaa; Waly, Mostafa I; Musaiger, Abdulrahman

    2013-11-01

    This study aimed to investigate the lifestyle habits-physical activity (PA), eating habits (EH), and sleep duration (SD)-of Omani adolescents, and to examine gender differences in such variables. 802 Omani adolescents (442 females and 360 males), aged 15-18 years were randomly recruited. Anthropometric indices, PA level, and EH and SD were evaluated by the Arab Teenage Lifestyle questionnaire. A semi-quantitative food frequency questionnaire for dietary assessment was also administered. The results showed that although the study subjects had a sedentary lifestyle (lack of PA, average of 6.7 hours sleep, and consumption of high calorie foods), they maintained a normal body mass (less than 25 Kg/m(2)). Males were more than twice as active as females. With respect to EH, there were few gender differences, except in dairy and meat consumption where 62.5% and 55.5% of males consumed more than 3 servings, respectively, compared to 18.78 % and 35.2% of females, respectively. In addition, waist/height ratio, height, reasons for being active, energy drinks, potato consumption, eating sweets, vigorous PA and breakfast EHs were statistically significant independent predictors for BMI, P habits were also widely found among both genders. There is an urgent need for more research as well as a national policy promoting active living and healthy eating and discouraging sedentary behaviour among Omani adolescents.

  7. Shared Genetic Control of Brain Activity During Sleep and Insulin Secretion: A Laboratory-Based Family Study.

    Science.gov (United States)

    Morselli, Lisa L; Gamazon, Eric R; Tasali, Esra; Cox, Nancy J; Van Cauter, Eve; Davis, Lea K

    2018-01-01

    Over the past 20 years, a large body of experimental and epidemiologic evidence has linked sleep duration and quality to glucose homeostasis, although the mechanistic pathways remain unclear. The aim of the current study was to determine whether genetic variation influencing both sleep and glucose regulation could underlie their functional relationship. We hypothesized that the genetic regulation of electroencephalographic (EEG) activity during non-rapid eye movement sleep, a highly heritable trait with fingerprint reproducibility, is correlated with the genetic control of metabolic traits including insulin sensitivity and β-cell function. We tested our hypotheses through univariate and bivariate heritability analyses in a three-generation pedigree with in-depth phenotyping of both sleep EEG and metabolic traits in 48 family members. Our analyses accounted for age, sex, adiposity, and the use of psychoactive medications. In univariate analyses, we found significant heritability for measures of fasting insulin sensitivity and β-cell function, for time spent in slow-wave sleep, and for EEG spectral power in the delta, theta, and sigma ranges. Bivariate heritability analyses provided the first evidence for a shared genetic control of brain activity during deep sleep and fasting insulin secretion rate. © 2017 by the American Diabetes Association.

  8. The role of the brown adipose tissue in β3-adrenergic receptor activation-induced sleep, metabolic and feeding responses.

    Science.gov (United States)

    Szentirmai, Éva; Kapás, Levente

    2017-04-19

    Brown adipose tissue (BAT) is regulated by the sympathetic nervous system via β3-adrenergic receptors (β3-AR). Here we tested the hypothesis that pharmacological stimulation of β3-ARs leads to increased sleep in mice and if this change is BAT dependent. In wild-type (WT) animals, administration of CL-316,243, a selective β3-AR agonist, induced significant increases in non-rapid-eye movement sleep (NREMS) lasting for 4-10 h. Simultaneously, electroencephalographic slow-wave activity (SWA) was significantly decreased and body temperature was increased with a delay of 5-6 h. In uncoupling protein 1 (UCP-1) knockout mice, the middle and highest doses of the β3-AR agonist increased sleep and suppressed SWA, however, these effects were significantly attenuated and shorter-lasting as compared to WT animals. To determine if somnogenic signals arising from BAT in response to β3-AR stimulation are mediated by the sensory afferents of BAT, we tested the effects of CL-316,243 in mice with the chemical deafferentation of the intra-scapular BAT pads. Sleep responses to CL-316,243 were attenuated by ~50% in intra-BAT capsaicin-treated mice. Present findings indicate that the activation of BAT via β3-AR leads to increased sleep in mice and that this effect is dependent on the presence of UCP-1 protein and sleep responses require the intact sensory innervation of BAT.

  9. Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu; Zou Yanli

    2008-01-01

    We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network

  10. Can we still dream when the mind is blank? Sleep and dream mentations in auto-activation deficit.

    Science.gov (United States)

    Leu-Semenescu, Smaranda; Uguccioni, Ginevra; Golmard, Jean-Louis; Czernecki, Virginie; Yelnik, Jerome; Dubois, Bruno; Forgeot d'Arc, Baudouin; Grabli, David; Levy, Richard; Arnulf, Isabelle

    2013-10-01

    Bilateral damage to the basal ganglia causes auto-activation deficit, a neuropsychological syndrome characterized by striking apathy, with a loss of self-driven behaviour that is partially reversible with external stimulation. Some patients with auto-activation deficit also experience a mental emptiness, which is defined as an absence of any self-reported thoughts. We asked whether this deficit in spontaneous activation of mental processing may be reversed during REM sleep, when dreaming activity is potentially elicited by bottom-up brainstem stimulation on the cortex. Sleep and video monitoring over two nights and cognitive tests were performed on 13 patients with auto-activation deficit secondary to bilateral striato-pallidal lesions and 13 healthy subjects. Dream mentations were collected from home diaries and after forced awakenings in non-REM and REM sleep. The home diaries were blindly analysed for length, complexity and bizarreness. A mental blank during wakefulness was complete in six patients and partial in one patient. Four (31%) patients with auto-activation deficit (versus 92% of control subjects) reported mentations when awakened from REM sleep, even when they demonstrated a mental blank during the daytime (n = 2). However, the patients' dream reports were infrequent, short, devoid of any bizarre or emotional elements and tended to be less complex than the dream mentations of control subjects. The sleep duration, continuity and stages were similar between the groups, except for a striking absence of sleep spindles in 6 of 13 patients with auto-activation deficit, despite an intact thalamus. The presence of spontaneous dreams in REM sleep in the absence of thoughts during wakefulness in patients with auto-activation deficit supports the idea that simple dream imagery is generated by brainstem stimulation and is sent to the sensory cortex. However, the lack of complexity in these dream mentations suggests that the full dreaming process (scenario

  11. Reward-Related Ventral Striatum Activity Buffers against the Experience of Depressive Symptoms Associated with Sleep Disturbances.

    Science.gov (United States)

    Avinun, Reut; Nevo, Adam; Knodt, Annchen R; Elliott, Maxwell L; Radtke, Spenser R; Brigidi, Bartholomew D; Hariri, Ahmad R

    2017-10-04

    Sleep disturbances represent one risk factor for depression. Reward-related brain function, particularly the activity of the ventral striatum (VS), has been identified as a potential buffer against stress-related depression. We were therefore interested in testing whether reward-related VS activity would moderate the effect of sleep disturbances on depression in a large cohort of young adults. Data were available from 1129 university students (mean age 19.71 ± 1.25 years; 637 women) who completed a reward-related functional MRI task to assay VS activity and provided self-reports of sleep using the Pittsburgh Sleep Quality Index and symptoms of depression using a summation of the General Distress/Depression and Anhedonic Depression subscales of the Mood and Anxiety Symptoms Questionnaire-short form. Analyses revealed that as VS activity increased the association between sleep disturbances and depressive symptoms decreased. The interaction between sleep disturbances and VS activity was robust to the inclusion of sex, age, race/ethnicity, past or present clinical disorder, early and recent life stress, and anxiety symptoms, as well as the interactions between VS activity and early or recent life stress as covariates. We provide initial evidence that high reward-related VS activity may buffer against depressive symptoms associated with poor sleep. Our analyses help advance an emerging literature supporting the importance of individual differences in reward-related brain function as a potential biomarker of relative risk for depression. SIGNIFICANCE STATEMENT Sleep disturbances are a common risk factor for depression. An emerging literature suggests that reward-related activity of the ventral striatum (VS), a brain region critical for motivation and goal-directed behavior, may buffer against the effect of negative experiences on the development of depression. Using data from a large sample of 1129 university students we demonstrate that as reward-related VS activity

  12. Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats.

    Science.gov (United States)

    Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion

    2014-12-15

    Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Comparison of rhythmic masticatory muscle activity during non-rapid eye movement sleep in guinea pigs and humans.

    Science.gov (United States)

    Kato, Takafumi; Toyota, Risa; Haraki, Shingo; Yano, Hiroyuki; Higashiyama, Makoto; Ueno, Yoshio; Yano, Hiroshi; Sato, Fumihiko; Yatani, Hirofumi; Yoshida, Atsushi

    2017-09-27

    Rhythmic masticatory muscle activity can be a normal variant of oromotor activity, which can be exaggerated in patients with sleep bruxism. However, few studies have tested the possibility in naturally sleeping animals to study the neurophysiological mechanisms of rhythmic masticatory muscle activity. This study aimed to investigate the similarity of cortical, cardiac and electromyographic manifestations of rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep between guinea pigs and human subjects. Polysomnographic recordings were made in 30 freely moving guinea pigs and in eight healthy human subjects. Burst cycle length, duration and activity of rhythmic masticatory muscle activity were compared with those for chewing. The time between R-waves in the electrocardiogram (RR interval) and electroencephalogram power spectrum were calculated to assess time-course changes in cardiac and cortical activities in relation to rhythmic masticatory muscle activity. In animals, in comparison with chewing, rhythmic masticatory muscle activity had a lower burst activity, longer burst duration and longer cycle length (P motor activation in comparison to human subjects. © 2017 European Sleep Research Society.

  14. Can physical activity influence the quality of sleep among the elderly?

    OpenAIRE

    Podhorecka, Marta; Cytarska, Magdalena; Gębka, Dominika; Perkowski, Radosław; Androsiuk-Perkowska, Joanna; Jaroch, Alina; Siedlecka-Główczewska, Emilia; Sokołowski, Remigiusz; Zukow, Walery; Kędziora-Kornatowska, Kornelia

    2017-01-01

    Podhorecka Marta, Cytarska Magdalena, Gębka Dominika, Perkowski Radosław, Androsiuk-Perkowska Joanna, Jaroch Alina, Siedlecka–Główczewska Emilia, Sokołowski Remigiusz, Zukow Walery, Kędziora-Kornatowska Kornelia. Can physical activity influence the quality of sleep among the elderly? Journal of Education, Health and Sport. 2017;7(12):288-305. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.1133730 http://ojs.ukw.edu.pl/index.php/johs/article/view/5177 ...

  15. Are children like werewolves? Full moon and its association with sleep and activity behaviors in an international sample of children

    Directory of Open Access Journals (Sweden)

    Jean-Philippe eChaput

    2016-03-01

    Full Text Available In order to verify if the full moon is associated with sleep and activity behaviors, we used a 12-country study providing 33710 24-hour accelerometer recordings of sleep and activity. The present observational, cross-sectional study included 5812 children ages 9-11 years from study sites that represented all inhabited continents and wide ranges of human development (Australia, Brazil, Canada, China, Colombia, Finland, India, Kenya, Portugal, South Africa, United Kingdom and United States. Three moon phases were used in this analysis: full moon (±4 days; reference, half moon (±5-9 days and new moon (±10-14 days from nearest full moon. Nocturnal sleep duration, moderate-to-vigorous physical activity (MVPA, light-intensity physical activity (LPA and total sedentary time (SED were monitored over 7 consecutive days using a waist-worn accelerometer worn 24 hours a day. Only sleep duration was found to significantly differ between moon phases (~5 min per night shorter during full moon compared to new moon. Differences in MVPA, LPA and SED between moon phases were negligible and non-significant (<2 min per day difference. There was no difference in the associations between study sites. In conclusion, sleep duration was 1% shorter at full moon compared to new moon while activity behaviors were not significantly associated with the lunar cycle in this global sample of children. Whether this seemingly minimal difference is clinically meaningful is questionable.

  16. Hippocampal mitogen-activated protein kinase activation is associated with intermittent hypoxia in a rat model of obstructive sleep apnea syndrome.

    Science.gov (United States)

    Zhao, Ya-Ning; Wang, Hong-Yang; Li, Jian-Min; Chen, Bao-Yuan; Xia, Guo; Zhang, Pan-Pan; Ge, Yan-Lei

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS), characterized by intermittent hypoxia/re‑oxygenation, may impair the cerebral system. Although mitogen‑activated protein kinase (MAPK) signaling was observed to have a key role in hypoxia‑induced brain injury, the intracellular events and their underlying mechanisms for intermittent hypoxia/re‑oxygenation-associated damage to hippocamal MAPKs, including extracellular signal‑regulated kinase (ERK)1/2, P38MAPK and c‑Jun N‑terminal kinase (JNK) remain to be elucidated and require further investigation. A total of five rats in each sub‑group were exposed to intermittent hypoxia or continued hypoxia for 2, 4, 6 or 8 weeks. Histological, immunohistochemical and biological analyses were performed to assess nerve cell injury in the hippocampus. Surviving CA1 pyramidal cells were identified by hematoxylin and eosin staining. The levels of phosphorylated ERK1/2, P38MAPK and JNK were detected by western blotting. B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein (Bax) in neural cells were examined by immunohistochemistry. The malondialdehyde (MDA) contents and superoxide dismutase (SOD) activities were measured by thiobarbituric acid and xanthine oxidation methods, respectively. Under continued hypoxia, the levels of phospho‑ERK1/2 peaked at the fourth week and then declined, whereas phospho‑P38MAPK and JNK were detected only in the late stages. By contrast, under intermittent hypoxia, ERK1/2, P38MAPK and JNK were activated at all time-points assessed (2, 4, 6 and 8 weeks). The levels of phospho‑ERK1/2, P38MAPK and JNK were all higher in the intermittent hypoxia groups than those in the corresponding continued hypoxia groups. Bcl‑2 was mainly increased and reached the highest level at six weeks in the continued hypoxia group. Of note, Bcl‑2 rapidly increased to the peak level at four weeks, followed by a decrease to the lowest level at the eighth week in the intermittent hypoxia group. Bax was

  17. Neural activity, neural connectivity, and the processing of emotionally valenced information in older adults: links with life satisfaction.

    Science.gov (United States)

    Waldinger, Robert J; Kensinger, Elizabeth A; Schulz, Marc S

    2011-09-01

    This study examines whether differences in late-life well-being are linked to how older adults encode emotionally valenced information. Using fMRI with 39 older adults varying in life satisfaction, we examined how viewing positive and negative images would affect activation and connectivity of an emotion-processing network. Participants engaged most regions within this network more robustly for positive than for negative images, but within the PFC this effect was moderated by life satisfaction, with individuals higher in satisfaction showing lower levels of activity during the processing of positive images. Participants high in satisfaction showed stronger correlations among network regions-particularly between the amygdala and other emotion processing regions-when viewing positive, as compared with negative, images. Participants low in satisfaction showed no valence effect. Findings suggest that late-life satisfaction is linked with how emotion-processing regions are engaged and connected during processing of valenced information. This first demonstration of a link between neural recruitment and late-life well-being suggests that differences in neural network activation and connectivity may account for the preferential encoding of positive information seen in some older adults.

  18. The effect of sleep apnea severity on cardiac autonomic activity during night time in obstructive sleep apnea patients

    Directory of Open Access Journals (Sweden)

    Gulay Ozkececi

    Full Text Available ABSTRACT CONTEXT AND OBJECTIVE: Impaired autonomic cardiac function is an important consequence of obstructive sleep apnea (OSA. This impairment is mainly due to intermittent hypoxia episodes following apneas. However, the impact of apnea severity on autonomic cardiac function remains unclear. The aim of this study was to evaluate the relationship between the severity of sleep apnea and heart rate turbulence (HRT and heart rate variability (HRV in OSA. DESIGN AND SETTING: Observational cross-sectional study conducted in the Departments of Cardiology and Pulmonary Diseases, Afyon Kocatepe University, Turkey. METHODS: 106 patients with OSA and 27 healthy volunteers were enrolled. Based on apnea hypopnea index (AHI values, obstructive sleep apnea severity was classified as follows: mild OSA (AHI ≥ 5 and 30. HRV and HRT parameters were assessed via 24-hour digital Holter electrocardiogram recordings for all subjects. RESULTS: HRV and HRT results were significantly lower among OSA patients than among control subjects (P < 0.05. However, there were no significant differences in HRT and HRV between the three patient subgroups. Correlations did emerge between AHI and the NN-interval parameter RMSSD and between oxygen desaturation and turbulence slope (respectively: r = -0.22, P = 0.037; and r = -0.28, P = 0.025. CONCLUSION: HRT and HRV results deteriorate in OSA. Correlations between apnea severity and these parameters seem to be present.

  19. Isolating Discriminant Neural Activity in the Presence of Eye Movements and Concurrent Task Demands

    Directory of Open Access Journals (Sweden)

    Jon Touryan

    2017-07-01

    Full Text Available A growing number of studies use the combination of eye-tracking and electroencephalographic (EEG measures to explore the neural processes that underlie visual perception. In these studies, fixation-related potentials (FRPs are commonly used to quantify early and late stages of visual processing that follow the onset of each fixation. However, FRPs reflect a mixture of bottom-up (sensory-driven and top-down (goal-directed processes, in addition to eye movement artifacts and unrelated neural activity. At present there is little consensus on how to separate this evoked response into its constituent elements. In this study we sought to isolate the neural sources of target detection in the presence of eye movements and over a range of concurrent task demands. Here, participants were asked to identify visual targets (Ts amongst a grid of distractor stimuli (Ls, while simultaneously performing an auditory N-back task. To identify the discriminant activity, we used independent components analysis (ICA for the separation of EEG into neural and non-neural sources. We then further separated the neural sources, using a modified measure-projection approach, into six regions of interest (ROIs: occipital, fusiform, temporal, parietal, cingulate, and frontal cortices. Using activity from these ROIs, we identified target from non-target fixations in all participants at a level similar to other state-of-the-art classification techniques. Importantly, we isolated the time course and spectral features of this discriminant activity in each ROI. In addition, we were able to quantify the effect of cognitive load on both fixation-locked potential and classification performance across regions. Together, our results show the utility of a measure-projection approach for separating task-relevant neural activity into meaningful ROIs within more complex contexts that include eye movements.

  20. Neural Activations of Guided Imagery and Music in Negative Emotional Processing: A Functional MRI Study.

    Science.gov (United States)

    Lee, Sang Eun; Han, Yeji; Park, HyunWook

    2016-01-01

    The Bonny Method of Guided Imagery and Music uses music and imagery to access and explore personal emotions associated with episodic memories. Understanding the neural mechanism of guided imagery and music (GIM) as combined stimuli for emotional processing informs clinical application. We performed functional magnetic resonance imaging (fMRI) to demonstrate neural mechanisms of GIM for negative emotional processing when personal episodic memory is recalled and re-experienced through GIM processes. Twenty-four healthy volunteers participated in the study, which used classical music and verbal instruction stimuli to evoke negative emotions. To analyze the neural mechanism, activated regions associated with negative emotional and episodic memory processing were extracted by conducting volume analyses for the contrast between GIM and guided imagery (GI) or music (M). The GIM stimuli showed increased activation over the M-only stimuli in five neural regions associated with negative emotional and episodic memory processing, including the left amygdala, left anterior cingulate gyrus, left insula, bilateral culmen, and left angular gyrus (AG). Compared with GI alone, GIM showed increased activation in three regions associated with episodic memory processing in the emotional context, including the right posterior cingulate gyrus, bilateral parahippocampal gyrus, and AG. No neural regions related to negative emotional and episodic memory processing showed more activation for M and GI than for GIM. As a combined multimodal stimulus, GIM may increase neural activations related to negative emotions and episodic memory processing. Findings suggest a neural basis for GIM with personal episodic memories affecting cortical and subcortical structures and functions. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI

    Directory of Open Access Journals (Sweden)

    Elena Bilevicius

    2016-04-01

    Full Text Available Objective: To assess the neural activity associated with mindfulness-based alterations of pain perception. Methods: The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. Results: The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2, unpleasantness (n = 5, and intensity (n = 5, and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Conclusions: Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  2. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study

    Science.gov (United States)

    Riedner, Brady A.; Goldstein, Michael R.; Plante, David T.; Rumble, Meredith E.; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M.

    2016-01-01

    Study Objectives: To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). Methods: All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. Results: The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4–8 Hz) and alpha (8–12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. Conclusions: These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. Citation: Riedner BA, Goldstein MR, Plante DT, Rumble ME, Ferrarelli F, Tononi G, Benca RM. Regional patterns of elevated alpha and high-frequency electroencephalographic activity during nonrapid eye movement sleep in chronic insomnia: a pilot study. SLEEP 2016;39(4):801–812. PMID:26943465

  3. The Effect of Cognitive Activity on Sleep Maintenance in a Subsequent Daytime Nap.

    Science.gov (United States)

    Arzilli, Cinzia; Cerasuolo, Mariangela; Conte, Francesca; Bittoni, Valentina; Gatteschi, Claudia; Albinni, Benedetta; Giganti, Fiorenza; Ficca, Gianluca

    2018-01-25

    The aim of this study is to assess the effects of a learning task on the characteristics of a subsequent daytime nap. Thirty-eight subjects were administered a control nap (C) and one preceded by a cognitive training session (TR). Relative to C, TR naps showed significantly increased sleep duration with decreased sleep latency, as well as significantly increased sleep efficiency due to reduced awakening frequency. Meaningful trends were also found toward an increase of Stage 2 sleep proportion and a reduction of Stage 1 sleep, percentage of wake after sleep onset (WASO), and frequency of state transitions. Our results indicate that presleep learning favors sleep propensity and maintenance, offering the possibility to explore planned cognitive training as a low-cost treatment for sleep impairments.

  4. Sleep disturbances in Parkinsonism.

    Science.gov (United States)

    Askenasy, J J M

    2003-02-01

    The present article is meant to suggest an approach to the guidelines for the therapy of sleep disturbances in Parkinson's Disease (PD) patients.The factors affecting the quality of life in PD patients are depression, sleep disturbances and dependence. A large review of the literature on sleep disturbances in PD patients, provided the basis for the following classification of the sleep-arousal disturbances in PD patients. We suggest a model based on 3 steps in the treatment of sleep disturbances in PD patients. This model allowing the patient, the spouse or the caregiver a quiet sleep at night, may postpone the retirement and the institutionalization of the PD patient. I. Correct diagnosis of sleep disorders based on detailed anamnesis of the patient and of the spouse or of the caregiver. One week recording on a symptom diary (log) by the patient or the caregiver. Correct diagnosis of sleep disorders co morbidities. Selection of the most appropriate sleep test among: polysomnography (PSG), multiple sleep latency test (MSLT), multiple wake latency test (MWLT), Epworth Sleepiness Scale, actigraphy or video-PSG. II. The nonspecific therapeutic approach consists in: a) Checking the sleep effect on motor performance, is it beneficial, worse or neutral. b) Psycho-physical assistance. c) Dopaminergic adjustment is necessary owing to the progression of the nigrostriatal degeneration and the increased sensitivity of the terminals, which alter the normal modulator mechanisms of the motor centers in PD patients. Among the many neurotransmitters of the nigro-striatal pathway one can distinguish two with a major influence on REM and NonREM sleep. REM sleep corresponds to an increased cholinergic receptor activity and a decreased dopaminergic activity. This is the reason why REM sleep deprivation by suppressing cholinergic receptor activity ameliorates PD motor symptoms. L-Dopa and its agonists by suppressing cholinergic receptors suppress REM sleep. The permanent adjustment

  5. Shared memories reveal shared structure in neural activity across individuals

    Science.gov (United States)

    Chen, J.; Leong, Y.C.; Honey, C.J.; Yong, C.H.; Norman, K.A.; Hasson, U.

    2016-01-01

    Our lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? Participants viewed a fifty-minute movie, then verbally described the events during functional MRI, producing unguided detailed descriptions lasting up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated in default-network, medial-temporal, and high-level visual areas. Individual event patterns were both highly discriminable from one another and similar between people, suggesting consistent spatial organization. In many high-order areas, patterns were more similar between people recalling the same event than between recall and perception, indicating systematic reshaping of percept into memory. These results reveal the existence of a common spatial organization for memories in high-level cortical areas, where encoded information is largely abstracted beyond sensory constraints; and that neural patterns during perception are altered systematically across people into shared memory representations for real-life events. PMID:27918531

  6. Fluorine walk: The impact of fluorine in quinolone amides on their activity against African sleeping sickness.

    Science.gov (United States)

    Berninger, Michael; Erk, Christine; Fuß, Antje; Skaf, Joseph; Al-Momani, Ehab; Israel, Ina; Raschig, Martina; Güntzel, Paul; Samnick, Samuel; Holzgrabe, Ulrike

    2018-05-25

    Human African Trypanosomiasis, also known as African sleeping sickness, is caused by the parasitic protozoa of the genus Trypanosoma. If there is no pharmacological intervention, the parasites can cross the blood-brain barrier (BBB), inevitably leading to death of the patients. Previous investigation identified the quinolone amide GHQ168 as a promising lead compound having a nanomolar activity against T. b. brucei. Here, the role of a fluorine substitution at different positions was investigated in regard to toxicity, pharmacokinetics, and antitrypanosomal activity. This 'fluorine walk' led to new compounds with improved metabolic stability and consistent activity against T. b. brucei. The ability of the new quinolone amides to cross the BBB was confirmed using an 18 F-labelled quinolone amide derivative by means of ex vivo autoradiography of a murine brain. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions.

    Science.gov (United States)

    Miyawaki, Shouichi; Tanimoto, Yuko; Araki, Yoshiko; Katayama, Akira; Imai, Mikako; Takano-Yamamoto, Teruko

    2004-11-01

    The purpose of this study was to examine the relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions. Twelve adult volunteers, including 4 bruxism patients, participated in this study. Portable pH monitoring, electromyography of the temporal muscle, and audio-video recordings were conducted during the night in the subjects' homes. Rhythmic masticatory muscle activity (RMMA) episodes were observed most frequently, with single short-burst episodes the second most frequent. The frequencies of RMMA, single short-burst, and clenching episodes were significantly higher during decreased esophageal pH episodes than those during other times. Both the electromyography and the decreased esophageal pH episodes were most frequently observed in the supine position. These results suggest that most jaw muscle activities, ie, RMMA, single short-burst, and clenching episodes, occur in relation to gastroesophageal reflux mainly in the supine position.

  8. Strategies influence neural activity for feedback learning across child and adolescent development.

    Science.gov (United States)

    Peters, Sabine; Koolschijn, P Cédric M P; Crone, Eveline A; Van Duijvenvoorde, Anna C K; Raijmakers, Maartje E J

    2014-09-01

    Learning from feedback is an important aspect of executive functioning that shows profound improvements during childhood and adolescence. This is accompanied by neural changes in the feedback-learning network, which includes pre-supplementary motor area (pre- SMA)/anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC), and the basal ganglia. However, there can be considerable differences within age ranges in performance that are ascribed to differences in strategy use. This is problematic for traditional approaches of analyzing developmental data, in which age groups are assumed to be homogenous in strategy use. In this study, we used latent variable models to investigate if underlying strategy groups could be detected for a feedback-learning task and whether there were differences in neural activation patterns between strategies. In a sample of 268 participants between ages 8 to 25 years, we observed four underlying strategy groups, which were cut across age groups and varied in the optimality of executive functioning. These strategy groups also differed in neural activity during learning; especially the most optimal performing group showed more activity in DLPFC, SPC and pre-SMA/ACC compared to the other groups. However, age differences remained an important contributor to neural activation, even when correcting for strategy. These findings contribute to the debate of age versus performance predictors of neural development, and highlight the importance of studying individual differences in strategy use when studying development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Global convergence of periodic solution of neural networks with discontinuous activation functions

    International Nuclear Information System (INIS)

    Huang Lihong; Guo Zhenyuan

    2009-01-01

    In this paper, without assuming boundedness and monotonicity of the activation functions, we establish some sufficient conditions ensuring the existence and global asymptotic stability of periodic solution of neural networks with discontinuous activation functions by using the Yoshizawa-like theorem and constructing proper Lyapunov function. The obtained results improve and extend previous works.

  10. Effects of sleeping position on back pain in physically active seniors: A controlled pilot study.

    Science.gov (United States)

    Desouzart, Gustavo; Matos, Rui; Melo, Filipe; Filgueiras, Ernesto

    2015-01-01

    The increase in life expectancy of elderly population has aroused the interest of different knowledge areas in understanding the variables that are involved in the aging process, linking them to other concepts such as active aging, healthy aging and the bio-psycho-social changes. This paper presents the results of the first controlled, experimental pilot study that aimed to analyze the relationship between the perception of back pain and the sleeping position adopted by physically active female seniors. Twenty female seniors (mean age 62.70 ± 3.827) participated in this study. The individuals were separated in 2 groups (Experimental and Control Group). For the carrying out of this study, the Visual Analogue Scale (VAS) was used to measure the intensity of back pain in the spine before and after four consecutive weeks an Intervention program. Individuals in the Experimental Group were instructed regarding the recommended way to sleep position (Intervention program) according to the pathological problems or the amount of pain reported. The Experimental Group (N = 10) presented significantly (p = 0.009) fewer complaints of back pain after an Intervention program in comparison to individuals who did not receive this type of information (Control Group).

  11. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans.

    Science.gov (United States)

    Carroll, Judith E; Cole, Steven W; Seeman, Teresa E; Breen, Elizabeth C; Witarama, Tuff; Arevalo, Jesusa M G; Ma, Jeffrey; Irwin, Michael R

    2016-01-01

    Age-related disease risk has been linked to short sleep duration and sleep disturbances; however, the specific molecular pathways linking sleep loss with diseases of aging are poorly defined. Key cellular events seen with aging, which are thought to contribute to disease, may be particularly sensitive to sleep loss. We tested whether one night of partial sleep deprivation (PSD) would increase leukocyte gene expression indicative of DNA damage responses (DDR), the senescence-associated secretory phenotype (SASP), and senescence indicator p16(INK4a) in older adult humans, who are at increased risk for cellular senescence. Community-dwelling older adults aged 61-86years (n=29; 48% male) underwent an experimental partial sleep deprivation (PSD) protocol over 4 nights, including adaptation, an uninterrupted night of sleep, partial sleep deprivation (sleep restricted 3-7AM), and a subsequent full night of sleep. Blood samples were obtained each morning to assess peripheral blood mononuclear cell (PBMC) gene expression using Illumina HT-12 arrays. Analyses of microarray results revealed that SASP (psleep deprivation activates PBMC gene expression patterns consistent with biological aging in this older adult sample. PSD enhanced the SASP and increased the accumulation of damage that initiates cell cycle arrest and promotes cellular senescence. These findings causally link sleep deprivation to the molecular processes associated with biological aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Can you snooze your way to an 'A'? Exploring the complex relationship between sleep, autonomic activity, wellbeing and performance in medical students.

    Science.gov (United States)

    Cvejic, Erin; Huang, Shiny; Vollmer-Conna, Uté

    2018-01-01

    Medical training brings with it multiple stressors, including demanding workloads in highly competitive environments, with well-documented impact on psychiatric morbidity. This study evaluated the impact of sleep-related factors on psychological wellbeing, cognitive task performance and academic standing in medical students. A total of 59 undergraduate medical students took part in this cross-sectional study over two consecutive days. Participants responded to questionnaires about their physical and psychological health, sleep, functioning and academic performance at the initial visit. Participants then wore an ambulatory bioharness overnight (to derive heart rate variability measures), before returning to complete a computerised battery of cognitive tasks. A sleep diary was completed for the next 7 days. Poor sleep quality in the month preceding assessment correlated with psychological distress ( p sleep during the monitoring week ( p sleep timing parameters. A greater increase in heart rate variability during the transition from awake to sleep significantly predicted better spontaneous cognitive performance ( p = 0.021). Better academic standing was predicted by consistently short, less refreshing sleep (all p sleep and psychological distress are prevalent in medical students during university training and were associated with reduced nocturnal parasympathetic autonomic activity. Achieving higher academic grades was associated with high psychological wellbeing despite consistently short, unrefreshing sleep. The long-term repercussions of such sleep behaviours on later professional functioning remain unclear, warranting further research.

  13. Evaluating the evidence surrounding pontine cholinergic involvement in REM sleep generation

    Directory of Open Access Journals (Sweden)

    Kevin P Grace

    2015-09-01

    Full Text Available Rapid eye movement (REM sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of rapid eye movement (REM sleep generation posited that induction of the state required activation of the ‘pontine REM sleep generator’ by cholinergic inputs. Here we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii loss-of-function studies show that endogenous cholinergic input to the PFT is not required for REM sleep generation, and (iv Cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  14. Sleep habits and pattern in 1-14 years old children and relationship with video devices use and evening and night child activities.

    Science.gov (United States)

    Brambilla, Paolo; Giussani, Marco; Pasinato, Angela; Venturelli, Leonello; Privitera, Francesco; Miraglia Del Giudice, Emanuele; Sollai, Sara; Picca, Marina; Di Mauro, Giuseppe; Bruni, Oliviero; Chiappini, Elena

    2017-01-13

    Sleep in childhood and adolescence is crucial for mental and physical health; however several researches reported an increasing trend towards a sleep deprivation in this age. Due to the lack of recent epidemiological studies in Italy, the aim of our study was to depict sleep habits and patterns in Italian children aged 1-14 years and to evaluate their relationships with video devices use (TV, tablet, smartphone, PC) and evening/night child activities. A structured interview was conducted during 2015 by 72 Family Pediatricians in 2030 healthy children aged 1-14 years by a cross-sectional survey named "Ci piace sognare". Total sleep duration was calculated, 2015 National Sleep Foundation Recommendations were used as reference. Optimal sleepers were defined children sleeping in own bed all night without awakenings. Multivariable median regression was performed to identify predictors of sleep duration and multivariable logistic regression for predictors of optimal sleep. Total sleep duration and numbers of awakenings decreased with age. Only 66.9% of children had sleep duration in agreement with Recommendations (50% in 10-14 years group). Before sleeping 63.5% of children used video devices (39.6% at 1-3 years), 39.1% read, 27.5% drank and 19.5% ate. Bottle users at bedtime were 30.8% at 1-3 years, 16.6% at 3-5 years and 4.9% at 5-7 years. Overall, 23.4% of children changed sleeping place during the night, 22.4% referred sleeping problems in the first year of life. Video devices use was negative predictor of sleep duration (-0.25 h [95%CI:-0.35,-0.14], p sleep was inversely related with bedroom TV (OR 0.63 [0.50,0.79], p sleeping disorders in the first year (OR 0.62 [0.48,0.80], p sleep less than recommended, one half in teenage. Modifiable risk factors for sleep abnormalities such as video devices use, bedroom TV and bottle use should be target of preventive strategies for a correct sleep. Pediatricians should give priority to the identification of sleep

  15. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  16. The development of sleep-wake rhythms and the search for elemental circuits in the infant brain.

    Science.gov (United States)

    Blumberg, Mark S; Gall, Andrew J; Todd, William D

    2014-06-01

    Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. In addition, consistent with the requirements of a "flip-flop" model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease.

  17. Increased Neural Activation during Picture Encoding and Retrieval in 60-Year-Olds Compared to 20-Year-Olds

    Science.gov (United States)

    Burgmans, S.; van Boxtel, M. P. J.; Vuurman, E. F. P. M.; Evers, E. A. T.; Jolles, J.

    2010-01-01

    Brain aging has been associated with both reduced and increased neural activity during task execution. The purpose of the present study was to investigate whether increased neural activation during memory encoding and retrieval is already present at the age of 60 as well as to obtain more insight into the mechanism behind increased activity.…

  18. Optogenetic deconstruction of sleep-wake circuitry in the brain

    Directory of Open Access Journals (Sweden)

    Antoine Adamantidis

    2010-01-01

    Full Text Available How does the brain regulate the sleep-wake cycle? What are the temporal codes of sleep- and wake-promoting neural circuits? How do these circuits interact with each other across the light/dark cycle? Over the past few decades, many studies from a variety of disciplines have made substantial progress in answering these fundamental questions. For example, neurobiologists have identified multiple, redundant wake-promoting circuits in the brainstem, hypothalamus, and basal forebrain. Sleep-promoting circuits have been found in the preoptic area and hypothalamus. One of the greatest challenges in recent years has been to selectively record and manipulate these sleep-wake centers in vivo with high spatial and temporal resolution. Recent developments in microbial opsin-based neuromodulation tools, collectively referred to as “optogenetics,” have provided a novel method to demonstrate causal links between neural activity and specific behaviors. Here, we propose to use optogenetics as a fundamental tool to probe the necessity, sufficiency, and connectivity of defined neural circuits in the regulation of sleep and wakefulness.

  19. Choice of biomaterials—Do soft occlusal splints influence jaw-muscle activity during sleep? A preliminary report

    Science.gov (United States)

    Arima, Taro; Takeuchi, Tamiyo; Tomonaga, Akio; Yachida, Wataru; Ohata, Noboru; Svensson, Peter

    2012-12-01

    AimThe choice of biomaterials for occlusal splints may significantly influence biological outcome. In dentistry, hard acrylic occlusal splints (OS) have been shown to have a temporary and inhibitory effect on jaw-muscle activity, such as tooth clenching and grinding during sleep, i.e., sleep bruxism (SB). Traditionally, this inhibitory effect has been explained by changes in the intraoral condition rather than the specific effects of changes in occlusion. The aim of this preliminary study was to investigate the effect of another type of occlusal surface, such as a soft-material OS in addition to a hard-type OS in terms of changes in jaw-muscle activity during sleep. Materials and methodsSeven healthy subjects (mean ± SD, six men and one woman: 28.9 ± 2.7 year old), participated in this study. A soft-material OS (ethylene vinyl acetate copolymer) was fabricated for each subject and the subjects used the OS for five continuous nights. The EMG activity during sleep was compared to baseline (no OS). Furthermore, the EMG activity during the use of a hard-type OS (Michigan-type OS, acrylic resin), and hard-type OS combined with contingent electrical stimulation (CES) was compared to baseline values. Each session was separated by at least two weeks (washout). Jaw-muscle activity during sleep was recorded with single-channel ambulatory devices (GrindCare, MedoTech, Herlev, Denmark) in all sessions for five nights. ResultsJaw-muscle activity during sleep was 46.6 ± 29.8 EMG events/hour at baseline and significantly decreased during the hard-type OS (17.4 ± 10.5, P = 0.007) and the hard-type OS + CES (10.8 ± 7.1, P = 0.002), but not soft-material OS (36.3 ± 24.5, P = 0.055). Interestingly, the soft-material OS (coefficient of variance = 98.6 ± 35.3%) was associated with greater night-to-night variations than baseline (39.0 ± 11.8%) and the hard-type OS + CES (53.3 ± 13.7%, P < 0.013). ConclusionThe present pilot study in small sample showed that a soft

  20. Abnormal neural activities of directional brain networks in patients with long-term bilateral hearing loss.

    Science.gov (United States)

    Xu, Long-Chun; Zhang, Gang; Zou, Yue; Zhang, Min-Feng; Zhang, Dong-Sheng; Ma, Hua; Zhao, Wen-Bo; Zhang, Guang-Yu

    2017-10-13

    The objective of the study is to provide some implications for rehabilitation of hearing impairment by investigating changes of neural activities of directional brain networks in patients with long-term bilateral hearing loss. Firstly, we implemented neuropsychological tests of 21 subjects (11 patients with long-term bilateral hearing loss, and 10 subjects with normal hearing), and these tests revealed significant differences between the deaf group and the controls. Then we constructed the individual specific virtual brain based on functional magnetic resonance data of participants by utilizing effective connectivity and multivariate regression methods. We exerted the stimulating signal to the primary auditory cortices of the virtual brain and observed the brain region activations. We found that patients with long-term bilateral hearing loss presented weaker brain region activations in the auditory and language networks, but enhanced neural activities in the default mode network as compared with normally hearing subjects. Especially, the right cerebral hemisphere presented more changes than the left. Additionally, weaker neural activities in the primary auditor cortices were also strongly associated with poorer cognitive performance. Finally, causal analysis revealed several interactional circuits among activated brain regions, and these interregional causal interactions implied that abnormal neural activities of the directional brain networks in the deaf patients impacted cognitive function.

  1. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    Science.gov (United States)

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  2. Computational modeling of neural activities for statistical inference

    CERN Document Server

    Kolossa, Antonio

    2016-01-01

    This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field. .

  3. Loss of consciousness is related to hyper-correlated gamma-band activity in anesthetized macaques and sleeping humans.

    Science.gov (United States)

    Bola, Michał; Barrett, Adam B; Pigorini, Andrea; Nobili, Lino; Seth, Anil K; Marchewka, Artur

    2018-02-15

    Loss of consciousness can result from a wide range of causes, including natural sleep and pharmacologically induced anesthesia. Important insights might thus come from identifying neuronal mechanisms of loss and re-emergence of consciousness independent of a specific manipulation. Therefore, to seek neuronal signatures of loss of consciousness common to sleep and anesthesia we analyzed spontaneous electrophysiological activity recorded in two experiments. First, electrocorticography (ECoG) acquired from 4 macaque monkeys anesthetized with different anesthetic agents (ketamine, medetomidine, propofol) and, second, stereo-electroencephalography (sEEG) from 10 epilepsy patients in different wake-sleep stages (wakefulness, NREM, REM). Specifically, we investigated co-activation patterns among brain areas, defined as correlations between local amplitudes of gamma-band activity. We found that resting wakefulness was associated with intermediate levels of gamma-band coupling, indicating neither complete dependence, nor full independence among brain regions. In contrast, loss of consciousness during NREM sleep and propofol anesthesia was associated with excessively correlated brain activity, as indicated by a robust increase of number and strength of positive correlations. However, such excessively correlated brain signals were not observed during REM sleep, and were present only to a limited extent during ketamine anesthesia. This might be related to the fact that, despite suppression of behavioral responsiveness, REM sleep and ketamine anesthesia often involve presence of dream-like conscious experiences. We conclude that hyper-correlated gamma-band activity might be a signature of loss of consciousness common across various manipulations and independent of behavioral responsiveness. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Information content of neural networks with self-control and variable activity

    International Nuclear Information System (INIS)

    Bolle, D.; Amari, S.I.; Dominguez Carreta, D.R.C.; Massolo, G.

    2001-01-01

    A self-control mechanism for the dynamics of neural networks with variable activity is discussed using a recursive scheme for the time evolution of the local field. It is based upon the introduction of a self-adapting time-dependent threshold as a function of both the neural and pattern activity in the network. This mechanism leads to an improvement of the information content of the network as well as an increase of the storage capacity and the basins of attraction. Different architectures are considered and the results are compared with numerical simulations

  5. Higher energy intake at dinner decreases parasympathetic activity during nighttime sleep in menstruating women: A randomized controlled trial.

    Science.gov (United States)

    Tada, Yuki; Yoshizaki, Takahiro; Tanaka, Izumi; Kanehara, Rieko; Kato, Misao; Hatta, Naoko; Hida, Azumi; Kawano, Yukari

    2018-06-09

    Previous studies have found more frequent increases in dietary intake and nonrestorative nocturnal sleep during the luteal phase than in the follicular phase, but few studies have investigated how increased energy intake at dinner influences sleep by considering the correlation between female hormone and cardiac autonomic nervous system (ANS) activity. This study examined the effects of energy intake at dinner on ANS activity during nighttime sleep in order to evaluate restorative sleep in healthy women. We also examined whether ANS activity is associated with female hormone dynamics. Twenty-four healthy collegiate women participated in this randomized crossover trial. Each was assigned to receive a High Energy Dinner (HED) or Low Energy Dinner (LED) treatment. Energy ratios of each test meal (breakfast, lunch, and dinner) to total energy intake were 1:1:2 and 1:2:1 for HED and LED treatments, respectively. Each participant wore an ECG recorder before dinner and removed it upon waking the next morning. Power spectral analysis of heart rate variability was used to calculate low frequency (LF), high frequency (HF), and total spectral power (TP). Cardiac sympathetic (SNS) and parasympathetic (PNS) nervous system activity were evaluated as LF/HF and HF/TP, respectively. Mean HF/TP for the entire sleeping period was lower with HED treatment compared to LED treatment (41.7 ± 11.4 vs. 45.0 ± 12.13, P = .034). Intergroup comparisons of the initial 3-h sleeping period revealed that LF/HF (0.87 ± 0.82 vs. 0.66 ± 0.82, P = .013) and HF/TP (45.6 ± 13.9 vs. 51.5 ± 11.8, P = .002) were higher and lower, respectively, with HED treatment compared to LED treatment. Progesterone levels were positively correlated with LF/HF with LED treatment, and negatively correlated with HF/TP with both HED and LED treatments. Higher energy intake at dinner increases and decreases SNS and PNS activities, respectively, resulting in nonrestorative nocturnal

  6. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Rhythm and amplitude of rhythmic masticatory muscle activity during sleep in bruxers - comparison with gum chewing.

    Science.gov (United States)

    Matsuda, Shinpei; Yamaguchi, Taihiko; Mikami, Saki; Okada, Kazuki; Gotouda, Akihito; Sano, Kazuo

    2016-07-01

    The aim of this study was to elucidate characteristics of rhythmic masticatory muscle activity (RMMA) during sleep by comparing masseteric EMG (electromyogram) activities of RMMA with gum chewing. The parts of five or more consecutive phasic bursts in RMMA of 23 bruxers were analyzed. Wilcoxon signed-rank test for matched pairs and Spearman's correlation coefficient by the rank test were used for statistical analysis. Root mean square value of RMMA phasic burst was smaller than that during gum chewing, but correlates to that of gum chewing. The cycle of RMMA was longer than that of gum chewing due to the longer burst duration of RMMA, and variation in the cycles of RMMA was wider. These findings suggest that the longer but smaller EMG burst in comparison with gum chewing is one of the characteristics of RMMA. The relation between size of RMMA phasic bursts and gum chewing is also suggested.

  8. Increased sympathetic activity during sleep and nocturnal hypertension in Type 2 diabetic patients with diabetic nephropathy

    DEFF Research Database (Denmark)

    Nielsen, F S; Hansen, H P; Jacobsen, P

    1999-01-01

    AIMS: To elucidate the putative factors involved in the blunted nocturnal blood pressure reduction in hypertensive Type 2 diabetic patients with diabetic nephropathy. METHODS: Extracellular fluid volume and fluid shift from interstitial to plasma volume (haematocrit), sympathetic nervous activity...... (plasma noradrenaline and adrenaline) and the internal 'body clock' (serum melatonin) were investigated in 31 hypertensive Type 2 diabetes mellitus (DM) patients with diabetic nephropathy (24 males, age 60 (45-73) years). All variables, except extracellular volume, were measured repeatedly...... constant in both groups. Extracellular fluid volume and plasma melatonin levels were comparable in the two groups. CONCLUSION: Sustained adrenergic activity during sleep is associated with blunted nocturnal blood pressure reduction in hypertensive Type 2DM patients with diabetic nephropathy, probably...

  9. The role of sleep spindles and slow-wave activity in integrating new information in semantic memory.

    Science.gov (United States)

    Tamminen, Jakke; Lambon Ralph, Matthew A; Lewis, Penelope A

    2013-09-25

    Assimilating new information into existing knowledge is a fundamental part of consolidating new memories and allowing them to guide behavior optimally and is vital for conceptual knowledge (semantic memory), which is accrued over many years. Sleep is important for memory consolidation, but its impact upon assimilation of new information into existing semantic knowledge has received minimal examination. Here, we examined the integration process by training human participants on novel words with meanings that fell into densely or sparsely populated areas of semantic memory in two separate sessions. Overnight sleep was polysomnographically monitored after each training session and recall was tested immediately after training, after a night of sleep, and 1 week later. Results showed that participants learned equal numbers of both word types, thus equating amount and difficulty of learning across the conditions. Measures of word recognition speed showed a disadvantage for novel words in dense semantic neighborhoods, presumably due to interference from many semantically related concepts, suggesting that the novel words had been successfully integrated into semantic memory. Most critically, semantic neighborhood density influenced sleep architecture, with participants exhibiting more sleep spindles and slow-wave activity after learning the sparse compared with the dense neighborhood words. These findings provide the first evidence that spindles and slow-wave activity mediate integration of new information into existing semantic networks.

  10. Cerebral blood flow during paroxysmal EEG activation induced by sleep in patients with complex partial seizures

    International Nuclear Information System (INIS)

    Gozukirmizi, E.; Meyer, J.S.; Okabe, T.; Amano, T.; Mortel, K.; Karacan, I.

    1982-01-01

    Cerebral blood flow (CBF) measurements were combined with sleep polysomnography in nine patients with complex partial seizures. Two methods were used: the 133Xe method for measuring regional (rCBF) and the stable xenon CT method for local (LCBF). Compared to nonepileptic subjects, who show diffuse CBF decreases during stages I-II, non-REM sleep onset, patients with complex partial seizures show statistically significant increases in CBF which are maximal in regions where the EEG focus is localized and are predominantly seen in one temporal region but are also propagated to other cerebral areas. Both CBF methods gave comparable results, but greater statistical significance was achieved by stable xenon CT methodology. CBF increases are more diffuse than predicted by EEG paroxysmal activity recorded from scalp electrodes. An advantage of the 133Xe inhalation method was achievement of reliable data despite movement of the head. This was attributed to the use of a helmet which maintained the probes approximated to the scalp. Disadvantages were poor resolution (7 cm3) and two-dimensional information. The advantage of stable xenon CT method is excellent resolution (80 mm3) in three dimensions, but a disadvantage is that movement of the head in patients with seizure disorders may limit satisfactory measurements

  11. Pain, pain intensity and pain disability in high school students are differently associated with physical activity, screening hours and sleep.

    Science.gov (United States)

    Silva, Anabela G; Sa-Couto, Pedro; Queirós, Alexandra; Neto, Maritza; Rocha, Nelson P

    2017-05-16

    Studies exploring the association between physical activity, screen time and sleep and pain usually focus on a limited number of painful body sites. Nevertheless, pain at different body sites is likely to be of different nature. Therefore, this study aims to explore and compare the association between time spent in self-reported physical activity, in screen based activities and sleeping and i) pain presence in the last 7-days for 9 different body sites; ii) pain intensity at 9 different body sites and iii) global disability. Nine hundred sixty nine students completed a questionnaire on pain, time spent in moderate and vigorous physical activity, screen based time watching TV/DVD, playing, using mobile phones and computers and sleeping hours. Univariate and multivariate associations between pain presence, pain intensity and disability and physical activity, screen based time and sleeping hours were investigated. Pain presence: sleeping remained in the multivariable model for the neck, mid back, wrists, knees and ankles/feet (OR 1.17 to 2.11); moderate physical activity remained in the multivariate model for the neck, shoulders, wrists, hips and ankles/feet (OR 1.06 to 1.08); vigorous physical activity remained in the multivariate model for mid back, knees and ankles/feet (OR 1.05 to 1.09) and screen time remained in the multivariate model for the low back (OR = 2.34. Pain intensity: screen time and moderate physical activity remained in the multivariable model for pain intensity at the neck, mid back, low back, shoulder, knees and ankles/feet (Rp 2 0.02 to 0.04) and at the wrists (Rp 2  = 0.04), respectively. Disability showed no association with sleeping, screen time or physical activity. This study suggests both similarities and differences in the patterns of association between time spent in physical activity, sleeping and in screen based activities and pain presence at 8 different body sites. In addition, they also suggest that the factors associated

  12. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury

    Science.gov (United States)

    Hormigo, Kristiina M.; Zholudeva, Lyandysha V.; Spruance, Victoria M.; Marchenko, Vitaliy; Cote, Marie-Pascale; Vinit, Stephane; Giszter, Simon; Bezdudnaya, Tatiana; Lane, Michael A.

    2016-01-01

    Cervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals. One strategy with demonstrated therapeutic potential is the use of treatments that increase neural and muscular activity (e.g. locomotor training, neural and muscular stimulation) and promote plasticity. With a focus on respiratory function post-SCI, this review will discuss advances in the use of neural interfacing strategies and activity-based treatments, and highlights some recent results from our own research. PMID:27582085

  13. Cocaine action on peripheral, non-monoamine neural substrates as a trigger of electroencephalographic desynchronization and electromyographic activation following i.v. administration in freely moving rats.

    Science.gov (United States)

    Smirnov, M S; Kiyatkin, E A

    2010-01-20

    Many important physiological, behavioral and subjective effects of i.v. cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed electroencephalographic (EEG) and electromyographic (EMG) recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of i.v. COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by i.v. COC methiodide (COC-MET), a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC-MET had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by i.v. procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, i.v. saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, i.v. COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such

  14. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J.; Petit, Jean-Marie

    2016-01-01

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs

  15. The Function of Sleep

    Directory of Open Access Journals (Sweden)

    Daniel A. Barone

    2015-06-01

    Full Text Available The importance of sleep can be ascertained by noting the effects of its loss, which tends to be chronic and partial, on cognition, mood, alertness, and overall health. Many theories have been put forth to explain the function of sleep in humans, including proposals based on energy conservation, ecological adaptations, neurocognitive function, neural plasticity, nervous system and physical health, and performance. Most account for only a portion of sleep behavior and few are based on strong experimental support. In this review, we present theories proposing why sleep is necessary and supporting data demonstrating the effects of inadequate sleep, with the intention of gleaning further information as to its necessity, which remains one of the most perplexing mysteries in biology.

  16. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.

    Science.gov (United States)

    Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang

    2014-07-03

    Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.

  17. Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity

    Science.gov (United States)

    Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.

    2016-10-01

    Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.

  18. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.

    Science.gov (United States)

    Winkler, David A; Le, Tu C

    2017-01-01

    Neural networks have generated valuable Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) models for a wide variety of small molecules and materials properties. They have grown in sophistication and many of their initial problems have been overcome by modern mathematical techniques. QSAR studies have almost always used so-called "shallow" neural networks in which there is a single hidden layer between the input and output layers. Recently, a new and potentially paradigm-shifting type of neural network based on Deep Learning has appeared. Deep learning methods have generated impressive improvements in image and voice recognition, and are now being applied to QSAR and QSAR modelling. This paper describes the differences in approach between deep and shallow neural networks, compares their abilities to predict the properties of test sets for 15 large drug data sets (the kaggle set), discusses the results in terms of the Universal Approximation theorem for neural networks, and describes how DNN may ameliorate or remove troublesome "activity cliffs" in QSAR data sets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. School Term vs. School Holiday: Associations with Children's Physical Activity, Screen-Time, Diet and Sleep.

    Science.gov (United States)

    Staiano, Amanda E; Broyles, Stephanie T; Katzmarzyk, Peter T

    2015-07-30

    This cross-sectional study examined differences in children's health behaviors during school term (ST) versus school holiday (SH: June-July) and how associations changed when weather characteristics were considered. Children aged 5-18 years (n = 406) from a subtropical climate reported behaviors over 20 months. Multivariable regression models controlling for age, sex, race and body mass index z-score (BMIz) were used to examine associations between SH and each behavior. A second model included heat index, precipitation and daylight hours. Strenuous activity, moderate activity, total activity and TV viewing were significantly higher during SH than ST. After adjusting for weather characteristics, total activity remained significantly higher during SH, but the association with TV viewing was attenuated. Youth surveyed during high precipitation were significantly less likely to meet physical activity guidelines. There were no significant associations between SH and meeting sleep, physical activity or screen-time guidelines. Weather characteristics influenced associations between SH and youth's physical activity and TV viewing.

  20. State-dependent, bidirectional modulation of neural network activity by endocannabinoids.

    Science.gov (United States)

    Piet, Richard; Garenne, André; Farrugia, Fanny; Le Masson, Gwendal; Marsicano, Giovanni; Chavis, Pascale; Manzoni, Olivier J

    2011-11-16

    The endocannabinoid (eCB) system and the cannabinoid CB1 receptor (CB1R) play key roles in the modulation of brain functions. Although actions of eCBs and CB1Rs are well described at the synaptic level, little is known of their modulation of neural activity at the network level. Using microelectrode arrays, we have examined the role of CB1R activation in the modulation of the electrical activity of rat and mice cortical neural networks in vitro. We find that exogenous activation of CB1Rs expressed on glutamatergic neurons decreases the spontaneous activity of cortical neural networks. Moreover, we observe that the net effect of the CB1R antagonist AM251 inversely correlates with the initial level of activity in the network: blocking CB1Rs increases network activity when basal network activity is low, whereas it depresses spontaneous activity when its initial level is high. Our results reveal a complex role of CB1Rs in shaping spontaneous network activity, and suggest that the outcome of endogenous neuromodulation on network function might be state dependent.

  1. Analysis of health consumers' behavior using self-tracker for activity, sleep, and diet.

    Science.gov (United States)

    Kim, Jeongeun

    2014-06-01

    With the ever-increasing availability of health information technology (HIT) enabling health consumers to measure, store, and manage their health data (e.g., self-tracking devices), more people are logging and managing their own health data for the purpose of promoting general well-being. To develop and implement effective and efficient strategies for improving personal monitoring devices, a rigorous theoretical framework to explain the health consumer's attitude, intention, and behavior needs to be established. The aim of this study is to verify the HIT acceptance model (HITAM) in the context of the health consumer's attitude, behavioral intention, and behavior of utilizing self-trackers. Furthermore, the study aims to gain better understanding of self-tracking behavior in the context of logging daily activity level, sleep patterns, and dietary habits. Forty-four female college students were selected as voluntary study participants. They used self-trackers for activity, sleep, and diet monitoring for 90 or more consecutive days. The logged data were analyzed and fitted to the HITAM to verify whether the model was suitable for capturing the various behavioral and intention-related characteristics observed. The overall fitness indices for the HITAM using the field data yielded an acceptable fitness to the model, with all path coefficients being statistically significant. The model accounts for 66.8% of the variance in perceived usefulness, 43.9% of the variance in perceived ease of use, 83.1% of the variance in attitude, and 48.4% of the variance in behavioral intention. The compliance ranking of self-tracking behavior, in order of decreasing compliance, was activity, sleep, and diet. This ranking was consistent with that of ease of use of the personal monitoring device used in the study. The HITAM was verified for its ability to describe the health consumer's attitude, behavioral intention, and behavior. The analysis indicated that the ease of use of a particular

  2. Sleep Disorders

    Science.gov (United States)

    ... the day, even if you have had enough sleep? You might have a sleep disorder. The most common kinds are Insomnia - a hard time falling or staying asleep Sleep apnea - breathing interruptions during sleep Restless legs syndrome - ...

  3. Sleep Problems

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... 101 KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...

  4. Sleep Disrupts High-Level Speech Parsing Despite Significant Basic Auditory Processing.

    Science.gov (United States)

    Makov, Shiri; Sharon, Omer; Ding, Nai; Ben-Shachar, Michal; Nir, Yuval; Zion Golumbic, Elana

    2017-08-09

    The extent to which the sleeping brain processes sensory information remains unclear. This is particularly true for continuous and complex stimuli such as speech, in which information is organized into hierarchically embedded structures. Recently, novel metrics for assessing the neural representation of continuous speech have been developed using noninvasive brain recordings that have thus far only been tested during wakefulness. Here we investigated, for the first time, the sleeping brain's capacity to process continuous speech at different hierarchical levels using a newly developed Concurrent Hierarchical Tracking (CHT) approach that allows monitoring the neural representation and processing-depth of continuous speech online. Speech sequences were compiled with syllables, words, phrases, and sentences occurring at fixed time intervals such that different linguistic levels correspond to distinct frequencies. This enabled us to distinguish their neural signatures in brain activity. We compared the neural tracking of intelligible versus unintelligible (scrambled and foreign) speech across states of wakefulness and sleep using high-density EEG in humans. We found that neural tracking of stimulus acoustics was comparable across wakefulness and sleep and similar across all conditions regardless of speech intelligibility. In contrast, neural tracking of higher-order linguistic constructs (words, phrases, and sentences) was only observed for intelligible speech during wakefulness and could not be detected at all during nonrapid eye movement or rapid eye movement sleep. These results suggest that, whereas low-level auditory processing is relatively preserved during sleep, higher-level hierarchical linguistic parsing is severely disrupted, thereby revealing the capacity and limits of language processing during sleep. SIGNIFICANCE STATEMENT Despite the persistence of some sensory processing during sleep, it is unclear whether high-level cognitive processes such as speech

  5. Do all sedentary activities lead to weight gain: sleep does not.

    Science.gov (United States)

    Chaput, Jean-Philippe; Klingenberg, Lars; Sjödin, Anders

    2010-11-01

    To discuss the benefits of having a good night's sleep for body weight stability. Experimental studies have shown that short-term partial sleep restriction decreases glucose tolerance, increases sympathetic tone, elevates cortisol concentrations, decreases the satiety hormone leptin, increases the appetite-stimulating hormone ghrelin, and increases hunger and appetite. Short sleep duration might increase the risk of becoming obese, because it does not allow the recovery of a hormonal profile facilitating appetite control. Lack of sleep could also lead to weight gain and obesity by increasing the time available for eating and by making the maintenance of a healthy lifestyle more difficult. Furthermore, the increased fatigue and tiredness associated with sleeping too little could lessen one's resolve to follow exercise regimens. Short sleep duration appears to be a novel and independent risk factor for obesity. With the growing prevalence of chronic sleep restriction, any causal association between reduced sleep and obesity would have substantial importance from a public health standpoint. Future research is needed to determine whether sleep extension in sleep-deprived obese individuals will influence appetite control and/or reduce the amount of body fat.

  6. Human regional cerebral blood flow during rapid-eye-movement sleep

    DEFF Research Database (Denmark)

    Madsen, P L; Holm, S; Vorstrup, S

    1991-01-01

    Owing to the coupling between CBF and neuronal activity, regional CBF is a reflection of neural activity in different brain regions. In this study we measured regional CBF during polysomnographically well-defined rapid-eye-movement (REM) sleep by the use of single photon emission computerized...... tomography and the new tracer 99mTc-dl-hexamethylpropyleneamine. Eleven healthy volunteers aged between 22 and 27 years were studied. CBF was measured on separate nights during REM sleep and during EEG-verified wakefulness. On awakening from REM sleep, all subjects reported visual dreams. During REM sleep...... dream experiences. On the other hand, the reduced involvement of the inferior frontal cortex observed during REM sleep might explain the poor temporal organization and bizarreness often experienced in dreams....

  7. Comparative aspects of adult neural stem cell activity in vertebrates.

    Science.gov (United States)

    Grandel, Heiner; Brand, Michael

    2013-03-01

    At birth or after hatching from the egg, vertebrate brains still contain neural stem cells which reside in specialized niches. In some cases, these stem cells are deployed for further postnatal development of parts of the brain until the final structure is reached. In other cases, postnatal neurogenesis continues as constitutive neurogenesis into adulthood leading to a net increase of the number of neurons with age. Yet, in other cases, stem cells fuel neuronal turnover. An example is protracted development of the cerebellar granular layer in mammals and birds, where neurogenesis continues for a few weeks postnatally until the granular layer has reached its definitive size and stem cells are used up. Cerebellar growth also provides an example of continued neurogenesis during adulthood in teleosts. Again, it is the granular layer that grows as neurogenesis continues and no definite adult cerebellar size is reached. Neuronal turnover is most clearly seen in the telencephalon of male canaries, where projection neurons are replaced in nucleus high vocal centre each year before the start of a new mating season--circuitry reconstruction to achieve changes of the song repertoire in these birds? In this review, we describe these and other examples of adult neurogenesis in different vertebrate taxa. We also compare the structure of the stem cell niches to find common themes in their organization despite different functions adult neurogenesis serves in different species. Finally, we report on regeneration of the zebrafish telencephalon after injury to highlight similarities and differences of constitutive neurogenesis and neuronal regeneration.

  8. Neural activity in the hippocampus predicts individual visual short-term memory capacity.

    Science.gov (United States)

    von Allmen, David Yoh; Wurmitzer, Karoline; Martin, Ernst; Klaver, Peter

    2013-07-01

    Although the hippocampus had been traditionally thought to be exclusively involved in long-term memory, recent studies raised controversial explanations why hippocampal activity emerged during short-term memory tasks. For example, it has been argued that long-term memory processes might contribute to performance within a short-term memory paradigm when memory capacity has been exceeded. It is still unclear, though, whether neural activity in the hippocampus predicts visual short-term memory (VSTM) performance. To investigate this question, we measured BOLD activity in 21 healthy adults (age range 19-27 yr, nine males) while they performed a match-to-sample task requiring processing of object-location associations (delay period  =  900 ms; set size conditions 1, 2, 4, and 6). Based on individual memory capacity (estimated by Cowan's K-formula), two performance groups were formed (high and low performers). Within whole brain analyses, we found a robust main effect of "set size" in the posterior parietal cortex (PPC). In line with a "set size × group" interaction in the hippocampus, a subsequent Finite Impulse Response (FIR) analysis revealed divergent hippocampal activation patterns between performance groups: Low performers (mean capacity  =  3.63) elicited increased neural activity at set size two, followed by a drop in activity at set sizes four and six, whereas high performers (mean capacity  =  5.19) showed an incremental activity increase with larger set size (maximal activation at set size six). Our data demonstrated that performance-related neural activity in the hippocampus emerged below capacity limit. In conclusion, we suggest that hippocampal activity reflected successful processing of object-location associations in VSTM. Neural activity in the PPC might have been involved in attentional updating. Copyright © 2013 Wiley Periodicals, Inc.

  9. Feeling full and being full : how gastric content relates to appetite, food properties and neural activation

    NARCIS (Netherlands)

    Camps, Guido

    2017-01-01

    Aim: This thesis aimed to further determine how gastric content relates to subjective experiences regarding appetite, how this relation is affected by food properties and whether this is visible in neural activation changes.

    Method: This was studied using

  10. The importance of cutaneous feedback on neural activation during maximal voluntary contraction

    NARCIS (Netherlands)

    Cruz-Montecinos, Carlos; Maas, Huub; Pellegrin-Friedmann, Carla; Tapia, Claudio

    2017-01-01

    Purpose: The purpose of this study was to investigate the importance of cutaneous feedback on neural activation during maximal voluntary contraction (MVC) of the ankle plantar flexors. Methods: The effects of cutaneous plantar anaesthesia were assessed in 15 subjects and compared to 15 controls,

  11. Specific and Nonspecific Neural Activity during Selective Processing of Visual Representations in Working Memory

    Science.gov (United States)

    Oh, Hwamee; Leung, Hoi-Chung

    2010-01-01

    In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two…

  12. Evaluation of neural networks to identify types of activity using accelerometers

    NARCIS (Netherlands)

    Vries, S.I. de; Garre, F.G.; Engbers, L.H.; Hildebrandt, V.H.; Buuren, S. van

    2011-01-01

    Purpose: To develop and evaluate two artificial neural network (ANN) models based on single-sensor accelerometer data and an ANN model based on the data of two accelerometers for the identification of types of physical activity in adults. Methods: Forty-nine subjects (21 men and 28 women; age range

  13. Sex Differences in the Relationship Between Depressive Symptoms and Actigraphic Assessments of Sleep and Rest-Activity Rhythms in a Population-Based Sample.

    Science.gov (United States)

    White, Kaitlin Hanley; Rumble, Meredith E; Benca, Ruth M

    2017-05-01

    Depression is often associated with disruptions in sleep and circadian rhythms. We aimed to confirm these relationships via actigraphic assessment in a large, population-based sample and test whether sex moderates these relationships. A total of 418 participants (age = 35-85 years, mean [standard deviation] = 57.04 [11.47]) completed questionnaires and 1 week of actigraphy, used to calculate sleep and rest-activity statistics including mesor (mean activity level), amplitude (height of rhythm), and acrophase (time of day that rhythm peaks). Depressive symptoms, assessed via Center for Epidemiologic Studies Depression Scale, were associated with disrupted sleep and rest-activity rhythms. Furthermore, men demonstrated longer sleep onset latency (SOL, B = -13.28, p continuity and rest-activity rhythms in this population-based sample; however, these relationships differed by sex. Women with greater depressive symptoms exhibited difficulty with sleep continuity, whereas men with greater depressive symptoms demonstrated disruption throughout the 24-hour rhythm.

  14. Article Title: Physical activity in adolescents. Is there scientific evidence of how physical exercise affects sleep in the adolescent population?

    Directory of Open Access Journals (Sweden)

    Joaquín Reverter-Masia

    2017-07-01

    Full Text Available Abstract: Insomnia is a very common pediatric condition that causes a serious impact on psychophysical performance. The present paper, based on the scientific literature, aims to analyze some questions about how physical activity affects sleep in the adolescent population. Finally, some general and useful recommendations are established for professionals working in this population group.

  15. Improving physical activity, sedentary behaviour and sleep in COPD : Perspectives of people with COPD and experts via a Delphi approach

    NARCIS (Netherlands)

    Lewthwaite, Hayley; Effing, Tanja W.; Lenferink, Anke; Olds, Tim; Williams, Marie T.

    2018-01-01

    Background. Little is known about how to achieve enduring improvements in physical activity (PA), sedentary behaviour (SB) and sleep for people with chronic obstructive pulmonary disease (COPD). This study aimed to: (1) identify what people with COPD from South Australia and the Netherlands, and

  16. Effect of Sleep Duration, Diet, and Physical Activity on Obesity and Overweight Elementary School Students in Shanghai

    Science.gov (United States)

    Zhang, Jing; Zhang, YunTing; Jiang, YanRui; Sun, WanQi; Zhu, Qi; Ip, Patrick; Zhang, DongLan; Liu, ShiJian; Chen, Chang; Chen, Jie; Zhang, Lei; Zhang, Hao; Tang, MingYu; Dong, WenFang; Wu, YuFeng; Yin, Yong; Jiang, Fan

    2018-01-01

    Background: This was a cross-sectional survey to investigate the relationship of age, parent education, sleep duration, physical activity, and dietary habits with overweight or obesity in school-age children in Shanghai. Methods: The survey gathered information from 13,001 children in grades 1 through 5 (age 6 to 10 years) among 26 elementary…

  17. Differential effects of midazolam and zolpidem on sleep-wake states and epileptic activity in WAG/Rij rats

    NARCIS (Netherlands)

    Depoortere, H.; Francon, D.; Luijtelaar, E.L.J.M. van; Drinkenburg, W.H.I.M.; Coenen, A.M.L.

    1995-01-01

    Hypnotic drugs are known to possess antiepileptic activity. Therefore, the effects of the benzodiazepine hypnotic midazolam (10 mg/kg) and the novel imidazopyridine hypnotic zolpidem (10 mg/kg) on sleep-wake states and on the number of spike-wave discharges were evaluated in WAG/Rij rats. Rats of

  18. Differences in Neural Activation as a Function of Risk-taking Task Parameters

    Directory of Open Access Journals (Sweden)

    Eliza eCongdon

    2013-09-01

    Full Text Available Despite evidence supporting a relationship between impulsivity and naturalistic risk-taking, the relationship of impulsivity with laboratory-based measures of risky decision-making remains unclear. One factor contributing to this gap in our understanding is the degree to which different risky decision-making tasks vary in their details. We conducted an fMRI investigation of the Angling Risk Task (ART, which is an improved behavioral measure of risky decision-making. In order to examine whether the observed pattern of neural activation was specific to the ART or generalizable, we also examined correlates of the Balloon Analogue Risk Taking (BART task in the same sample of 23 healthy adults. Exploratory analyses were conducted to examine the relationship between neural activation, performance, impulsivity and self-reported risk-taking. While activation in a valuation network was associated with reward tracking during the ART but not the BART, increased fronto-cingulate activation was seen during risky choice trials in the BART as compared to the ART. Thus, neural activation during risky decision-making trials differed between the two tasks, and this observation was likely driven by differences in task parameters, namely the absence vs. presence of ambiguity and/or stationary vs. increasing probability of loss on the ART and BART, respectively. Exploratory association analyses suggest that sensitivity of neural response to the magnitude of potential reward during the ART was associated with a suboptimal performance strategy, higher scores on a scale of dysfunctional impulsivity and a greater likelihood of engaging in risky behaviors, while this pattern was not seen for the BART. Our results suggest that the ART is decomposable and associated with distinct patterns of neural activation; this represents a preliminary step towards characterizing a behavioral measure of risky decision-making that may support a better understanding of naturalistic risk-taking.

  19. Cognitive-affective neural plasticity following active-controlled mindfulness intervention

    DEFF Research Database (Denmark)

    Allen, Micah Galen

    Mindfulness meditation is a set of attention-based, regulatory and self-inquiry training regimes. Although the impact of mindfulness meditation training (MT) on self-regulation is well established, the neural mechanisms supporting such plasticity are poorly understood. MT is thought to act through...... prefrontal cortex (mPFC), and right anterior insula during negative valence processing. Our findings highlight the importance of active control in MT research, indicate unique neural mechanisms for progressive stages of mindfulness training, and suggest that optimal application of MT may differ depending...

  20. Neural networkbased semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear...... to determine the damper current based on the derived optimal damper force. For that reason an inverse MR damper model is also designed based on the neural network identification of the particular rotary MR damper. The performance of the proposed controller is compared to that of an optimal pure viscous damper...

  1. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation.

    Directory of Open Access Journals (Sweden)

    Dhakshin S Ramanathan

    Full Text Available Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning.

  2. Social power and approach-related neural activity

    OpenAIRE

    Boksem, Maarten; Smolders, Ruud; Cremer, David

    2009-01-01

    textabstractIt has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motiva...

  3. Dispositional Mindfulness and Depressive Symptomatology: Correlations with Limbic and Self-Referential Neural Activity during Rest

    Science.gov (United States)

    Way, Baldwin M.; Creswell, J. David; Eisenberger, Naomi I.; Lieberman, Matthew D.

    2010-01-01

    To better understand the relationship between mindfulness and depression, we studied normal young adults (n=27) who completed measures of dispositional mindfulness and depressive symptomatology, which were then correlated with: a) Rest: resting neural activity during passive viewing of a fixation cross, relative to a simple goal-directed task (shape-matching); and b) Reactivity: neural reactivity during viewing of negative emotional faces, relative to the same shape-matching task. Dispositional mindfulness was negatively correlated with resting activity in self-referential processing areas, while depressive symptomatology was positively correlated with resting activity in similar areas. In addition, dispositional mindfulness was negatively correlated with resting activity in the amygdala, bilaterally, while depressive symptomatology was positively correlated with activity in the right amygdala. Similarly, when viewing emotional faces, amygdala reactivity was positively correlated with depressive symptomatology and negatively correlated with dispositional mindfulness, an effect that was largely attributable to differences in resting activity. These findings indicate that mindfulness is associated with intrinsic neural activity and that changes in resting amygdala activity could be a potential mechanism by which mindfulness-based depression treatments elicit therapeutic improvement. PMID:20141298

  4. Frontal Underactivation During Working Memory Processing in Adults With Acute Partial Sleep Deprivation: A Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Michael K. Yeung

    2018-05-01

    Full Text Available Individuals with partial sleep deprivation may have working memory (WM impairment, but the underlying neural mechanism of this phenomenon is relatively unknown. The present study examined neural processing during WM performance in individuals with and without partial sleep deprivation using near-infrared spectroscopy (NIRS. Forty college students (10 males were equally split into Sufficient Sleep (SS and Insufficient Sleep (IS groups based on self-reports of previous night's sleep duration. Participants in the SS group obtained the recommended amounts of sleep according to various sleep organizations (i.e., >7.0 h, whereas those in the IS group obtained amounts of sleep no greater than the lower limit of the recommendation (i.e., ≤7.0 h. All participants underwent an n-back paradigm with a WM load (i.e., 3-back and a control condition (i.e., 0-back while their prefrontal hemodynamics were recorded by NIRS. The IS and SS groups performed the tasks comparably well. However, unlike the SS group, which exhibited bilateral frontal activation indicated by increased oxyhemoglobin concentration and decreased deoxyhemoglobin concentration during WM processing (i.e., 3-back > 0-back, the IS group did not exhibit such activation. In addition, levels of WM-related frontal activation, especially those on the left side, correlated with sleep duration the night before, even when habitual sleep duration was controlled for. The findings suggest the presence of frontal lobe dysfunction in the absence of evident WM difficulties in individuals with acute partial sleep deprivation. They also highlight the importance of a good night's sleep to brain health.

  5. Electronic screens in children's bedrooms and adiposity, physical activity and sleep: do the number and type of electronic devices matter?

    Science.gov (United States)

    Chaput, Jean-Philippe; Leduc, Geneviève; Boyer, Charles; Bélanger, Priscilla; LeBlanc, Allana G; Borghese, Michael M; Tremblay, Mark S

    2014-07-11

    To examine whether the number and type of electronic screens available in children's bedrooms matter in their relationship to adiposity, physical activity and sleep. A cross-sectional study was conducted involving 502 children aged 9-11 years from Ottawa, Ontario. The presence (yes/no) of a television (TV), computer or video game system in the child's bedroom was reported by the parents. Percentage body fat was measured using bioelectrical impedance. An accelerometer was worn over seven days to assess moderate-to-vigorous physical activity (MVPA), total sedentary time, sleep duration and sleep efficiency. Screen time was self-reported by the child. After adjustment for age, sex, ethnicity, annual household income and highest level of parental education, children with 2-3 screens in their bedroom had a significantly higher percentage of body fat than children with no screen in their bedroom. However, while children with 2-3 screens in their bedroom engaged in more screen time overall than those with no screen, total sedentary time and MVPA were not significantly different. Sleep duration was not related to the number of screens in the bedroom, but sleep efficiency was significantly lower in children with at least 2 screens in the bedroom. Finally, children having only a TV in their bedroom had significantly higher adiposity than those having no screen at all. In contrast, the presence of a computer in children's bedrooms was not associated with higher adiposity than that of children with no screen. A higher number of screens in a child's bedroom was associated with higher adiposity, more total screen time and lower sleep efficiency. Having a TV in the bedroom appears to be the type of screen presence associated with higher levels of adiposity. Given the popularity of screens among children, these findings are increasingly relevant to health promotion strategies.

  6. Reduced sympathetic activity in idiopathic rapid-eye-movement sleep behavior disorder and Parkinson's disease

    DEFF Research Database (Denmark)

    Sorensen, Gertrud Laura; Mehlsen, Jesper; Jennum, Poul

    2013-01-01

    More than 50% of patients with idiopathic REM sleep behavior disorder (iRBD) will develop Parkinson's disease or Lewy body dementia. In a previous study, we found attenuated heart rate responses in iRBD and Parkinson's disease patients during sleep. The current study aimed to evaluate heart rate...... variability further in order to identify possible changes in these components during wakefulness and sleep in patients with iRBD and Parkinson's disease....

  7. Similar patterns of neural activity predict memory function during encoding and retrieval.

    Science.gov (United States)

    Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J

    2017-07-15

    Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful