WorldWideScience

Sample records for neural processing systems

  1. Neural Mechanisms and Information Processing in Recognition Systems

    Directory of Open Access Journals (Sweden)

    Mamiko Ozaki

    2014-10-01

    Full Text Available Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.

  2. BOOK REVIEW: Theory of Neural Information Processing Systems

    Science.gov (United States)

    Galla, Tobias

    2006-04-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 1011 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kühn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  3. Psychological Processing in Chronic Pain: A Neural Systems Approach

    Science.gov (United States)

    Simons, Laura; Elman, Igor; Borsook, David

    2014-01-01

    Our understanding of chronic pain involves complex brain circuits that include sensory, emotional, cognitive and interoceptive processing. The feed-forward interactions between physical (e.g., trauma) and emotional pain and the consequences of altered psychological status on the expression of pain have made the evaluation and treatment of chronic pain a challenge in the clinic. By understanding the neural circuits involved in psychological processes, a mechanistic approach to the implementation of psychology-based treatments may be better understood. In this review we evaluate some of the principle processes that may be altered as a consequence of chronic pain in the context of localized and integrated neural networks. These changes are ongoing, vary in their magnitude, and their hierarchical manifestations, and may be temporally and sequentially altered by treatments, and all contribute to an overall pain phenotype. Furthermore, we link altered psychological processes to specific evidence-based treatments to put forth a model of pain neuroscience psychology. PMID:24374383

  4. [A telemetery system for neural signal acquiring and processing].

    Science.gov (United States)

    Wang, Min; Song, Yongji; Suen, Jiantao; Zhao, Yiliang; Jia, Aibin; Zhu, Jianping

    2011-02-01

    Recording and extracting characteristic brain signals in freely moving animals is the basic and significant requirement in the study of brain-computer interface (BCI). To record animal's behaving and extract characteristic brain signals simultaneously could help understand the complex behavior of neural ensembles. Here, a system was established to record and analyse extracellular discharge in freely moving rats for the study of BCI. It comprised microelectrode and micro-driver assembly, analog front end (AFE), programmer system on chip (PSoC), wireless communication and the LabVIEW used as the platform for the graphic user interface.

  5. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  6. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems.

    Directory of Open Access Journals (Sweden)

    Marcus Kaiser

    2006-07-01

    Full Text Available It has been suggested that neural systems across several scales of organization show optimal component placement, in which any spatial rearrangement of the components would lead to an increase of total wiring. Using extensive connectivity datasets for diverse neural networks combined with spatial coordinates for network nodes, we applied an optimization algorithm to the network layouts, in order to search for wire-saving component rearrangements. We found that optimized component rearrangements could substantially reduce total wiring length in all tested neural networks. Specifically, total wiring among 95 primate (Macaque cortical areas could be decreased by 32%, and wiring of neuronal networks in the nematode Caenorhabditis elegans could be reduced by 48% on the global level, and by 49% for neurons within frontal ganglia. Wiring length reductions were possible due to the existence of long-distance projections in neural networks. We explored the role of these projections by comparing the original networks with minimally rewired networks of the same size, which possessed only the shortest possible connections. In the minimally rewired networks, the number of processing steps along the shortest paths between components was significantly increased compared to the original networks. Additional benchmark comparisons also indicated that neural networks are more similar to network layouts that minimize the length of processing paths, rather than wiring length. These findings suggest that neural systems are not exclusively optimized for minimal global wiring, but for a variety of factors including the minimization of processing steps.

  7. Reconfigurable embedded system architecture for next-generation Neural Signal Processing.

    Science.gov (United States)

    Balasubramanian, Karthikeyan; Obeid, Iyad

    2010-01-01

    This work presents a new architectural framework for next generation Neural Signal Processing (NSP). The essential features of the NSP hardware platform include scalability, reconfigurability, real-time processing ability and data storage. This proposed framework has been implemented in a proof-of-concept NSP prototype using an embedded system architecture synthesized in a Xilinx(®)Virtex(®)5 development board. The prototype includes a threshold-based spike detector and a fuzzy logic-based spike sorter.

  8. A probablistic neural network classification system for signal and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, B. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Acoustical Heart Valve Analysis Package is a system for signal and image processing and classification. It is being developed in both Matlab and C, to provide an interactive, interpreted environment, and has been optimized for large scale matrix operations. It has been used successfully to classify acoustic signals from implanted prosthetic heart valves in human patients, and will be integrated into a commercial Heart Valve Screening Center. The system uses several standard signal processing algorithms, as well as supervised learning techniques using the probabilistic neural network (PNN). Although currently used for the acoustic heart valve application, the algorithms and modular design allow it to be used for other applications, as well. We will describe the signal classification system, and show results from a set of test valves.

  9. Principles of neural information processing

    CERN Document Server

    Seelen, Werner v

    2016-01-01

    In this fundamental book the authors devise a framework that describes the working of the brain as a whole. It presents a comprehensive introduction to the principles of Neural Information Processing as well as recent and authoritative research. The books´ guiding principles are the main purpose of neural activity, namely, to organize behavior to ensure survival, as well as the understanding of the evolutionary genesis of the brain. Among the developed principles and strategies belong self-organization of neural systems, flexibility, the active interpretation of the world by means of construction and prediction as well as their embedding into the world, all of which form the framework of the presented description. Since, in brains, their partial self-organization, the lifelong adaptation and their use of various methods of processing incoming information are all interconnected, the authors have chosen not only neurobiology and evolution theory as a basis for the elaboration of such a framework, but also syst...

  10. Progress Toward Adaptive Integration and Optimization of Automated and Neural Processing Systems: Establishing Neural and Behavioral Benchmarks of Optimized Performance

    Science.gov (United States)

    2014-11-01

    grid, using an Advanced Brain Monitoring (ABM) ×24 system configured with the single-trial event - related potential (ERP) sensor strip and operating...ROC curve BCI brain-computer interface EEG electroencephalogram ERP event - related potential EVUS estimated volume under the surface FOV field of...stations. 15. SUBJECT TERMS rapid serial visual presentation, RSVP, EEG, neural classification, P300 , brain-computer interface 16. SECURITY

  11. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  12. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  13. Combined expert system/neural networks method for process fault diagnosis

    Science.gov (United States)

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  14. Combined expert system/neural networks method for process fault diagnosis

    Science.gov (United States)

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  15. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  16. The relaxation time of processes in a FitzHugh-Nagumo neural system with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Gong Ailing; Zeng Chunhua [Faculty of Science, Kunming University of Science and Technology, Kunming 650093 (China); Wang Hua, E-mail: zchh2009@126.com [Province Engineering Research Center of Industrial Energy Conservation and New Technology, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China)

    2011-08-01

    In this paper, we study the relaxation time (RT) of the steady-state correlation function in a FitzHugh-Nagumo neural system under the presence of multiplicative and additive white noises and time delay. The noise correlation parameter {lambda} can produce a critical behavior in the RT as functions of the multiplicative noise intensity D, the additive noise intensity Q and the time delay {tau}. That is, the RT decreases as the noise intensities D and Q increase, and increases as the time delay {tau} increases below the critical value of {lambda}. However, above the critical value, the RT first increases, reaches a maximum, and then decreases as D, Q and {tau} increase, i.e. a noise intensity D or Q and a time delay {tau} exist, at which the time scales of the relaxation process are at their largest. In addition, the additive noise intensity Q can also produce a critical behavior in the RT as a function of {lambda}. The noise correlation parameter {lambda} first increases the RT of processes, then decreases it below the critical value of Q. Above the critical value, {lambda} increases it.

  17. Control System Design for Cylindrical Tank Process Using Neural Model Predictive Control Technique

    Directory of Open Access Journals (Sweden)

    M. Sridevi

    2010-10-01

    Full Text Available Chemical manufacturing and process industry requires innovative technologies for process identification. This paper deals with model identification and control of cylindrical process. Model identification of the process was done using ARMAX technique. A neural model predictive controller was designed for the identified model. The performance of the controllers was evaluated using MATLAB software. The performance of NMPC controller was compared with Smith Predictor controller and IMC controller based on rise time, settling time, overshoot and ISE and it was found that the NMPC controller is better suited for this process.

  18. Neural processing of natural sounds.

    Science.gov (United States)

    Theunissen, Frédéric E; Elie, Julie E

    2014-06-01

    We might be forced to listen to a high-frequency tone at our audiologist's office or we might enjoy falling asleep with a white-noise machine, but the sounds that really matter to us are the voices of our companions or music from our favourite radio station. The auditory system has evolved to process behaviourally relevant natural sounds. Research has shown not only that our brain is optimized for natural hearing tasks but also that using natural sounds to probe the auditory system is the best way to understand the neural computations that enable us to comprehend speech or appreciate music.

  19. Bottom-up and top-down attention: different processes and overlapping neural systems.

    Science.gov (United States)

    Katsuki, Fumi; Constantinidis, Christos

    2014-10-01

    The brain is limited in its capacity to process all sensory stimuli present in the physical world at any point in time and relies instead on the cognitive process of attention to focus neural resources according to the contingencies of the moment. Attention can be categorized into two distinct functions: bottom-up attention, referring to attentional guidance purely by externally driven factors to stimuli that are salient because of their inherent properties relative to the background; and top-down attention, referring to internal guidance of attention based on prior knowledge, willful plans, and current goals. Over the past few years, insights on the neural circuits and mechanisms of bottom-up and top-down attention have been gained through neurophysiological experiments. Attention affects the mean neuronal firing rate as well as its variability and correlation across neurons. Although distinct processes mediate the guidance of attention based on bottom-up and top-down factors, a common neural apparatus, the frontoparietal network, is essential in both types of attentional processes. © The Author(s) 2013.

  20. The neural correlates of priming emotion and reward systems for conflict processing in alcoholics.

    Science.gov (United States)

    Schulte, T; Jung, Y-C; Sullivan, E V; Pfefferbaum, A; Serventi, M; Müller-Oehring, E M

    2016-11-04

    Emotional dysregulation in alcoholism (ALC) may result from disturbed inhibitory mechanisms. We therefore tested emotion and alcohol cue reactivity and inhibitory processes using negative priming. To test the neural correlates of cue reactivity and negative priming, 26 ALC and 26 age-matched controls underwent functional MRI performing a Stroop color match-to-sample task. In cue reactivity trials, task-irrelevant emotion and alcohol-related pictures were interspersed between color samples and color words. In negative priming trials, pictures primed the semantic content of an alcohol or emotion Stroop word. Behaviorally, both groups showed response facilitation to picture cue trials and response inhibition to primed trials. For cue reactivity to emotion and alcohol pictures, ALC showed midbrain-limbic activation. By contrast, controls activated frontoparietal executive control regions. Greater midbrain-hippocampal activation in ALC correlated with higher amounts of lifetime alcohol consumption and higher anxiety. With negative priming, ALC exhibited frontal cortical but not midbrain-hippocampal activation, similar to the pattern observed in controls. Higher frontal activation to alcohol-priming correlated with less craving and to emotion-priming with fewer depressive symptoms. The findings suggest that neurofunctional systems in ALC can be primed to deal with upcoming emotion- and alcohol-related conflict and can overcome the prepotent midbrain-limbic cue reactivity response.

  1. Models of neural networks temporal aspects of coding and information processing in biological systems

    CERN Document Server

    Hemmen, J; Schulten, Klaus

    1994-01-01

    Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregatio...

  2. A VLSI field-programmable mixed-signal array to perform neural signal processing and neural modeling in a prosthetic system.

    Science.gov (United States)

    Bamford, Simeon A; Hogri, Roni; Giovannucci, Andrea; Taub, Aryeh H; Herreros, Ivan; Verschure, Paul F M J; Mintz, Matti; Del Giudice, Paolo

    2012-07-01

    A very-large-scale integration field-programmable mixed-signal array specialized for neural signal processing and neural modeling has been designed. This has been fabricated as a core on a chip prototype intended for use in an implantable closed-loop prosthetic system aimed at rehabilitation of the learning of a discrete motor response. The chosen experimental context is cerebellar classical conditioning of the eye-blink response. The programmable system is based on the intimate mixing of switched capacitor analog techniques with low speed digital computation; power saving innovations within this framework are presented. The utility of the system is demonstrated by the implementation of a motor classical conditioning model applied to eye-blink conditioning in real time with associated neural signal processing. Paired conditioned and unconditioned stimuli were repeatedly presented to an anesthetized rat and recordings were taken simultaneously from two precerebellar nuclei. These paired stimuli were detected in real time from this multichannel data. This resulted in the acquisition of a trigger for a well-timed conditioned eye-blink response, and repetition of unpaired trials constructed from the same data led to the extinction of the conditioned response trigger, compatible with natural cerebellar learning in awake animals.

  3. Unaware Processing of Tools in the Neural System for Object-Directed Action Representation.

    Science.gov (United States)

    Tettamanti, Marco; Conca, Francesca; Falini, Andrea; Perani, Daniela

    2017-11-01

    The hypothesis that the brain constitutively encodes observed manipulable objects for the actions they afford is still debated. Yet, crucial evidence demonstrating that, even in the absence of perceptual awareness, the mere visual appearance of a manipulable object triggers a visuomotor coding in the action representation system including the premotor cortex, has hitherto not been provided. In this fMRI study, we instantiated reliable unaware visual perception conditions by means of continuous flash suppression, and we tested in 24 healthy human participants (13 females) whether the visuomotor object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices is activated even under subliminal perceptual conditions. We found consistent activation in the target visuomotor cortices, both with and without perceptual awareness, specifically for pictures of manipulable versus non-manipulable objects. By means of a multivariate searchlight analysis, we also found that the brain activation patterns in this visuomotor network enabled the decoding of manipulable versus non-manipulable object picture processing, both with and without awareness. These findings demonstrate the intimate neural coupling between visual perception and motor representation that underlies manipulable object processing: manipulable object stimuli specifically engage the visuomotor object-directed action representation system, in a constitutive manner that is independent from perceptual awareness. This perceptuo-motor coupling endows the brain with an efficient mechanism for monitoring and planning reactions to external stimuli in the absence of awareness. SIGNIFICANCE STATEMENT Our brain constantly encodes the visual information that hits the retina, leading to a stimulus-specific activation of sensory and semantic representations, even for objects that we do not consciously perceive. Do these unconscious representations encompass the motor

  4. Handbook on neural information processing

    CERN Document Server

    Maggini, Marco; Jain, Lakhmi

    2013-01-01

    This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include:                         Deep architectures                         Recurrent, recursive, and graph neural networks                         Cellular neural networks                         Bayesian networks                         Approximation capabilities of neural networks                         Semi-supervised learning                         Statistical relational learning                         Kernel methods for structured data                         Multiple classifier systems                         Self organisation and modal learning                         Applications to ...

  5. Beyond emotions: A meta-analysis of neural response within face processing system in social anxiety.

    Science.gov (United States)

    Gentili, Claudio; Cristea, Ioana Alina; Angstadt, Mike; Klumpp, Heide; Tozzi, Leonardo; Phan, K Luan; Pietrini, Pietro

    2016-02-01

    Patients with social anxiety disorder (SAD) experience anxiety and avoidance in face-to-face interactions. We performed a meta-analysis of functional magnetic resonance imaging (fMRI) studies in SAD to provide a comprehensive understanding of the neural underpinnings of face perception in this disorder. To this purpose, we adopted an innovative approach, asking authors for unpublished data. This is a common procedure for behavioral meta-analyses, which, however has never been used in neuroimaging studies. We searched Pubmed with the key words "Social Anxiety AND faces" and "Social Phobia AND faces." Then, we selected those fMRI studies for which we were able to obtain data for the comparison between SAD and healthy controls (HC) in a face perception task, either from the published papers or from the authors themselves. In this way, we obtained 23 studies (totaling 449 SAD and 424 HC individuals). We identified significant clusters in which faces evoked a higher response in SAD in bilateral amygdala, globus pallidus, superior temporal sulcus, visual cortex, and prefrontal cortex. We also found a higher activity for HC in the lingual gyrus and in the posterior cingulate. Our findings show that altered neural response to face in SAD is not limited to emotional structures but involves a complex network. These results may have implications for the understanding of SAD pathophysiology, as they suggest that a dysfunctional face perception process may bias patient person-to-person interactions. © 2015 by the Society for Experimental Biology and Medicine.

  6. Sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    A. R Abdollahnejad Barough

    2016-04-01

    Full Text Available Introduction: Pistachio nut is one of the most important agricultural products of Iran and it is priced due to the quality and type. One of the significant factors of pistachio cost is its type in terms of shell. Filled split pistachio nut has the most quality and is utilized as nuts, while the closed shell type has lower cost, at the same time is economically efficient in food industry such as confectionery. Now, pistachio sorting is performed usually by human and sometimes using electromechanical apparatuses. Classification of pistachio by human is time consuming and is done with an unacceptable accuracy, on the other hand, electromechanical and electro optical apparatuses damages pistachio because the mechanism used in them while separating. So, the need to develop automated systems that could be implemented by intelligent ways is evident to increase the speed and accuracy of classification. Materials and Methods: In this study, 300 samples of pistachios contains 100 Filled split, 100 Filled non-split and 100 split blank nuts ones are used. The training set consisted of 60 samples of each type of opened nuts, closed and empty opened shell nuts a total of 180 samples and the evaluation set consisted of 40 samples of each type of opened shell, closed shell and empty opened shell nuts a total of 120 samples. The principle of this study is implemented in two steps: 1 sample imaging and image processing to extract features 2 fuzzy network design based on the characteristics of data and training. To select useful features from the hypothesis, C4.5 decision tree is used. C4.5 algorithm makes a greedy top to bottom search on the hypothesis, and is made by the question what feature must be at the root of the tree. By the help of statistical methods, extracted features from the images were prioritized and the most appropriate features for classification of training set were selected. The algorithm chooses the best features as their number is minimum

  7. Neural network based system for equipment surveillance

    Science.gov (United States)

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  8. A Hybrid Neural Network and Virtual Reality System for Spatial Language Processing

    OpenAIRE

    Martinez, Guillermina; Cangelosi, Angelo; Coventry, Kenny

    2001-01-01

    This paper describes a neural network model for the study of spatial language. It deals with both geometric and functional variables, which have been shown to play an important role in the comprehension of spatial prepositions. The network is integrated with a virtual reality interface for the direct manipulation of geometric and functional factors. The training uses experimental stimuli and data. Results show that the networks reach low training and generalization errors. Cluster analyses of...

  9. Symbolic gestures and spoken language are processed by a common neural system.

    Science.gov (United States)

    Xu, Jiang; Gannon, Patrick J; Emmorey, Karen; Smith, Jason F; Braun, Allen R

    2009-12-08

    Symbolic gestures, such as pantomimes that signify actions (e.g., threading a needle) or emblems that facilitate social transactions (e.g., finger to lips indicating "be quiet"), play an important role in human communication. They are autonomous, can fully take the place of words, and function as complete utterances in their own right. The relationship between these gestures and spoken language remains unclear. We used functional MRI to investigate whether these two forms of communication are processed by the same system in the human brain. Responses to symbolic gestures, to their spoken glosses (expressing the gestures' meaning in English), and to visually and acoustically matched control stimuli were compared in a randomized block design. General Linear Models (GLM) contrasts identified shared and unique activations and functional connectivity analyses delineated regional interactions associated with each condition. Results support a model in which bilateral modality-specific areas in superior and inferior temporal cortices extract salient features from vocal-auditory and gestural-visual stimuli respectively. However, both classes of stimuli activate a common, left-lateralized network of inferior frontal and posterior temporal regions in which symbolic gestures and spoken words may be mapped onto common, corresponding conceptual representations. We suggest that these anterior and posterior perisylvian areas, identified since the mid-19th century as the core of the brain's language system, are not in fact committed to language processing, but may function as a modality-independent semiotic system that plays a broader role in human communication, linking meaning with symbols whether these are words, gestures, images, sounds, or objects.

  10. Neural overlap in processing music and speech

    Science.gov (United States)

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L.

    2015-01-01

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513

  11. The distributed neural system for top-down letter processing: an fMRI study

    Science.gov (United States)

    Liu, Jiangang; Feng, Lu; Li, Ling; Tian, Jie

    2011-03-01

    This fMRI study used Psychophysiological interaction (PPI) to investigate top-down letter processing with an illusory letter detection task. After an initial training that became increasingly difficult, participant was instructed to detect a letter from pure noise images where there was actually no letter. Such experimental paradigm allowed for isolating top-down components of letter processing and minimizing the influence of bottom-up perceptual input. A distributed cortical network of top-down letter processing was identified by analyzing the functional connectivity patterns of letter-preferential area (LA) within the left fusiform gyrus. Such network extends from the visual cortex to high level cognitive cortexes, including the left middle frontal gyrus, left medial frontal gyrus, left superior parietal gyrus, bilateral precuneus, and left inferior occipital gyrus. These findings suggest that top-down letter processing contains not only regions for processing of letter phonology and appearance, but also those involved in internal information generation and maintenance, and attention and memory processing.

  12. Symbolic processing in neural networks

    OpenAIRE

    Neto, João Pedro; Hava T Siegelmann; Costa,J.Félix

    2003-01-01

    In this paper we show that programming languages can be translated into recurrent (analog, rational weighted) neural nets. Implementation of programming languages in neural nets turns to be not only theoretical exciting, but has also some practical implications in the recent efforts to merge symbolic and sub symbolic computation. To be of some use, it should be carried in a context of bounded resources. Herein, we show how to use resource bounds to speed up computations over neural nets, thro...

  13. Age-related vulnerability in the neural systems supporting semantic processing

    Directory of Open Access Journals (Sweden)

    Jonathan E Peelle

    2013-09-01

    Full Text Available Our ability to form abstract representations of objects in semantic memory is crucial to language and thought. The utility of this information relies both on the representations of sensory-motor feature knowledge stored in long-term memory and the executive processes required to retrieve, manipulate, and evaluate this semantic knowledge in a task-relevant manner. These complementary components of semantic memory can be differentially impacted by aging. We investigated semantic processing in normal aging using functional magnetic resonance imaging (fMRI. Young and older adults were asked to judge whether two printed object names match on a particular feature (for example, whether a tomato and strawberry have the same color. The task thus required both retrieval of relevant visual feature knowledge of object concepts and evaluating this information. Objects were drawn from either natural kinds or manufactured objects, and were queried on either color or shape in a factorial design. Behaviorally, all subjects performed well, but older adults could be divided into those whose performance matched that of young adults (better performers and those whose performance was worse (poorer performers. All subjects activated several cortical regions while performing this task, including bilateral inferior and lateral temporal cortex and left frontal and prefrontal cortex. Better performing older adults showed increased overall activity in bilateral premotor cortex and left lateral occipital cortex compared to young adults, and increased activity in these brain regions relative to poorer performing older adults who also showed gray matter atrophy in premotor cortex. These findings highlight the contribution of domain-general executive processing brain regions to semantic memory, and illustrate differences in how these regions are recruited in healthy older adults.

  14. The neural network as a part of decision support system for quality management for production objects in machining process

    Directory of Open Access Journals (Sweden)

    Cherepanska I.Yu.

    2017-04-01

    Full Text Available The research discusses the use of artificial neural networks (ANN as components of a decision support system (DSS to automate quality control manufacturing facilities machining business at the production, which should be focused on the analysis of large amounts of heterogeneous information. The necessity to use ANN as a part of DSS is justified by the fact that quality control during production is multistage and time-consuming process that is formalized difficult, and moreover requires considerable information and material costs for the efficiency of manufacturing operations performed. Taking into account the existing experience of successful use of ANN to solve difficult formal problems associated with handling large volumes of diverse and rapidly changing information, the authors synthesized ANN for automated determination of the causes deterioration of the quality of production objects (PO in the performance of manufacturing operations application. Particular attention is paid to the definition of the dimension of the hidden layer ANN synthesized due to the fact that today still there is no analytical expression to determine the dimension of the hidden layer ANN and size of the latter is determined only by the experimental results of ANN several different structures by comparison the results, in particular the value of mean square error.

  15. Reduced functional integration and segregation of distributed neural systems underlying social and emotional information processing in autism spectrum disorders.

    Science.gov (United States)

    Rudie, Jeffrey D; Shehzad, Zarrar; Hernandez, Leanna M; Colich, Natalie L; Bookheimer, Susan Y; Iacoboni, Marco; Dapretto, Mirella

    2012-05-01

    A growing body of evidence suggests that autism spectrum disorders (ASDs) are related to altered communication between brain regions. Here, we present findings showing that ASD is characterized by a pattern of reduced functional integration as well as reduced segregation of large-scale brain networks. Twenty-three children with ASD and 25 typically developing matched controls underwent functional magnetic resonance imaging while passively viewing emotional face expressions. We examined whole-brain functional connectivity of two brain structures previously implicated in emotional face processing in autism: the amygdala bilaterally and the right pars opercularis of the inferior frontal gyrus (rIFGpo). In the ASD group, we observed reduced functional integration (i.e., less long-range connectivity) between amygdala and secondary visual areas, as well as reduced segregation between amygdala and dorsolateral prefrontal cortex. For the rIFGpo seed, we observed reduced functional integration with parietal cortex and increased integration with right frontal cortex as well as right nucleus accumbens. Finally, we observed reduced segregation between rIFGpo and the ventromedial prefrontal cortex. We propose that a systems-level approach-whereby the integration and segregation of large-scale brain networks in ASD is examined in relation to typical development-may provide a more detailed characterization of the neural basis of ASD.

  16. Neural systems for control

    National Research Council Canada - National Science Library

    Omidvar, Omid; Elliott, David L

    1997-01-01

    ... is reprinted with permission from A. Barto, "Reinforcement Learning," Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.. The MIT Press, Cambridge, MA, pp. 804-809, 1995. Chapter 4, Figures 4-5 and 7-9 and Tables 2-5, are reprinted with permission, from S. Cho, "Map Formation in Proprioceptive Cortex," International Jour...

  17. The role of trauma-related distractors on neural systems for working memory and emotion processing in posttraumatic stress disorder.

    Science.gov (United States)

    Morey, Rajendra A; Dolcos, Florin; Petty, Christopher M; Cooper, Debra A; Hayes, Jasmeet Pannu; LaBar, Kevin S; McCarthy, Gregory

    2009-05-01

    The relevance of emotional stimuli to threat and survival confers a privileged role in their processing. In PTSD, the ability of trauma-related information to divert attention is especially pronounced. Information unrelated to the trauma may also be highly distracting when it shares perceptual features with trauma material. Our goal was to study how trauma-related environmental cues modulate working memory networks in PTSD. We examined neural activity in participants performing a visual working memory task while distracted by task-irrelevant trauma and non-trauma material. Recent post-9/11 veterans were divided into a PTSD group (n=22) and a trauma-exposed control group (n=20) based on the Davidson trauma scale. Using fMRI, we measured hemodynamic change in response to emotional (trauma-related) and neutral distraction presented during the active maintenance period of a delayed-response working memory task. The goal was to examine differences in functional networks associated with working memory (dorsolateral prefrontal cortex and lateral parietal cortex) and emotion processing (amygdala, ventrolateral prefrontal cortex, and fusiform gyrus). The PTSD group showed markedly different neural activity compared to the trauma-exposed control group in response to task-irrelevant visual distractors. Enhanced activity in ventral emotion processing regions was associated with trauma distractors in the PTSD group, whereas activity in brain regions associated with working memory and attention regions was disrupted by distractor stimuli independent of trauma content. Neural evidence for the impact of distraction on working memory is consistent with PTSD symptoms of hypervigilance and general distractibility during goal-directed cognitive processing.

  18. Neural Adaptive Sensory Processing for Undersea Sonar

    Science.gov (United States)

    1992-10-01

    neurobionic conceptual framework- [71 -, "Neural target locator," Naval Ocean Systems Center, Tech. Mr. Speidel is a member of the American Association...for the Ad- Document 77)1914, 1990. vancement of Science (AAAS), the International Neural Network Soci- [8) -, "Sonar scene analysis using neurobionic

  19. Degenerate coding in neural systems.

    Science.gov (United States)

    Leonardo, Anthony

    2005-11-01

    When the dimensionality of a neural circuit is substantially larger than the dimensionality of the variable it encodes, many different degenerate network states can produce the same output. In this review I will discuss three different neural systems that are linked by this theme. The pyloric network of the lobster, the song control system of the zebra finch, and the odor encoding system of the locust, while different in design, all contain degeneracies between their internal parameters and the outputs they encode. Indeed, although the dynamics of song generation and odor identification are quite different, computationally, odor recognition can be thought of as running the song generation circuitry backwards. In both of these systems, degeneracy plays a vital role in mapping a sparse neural representation devoid of correlations onto external stimuli (odors or song structure) that are strongly correlated. I argue that degeneracy between input and output states is an inherent feature of many neural systems, which can be exploited as a fault-tolerant method of reliably learning, generating, and discriminating closely related patterns.

  20. Memory Storage and Neural Systems.

    Science.gov (United States)

    Alkon, Daniel L.

    1989-01-01

    Investigates memory storage and molecular nature of associative-memory formation by analyzing Pavlovian conditioning in marine snails and rabbits. Presented is the design of a computer-based memory system (neural networks) using the rules acquired in the investigation. Reports that the artificial network recognized patterns well. (YP)

  1. Evaluating neural networks and artificial intelligence systems

    Science.gov (United States)

    Alberts, David S.

    1994-02-01

    Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.

  2. Neural constraints and flexibility in language processing.

    Science.gov (United States)

    Huyck, Christian R

    2016-01-01

    Humans process language with their neurons. Memory in neurons is supported by neural firing and by short- and long-term synaptic weight change; the emergent behaviour of neurons, synchronous firing, and cell assembly dynamics is also a form of memory. As the language signal moves to later stages, it is processed with different mechanisms that are slower but more persistent.

  3. Neural systems for tactual memories.

    Science.gov (United States)

    Bonda, E; Petrides, M; Evans, A

    1996-04-01

    1. The aim of this study was to investigate the neural systems involved in the memory processing of experiences through touch. 2. Regional cerebral blood flow was measured with positron emission tomography by means of the water bolus H2(15)O methodology in human subjects as they performed tasks involving different levels of tactual memory. In one of the experimental tasks, the subjects had to palpate nonsense shapes to match each one to a previously learned set, thus requiring constant reference to long-term memory. The other experimental task involved judgements of the recent recurrence of shapes during the scanning period. A set of three control tasks was used to control for the type of exploratory movements and sensory processing inherent in the two experimental tasks. 3. Comparisons of the distribution of activity between the experimental and the control tasks were carried out by means of the subtraction method. In relation to the control conditions, the two experimental tasks requiring memory resulted in significant changes within the posteroventral insula and the central opercular region. In addition, the task requiring recall from long-term memory yielded changes in the perirhinal cortex. 4. The above findings demonstrated that a ventrally directed parietoinsular pathway, leading to the posteroventral insula and the perirhinal cortex, constitutes a system by which long-lasting representations of tactual experiences are formed. It is proposed that the posteroventral insula is involved in tactual feature analysis, by analogy with the similar role of the inferotemporal cortex in vision, whereas the perirhinal cortex is further involved in the integration of these features into long-lasting representations of somatosensory experiences.

  4. Neurale Netværk anvendt indenfor Proceskontrol. Neural Network for Process Control

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    Dette projekt omhandler anvendelsen af neurale netværksmodeller til proceskontrol. Neurale netværksmodeller er simple modeller af de processer, der forløber i det biologiske neurale netværk. Det biologiske neurale netværk er det netværk af nerveceller, der tilsammen danner centralnervesystemet hos...... beskrivelige inputsignaler. Det biologiske neurale netværk dvs. hjernen er således gennem indlæring i stand til at læse, hvorledes der skal stryes og reguleres på baggrund af disse inputsignaler, så det ønskede resultat opnås. Det er derfor nærliggende at undersøge, hvorvidt neurale netværk er anvendelige...... indenfor proceskontrol i almindelighed. Med anvendelser til proceskontrol menes der her anvendeler til prediction, simulering og regulering af dynamiske systemer. For at teste, hvorvidt neurale netværk er anvendelig til prediction og simulering, er der anvendt en tre-trinsoverheder simulator til...

  5. Neural Correlates of Verb Argument Structure Processing

    OpenAIRE

    Thompson, Cynthia K.; Bonakdarpour, Borna; Fix, Stephen C.; Blumenfeld, Henrike K.; Parrish, Todd B.; Gitelman, Darren R.; Mesulam, M.-Marsel

    2007-01-01

    Neuroimaging and lesion studies suggest that processing of word classes, such as verbs and nouns, is associated with distinct neural mechanisms. Such studies also suggest that subcategories within these broad word class categories are differentially processed in the brain. Within the class of verbs, argument structure provides one linguistic dimension that distinguishes among verb exemplars, with some requiring more complex argument structure entries than others. This study examined the neura...

  6. IMPLEMENTATION OF NEURAL - CRYPTOGRAPHIC SYSTEM USING FPGA

    Directory of Open Access Journals (Sweden)

    KARAM M. Z. OTHMAN

    2011-08-01

    Full Text Available Modern cryptography techniques are virtually unbreakable. As the Internet and other forms of electronic communication become more prevalent, electronic security is becoming increasingly important. Cryptography is used to protect e-mail messages, credit card information, and corporate data. The design of the cryptography system is a conventional cryptography that uses one key for encryption and decryption process. The chosen cryptography algorithm is stream cipher algorithm that encrypt one bit at a time. The central problem in the stream-cipher cryptography is the difficulty of generating a long unpredictable sequence of binary signals from short and random key. Pseudo random number generators (PRNG have been widely used to construct this key sequence. The pseudo random number generator was designed using the Artificial Neural Networks (ANN. The Artificial Neural Networks (ANN providing the required nonlinearity properties that increases the randomness statistical properties of the pseudo random generator. The learning algorithm of this neural network is backpropagation learning algorithm. The learning process was done by software program in Matlab (software implementation to get the efficient weights. Then, the learned neural network was implemented using field programmable gate array (FPGA.

  7. Hafnium transistor process design for neural interfacing.

    Science.gov (United States)

    Parent, David W; Basham, Eric J

    2009-01-01

    A design methodology is presented that uses 1-D process simulations of Metal Insulator Semiconductor (MIS) structures to design the threshold voltage of hafnium oxide based transistors used for neural recording. The methodology is comprised of 1-D analytical equations for threshold voltage specification, and doping profiles, and 1-D MIS Technical Computer Aided Design (TCAD) to design a process to implement a specific threshold voltage, which minimized simulation time. The process was then verified with a 2-D process/electrical TCAD simulation. Hafnium oxide films (HfO) were grown and characterized for dielectric constant and fixed oxide charge for various annealing temperatures, two important design variables in threshold voltage design.

  8. Neural Correlates of Sublexical Processing in Phonological Working Memory

    Science.gov (United States)

    McGettigan, Carolyn; Warren, Jane E.; Eisner, Frank; Marshall, Chloe R.; Shanmugalingam, Pradheep; Scott, Sophie K.

    2011-01-01

    This study investigated links between working memory and speech processing systems. We used delayed pseudoword repetition in fMRI to investigate the neural correlates of sublexical structure in phonological working memory (pWM). We orthogonally varied the number of syllables and consonant clusters in auditory pseudowords and measured the neural…

  9. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  10. Neural correlates of verb argument structure processing.

    Science.gov (United States)

    Thompson, Cynthia K; Bonakdarpour, Borna; Fix, Stephen C; Blumenfeld, Henrike K; Parrish, Todd B; Gitelman, Darren R; Mesulam, M-Marsel

    2007-11-01

    Neuroimaging and lesion studies suggest that processing of word classes, such as verbs and nouns, is associated with distinct neural mechanisms. Such studies also suggest that subcategories within these broad word class categories are differentially processed in the brain. Within the class of verbs, argument structure provides one linguistic dimension that distinguishes among verb exemplars, with some requiring more complex argument structure entries than others. This study examined the neural instantiation of verbs by argument structure complexity: one-, two-, and three-argument verbs. Stimuli of each type, along with nouns and pseudowords, were presented for lexical decision using an event-related functional magnetic resonance imaging design. Results for 14 young normal participants indicated largely overlapping activation maps for verbs and nouns, with no areas of significant activation for verbs compared to nouns, or vice versa. Pseudowords also engaged neural tissue overlapping with that for both word classes, with more widespread activation noted in visual, motor, and peri-sylvian regions. Examination of verbs by argument structure revealed activation of the supramarginal and angular gyri, limited to the left hemisphere only when verbs with two obligatory arguments were compared to verbs with a single argument. However, bilateral activation was noted when both two- and three-argument verbs were compared to one-argument verbs. These findings suggest that posterior peri-sylvian regions are engaged for processing argument structure information associated with verbs, with increasing neural tissue in the inferior parietal region associated with increasing argument structure complexity. These findings are consistent with processing accounts, which suggest that these regions are crucial for semantic integration.

  11. Neural networks for process control and optimization: two industrial applications.

    Science.gov (United States)

    Bloch, Gérard; Denoeux, Thierry

    2003-01-01

    The two most widely used neural models, multilayer perceptron (MLP) and radial basis function network (RBFN), are presented in the framework of system identification and control. The main steps for building such nonlinear black box models are regressor choice, selection of internal architecture, and parameter estimation. The advantages of neural network models are summarized: universal approximation capabilities, flexibility, and parsimony. Two applications are described in steel industry and water treatment, respectively, the control of alloying process in a hot dipped galvanizing line and the control of a coagulation process in a drinking water treatment plant. These examples highlight the interest of neural techniques, when complex nonlinear phenomena are involved, but the empirical knowledge of control operators can be learned.

  12. Neural substrates of sublexical processing for spelling.

    Science.gov (United States)

    DeMarco, Andrew T; Wilson, Stephen M; Rising, Kindle; Rapcsak, Steven Z; Beeson, Pélagie M

    2017-01-01

    We used fMRI to examine the neural substrates of sublexical phoneme-grapheme conversion during spelling in a group of healthy young adults. Participants performed a writing-to-dictation task involving irregular words (e.g., choir), plausible nonwords (e.g., kroid), and a control task of drawing familiar geometric shapes (e.g., squares). Written production of both irregular words and nonwords engaged a left-hemisphere perisylvian network associated with reading/spelling and phonological processing skills. Effects of lexicality, manifested by increased activation during nonword relative to irregular word spelling, were noted in anterior perisylvian regions (posterior inferior frontal gyrus/operculum/precentral gyrus/insula), and in left ventral occipito-temporal cortex. In addition to enhanced neural responses within domain-specific components of the language network, the increased cognitive demands associated with spelling nonwords engaged domain-general frontoparietal cortical networks involved in selective attention and executive control. These results elucidate the neural substrates of sublexical processing during written language production and complement lesion-deficit correlation studies of phonological agraphia. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Neural Correlates of Subliminal Language Processing.

    Science.gov (United States)

    Axelrod, Vadim; Bar, Moshe; Rees, Geraint; Yovel, Galit

    2015-08-01

    Language is a high-level cognitive function, so exploring the neural correlates of unconscious language processing is essential for understanding the limits of unconscious processing in general. The results of several functional magnetic resonance imaging studies have suggested that unconscious lexical and semantic processing is confined to the posterior temporal lobe, without involvement of the frontal lobe-the regions that are indispensable for conscious language processing. However, previous studies employed a similarly designed masked priming paradigm with briefly presented single and contextually unrelated words. It is thus possible, that the stimulation level was insufficiently strong to be detected in the high-level frontal regions. Here, in a high-resolution fMRI and multivariate pattern analysis study we explored the neural correlates of subliminal language processing using a novel paradigm, where written meaningful sentences were suppressed from awareness for extended duration using continuous flash suppression. We found that subjectively and objectively invisible meaningful sentences and unpronounceable nonwords could be discriminated not only in the left posterior superior temporal sulcus (STS), but critically, also in the left middle frontal gyrus. We conclude that frontal lobes play a role in unconscious language processing and that activation of the frontal lobes per se might not be sufficient for achieving conscious awareness. © The Author 2014. Published by Oxford University Press.

  14. Neural PID Control Strategy for Networked Process Control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative learning method is implemented by backpropagation neural networks whose weights are updated via minimizing tracking error entropy of closed-loop systems. The convergence in the mean square sense is analysed for closed-loop networked control systems. To demonstrate the potential applications of the proposed strategies, a pressure-tank experiment is provided to show the usefulness and effectiveness of the proposed design method in network process control systems.

  15. Using fuzzy logic to integrate neural networks and knowledge-based systems

    Science.gov (United States)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  16. Analog neural network-based helicopter gearbox health monitoring system.

    Science.gov (United States)

    Monsen, P T; Dzwonczyk, M; Manolakos, E S

    1995-12-01

    The development of a reliable helicopter gearbox health monitoring system (HMS) has been the subject of considerable research over the past 15 years. The deployment of such a system could lead to a significant saving in lives and vehicles as well as dramatically reduce the cost of helicopter maintenance. Recent research results indicate that a neural network-based system could provide a viable solution to the problem. This paper presents two neural network-based realizations of an HMS system. A hybrid (digital/analog) neural system is proposed as an extremely accurate off-line monitoring tool used to reduce helicopter gearbox maintenance costs. In addition, an all analog neural network is proposed as a real-time helicopter gearbox fault monitor that can exploit the ability of an analog neural network to directly compute the discrete Fourier transform (DFT) as a sum of weighted samples. Hardware performance results are obtained using the Integrated Neural Computing Architecture (INCA/1) analog neural network platform that was designed and developed at The Charles Stark Draper Laboratory. The results indicate that it is possible to achieve a 100% fault detection rate with 0% false alarm rate by performing a DFT directly on the first layer of INCA/1 followed by a small-size two-layer feed-forward neural network and a simple post-processing majority voting stage.

  17. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  18. Neural correlates of processing "self-conscious" vs. "basic" emotions.

    Science.gov (United States)

    Gilead, Michael; Katzir, Maayan; Eyal, Tal; Liberman, Nira

    2016-01-29

    Self-conscious emotions are prevalent in our daily lives and play an important role in both normal and pathological behavior. Despite their immense significance, the neural substrates that are involved in the processing of such emotions are surprisingly under-studied. In light of this, we conducted an fMRI study in which participants thought of various personal events which elicited feelings of negative and positive self-conscious (i.e., guilt, pride) or basic (i.e., anger, joy) emotions. We performed a conjunction analysis to investigate the neural correlates associated with processing events that are related to self-conscious vs. basic emotions, irrespective of valence. The results show that processing self-conscious emotions resulted in activation within frontal areas associated with self-processing and self-control, namely, the mPFC extending to the dACC, and within the lateral-dorsal prefrontal cortex. Processing basic emotions resulted in activation throughout relatively phylogenetically-ancient regions of the cortex, namely in visual and tactile processing areas and in the insular cortex. Furthermore, self-conscious emotions differentially activated the mPFC such that the negative self-conscious emotion (guilt) was associated with a more dorsal activation, and the positive self-conscious emotion (pride) was associated with a more ventral activation. We discuss how these results shed light on the nature of mental representations and neural systems involved in self-reflective and affective processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Short-term synaptic plasticity and heterogeneity in neural systems

    Science.gov (United States)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  20. A common neural system is activated in hearing non-signers to process French sign language and spoken French.

    Science.gov (United States)

    Courtin, Cyril; Jobard, Gael; Vigneau, Mathieu; Beaucousin, Virginie; Razafimandimby, Annick; Hervé, Pierre-Yves; Mellet, Emmanuel; Zago, Laure; Petit, Laurent; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2011-01-15

    We used functional magnetic resonance imaging to investigate the areas activated by signed narratives in non-signing subjects naïve to sign language (SL) and compared it to the activation obtained when hearing speech in their mother tongue. A subset of left hemisphere (LH) language areas activated when participants watched an audio-visual narrative in their mother tongue was activated when they observed a signed narrative. The inferior frontal (IFG) and precentral (Prec) gyri, the posterior parts of the planum temporale (pPT) and of the superior temporal sulcus (pSTS), and the occipito-temporal junction (OTJ) were activated by both languages. The activity of these regions was not related to the presence of communicative intent because no such changes were observed when the non-signers watched a muted video of a spoken narrative. Recruitment was also not triggered by the linguistic structure of SL, because the areas, except pPT, were not activated when subjects listened to an unknown spoken language. The comparison of brain reactivity for spoken and sign languages shows that SL has a special status in the brain compared to speech; in contrast to unknown oral language, the neural correlates of SL overlap LH speech comprehension areas in non-signers. These results support the idea that strong relationships exist between areas involved in human action observation and language, suggesting that the observation of hand gestures have shaped the lexico-semantic language areas as proposed by the motor theory of speech. As a whole, the present results support the theory of a gestural origin of language. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Neural processing of reward in adolescent rodents

    Directory of Open Access Journals (Sweden)

    Nicholas W. Simon

    2015-02-01

    Full Text Available Immaturities in adolescent reward processing are thought to contribute to poor decision making and increased susceptibility to develop addictive and psychiatric disorders. Very little is known; however, about how the adolescent brain processes reward. The current mechanistic theories of reward processing are derived from adult models. Here we review recent research focused on understanding of how the adolescent brain responds to rewards and reward-associated events. A critical aspect of this work is that age-related differences are evident in neuronal processing of reward-related events across multiple brain regions even when adolescent rats demonstrate behavior similar to adults. These include differences in reward processing between adolescent and adult rats in orbitofrontal cortex and dorsal striatum. Surprisingly, minimal age related differences are observed in ventral striatum, which has been a focal point of developmental studies. We go on to discuss the implications of these differences for behavioral traits affected in adolescence, such as impulsivity, risk-taking, and behavioral flexibility. Collectively, this work suggests that reward-evoked neural activity differs as a function of age and that regions such as the dorsal striatum that are not traditionally associated with affective processing in adults may be critical for reward processing and psychiatric vulnerability in adolescents.

  2. Speech Processing Disorder in Neural Hearing Loss

    Directory of Open Access Journals (Sweden)

    Joseph P. Pillion

    2012-01-01

    Full Text Available Deficits in central auditory processing may occur in a variety of clinical conditions including traumatic brain injury, neurodegenerative disease, auditory neuropathy/dyssynchrony syndrome, neurological disorders associated with aging, and aphasia. Deficits in central auditory processing of a more subtle nature have also been studied extensively in neurodevelopmental disorders in children with learning disabilities, ADD, and developmental language disorders. Illustrative cases are reviewed demonstrating the use of an audiological test battery in patients with auditory neuropathy/dyssynchrony syndrome, bilateral lesions to the inferior colliculi, and bilateral lesions to the temporal lobes. Electrophysiological tests of auditory function were utilized to define the locus of dysfunction at neural levels ranging from the auditory nerve, midbrain, and cortical levels.

  3. Neural Adaptation Effects in Conceptual Processing

    Directory of Open Access Journals (Sweden)

    Barbara F. M. Marino

    2015-07-01

    Full Text Available We investigated the conceptual processing of nouns referring to objects characterized by a highly typical color and orientation. We used a go/no-go task in which we asked participants to categorize each noun as referring or not to natural entities (e.g., animals after a selective adaptation of color-edge neurons in the posterior LV4 region of the visual cortex was induced by means of a McCollough effect procedure. This manipulation affected categorization: the green-vertical adaptation led to slower responses than the green-horizontal adaptation, regardless of the specific color and orientation of the to-be-categorized noun. This result suggests that the conceptual processing of natural entities may entail the activation of modality-specific neural channels with weights proportional to the reliability of the signals produced by these channels during actual perception. This finding is discussed with reference to the debate about the grounded cognition view.

  4. Neural network training as a dissipative process.

    Science.gov (United States)

    Gori, Marco; Maggini, Marco; Rossi, Alessandro

    2016-09-01

    This paper analyzes the practical issues and reports some results on a theory in which learning is modeled as a continuous temporal process driven by laws describing the interactions of intelligent agents with their own environment. The classic regularization framework is paired with the idea of temporal manifolds by introducing the principle of least cognitive action, which is inspired by the related principle of mechanics. The introduction of the counterparts of the kinetic and potential energy leads to an interpretation of learning as a dissipative process. As an example, we apply the theory to supervised learning in neural networks and show that the corresponding Euler-Lagrange differential equations can be connected to the classic gradient descent algorithm on the supervised pairs. We give preliminary experiments to confirm the soundness of the theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  6. Survey on Neural Networks Used for Medical Image Processing.

    Science.gov (United States)

    Shi, Zhenghao; He, Lifeng; Suzuki, Kenji; Nakamura, Tsuyoshi; Itoh, Hidenori

    2009-02-01

    This paper aims to present a review of neural networks used in medical image processing. We classify neural networks by its processing goals and the nature of medical images. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of neural network application for medical image processing and an outlook for the future research are also discussed. By this survey, we try to answer the following two important questions: (1) What are the major applications of neural networks in medical image processing now and in the nearby future? (2) What are the major strengths and weakness of applying neural networks for solving medical image processing tasks? We believe that this would be very helpful researchers who are involved in medical image processing with neural network techniques.

  7. Survey on Neural Networks Used for Medical Image Processing

    OpenAIRE

    Shi, Zhenghao; He, Lifeng; Suzuki, Kenji; Nakamura, Tsuyoshi; Itoh, Hidenori

    2009-01-01

    This paper aims to present a review of neural networks used in medical image processing. We classify neural networks by its processing goals and the nature of medical images. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of neural network application for medical image processing and an outlook for the future research are also discussed. By this survey, we try to answer the following two important questions: (1) Wh...

  8. System Identification, Prediction, Simulation and Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System...... Identification, Prediction, Simulation and Control of a dynamic, non-linear and noisy process. Further, the difficulties to control a practical non-linear laboratory process in a satisfactory way by using a traditional controller are overcomed by using a trained neural network to perform non-linear System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...

  9. Multiple neural network approaches to clinical expert systems

    Science.gov (United States)

    Stubbs, Derek F.

    1990-08-01

    We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results

  10. A comparative analysis of neural taste processing in animals

    Science.gov (United States)

    de Brito Sanchez, Gabriela; Giurfa, Martin

    2011-01-01

    Understanding taste processing in the nervous system is a fundamental challenge of modern neuroscience. Recent research on the neural bases of taste coding in invertebrates and vertebrates allows discussion of whether labelled-line or across-fibre pattern encoding applies to taste perception. While the former posits that each gustatory receptor responds to one stimulus or a very limited range of stimuli and sends a direct ‘line’ to the central nervous system to communicate taste information, the latter postulates that each gustatory receptor responds to a wider range of stimuli so that the entire population of taste-responsive neurons participates in the taste code. Tastes are represented in the brain of the fruitfly and of the rat by spatial patterns of neural activity containing both distinct and overlapping regions, which are in accord with both labelled-line and across-fibre pattern processing of taste, respectively. In both animal models, taste representations seem to relate to the hedonic value of the tastant (e.g. palatable versus non-palatable). Thus, although the labelled-line hypothesis can account for peripheral taste processing, central processing remains either unknown or differs from a pure labelled-line coding. The essential task for a neuroscience of taste is, therefore, to determine the connectivity of taste-processing circuits in central nervous systems. Such connectivity may determine coding strategies that differ significantly from both the labelled-line and the across-fibre pattern models. PMID:21690133

  11. Neural dynamics of phonological processing in the dorsal auditory stream.

    Science.gov (United States)

    Liebenthal, Einat; Sabri, Merav; Beardsley, Scott A; Mangalathu-Arumana, Jain; Desai, Anjali

    2013-09-25

    Neuroanatomical models hypothesize a role for the dorsal auditory pathway in phonological processing as a feedforward efferent system (Davis and Johnsrude, 2007; Rauschecker and Scott, 2009; Hickok et al., 2011). But the functional organization of the pathway, in terms of time course of interactions between auditory, somatosensory, and motor regions, and the hemispheric lateralization pattern is largely unknown. Here, ambiguous duplex syllables, with elements presented dichotically at varying interaural asynchronies, were used to parametrically modulate phonological processing and associated neural activity in the human dorsal auditory stream. Subjects performed syllable and chirp identification tasks, while event-related potentials and functional magnetic resonance images were concurrently collected. Joint independent component analysis was applied to fuse the neuroimaging data and study the neural dynamics of brain regions involved in phonological processing with high spatiotemporal resolution. Results revealed a highly interactive neural network associated with phonological processing, composed of functional fields in posterior temporal gyrus (pSTG), inferior parietal lobule (IPL), and ventral central sulcus (vCS) that were engaged early and almost simultaneously (at 80-100 ms), consistent with a direct influence of articulatory somatomotor areas on phonemic perception. Left hemispheric lateralization was observed 250 ms earlier in IPL and vCS than pSTG, suggesting that functional specialization of somatomotor (and not auditory) areas determined lateralization in the dorsal auditory pathway. The temporal dynamics of the dorsal auditory pathway described here offer a new understanding of its functional organization and demonstrate that temporal information is essential to resolve neural circuits underlying complex behaviors.

  12. How age of bilingual exposure can change the neural systems for language in the developing brain: a functional near infrared spectroscopy investigation of syntactic processing in monolingual and bilingual children.

    Science.gov (United States)

    Jasinska, K K; Petitto, L A

    2013-10-01

    Is the developing bilingual brain fundamentally similar to the monolingual brain (e.g., neural resources supporting language and cognition)? Or, does early-life bilingual language experience change the brain? If so, how does age of first bilingual exposure impact neural activation for language? We compared how typically-developing bilingual and monolingual children (ages 7-10) and adults recruit brain areas during sentence processing using functional Near Infrared Spectroscopy (fNIRS) brain imaging. Bilingual participants included early-exposed (bilingual exposure from birth) and later-exposed individuals (bilingual exposure between ages 4-6). Both bilingual children and adults showed greater neural activation in left-hemisphere classic language areas, and additionally, right-hemisphere homologues (Right Superior Temporal Gyrus, Right Inferior Frontal Gyrus). However, important differences were observed between early-exposed and later-exposed bilinguals in their earliest-exposed language. Early bilingual exposure imparts fundamental changes to classic language areas instead of alterations to brain regions governing higher cognitive executive functions. However, age of first bilingual exposure does matter. Later-exposed bilinguals showed greater recruitment of the prefrontal cortex relative to early-exposed bilinguals and monolinguals. The findings provide fascinating insight into the neural resources that facilitate bilingual language use and are discussed in terms of how early-life language experiences can modify the neural systems underlying human language processing. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Neural signal sampling via the low power wireless pico system.

    Science.gov (United States)

    Cieslewski, Grzegorz; Cheney, David; Gugel, Karl; Sanchez, Justin C; Principe, Jose C

    2006-01-01

    This paper presents a powerful new low power wireless system for sampling multiple channels of neural activity based on Texas Instruments MSP430 microprocessors and Nordic Semiconductor's ultra low power high bandwidth RF transmitters and receivers. The system's development process, component selection, features and test methodology are presented.

  14. Signal Processing in Periodically Forced Gradient Frequency Neural Networks.

    Science.gov (United States)

    Kim, Ji Chul; Large, Edward W

    2015-01-01

    Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing.

  15. A dynamical systems view of motor preparation: Implications for neural prosthetic system design

    Science.gov (United States)

    Shenoy, Krishna V.; Kaufman, Matthew T.; Sahani, Maneesh; Churchland, Mark M.

    2013-01-01

    Neural prosthetic systems aim to help disabled patients suffering from a range of neurological injuries and disease by using neural activity from the brain to directly control assistive devices. This approach in effect bypasses the dysfunctional neural circuitry, such as an injured spinal cord. To do so, neural prostheses depend critically on a scientific understanding of the neural activity that drives them. We review here several recent studies aimed at understanding the neural processes in premotor cortex that precede arm movements and lead to the initiation of movement. These studies were motivated by hypotheses and predictions conceived of within a dynamical systems perspective. This perspective concentrates on describing the neural state using as few degrees of freedom as possible and on inferring the rules that govern the motion of that neural state. Although quite general, this perspective has led to a number of specific predictions that have been addressed experimentally. It is hoped that the resulting picture of the dynamical role of preparatory and movement-related neural activity will be particularly helpful to the development of neural prostheses, which can themselves be viewed as dynamical systems under the control of the larger dynamical system to which they are attached. PMID:21763517

  16. Linking neural and symbolic representation and processing of conceptual structures

    NARCIS (Netherlands)

    van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.

    2017-01-01

    We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual

  17. Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Mjalli, F.S.; Al-Asheh, S. [Chemical Engineering Department, Qatar University, Doha (Qatar)

    2005-10-01

    In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  18. Statistical process control using optimized neural networks: a case study.

    Science.gov (United States)

    Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid

    2014-09-01

    The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Learning Processes of Layered Neural Networks

    OpenAIRE

    Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.

    1995-01-01

    A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural network, and a learning equation similar to that of the Boltzmann machine algorithm is obtained. By applying a mean field approximation to the same stochastic feed-forward neural network, a deterministic analog feed-forward network is obtained and the back-propagation learning rule is re-derived.

  20. Artificial Neural Network System for Thyroid Diagnosis

    Directory of Open Access Journals (Sweden)

    Mazin Abdulrasool Hameed

    2017-05-01

    Full Text Available Thyroid disease is one of major causes of severe medical problems for human beings. Therefore, proper diagnosis of thyroid disease is considered as an important issue to determine treatment for patients. This paper focuses on using Artificial Neural Network (ANN as a significant technique of artificial intelligence to diagnose thyroid diseases. The continuous values of three laboratory blood tests are used as input signals to the proposed system of ANN. All types of thyroid diseases that may occur in patients are taken into account in design of system, as well as the high accuracy of the detection and categorization of thyroid diseases are considered in the system. A multilayer feedforward architecture of ANN is adopted in the proposed design, and the back propagation is selected as learning algorithm to accomplish the training process. The result of this research shows that the proposed ANN system is able to precisely diagnose thyroid disease, and can be exploited in practical uses. The system is simulated via MATLAB software to evaluate its performance

  1. Neural network system for traffic flow management

    Science.gov (United States)

    Gilmore, John F.; Elibiary, Khalid J.; Petersson, L. E. Rickard

    1992-09-01

    Atlanta will be the home of several special events during the next five years ranging from the 1996 Olympics to the 1994 Super Bowl. When combined with the existing special events (Braves, Falcons, and Hawks games, concerts, festivals, etc.), the need to effectively manage traffic flow from surface streets to interstate highways is apparent. This paper describes a system for traffic event response and management for intelligent navigation utilizing signals (TERMINUS) developed at Georgia Tech for adaptively managing special event traffic flows in the Atlanta, Georgia area. TERMINUS (the original name given Atlanta, Georgia based upon its role as a rail line terminating center) is an intelligent surface street signal control system designed to manage traffic flow in Metro Atlanta. The system consists of three components. The first is a traffic simulation of the downtown Atlanta area around Fulton County Stadium that models the flow of traffic when a stadium event lets out. Parameters for the surrounding area include modeling for events during various times of day (such as rush hour). The second component is a computer graphics interface with the simulation that shows the traffic flows achieved based upon intelligent control system execution. The final component is the intelligent control system that manages surface street light signals based upon feedback from control sensors that dynamically adapt the intelligent controller's decision making process. The intelligent controller is a neural network model that allows TERMINUS to control the configuration of surface street signals to optimize the flow of traffic away from special events.

  2. Neural processing of auditory signals and modular neural control for sound tropism of walking machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Fischer, Joern

    2005-01-01

    . The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it....... and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right...

  3. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability qu...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....

  4. Powder processing of hybrid titanium neural electrodes

    Science.gov (United States)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  5. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Neural processing of gustatory information in insular circuits.

    Science.gov (United States)

    Maffei, Arianna; Haley, Melissa; Fontanini, Alfredo

    2012-08-01

    The insular cortex is the primary cortical site devoted to taste processing. A large body of evidence is available for how insular neurons respond to gustatory stimulation in both anesthetized and behaving animals. Most of the reports describe broadly tuned neurons that are involved in processing the chemosensory, physiological and psychological aspects of gustatory experience. However little is known about how these neural responses map onto insular circuits. Particularly mysterious is the functional role of the three subdivisions of the insular cortex: the granular, the dysgranular and the agranular insular cortices. In this article we review data on the organization of the local and long-distance circuits in the three subdivisions. The functional significance of these results is discussed in light of the latest electrophysiological data. A view of the insular cortex as a functionally integrated system devoted to processing gustatory, multimodal, cognitive and affective information is proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Neural Network Based Intelligent Sootblowing System

    Energy Technology Data Exchange (ETDEWEB)

    Mark Rhode

    2005-04-01

    . Due to the composition of coal, particulate matter is also a by-product of coal combustion. Modern day utility boilers are usually fitted with electrostatic precipitators to aid in the collection of particulate matter. Although extremely efficient, these devices are sensitive to rapid changes in inlet mass concentration as well as total mass loading. Traditionally, utility boilers are equipped with devices known as sootblowers, which use, steam, water or air to dislodge and clean the surfaces within the boiler and are operated based upon established rule or operator's judgment. Poor sootblowing regimes can influence particulate mass loading to the electrostatic precipitators. The project applied a neural network intelligent sootblowing system in conjunction with state-of-the-art controls and instruments to optimize the operation of a utility boiler and systematically control boiler slagging/fouling. This optimization process targeted reduction of NOx of 30%, improved efficiency of 2% and a reduction in opacity of 5%. The neural network system proved to be a non-invasive system which can readily be adapted to virtually any utility boiler. Specific conclusions from this neural network application are listed below. These conclusions should be used in conjunction with the specific details provided in the technical discussions of this report to develop a thorough understanding of the process.

  8. Neural Plasticity in the Gustatory System

    OpenAIRE

    Hill, David L.

    2004-01-01

    Sensory systems adapt to changing environmental influences by coordinated alterations in structure and function. These alterations are referred to as plastic changes. The gustatory system displays numerous plastic changes even in receptor cells. This review focuses on the plasticity of gustatory structures through the first synaptic relay in the brain. Unlike other sensory systems, there is a remarkable amount of environmentally induced changes in these peripheral-most neural structures. The ...

  9. Reliability Modeling of Microelectromechanical Systems Using Neural Networks

    Science.gov (United States)

    Perera. J. Sebastian

    2000-01-01

    Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.

  10. Hybrid digital signal processing and neural networks applications in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Eryurek, E.; Upadhyaya, B.R.; Kavaklioglu, K.

    1991-12-31

    Signal validation and plant subsystem tracking in power and process industries require the prediction of one or more state variables. Both heteroassociative and auotassociative neural networks were applied for characterizing relationships among sets of signals. A multi-layer neural network paradigm was applied for sensor and process monitoring in a Pressurized Water Reactor (PWR). This nonlinear interpolation technique was found to be very effective for these applications.

  11. System and method for determining stability of a neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2011-01-01

    Disclosed are methods, systems, and computer-readable media for determining stability of a neural system. The method includes tracking a function world line of an N element neural system within at least one behavioral space, determining whether the tracking function world line is approaching a psychological stability surface, and implementing a quantitative solution that corrects instability if the tracked function world line is approaching the psychological stability surface.

  12. Unveiling neural coupling within the sensorimotor system : directionality and nonlinearity

    NARCIS (Netherlands)

    Yang, Y.; Dewald, J.P.A.; van der Helm, F.C.T.; Schouten, A.C.

    2017-01-01

    Neural coupling between the central nervous system and the periphery is essential for the neural control of movement. Corticomuscular coherence is a popular linear technique to assess synchronised oscillatory activity in the sensorimotor system. This oscillatory coupling originates from ascending

  13. Effects of intranasal oxytocin on neural processing within a socially relevant neural circuit.

    Science.gov (United States)

    Singh, Fiza; Nunag, Jason; Muldoon, Glennis; Cadenhead, Kristin S; Pineda, Jaime A; Feifel, David

    2016-03-01

    Dysregulation of the Mirror Neuron System (MNS) in schizophrenia (SCZ) may underlie the cognitive and behavioral manifestations of social dysfunction associated with that disorder. In healthy subjects intranasal (IN) oxytocin (OT) improves neural processing in the MNS and is associated with improved social cognition. OT's brain effects can be measured through its modulation of the MNS by suppressing EEG mu-band electrical activity (8-13Hz) in response to motion perception. Although IN OT's effects on social cognition have been tested in SCZ, OT's impact on the MNS has not been evaluated to date. Therefore, we designed a study to investigate the effects of two different OT doses on biological motion-induced mu suppression in SCZ and healthy subjects. EEG recordings were taken after each subject received a single IN administration of placebo, OT-24IU and OT-48IU in randomized order in a double-blind crossover design. The results provide support for OT's regulation of the MNS in both healthy and SCZ subjects, with the optimal dose dependent on diagnostic group and sex of subject. A statistically significant response was seen in SCZ males only, indicating a heightened sensitivity to those effects, although sex hormone related effects cannot be ruled out. In general, OT appears to have positive effects on neural circuitry that supports social cognition and socially adaptive behaviors. Published by Elsevier B.V.

  14. Simulating neural systems with Xyce.

    Energy Technology Data Exchange (ETDEWEB)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  15. Forward and Reverse Process Models for the Squeeze Casting Process Using Neural Network Based Approaches

    Directory of Open Access Journals (Sweden)

    Manjunath Patel Gowdru Chandrashekarappa

    2014-01-01

    Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

  16. Neural Processing of Auditory Signals and Modular Neural Control for Sound Tropism of Walking Machines

    Directory of Open Access Journals (Sweden)

    Hubert Roth

    2008-11-01

    Full Text Available The specialized hairs and slit sensillae of spiders (Cupiennius salei can sense the airflow and auditory signals in a low-frequency range. They provide the sensor information for reactive behavior, like e.g. capturing a prey. In analogy, in this paper a setup is described where two microphones and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right. The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it.

  17. Linking Neural and Symbolic Representation and Processing of Conceptual Structures

    Directory of Open Access Journals (Sweden)

    Frank van der Velde

    2017-08-01

    Full Text Available We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like structures. First is the Neural Blackboard Architecture (NBA, which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking, which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures.

  18. Neural correlates of quantity processing of Chinese numeral classifiers.

    Science.gov (United States)

    Her, One-Soon; Chen, Ying-Chun; Yen, Nai-Shing

    2017-11-08

    Linguistic analysis suggests that numeral classifiers carry quantity information. However, previous neuroimaging studies have shown that classifiers did not elicit higher activation in the intraparietal sulcus (IPS), associated with representation of numerical magnitude, than tool nouns did. This study aimed to control the semantic attributes of classifiers and reexamine the underlying neural correlates. Participants performed a semantic distance comparison task in which they judged which one of the two items was semantically closer to the target. Processing classifiers elicited higher activation than tool nouns in the bilateral inferior parietal lobules (IPL), middle frontal gyri (MFG), right superior frontal gyrus (SFG), and left lingual gyrus. Conjunction analysis showed that the IPS was commonly activated for classifiers, numbers, dots, and number words. The results support that classifiers activate quantity representations, implicating that the system of classifiers is part of magnitude cognition. Furthermore, the results suggest that the IPS represents magnitude independent of notations. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Identification of the non-linear systems using internal recurrent neural networks

    Directory of Open Access Journals (Sweden)

    Bogdan CODRES

    2006-12-01

    Full Text Available In the past years utilization of neural networks took a distinct ampleness because of the following properties: distributed representation of information, capacity of generalization in case of uncontained situation in training data set, tolerance to noise, resistance to partial destruction, parallel processing. Another major advantage of neural networks is that they allow us to obtain the model of the investigated system, systems that is not necessarily to be linear. In fact, the true value of neural networks is seen in the case of identification and control of nonlinear systems. In this paper there are presented some identification techniques using neural networks.

  20. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  1. Internal models and neural computation in the vestibular system.

    Science.gov (United States)

    Green, Andrea M; Angelaki, Dora E

    2010-01-01

    The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem-cerebellar circuitry. These include the sensorimotor transformations for reflex generation, the neural computations for inertial motion estimation, the distinction between active and passive head movements, as well as the integration of vestibular and proprioceptive information for body motion estimation. A common theme in the solution to such computational problems is the concept of internal models and their neural implementation. Recent studies have shed new insights into important organizational principles that closely resemble those proposed for other sensorimotor systems, where their neural basis has often been more difficult to identify. As such, the vestibular system provides an excellent model to explore common neural processing strategies relevant both for reflexive and for goal-directed, voluntary movement as well as perception.

  2. The Criticality Hypothesis in Neural Systems

    Science.gov (United States)

    Karimipanah, Yahya

    There is mounting evidence that neural networks of the cerebral cortex exhibit scale invariant dynamics. At the larger scale, fMRI recordings have shown evidence for spatiotemporal long range correlations. On the other hand, at the smaller scales this scale invariance is marked by the power law distribution of the size and duration of spontaneous bursts of activity, which are referred as neuronal avalanches. The existence of such avalanches has been confirmed by several studies in vitro and in vivo, among different species and across multiple scales, from spatial scale of MEG and EEG down to single cell resolution. This prevalent scale free nature of cortical activity suggests the hypothesis that the cortex resides at a critical state between two phases of order (short-lasting activity) and disorder (long-lasting activity). In addition, it has been shown, both theoretically and experimentally, that being at criticality brings about certain functional advantages for information processing. However, despite the plenty of evidence and plausibility of the neural criticality hypothesis, still very little is known on how the brain may leverage such criticality to facilitate neural coding. Moreover, the emergent functions that may arise from critical dynamics is poorly understood. In the first part of this thesis, we review several pieces of evidence for the neural criticality hypothesis at different scales, as well as some of the most popular theories of self-organized criticality (SOC). Thereafter, we will focus on the most prominent evidence from small scales, namely neuronal avalanches. We will explore the effect of adaptation and how it can maintain scale free dynamics even at the presence of external stimuli. Using calcium imaging we also experimentally demonstrate the existence of scale free activity at the cellular resolution in vivo. Moreover, by exploring the subsampling issue in neural data, we will find some fundamental constraints of the conventional methods

  3. Neural correlates of gesture processing across human development.

    Science.gov (United States)

    Wakefield, Elizabeth M; James, Thomas W; James, Karin H

    2013-01-01

    Co-speech gesture facilitates learning to a greater degree in children than in adults, suggesting that the mechanisms underlying the processing of co-speech gesture differ as a function of development. We suggest that this may be partially due to children's lack of experience producing gesture, leading to differences in the recruitment of sensorimotor networks when comparing adults to children. Here, we investigated the neural substrates of gesture processing in a cross-sectional sample of 5-, 7.5-, and 10-year-old children and adults and focused on relative recruitment of a sensorimotor system that included the precentral gyrus (PCG) and the posterior middle temporal gyrus (pMTG). Children and adults were presented with videos in which communication occurred through different combinations of speech and gesture during a functional magnetic resonance imaging (fMRI) session. Results demonstrated that the PCG and pMTG were recruited to different extents in the two populations. We interpret these novel findings as supporting the idea that gesture perception (pMTG) is affected by a history of gesture production (PCG), revealing the importance of considering gesture processing as a sensorimotor process.

  4. Dopamine system: Manager of neural pathways

    Directory of Open Access Journals (Sweden)

    Simon eHong

    2013-12-01

    Full Text Available There are a growing number of roles that midbrain dopamine (DA neurons assume, such as, reward, aversion, alerting and vigor. Here I propose a theory that may be able to explain why the suggested functions of DA came about. It has been suggested that largely parallel cortico-basal ganglia-thalamo-cortico loops exist to control different aspects of behavior. I propose that (1 the midbrain DA system is organized in a similar manner, with different groups of DA neurons corresponding to these parallel neural pathways (NPs. The DA system can be viewed as the manager of these parallel NPs in that it recruits and activates only the task-relevant NPs when they are needed. It is likely that the functions of those NPs that have been consistently activated by the corresponding DA groups are facilitated. I also propose that (2 there are two levels of DA roles: the How and What roles. The How role is encoded in tonic and phasic DA neuron firing patterns and gives a directive to its target NP: how vigorously its function needs to be carried out. The tonic DA firing is to maintain a certain level of DA in the target NPs to support their expected behavioral and mental functions; it is only when a sudden unexpected boost or suppression of activity is required by the relevant target NP that DA neurons in the corresponding NP act in a phasic manner. The What role is the implementational aspect of the role of DA in the target NP, such as binding to D1 receptors to boost working memory. This What aspect of DA explains why DA seems to assume different functions depending on the region of the brain in which it is involved. In terms of the role of the lateral habenula (LHb, the LHb is expected to suppress maladaptive behaviors and mental processes by controlling the DA system. The demand-based smart management by the DA system may have given animals an edge in evolution with adaptive behaviors and a better survival rate in resource-scarce situations.

  5. Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression.

    Science.gov (United States)

    Lepping, Rebecca J; Atchley, Ruth Ann; Chrysikou, Evangelia; Martin, Laura E; Clair, Alicia A; Ingram, Rick E; Simmons, W Kyle; Savage, Cary R

    2016-01-01

    Anterior cingulate cortex (ACC) and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD). Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI) and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression. Nineteen MDD and 20 never-depressed (ND) control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning. ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum. These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments.

  6. Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lepping

    Full Text Available Anterior cingulate cortex (ACC and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD. Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression.Nineteen MDD and 20 never-depressed (ND control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning.ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum.These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments.

  7. The Artifical Neural Network as means for modeling Nonlinear Systems

    OpenAIRE

    Drábek Oldøich; Taufer Ivan

    1998-01-01

    The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.

  8. The Artifical Neural Network as means for modeling Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Drábek Oldøich

    1998-12-01

    Full Text Available The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.

  9. Neural bases of syntax-semantics interface processing.

    Science.gov (United States)

    Malaia, Evguenia; Newman, Sharlene

    2015-06-01

    The binding problem-question of how information between the modules of the linguistic system is integrated during language processing-is as yet unresolved. The remarkable speed of language processing and comprehension (Pulvermüller et al. 2009) suggests that at least coarse semantic information (e.g. noun animacy) and syntactically-relevant information (e.g. verbal template) are integrated rapidly to allow for coarse comprehension. This EEG study investigated syntax-semantics interface processing during word-by-word sentence reading. As alpha-band neural activity serves as an inhibition mechanism for local networks, we used topographical distribution of alpha power to help identify the timecourse of the binding process. We manipulated the syntactic parameter of verbal event structure, and semantic parameter of noun animacy in reduced relative clauses (RRCs, e.g. "The witness/mansion seized/protected by the agent was in danger"), to investigate the neural bases of interaction between syntactic and semantic networks during sentence processing. The word-by-word stimulus presentation method in the present experiment required manipulation of both syntactic structure and semantic features in the working memory. The results demonstrated a gradient distribution of early components (biphasic posterior P1-N2 and anterior N1-P2) over function words "by" and "the", and the verb, corresponding to facilitation or conflict resulting from the syntactic (telicity) and semantic (animacy) cues in the preceding portion of the sentence. This was followed by assimilation of power distribution in the α band at the second noun. The flattened distribution of α power during the mental manipulation with high demand on working memory-thematic role re-assignment-demonstrates a state of α equilibrium with strong functional coupling between posterior and anterior regions. These results demonstrate that the processing of semantic and syntactic features during sentence comprehension proceeds

  10. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  11. Hierarchical neural networks perform both serial and parallel processing.

    Science.gov (United States)

    Agliari, Elena; Barra, Adriano; Galluzzi, Andrea; Guerra, Francesco; Tantari, Daniele; Tavani, Flavia

    2015-06-01

    In this work we study a Hebbian neural network, where neurons are arranged according to a hierarchical architecture such that their couplings scale with their reciprocal distance. As a full statistical mechanics solution is not yet available, after a streamlined introduction to the state of the art via that route, the problem is consistently approached through signal-to-noise technique and extensive numerical simulations. Focusing on the low-storage regime, where the amount of stored patterns grows at most logarithmical with the system size, we prove that these non-mean-field Hopfield-like networks display a richer phase diagram than their classical counterparts. In particular, these networks are able to perform serial processing (i.e. retrieve one pattern at a time through a complete rearrangement of the whole ensemble of neurons) as well as parallel processing (i.e. retrieve several patterns simultaneously, delegating the management of different patterns to diverse communities that build network). The tune between the two regimes is given by the rate of the coupling decay and by the level of noise affecting the system. The price to pay for those remarkable capabilities lies in a network's capacity smaller than the mean field counterpart, thus yielding a new budget principle: the wider the multitasking capabilities, the lower the network load and vice versa. This may have important implications in our understanding of biological complexity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Combinatorial structures and processing in neural blackboard architectures

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; de Kamps, Marc; Besold, Tarek R.; d'Avila Garcez, Artur; Marcus, Gary F.; Miikkulainen, Risto

    2015-01-01

    We discuss and illustrate Neural Blackboard Architectures (NBAs) as the basis for variable binding and combinatorial processing the brain. We focus on the NBA for sentence structure. NBAs are based on the notion that conceptual representations are in situ, hence cannot be copied or transported.

  13. Recurrent Artificial Neural Networks and Finite State Natural Language Processing.

    Science.gov (United States)

    Moisl, Hermann

    It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…

  14. Recent progress in 'bioelectronics' research. Part 3. ; Study on underlying information processing mechanism of aplysia (sea slug) neural system. Baioerekutoronikusu eno michi (shorai wa saibogu mo). 3. ; Amefurashi shinkei kei no sado genri wo toki akasu (burein konpyuta) no jitsugen wo mezashite

    Energy Technology Data Exchange (ETDEWEB)

    Shiono, S. (Mitsubishi Electric Corp., Amagasaki, Hyogo (Japan). Central Research Lab.)

    1994-02-20

    Aplysia has memorizing and learning ability, and is an ideal creature for the elucidation of the learning mechanism of neural system. In addition, it has large neurons which can be studied for many purposes. Their input and output can be clearly defined, and the existence of a neural network is quite obvious which performs the processing between them. The subject which the computer in the next century must learn from living things are the principles of two neural functions, i.e. 'learning' and 'super-parallel distributed information processing.' The operating mode of the neural system is super parallel distribution which is fundamentally different from that of the serial processing computer. The method which is most worthy of notice as a means of measuring many neurons comprising the neural network simultaneously is the use of light. If optical measurement method is employed, the generation of individual action potentials of many neurons comprising the neural network can be measured independently and simultaneously. The neural system of aplysia controls the movement of the gill very well using both analog and digital neurons. 10 refs., 8 figs.

  15. Neural Control System in Obstacle Avoidance in Mobile Robots Using Ultrasonic Sensors

    Directory of Open Access Journals (Sweden)

    A. Medina-Santiago

    2014-02-01

    Full Text Available This paper presents the development and implementation of neural control systems in mobile robots in obstacle avoidance in real time using ultrasonic sensors with complex strategies of decision-making in development (Matlab and Processing. An Arduino embedded platform is used to implement the neural control for field results.

  16. Music Signal Processing Using Vector Product Neural Networks

    Science.gov (United States)

    Fan, Z. C.; Chan, T. S.; Yang, Y. H.; Jang, J. S. R.

    2017-05-01

    We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.

  17. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...

  18. Convergent evolution of neural systems in ctenophores.

    Science.gov (United States)

    Moroz, Leonid L

    2015-02-15

    Neurons are defined as polarized secretory cells specializing in directional propagation of electrical signals leading to the release of extracellular messengers - features that enable them to transmit information, primarily chemical in nature, beyond their immediate neighbors without affecting all intervening cells en route. Multiple origins of neurons and synapses from different classes of ancestral secretory cells might have occurred more than once during ~600 million years of animal evolution with independent events of nervous system centralization from a common bilaterian/cnidarian ancestor without the bona fide central nervous system. Ctenophores, or comb jellies, represent an example of extensive parallel evolution in neural systems. First, recent genome analyses place ctenophores as a sister group to other animals. Second, ctenophores have a smaller complement of pan-animal genes controlling canonical neurogenic, synaptic, muscle and immune systems, and developmental pathways than most other metazoans. However, comb jellies are carnivorous marine animals with a complex neuromuscular organization and sophisticated patterns of behavior. To sustain these functions, they have evolved a number of unique molecular innovations supporting the hypothesis of massive homoplasies in the organization of integrative and locomotory systems. Third, many bilaterian/cnidarian neuron-specific genes and 'classical' neurotransmitter pathways are either absent or, if present, not expressed in ctenophore neurons (e.g. the bilaterian/cnidarian neurotransmitter, γ-amino butyric acid or GABA, is localized in muscles and presumed bilaterian neuron-specific RNA-binding protein Elav is found in non-neuronal cells). Finally, metabolomic and pharmacological data failed to detect either the presence or any physiological action of serotonin, dopamine, noradrenaline, adrenaline, octopamine, acetylcholine or histamine - consistent with the hypothesis that ctenophore neural systems evolved

  19. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...... generation of pikes. When a stimulus is applied to the network, the spontaneous rings may prevail and hamper detection of the effects of the stimulus. Therefore, the spontaneous rings cannot be ignored and the response latency has to be detected on top of a background signal. Everything becomes more dicult...

  20. Neural mechanisms of order information processing in working memory

    Directory of Open Access Journals (Sweden)

    Barbara Dolenc

    2013-11-01

    Full Text Available The ability to encode and maintain the exact order of short sequences of stimuli or events is often crucial to our ability for effective high-order planning. However, it is not yet clear which neural mechanisms underpin this process. Several studies suggest that in comparison with item recognition temporal order coding activates prefrontal and parietal brain regions. Results of various studies tend to favour the hypothesis that the order of the stimuli is represented and encoded on several stages, from primacy and recency estimates to the exact position of the item in a sequence. Different brain regions play a different role in this process. Dorsolateral prefrontal cortex has a more general role in attention, while the premotor cortex is more involved in the process of information grouping. Parietal lobe and hippocampus also play a significant role in order processing as they enable the representation of distance. Moreover, order maintenance is associated with the existence of neural oscillators that operate at different frequencies. Electrophysiological studies revealed that theta and alpha oscillations play an important role in the maintenance of temporal order information. Those EEG oscillations are differentially associated with processes that support the maintenance of order information and item recognition. Various studies suggest a link between prefrontal areas and memory for temporal order, implying that EEG neural oscillations in the prefrontal cortex may play a role in the maintenance of information on temporal order.

  1. Process Versus Product in Social Learning: Comparative Diffusion Tensor Imaging of Neural Systems for Action Execution–Observation Matching in Macaques, Chimpanzees, and Humans

    Science.gov (United States)

    Hecht, Erin E.; Gutman, David A.; Preuss, Todd M.; Sanchez, Mar M.; Parr, Lisa A.; Rilling, James K.

    2013-01-01

    Social learning varies among primate species. Macaques only copy the product of observed actions, or emulate, while humans and chimpanzees also copy the process, or imitate. In humans, imitation is linked to the mirror system. Here we compare mirror system connectivity across these species using diffusion tensor imaging. In macaques and chimpanzees, the preponderance of this circuitry consists of frontal–temporal connections via the extreme/external capsules. In contrast, humans have more substantial temporal–parietal and frontal–parietal connections via the middle/inferior longitudinal fasciculi and the third branch of the superior longitudinal fasciculus. In chimpanzees and humans, but not in macaques, this circuitry includes connections with inferior temporal cortex. In humans alone, connections with superior parietal cortex were also detected. We suggest a model linking species differences in mirror system connectivity and responsivity with species differences in behavior, including adaptations for imitation and social learning of tool use. PMID:22539611

  2. Spacecraft Neural Network Control System Design using FPGA

    OpenAIRE

    Hanaa T. El-Madany; Faten H. Fahmy; Ninet M. A. El-Rahman; Hassen T. Dorrah

    2011-01-01

    Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffer...

  3. Neural Language Processing in Adolescent First-Language Learners: Longitudinal Case Studies in American Sign Language.

    Science.gov (United States)

    Ferjan Ramirez, Naja; Leonard, Matthew K; Davenport, Tristan S; Torres, Christina; Halgren, Eric; Mayberry, Rachel I

    2016-03-01

    One key question in neurolinguistics is the extent to which the neural processing system for language requires linguistic experience during early life to develop fully. We conducted a longitudinal anatomically constrained magnetoencephalography (aMEG) analysis of lexico-semantic processing in 2 deaf adolescents who had no sustained language input until 14 years of age, when they became fully immersed in American Sign Language. After 2 to 3 years of language, the adolescents' neural responses to signed words were highly atypical, localizing mainly to right dorsal frontoparietal regions and often responding more strongly to semantically primed words (Ferjan Ramirez N, Leonard MK, Torres C, Hatrak M, Halgren E, Mayberry RI. 2014. Neural language processing in adolescent first-language learners. Cereb Cortex. 24 (10): 2772-2783). Here, we show that after an additional 15 months of language experience, the adolescents' neural responses remained atypical in terms of polarity. While their responses to less familiar signed words still showed atypical localization patterns, the localization of responses to highly familiar signed words became more concentrated in the left perisylvian language network. Our findings suggest that the timing of language experience affects the organization of neural language processing; however, even in adolescence, language representation in the human brain continues to evolve with experience. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Neural Language Processing in Adolescent First-Language Learners: Longitudinal Case Studies in American Sign Language

    Science.gov (United States)

    Ferjan Ramirez, Naja; Leonard, Matthew K.; Davenport, Tristan S.; Torres, Christina; Halgren, Eric; Mayberry, Rachel I.

    2016-01-01

    One key question in neurolinguistics is the extent to which the neural processing system for language requires linguistic experience during early life to develop fully. We conducted a longitudinal anatomically constrained magnetoencephalography (aMEG) analysis of lexico-semantic processing in 2 deaf adolescents who had no sustained language input until 14 years of age, when they became fully immersed in American Sign Language. After 2 to 3 years of language, the adolescents' neural responses to signed words were highly atypical, localizing mainly to right dorsal frontoparietal regions and often responding more strongly to semantically primed words (Ferjan Ramirez N, Leonard MK, Torres C, Hatrak M, Halgren E, Mayberry RI. 2014. Neural language processing in adolescent first-language learners. Cereb Cortex. 24 (10): 2772–2783). Here, we show that after an additional 15 months of language experience, the adolescents' neural responses remained atypical in terms of polarity. While their responses to less familiar signed words still showed atypical localization patterns, the localization of responses to highly familiar signed words became more concentrated in the left perisylvian language network. Our findings suggest that the timing of language experience affects the organization of neural language processing; however, even in adolescence, language representation in the human brain continues to evolve with experience. PMID:25410427

  5. Fault diagnosis in satellite attitude control systems using artificial neural networkk

    Science.gov (United States)

    Ayodele I., Olanipekun

    The nonlinear behavior exhibited by altitude control system processes and also the presence of external constraints on the operating conditions causes hitch in the dynamics of system processes. This research work proposes a fault detection/tolerant prediction in an altitude control system. This is done through the artificial neural network fault detection by deploying the neural network approach. A fault detection and isolation module is developed in the actuator system of the Altitude Control System, thereby achieving the goal of this thesis. This can be done by two basic classification stages: Neural Residual Generator (Neural Observer)- This stage is responsible for generating residual errors that can reflect the real behavior of the entire process as against its normal conditions. Adaptive Neural Classifier - This stage is responsible for managing the isolation task of the fault detected by evaluating the generated residual errors from the neural estimator which gives detailed information about faults detected e.g., fault location and time. These two stages can be implemented by executing the tasks listed below: 1. Study and develop a generic three axis stabilized altitude control model based on the reaction wheels. This is established with three separate PD controllers designed for each reaction wheel of the satellite axis using the Matlab - SIMULINK. 2. Develop a dynamic neural network residual generator based on Dynamic Multilayer Perceptron Network (DMLP) which is then applied to the reaction wheel model designed commonly called the actuator in the altitude control system of a satellite 3. Develop a neural network adaptive classifier based on the Learning Vector Quantization (LVQ) model which is used for the isolation concept. The advantages of the proposed dynamic neural network and neural adaptive classifier approach are showcased.

  6. Artificial Neural Systems Application to the Simulation of Air Combat Decision Making

    Science.gov (United States)

    1992-04-01

    unit, the CPU , whereas neural networks utilize the effects of many, simple processing elements. Traditional computing is done in a step-by-step, serial...Nielsen Neurocomputers (HNC). The ANZA-Plus coprocessor is part of an 80386 -based computer system which is optimized for training and executing neural...host computer for this program is a Zenith 386/16 system running under the DOS 3.31 operating system. The 80386 microprocessor in this machine operates

  7. Neural Network Expert System in the Application of Tower Fault Diagnosis

    Science.gov (United States)

    Liu, Xiaoyang; Xia, Zhongwu; Tao, Zhiyong; Zhao, Zhenlian

    For the corresponding fuzzy relationship between the fault symptoms and the fault causes in the process of tower crane operation, this paper puts forward a kind of rapid new method of fast detection and diagnosis for common fault based on neural network expert system. This paper makes full use of expert system and neural network advantages, and briefly introduces the structure, function, algorithm and realization of the adopted system. Results show that the new algorithm is feasible and can achieve rapid faults diagnosis.

  8. Research on architecture of intelligent design platform for artificial neural network expert system

    Science.gov (United States)

    Gu, Honghong

    2017-09-01

    Based on the review of the development and current situation of CAD technology, the necessity of combination of artificial neural network and expert system, and then present an intelligent design system based on artificial neural network. Moreover, it discussed the feasibility of realization of a design-oriented expert system development tools on the basis of above combination. In addition, knowledge representation strategy and method and the solving process are given in this paper.

  9. Neural processing of reward magnitude under varying attentional demands.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea Ariel

    2011-04-06

    Central to the organization of behavior is the ability to represent the magnitude of a prospective reward and the costs related to obtaining it. Therein, reward-related neural activations are discounted in dependence of the effort required to resolve a given task. Varying attentional demands of the task might however affect reward-related neural activations. Here we employed fMRI to investigate the neural representation of expected values during a monetary incentive delay task with varying attentional demands. Following a cue, indicating at the same time the difficulty (hard/easy) and the reward magnitude (high/low) of the upcoming trial, subjects performed an attention task and subsequently received feedback about their monetary reward. Consistent with previous results, activity in anterior-cingulate, insular/orbitofrontal and mesolimbic regions co-varied with the anticipated reward-magnitude, but also with the attentional requirements of the task. These activations occurred contingent on action-execution and resembled the response time pattern of the subjects. In contrast, cue-related activations, signaling the forthcoming task-requirements, were only observed within attentional control structures. These results suggest that anticipated reward-magnitude and task-related attentional demands are concurrently processed in partially overlapping neural networks of anterior-cingulate, insular/orbitofrontal, and mesolimbic regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Engineering neural systems for high-level problem solving.

    Science.gov (United States)

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem

  11. Spiking modular neural networks: A neural network modeling approach for hydrological processes

    National Research Council Canada - National Science Library

    Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey

    2006-01-01

    .... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...

  12. Neural Network for Optimization of Existing Control Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1995-01-01

    The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....

  13. The sound of emotions-Towards a unifying neural network perspective of affective sound processing.

    Science.gov (United States)

    Frühholz, Sascha; Trost, Wiebke; Kotz, Sonja A

    2016-09-01

    Affective sounds are an integral part of the natural and social environment that shape and influence behavior across a multitude of species. In human primates, these affective sounds span a repertoire of environmental and human sounds when we vocalize or produce music. In terms of neural processing, cortical and subcortical brain areas constitute a distributed network that supports our listening experience to these affective sounds. Taking an exhaustive cross-domain view, we accordingly suggest a common neural network that facilitates the decoding of the emotional meaning from a wide source of sounds rather than a traditional view that postulates distinct neural systems for specific affective sound types. This new integrative neural network view unifies the decoding of affective valence in sounds, and ascribes differential as well as complementary functional roles to specific nodes within a common neural network. It also highlights the importance of an extended brain network beyond the central limbic and auditory brain systems engaged in the processing of affective sounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  15. Neural language processing in adolescent first-language learners.

    Science.gov (United States)

    Ferjan Ramirez, Naja; Leonard, Matthew K; Torres, Christina; Hatrak, Marla; Halgren, Eric; Mayberry, Rachel I

    2014-10-01

    The relation between the timing of language input and development of neural organization for language processing in adulthood has been difficult to tease apart because language is ubiquitous in the environment of nearly all infants. However, within the congenitally deaf population are individuals who do not experience language until after early childhood. Here, we investigated the neural underpinnings of American Sign Language (ASL) in 2 adolescents who had no sustained language input until they were approximately 14 years old. Using anatomically constrained magnetoencephalography, we found that recently learned signed words mainly activated right superior parietal, anterior occipital, and dorsolateral prefrontal areas in these 2 individuals. This spatiotemporal activity pattern was significantly different from the left fronto-temporal pattern observed in young deaf adults who acquired ASL from birth, and from that of hearing young adults learning ASL as a second language for a similar length of time as the cases. These results provide direct evidence that the timing of language experience over human development affects the organization of neural language processing. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Engaged listeners: shared neural processing of powerful political speeches.

    Science.gov (United States)

    Schmälzle, Ralf; Häcker, Frank E K; Honey, Christopher J; Hasson, Uri

    2015-08-01

    Powerful speeches can captivate audiences, whereas weaker speeches fail to engage their listeners. What is happening in the brains of a captivated audience? Here, we assess audience-wide functional brain dynamics during listening to speeches of varying rhetorical quality. The speeches were given by German politicians and evaluated as rhetorically powerful or weak. Listening to each of the speeches induced similar neural response time courses, as measured by inter-subject correlation analysis, in widespread brain regions involved in spoken language processing. Crucially, alignment of the time course across listeners was stronger for rhetorically powerful speeches, especially for bilateral regions of the superior temporal gyri and medial prefrontal cortex. Thus, during powerful speeches, listeners as a group are more coupled to each other, suggesting that powerful speeches are more potent in taking control of the listeners' brain responses. Weaker speeches were processed more heterogeneously, although they still prompted substantially correlated responses. These patterns of coupled neural responses bear resemblance to metaphors of resonance, which are often invoked in discussions of speech impact, and contribute to the literature on auditory attention under natural circumstances. Overall, this approach opens up possibilities for research on the neural mechanisms mediating the reception of entertaining or persuasive messages. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Evaluating Functional Autocorrelation within Spatially Distributed Neural Processing Networks*

    Science.gov (United States)

    Derado, Gordana; Bowman, F. Dubois; Ely, Timothy D.; Kilts, Clinton D.

    2010-01-01

    Data-driven statistical approaches, such as cluster analysis or independent component analysis, applied to in vivo functional neuroimaging data help to identify neural processing networks that exhibit similar task-related or restingstate patterns of activity. Ideally, the measured brain activity for voxels within such networks should exhibit high autocorrelation. An important limitation is that the algorithms do not typically quantify or statistically test the strength or nature of the within-network relatedness between voxels. To extend the results given by such data-driven analyses, we propose the use of Moran’s I statistic to measure the degree of functional autocorrelation within identified neural processing networks and to evaluate the statistical significance of the observed associations. We adapt the conventional definition of Moran’s I, for applicability to neuroimaging analyses, by defining the global autocorrelation index using network-based neighborhoods. Also, we compute network-specific contributions to the overall autocorrelation. We present results from a bootstrap analysis that provide empirical support for the use of our hypothesis testing framework. We illustrate our methodology using positron emission tomography (PET) data from a study that examines the neural representation of working memory among individuals with schizophrenia and functional magnetic resonance imaging (fMRI) data from a study of depression. PMID:21643436

  18. Acute Stress Influences Neural Circuits of Reward Processing

    Directory of Open Access Journals (Sweden)

    Anthony John Porcelli

    2012-11-01

    Full Text Available People often make decisions under aversive conditions such as acute stress. Yet, less is known about the process in which acute stress can influence decision-making. A growing body of research has established that reward-related information associated with the outcomes of decisions exerts a powerful influence over the choices people make and that an extensive network of brain regions, prominently featuring the striatum, is involved in the processing of this reward-related information. Thus, an important step in research on the nature of acute stress’ influence over decision-making is to examine how it may modulate responses to rewards and punishments within reward-processing neural circuitry. In the current experiment, we employed a simple reward processing paradigm – where participants received monetary rewards and punishments – known to evoke robust striatal responses. Immediately prior to performing each of two task runs, participants were exposed to acute stress (i.e., cold pressor or a no stress control procedure in a between-subjects fashion. No stress group participants exhibited a pattern of activity within the dorsal striatum and orbitofrontal cortex consistent with past research on outcome processing – specifically, differential responses for monetary rewards over punishments. In contrast, acute stress group participants’ dorsal striatum and orbitofrontal cortex demonstrated decreased sensitivity to monetary outcomes and a lack of differential activity. These findings provide insight into how neural circuits may process rewards and punishments associated with simple decisions under acutely stressful conditions.

  19. Hybrid Neural Network Model of an Industrial Ethanol Fermentation Process Considering the Effect of Temperature

    Science.gov (United States)

    Mantovanelli, Ivana C. C.; Rivera, Elmer Ccopa; da Costa, Aline C.; Filho, Rubens Maciel

    In this work a procedure for the development of a robust mathematical model for an industrial alcoholic fermentation process was evaluated. The proposed model is a hybrid neural model, which combines mass and energy balance equations with functional link networks to describe the kinetics. These networks have been shown to have a good nonlinear approximation capability, although the estimation of its weights is linear. The proposed model considers the effect of temperature on the kinetics and has the neural network weights reestimated always so that a change in operational conditions occurs. This allow to follow the system behavior when changes in operating conditions occur.

  20. Native language shapes automatic neural processing of speech.

    Science.gov (United States)

    Intartaglia, Bastien; White-Schwoch, Travis; Meunier, Christine; Roman, Stéphane; Kraus, Nina; Schön, Daniele

    2016-08-01

    The development of the phoneme inventory is driven by the acoustic-phonetic properties of one's native language. Neural representation of speech is known to be shaped by language experience, as indexed by cortical responses, and recent studies suggest that subcortical processing also exhibits this attunement to native language. However, most work to date has focused on the differences between tonal and non-tonal languages that use pitch variations to convey phonemic categories. The aim of this cross-language study is to determine whether subcortical encoding of speech sounds is sensitive to language experience by comparing native speakers of two non-tonal languages (French and English). We hypothesized that neural representations would be more robust and fine-grained for speech sounds that belong to the native phonemic inventory of the listener, and especially for the dimensions that are phonetically relevant to the listener such as high frequency components. We recorded neural responses of American English and French native speakers, listening to natural syllables of both languages. Results showed that, independently of the stimulus, American participants exhibited greater neural representation of the fundamental frequency compared to French participants, consistent with the importance of the fundamental frequency to convey stress patterns in English. Furthermore, participants showed more robust encoding and more precise spectral representations of the first formant when listening to the syllable of their native language as compared to non-native language. These results align with the hypothesis that language experience shapes sensory processing of speech and that this plasticity occurs as a function of what is meaningful to a listener. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Neural Network Target Identification System for False Alarm Reduction

    Science.gov (United States)

    Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.

  2. Large scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU)

    Science.gov (United States)

    Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin

    2014-01-01

    Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633

  3. Large-scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU).

    Science.gov (United States)

    Shi, Yulin; Veidenbaum, Alexander V; Nicolau, Alex; Xu, Xiangmin

    2015-01-15

    Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post hoc processing and analysis. Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22× speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The ctenophore genome and the evolutionary origins of neural systems

    NARCIS (Netherlands)

    Moroz, Leonid L.; Kocot, Kevin M.; Citarella, Mathew R.; Dosung, Sohn; Norekian, Tigran P.; Povolotskaya, Inna S.; Grigorenko, Anastasia P.; Dailey, Christopher; Berezikov, Eugene; Buckley, Katherine M.; Ptitsyn, Andrey; Reshetov, Denis; Mukherjee, Krishanu; Moroz, Tatiana P.; Bobkova, Yelena; Yu, Fahong; Kapitonov, Vladimir V.; Jurka, Jerzy; Bobkov, Yuri V.; Swore, Joshua J.; Girardo, David O.; Fodor, Alexander; Gusev, Fedor; Sanford, Rachel; Bruders, Rebecca; Kittler, Ellen; Mills, Claudia E.; Rast, Jonathan P.; Derelle, Romain; Solovyev, Victor V.; Kondrashov, Fyodor A.; Swalla, Billie J.; Sweedler, Jonathan V.; Rogaev, Evgeny I.; Halanych, Kenneth M.; Kohn, Andrea B.

    2014-01-01

    The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we

  5. Music training enhances the automatic neural processing of foreign speech sounds.

    Science.gov (United States)

    Intartaglia, Bastien; White-Schwoch, Travis; Kraus, Nina; Schön, Daniele

    2017-10-03

    Growing evidence shows that music and language experience affect the neural processing of speech sounds throughout the auditory system. Recent work mainly focused on the benefits induced by musical practice on the processing of native language or tonal foreign language, which rely on pitch processing. The aim of the present study was to take this research a step further by investigating the effect of music training on processing English sounds by foreign listeners. We recorded subcortical electrophysiological responses to an English syllable in three groups of participants: native speakers, non-native nonmusicians, and non-native musicians. Native speakers had enhanced neural processing of the formant frequencies of speech, compared to non-native nonmusicians, suggesting that automatic encoding of these relevant speech cues are sensitive to language experience. Most strikingly, in non-native musicians, neural responses to the formant frequencies did not differ from those of native speakers, suggesting that musical training may compensate for the lack of language experience by strengthening the neural encoding of important acoustic information. Language and music experience seem to induce a selective sensory gain along acoustic dimensions that are functionally-relevant-here, formant frequencies that are crucial for phoneme discrimination.

  6. Spiking Neural P Systems with Communication on Request.

    Science.gov (United States)

    Pan, Linqiang; Păun, Gheorghe; Zhang, Gexiang; Neri, Ferrante

    2017-12-01

    Spiking Neural [Formula: see text] Systems are Neural System models characterized by the fact that each neuron mimics a biological cell and the communication between neurons is based on spikes. In the Spiking Neural [Formula: see text] systems investigated so far, the application of evolution rules depends on the contents of a neuron (checked by means of a regular expression). In these [Formula: see text] systems, a specified number of spikes are consumed and a specified number of spikes are produced, and then sent to each of the neurons linked by a synapse to the evolving neuron. [Formula: see text]In the present work, a novel communication strategy among neurons of Spiking Neural [Formula: see text] Systems is proposed. In the resulting models, called Spiking Neural [Formula: see text] Systems with Communication on Request, the spikes are requested from neighboring neurons, depending on the contents of the neuron (still checked by means of a regular expression). Unlike the traditional Spiking Neural [Formula: see text] systems, no spikes are consumed or created: the spikes are only moved along synapses and replicated (when two or more neurons request the contents of the same neuron). [Formula: see text]The Spiking Neural [Formula: see text] Systems with Communication on Request are proved to be computationally universal, that is, equivalent with Turing machines as long as two types of spikes are used. Following this work, further research questions are listed to be open problems.

  7. Neural Systems for Speech and Song in Autism

    Science.gov (United States)

    Lai, Grace; Pantazatos, Spiro P.; Schneider, Harry; Hirsch, Joy

    2012-01-01

    Despite language disabilities in autism, music abilities are frequently preserved. Paradoxically, brain regions associated with these functions typically overlap, enabling investigation of neural organization supporting speech and song in autism. Neural systems sensitive to speech and song were compared in low-functioning autistic and age-matched…

  8. Local active information storage as a tool to understand distributed neural information processing

    Science.gov (United States)

    Wibral, Michael; Lizier, Joseph T.; Vögler, Sebastian; Priesemann, Viola; Galuske, Ralf

    2013-01-01

    Every act of information processing can in principle be decomposed into the component operations of information storage, transfer, and modification. Yet, while this is easily done for today's digital computers, the application of these concepts to neural information processing was hampered by the lack of proper mathematical definitions of these operations on information. Recently, definitions were given for the dynamics of these information processing operations on a local scale in space and time in a distributed system, and the specific concept of local active information storage was successfully applied to the analysis and optimization of artificial neural systems. However, no attempt to measure the space-time dynamics of local active information storage in neural data has been made to date. Here we measure local active information storage on a local scale in time and space in voltage sensitive dye imaging data from area 18 of the cat. We show that storage reflects neural properties such as stimulus preferences and surprise upon unexpected stimulus change, and in area 18 reflects the abstract concept of an ongoing stimulus despite the locally random nature of this stimulus. We suggest that LAIS will be a useful quantity to test theories of cortical function, such as predictive coding. PMID:24501593

  9. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    Science.gov (United States)

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.

  10. Neural Processing of Emotional Prosody across the Adult Lifespan.

    Science.gov (United States)

    Demenescu, Liliana Ramona; Kato, Yutaka; Mathiak, Klaus

    2015-01-01

    Emotion recognition deficits emerge with the increasing age, in particular, a decline in the identification of sadness. However, little is known about the age-related changes of emotion processing in sensory, affective, and executive brain areas. This functional magnetic resonance imaging (fMRI) study investigated neural correlates of auditory processing of prosody across adult lifespan. Unattended detection of emotional prosody changes was assessed in 21 young (age range: 18-35 years), 19 middle-aged (age range: 36-55 years), and 15 older (age range: 56-75 years) adults. Pseudowords uttered with neutral prosody were standards in an oddball paradigm with angry, sad, happy, and gender deviants (total 20% deviants). Changes in emotional prosody and voice gender elicited bilateral superior temporal gyri (STG) responses reflecting automatic encoding of prosody. At the right STG, responses to sad deviants decreased linearly with age, whereas happy events exhibited a nonlinear relationship. In contrast to behavioral data, no age by sex interaction emerged on the neural networks. The aging decline of emotion processing of prosodic cues emerges already at an early automatic stage of information processing at the level of the auditory cortex. However, top-down modulation may lead to an additional perceptional bias, for example, towards positive stimuli, and may depend on context factors such as the listener's sex.

  11. Fairness influences early signatures of reward-related neural processing.

    Science.gov (United States)

    Massi, Bart; Luhmann, Christian C

    2015-12-01

    Many humans exhibit a strong preference for fairness during decision-making. Although there is evidence that social factors influence reward-related and affective neural processing, it is unclear if this effect is mediated by compulsory outcome evaluation processes or results from slower deliberate cognition. Here we show that the feedback-related negativity (FRN) and late positive potential (LPP), two signatures of early hedonic processing, are modulated by the fairness of rewards during a passive rating task. We find that unfair payouts elicit larger FRNs than fair payouts, whereas fair payouts elicit larger LPPs than unfair payouts. This is true both in the time-domain, where the FRN and LPP are related, and in the time-frequency domain, where the two signals are largely independent. Ultimately, this work demonstrates that fairness affects the early stages of reward and affective processing, suggesting a common biological mechanism for social and personal reward evaluation.

  12. Neural markers of opposite-sex bias in face processing

    Directory of Open Access Journals (Sweden)

    Alice Mado eProverbio

    2010-10-01

    Full Text Available Some behavioral and neuroimaging studies suggest that adults prefer to view attractive faces of the opposite sex more than attractive faces of the same sex. However, unlike the other-race face effect (ORE; Caldara et al., 2004, little is known regarding the existence of an opposite-/same-sex bias in face processing. In this study, the faces of 130 attractive male and female adults were foveally presented to 40 heterosexual university students (20 men and 20 women who were engaged in a secondary perceptual task (landscape detection. The automatic processing of face gender was investigated by recording ERPs from 128 scalp sites. Neural markers of opposite- vs. same-sex bias in face processing included larger and earlier centro-parietal N400s in response to faces of the opposite sex and a larger late positivity (LP to same-sex faces. Analysis of intra-cortical neural generators (swLORETA showed that facial processing-related (FG, BA37, BA20/21 and emotion-related brain areas (the right parahippocampal gyrus, BA35; uncus, BA36/38; and the cingulate gyrus, BA24 had higher activations in response to opposite- than same-sex faces. The results of this analysis, along with data obtained from ERP recordings, support the hypothesis that both genders process opposite-sex faces differently than same-sex faces. The data also suggest a hemispheric asymmetry in the processing of opposite-/same-sex faces, with the right hemisphere involved in processing same-sex faces and the left hemisphere involved in processing faces of the opposite sex. The data support previous literature suggesting a right lateralization for the representation of self-image and body awareness.

  13. A Chinese Named Entity Recognition System with Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Hui-Kang

    2017-01-01

    Full Text Available Named entity recognition (NER is a typical sequential labeling problem that plays an important role in natural language processing (NLP systems. In this paper, we discussed the details of applying a comprehensive model aggregating neural networks and conditional random field (CRF on Chinese NER tasks, and how to discovery character level features when implement a NER system in word level. We compared the difference between Chinese and English when modeling the character embeddings. We developed a NER system based on our analysis, it works well on the ACE 2004 and SIGHAN bakeoff 2006 MSRA dataset, and doesn’t rely on any gazetteers or handcraft features. We obtained F1 score of 82.3% on MSRA 2006.

  14. Musical training enhances neural processing of binaural sounds.

    Science.gov (United States)

    Parbery-Clark, Alexandra; Strait, Dana L; Hittner, Emily; Kraus, Nina

    2013-10-16

    While hearing in noise is a complex task, even in high levels of noise humans demonstrate remarkable hearing ability. Binaural hearing, which involves the integration and analysis of incoming sounds from both ears, is an important mechanism that promotes hearing in complex listening environments. Analyzing inter-ear differences helps differentiate between sound sources--a key mechanism that facilitates hearing in noise. Even when both ears receive the same input, known as diotic hearing, speech intelligibility in noise is improved. Although musicians have better speech-in-noise perception compared with non-musicians, we do not know to what extent binaural processing contributes to this advantage. Musicians often demonstrate enhanced neural responses to sound, however, which may undergird their speech-in-noise perceptual enhancements. Here, we recorded auditory brainstem responses in young adult musicians and non-musicians to a speech stimulus for which there was no musician advantage when presented monaurally. When presented diotically, musicians demonstrated faster neural timing and greater intertrial response consistency relative to non-musicians. Furthermore, musicians' enhancements to the diotically presented stimulus correlated with speech-in-noise perception. These data provide evidence for musical training's impact on biological processes and suggest binaural processing as a possible contributor to more proficient hearing in noise.

  15. Modeling fMRI signals can provide insights into neural processing in the cerebral cortex

    Science.gov (United States)

    Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo

    2015-01-01

    Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. PMID:25972586

  16. Income, neural executive processes, and preschool children's executive control.

    Science.gov (United States)

    Ruberry, Erika J; Lengua, Liliana J; Crocker, Leanna Harris; Bruce, Jacqueline; Upshaw, Michaela B; Sommerville, Jessica A

    2017-02-01

    This study aimed to specify the neural mechanisms underlying the link between low household income and diminished executive control in the preschool period. Specifically, we examined whether individual differences in the neural processes associated with executive attention and inhibitory control accounted for income differences observed in performance on a neuropsychological battery of executive control tasks. The study utilized a sample of preschool-aged children (N = 118) whose families represented the full range of income, with 32% of families at/near poverty, 32% lower income, and 36% middle to upper income. Children completed a neuropsychological battery of executive control tasks and then completed two computerized executive control tasks while EEG data were collected. We predicted that differences in the event-related potential (ERP) correlates of executive attention and inhibitory control would account for income differences observed on the executive control battery. Income and ERP measures were related to performance on the executive control battery. However, income was unrelated to ERP measures. The findings suggest that income differences observed in executive control during the preschool period might relate to processes other than executive attention and inhibitory control.

  17. Neural changes related to motion processing in healthy aging.

    Science.gov (United States)

    Biehl, Stefanie C; Andersen, Melanie; Waiter, Gordon D; Pilz, Karin S

    2017-09-01

    Behavioral studies have found a striking decline in the processing of low-level motion in healthy aging whereas the processing of more relevant and familiar biological motion is relatively preserved. This functional magnetic resonance imaging (fMRI) study investigated the neural correlates of low-level radial motion processing and biological motion processing in 19 healthy older adults (age range 62-78 years) and in 19 younger adults (age range 20-30 years). Brain regions related to both types of motion stimuli were evaluated and the magnitude and time courses of activation in those regions of interest were calculated. Whole-brain comparisons showed increased temporal and frontal activation in the older group for low-level motion but no differences for biological motion. Time-course analyses in regions of interest known to be involved in both types of motion processing likewise did not reveal any age differences for biological motion. Our results show that low-level motion processing in healthy aging requires the recruitment of additional resources, whereas areas related to the processing of biological motion processing seem to be relatively preserved. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Neural - fuzzy approach for system identification

    NARCIS (Netherlands)

    Tien, B.T.

    1997-01-01

    Most real-world processes have nonlinear and complex dynamics. Conventional methods of constructing nonlinear models from first principles are time consuming and require a level of knowledge about the internal functioning of the system that is often not available. Consequently, in such

  19. Optical production systems using neural networks and symbolic substitution

    Science.gov (United States)

    Botha, Elizabeth; Casasent, David; Barnard, Etienne

    1988-01-01

    Two optical implementations of production systems are advanced. The production systems operate on a knowledge base where facts and rules are encoded as formulas in propositional calculus. The first implementation is a binary neural network. An analog neural network is used to include reasoning with uncertainties. The second implementation uses a new optical symbolic substitution correlator. This implementation is useful when a set of similar situations has to be handled in parallel on one processor.

  20. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  1. A direct-to-drive neural data acquisition system

    Directory of Open Access Journals (Sweden)

    Justin P Kinney

    2015-09-01

    Full Text Available Driven by the increasing channel count of neural probes, there is much effort being directed to creating increasingly scalable electrophysiology data acquisition systems. However, all such systems still rely on personal computers for data storage, and thus are limited by the bandwidth and cost of the computers, especially as the scale of recording increases. Here we present a novel architecture in which a digital processor receives data from an analog-to-digital converter, and writes that data directly to hard drives, without the need for a personal computer to serve as an intermediary in the data acquisition process. This minimalist architecture may support exceptionally high data throughput, without incurring costs to support unnecessary hardware and overhead associated with personal computers, thus facilitating scaling of electrophysiological recording in the future.

  2. Osmotic release oral system-methylphenidate improves neural activity during low reward processing in children and adolescents with attention-deficit/hyperactivity disorder ?

    OpenAIRE

    Mizuno, Kei; Yoneda, Tetsuya; Komi, Masanori; Hirai, Toshinori; Watanabe, Yasuyoshi; Tomoda, Akemi

    2013-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is neurobehavioral disorder characterized by inattention, hyperactivity/impulsivity and impaired reward system function, such as delay aversion and low reward sensitivity. The pharmacological treatment for ADHD includes methylphenidate (MPH), or osmotic release oral system-MPH (OROS-MPH), which increases extrasynaptic dopamine and noradrenaline levels by blocking their reuptake. Although previous functional magnetic resonance imaging (fMRI) stud...

  3. Sign Language Recognition System using Neural Network for Digital Hardware Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Lorena P [Lorena Vargas Quintero, Optic and Computer Science Group - Universidad Popular del Cesar (Colombia); Barba, Leiner; Torres, C O; Mattos, L, E-mail: vargas.lorena@yahoo.com [Optic and Computer Science Group - Popular of Cesar University, Km 12, Valledupar (Colombia)

    2011-01-01

    This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.

  4. Young Adults with Autism Spectrum Disorder Show Early Atypical Neural Activity during Emotional Face Processing

    Directory of Open Access Journals (Sweden)

    Rachel C. Leung

    2018-02-01

    Full Text Available Social cognition is impaired in autism spectrum disorder (ASD. The ability to perceive and interpret affect is integral to successful social functioning and has an extended developmental course. However, the neural mechanisms underlying emotional face processing in ASD are unclear. Using magnetoencephalography (MEG, the present study explored neural activation during implicit emotional face processing in young adults with and without ASD. Twenty-six young adults with ASD and 26 healthy controls were recruited. Participants indicated the location of a scrambled pattern (target that was presented alongside a happy or angry face. Emotion-related activation sources for each emotion were estimated using the Empirical Bayes Beamformer (pcorr ≤ 0.001 in Statistical Parametric Mapping 12 (SPM12. Emotional faces elicited elevated fusiform, amygdala and anterior insula and reduced anterior cingulate cortex (ACC activity in adults with ASD relative to controls. Within group comparisons revealed that angry vs. happy faces elicited distinct neural activity in typically developing adults; there was no distinction in young adults with ASD. Our data suggest difficulties in affect processing in ASD reflect atypical recruitment of traditional emotional processing areas. These early differences may contribute to difficulties in deriving social reward from faces, ascribing salience to faces, and an immature threat processing system, which collectively could result in deficits in emotional face processing.

  5. Transient stability analysis of electric energy systems via a fuzzy ART-ARTMAP neural network

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Wagner Peron; Silveira, Maria do Carmo G.; Lotufo, AnnaDiva P.; Minussi, Carlos. R. [Department of Electrical Engineering, Sao Paulo State University (UNESP), P.O. Box 31, 15385-000, Ilha Solteira, SP (Brazil)

    2006-04-15

    This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (author)

  6. Emotional sounds modulate early neural processing of emotional pictures

    Directory of Open Access Journals (Sweden)

    Antje B M Gerdes

    2013-10-01

    Full Text Available In our natural environment, emotional information is conveyed by converging visual and auditory information; multimodal integration is of utmost importance. In the laboratory, however, emotion researchers have mostly focused on the examination of unimodal stimuli. Few existing studies on multimodal emotion processing have focused on human communication such as the integration of facial and vocal expressions. Extending the concept of multimodality, the current study examines how the neural processing of emotional pictures is influenced by simultaneously presented sounds. Twenty pleasant, unpleasant, and neutral pictures of complex scenes were presented to 22 healthy participants. On the critical trials these pictures were paired with pleasant, unpleasant and neutral sounds. Sound presentation started 500 ms before picture onset and each stimulus presentation lasted for 2s. EEG was recorded from 64 channels and ERP analyses focused on the picture onset. In addition, valence, and arousal ratings were obtained. Previous findings for the neural processing of emotional pictures were replicated. Specifically, unpleasant compared to neutral pictures were associated with an increased parietal P200 and a more pronounced centroparietal late positive potential (LPP, independent of the accompanying sound valence. For audiovisual stimulation, increased parietal P100 and P200 were found in response to all pictures which were accompanied by unpleasant or pleasant sounds compared to pictures with neutral sounds. Most importantly, incongruent audiovisual pairs of unpleasant pictures and pleasant sounds enhanced parietal P100 and P200 compared to pairings with congruent sounds. Taken together, the present findings indicate that emotional sounds modulate early stages of visual processing and, therefore, provide an avenue by which multimodal experience may enhance perception.

  7. The neural correlates of face processing and Chinese character processing in children

    Science.gov (United States)

    Liu, Jiangang; Feng, Lu; Li, Ling; Tian, Jie

    2011-03-01

    It is well known that adults are experts at processing words and faces. Accordingly, adult research has identified two neural expertise systems involved in word processing and face processing within the fusiform gyrus, respectively, namely the visual word form area (VWFA) and fusiform face area (FFA). The present study used fMRI to explore whether similar differentiations exist for the FFA and VWFA in 10~11-aged children, by comparing the activation between faces, Chinese characters, and common objects. Our study identified adult-like Chinese character-preferential activation and common object-preferential activation in 10~11-aged children, especially with the fusiform gyrus, while fail to reveal a consistent region showing preferential response to faces. An inspection of individual activation of faces relative to Chinese characters and common objects revealed adults-like FFA in some of children, indicating that the absence of face-preferential activation at the group level may be mainly due to the considerable variability in the magnitude and locus of individual face-preferential activation. Our finds suggested that the Chinese character-preferential regions and common object-preferential regions within the fusiform gyrus may be formed earlier than that of faces. Especially, though the VWFA and FFA are both related to visual expertise, our findings indicated that the VWFA can be formed only through a 3~4-years' schooling; in contrast the formation of FFA appear to undergo a more prolonged development before it reaches the adult level.

  8. Identification of Industrial Furnace Temperature for Sintering Process in Nuclear Fuel Fabrication Using NARX Neural Networks

    Directory of Open Access Journals (Sweden)

    Dede Sutarya

    2014-01-01

    Full Text Available Nonlinear system identification is becoming an important tool which can be used to improve control performance and achieve robust fault-tolerant behavior. Among the different nonlinear identification techniques, methods based on neural network model are gradually becoming established not only in the academia, but also in industrial application. An identification scheme of nonlinear systems for sintering furnace temperature in nuclear fuel fabrication using neural network autoregressive with exogenous inputs (NNARX model investigated in this paper. The main contribution of this paper is to identify the appropriate model and structure to be applied in control temperature in the sintering process in nuclear fuel fabrication, that is, a nonlinear dynamical system. Satisfactory agreement between identified and experimental data is found with normalized sum square error 1.9e-03 for heating step and 6.3859e-08 for soaking step. That result shows the model successfully predict the evolution of the temperature in the furnace.

  9. Extracting knowledge from supervised neural networks in image processing

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, Lambert; Jain, R.; Abraham, A.; Faucher, C.; van der Zwaag, B.J.

    Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a “magic tool��? but possibly even more as a

  10. Neural processing of speech in children is influenced by extent of bilingual experience.

    Science.gov (United States)

    Krizman, Jennifer; Slater, Jessica; Skoe, Erika; Marian, Viorica; Kraus, Nina

    2015-01-12

    Language experience fine-tunes how the auditory system processes sound. Bilinguals, relative to monolinguals, have more robust evoked responses to speech that manifest as stronger neural encoding of the fundamental frequency (F0) and greater across-trial consistency. However, it is unknown whether such enhancements increase with increasing second language experience. We predict that F0 amplitude and neural consistency scale with dual-language experience during childhood, such that more years of bilingual experience leads to more robust F0 encoding and greater neural consistency. To test this hypothesis, we recorded auditory brainstem responses to the synthesized syllables 'ba' and 'ga' in two groups of bilingual children who were matched for age at test (8.4 ± 0.67 years) but differed in their age of second language acquisition. One group learned English and Spanish simultaneously from birth (n=13), while the second group learned the two languages sequentially (n=15), spending on average their first four years as monolingual Spanish speakers. We find that simultaneous bilinguals have a larger F0 response to 'ba' and 'ga' and a more consistent response to 'ba' compared to sequential bilinguals and we demonstrate that these neural enhancements track with years of bilingual experience. These findings support the notion that bilingualism enhances subcortical auditory processing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Neural processing of speech in children is influenced by bilingual experience

    Science.gov (United States)

    Krizman, Jennifer; Slater, Jessica; Skoe, Erika; Marian, Viorica; Kraus, Nina

    2014-01-01

    Language experience fine-tunes how the auditory system processes sound. For example, bilinguals, relative to monolinguals, have more robust evoked responses to speech that manifest as stronger neural encoding of the fundamental frequency (F0) and greater across-trial consistency. However, it is unknown whether such enhancements increase with increasing second language experience. We predict that F0 amplitude and neural consistency scale with dual-language experience during childhood, such that more years of bilingual experience leads to more robust F0 encoding and greater neural consistency. To test this hypothesis, we recorded auditory brainstem responses to the synthesized syllables ‘ba’ and ‘ga’ in two groups of bilingual children who were matched for age at test (8.4+/−0.67 years) but differed in their age of second language acquisition. One group learned English and Spanish simultaneously from birth (n=13), while the second group learned the two languages sequentially (n=15), spending on average their first four years as monolingual Spanish speakers. We find that simultaneous bilinguals have a larger F0 response to ‘ba’ and ‘ga’ and a more consistent response to ‘ba’ compared to sequential bilinguals. We also demonstrate that these neural enhancements positively relate with years of bilingual experience. These findings support the notion that bilingualism enhances subcortical auditory processing. PMID:25445377

  12. Local active information storage as a tool to understand distributed neural information processing

    Directory of Open Access Journals (Sweden)

    Michael eWibral

    2014-01-01

    Full Text Available Every act of information processing can in principle be decomposed into the component operations of information storage, transfer, and modification. Yet, while this is easily done for today’s digital computers, the application of these concepts to neural information processing was hampered by the lack of proper mathematical definitions of these operations on information. Recently, such definitions were given and the specific concept of local active information storage was successfully applied to the analysis and optimization of artificial neural systems. However, no attempt to measure local active information storage in neural data has been made to date. Here we measure local active information storage on a local scale in time and space in voltage sensitive dye imaging data from area 18 of the cat. We show that storage reflects neural properties such as stimulus preferences and surprise upon unexpected stimulus change, and in area 18 reflects the abstract concept of an ongoing stimulus despite the locally random nature of this stimulus. We suggest that LAIS will be a useful quantity to test theories of cortical function, such as predictive coding.

  13. Genetic learning in rule-based and neural systems

    Science.gov (United States)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  14. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  15. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  16. Neural correlates of metaphor processing: the roles of figurativeness, familiarity and difficulty.

    Science.gov (United States)

    Schmidt, Gwenda L; Seger, Carol A

    2009-12-01

    There is currently much interest in investigating the neural substrates of metaphor processing. In particular, it has been suggested that the right hemisphere plays a special role in the comprehension of figurative (non-literal) language, and in particular metaphors. However, some studies find no evidence of right hemisphere involvement in metaphor comprehension (e.g. [Lee, S. S., & Dapretto, M. (2006). Metaphorical vs. literal word meanings: fMRI evidence against a selective role of the right hemisphere. NeuroImage, 29, 536-544; Rapp, A. M., Leube, D. T., Erb, M., Grodd, W., & Kircher, T. T. J. (2004). Neural correlates of metaphor processing. Cognitive Brain Research, 20, 395-402]). We suggest that lateralization differences between literal and metaphorical language may be due to factors such as differences in familiarity ([Schmidt, G. L., DeBuse, C. J., & Seger, C. A. (2007). Right hemisphere metaphor processing? Characterizing the lateralization of semantic processes. Brain and Language, 100, 127-141]), or difficulty ([Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151-188; Rapp, A. M., Leube, D. T., Erb, M., Grodd, W., & Kircher, T. T. J. (2004). Neural correlates of metaphor processing. Cognitive Brain Research, 20, 395-402]) in addition to figurativeness. The purpose of this study was to separate the effects of figurativeness, familiarity, and difficulty on the recruitment of neural systems involved in language, in particular right hemisphere mechanisms. This was achieved by comparing neural activation using functional magnetic resonance imaging (fMRI) between four conditions: literal sentences, familiar and easy to understand metaphors, unfamiliar and easy to understand metaphors, and unfamiliar and difficult to understand metaphors. Metaphors recruited the right insula, left temporal pole and right inferior frontal gyrus in comparison

  17. Dynamic neural processing of linguistic cues related to death.

    Directory of Open Access Journals (Sweden)

    Xi Liu

    Full Text Available Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death's inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84-120 ms (N1 decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals' pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124-300 ms (P2 and of a frontal/central positivity at 300-500 ms (P3. However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information.

  18. Neural signalling of food healthiness associated with emotion processing

    Directory of Open Access Journals (Sweden)

    Uwe eHerwig

    2016-02-01

    Full Text Available The ability to differentiate healthy from unhealthy foods is important in order to promote good health. Food, however, may have an emotional connotation, which could be inversely related to healthiness. The neurobiological background of differentiating healthy and unhealthy food and its relations to emotion processing are not yet well understood. We addressed the neural activations, particularly considering the single subject level, when one evaluates a food item to be of a higher, compared to a lower grade of healthiness with a particular view on emotion processing brain regionsThirty-seven healthy subjects underwent functional magnetic resonance imaging while evaluating the healthiness of food presented as photographs with a subsequent rating on a visual analogue scale. We compared individual evaluations of high and low healthiness of food items and also considered gender differences.We found increased activation when food was evaluated to be healthy in the left dorsolateral prefrontal cortex and precuneus in whole brain analyses. In ROI analyses, perceived and rated higher healthiness was associated with lower amygdala activity and higher ventral striatal and orbitofrontal cortex activity. Females exerted a higher activation in midbrain areas when rating food items as being healthy.Our results underline the close relationship between food and emotion processing, which makes sense considering evolutionary aspects. Actively evaluating and deciding whether food is healthy is accompanied by neural signalling associated with reward and self-relevance, which could promote salutary nutrition behaviour. The involved brain regions may be amenable to mechanisms of emotion regulation in the context of psychotherapeutic regulation of food intake.

  19. Dynamic neural processing of linguistic cues related to death.

    Science.gov (United States)

    Liu, Xi; Shi, Zhenhao; Ma, Yina; Qin, Jungang; Han, Shihui

    2013-01-01

    Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death's inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP) to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84-120 ms (N1) decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals' pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124-300 ms (P2) and of a frontal/central positivity at 300-500 ms (P3). However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information.

  20. Dynamic Neural Processing of Linguistic Cues Related to Death

    Science.gov (United States)

    Ma, Yina; Qin, Jungang; Han, Shihui

    2013-01-01

    Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death’s inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP) to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84–120 ms (N1) decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals’ pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124–300 ms (P2) and of a frontal/central positivity at 300–500 ms (P3). However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information. PMID:23840787

  1. Energy-efficient neural information processing in individual neurons and neuronal networks.

    Science.gov (United States)

    Yu, Lianchun; Yu, Yuguo

    2017-11-01

    Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Using pulse width modulation for wireless transmission of neural signals in multichannel neural recording systems.

    Science.gov (United States)

    Yin, Ming; Ghovanloo, Maysam

    2009-08-01

    We have used a well-known technique in wireless communication, pulse width modulation (PWM) of time division multiplexed (TDM) signals, within the architecture of a novel wireless integrated neural recording (WINeR) system. We have evaluated the performance of the PWM-based architecture and indicated its accuracy and potential sources of error through detailed theoretical analysis, simulations, and measurements on a setup consisting of a 15-channel WINeR prototype as the transmitter and two types of receivers; an Agilent 89600 vector signal analyzer and a custom wideband receiver, with 36 and 75 MHz of maximum bandwidth, respectively. Furthermore, we present simulation results from a realistic MATLAB-Simulink model of the entire WINeR system to observe the system behavior in response to changes in various parameters. We have concluded that the 15-ch WINeR prototype, which is fabricated in a 0.5- mum standard CMOS process and consumes 4.5 mW from +/-1.5 V supplies, can acquire and wirelessly transmit up to 320 k-samples/s to a 75-MHz receiver with 8.4 bits of resolution, which is equivalent to a wireless data rate of approximately 2.56 Mb/s.

  3. Osmotic release oral system-methylphenidate improves neural activity during low reward processing in children and adolescents with attention-deficit/hyperactivity disorder☆

    Science.gov (United States)

    Mizuno, Kei; Yoneda, Tetsuya; Komi, Masanori; Hirai, Toshinori; Watanabe, Yasuyoshi; Tomoda, Akemi

    2013-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is neurobehavioral disorder characterized by inattention, hyperactivity/impulsivity and impaired reward system function, such as delay aversion and low reward sensitivity. The pharmacological treatment for ADHD includes methylphenidate (MPH), or osmotic release oral system-MPH (OROS-MPH), which increases extrasynaptic dopamine and noradrenaline levels by blocking their reuptake. Although previous functional magnetic resonance imaging (fMRI) studies revealed that acute treatment with MPH alters activation of the nucleus accumbens during delay aversion in children and adolescents with ADHD, the effects a relatively long period of OROS-MPH treatment on delay aversion as well as reward sensitivity remain unclear. Thus, we evaluated brain activation with fMRI during a reward sensitivity paradigm that consists of high monetary reward and low monetary reward conditions before and after a 3-month treatment with OROS-MPH in 17 children and adolescents with ADHD (mean age, 13.3 ± 2.2) and 17 age- and sex-matched healthy controls (mean age, 13.0 ± 1.9). We found that before treatment there was decreased activation of the nucleus accumbens and thalamus in patients with ADHD during only the low monetary reward condition, which was improved to same level as those of the healthy controls after the treatment. The observed change in brain activity was associated with improved ADHD symptom scores, which were derived from Japanese versions of the ADHD rating scale-IV. These results suggest that treatment with OROS-MPH for a relatively long period is effective in controlling reward sensitivity in children and adolescents with ADHD. PMID:24179790

  4. Osmotic release oral system-methylphenidate improves neural activity during low reward processing in children and adolescents with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Mizuno, Kei; Yoneda, Tetsuya; Komi, Masanori; Hirai, Toshinori; Watanabe, Yasuyoshi; Tomoda, Akemi

    2013-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is neurobehavioral disorder characterized by inattention, hyperactivity/impulsivity and impaired reward system function, such as delay aversion and low reward sensitivity. The pharmacological treatment for ADHD includes methylphenidate (MPH), or osmotic release oral system-MPH (OROS-MPH), which increases extrasynaptic dopamine and noradrenaline levels by blocking their reuptake. Although previous functional magnetic resonance imaging (fMRI) studies revealed that acute treatment with MPH alters activation of the nucleus accumbens during delay aversion in children and adolescents with ADHD, the effects a relatively long period of OROS-MPH treatment on delay aversion as well as reward sensitivity remain unclear. Thus, we evaluated brain activation with fMRI during a reward sensitivity paradigm that consists of high monetary reward and low monetary reward conditions before and after a 3-month treatment with OROS-MPH in 17 children and adolescents with ADHD (mean age, 13.3 ± 2.2) and 17 age- and sex-matched healthy controls (mean age, 13.0 ± 1.9). We found that before treatment there was decreased activation of the nucleus accumbens and thalamus in patients with ADHD during only the low monetary reward condition, which was improved to same level as those of the healthy controls after the treatment. The observed change in brain activity was associated with improved ADHD symptom scores, which were derived from Japanese versions of the ADHD rating scale-IV. These results suggest that treatment with OROS-MPH for a relatively long period is effective in controlling reward sensitivity in children and adolescents with ADHD.

  5. Fluid Intelligence and Automatic Neural Processes in Facial Expression Perception

    DEFF Research Database (Denmark)

    Liu, Tongran; Xiao, Tong; Li, Xiaoyan

    2015-01-01

    experimental conditions: a happy condition, in which neutral expressions were standard stimuli (p = 0.8) and happy expressions were deviant stimuli (p = 0.2), and a fearful condition, in which neutral expressions were standard stimuli (p = 0.8) and fearful expressions were deviant stimuli (p = 0...... analyzed to index the automatic neural processing of facial expressions. For the early vMMN (50–130 ms), the high IQ group showed more negative vMMN amplitudes than the average IQ group in the happy condition. For the late vMMN (320–450 ms), the high IQ group had greater vMMN responses than the average IQ...... group over frontal and occipito-temporal areas in the fearful condition, and the average IQ group evoked larger vMMN amplitudes than the high IQ group over occipito-temporal areas in the happy condition. The present study elucidated the close relationships between fluid intelligence and pre...

  6. Reconstruction of an engine combustion process with a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.J.; Gu, F.; Ball, A.D. [School of Engineering, University of Manchester, Manchester (United Kingdom)

    1997-12-31

    The cylinder pressure waveform in an internal combustion engine is one of the most important parameters in describing the engine combustion process. It is used for a range of diagnostic tasks such as identification of ignition faults or mechanical wear in the cylinders. However, it is very difficult to measure this parameter directly. Never-the-less, the cylinder pressure may be inferred from other more readily obtainable parameters. In this presentation it is shown how a Radial Basis Function network, which may be regarded as a form of neural network, may be used to model the cylinder pressure as a function of the instantaneous crankshaft velocity, recorded with a simple magnetic sensor. The application of the model is demonstrated on a four cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the model once trained are validated against measured data. (orig.) 4 refs.

  7. Noninvertibility and resonance in discrete-time neural networks for time-series processing

    Science.gov (United States)

    Gicquel, N.; Anderson, J. S.; Kevrekidis, I. G.

    1998-01-01

    We present a computer-assisted study emphasizing certain elements of the dynamics of artificial neural networks (ANNs) used for discrete time-series processing and nonlinear system identification. The structure of the network gives rise to the possibility of multiple inverses of a phase point backward in time; this is not possible for the continuous-time system from which the time series are obtained. Using a two-dimensional illustrative model in an oscillatory regime, we study here the interaction of attractors predicted by the discrete-time ANN model (invariant circles and periodic points locked on them) with critical curves. These curves constitute a generalization of critical points for maps of the interval (in the sense of Julia-Fatou); their interaction with the model-predicted attractors plays a crucial role in the organization of the bifurcation structure and ultimately in determining the dynamic behavior predicted by the neural network.

  8. The neural component-process architecture of endogenously generated emotion.

    Science.gov (United States)

    Engen, Haakon G; Kanske, Philipp; Singer, Tania

    2017-02-01

    Despite the ubiquity of endogenous emotions and their role in both resilience and pathology, the processes supporting their generation are largely unknown. We propose a neural component process model of endogenous generation of emotion (EGE) and test it in two functional magnetic resonance imaging (fMRI) experiments (N = 32/293) where participants generated and regulated positive and negative emotions based on internal representations, usin self-chosen generation methods. EGE activated nodes of salience (SN), default mode (DMN) and frontoparietal control (FPCN) networks. Component processes implemented by these networks were established by investigating their functional associations, activation dynamics and integration. SN activation correlated with subjective affect, with midbrain nodes exclusively distinguishing between positive and negative affect intensity, showing dynamics consistent generation of core affect. Dorsomedial DMN, together with ventral anterior insula, formed a pathway supporting multiple generation methods, with activation dynamics suggesting it is involved in the generation of elaborated experiential representations. SN and DMN both coupled to left frontal FPCN which in turn was associated with both subjective affect and representation formation, consistent with FPCN supporting the executive coordination of the generation process. These results provide a foundation for research into endogenous emotion in normal, pathological and optimal function. © The Author (2016). Published by Oxford University Press.

  9. Neural classifier in the estimation process of maturity of selected varieties of apples

    Science.gov (United States)

    Boniecki, P.; Piekarska-Boniecka, H.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Wojcieszak, D.; Zbytek, Z.; Ludwiczak, A.; Przybylak, A.; Lewicki, A.

    2015-07-01

    This paper seeks to present methods of neural image analysis aimed at estimating the maturity state of selected varieties of apples which are popular in Poland. An identification of the degree of maturity of selected varieties of apples has been conducted on the basis of information encoded in graphical form, presented in the digital photos. The above process involves the application of the BBCH scale, used to determine the maturity of apples. The aforementioned scale is widely used in the EU and has been developed for many species of monocotyledonous plants and dicotyledonous plants. It is also worth noticing that the given scale enables detailed determinations of development stage of a given plant. The purpose of this work is to identify maturity level of selected varieties of apples, which is supported by the use of image analysis methods and classification techniques represented by artificial neural networks. The analysis of graphical representative features based on image analysis method enabled the assessment of the maturity of apples. For the utilitarian purpose the "JabVis 1.1" neural IT system was created, in accordance with requirements of the software engineering dedicated to support the decision-making processes occurring in broadly understood production process and processing of apples.

  10. Developing and using expert systems and neural networks in medicine: a review on benefits and challenges.

    Science.gov (United States)

    Sheikhtaheri, Abbas; Sadoughi, Farahnaz; Hashemi Dehaghi, Zahra

    2014-09-01

    Complicacy of clinical decisions justifies utilization of information systems such as artificial intelligence (e.g. expert systems and neural networks) to achieve better decisions, however, application of these systems in the medical domain faces some challenges. We aimed at to review the applications of these systems in the medical domain and discuss about such challenges. Following a brief introduction of expert systems and neural networks by representing few examples, the challenges of these systems in the medical domain are discussed. We found that the applications of expert systems and artificial neural networks have been increased in the medical domain. These systems have shown many advantages such as utilization of experts' knowledge, gaining rare knowledge, more time for assessment of the decision, more consistent decisions, and shorter decision-making process. In spite of all these advantages, there are challenges ahead of developing and using such systems including maintenance, required experts, inputting patients' data into the system, problems for knowledge acquisition, problems in modeling medical knowledge, evaluation and validation of system performance, wrong recommendations and responsibility, limited domains of such systems and necessity of integrating such systems into the routine work flows. We concluded that expert systems and neural networks can be successfully used in medicine; however, there are many concerns and questions to be answered through future studies and discussions.

  11. Attention Modulates the Neural Processes Underlying Multisensory Integration of Emotion

    Directory of Open Access Journals (Sweden)

    Hao Tam Ho

    2011-10-01

    Full Text Available Integrating emotional information from multiple sensory modalities is generally assumed to be a pre-attentive process (de Gelder et al., 1999. This assumption, however, presupposes that the integrative process occurs independent of attention. Using event-potentials (ERP the present study investigated whether the neural processes underlying the integration of dynamic facial expression and emotional prosody is indeed unaffected by attentional manipulations. To this end, participants were presented with congruent and incongruent face-voice combinations (eg, an angry face combined with a neutral voice and performed different two-choice tasks in four consecutive blocks. Three of the tasks directed the participants' attention to emotion expressions in the face, the voice or both. The fourth task required participants to attend to the synchronicity between voice and lip movements. The results show divergent modulations of early ERP components by the different attentional manipulations. For example, when attention was directed to the face (or the voice, incongruent stimuli elicited a reduced N1 as compared to congruent stimuli. This effect was absent, when attention was diverted away from the emotionality in both face and voice suggesting that the detection of emotional incongruence already requires attention. Based on these findings, we question whether multisensory integration of emotion occurs indeed pre-attentively.

  12. Event-driven processing for hardware-efficient neural spike sorting.

    Science.gov (United States)

    Liu, Yan; L Pereira, João; Constandinou, Timothy

    2017-10-05

    The prospect of real-time and on-node spike sorting provides a genuine opportunity to push the envelope for large-scale integration of neural recording systems. In such systems the hardware resource, power requirements and data bandwidth increase linearly with channel count. Event-based (or data-driven) processing can here provide a new efficient means for hardware implementation that is completely activity dependant. In this work, we investigate using continuous time level-crossing sampling for efficient data representation and subsequent spike processing. We first compare signals (using synthetic neural datasets) that are encoded using this technique against conventional sampling. It is observed that considerably lower data rates are achievable when utilising 7 bits or less to represent the signals, whilst maintaining the signal fidelity. We then show how such a representation can be directly exploited by extracting simple time domain features from the bitstream to perform neural spike sorting. The proposed method is implemented in a low power FPGA platform to demonstrate the hardware viability. Results obtained using both MATLAB and reconfigurable logic (FPGA) hardware indicate that feature extraction and spike sorting accuracies can be achieved with comparable or better accuracy than reference methods whilst also requiring relatively low hardware cost. Creative Commons Attribution license.

  13. Fault detection and classification in electrical power transmission system using artificial neural network.

    Science.gov (United States)

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  14. An artificial neural network controller for intelligent transportation systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J. [Argonne National Lab., IL (United States). Reactor Analysis Div.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  15. Role of neural network models for developing speech systems

    Indian Academy of Sciences (India)

    These prosody models are further examined for applications such as text to speech synthesis, speech recognition, speaker recognition and language identification. Neural network models in voice conversion system are explored for capturing the mapping functions between source and target speakers at source, system and ...

  16. NNSYSID - toolbox for system identification with neural networks

    DEFF Research Database (Denmark)

    Norgaard, M.; Ravn, Ole; Poulsen, Niels Kjølstad

    2002-01-01

    The NNSYSID toolset for System Identification has been developed as an add on to MATLAB(R). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains a number of nonlinear model structures based on neural networks, effective training algorithms...

  17. Neural expert decision support system for stroke diagnosis

    Science.gov (United States)

    Kupershtein, Leonid M.; Martyniuk, Tatiana B.; Krencin, Myhail D.; Kozhemiako, Andriy V.; Bezsmertnyi, Yurii; Bezsmertna, Halyna; Kolimoldayev, Maksat; Smolarz, Andrzej; Weryńska-Bieniasz, RóŻa; Uvaysova, Svetlana

    2017-08-01

    In the work the hybrid expert system for stroke diagnosis was presented. The base of expert system consists of neural network and production rules. This program can quickly and accurately set to the patient preliminary and final diagnoses, get examination and treatment plans, print data of patient, analyze statistics data and perform parameterized search for patients.

  18. Neural Substrates of Processing Anger in Language: Contributions of Prosody and Semantics.

    Science.gov (United States)

    Castelluccio, Brian C; Myers, Emily B; Schuh, Jillian M; Eigsti, Inge-Marie

    2016-12-01

    Emotions are conveyed primarily through two channels in language: semantics and prosody. While many studies confirm the role of a left hemisphere network in processing semantic emotion, there has been debate over the role of the right hemisphere in processing prosodic emotion. Some evidence suggests a preferential role for the right hemisphere, and other evidence supports a bilateral model. The relative contributions of semantics and prosody to the overall processing of affect in language are largely unexplored. The present work used functional magnetic resonance imaging to elucidate the neural bases of processing anger conveyed by prosody or semantic content. Results showed a robust, distributed, bilateral network for processing angry prosody and a more modest left hemisphere network for processing angry semantics when compared to emotionally neutral stimuli. Findings suggest the nervous system may be more responsive to prosodic cues in speech than to the semantic content of speech.

  19. Disrupting morphosyntactic and lexical semantic processing has opposite effects on the sample entropy of neural signals.

    Science.gov (United States)

    Fonseca, André; Boboeva, Vezha; Brederoo, Sanne; Baggio, Giosuè

    2015-04-16

    Converging evidence in neuroscience suggests that syntax and semantics are dissociable in brain space and time. However, it is possible that partly disjoint cortical networks, operating in successive time frames, still perform similar types of neural computations. To test the alternative hypothesis, we collected EEG data while participants read sentences containing lexical semantic or morphosyntactic anomalies, resulting in N400 and P600 effects, respectively. Next, we reconstructed phase space trajectories from EEG time series, and we measured the complexity of the resulting dynamical orbits using sample entropy - an index of the rate at which the system generates or loses information over time. Disrupting morphosyntactic or lexical semantic processing had opposite effects on sample entropy: it increased in the N400 window for semantic anomalies, and it decreased in the P600 window for morphosyntactic anomalies. These findings point to a fundamental divergence in the neural computations supporting meaning and grammar in language. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Comparison enhances size sensitivity: neural correlates of outcome magnitude processing.

    Directory of Open Access Journals (Sweden)

    Qiuling Luo

    Full Text Available Magnitude is a critical feature of outcomes. In the present study, two event-related potential (ERP experiments were implemented to explore the neural substrates of outcome magnitude processing. In Experiment 1, we used an adapted gambling paradigm where physical area symbols were set to represent potential relative outcome magnitudes in order to exclude the possibility that the participants would be ignorant of the magnitudes. The context was manipulated as total monetary amount: ¥4 and ¥40. In these two contexts, the relative outcome magnitudes were ¥1 versus ¥3, and ¥10 versus ¥30, respectively. Experiment 2, which provided two area symbols with similar outcome magnitudes, was conducted to exclude the possible interpretation of physical area symbol for magnitude effect of feedback-related negativity (FRN in Experiment 1. Our results showed that FRN responded to the relative outcome magnitude but not to the context or area symbol, with larger amplitudes for relatively small outcomes. A larger FRN effect (the difference between losses and wins was found for relatively large outcomes than relatively small outcomes. Relatively large outcomes evoked greater positive ERP waves (P300 than relatively small outcomes. Furthermore, relatively large outcomes in a high amount context elicited a larger P300 than those in a low amount context. The current study indicated that FRN is sensitive to variations in magnitude. Moreover, relative magnitude was integrated in both the early and late stages of feedback processing, while the monetary amount context was processed only in the late stage of feedback processing.

  1. Reject mechanisms for massively parallel neural network character recognition systems

    Science.gov (United States)

    Garris, Michael D.; Wilson, Charles L.

    1992-12-01

    Two reject mechanisms are compared using a massively parallel character recognition system implemented at NIST. The recognition system was designed to study the feasibility of automatically recognizing hand-printed text in a loosely constrained environment. The first method is a simple scalar threshold on the output activation of the winning neurode from the character classifier network. The second method uses an additional neural network trained on all outputs from the character classifier network to accept or reject assigned classifications. The neural network rejection method was expected to perform with greater accuracy than the scalar threshold method, but this was not supported by the test results presented. The scalar threshold method, even though arbitrary, is shown to be a viable reject mechanism for use with neural network character classifiers. Upon studying the performance of the neural network rejection method, analyses show that the two neural networks, the character classifier network and the rejection network, perform very similarly. This can be explained by the strong non-linear function of the character classifier network which effectively removes most of the correlation between character accuracy and all activations other than the winning activation. This suggests that any effective rejection network must receive information from the system which has not been filtered through the non-linear classifier.

  2. Neural-network-based fuzzy logic decision systems

    Science.gov (United States)

    Kulkarni, Arun D.; Giridhar, G. B.; Coca, Praveen

    1994-10-01

    During the last few years there has been a large and energetic upswing in research efforts aimed at synthesizing fuzzy logic with neural networks. This combination of neural networks and fuzzy logic seems natural because the two approaches generally attack the design of `intelligent' system from quite different angles. Neural networks provide algorithms for learning, classification, and optimization whereas fuzzy logic often deals with issues such as reasoning in a high (semantic or linguistic) level. Consequently the two technologies complement each other. In this paper, we combine neural networks with fuzzy logic techniques. We propose an artificial neural network (ANN) model for a fuzzy logic decision system. The model consists of six layers. The first three layers map the input variables to fuzzy set membership functions. The last three layers implement the decision rules. The model learns the decision rules using a supervised gradient descent procedure. As an illustration we considered two examples. The first example deals with pixel classification in multispectral satellite images. In our second example we used the fuzzy decision system to analyze data from magnetic resonance imaging (MRI) scans for tissue classification.

  3. A Supramolecular Gel Approach to Minimize the Neural Cell Damage during Cryopreservation Process.

    Science.gov (United States)

    Zeng, Jie; Yin, Yixia; Zhang, Li; Hu, Wanghui; Zhang, Chaocan; Chen, Wanyu

    2016-03-01

    The storage method for living cells is one of the major challenges in cell-based applications. Here, a novel supramolecular gel cryopreservation system (BDTC gel system) is introduced, which can observably increase the neural cell viability during cryopreservation process because this system can (1) confine the ice crystal growth in the porous of BDTC gel system, (2) decrease the amount of ice crystallization and cryopreservation system's freezing point, and (3) reduce the change rates of cell volumes and osmotic shock. In addition, thermoreversible BDTC supramolecular gel is easy to be removed after thawing so it does not hinder the adherence, growth, and proliferation of cells. The results of functionality assessments indicate that BDTC gel system can minimize the neural cell damage during cryopreservation process. This method will be potentially applied in cryopreservation of other cell types, tissues, or organs and will benefit cell therapy, tissue engineering, and organs transplantation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Information Processing Capacity of Dynamical Systems

    Science.gov (United States)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  5. Adaptive Synchronization of Memristor-based Chaotic Neural Systems

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu

    2014-11-01

    Full Text Available Chaotic neural networks consisting of a great number of chaotic neurons are able to reproduce the rich dynamics observed in biological nervous systems. In recent years, the memristor has attracted much interest in the efficient implementation of artificial synapses and neurons. This work addresses adaptive synchronization of a class of memristor-based neural chaotic systems using a novel adaptive backstepping approach. A systematic design procedure is presented. Simulation results have demonstrated the effectiveness of the proposed adaptive synchronization method and its potential in practical application of memristive chaotic oscillators in secure communication.

  6. An alternative respiratory sounds classification system utilizing artificial neural networks

    Directory of Open Access Journals (Sweden)

    Rami J Oweis

    2015-04-01

    Full Text Available Background: Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. Methods: This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs and adaptive neuro-fuzzy inference systems (ANFIS toolboxes. The methods have been applied to 10 different respiratory sounds for classification. Results: The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. Conclusions: The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  7. An alternative respiratory sounds classification system utilizing artificial neural networks.

    Science.gov (United States)

    Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen

    2015-01-01

    Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  8. Dissociated Neural Processing for Decisions in Managers and Non-Managers

    Science.gov (United States)

    Caspers, Svenja; Heim, Stefan; Lucas, Marc G.; Stephan, Egon; Fischer, Lorenz; Amunts, Katrin; Zilles, Karl

    2012-01-01

    Functional neuroimaging studies of decision-making so far mainly focused on decisions under uncertainty or negotiation with other persons. Dual process theory assumes that, in such situations, decision making relies on either a rapid intuitive, automated or a slower rational processing system. However, it still remains elusive how personality factors or professional requirements might modulate the decision process and the underlying neural mechanisms. Since decision making is a key task of managers, we hypothesized that managers, facing higher pressure for frequent and rapid decisions than non-managers, prefer the heuristic, automated decision strategy in contrast to non-managers. Such different strategies may, in turn, rely on different neural systems. We tested managers and non-managers in a functional magnetic resonance imaging study using a forced-choice paradigm on word-pairs. Managers showed subcortical activation in the head of the caudate nucleus, and reduced hemodynamic response within the cortex. In contrast, non-managers revealed the opposite pattern. With the head of the caudate nucleus being an initiating component for process automation, these results supported the initial hypothesis, hinting at automation during decisions in managers. More generally, the findings reveal how different professional requirements might modulate cognitive decision processing. PMID:22927984

  9. Proceedings of the IEEE 2003 Neural Networks for Signal Processing Workshop

    DEFF Research Database (Denmark)

    Larsen, Jan

    methodology and real-world application domains and is widely entering into everyday solutions adopted by research and industry, going far beyond “traditional” neural networks and academic examples. As reflected in this collection, contemporary neural networks for signal processing combine many ideas from......This proceeding contains refereed papers presented at the thirteenth IEEE Workshop on Neural Networks for Signal Processing (NNSP’2003), held at the Atria-Mercure Conference Center, Toulouse, France, September 17-19, 2003. The Neural Networks for Signal Processing Technical Committee of the IEEE...... Signal Processing Society organized the workshop with sponsorship of the Signal Processing Society and the co-operation of the IEEE Neural Networks Society. The IEEE Press published the previous twelve volumes of the NNSP Workshop proceedings in a hardbound volume. This year, the bound volume...

  10. Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Li Li

    2014-01-01

    Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.

  11. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    Science.gov (United States)

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  12. Space-time system architecture for the neural optical computing

    Science.gov (United States)

    Lo, Yee-Man V.

    1991-02-01

    The brain can perform the tasks of associative recall detection recognition and optimization. In this paper space-time system field models of the brain are introduced. They are called the space-time maximum likelihood associative memory system (ST-ML-AMS) and the space-time adaptive learning system (ST-ALS). Performance of the system is analyzed using the probability of error in memory recall (PEMR) and the space-time neural capacity (ST-NC). 1.

  13. High school music classes enhance the neural processing of speech.

    Science.gov (United States)

    Tierney, Adam; Krizman, Jennifer; Skoe, Erika; Johnston, Kathleen; Kraus, Nina

    2013-01-01

    Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that 2 years of group music classes in high school enhance the neural encoding of speech. To tease apart the relationships between music and neural function, we tested high school students participating in either music or fitness-based training. These groups were matched at the onset of training on neural timing, reading ability, and IQ. Auditory brainstem responses were collected to a synthesized speech sound presented in background noise. After 2 years of training, the neural responses of the music training group were earlier than at pre-training, while the neural timing of students in the fitness training group was unchanged. These results represent the strongest evidence to date that in-school music education can cause enhanced speech encoding. The neural benefits of musical training are, therefore, not limited to expensive private instruction early in childhood but can be elicited by cost-effective group instruction during adolescence.

  14. The neural processing of foreign-accented speech and its relationship to listener bias

    Directory of Open Access Journals (Sweden)

    Han-Gyol eYi

    2014-10-01

    Full Text Available Foreign-accented speech often presents a challenging listening condition. In addition to deviations from the target speech norms related to the inexperience of the nonnative speaker, listener characteristics may play a role in determining intelligibility levels. We have previously shown that an implicit visual bias for associating East Asian faces and foreignness predicts the listeners’ perceptual ability to process Korean-accented English audiovisual speech (Yi et al., 2013. Here, we examine the neural mechanism underlying the influence of listener bias to foreign faces on speech perception. In a functional magnetic resonance imaging (fMRI study, native English speakers listened to native- and Korean-accented English sentences, with or without faces. The participants’ Asian-foreign association was measured using an implicit association test (IAT, conducted outside the scanner. We found that foreign-accented speech evoked greater activity in the bilateral primary auditory cortices and the inferior frontal gyri, potentially reflecting greater computational demand. Higher IAT scores, indicating greater bias, were associated with increased BOLD response to foreign-accented speech with faces in the primary auditory cortex, the early node for spectrotemporal analysis. We conclude the following: (1 foreign-accented speech perception places greater demand on the neural systems underlying speech perception; (2 face of the talker can exaggerate the perceived foreignness of foreign-accented speech; (3 implicit Asian-foreign association is associated with decreased neural efficiency in early spectrotemporal processing.

  15. A NEURAL NETWORK BASED IRIS RECOGNITION SYSTEM FOR PERSONAL IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Usham Dias

    2010-10-01

    Full Text Available This paper presents biometric personal identification based on iris recognition using artificial neural networks. Personal identification system consists of localization of the iris region, normalization, enhancement and then iris pattern recognition using neural network. In this paper, through results obtained, we have shown that a person’s left and right eye are unique. In this paper, we also show that the network is sensitive to the initial weights and that over-training gives bad results. We also propose a fast algorithm for the localization of the inner and outer boundaries of the iris region. Results of simulations illustrate the effectiveness of the neural system in personal identification. Finally a hardware iris recognition model is proposed and implementation aspects are discussed.

  16. Neural correlates of olfactory processing in congenital blindness

    DEFF Research Database (Denmark)

    Kupers, R; Beaulieu-Lefebvre, M; Schneider, F C

    2011-01-01

    Adaptive neuroplastic changes have been well documented in congenitally blind individuals for the processing of tactile and auditory information. By contrast, very few studies have investigated olfactory processing in the absence of vision. There is ample evidence that the olfactory system is hig...

  17. Synthesis of neural networks for spatio-temporal spike pattern recognition and processing

    Directory of Open Access Journals (Sweden)

    Jonathan C Tapson

    2013-08-01

    Full Text Available The advent of large scale neural computational platforms has highlighted the lack of algorithms for synthesis of neural structures to perform predefined cognitive tasks. The Neural Engineering Framework offers one such synthesis, but it is most effective for a spike rate representation of neural information, and it requires a large number of neurons to implement simple functions. We describe a neural network synthesis method that generates synaptic connectivity for neurons which process time-encoded neural signals, and which makes very sparse use of neurons. The method allows the user to specify – arbitrarily - neuronal characteristics such as axonal and dendritic delays, and synaptic transfer functions, and then solves for the optimal input-output relationship using computed dendritic weights. The method may be used for batch or online learning and has an extremely fast optimization process. We demonstrate its use in generating a network to recognize speech which is sparsely encoded as spike times.

  18. WeAidU-a decision support system for myocardial perfusion images using artificial neural networks.

    Science.gov (United States)

    Ohlsson, Mattias

    2004-01-01

    This paper presents a computer-based decision support system for automated interpretation of diagnostic heart images (called WeAidU), which is made available via the Internet. The system is based on image processing techniques, artificial neural networks (ANNs) and large well-validated medical databases. We present results using artificial neural networks, and compare with two other classification methods, on a retrospective data set containing 1320 images from the clinical routine. The performance of the artificial neural networks detecting infarction and ischemia in different parts of the heart, measured as areas under the receiver operating characteristic curves, is in the range 0.83-0.96. These results indicate a high potential for the tool as a clinical decision support system.

  19. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  20. Software implementation of artificial neural networks in automated intelligent systems

    Directory of Open Access Journals (Sweden)

    В.П. Харченко

    2009-02-01

    Full Text Available  Application of neural networks technologies effectively decides the task of synthesis of origin of accident risk and gives out the vector of managing signals of network on incomplete and distorted information about the phenomena, events and processes which influence on safety flights.

  1. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems

    Science.gov (United States)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K. Y. Michael; Zhou, Changsong

    2016-01-01

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  2. Unsupervised Neural Network Quantifies the Cost of Visual Information Processing.

    Directory of Open Access Journals (Sweden)

    Levente L Orbán

    Full Text Available Untrained, "flower-naïve" bumblebees display behavioural preferences when presented with visual properties such as colour, symmetry, spatial frequency and others. Two unsupervised neural networks were implemented to understand the extent to which these models capture elements of bumblebees' unlearned visual preferences towards flower-like visual properties. The computational models, which are variants of Independent Component Analysis and Feature-Extracting Bidirectional Associative Memory, use images of test-patterns that are identical to ones used in behavioural studies. Each model works by decomposing images of floral patterns into meaningful underlying factors. We reconstruct the original floral image using the components and compare the quality of the reconstructed image to the original image. Independent Component Analysis matches behavioural results substantially better across several visual properties. These results are interpreted to support a hypothesis that the temporal and energetic costs of information processing by pollinators served as a selective pressure on floral displays: flowers adapted to pollinators' cognitive constraints.

  3. Comparative evaluation of different wavelet thresholding methods for neural signal processing.

    Science.gov (United States)

    Barabino, Gianluca; Baldazzi, Giulia; Sulas, Eleonora; Carboni, Caterina; Raffo, Luigi; Pani, Danilo

    2017-07-01

    Neural signal decoding is the basis for the development of neuroprosthetic devices and systems. Depending on the part of the nervous system these signals are picked up from, different signal-to-noise ratios (SNR) can be experienced. Wavelet denoising is often adopted due to its capability of reducing, to some extent, the noise falling within the signal spectrum. Several variables influence the denoising quality, but usually the focus in on the selection of the best performing mother wavelet. However, the threshold definition and the way it is applied to the signal have a significant impact on the denoising quality, determining the amount of noise removed and the distortion introduced on the signal. This work presents a comparative analysis of different threshold definition and thresholding mechanisms on neural signals, either largely adopted for neural signal processing or not. In order to evaluate the quality of the denoising in terms of the introduced distortion, which is important when decoding is implemented through spike-sorting algorithms, a synthetic dataset built on real action potentials was used, creating signals with different SNR and characterized by an additive white Gaussian noise (AWGN). The obtained results reveal the superiority of an approach, originally conceived for noisy non-linear time series, over the more typical ones. When compared to the original signal, a correlation above 0.9 was obtained, while in terms of root mean square error (RMSE) an improvement of 13% and 33% was reported with respect to the Minimax and Universal thresholds respectively.

  4. NNETS - NEURAL NETWORK ENVIRONMENT ON A TRANSPUTER SYSTEM

    Science.gov (United States)

    Villarreal, J.

    1994-01-01

    The primary purpose of NNETS (Neural Network Environment on a Transputer System) is to provide users a high degree of flexibility in creating and manipulating a wide variety of neural network topologies at processing speeds not found in conventional computing environments. To accomplish this purpose, NNETS supports back propagation and back propagation related algorithms. The back propagation algorithm used is an implementation of Rumelhart's Generalized Delta Rule. NNETS was developed on the INMOS Transputer. NNETS predefines a Back Propagation Network, a Jordan Network, and a Reinforcement Network to assist users in learning and defining their own networks. The program also allows users to configure other neural network paradigms from the NNETS basic architecture. The Jordan network is basically a feed forward network that has the outputs connected to a pseudo input layer. The state of the network is dependent on the inputs from the environment plus the state of the network. The Reinforcement network learns via a scalar feedback signal called reinforcement. The network propagates forward randomly. The environment looks at the outputs of the network to produce a reinforcement signal that is fed back to the network. NNETS was written for the INMOS C compiler D711B version 1.3 or later (MS-DOS version). A small portion of the software was written in the OCCAM language to perform the communications routing between processors. NNETS is configured to operate on a 4 X 10 array of Transputers in sequence with a Transputer based graphics processor controlled by a master IBM PC 286 (or better) Transputer. A RGB monitor is required which must be capable of 512 X 512 resolution. It must be able to receive red, green, and blue signals via BNC connectors. NNETS is meant for experienced Transputer users only. The program is distributed on 5.25 inch 1.2Mb MS-DOS format diskettes. NNETS was developed in 1991. Transputer and OCCAM are registered trademarks of Inmos Corporation. MS

  5. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    Science.gov (United States)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  6. Neural Networks as a Tool for Georadar Data Processing

    Directory of Open Access Journals (Sweden)

    Szymczyk Piotr

    2015-12-01

    Full Text Available In this article a new neural network based method for automatic classification of ground penetrating radar (GPR traces is proposed. The presented approach is based on a new representation of GPR signals by polynomials approximation. The coefficients of the polynomial (the feature vector are neural network inputs for automatic classification of a special kind of geologic structure—a sinkhole. The analysis and results show that the classifier can effectively distinguish sinkholes from other geologic structures.

  7. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  8. Dynamic causal models of neural system dynamics: current state ...

    Indian Academy of Sciences (India)

    2006-09-28

    Sep 28, 2006 ... Keywords. Dynamic causal modelling; EEG; effective connectivity; event-related potentials; fMRI; neural system ... In this article, we review the conceptual and mathematical basis of DCM and its implementation for functional magnetic resonance imaging data and event-related potentials. After introducing ...

  9. Neural network based system for script identification in Indian ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    environments. The system developed includes a feature extractor and a modular neural network. The feature extractor consists of two stages. In the first stage ... environments is script/language identification (Muthusamy et al 1994; Hochberg et al 1997). ... In order to take advantage of the learning and generalization abilities ...

  10. A breathing circuit alarm system based on neural networks.

    Science.gov (United States)

    Orr, J A; Westenskow, D R

    1994-03-01

    The objectives of our study were (1) to implement intelligent respiratory alarms with a neural network; and (2) to increase alarm specificity and decrease false-alarm rates compared with current alarms. We trained a neural network to recognize 13 faults in an anesthesia breathing circuit. The system extracted 30 breath-to-breath features from the airway CO2, flow, and pressure signals. We created training data for the network by introducing 13 faults repeatedly in 5 dogs (616 total faults). We used the data to train the neural network using the backward error propagation algorithm. In animals, the trained network reported the alarms correctly for 95.0% of the faults when tested during controlled ventilation, and for 86.9% of the faults during spontaneous breathing. When tested in the operating room, the system found and correctly reported 54 of 57 faults that occurred during 43.6 hr of use. The alarm system produced a total of 74 false alarms during 43.6 hr of monitoring. Neural networks may be useful in creating intelligent anesthesia alarm systems.

  11. Prior perceptual processing enhances the effect of emotional arousal on the neural correlates of memory retrieval.

    Science.gov (United States)

    Dew, Ilana T Z; Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto

    2014-07-01

    A fundamental idea in memory research is that items are more likely to be remembered if encoded with a semantic, rather than perceptual, processing strategy. Interestingly, this effect has been shown to reverse for emotionally arousing materials, such that perceptual processing enhances memory for emotional information or events. The current fMRI study investigated the neural mechanisms of this effect by testing how neural activations during emotional memory retrieval are influenced by the prior encoding strategy. Participants incidentally encoded emotional and neutral pictures under instructions to attend to either semantic or perceptual properties of each picture. Recognition memory was tested 2 days later. fMRI analyses yielded three main findings. First, right amygdalar activity associated with emotional memory strength was enhanced by prior perceptual processing. Second, prior perceptual processing of emotional pictures produced a stronger effect on recollection- than familiarity-related activations in the right amygdala and left hippocampus. Finally, prior perceptual processing enhanced amygdalar connectivity with regions strongly associated with retrieval success, including hippocampal/parahippocampal regions, visual cortex, and ventral parietal cortex. Taken together, the results specify how encoding orientations yield alterations in brain systems that retrieve emotional memories. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Neural Networks for Medical Image Processing: A Study of Feature Identification

    OpenAIRE

    Dayhoff, Ruth E.; Dayhoff, Judith E.

    1988-01-01

    Neural networks, a parallel computing architecture modelled on living nervous systems, are able to “learn” by example. The ability of a simulated neural network to distinguish among simulated microscopic amoebae nuclei images was studied. The neural network was successfully shown to organize feature detectors without the intermediate step of manual identification of salient features. The feature detectors were mapped onto the image format and the issue of redundancy was examined.

  13. KCNQ potassium channels in sensory system and neural circuits.

    Science.gov (United States)

    Wang, Jing-jing; Li, Yang

    2016-01-01

    M channels, an important regulator of neural excitability, are composed of four subunits of the Kv7 (KCNQ) K(+) channel family. M channels were named as such because their activity was suppressed by stimulation of muscarinic acetylcholine receptors. These channels are of particular interest because they are activated at the subthreshold membrane potentials. Furthermore, neural KCNQ channels are drug targets for the treatments of epilepsy and a variety of neurological disorders, including chronic and neuropathic pain, deafness, and mental illness. This review will update readers on the roles of KCNQ channels in the sensory system and neural circuits as well as discuss their respective mechanisms and the implications for physiology and medicine. We will also consider future perspectives and the development of additional pharmacological models, such as seizure, stroke, pain and mental illness, which work in combination with drug-design targeting of KCNQ channels. These models will hopefully deepen our understanding of KCNQ channels and provide general therapeutic prospects of related channelopathies.

  14. Novel four-sided neural probe fabricated by a thermal lamination process of polymer films.

    Science.gov (United States)

    Shin, Soowon; Kim, Jae-Hyun; Jeong, Joonsoo; Gwon, Tae Mok; Lee, Seung-Hee; Kim, Sung June

    2017-02-15

    Ideally, neural probes should have channels with a three-dimensional (3-D) configuration to record the activities of 3-D neural circuits. Many types of 3-D neural probes have been developed; however, most of them were designed as an array of multiple shanks with electrodes located along one side of the shanks. We developed a novel liquid crystal polymer (LCP)-based neural probe with four-sided electrodes. This probe has electrodes on four sides of the shank, i.e., the front, back and two sidewalls. To generate the proposed configuration of the electrodes, we used a thermal lamination process involving LCP films and laser micromachining. The proposed novel four-sided neural probe, was used to successfully perform in vivo multichannel neural recording in the mouse primary somatosensory cortex. The multichannel neural recording showed that the proposed four-sided neural probe can record spiking activities from a more diverse neuronal population than single-sided probes. This was confirmed by a pairwise Pearson correlation coefficient (Pearson's r) analysis and a cross-correlation analysis. The developed four-sided neural probe can be used to record various signals from a complex neural network. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cognitive and Neural Aspects of Information Processing in Major Depressive Disorder: An Integrative Perspective

    Science.gov (United States)

    Foland-Ross, Lara C.; Gotlib, Ian H.

    2012-01-01

    Researchers using experimental paradigms to examine cognitive processes have demonstrated that Major Depressive Disorder (MDD) is associated not with a general deficit in cognitive functioning, but instead with more specific anomalies in the processing of negatively valenced material. Indeed, cognitive theories of depression posit that negative biases in the processing of information play a critical role in influencing the onset, maintenance, and recurrence of depressive episodes. In this paper we review findings from behavioral studies documenting that MDD is associated with specific difficulties in attentional disengagement from negatively valenced material, with tendencies to interpret information in a negative manner, with deficits in cognitive control in the processing of negative material, and with enhanced memory for negative material. To gain a better understanding of the neurobiological basis of these abnormalities, we also examine findings from functional neuroimaging studies of depression and show that dysfunction in neural systems that subserve emotion processing, inhibition, and attention may underlie and contribute to the deficits in cognition that have been documented in depressed individuals. Finally, we briefly review evidence from studies of children who are at high familial risk for depression that indicates that abnormalities in cognition and neural function are observable before the onset of MDD and, consequently, may represent a risk factor for the development of this disorder. By integrating research from cognitive and neural investigations of depression, we can gain a more comprehensive understanding not only of how cognitive and biological factors interact to affect the onset, maintenance, and course of MDD, but also of how such research can aid in the development of targeted strategies for the prevention and treatment of this debilitating disorder. PMID:23162521

  16. Frequency tagging to track the neural processing of contrast in fast, continuous sound sequences.

    Science.gov (United States)

    Nozaradan, Sylvie; Mouraux, André; Cousineau, Marion

    2017-07-01

    The human auditory system presents a remarkable ability to detect rapid changes in fast, continuous acoustic sequences, as best illustrated in speech and music. However, the neural processing of rapid auditory contrast remains largely unclear, probably due to the lack of methods to objectively dissociate the response components specifically related to the contrast from the other components in response to the sequence of fast continuous sounds. To overcome this issue, we tested a novel use of the frequency-tagging approach allowing contrast-specific neural responses to be tracked based on their expected frequencies. The EEG was recorded while participants listened to 40-s sequences of sounds presented at 8Hz. A tone or interaural time contrast was embedded every fifth sound (AAAAB), such that a response observed in the EEG at exactly 8 Hz/5 (1.6 Hz) or harmonics should be the signature of contrast processing by neural populations. Contrast-related responses were successfully identified, even in the case of very fine contrasts. Moreover, analysis of the time course of the responses revealed a stable amplitude over repetitions of the AAAAB patterns in the sequence, except for the response to perceptually salient contrasts that showed a buildup and decay across repetitions of the sounds. Overall, this new combination of frequency-tagging with an oddball design provides a valuable complement to the classic, transient, evoked potentials approach, especially in the context of rapid auditory information. Specifically, we provide objective evidence on the neural processing of contrast embedded in fast, continuous sound sequences.NEW & NOTEWORTHY Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia might be an impaired processing of fast auditory changes, highlighting how the encoding of rapid acoustic information is critical for auditory communication. Here, we present a novel electrophysiological approach to capture in humans

  17. RBF Neural Network of Sliding Mode Control for Time-Varying 2-DOF Parallel Manipulator System

    Directory of Open Access Journals (Sweden)

    Haizhong Chen

    2013-01-01

    Full Text Available This paper presents a radial basis function (RBF neural network control scheme for manipulators with actuator nonlinearities. The control scheme consists of a time-varying sliding mode control (TVSMC and an RBF neural network compensator. Since the actuator nonlinearities are usually included in the manipulator driving motor, a compensator using RBF network is proposed to estimate the actuator nonlinearities and their upper boundaries. Subsequently, an RBF neural network controller that requires neither the evaluation of off-line dynamical model nor the time-consuming training process is given. In addition, Barbalat Lemma is introduced to help prove the stability of the closed control system. Considering the SMC controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded. The whole scheme provides a general procedure to control the manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion.

  18. Process identification through modular neural networks and rule extraction (extended abstract)

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.; Blockeel, Hendrik; Denecker, Marc

    2002-01-01

    Monolithic neural networks may be trained from measured data to establish knowledge about the process. Unfortunately, this knowledge is not guaranteed to be found and – if at all – hard to extract. Modular neural networks are better suited for this purpose. Domain-ordered by topology, rule

  19. Erythropoietin reduces neural and cognitive processing of fear in human models of antidepressant drug action

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla; O'Sullivan, Ursula; Harmer, Catherine J

    2007-01-01

    ) versus saline on the neural processing of happy and fearful faces in 23 healthy volunteers. Facial expression recognition was assessed outside the scanner. RESULTS: One week after administration, Epo reduced neural response to fearful versus neutral faces in the occipito-parietal cortex consistent...

  20. Use of uniform designs in combination with neural networks for viral infection process development.

    Science.gov (United States)

    Buenno, Laís Hara; Rocha, José Celso; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo

    2015-01-01

    This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions. © 2015 American Institute of Chemical Engineers.

  1. Learning-induced neural plasticity of speech processing before birth.

    Science.gov (United States)

    Partanen, Eino; Kujala, Teija; Näätänen, Risto; Liitola, Auli; Sambeth, Anke; Huotilainen, Minna

    2013-09-10

    Learning, the foundation of adaptive and intelligent behavior, is based on plastic changes in neural assemblies, reflected by the modulation of electric brain responses. In infancy, auditory learning implicates the formation and strengthening of neural long-term memory traces, improving discrimination skills, in particular those forming the prerequisites for speech perception and understanding. Although previous behavioral observations show that newborns react differentially to unfamiliar sounds vs. familiar sound material that they were exposed to as fetuses, the neural basis of fetal learning has not thus far been investigated. Here we demonstrate direct neural correlates of human fetal learning of speech-like auditory stimuli. We presented variants of words to fetuses; unlike infants with no exposure to these stimuli, the exposed fetuses showed enhanced brain activity (mismatch responses) in response to pitch changes for the trained variants after birth. Furthermore, a significant correlation existed between the amount of prenatal exposure and brain activity, with greater activity being associated with a higher amount of prenatal speech exposure. Moreover, the learning effect was generalized to other types of similar speech sounds not included in the training material. Consequently, our results indicate neural commitment specifically tuned to the speech features heard before birth and their memory representations.

  2. High school music classes enhance the neural processing of speech

    Directory of Open Access Journals (Sweden)

    Adam eTierney

    2013-12-01

    Full Text Available Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that two years of group music classes in high school enhance the subcortical encoding of speech. To tease apart the relationships between music and neural function, we tested high school students participating in either music or fitness-based training. These groups were matched at the onset of training on neural timing, reading ability, and IQ. Auditory brainstem responses were collected to a synthesized speech sound presented in background noise. After 2 years of training, the subcortical responses of the music training group were earlier than at pretraining, while the neural timing of students in the fitness training group was unchanged. These results represent the strongest evidence to date that in-school music education can cause enhanced speech encoding. The neural benefits of musical training are, therefore, not limited to expensive private instruction early in childhood but can be elicited by cost-effective group instruction during adolescence.

  3. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Rotational Motion Perception Neural Network Based on Asymmetric Spatiotemporal Visual Information Processing.

    Science.gov (United States)

    Hu, Bin; Yue, Shigang; Zhang, Zhuhong

    All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion

  5. Sadness is unique: neural processing of emotions in speech prosody in musicians and non-musicians

    OpenAIRE

    Park, Mona; Gutyrchik, Evgeny; Welker, Lorenz; Carl, Petra; Pöppel, Ernst; Zaytseva, Yuliya; Meindl, Thomas; Blautzik, Janusch; Reiser, Maximilian; Bao, Yan

    2015-01-01

    Musical training has been shown to have positive effects on several aspects of speech processing, however, the effects of musical training on the neural processing of speech prosody conveying distinct emotions are yet to be better understood. We used functional magnetic resonance imaging (fMRI) to investigate whether the neural responses to speech prosody conveying happiness, sadness, and fear differ between musicians and non-musicians. Differences in processing of emotional speech prosody be...

  6. Sadness is unique: Neural processing of emotions in speech prosody in musicians and non-musicians

    OpenAIRE

    Mona ePark; Mona ePark; Mona ePark; Evgeny eGutyrchik; Evgeny eGutyrchik; Evgeny eGutyrchik; Lorenz eWelker; Lorenz eWelker; Petra eCarl; Petra eCarl; Ernst ePöppel; Ernst ePöppel; Ernst ePöppel; Ernst ePöppel; Ernst ePöppel

    2015-01-01

    Musical training has been shown to have positive effects on several aspects of speech processing, however, the effects of musical training on the neural processing of speech prosody conveying distinct emotions are yet to be better understood. We used functional magnetic resonance imaging (fMRI) to investigate whether the neural responses to speech prosody conveying happiness, sadness, and fear differ between musicians and non-musicians. Differences in processing of emotional speech prosody be...

  7. Audience preferences are predicted by temporal reliability of neural processing.

    Science.gov (United States)

    Dmochowski, Jacek P; Bezdek, Matthew A; Abelson, Brian P; Johnson, John S; Schumacher, Eric H; Parra, Lucas C

    2014-07-29

    Naturalistic stimuli evoke highly reliable brain activity across viewers. Here we record neural activity from a group of naive individuals while viewing popular, previously-broadcast television content for which the broad audience response is characterized by social media activity and audience ratings. We find that the level of inter-subject correlation in the evoked encephalographic responses predicts the expressions of interest and preference among thousands. Surprisingly, ratings of the larger audience are predicted with greater accuracy than those of the individuals from whom the neural data is obtained. An additional functional magnetic resonance imaging study employing a separate sample of subjects shows that the level of neural reliability evoked by these stimuli covaries with the amount of blood-oxygenation-level-dependent (BOLD) activation in higher-order visual and auditory regions. Our findings suggest that stimuli which we judge favourably may be those to which our brains respond in a stereotypical manner shared by our peers.

  8. Neural basis of first and second language processing of sentence-level linguistic prosody.

    Science.gov (United States)

    Gandour, Jackson; Tong, Yunxia; Talavage, Thomas; Wong, Donald; Dzemidzic, Mario; Xu, Yisheng; Li, Xiaojian; Lowe, Mark

    2007-02-01

    A fundamental question in multilingualism is whether the neural substrates are shared or segregated for the two or more languages spoken by polyglots. This study employs functional MRI to investigate the neural substrates underlying the perception of two sentence-level prosodic phenomena that occur in both Mandarin Chinese (L1) and English (L2): sentence focus (sentence-initial vs. -final position of contrastive stress) and sentence type (declarative vs. interrogative modality). Late-onset, medium proficiency Chinese-English bilinguals were asked to selectively attend to either sentence focus or sentence type in paired three-word sentences in both L1 and L2 and make speeded-response discrimination judgments. L1 and L2 elicited highly overlapping activations in frontal, temporal, and parietal lobes. Furthermore, region of interest analyses revealed that for both languages the sentence focus task elicited a leftward asymmetry in the supramarginal gyrus; both tasks elicited a rightward asymmetry in the mid-portion of the middle frontal gyrus. A direct comparison between L1 and L2 did not show any difference in brain activation in the sentence type task. In the sentence focus task, however, greater activation for L2 than L1 occurred in the bilateral anterior insula and superior frontal sulcus. The sentence focus task also elicited a leftward asymmetry in the posterior middle temporal gyrus for L1 only. Differential activation patterns are attributed primarily to disparities between L1 and L2 in the phonetic manifestation of sentence focus. Such phonetic divergences lead to increased computational demands for processing L2. These findings support the view that L1 and L2 are mediated by a unitary neural system despite late age of acquisition, although additional neural resources may be required in task-specific circumstances for unequal bilinguals.

  9. Quartz resonator processing system

    Science.gov (United States)

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  10. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation

    Directory of Open Access Journals (Sweden)

    H.M. Endedijk

    2017-04-01

    Full Text Available Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other’s actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children’s interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction.

  11. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation.

    Science.gov (United States)

    Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S

    2017-04-01

    Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Modeling the kinetics of a photochemical water treatment process by means of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Goeb, S.; Oliveros, E.; Bossmann, S.H.; Braun, A.M. [Lehrstuhl fuer Umweltmesstechnik, Engler-Bunte-Institut, Universitaet Karlsruhe, Karlsruhe (Germany); Guardani, R.; Nascimento, C.A.O. [Process Control and Simulation Laboratory, Chemical Engineering Department, University of Sao Paulo, Sao Paulo (Brazil)

    1999-07-01

    We have investigated the kinetics of the degradation of 2,4-dimethyl aniline (2,4-xylidine), chosen as a model pollutant, by the photochemically enhanced Fenton reaction. This process, which may be efficiently applied to the treatment of industrial waste waters, involves a series of complex reactions leading eventually to the mineralization of the organic pollutant. A model based on artificial neural networks has been developed for fitting the experimental data obtained in a laboratory batch reactor. The model can describe the evolution of the pollutant concentration during irradiation time under various conditions. It has been used for simulating the behaviour of the reaction system in sensitivity studies aimed at optimizing the amounts of reactants employed in the process - an iron(II) salt and hydrogen peroxide. The results show that the process is much more sensitive to the iron(II) salt concentration than to the hydrogen peroxide concentration, a favorable condition in terms of economic feasibility. (author)

  13. A potential neural substrate for processing functional classes of complex acoustic signals.

    Directory of Open Access Journals (Sweden)

    Isabelle George

    Full Text Available Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial nidopallium, or NCM has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear and distinct classes of songs with different functions and social values, and for a possible correspondence between these responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech.

  14. Neural Reward Processing Mediates the Relationship between Insomnia Symptoms and Depression in Adolescence.

    Science.gov (United States)

    Casement, Melynda D; Keenan, Kate E; Hipwell, Alison E; Guyer, Amanda E; Forbes, Erika E

    2016-02-01

    Emerging evidence suggests that insomnia may disrupt reward-related brain function-a potentially important factor in the development of depressive disorder. Adolescence may be a period during which such disruption is especially problematic given the rise in the incidence of insomnia and ongoing development of neural systems that support reward processing. The present study uses longitudinal data to test the hypothesis that disruption of neural reward processing is a mechanism by which insomnia symptoms-including nocturnal insomnia symptoms (NIS) and nonrestorative sleep (NRS)-contribute to depressive symptoms in adolescent girls. Participants were 123 adolescent girls and their caregivers from an ongoing longitudinal study of precursors to depression across adolescent development. NIS and NRS were assessed annually from ages 9 to 13 years. Girls completed a monetary reward task during a functional MRI scan at age 16 years. Depressive symptoms were assessed at ages 16 and 17 years. Multivariable regression tested the prospective associations between NIS and NRS, neural response during reward anticipation, and the mean number of depressive symptoms (omitting sleep problems). NRS, but not NIS, during early adolescence was positively associated with late adolescent dorsal medial prefrontal cortex (dmPFC) response to reward anticipation and depressive symptoms. DMPFC response mediated the relationship between early adolescent NRS and late adolescent depressive symptoms. These results suggest that NRS may contribute to depression by disrupting reward processing via altered activity in a region of prefrontal cortex involved in affective control. The results also support the mechanistic differentiation of NIS and NRS. © 2016 Associated Professional Sleep Societies, LLC.

  15. The neural substrate of naming events: effects of processing demands but not of grammatical class.

    Science.gov (United States)

    Siri, Simona; Tettamanti, Marco; Cappa, Stefano F; Della Rosa, Pasquale; Saccuman, Cristina; Scifo, Paola; Vigliocco, Gabriella

    2008-01-01

    Grammatical class is a fundamental property of language, and all natural languages distinguish between nouns and verbs. Brain activation studies have provided conflicting evidence concerning the neural substrates of noun and verb processing. A major limitation of many previous imaging studies is that they did not disentangle the impact of grammatical class from the differences in semantic correlates. In order to tease apart the role of semantic and grammatical factors, we performed a functional magnetic resonance imaging study presenting Italian speakers with pictures of events and asked them to name them as 1) Infinitive Verb (e.g., mangiare [to eat]); 2) Inflected Verb (e.g., mangia [she/he eats]); and 3) Action Noun (e.g., mangiata [the eating]). We did not find any verb-specific activation. However, reliable left inferior frontal gyrus (IFG) activations were found when contrasting the Action Noun with the Infinitive Verb condition. A second-level analysis indicated then that activation in left IFG was greatest for Action Nouns, intermediate for Inflected Verbs, and least for Infinitive Verbs. We conclude that, when all other factors are controlled, nouns and verbs are processed by a common neural system. In the present case, differences in left IFG activation emerge as a consequence of increasing linguistic and/or general processing demands.

  16. A customizable stochastic state point process filter (SSPPF) for neural spiking activity.

    Science.gov (United States)

    Xin, Yao; Li, Will X Y; Min, Biao; Han, Yan; Cheung, Ray C C

    2013-01-01

    Stochastic State Point Process Filter (SSPPF) is effective for adaptive signal processing. In particular, it has been successfully applied to neural signal coding/decoding in recent years. Recent work has proven its efficiency in non-parametric coefficients tracking in modeling of mammal nervous system. However, existing SSPPF has only been realized in commercial software platforms which limit their computational capability. In this paper, the first hardware architecture of SSPPF has been designed and successfully implemented on field-programmable gate array (FPGA), proving a more efficient means for coefficient tracking in a well-established generalized Laguerre-Volterra model for mammalian hippocampal spiking activity research. By exploring the intrinsic parallelism of the FPGA, the proposed architecture is able to process matrices or vectors with random size, and is efficiently scalable. Experimental result shows its superior performance comparing to the software implementation, while maintaining the numerical precision. This architecture can also be potentially utilized in the future hippocampal cognitive neural prosthesis design.

  17. Modeling of the height control system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    A. R Tahavvor

    2016-09-01

    Full Text Available Introduction Automation of agricultural and machinery construction has generally been enhanced by intelligent control systems due to utility and efficiency rising, ease of use, profitability and upgrading according to market demand. A broad variety of industrial merchandise are now supplied with computerized control systems of earth moving processes to be performed by construction and agriculture field vehicle such as grader, backhoe, tractor and scraper machines. A height control machine which is used in measuring base thickness is consisted of two mechanical and electronic parts. The mechanical part is consisted of conveyor belt, main body, electrical engine and invertors while the electronic part is consisted of ultrasonic, wave transmitter and receiver sensor, electronic board, control set, and microcontroller. The main job of these controlling devices consists of the topographic surveying, cutting and filling of elevated and spotted low area, and these actions fundamentally dependent onthe machine's ability in elevation and thickness measurement and control. In this study, machine was first tested and then some experiments were conducted for data collection. Study of system modeling in artificial neural networks (ANN was done for measuring, controlling the height for bases by input variable input vectors such as sampling time, probe speed, conveyer speed, sound wave speed and speed sensor are finally the maximum and minimum probe output vector on various conditions. The result reveals the capability of this procedure for experimental recognition of sensors' behavior and improvement of field machine control systems. Inspection, calibration and response, diagnosis of the elevation control system in combination with machine function can also be evaluated by some extra development of this system. Materials and Methods Designing and manufacture of the planned apparatus classified in three dissimilar, mechanical and electronic module, courses of

  18. Data systems and computer science: Neural networks base R/T program overview

    Science.gov (United States)

    Gulati, Sandeep

    1991-01-01

    The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.

  19. Design and Implementation of Behavior Recognition System Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Yu Bo

    2017-01-01

    Full Text Available We build a set of human behavior recognition system based on the convolution neural network constructed for the specific human behavior in public places. Firstly, video of human behavior data set will be segmented into images, then we process the images by the method of background subtraction to extract moving foreground characters of body. Secondly, the training data sets are trained into the designed convolution neural network, and the depth learning network is constructed by stochastic gradient descent. Finally, the various behaviors of samples are classified and identified with the obtained network model, and the recognition results are compared with the current mainstream methods. The result show that the convolution neural network can study human behavior model automatically and identify human’s behaviors without any manually annotated trainings.

  20. Neural Computations in a Dynamical System with Multiple Time Scales

    Science.gov (United States)

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions. PMID:27679569

  1. Neural correlates of alexithymia : A meta-analysis of emotion processing studies

    NARCIS (Netherlands)

    van der Velde, Jorien; Servaas, Michelle N.; Goerlich, Katharina S.; Bruggeman, Richard; Horton, Paul; Costafreda, Sergi G.; Aleman, Andre

    Alexithymia is a personality trait characterized by difficulties in the experience and cognitive processing of emotions. It is considered a risk factor for a range of psychiatric and neurological disorders. Functional neuroimaging studies investigating the neural correlates of alexithymia have

  2. Two Routes to Emotional Memory: Distinct Neural Processes for Valence and Arousal

    National Research Council Canada - National Science Library

    Elizabeth A. Kensinger; Suzanne Corkin; Marcus E. Raichle

    2004-01-01

    ... attributable to arousal. By using functional MRI and behavioral studies, we found that distinct cognitive and neural processes contribute to emotional memory enhancement for arousing information versus valenced, nonarousing information...

  3. DEVELOPMENT OF A COMPUTER SYSTEM FOR IDENTITY AUTHENTICATION USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Timur Kartbayev

    2017-03-01

    Full Text Available The aim of the study is to increase the effectiveness of automated face recognition to authenticate identity, considering features of change of the face parameters over time. The improvement of the recognition accuracy, as well as consideration of the features of temporal changes in a human face can be based on the methodology of artificial neural networks. Hybrid neural networks, combining the advantages of classical neural networks and fuzzy logic systems, allow using the network learnability along with the explanation of the findings. The structural scheme of intelligent system for identification based on artificial neural networks is proposed in this work. It realizes the principles of digital information processing and identity recognition taking into account the forecast of key characteristics’ changes over time (e.g., due to aging. The structural scheme has a three-tier architecture and implements preliminary processing, recognition and identification of images obtained as a result of monitoring. On the basis of expert knowledge, the fuzzy base of products is designed. It allows assessing possible changes in key characteristics, used to authenticate identity based on the image. To take this possibility into consideration, a neuro-fuzzy network of ANFIS type was used, which implements the algorithm of Tagaki-Sugeno. The conducted experiments showed high efficiency of the developed neural network and a low value of learning errors, which allows recommending this approach for practical implementation. Application of the developed system of fuzzy production rules that allow predicting changes in individuals over time, will improve the recognition accuracy, reduce the number of authentication failures and improve the efficiency of information processing and decision-making in applications, such as authentication of bank customers, users of mobile applications, or in video monitoring systems of sensitive sites.

  4. Neural correlates of feedback processing in obsessive-compulsive disorder.

    Science.gov (United States)

    Endrass, Tanja; Koehne, Svenja; Riesel, Anja; Kathmann, Norbert

    2013-05-01

    Obsessive-compulsive disorder (OCD) patients show hyperactive performance monitoring when monitoring their own actions. Hyperactive performance monitoring is related to OCD symptomatology, like the unflexibility of compulsive behaviors, and was suggested as a potential endophenotype for the disorder. However, thus far the functioning of the performance monitoring system in OCD remains unclear in processes where performance is not monitored in one's own actions internally, but through external feedback during learning. The present study investigated whether electrocortical indicators of feedback processing are hyperactive, and whether feedback-guided learning is compromised in OCD. A modified deterministic four-choice object reversal learning task was used that required recurrent feedback-based behavioral adjustment in response to changing reward contingencies. Electrophysiological correlates of feedback processing (i.e. feedback-related negativity [FRN] and P300) were measured in 25 OCD patients and 25 matched healthy comparison subjects. Deficits in behavioral adjustment were found in terms of higher error rates of OCD patients in response to negative feedback. Whereas the FRN was unchanged for reversal negative feedback, it was reduced for negative feedback that indicated that a newly selected stimulus was still incorrect. The observed FRN reduction suggests attenuated monitoring of feedback during the learning process in OCD potentially contributing to a deficit in adaptive behavior reflected in obsessive thoughts and actions. The reduction of FRN amplitudes contrasts with overactive performance monitoring of self-generated errors. Nevertheless, the findings contribute to the theoretical framework of performance monitoring, suggesting a dissociation of processing systems for actions and feedback with specific alterations of these two systems in OCD. © 2013 American Psychological Association

  5. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  6. Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths.

    Science.gov (United States)

    Stöckl, A L; O'Carroll, D; Warrant, E J

    2017-06-28

    To sample information optimally, sensory systems must adapt to the ecological demands of each animal species. These adaptations can occur peripherally, in the anatomical structures of sensory organs and their receptors; and centrally, as higher-order neural processing in the brain. While a rich body of investigations has focused on peripheral adaptations, our understanding is sparse when it comes to central mechanisms. We quantified how peripheral adaptations in the eyes, and central adaptations in the wide-field motion vision system, set the trade-off between resolution and sensitivity in three species of hawkmoths active at very different light levels: nocturnal Deilephila elpenor, crepuscular Manduca sexta, and diurnal Macroglossum stellatarum. Using optical measurements and physiological recordings from the photoreceptors and wide-field motion neurons in the lobula complex, we demonstrate that all three species use spatial and temporal summation to improve visual performance in dim light. The diurnal Macroglossum relies least on summation, but can only see at brighter intensities. Manduca, with large sensitive eyes, relies less on neural summation than the smaller eyed Deilephila, but both species attain similar visual performance at nocturnal light levels. Our results reveal how the visual systems of these three hawkmoth species are intimately matched to their visual ecologies. © 2017 The Author(s).

  7. Using artificial neural networks to model aluminium based sheet forming processes and tools details

    Science.gov (United States)

    Mekras, N.

    2017-09-01

    In this paper, a methodology and a software system will be presented concerning the use of Artificial Neural Networks (ANNs) for modeling aluminium based sheet forming processes. ANNs models’ creation is based on the training of the ANNs using experimental, trial and historical data records of processes’ inputs and outputs. ANNs models are useful in cases that processes’ mathematical models are not accurate enough, are not well defined or are missing e.g. in cases of complex product shapes, new material alloys, new process requirements, micro-scale products, etc. Usually, after the design and modeling of the forming tools (die, punch, etc.) and before mass production, a set of trials takes place at the shop floor for finalizing processes and tools details concerning e.g. tools’ minimum radii, die/punch clearance, press speed, process temperature, etc. and in relation with the material type, the sheet thickness and the quality achieved from the trials. Using data from the shop floor trials and forming theory data, ANNs models can be trained and created, and can be used to estimate processes and tools final details, hence supporting efficient set-up of processes and tools before mass production starts. The proposed ANNs methodology and the respective software system are implemented within the EU H2020 project LoCoMaTech for the aluminium-based sheet forming process HFQ (solution Heat treatment, cold die Forming and Quenching).

  8. Control of nonlinear chemical processes using neural models and feedback linearization

    NARCIS (Netherlands)

    te Braake, Hubert A.B.; van Can, Eric J.L.; Scherpen, Jacquelien M.A.; Verbruggen, Henk B.

    1998-01-01

    Black-box modeling techniques based on artificial neural networks are opening new horizons for the modeling and control nonlinear processes in biotechnology and the chemical process industries. The link between dynamic process models and actual process control is provided by the concept of

  9. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    Science.gov (United States)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  10. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  11. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  12. Electrostatic containerless processing system

    Science.gov (United States)

    Rulison, Aaron J.; Watkins, John L.; Zambrano, Brian

    1997-07-01

    We introduce a materials science tool for investigating refractory solids and melts: the electrostatic containerless processing system (ESCAPES). ESCAPES maintains refractory specimens of materials in a pristine state by levitating and heating them in a vacuum chamber, thereby avoiding the contaminating influences of container walls and ambient gases. ESCAPES is designed for the investigation of thermophysical properties, phase equilibria, metastable phase formation, undercooling and nucleation, time-temperature-transformation diagrams, and other aspects of materials processing. ESCAPES incorporates several design improvements over prior electrostatic levitation technology. It has an informative and responsive computer control system. It has separate light sources for heating and charging, which prevents runaway discharging. Both the heating and charging light sources are narrow band, which allows the use of optical pyrometry and other diagnostics at all times throughout processing. Heat is provided to the levitated specimens by a 50 W Nd:YAG laser operating at 1.064 μm. A deuterium arc lamp charges the specimen through photoelectric emission. ESCAPES can heat metals, ceramics, and semiconductors to temperatures exceeding 2300 K; specimens range in size from 1 to 3 mm diam. This article describes the design, capabilities, and applications of ESCAPES, focusing on improvements over prior electrostatic levitation technology.

  13. A hybrid fuzzy-neural system for computer-aided diagnosis of ultrasound kidney images using prominent features.

    Science.gov (United States)

    Bommanna Raja, K; Madheswaran, M; Thyagarajah, K

    2008-02-01

    The objective of this work is to develop and implement a computer-aided decision support system for an automated diagnosis and classification of ultrasound kidney images. The proposed method distinguishes three kidney categories namely normal, medical renal diseases and cortical cyst. For the each pre-processed ultrasound kidney image, 36 features are extracted. Two types of decision support systems, optimized multi-layer back propagation network and hybrid fuzzy-neural system have been developed with these features for classifying the kidney categories. The performance of the hybrid fuzzy-neural system is compared with the optimized multi-layer back propagation network in terms of classification efficiency, training and testing time. The results obtained show that fuzzy-neural system provides higher classification efficiency with minimum training and testing time. It has also been found that instead of using all 36 features, ranking the features enhance classification efficiency. The outputs of the decision support systems are validated with medical expert to measure the actual efficiency. The overall discriminating capability of the systems is accessed with performance evaluation measure, f-score. It has been observed that the performance of fuzzy-neural system is superior compared to optimized multi-layer back propagation network. Such hybrid fuzzy-neural system with feature extraction algorithms and pre-processing scheme helps in developing computer-aided diagnosis system for ultrasound kidney images and can be used as a secondary observer in clinical decision making.

  14. Dynamical Behavior of Delayed Reaction-Diffusion Hopfield Neural Networks Driven by Infinite Dimensional Wiener Processes.

    Science.gov (United States)

    Liang, Xiao; Wang, Linshan; Wang, Yangfan; Wang, Ruili

    2016-09-01

    In this paper, we focus on the long time behavior of the mild solution to delayed reaction-diffusion Hopfield neural networks (DRDHNNs) driven by infinite dimensional Wiener processes. We analyze the existence, uniqueness, and stability of this system under the local Lipschitz function by constructing an appropriate Lyapunov-Krasovskii function and utilizing the semigroup theory. Some easy-to-test criteria affecting the well-posedness and stability of the networks, such as infinite dimensional noise and diffusion effect, are obtained. The criteria can be used as theoretic guidance to stabilize DRDHNNs in practical applications when infinite dimensional noise is taken into consideration. Meanwhile, considering the fact that the standard Brownian motion is a special case of infinite dimensional Wiener process, we undertake an analysis of the local Lipschitz condition, which has a wider range than the global Lipschitz condition. Two samples are given to examine the availability of the results in this paper. Simulations are also given using the MATLAB.

  15. Age associations with neural processing of reward anticipation in adolescents with bipolar disorders

    Directory of Open Access Journals (Sweden)

    Snežana Urošević

    2016-01-01

    Full Text Available Reward/behavioral approach system hypersensitivity is implicated in bipolar disorders (BD and in normative development during adolescence. Pediatric onset of BD is associated with a more severe illness course. However, little is known about neural processing of rewards in adolescents with BD or developmental (i.e., age associations with activation of these neural systems. The present study aims to address this knowledge gap. The present sample included 21 adolescents with BD and 26 healthy adolescents, ages 13 to 19. Participants completed a functional magnetic resonance imaging (fMRI protocol using the Monetary Incentive Delay (MID task. Behavioral performance was similar between groups. Group differences in BOLD activation during target anticipation and feedback anticipation periods of the task were examined using whole-brain analyses, as were group differences in age effects. During both target anticipation and feedback anticipation, adolescents with BD, compared to adolescents without psychopathology, exhibited decreased engagement of frontal regions involved in cognitive control (i.e., dorsolateral prefrontal cortex. Healthy adolescents exhibited age-related decreases, while adolescents with BD exhibited age-related increases, in activity of other cognitive control frontal areas (i.e., right inferior frontal gyrus, suggesting altered development in the BD group. Longitudinal research is needed to examine potentially abnormal development of cognitive control during reward pursuit in adolescent BD and whether early therapeutic interventions can prevent these potential deviations from normative development.

  16. Age associations with neural processing of reward anticipation in adolescents with bipolar disorders.

    Science.gov (United States)

    Urošević, Snežana; Luciana, Monica; Jensen, Jonathan B; Youngstrom, Eric A; Thomas, Kathleen M

    2016-01-01

    Reward/behavioral approach system hypersensitivity is implicated in bipolar disorders (BD) and in normative development during adolescence. Pediatric onset of BD is associated with a more severe illness course. However, little is known about neural processing of rewards in adolescents with BD or developmental (i.e., age) associations with activation of these neural systems. The present study aims to address this knowledge gap. The present sample included 21 adolescents with BD and 26 healthy adolescents, ages 13 to 19. Participants completed a functional magnetic resonance imaging (fMRI) protocol using the Monetary Incentive Delay (MID) task. Behavioral performance was similar between groups. Group differences in BOLD activation during target anticipation and feedback anticipation periods of the task were examined using whole-brain analyses, as were group differences in age effects. During both target anticipation and feedback anticipation, adolescents with BD, compared to adolescents without psychopathology, exhibited decreased engagement of frontal regions involved in cognitive control (i.e., dorsolateral prefrontal cortex). Healthy adolescents exhibited age-related decreases, while adolescents with BD exhibited age-related increases, in activity of other cognitive control frontal areas (i.e., right inferior frontal gyrus), suggesting altered development in the BD group. Longitudinal research is needed to examine potentially abnormal development of cognitive control during reward pursuit in adolescent BD and whether early therapeutic interventions can prevent these potential deviations from normative development.

  17. Predictive and Neural Predictive Control of Uncertain Systems

    Science.gov (United States)

    Kelkar, Atul G.

    2000-01-01

    Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.

  18. Intelligent systems II complete approximation by neural network operators

    CERN Document Server

    Anastassiou, George A

    2016-01-01

    This monograph is the continuation and completion of the monograph, “Intelligent Systems: Approximation by Artificial Neural Networks” written by the same author and published 2011 by Springer. The book you hold in hand presents the complete recent and original work of the author in approximation by neural networks. Chapters are written in a self-contained style and can be read independently. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The book’s results are expected to find applications in many areas of applied mathematics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science and engineering libraries.  .

  19. Neural systems for choice and valuation with counterfactual learning signals.

    Science.gov (United States)

    Tobia, M J; Guo, R; Schwarze, U; Boehmer, W; Gläscher, J; Finckh, B; Marschner, A; Büchel, C; Obermayer, K; Sommer, T

    2014-04-01

    The purpose of this experiment was to test a computational model of reinforcement learning with and without fictive prediction error (FPE) signals to investigate how counterfactual consequences contribute to acquired representations of action-specific expected value, and to determine the functional neuroanatomy and neuromodulator systems that are involved. 80 male participants underwent dietary depletion of either tryptophan or tyrosine/phenylalanine to manipulate serotonin (5HT) and dopamine (DA), respectively. They completed 80 rounds (240 trials) of a strategic sequential investment task that required accepting interim losses in order to access a lucrative state and maximize long-term gains, while being scanned. We extended the standard Q-learning model by incorporating both counterfactual gains and losses into separate error signals. The FPE model explained the participants' data significantly better than a model that did not include counterfactual learning signals. Expected value from the FPE model was significantly correlated with BOLD signal change in the ventromedial prefrontal cortex (vmPFC) and posterior orbitofrontal cortex (OFC), whereas expected value from the standard model did not predict changes in neural activity. The depletion procedure revealed significantly different neural responses to expected value in the vmPFC, caudate, and dopaminergic midbrain in the vicinity of the substantia nigra (SN). Differences in neural activity were not evident in the standard Q-learning computational model. These findings demonstrate that FPE signals are an important component of valuation for decision making, and that the neural representation of expected value incorporates cortical and subcortical structures via interactions among serotonergic and dopaminergic modulator systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Neural Activations of Guided Imagery and Music in Negative Emotional Processing: A Functional MRI Study.

    Science.gov (United States)

    Lee, Sang Eun; Han, Yeji; Park, HyunWook

    2016-01-01

    The Bonny Method of Guided Imagery and Music uses music and imagery to access and explore personal emotions associated with episodic memories. Understanding the neural mechanism of guided imagery and music (GIM) as combined stimuli for emotional processing informs clinical application. We performed functional magnetic resonance imaging (fMRI) to demonstrate neural mechanisms of GIM for negative emotional processing when personal episodic memory is recalled and re-experienced through GIM processes. Twenty-four healthy volunteers participated in the study, which used classical music and verbal instruction stimuli to evoke negative emotions. To analyze the neural mechanism, activated regions associated with negative emotional and episodic memory processing were extracted by conducting volume analyses for the contrast between GIM and guided imagery (GI) or music (M). The GIM stimuli showed increased activation over the M-only stimuli in five neural regions associated with negative emotional and episodic memory processing, including the left amygdala, left anterior cingulate gyrus, left insula, bilateral culmen, and left angular gyrus (AG). Compared with GI alone, GIM showed increased activation in three regions associated with episodic memory processing in the emotional context, including the right posterior cingulate gyrus, bilateral parahippocampal gyrus, and AG. No neural regions related to negative emotional and episodic memory processing showed more activation for M and GI than for GIM. As a combined multimodal stimulus, GIM may increase neural activations related to negative emotions and episodic memory processing. Findings suggest a neural basis for GIM with personal episodic memories affecting cortical and subcortical structures and functions. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Neural-Net Processing of Characteristic Patterns From Electronic Holograms of Vibrating Blades

    Science.gov (United States)

    Decker, Arthur J.

    1999-01-01

    Finite-element-model-trained artificial neural networks can be used to process efficiently the characteristic patterns or mode shapes from electronic holograms of vibrating blades. The models used for routine design may not yet be sufficiently accurate for this application. This document discusses the creation of characteristic patterns; compares model generated and experimental characteristic patterns; and discusses the neural networks that transform the characteristic patterns into strain or damage information. The current potential to adapt electronic holography to spin rigs, wind tunnels and engines provides an incentive to have accurate finite element models lor training neural networks.

  2. Using artificial neural networks to model extrusion processes for the manufacturing of polymeric micro-tubes

    Science.gov (United States)

    Mekras, N.; Artemakis, I.

    2012-09-01

    In this paper a methodology and an application example are presented aiming to show how Artificial Neural Networks (ANNs) can be used to model manufacturing processes when mathematical models are missing or are not applicable e.g. due to the micro- & nano-scaling, due to non-conventional processes, etc. Besides the ANNs methodology, the results of a Software System developed will be presented, which was used to create ANNs models for micro & nano manufacturing processes. More specifically results of a specific application example will be presented, concerning the modeling of extrusion processes for polymeric micro-tubes. ANNs models are capable for modeling manufacturing processes as far as adequate experimental and/or historical data of processes' inputs & outputs are available for their training. The POLYTUBES ANNs models have been trained and tested with experimental data records of process' inputs and outputs concerning a micro-extrusion process of polymeric micro-tubes for several materials such as: COC, PC, PET, PETG, PP and PVDF. The main ANN model of the extrusion application example has 3 inputs and 9 outputs. The inputs are: tube's inner & outer diameters, and the material density. The model outputs are 9 process parameters, which correspond to the specific inputs e.g. process temperature, die inner & outer diameters, extrusion pressure, draw speed etc. The training of the ANN model was completed, when the errors for the model's outputs, which expressed the difference between the training target values and the ANNs outputs, were minimized to acceptable levels. After the training, the micro-extrusion ANN is capable to simulate the process and can be used to calculate model's outputs, which are the process parameters for any new set of inputs. By this way a satisfactory functional approximation of the whole process is achieved. This research work has been supported by the EU FP7 NMP project POLYTUBES.

  3. Differences in neural responses to reward and punishment processing between anorexia nervosa subtypes: An fMRI study.

    Science.gov (United States)

    Murao, Ema; Sugihara, Genichi; Isobe, Masanori; Noda, Tomomi; Kawabata, Michiko; Matsukawa, Noriko; Takahashi, Hidehiko; Murai, Toshiya; Noma, Shun'ichi

    2017-09-01

    Anorexia nervosa (AN) includes the restricting (AN-r) and binge-eating/purging (AN-bp) subtypes, which have been reported to differ regarding their underlying pathophysiologies as well as their behavioral patterns. However, the differences in neural mechanisms of reward systems between AN subtypes remain unclear. The aim of the present study was to explore differences in the neural processing of reward and punishment between AN subtypes. Twenty-three female patients with AN (11 AN-r and 12 AN-bp) and 20 healthy women underwent functional magnetic resonance imaging while performing a monetary incentive delay task. Whole-brain one-way analysis of variance was conducted to test between-group differences. There were significant group differences in brain activation in the rostral anterior cingulate cortex and right posterior insula during loss anticipation, with increased brain activation in the AN-bp group relative to the AN-r and healthy women groups. No significant differences were found during gain anticipation. AN-bp patients showed altered neural responses to punishment in brain regions implicated in emotional arousal. Our findings suggest that individuals with AN-bp are more sensitive to potential punishment than individuals with AN-r and healthy individuals at the neural level. The present study provides preliminary evidence that there are neurobiological differences between AN subtypes with regard to the reward system, especially punishment processing. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  4. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    model, etc.) might be too complex to study. In this paper, we use a comparatively simple mechanical system, the nonholonomic vehicle referred to as the Roller-Racer, as a means towards testing different learning strategies for an Recurrent Neural Network-based (RNN) controller/guidance system. After...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....

  5. Biologically-based signal processing system applied to noise removal for signal extraction

    Science.gov (United States)

    Fu, Chi Yung; Petrich, Loren I.

    2004-07-13

    The method and system described herein use a biologically-based signal processing system for noise removal for signal extraction. A wavelet transform may be used in conjunction with a neural network to imitate a biological system. The neural network may be trained using ideal data derived from physical principles or noiseless signals to determine to remove noise from the signal.

  6. Neural network computation for the evaluation of process rendering: application to thermally sprayed coatings

    Directory of Open Access Journals (Sweden)

    Guessasma Sofiane

    2017-01-01

    Full Text Available In this work, neural network computation is attempted to relate alumina and titania phase changes of a coating microstructure with respect to energetic parameters of atmospheric plasma straying (APS process. Experimental results were analysed using standard fitting routines and neural computation to quantify the effect of arc current, hydrogen ratio and total plasma flow rate. For a large parameter domain, phase changes were 10% for alumina and 8% for titania with a significant control of titania phase.

  7. Social cognitive conflict resolution: Contributions of domain general and domain specific neural systems

    Science.gov (United States)

    Zaki, Jamil; Hennigan, Kelly; Weber, Jochen; Ochsner, Kevin N.

    2010-01-01

    Cognitive control mechanisms allow individuals to behave adaptively in the face of complex and sometimes conflicting information. While the neural bases of these control mechanisms have been examined in many contexts, almost no attention has been paid to their role in resolving conflicts between competing social cues, which is surprising, given that cognitive conflicts are part of many social interactions. Evidence about the neural processing of social information suggests that two systems—the mirror neuron system (MNS) and mental state attribution system (MSAS)—are specialized for processing nonverbal and contextual social cues, respectively. This could support a model of social cognitive conflict resolution in which competition between social cues would recruit domain-general cognitive control mechanisms, which in turn would bias processing towards the MNS or MSAS. Such biasing could also alter social behaviors, such as inferences made about the internal states of others. We tested this model by scanning participants using fMRI while they drew inferences about social targets' emotional states based on congruent or incongruent nonverbal and contextual social cues. Conflicts between social cues recruited the anterior cingulate and lateral prefrontal cortex, brain areas associated with domain-general control processes. This activation was accompanied by biasing of neural activity towards areas in the MNS or MSAS, which tracked, respectively, with perceivers' behavioral reliance on nonverbal or contextual cues when drawing inferences about targets' emotions. Together, these data provide evidence about both domain general and domain specific mechanisms involved in resolving social cognitive conflicts. PMID:20573895

  8. Lateral Information Processing by Spiking Neurons: A Theoretical Model of the Neural Correlate of Consciousness

    Directory of Open Access Journals (Sweden)

    Marc Ebner

    2011-01-01

    Full Text Available Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on “autopilot”. Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the “conscious pilot” suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of

  9. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  10. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  11. Two distinct neural mechanisms in early visual cortex determine subsequent visual processing.

    Science.gov (United States)

    Jacobs, Christianne; de Graaf, Tom A; Sack, Alexander T

    2014-10-01

    Neuroscience research has conventionally focused on how the brain processes sensory information, after the information has been received. Recently, increased interest focuses on how the state of the brain upon receiving inputs determines and biases their subsequent processing and interpretation. Here, we investigated such 'pre-stimulus' brain mechanisms and their relevance for objective and subjective visual processing. Using non-invasive focal brain stimulation [transcranial magnetic stimulation (TMS)] we disrupted spontaneous brain state activity within early visual cortex (EVC) before onset of visual stimulation, at two different pre-stimulus-onset-asynchronies (pSOAs). We found that TMS pulses applied to EVC at either 20 msec or 50 msec before onset of a simple orientation stimulus both prevented this stimulus from reaching visual awareness. Interestingly, only the TMS-induced visual suppression following TMS at a pSOA of ?20 msec was retinotopically specific, while TMS at a pSOA of ?50 msec was not. In a second experiment, we used more complex symbolic arrow stimuli, and found TMS-induced suppression only when disrupting EVC at a pSOA of ? ?60 msec, which, in line with Experiment 1, was not retinotopically specific. Despite this topographic unspecificity of the ?50 msec effect, the additional control measurements as well as tracking and removal of eye blinks, suggested that also this effect was not the result of an unspecific artifact, and thus neural in origin. We therefore obtained evidence of two distinct neural mechanisms taking place in EVC, both determining whether or not subsequent visual inputs are successfully processed by the human visual system.

  12. Impact of load-related neural processes on feature binding in visuospatial working memory.

    Directory of Open Access Journals (Sweden)

    Nicole A Kochan

    Full Text Available BACKGROUND: The capacity of visual working memory (WM is substantially limited and only a fraction of what we see is maintained as a temporary trace. The process of binding visual features has been proposed as an adaptive means of minimising information demands on WM. However the neural mechanisms underlying this process, and its modulation by task and load effects, are not well understood. OBJECTIVE: To investigate the neural correlates of feature binding and its modulation by WM load during the sequential phases of encoding, maintenance and retrieval. METHODS AND FINDINGS: 18 young healthy participants performed a visuospatial WM task with independent factors of load and feature conjunction (object identity and position in an event-related functional MRI study. During stimulus encoding, load-invariant conjunction-related activity was observed in left prefrontal cortex and left hippocampus. During maintenance, greater activity for task demands of feature conjunction versus single features, and for increased load was observed in left-sided regions of the superior occipital cortex, precuneus and superior frontal cortex. Where these effects were expressed in overlapping cortical regions, their combined effect was additive. During retrieval, however, an interaction of load and feature conjunction was observed. This modulation of feature conjunction activity under increased load was expressed through greater deactivation in medial structures identified as part of the default mode network. CONCLUSIONS AND SIGNIFICANCE: The relationship between memory load and feature binding qualitatively differed through each phase of the WM task. Of particular interest was the interaction of these factors observed within regions of the default mode network during retrieval which we interpret as suggesting that at low loads, binding processes may be 'automatic' but at higher loads it becomes a resource-intensive process leading to disengagement of activity in this

  13. Neural and hybrid modeling: an alternative route to efficiently predict the behavior of biotechnological processes aimed at biofuels obtainment.

    Science.gov (United States)

    Curcio, Stefano; Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele

    2014-01-01

    The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.

  14. Neural and Hybrid Modeling: An Alternative Route to Efficiently Predict the Behavior of Biotechnological Processes Aimed at Biofuels Obtainment

    Directory of Open Access Journals (Sweden)

    Stefano Curcio

    2014-01-01

    Full Text Available The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.

  15. Neural and Hybrid Modeling: An Alternative Route to Efficiently Predict the Behavior of Biotechnological Processes Aimed at Biofuels Obtainment

    Science.gov (United States)

    Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele

    2014-01-01

    The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved. PMID:24516363

  16. Mars Aqueous Processing System

    Science.gov (United States)

    Berggren, Mark; Wilson, Cherie; Carrera, Stacy; Rose, Heather; Muscatello, Anthony; Kilgore, James; Zubrin, Robert

    2012-01-01

    The goal of the Mars Aqueous Processing System (MAPS) is to establish a flexible process that generates multiple products that are useful for human habitation. Selectively extracting useful components into an aqueous solution, and then sequentially recovering individual constituents, can obtain a suite of refined or semi-refined products. Similarities in the bulk composition (although not necessarily of the mineralogy) of Martian and Lunar soils potentially make MAPS widely applicable. Similar process steps can be conducted on both Mars and Lunar soils while tailoring the reaction extents and recoveries to the specifics of each location. The MAPS closed-loop process selectively extracts, and then recovers, constituents from soils using acids and bases. The emphasis on Mars involves the production of useful materials such as iron, silica, alumina, magnesia, and concrete with recovery of oxygen as a byproduct. On the Moon, similar chemistry is applied with emphasis on oxygen production. This innovation has been demonstrated to produce high-grade materials, such as metallic iron, aluminum oxide, magnesium oxide, and calcium oxide, from lunar and Martian soil simulants. Most of the target products exhibited purities of 80 to 90 percent or more, allowing direct use for many potential applications. Up to one-fourth of the feed soil mass was converted to metal, metal oxide, and oxygen products. The soil residue contained elevated silica content, allowing for potential additional refining and extraction for recovery of materials needed for photovoltaic, semiconductor, and glass applications. A high-grade iron oxide concentrate derived from lunar soil simulant was used to produce a metallic iron component using a novel, combined hydrogen reduction/metal sintering technique. The part was subsequently machined and found to be structurally sound. The behavior of the lunar-simulant-derived iron product was very similar to that produced using the same methods on a Michigan iron

  17. System identification of an unmanned quadcopter system using MRAN neural

    Science.gov (United States)

    Pairan, M. F.; Shamsudin, S. S.

    2017-12-01

    This project presents the performance analysis of the radial basis function neural network (RBF) trained with Minimal Resource Allocating Network (MRAN) algorithm for real-time identification of quadcopter. MRAN’s performance is compared with the RBF with Constant Trace algorithm for 2500 input-output pair data sampling. MRAN utilizes adding and pruning hidden neuron strategy to obtain optimum RBF structure, increase prediction accuracy and reduce training time. The results indicate that MRAN algorithm produces fast training time and more accurate prediction compared with standard RBF. The model proposed in this paper is capable of identifying and modelling a nonlinear representation of the quadcopter flight dynamics.

  18. A Parallel Strategy for Convolutional Neural Network Based on Heterogeneous Cluster for Mobile Information System

    Directory of Open Access Journals (Sweden)

    Jilin Zhang

    2017-01-01

    Full Text Available With the development of the mobile systems, we gain a lot of benefits and convenience by leveraging mobile devices; at the same time, the information gathered by smartphones, such as location and environment, is also valuable for business to provide more intelligent services for customers. More and more machine learning methods have been used in the field of mobile information systems to study user behavior and classify usage patterns, especially convolutional neural network. With the increasing of model training parameters and data scale, the traditional single machine training method cannot meet the requirements of time complexity in practical application scenarios. The current training framework often uses simple data parallel or model parallel method to speed up the training process, which is why heterogeneous computing resources have not been fully utilized. To solve these problems, our paper proposes a delay synchronization convolutional neural network parallel strategy, which leverages the heterogeneous system. The strategy is based on both synchronous parallel and asynchronous parallel approaches; the model training process can reduce the dependence on the heterogeneous architecture in the premise of ensuring the model convergence, so the convolution neural network framework is more adaptive to different heterogeneous system environments. The experimental results show that the proposed delay synchronization strategy can achieve at least three times the speedup compared to the traditional data parallelism.

  19. Investigation of neural-net based control strategies for improved power system dynamic performance

    Energy Technology Data Exchange (ETDEWEB)

    Sobajic, D.J. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-12-31

    The ability to accurately predict the behavior of a dynamic system is of essential importance in monitoring and control of complex processes. In this regard recent advances in neural-net base system identification represent a significant step toward development and design of a new generation of control tools for increased system performance and reliability. The enabling functionality is the one of accurate representation of a model of a nonlinear and nonstationary dynamic system. This functionality provides valuable new opportunities including: (1) The ability to predict future system behavior on the basis of actual system observations, (2) On-line evaluation and display of system performance and design of early warning systems, and (3) Controller optimization for improved system performance. In this presentation, we discuss the issues involved in definition and design of learning control systems and their impact on power system control. Several numerical examples are provided for illustrative purpose.

  20. Neural system modeling and simulation using Hybrid Functional Petri Net.

    Science.gov (United States)

    Tang, Yin; Wang, Fei

    2012-02-01

    The Petri net formalism has been proved to be powerful in biological modeling. It not only boasts of a most intuitive graphical presentation but also combines the methods of classical systems biology with the discrete modeling technique. Hybrid Functional Petri Net (HFPN) was proposed specially for biological system modeling. An array of well-constructed biological models using HFPN yielded very interesting results. In this paper, we propose a method to represent neural system behavior, where biochemistry and electrical chemistry are both included using the Petri net formalism. We built a model for the adrenergic system using HFPN and employed quantitative analysis. Our simulation results match the biological data well, showing that the model is very effective. Predictions made on our model further manifest the modeling power of HFPN and improve the understanding of the adrenergic system. The file of our model and more results with their analysis are available in our supplementary material.

  1. A MapReduce Based High Performance Neural Network in Enabling Fast Stability Assessment of Power Systems

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-01-01

    Full Text Available Transient stability assessment is playing a vital role in modern power systems. For this purpose, machine learning techniques have been widely employed to find critical conditions and recognize transient behaviors based on massive data analysis. However, an ever increasing volume of data generated from power systems poses a number of challenges to traditional machine learning techniques, which are computationally intensive running on standalone computers. This paper presents a MapReduce based high performance neural network to enable fast stability assessment of power systems. Hadoop, which is an open-source implementation of the MapReduce model, is first employed to parallelize the neural network. The parallel neural network is further enhanced with HaLoop to reduce the computation overhead incurred in the iteration process of the neural network. In addition, ensemble techniques are employed to accommodate the accuracy loss of the parallelized neural network in classification. The parallelized neural network is evaluated with both the IEEE 68-node system and a real power system from the aspects of computation speedup and stability assessment.

  2. Intelligent reservoir operation system based on evolving artificial neural networks

    Science.gov (United States)

    Chaves, Paulo; Chang, Fi-John

    2008-06-01

    We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.

  3. The ctenophore genome and the evolutionary origins of neural systems.

    Science.gov (United States)

    Moroz, Leonid L; Kocot, Kevin M; Citarella, Mathew R; Dosung, Sohn; Norekian, Tigran P; Povolotskaya, Inna S; Grigorenko, Anastasia P; Dailey, Christopher; Berezikov, Eugene; Buckley, Katherine M; Ptitsyn, Andrey; Reshetov, Denis; Mukherjee, Krishanu; Moroz, Tatiana P; Bobkova, Yelena; Yu, Fahong; Kapitonov, Vladimir V; Jurka, Jerzy; Bobkov, Yuri V; Swore, Joshua J; Girardo, David O; Fodor, Alexander; Gusev, Fedor; Sanford, Rachel; Bruders, Rebecca; Kittler, Ellen; Mills, Claudia E; Rast, Jonathan P; Derelle, Romain; Solovyev, Victor V; Kondrashov, Fyodor A; Swalla, Billie J; Sweedler, Jonathan V; Rogaev, Evgeny I; Halanych, Kenneth M; Kohn, Andrea B

    2014-06-05

    The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.

  4. Neural processing of amplitude and formant rise time in dyslexia.

    Science.gov (United States)

    Peter, Varghese; Kalashnikova, Marina; Burnham, Denis

    2016-06-01

    This study aimed to investigate how children with dyslexia weight amplitude rise time (ART) and formant rise time (FRT) cues in phonetic discrimination. Passive mismatch responses (MMR) were recorded for a/ba/-/wa/contrast in a multiple deviant odd-ball paradigm to identify the neural response to cue weighting in 17 children with dyslexia and 17 age-matched control children. The deviant stimuli had either partial or full ART or FRT cues. The results showed that ART did not generate an MMR in either group, whereas both partial and full FRT cues generated MMR in control children while only full FRT cues generated MMR in children with dyslexia. These findings suggest that children, both controls and those with dyslexia, discriminate speech based on FRT cues and not ART cues. However, control children have greater sensitivity to FRT cues in speech compared to children with dyslexia. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Two multichannel integrated circuits for neural recording and signal processing.

    Science.gov (United States)

    Obeid, Iyad; Morizio, James C; Moxon, Karen A; Nicolelis, Miguel A L; Wolf, Patrick D

    2003-02-01

    We have developed, manufactured, and tested two analog CMOS integrated circuit "neurochips" for recording from arrays of densely packed neural electrodes. Device A is a 16-channel buffer consisting of parallel noninverting amplifiers with a gain of 2 V/V. Device B is a 16-channel two-stage analog signal processor with differential amplification and high-pass filtering. It features selectable gains of 250 and 500 V/V as well as reference channel selection. The resulting amplifiers on Device A had a mean gain of 1.99 V/V with an equivalent input noise of 10 microV(rms). Those on Device B had mean gains of 53.4 and 47.4 dB with a high-pass filter pole at 211 Hz and an equivalent input noise of 4.4 microV(rms). Both devices were tested in vivo with electrode arrays implanted in the somatosensory cortex.

  6. Computationally efficient locally-recurrent neural networks for online signal processing

    CERN Document Server

    Hussain, A; Shim, I

    1999-01-01

    A general class of computationally efficient locally recurrent networks (CERN) is described for real-time adaptive signal processing. The structure of the CERN is based on linear-in-the- parameters single-hidden-layered feedforward neural networks such as the radial basis function (RBF) network, the Volterra neural network (VNN) and the functionally expanded neural network (FENN), adapted to employ local output feedback. The corresponding learning algorithms are derived and key structural and computational complexity comparisons are made between the CERN and conventional recurrent neural networks. Two case studies are performed involving the real- time adaptive nonlinear prediction of real-world chaotic, highly non- stationary laser time series and an actual speech signal, which show that a recurrent FENN based adaptive CERN predictor can significantly outperform the corresponding feedforward FENN and conventionally employed linear adaptive filtering models. (13 refs).

  7. PRELIMINARY MODELING OF AN INDUSTRIAL RECOMBINANT HUMAN ERYTHROPOIETIN PURIFICATION PROCESS BY ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    R. H. R. Garcel1

    2015-09-01

    Full Text Available AbstractIn the present study a preliminary neural network modelling to improve our understanding of Recombinant Human Erythropoietin purification process in a plant was explored. A three layer feed-forward back propagation neural network was constructed for predicting the efficiency of the purification section comprising four chromatographic steps as a function of eleven operational variables. The neural network model performed very well in the training and validation phases. Using the connection weight method the predictor variables were ranked based on their estimated explanatory importance in the neural network and five input variables were found to be predominant over the others. These results provided useful information showing that the first chromatographic step and the third chromatographic step are decisive to achieve high efficiencies in the purification section, thus enriching the control strategy of the plant.

  8. Fault Tolerant Neural Network for ECG Signal Classification Systems

    Directory of Open Access Journals (Sweden)

    MERAH, M.

    2011-08-01

    Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.

  9. Learning from a carbon dioxide capture system dataset: Application of the piecewise neural network algorithm

    Directory of Open Access Journals (Sweden)

    Veronica Chan

    2017-03-01

    Full Text Available This paper presents the application of a neural network rule extraction algorithm, called the piece-wise linear artificial neural network or PWL-ANN algorithm, on a carbon capture process system dataset. The objective of the application is to enhance understanding of the intricate relationships among the key process parameters. The algorithm extracts rules in the form of multiple linear regression equations by approximating the sigmoid activation functions of the hidden neurons in an artificial neural network (ANN. The PWL-ANN algorithm overcomes the weaknesses of the statistical regression approach, in which accuracies of the generated predictive models are often not satisfactory, and the opaqueness of the ANN models. The results show that the generated PWL-ANN models have accuracies that are as high as the originally trained ANN models of the four datasets of the carbon capture process system. An analysis of the extracted rules and the magnitude of the coefficients in the equations revealed that the three most significant parameters of the CO2 production rate are the steam flow rate through reboiler, reboiler pressure, and the CO2 concentration in the flue gas.

  10. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks.

    Science.gov (United States)

    Khanali, Majid; Mobli, Hossein; Hosseinzadeh-Bandbafha, Homa

    2017-12-01

    In this study, an artificial neural network (ANN) model was developed for predicting the yield and life cycle environmental impacts based on energy inputs required in processing of black tea, green tea, and oolong tea in Guilan province of Iran. A life cycle assessment (LCA) approach was used to investigate the environmental impact categories of processed tea based on the cradle to gate approach, i.e., from production of input materials using raw materials to the gate of tea processing units, i.e., packaged tea. Thus, all the tea processing operations such as withering, rolling, fermentation, drying, and packaging were considered in the analysis. The initial data were obtained from tea processing units while the required data about the background system was extracted from the EcoInvent 2.2 database. LCA results indicated that diesel fuel and corrugated paper box used in drying and packaging operations, respectively, were the main hotspots. Black tea processing unit caused the highest pollution among the three processing units. Three feed-forward back-propagation ANN models based on Levenberg-Marquardt training algorithm with two hidden layers accompanied by sigmoid activation functions and a linear transfer function in output layer, were applied for three types of processed tea. The neural networks were developed based on energy equivalents of eight different input parameters (energy equivalents of fresh tea leaves, human labor, diesel fuel, electricity, adhesive, carton, corrugated paper box, and transportation) and 11 output parameters (yield, global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation). The results showed that the developed ANN models with R 2 values in the range of 0.878 to 0.990 had excellent performance in predicting all the output variables based on inputs. Energy consumption for

  11. Separate neural systems value immediate and delayed monetary rewards.

    Science.gov (United States)

    McClure, Samuel M; Laibson, David I; Loewenstein, George; Cohen, Jonathan D

    2004-10-15

    When humans are offered the choice between rewards available at different points in time, the relative values of the options are discounted according to their expected delays until delivery. Using functional magnetic resonance imaging, we examined the neural correlates of time discounting while subjects made a series of choices between monetary reward options that varied by delay to delivery. We demonstrate that two separate systems are involved in such decisions. Parts of the limbic system associated with the midbrain dopamine system, including paralimbic cortex, are preferentially activated by decisions involving immediately available rewards. In contrast, regions of the lateral prefrontal cortex and posterior parietal cortex are engaged uniformly by intertemporal choices irrespective of delay. Furthermore, the relative engagement of the two systems is directly associated with subjects' choices, with greater relative fronto-parietal activity when subjects choose longer term options.

  12. Examination of neural systems sub-serving facebook "addiction".

    Science.gov (United States)

    Turel, Ofir; He, Qinghua; Xue, Gui; Xiao, Lin; Bechara, Antoine

    2014-12-01

    Because addictive behaviors typically result from violated homeostasis of the impulsive (amygdala-striatal) and inhibitory (prefrontal cortex) brain systems, this study examined whether these systems sub-serve a specific case of technology-related addiction, namely Facebook "addiction." Using a go/no-go paradigm in functional MRI settings, the study examined how these brain systems in 20 Facebook users (M age = 20.3 yr., SD = 1.3, range = 18-23) who completed a Facebook addiction questionnaire, responded to Facebook and less potent (traffic sign) stimuli. The findings indicated that at least at the examined levels of addiction-like symptoms, technology-related "addictions" share some neural features with substance and gambling addictions, but more importantly they also differ from such addictions in their brain etiology and possibly pathogenesis, as related to abnormal functioning of the inhibitory-control brain system.

  13. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning. Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  14. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment

    Science.gov (United States)

    Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074

  15. Adolescents' risky decision-making activates neural networks related to social cognition and cognitive control processes.

    Science.gov (United States)

    Rodrigo, María José; Padrón, Iván; de Vega, Manuel; Ferstl, Evelyn C

    2014-01-01

    This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents' risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17-18, and young adults: 21-22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others' perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in

  16. Adolescents’ risky decision-making activates neural networks related to social cognition and cognitive control processes

    Directory of Open Access Journals (Sweden)

    María José eRodrigo

    2014-02-01

    Full Text Available This study examines by means of fMRI the neural mechanisms underlying adolescents’ risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17-18, and young adults: 21-22 years old read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug or ambiguous situations (e.g., eating a hamburger or a hotdog. Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ, bilateral middle temporal gyrus (MTG, right medial prefrontal cortex (mPFC, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind. In addition, brain structures related to cognitive control were active (right ACC, bilateral DLPFC, bilateral OFC, whereas no significant clusters were obtained in the reward system (VS. Choosing the dangerous option involved a further activation of control areas (ACC and emotional and social cognition areas (temporal pole. Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in theory of mind related regions (bilateral middle temporal gyrus and in motor control regions related to the planning of actions (pre-supplementary motor area. Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others’ perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes.

  17. Spintronic characteristics of self-assembled neurotransmitter acetylcholine molecular complexes enable quantum information processing in neural networks and brain

    Science.gov (United States)

    Tamulis, Arvydas; Majauskaite, Kristina; Kairys, Visvaldas; Zborowski, Krzysztof; Adhikari, Kapil; Krisciukaitis, Sarunas

    2016-09-01

    Implementation of liquid state quantum information processing based on spatially localized electronic spin in the neurotransmitter stable acetylcholine (ACh) neutral molecular radical is discussed. Using DFT quantum calculations we proved that this molecule possesses stable localized electron spin, which may represent a qubit in quantum information processing. The necessary operating conditions for ACh molecule are formulated in self-assembled dimer and more complex systems. The main quantum mechanical research result of this paper is that the neurotransmitter ACh systems, which were proposed, include the use of quantum molecular spintronics arrays to control the neurotransmission in neural networks.

  18. Who was the Agent? The Neural Correlates of Reanalysis Processes during Sentence Comprehension

    NARCIS (Netherlands)

    Hirotani, M.; Makuuchi, M.; Rüschemeyer, S.A.; Friederici, A.D.

    2011-01-01

    Sentence comprehension is a complex process. Besides identifying the meaning of each word and processing the syntactic structure of a sentence, it requires the computation of thematic information, that is, information about who did what to whom. The present fMRI study investigated the neural basis

  19. Neural systems supporting and affecting economically relevant behavior

    Directory of Open Access Journals (Sweden)

    Braeutigam S

    2012-05-01

    Full Text Available Sven BraeutigamOxford Centre for Human Brain Activity, University of Oxford, Oxford, United KingdomAbstract: For about a hundred years, theorists and traders alike have tried to unravel and understand the mechanisms and hidden rules underlying and perhaps determining economically relevant behavior. This review focuses on recent developments in neuroeconomics, where the emphasis is placed on two directions of research: first, research exploiting common experiences of urban inhabitants in industrialized societies to provide experimental paradigms with a broader real-life content; second, research based on behavioral genetics, which provides an additional dimension for experimental control and manipulation. In addition, possible limitations of state-of-the-art neuroeconomics research are addressed. It is argued that observations of neuronal systems involved in economic behavior converge to some extent across the technologies and paradigms used. Conceptually, the data available as of today raise the possibility that neuroeconomic research might provide evidence at the neuronal level for the existence of multiple systems of thought and for the importance of conflict. Methodologically, Bayesian approaches in particular may play an important role in identifying mechanisms and establishing causality between patterns of neural activity and economic behavior.Keywords: neuroeconomics, behavioral genetics, decision-making, consumer behavior, neural system

  20. Trade-off between Multiple Constraints Enables Simultaneous Formation of Modules and Hubs in Neural Systems

    Science.gov (United States)

    Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C.; Zhou, Changsong

    2013-01-01

    The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter , and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of , resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real networks. The discrepancy

  1. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems.

    Directory of Open Access Journals (Sweden)

    Yuhan Chen

    Full Text Available The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter α, and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of α, resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of α values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real

  2. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  3. Distributed neural system for emotional intelligence revealed by lesion mapping.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2014-03-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease.

  4. Distributed neural system for emotional intelligence revealed by lesion mapping

    Science.gov (United States)

    Colom, Roberto; Grafman, Jordan

    2014-01-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease. PMID:23171618

  5. A quantum theoretical approach to information processing in neural networks

    Science.gov (United States)

    Barahona da Fonseca, José; Barahona da Fonseca, Isabel; Suarez Araujo, Carmen Paz; Simões da Fonseca, José

    2000-05-01

    A reinterpretation of experimental data on learning was used to formulate a law on data acquisition similar to the Hamiltonian of a mechanical system. A matrix of costs in decision making specifies values attributable to a barrier that opposed to hypothesis formation about decision making. The interpretation of the encoding costs as frequencies of oscillatory phenomena leads to a quantum paradigm based in the models of photoelectric effect as well as of a particle against a potential barrier. Cognitive processes are envisaged as complex phenomena represented by structures linked by valence bounds. This metaphor is used to find some prerequisites to certain types of conscious experience as well as to find an explanation for some pathological distortions of cognitive operations as they are represented in the context of the isolobal model. Those quantum phenomena are understood as representing an analogue programming for specific special purpose computations. The formation of complex chemical structures within the context of isolobal theory is understood as an analog quantum paradigm for complex cognitive computations.

  6. Attentional cues affect accuracy and reaction time via different cognitive and neural processes.

    Science.gov (United States)

    van Ede, Freek; de Lange, Floris P; Maris, Eric

    2012-07-25

    We investigated whether symbolic endogenous attentional cues affect perceptual accuracy and reaction time (RT) via different cognitive and neural processes. We recorded magnetoencephalography in 19 humans while they performed a cued somatosensory discrimination task in which the cue-target interval was varied between 0 and 1000 ms. Comparing behavioral and neural measures, we show that (1) attentional cueing affects accuracy and RT with different time courses and (2) the time course of our neural measure (anticipatory suppression of neuronal oscillations in stimulus-receiving sensory cortex) only accounts for the accuracy time course. A model is proposed in which the effect on accuracy is explained by a single process (preparatory excitability increase in sensory cortex), whereas the effect on RT is explained by an additional process that is sensitive to cue-target compatibility (post-target comparison between expected and actual stimulus location). These data provide new insights into the mechanisms underlying behavioral consequences of attentional cueing.

  7. Scaling up a chemically-defined aggregate-based suspension culture system for neural commitment of human pluripotent stem cells.

    Science.gov (United States)

    Miranda, Cláudia C; Fernandes, Tiago G; Diogo, M Margarida; Cabral, Joaquim M S

    2016-12-01

    The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work, we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 μm) and narrow distribution of diameters (coefficient of variation of 21.6%). Scalable neural commitment of hiPSCs as 3D aggregates was performed in 50 mL spinner flasks, and the process was optimized using a factorial design approach, involving parameters such as agitation rate and seeding density. We were able to produce neural progenitor cell cultures, that at the end of a 6-day neural induction process contained less than 3% of Oct4-positive cells and that, after replating, retained more than 60% of Pax6-positive neural cells. The results here presented should set the stage for the future generation of a clinically relevant number of human neural progenitors for transplantation and other biomedical applications using controlled, automated and reproducible large-scale bioreactor culture systems. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cue validity probability influences neural processing of targets.

    Science.gov (United States)

    Arjona, Antonio; Escudero, Miguel; Gómez, Carlos M

    2016-09-01

    The neural bases of the so-called Spatial Cueing Effect in a visuo-auditory version of the Central Cue Posneŕs Paradigm (CCPP) are analyzed by means of behavioral patterns (Reaction Times and Errors) and Event-Related Potentials (ERPs), namely the Contingent Negative Variation (CNV), N1, P2a, P2p, P3a, P3b and Negative Slow Wave (NSW). The present version consisted of three types of trial blocks with different validity/invalidity proportions: 50% valid - 50% invalid trials, 68% valid - 32% invalid trials and 86% valid - 14% invalid trials. Thus, ERPs can be analyzed as the proportion of valid trials per block increases. Behavioral (Reaction Times and Incorrect responses) and ERP (lateralized component of CNV, P2a, P3b and NSW) results showed a spatial cueing effect as the proportion of valid trials per block increased. Results suggest a brain activity modulation related to sensory-motor attention and working memory updating, in order to adapt to external unpredictable contingencies. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Child Maltreatment and Neural Systems Underlying Emotion Regulation.

    Science.gov (United States)

    McLaughlin, Katie A; Peverill, Matthew; Gold, Andrea L; Alves, Sonia; Sheridan, Margaret A

    2015-09-01

    The strong associations between child maltreatment and psychopathology have generated interest in identifying neurodevelopmental processes that are disrupted following maltreatment. Previous research has focused largely on neural response to negative facial emotion. We determined whether child maltreatment was associated with neural responses during passive viewing of negative and positive emotional stimuli and effortful attempts to regulate emotional responses. A total of 42 adolescents aged 13 to 19 years, half with exposure to physical and/or sexual abuse, participated. Blood oxygen level-dependent (BOLD) response was measured during passive viewing of negative and positive emotional stimuli and attempts to modulate emotional responses using cognitive reappraisal. Maltreated adolescents exhibited heightened response in multiple nodes of the salience network, including amygdala, putamen, and anterior insula, to negative relative to neutral stimuli. During attempts to decrease responses to negative stimuli relative to passive viewing, maltreatment was associated with greater recruitment of superior frontal gyrus, dorsal anterior cingulate cortex, and frontal pole; adolescents with and without maltreatment down-regulated amygdala response to a similar degree. No associations were observed between maltreatment and neural response to positive emotional stimuli during passive viewing or effortful regulation. Child maltreatment heightens the salience of negative emotional stimuli. Although maltreated adolescents modulate amygdala responses to negative cues to a degree similar to that of non-maltreated youths, they use regions involved in effortful control to a greater degree to do so, potentially because greater effort is required to modulate heightened amygdala responses. These findings are promising, given the centrality of cognitive restructuring in trauma-focused treatments for children. Copyright © 2015 American Academy of Child and Adolescent Psychiatry

  10. Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori

    Directory of Open Access Journals (Sweden)

    Takeshi eSakurai

    2014-03-01

    Full Text Available Male moths locate their mates using species-specific sex pheromones emitted by conspecific females. One striking feature of sex pheromone recognition in males is the high degree of specificity and sensitivity at all levels, from the primary sensory processes to behavior. The silkmoth Bombyx mori is an excellent model insect in which to decipher the underlying mechanisms of sex pheromone recognition due to its simple sex pheromone communication system, where a single pheromone component, bombykol, elicits the full sexual behavior of male moths. Various technical advancements that cover all levels of analysis from molecular to behavioral also allow the systematic analysis of pheromone recognition mechanisms. Sex pheromone signals are detected by pheromone receptors expressed in olfactory receptor neurons in the pheromone-sensitive sensilla trichodea on male antennae. The signals are transmitted to the first olfactory processing center, the antennal lobe (AL, and then are processed further in the higher centers (mushroom body and lateral protocerebrum to elicit orientation behavior towards females. In recent years, significant progress has been made elucidating the molecular mechanisms underlying the detection of sex pheromones. In addition, extensive studies of the AL and higher centers have provided insights into the neural basis of pheromone processing in the silkmoth brain. This review describes these latest advances, and discusses what these advances have revealed about the mechanisms underlying the specific and sensitive recognition of sex pheromones in the silkmoth.

  11. Examples of Current and Future Uses of Neural-Net Image Processing for Aerospace Applications

    Science.gov (United States)

    Decker, Arthur J.

    2004-01-01

    Feed forward artificial neural networks are very convenient for performing correlated interpolation of pairs of complex noisy data sets as well as detecting small changes in image data. Image-to-image, image-to-variable and image-to-index applications have been tested at Glenn. Early demonstration applications are summarized including image-directed alignment of optics, tomography, flow-visualization control of wind-tunnel operations and structural-model-trained neural networks. A practical application is reviewed that employs neural-net detection of structural damage from interference fringe patterns. Both sensor-based and optics-only calibration procedures are available for this technique. These accomplishments have generated the knowledge necessary to suggest some other applications for NASA and Government programs. A tomography application is discussed to support Glenn's Icing Research tomography effort. The self-regularizing capability of a neural net is shown to predict the expected performance of the tomography geometry and to augment fast data processing. Other potential applications involve the quantum technologies. It may be possible to use a neural net as an image-to-image controller of an optical tweezers being used for diagnostics of isolated nano structures. The image-to-image transformation properties also offer the potential for simulating quantum computing. Computer resources are detailed for implementing the black box calibration features of the neural nets.

  12. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  13. Point process modeling and estimation: Advances in the analysis of dynamic neural spiking data

    Science.gov (United States)

    Deng, Xinyi

    2016-08-01

    A common interest of scientists in many fields is to understand the relationship between the dynamics of a physical system and the occurrences of discrete events within such physical system. Seismologists study the connection between mechanical vibrations of the Earth and the occurrences of earthquakes so that future earthquakes can be better predicted. Astrophysicists study the association between the oscillating energy of celestial regions and the emission of photons to learn the Universe's various objects and their interactions. Neuroscientists study the link between behavior and the millisecond-timescale spike patterns of neurons to understand higher brain functions. Such relationships can often be formulated within the framework of state-space models with point process observations. The basic idea is that the dynamics of the physical systems are driven by the dynamics of some stochastic state variables and the discrete events we observe in an interval are noisy observations with distributions determined by the state variables. This thesis proposes several new methodological developments that advance the framework of state-space models with point process observations at the intersection of statistics and neuroscience. In particular, we develop new methods 1) to characterize the rhythmic spiking activity using history-dependent structure, 2) to model population spike activity using marked point process models, 3) to allow for real-time decision making, and 4) to take into account the need for dimensionality reduction for high-dimensional state and observation processes. We applied these methods to a novel problem of tracking rhythmic dynamics in the spiking of neurons in the subthalamic nucleus of Parkinson's patients with the goal of optimizing placement of deep brain stimulation electrodes. We developed a decoding algorithm that can make decision in real-time (for example, to stimulate the neurons or not) based on various sources of information present in

  14. Impaired neural reward processing in children and adolescents with reactive attachment disorder: A pilot study.

    Science.gov (United States)

    Mizuno, Kei; Takiguchi, Shinichiro; Yamazaki, Mika; Asano, Mizuki; Kato, Shiho; Kuriyama, Kikuko; Watanabe, Yasuyoshi; Sadato, Norihiro; Tomoda, Akemi

    2015-10-01

    Reactive attachment disorder (RAD) is characterized by markedly disturbed and developmentally inappropriate social relatedness due to parental maltreatment. RAD patients often display a high number of comorbid attention deficit/hyperactivity disorder (ADHD) symptoms, and certain RAD symptoms are difficult to discriminate from ADHD. One of the core characteristics of ADHD is a decrease in neural reward processing due to dopamine dysfunction. The aim of the present study was to determine whether the brain activity involved in reward processing in RAD patients is impaired in comparison with ADHD patients and typically developed controls. Five RAD patients, 17 typically developed (TD) controls and 17 ADHD patients aged 10-16 years performed tasks with high and low monetary reward while undergoing functional magnetic resonance imaging. ADHD patients were tested before and after 3 months treatment with osmotic release oral system-methylphenidate. Before treatment, ADHD patients showed that striatal and thalamus activities only in the tasks with low monetary reward were lower than TD controls. RAD patients showed decrease in activity of the caudate, putamen and thalamus during both the high and low monetary reward conditions in comparison with all the other groups. In RAD patients, the activity of the putamen was associated with the severity of posttraumatic stress and overt dissociation. Reward sensitivity was markedly decreased in children and adolescents with RAD, as evidenced by a diminished neural response during reward perception. This suggests that dopaminergic dysfunction exists in these patients, and may inform future dopaminergic treatment strategies for RAD. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Hybrid intelligence systems and artificial neural network (ANN approach for modeling of surface roughness in drilling

    Directory of Open Access Journals (Sweden)

    Ch. Sanjay

    2014-12-01

    Full Text Available In machining processes, drilling operation is material removal process that has been widely used in manufacturing since industrial revolution. The useful life of cutting tool and its operating conditions largely controls the economics of machining operations. Drilling is most frequently performed material removing process and is used as a preliminary step for many operations, such as reaming, tapping, and boring. Drill wear has a bad effect on the surface finish and dimensional accuracy of the work piece. The surface finish of a machined part is one of the most important quality characteristics in manufacturing industries. The primary objective of this research is the prediction of suitable parameters for surface roughness in drilling. Cutting speed, cutting force, and machining time were given as inputs to the adaptive fuzzy neural network and neuro-fuzzy analysis for estimating the values of surface roughness by using 2, 3, 4, and 5 membership functions. The best structures were selected based on minimum of summation of square with the actual values with the estimated values by artificial neural fuzzy inference system (ANFIS and neuro-fuzzy systems. For artificial neural network (ANN analysis, the number of neurons was selected from 1, 2, 3, … , 20. The learning rate was selected as .5 and .5 smoothing factor was used. The inputs were selected as cutting speed, feed, machining time, and thrust force. The best structures of neural networks were selected based on the criteria as the minimum of summation of square with the actual value of surface roughness. Drilling experiments with 10 mm size were performed at two cutting speeds and feeds. Comparative analysis has been done between the actual values and the estimated values obtained by ANFIS, neuro-fuzzy, and ANN analysis.

  16. Neural Network Enhanced Structure Determination of Osteoporosis, Immune System, and Radiation Repair Proteins Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize self learning neural network technology to determine the structure of osteoporosis, immune system disease, and excess radiation...

  17. Surface Casting Defects Inspection Using Vision System and Neural Network Techniques

    Directory of Open Access Journals (Sweden)

    Świłło S.J.

    2013-12-01

    Full Text Available The paper presents a vision based approach and neural network techniques in surface defects inspection and categorization. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks and pores that greatly influence the material’s properties Since the human visual inspection for the surface is slow and expensive, a computer vision system is an alternative solution for the online inspection. The authors present the developed vision system uses an advanced image processing algorithm based on modified Laplacian of Gaussian edge detection method and advanced lighting system. The defect inspection algorithm consists of several parameters that allow the user to specify the sensitivity level at which he can accept the defects in the casting. In addition to the developed image processing algorithm and vision system apparatus, an advanced learning process has been developed, based on neural network techniques. Finally, as an example three groups of defects were investigated demonstrates automatic selection and categorization of the measured defects, such as blowholes, shrinkage porosity and shrinkage cavity.

  18. Automated system for load flow prediction in power substations using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Arlys Michel Lastre Aleaga

    2015-09-01

    Full Text Available The load flow is of great importance in assisting the process of decision making and planning of generation, distribution and transmission of electricity. Ignorance of the values in this indicator, as well as their inappropriate prediction, difficult decision making and efficiency of the electricity service, and can cause undesirable situations such as; the on demand, overheating of the components that make up a substation, and incorrect planning processes electricity generation and distribution. Given the need for prediction of flow of electric charge of the substations in Ecuador this research proposes the concept for the development of an automated prediction system employing the use of Artificial Neural Networks.

  19. Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.

    Science.gov (United States)

    Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

    2014-02-01

    This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Single dose antidepressant administration modulates the neural processing of self-referent personality trait words

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla; Papadatou-Pastou, Marietta; Cowen, Philip J

    2007-01-01

    Drugs which inhibit the re-uptake of monoamines in the brain are effective in the treatment of depression; however, the neuropsychological mechanisms which lead to the resolution of depressive symptomatology are unclear. Behavioral studies in healthy volunteers suggest that acute administration...... of the selective norepinephrine reuptake inhibitor reboxetine modulates emotional processing. The current study therefore explored the neural basis of this effect. A single dose of reboxetine (4 mg) or placebo was administered to 24 healthy volunteers in a double-blind between-group design. Neural responses during...... for positive self-referent material. These results support the hypothesis that antidepressants have early effects on the neural processing of emotional material which may be important in their therapeutic actions....

  1. Smokers exhibit biased neural processing of smoking and affective images.

    Science.gov (United States)

    Oliver, Jason A; Jentink, Kade G; Drobes, David J; Evans, David E

    2016-08-01

    There has been growing interest in the role that implicit processing of drug cues can play in motivating drug use behavior. However, the extent to which drug cue processing biases relate to the processing biases exhibited to other types of evocative stimuli is largely unknown. The goal of the present study was to determine how the implicit cognitive processing of smoking cues relates to the processing of affective cues using a novel paradigm. Smokers (n = 50) and nonsmokers (n = 38) completed a picture-viewing task, in which participants were presented with a series of smoking, pleasant, unpleasant, and neutral images while engaging in a distractor task designed to direct controlled resources away from conscious processing of image content. Electroencephalogram recordings were obtained throughout the task for extraction of event-related potentials (ERPs). Smokers exhibited differential processing of smoking cues across 3 different ERP indices compared with nonsmokers. Comparable effects were found for pleasant cues on 2 of these indices. Late cognitive processing of smoking and pleasant cues was associated with nicotine dependence and cigarette use. Results suggest that cognitive biases may extend across classes of stimuli among smokers. This raises important questions about the fundamental meaning of cognitive biases, and suggests the need to consider generalized cognitive biases in theories of drug use behavior and interventions based on cognitive bias modification. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Low-cost wireless neural recording system and software.

    Science.gov (United States)

    Gregory, Jeffrey A; Borna, Amir; Roy, Sabyasachi; Wang, Xiaoqin; Lewandowski, Brian; Schmidt, Marc; Najafi, Khalil

    2009-01-01

    We describe a flexible wireless neural recording system, which is comprised of a 15-channel analog FM transmitter, digital receiver and custom user interface software for data acquisition. The analog front-end is constructed from commercial off the shelf (COTS) components and weighs 6.3g (including batteries) and is capable of transmitting over 24 hours up to a range over 3m with a 25microV(rms) in-vivo noise floor. The Software Defined Radio (SDR) and the acquisition software provide a data acquisition platform with real time data display and can be customized based on the specifications of various experiments. The described system was characterized with in-vitro and in-vivo experiments and the results are presented.

  3. Processing of different types of social threat in shyness: Preliminary findings of distinct functional neural connectivity.

    Science.gov (United States)

    Tang, Alva; Beaton, Elliott A; Tatham, Erica; Schulkin, Jay; Hall, Geoffrey B; Schmidt, Louis A

    2016-01-01

    Current theory suggests that the processing of different types of threat is supported by distinct neural networks. Here we tested whether there are distinct neural correlates associated with different types of threat processing in shyness. Using fMRI and multivariate techniques, we compared neural responses and functional connectivity during the processing of imminent (i.e., congruent angry/angry face pairs) and ambiguous (i.e., incongruent angry/neutral face pairs) social threat in young adults selected for high and low shyness. To both types of threat processing, non-shy adults recruited a right medial prefrontal cortex (mPFC) network encompassing nodes of the default mode network involved in automatic emotion regulation, whereas shy adults recruited a right dorsal anterior cingulate cortex (dACC) network encompassing nodes of the frontoparietal network that instantiate active attentional and cognitive control. Furthermore, in shy adults, the mPFC interacted with the dACC network for ambiguous threat, but with a distinct network encompassing nodes of the salience network for imminent threat. These preliminary results expand our understanding of right mPFC function associated with temperamental shyness. They also provide initial evidence for differential neural networks associated with shy and non-shy profiles in the context of different types of social threat processing.

  4. Higher-order cognitive training effects on processing speed-related neural activity: a randomized trial.

    Science.gov (United States)

    Motes, Michael A; Yezhuvath, Uma S; Aslan, Sina; Spence, Jeffrey S; Rypma, Bart; Chapman, Sandra B

    2017-10-12

    Higher-order cognitive training has shown to enhance performance in older adults, but the neural mechanisms underlying performance enhancement have yet to be fully disambiguated. This randomized trial examined changes in processing speed and processing speed-related neural activity in older participants (57-71 years of age) who underwent cognitive training (CT, N = 12) compared with wait-listed (WLC, N = 15) or exercise-training active (AC, N = 14) controls. The cognitive training taught cognitive control functions of strategic attention, integrative reasoning, and innovation over 12 weeks. All 3 groups worked through a functional magnetic resonance imaging processing speed task during 3 sessions (baseline, mid-training, and post-training). Although all groups showed faster reaction times (RTs) across sessions, the CT group showed a significant increase, and the WLC and AC groups showed significant decreases across sessions in the association between RT and BOLD signal change within the left prefrontal cortex (PFC). Thus, cognitive training led to a change in processing speed-related neural activity where faster processing speed was associated with reduced PFC activation, fitting previously identified neural efficiency profiles. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise.

    Science.gov (United States)

    Nobukawa, Sou; Nishimura, Haruhiko

    2016-08-01

    Synaptic plasticity is widely recognized to support adaptable information processing in the brain. Spike-timing-dependent plasticity, one subtype of plasticity, can lead to synchronous spike propagation with temporal spiking coding information. Recently, it was reported that in a noisy environment, like the actual brain, the spike-timing-dependent plasticity may be made efficient by the effect of stochastic resonance. In the stochastic resonance, the presence of noise helps a nonlinear system in amplifying a weak (under barrier) signal. However, previous studies have ignored the full variety of spiking patterns and many relevant factors in neural dynamics. Thus, in order to prove the physiological possibility for the enhancement of spike-timing-dependent plasticity by stochastic resonance, it is necessary to demonstrate that this stochastic resonance arises in realistic cortical neural systems. In this study, we evaluate this stochastic resonance phenomenon in the realistic cortical neural system described by the Izhikevich neuron model and compare the characteristics of typical spiking patterns of regular spiking, intrinsically bursting and chattering experimentally observed in the cortex.

  6. Altered Dynamics Between Neural Systems Sub-serving Decisions for Unhealthy Food

    Directory of Open Access Journals (Sweden)

    Qinghua eHe

    2014-11-01

    Full Text Available Using BOLD functional magnetic resonance imaging (fMRI techniques, we examined the relationships between activities in the neural systems elicited by the decision stage of the Iowa Gambling Task (IGT, and food choices of either vegetables or snacks high in fat and sugar. Twenty-three healthy normal weight adolescents and young adults, ranging in age from 14-21, were studied. Neural systems implicated in decision-making and inhibitory control were engaged by having participants perform the IGT during fMRI scanning. The Youth/Adolescent Questionnaire, a food frequency questionnaire, was used to obtain daily food choices. Higher consumption of vegetables correlated with higher activity in prefrontal cortical regions, namely the left superior frontal gyrus (SFG, and lower activity in sub-cortical regions, namely the right insular cortex. In contrast, higher consumption of fatty and sugary snacks correlated with lower activity in the prefrontal regions, combined with higher activity in the sub-cortical, insular cortex.These results provide preliminary support for our hypotheses that unhealthy food choices in real life are reflected by neuronal changes in key neural systems involved in habits, decision-making and self-control processes. These findings have implications for the creation of decision-making based intervention strategies that promote healthier eating.

  7. Prediction of ferric iron precipitation in bioleaching process using partial least squares and artificial neural network

    Directory of Open Access Journals (Sweden)

    Golmohammadi Hassan

    2013-01-01

    Full Text Available A quantitative structure-property relationship (QSPR study based on partial least squares (PLS and artificial neural network (ANN was developed for the prediction of ferric iron precipitation in bioleaching process. The leaching temperature, initial pH, oxidation/reduction potential (ORP, ferrous concentration and particle size of ore were used as inputs to the network. The output of the model was ferric iron precipitation. The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. After optimization and training of the network according to back-propagation algorithm, a 5-5-1 neural network was generated for prediction of ferric iron precipitation. The root mean square error for the neural network calculated ferric iron precipitation for training, prediction and validation set are 32.860, 40.739 and 35.890, respectively, which are smaller than those obtained by PLS model (180.972, 165.047 and 149.950, respectively. Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ferric iron precipitation in bioleaching process.

  8. Fuzzy stochastic neural network model for structural system identification

    Science.gov (United States)

    Jiang, Xiaomo; Mahadevan, Sankaran; Yuan, Yong

    2017-01-01

    This paper presents a dynamic fuzzy stochastic neural network model for nonparametric system identification using ambient vibration data. The model is developed to handle two types of imprecision in the sensed data: fuzzy information and measurement uncertainties. The dimension of the input vector is determined by using the false nearest neighbor approach. A Bayesian information criterion is applied to obtain the optimum number of stochastic neurons in the model. A fuzzy C-means clustering algorithm is employed as a data mining tool to divide the sensed data into clusters with common features. The fuzzy stochastic model is created by combining the fuzzy clusters of input vectors with the radial basis activation functions in the stochastic neural network. A natural gradient method is developed based on the Kullback-Leibler distance criterion for quick convergence of the model training. The model is validated using a power density pseudospectrum approach and a Bayesian hypothesis testing-based metric. The proposed methodology is investigated with numerically simulated data from a Markov Chain model and a two-story planar frame, and experimentally sensed data from ambient vibration data of a benchmark structure.

  9. Temperature and relative humidity estimation and prediction in the tobacco drying process using Artificial Neural Networks.

    Science.gov (United States)

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén

    2012-10-17

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.

  10. Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis

    Science.gov (United States)

    Liu, Hua-Kuang; Huang, K. S.; Diep, J.

    1993-01-01

    Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. the proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photofractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feedforward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.

  11. Sensorimotor Integration in Speech Processing: Computational Basis and Neural Organization

    National Research Council Canada - National Science Library

    Hickok, Gregory; Houde, John; Rong, Feng

    2011-01-01

    .... A critical component of this control system is forward sensory prediction, which affords a natural mechanism for limited motor influence on perception, as recent perceptual research has suggested...

  12. Local active information storage as a tool to understand distributed neural information processing

    OpenAIRE

    Michael eWibral; Joseph eLizier; Sebastian eVögler; Viola ePriesemann; Ralf eGaluske

    2014-01-01

    Every act of information processing can in principle be decomposed into the component operations of information storage, transfer, and modification. Yet, while this is easily done for today's digital computers, the application of these concepts to neural information processing was hampered by the lack of proper mathematical definitions of these operations on information. Recently, definitions were given for the dynamics of these information processing operations on a local scale in space and ...

  13. Processed Products Database System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection of annual data on processed seafood products. The Division provides authoritative advice, coordination and guidance on matters related to the collection,...

  14. Dynamical systems, attractors, and neural circuits [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Paul Miller

    2016-05-01

    Full Text Available Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic—they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  15. Multiagent Intrusion Detection Based on Neural Network Detectors and Artificial Immune System

    OpenAIRE

    Vaitsekhovich, L.; Golovko, V; Rubanau, V.

    2009-01-01

    In this article the artificial immune system and neural network techniques for intrusion detection have been addressed. The AIS allows detecting unknown samples of computer attacks. The integration of AIS and neural networks as detectors permits to increase performance of the system security. The detector structure is based on the integration of the different neural networks namely RNN and MLP. The KDD-99 dataset was used for experiments performing. The experimental results show that such int...

  16. System Identification Using Multilayer Differential Neural Networks: A New Result

    Directory of Open Access Journals (Sweden)

    J. Humberto Pérez-Cruz

    2012-01-01

    Full Text Available In previous works, a learning law with a dead zone function was developed for multilayer differential neural networks. This scheme requires strictly a priori knowledge of an upper bound for the unmodeled dynamics. In this paper, the learning law is modified in such a way that this condition is relaxed. By this modification, the tuning process is simpler and the dead-zone function is not required anymore. On the basis of this modification and by using a Lyapunov-like analysis, a stronger result is here demonstrated: the exponential convergence of the identification error to a bounded zone. Besides, a value for upper bound of such zone is provided. The workability of this approach is tested by a simulation example.

  17. What can the monetary incentive delay task tell us about the neural processing of reward and punishment?

    Directory of Open Access Journals (Sweden)

    Lutz K

    2014-04-01

    Full Text Available Kai Lutz,1–3 Mario Widmer1,2,41Department of Neurology, University Hospital Zürich, Zürich, 2Cereneo, Center for Neurology and Rehabilitation, Vitznau, 3Division of Neuropsychology, Institute of Psychology, University of Zürich, Zürich, 4Neural Control of Movement Lab, ETH Zürich, Zürich, SwitzerlandAbstract: Since its introduction in 2000, the monetary incentive delay (MID task has been used extensively to investigate changes in neural activity in response to the processing of reward and punishment in healthy, but also in clinical populations. Typically, the MID task requires an individual to react to a target stimulus presented after an incentive cue to win or to avoid losing the indicated reward. In doing so, this paradigm allows the detailed examination of different stages of reward processing like reward prediction, anticipation, outcome processing, and consumption as well as the processing of tasks under different reward conditions. This review gives an overview of different utilizations of the MID task by outlining the neuronal processes involved in distinct aspects of human reward processing, such as anticipation versus consumption, reward versus punishment, and, with a special focus, reward-based learning processes. Furthermore, literature on specific influences on reward processing like behavioral, clinical and developmental influences, is reviewed, describing current findings and possible future directions.Keywords: reward, punishment, dopamine, reward system

  18. Neural mechanism of facilitation system during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available An enhanced facilitation system caused by motivational input plays an important role in supporting performance during physical fatigue. We tried to clarify the neural mechanisms of the facilitation system during physical fatigue using magnetoencephalography (MEG and a classical conditioning technique. Twelve right-handed volunteers participated in this study. Participants underwent MEG recording during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The metronome sounds were used as conditioned stimuli and maximum handgrip trials as unconditioned stimuli. The next day, they were randomly assigned to two groups in a single-blinded, two-crossover fashion to undergo two types of MEG recordings, that is, for the control and motivation sessions, during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. The alpha-band event-related desynchronizations (ERDs of the motivation session relative to the control session within the time windows of 500 to 700 and 800 to 900 ms after the onset of handgrip cue sounds were identified in the sensorimotor areas. In addition, the alpha-band ERD within the time window of 400 to 500 ms was identified in the right dorsolateral prefrontal cortex (Brodmann's area 46. The ERD level in the right dorsolateral prefrontal cortex was positively associated with that in the sensorimotor areas within the time window of 500 to 700 ms. These results suggest that the right dorsolateral prefrontal cortex is involved in the neural substrates of the facilitation system and activates the sensorimotor areas during physical fatigue.

  19. A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study.

    Science.gov (United States)

    Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo

    2015-07-01

    Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.

  20. Optimal Workflow Scheduling in Critical Infrastructure Systems with Neural Networks

    Directory of Open Access Journals (Sweden)

    S. Vukmirović

    2012-04-01

    Full Text Available Critical infrastructure systems (CISs, such as power grids, transportation systems, communication networks and water systems are the backbone of a country’s national security and industrial prosperity. These CISs execute large numbers of workflows with very high resource requirements that can span through different systems and last for a long time. The proper functioning and synchronization of these workflows is essential since humanity’s well-being is connected to it. Because of this, the challenge of ensuring availability and reliability of these services in the face of a broad range of operating conditions is very complicated. This paper proposes an architecture which dynamically executes a scheduling algorithm using feedback about the current status of CIS nodes. Different artificial neural networks (ANNs were created in order to solve the scheduling problem. Their performances were compared and as the main result of this paper, an optimal ANN architecture for workflow scheduling in CISs is proposed. A case study is shown for a meter data management system with measurements from a power distribution management system in Serbia. Performance tests show that significant improvement of the overall execution time can be achieved by ANNs.

  1. Processing of signals from an ion-elective electrode array by a neural network

    NARCIS (Netherlands)

    Bos, M.; Bos, A.; van der Linden, W.E.

    1990-01-01

    Neural network software is described for processing the signals of arrays of ion-selective electrodes. The performance of the software was tested in the simultaneous determination of calcium and copper(II) ions in binary mixtures of copper(II) nitrate and calcium chloride and the simultaneous

  2. Temporal Context in Speech Processing and Attentional Stream Selection: A Behavioral and Neural Perspective

    Science.gov (United States)

    Golumbic, Elana M. Zion; Poeppel, David; Schroeder, Charles E.

    2012-01-01

    The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the "Cocktail Party" effect. Yet, the neural mechanisms underlying on-line…

  3. Is There Neural Evidence for an Evidence Accumulation Process in Memory Decisions?

    NARCIS (Netherlands)

    van Vugt, Marieke K; Beulen, Marijke A; Taatgen, Niels A

    2016-01-01

    Models of evidence accumulation have been very successful at describing human decision making behavior. Recent years have also seen the first reports of neural correlates of this accumulation process. However, these studies have mostly focused on perceptual decision making tasks, ignoring the role

  4. It's not just my fault: Neural correlates of feedback processing in solo and joint action

    NARCIS (Netherlands)

    Loehr, J.D.; Kourtis, D.; Brazil, I.A.

    2015-01-01

    People often coordinate their actions with others' in pursuit of shared goals, yet little research has examined the neural processes by which people monitor whether shared goals have been achieved. The current study compared event-related potentials elicited by feedback indicating joint errors

  5. Specific and Nonspecific Neural Activity during Selective Processing of Visual Representations in Working Memory

    Science.gov (United States)

    Oh, Hwamee; Leung, Hoi-Chung

    2010-01-01

    In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two…

  6. A Comparison of Neural Networks and Fuzzy Logic Methods for Process Modeling

    Science.gov (United States)

    Cios, Krzysztof J.; Sala, Dorel M.; Berke, Laszlo

    1996-01-01

    The goal of this work was to analyze the potential of neural networks and fuzzy logic methods to develop approximate response surfaces as process modeling, that is for mapping of input into output. Structural response was chosen as an example. Each of the many methods surveyed are explained and the results are presented. Future research directions are also discussed.

  7. Process optimization of gravure printed light-emitting polymer layers by a neural network approach

    NARCIS (Netherlands)

    Michels, J.J.; Winter, S.H.P.M. de; Symonds, L.H.G.

    2009-01-01

    We demonstrate that artificial neural network modeling is a viable tool to predict the processing dependence of gravure printed light-emitting polymer layers for flexible OLED lighting applications. The (local) thickness of gravure printed light-emitting polymer (LEP) layers was analyzed using

  8. Sadness is unique: neural processing of emotions in speech prosody in musicians and non-musicians.

    Science.gov (United States)

    Park, Mona; Gutyrchik, Evgeny; Welker, Lorenz; Carl, Petra; Pöppel, Ernst; Zaytseva, Yuliya; Meindl, Thomas; Blautzik, Janusch; Reiser, Maximilian; Bao, Yan

    2014-01-01

    Musical training has been shown to have positive effects on several aspects of speech processing, however, the effects of musical training on the neural processing of speech prosody conveying distinct emotions are yet to be better understood. We used functional magnetic resonance imaging (fMRI) to investigate whether the neural responses to speech prosody conveying happiness, sadness, and fear differ between musicians and non-musicians. Differences in processing of emotional speech prosody between the two groups were only observed when sadness was expressed. Musicians showed increased activation in the middle frontal gyrus, the anterior medial prefrontal cortex, the posterior cingulate cortex and the retrosplenial cortex. Our results suggest an increased sensitivity of emotional processing in musicians with respect to sadness expressed in speech, possibly reflecting empathic processes.

  9. Sadness is unique: Neural processing of emotions in speech prosody in musicians and non-musicians

    Directory of Open Access Journals (Sweden)

    Mona ePark

    2015-01-01

    Full Text Available Musical training has been shown to have positive effects on several aspects of speech processing, however, the effects of musical training on the neural processing of speech prosody conveying distinct emotions are yet to be better understood. We used functional magnetic resonance imaging (fMRI to investigate whether the neural responses to speech prosody conveying happiness, sadness, and fear differ between musicians and non-musicians. Differences in processing of emotional speech prosody between the two groups were only observed when sadness was expressed. Musicians showed increased activation in the middle frontal gyrus, the anterior medial prefrontal cortex, the posterior cingulate cortex and the retrosplenial cortex. Our results suggest an increased sensitivity of emotional processing in musicians with respect to sadness expressed in speech, possibly reflecting empathic processes.

  10. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks.

    Science.gov (United States)

    Naveros, Francisco; Garrido, Jesus A; Carrillo, Richard R; Ros, Eduardo; Luque, Niceto R

    2017-01-01

    Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under

  11. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks

    Science.gov (United States)

    Naveros, Francisco; Garrido, Jesus A.; Carrillo, Richard R.; Ros, Eduardo; Luque, Niceto R.

    2017-01-01

    Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under

  12. Neural systems supporting linguistic structure, linguistic experience, and symbolic communication in sign language and gesture.

    Science.gov (United States)

    Newman, Aaron J; Supalla, Ted; Fernandez, Nina; Newport, Elissa L; Bavelier, Daphne

    2015-09-15

    Sign languages used by deaf communities around the world possess the same structural and organizational properties as spoken languages: In particular, they are richly expressive and also tightly grammatically constrained. They therefore offer the opportunity to investigate the extent to which the neural organization for language is modality independent, as well as to identify ways in which modality influences this organization. The fact that sign languages share the visual-manual modality with a nonlinguistic symbolic communicative system-gesture-further allows us to investigate where the boundaries lie between language and symbolic communication more generally. In the present study, we had three goals: to investigate the neural processing of linguistic structure in American Sign Language (using verbs of motion classifier constructions, which may lie at the boundary between language and gesture); to determine whether we could dissociate the brain systems involved in deriving meaning from symbolic communication (including both language and gesture) from those specifically engaged by linguistically structured content (sign language); and to assess whether sign language experience influences the neural systems used for understanding nonlinguistic gesture. The results demonstrated that even sign language constructions that appear on the surface to be similar to gesture are processed within the left-lateralized frontal-temporal network used for spoken languages-supporting claims that these constructions are linguistically structured. Moreover, although nonsigners engage regions involved in human action perception to process communicative, symbolic gestures, signers instead engage parts of the language-processing network-demonstrating an influence of experience on the perception of nonlinguistic stimuli.

  13. Personal Investigations Processing System

    Data.gov (United States)

    US Agency for International Development — PIPS is a system that maintains the Security/Suitability Investigations Index (SII) for OPM. It contains over 11 million background investigation records of Federal...

  14. Closed-loop optical neural stimulation based on a 32-channel low-noise recording system with online spike sorting

    Science.gov (United States)

    Nguyen, T. K. T.; Navratilova, Z.; Cabral, H.; Wang, L.; Gielen, G.; Battaglia, F. P.; Bartic, C.

    2014-08-01

    Objective. Closed-loop operation of neuro-electronic systems is desirable for both scientific and clinical (neuroprosthesis) applications. Integrating optical stimulation with recording capability further enhances the selectivity of neural stimulation. We have developed a system enabling the local delivery of optical stimuli and the simultaneous electrical measuring of the neural activities in a closed-loop approach. Approach. The signal analysis is performed online through the implementation of a template matching algorithm. The system performance is demonstrated with the recorded data and in awake rats. Main results. Specifically, the neural activities are simultaneously recorded, detected, classified online (through spike sorting) from 32 channels, and used to trigger a light emitting diode light source using generated TTL signals. Significance. A total processing time of 8 ms is achieved, suitable for optogenetic studies of brain mechanisms online.

  15. Lion - tiger - stripes: Neural correlates of indirect semantic priming across processing modalities.

    Science.gov (United States)

    Sass, Katharina; Krach, Sören; Sachs, Olga; Kircher, Tilo

    2009-03-01

    "Lions" do not have "stripes". However, via the word "tiger" both words are closely connected within the semantic network. With the present study we pursued two goals: to detect neural correlates of (1) directly and indirectly related word pairs by means of priming, and (2) to assess the effect of presentation modality. Stimuli were presented with a short SOA of 350 ms as subjects performed a lexical decision task during fMRI measurement. Four experimental conditions were compared: directly related (picture-frame), indirectly related (anvil-nail), unrelated (steamboat-needle) and nonword trials (chalk-edan), presented in a uni- (word-word) and cross-modal (auditory-word) version. Behavioral data revealed a modality-independent priming effect only for direct semantic priming. On a neural level, directly linked words led to left-lateralized activations in fronto-temporo-parietal areas. Indirect priming led to right-hemispheric fronto-parietal signal changes. Common areas of activation for uni- and cross-modal priming were found within the left middle temporal gyrus and right precuneus for direct priming and within the right insula for indirect priming. The comparison of the semantic distances (direct>indirect) showed one region activated modality-independent: the precuneus. Direct priming is associated with activation clusters corresponding to a large left-lateralized network. Indirect priming recruits right-hemispheric regions, reflecting widespread semantic fields and attentional components. The modality-independent comparison of direct and indirect priming revealed common areas of activation supporting an amodal rather than multiple semantic systems. The activation related to semantic distances underpins the special role of the precuneus. This region is involved in semantic priming and association processing whereas episodic memory contents might be addressed.

  16. Neural Correlates of Top-Down Letter Processing

    Science.gov (United States)

    Liu, Jiangang; Li, Jun; Zhang, Hongchuan; Rieth, Cory A.; Huber, David E.; Li, Wu; Lee, Kang; Tian, Jie

    2010-01-01

    This fMRI study investigated top-down letter processing with an illusory letter detection task. Participants responded whether one of a number of different possible letters was present in a very noisy image. After initial training that became increasingly difficult, they continued to detect letters even though the images consisted of pure noise,…

  17. Neural correlates of rapid spectrotemporal processing in musicians and nonmusicians.

    Science.gov (United States)

    Gaab, N; Tallal, P; Kim, H; Lakshminarayanan, K; Archie, J J; Glover, G H; Gabrieli, J D E

    2005-12-01

    Our results suggest that musical training alters the functional anatomy of rapid spectrotemporal processing, resulting in improved behavioral performance along with a more efficient functional network primarily involving traditional language regions. This finding may have important implications for improving language/reading skills, especially in children struggling with dyslexia.

  18. Stochastic Neural Field Theory and the System-Size Expansion

    KAUST Repository

    Bressloff, Paul C.

    2010-01-01

    We analyze a master equation formulation of stochastic neurodynamics for a network of synaptically coupled homogeneous neuronal populations each consisting of N identical neurons. The state of the network is specified by the fraction of active or spiking neurons in each population, and transition rates are chosen so that in the thermodynamic or deterministic limit (N → ∞) we recover standard activity-based or voltage-based rate models. We derive the lowest order corrections to these rate equations for large but finite N using two different approximation schemes, one based on the Van Kampen system-size expansion and the other based on path integral methods. Both methods yield the same series expansion of the moment equations, which at O(1/N) can be truncated to form a closed system of equations for the first-and second-order moments. Taking a continuum limit of the moment equations while keeping the system size N fixed generates a system of integrodifferential equations for the mean and covariance of the corresponding stochastic neural field model. We also show how the path integral approach can be used to study large deviation or rare event statistics underlying escape from the basin of attraction of a stable fixed point of the mean-field dynamics; such an analysis is not possible using the system-size expansion since the latter cannot accurately determine exponentially small transitions. © by SIAM.

  19. Consensus-based distributed cooperative learning from closed-loop neural control systems.

    Science.gov (United States)

    Chen, Weisheng; Hua, Shaoyong; Zhang, Huaguang

    2015-02-01

    In this paper, the neural tracking problem is addressed for a group of uncertain nonlinear systems where the system structures are identical but the reference signals are different. This paper focuses on studying the learning capability of neural networks (NNs) during the control process. First, we propose a novel control scheme called distributed cooperative learning (DCL) control scheme, by establishing the communication topology among adaptive laws of NN weights to share their learned knowledge online. It is further proved that if the communication topology is undirected and connected, all estimated weights of NNs can converge to small neighborhoods around their optimal values over a domain consisting of the union of all state orbits. Second, as a corollary it is shown that the conclusion on the deterministic learning still holds in the decentralized adaptive neural control scheme where, however, the estimated weights of NNs just converge to small neighborhoods of the optimal values along their own state orbits. Thus, the learned controllers obtained by DCL scheme have the better generalization capability than ones obtained by decentralized learning method. A simulation example is provided to verify the effectiveness and advantages of the control schemes proposed in this paper.

  20. Sensorimotor Integration in Speech Processing: Computational Basis and Neural Organization

    Science.gov (United States)

    Hickok, Gregory; Houde, John; Rong, Feng

    2011-01-01

    Sensorimotor integration is an active domain of speech research and is characterized by two main ideas, that the auditory system is critically involved in speech production, and that the motor system is critically involved in speech perception. Despite the complementarity of these ideas, there is little crosstalk between these literatures. We propose an integrative model of the speech-related “dorsal stream” in which sensorimotor interaction primarily supports speech production, in the form of a state feedback control architecture. A critical component of this control system is forward sensory prediction, which affords a natural mechanism for limited motor influence on perception, as recent perceptual research has suggested. Evidence shows that this influence is modulatory but not necessary for speech perception. The neuroanatomy of the proposed circuit is discussed as well as some probable clinical correlates including conduction aphasia, stuttering, and aspects of schizophrenia. PMID:21315253

  1. Neural analysis of bovine ovaries ultrasound images in the identification process of the corpus luteum

    Science.gov (United States)

    Górna, K.; Jaśkowski, B. M.; Okoń, P.; Czechlowski, M.; Koszela, K.; Zaborowicz, M.; Idziaszek, P.

    2017-07-01

    The aim of the paper is to shown the neural image analysis as a method useful for identifying the development stage of the domestic bovine corpus luteum on digital USG (UltraSonoGraphy) images. Corpus luteum (CL) is a transient endocrine gland that develops after ovulation from the follicle secretory cells. The aim of CL is the production of progesterone, which regulates many reproductive functions. In the presented studies, identification of the corpus luteum was carried out on the basis of information contained in ultrasound digital images. Development stage of the corpus luteum was considered in two aspects: just before and middle of domination phase and luteolysis and degradation phase. Prior to the classification, the ultrasound images have been processed using a GLCM (Gray Level Co-occurence Matrix). To generate a classification model, a Neural Networks module implemented in the STATISTICA was used. Five representative parameters describing the ultrasound image were used as learner variables. On the output of the artificial neural network was generated information about the development stage of the corpus luteum. Results of this study indicate that neural image analysis combined with GLCM texture analysis may be a useful tool for identifying the bovine corpus luteum in the context of its development phase. Best-generated artificial neural network model was the structure of MLP (Multi Layer Perceptron) 5:5-17-1:1.

  2. A Granger causality measure for point process models of ensemble neural spiking activity.

    Directory of Open Access Journals (Sweden)

    Sanggyun Kim

    2011-03-01

    Full Text Available The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.

  3. A Granger causality measure for point process models of ensemble neural spiking activity.

    Science.gov (United States)

    Kim, Sanggyun; Putrino, David; Ghosh, Soumya; Brown, Emery N

    2011-03-01

    The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI) of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.

  4. Neural systems language: a formal modeling language for the systematic description, unambiguous communication, and automated digital curation of neural connectivity.

    Science.gov (United States)

    Brown, Ramsay A; Swanson, Larry W

    2013-09-01

    Systematic description and the unambiguous communication of findings and models remain among the unresolved fundamental challenges in systems neuroscience. No common descriptive frameworks exist to describe systematically the connective architecture of the nervous system, even at the grossest level of observation. Furthermore, the accelerating volume of novel data generated on neural connectivity outpaces the rate at which this data is curated into neuroinformatics databases to synthesize digitally systems-level insights from disjointed reports and observations. To help address these challenges, we propose the Neural Systems Language (NSyL). NSyL is a modeling language to be used by investigators to encode and communicate systematically reports of neural connectivity from neuroanatomy and brain imaging. NSyL engenders systematic description and communication of connectivity irrespective of the animal taxon described, experimental or observational technique implemented, or nomenclature referenced. As a language, NSyL is internally consistent, concise, and comprehensible to both humans and computers. NSyL is a promising development for systematizing the representation of neural architecture, effectively managing the increasing volume of data on neural connectivity and streamlining systems neuroscience research. Here we present similar precedent systems, how NSyL extends existing frameworks, and the reasoning behind NSyL's development. We explore NSyL's potential for balancing robustness and consistency in representation by encoding previously reported assertions of connectivity from the literature as examples. Finally, we propose and discuss the implications of a framework for how NSyL will be digitally implemented in the future to streamline curation of experimental results and bridge the gaps among anatomists, imagers, and neuroinformatics databases. Copyright © 2013 Wiley Periodicals, Inc.

  5. Information processing in micro and meso-scale neural circuits during normal and disease states

    Science.gov (United States)

    Luongo, Francisco

    Neural computation can occur at multiple spatial and temporal timescales. The sum total of all of these processes is to guide optimal behaviors within the context of the constraints imposed by the physical world. How the circuits of the brain achieves this goal represents a central question in systems neuroscience. Here I explore the many ways in which the circuits of the brain can process information at both the micro and meso scale. Understanding the way information is represented and processed in the brain could shed light on the neuropathology underlying complex neuropsychiatric diseases such as autism and schizophrenia. Chapter 2 establishes an experimental paradigm for assaying patterns of microcircuit activity and examines the role of dopaminergic modulation on prefrontal microcircuits. We find that dopamine type 2 (D2) receptor activation results in an increase in spontaneous activity while dopamine type 1 (D1) activation does not. Chapter 3 of this dissertation presents a study that illustrates how cholingergic activation normally produces what has been suggested as a neural substrate of attention; pairwise decorrelation in microcircuit activity. This study also shows that in two etiologicall distinct mouse models of autism, FMR1 knockout mice and Valproic Acid exposed mice, this ability to decorrelate in the presence of cholinergic activation is lost. This represents a putative microcircuit level biomarker of autism. Chapter 4 examines the structure/function relationship within the prefrontal microcircuit. Spontaneous activity in prefrontal microcircuits is shown to be organized according to a small world architecture. Interestingly, this architecture is important for one concrete function of neuronal microcircuits; the ability to produce temporally stereotyped patterns of activation. In the final chapter, we identify subnetworks in chronic intracranial electrocorticographic (ECoG) recordings using pairwise electrode coherence and dimensionality reduction

  6. A neural network architecture for implementation of expert systems for real time monitoring

    Science.gov (United States)

    Ramamoorthy, P. A.

    1991-01-01

    Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.

  7. Neural Correlates of Feedback Processing in Decision Making under Risk

    Directory of Open Access Journals (Sweden)

    Beate eSchuermann

    2012-07-01

    Full Text Available Introduction. Event-related brain potentials (ERP provide important information about the sensitivity of the brain to process varying risks. The aim of the present study was to determine how different risk levels are reflected in decision-related ERPs, namely the feedback-related negativity (FRN and the P300. Material and Methods. 20 participants conducted a probabilistic two-choice gambling task while an electroencephalogram was recorded. Choices were provided between a low-risk option yielding low rewards and low losses and a high-risk option yielding high rewards and high losses. While options differed in expected risks, they were equal in expected values and in feedback probabilities. Results. At the behavioral level, participants were generally risk-averse but modulated their risk-taking behavior according to reward history. An early positivity (P200 was enhanced on negative feedbacks in high-risk compared to low-risk options. With regard to the FRN, there were significant amplitude differences between positive and negative feedbacks in high-risk options, but not in low-risk options. While the FRN on negative feedbacks did not vary with decision riskiness, reduced amplitudes were found for positive feedbacks in high-risk relative to low-risk choices. P300 amplitudes were larger in high-risk decisions, and in an additive way, after negative compared to positive feedback. Discussion. The present study revealed significant influences of risk and valence processing on ERPs. FRN findings suggest that the reward prediction error signal is increased after high-risk decisions. The increased P200 on negative feedback in risky decisions suggests that large negative prediction errors are processed as early as in the P200 time range. The later P300 amplitude is sensitive to feedback valence as well as to the risk of a decision. Thus, the P300 carries additional information for reward processing, mainly the enhanced motivational significance of risky

  8. Effect of short-term escitalopram treatment on neural activation during emotional processing.

    Science.gov (United States)

    Maron, Eduard; Wall, Matt; Norbury, Ray; Godlewska, Beata; Terbeck, Sylvia; Cowen, Philip; Matthews, Paul; Nutt, David J

    2016-01-01

    Recent functional magnetic resonance (fMRI) imaging studies have revealed that subchronic medication with escitalopram leads to significant reduction in both amygdala and medial frontal gyrus reactivity during processing of emotional faces, suggesting that escitalopram may have a distinguishable modulatory effect on neural activation as compared with other serotonin-selective antidepressants. In this fMRI study we aimed to explore whether short-term medication with escitalopram in healthy volunteers is associated with reduced neural response to emotional processing, and whether this effect is predicted by drug plasma concentration. The neural response to fearful and happy faces was measured before and on day 7 of treatment with escitalopram (10mg) in 15 healthy volunteers and compared with those in a control unmedicated group (n=14). Significantly reduced activation to fearful, but not to happy facial expressions was observed in the bilateral amygdala, cingulate and right medial frontal gyrus following escitalopram medication. This effect was not correlated with plasma drug concentration. In accordance with previous data, we showed that escitalopram exerts its rapid direct effect on emotional processing via attenuation of neural activation in pathways involving medial frontal gyrus and amygdala, an effect that seems to be distinguishable from that of other SSRIs. © The Author(s) 2015.

  9. Platforms for artificial neural networks : neurosimulators and performance prediction of MIMD-parallel systems

    NARCIS (Netherlands)

    Vuurpijl, L.G.

    1998-01-01

    In this thesis, two platforms for simulating artificial neural networks are discussed: MIMD-parallel processor systems as an execution platform and neurosimulators as a research and development platform. Because of the parallelism encountered in neural networks, distributed processor systems seem to

  10. Artificial neural networks in variable process control: application in particleboard manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, L. G.; Garcia Fernandez, F.; Palacios, P. de; Conde, M.

    2009-07-01

    Artificial neural networks are an efficient tool for modelling production control processes using data from the actual production as well as simulated or design of experiments data. In this study two artificial neural networks were combined with the control process charts and it was checked whether the data obtained by the networks were valid for variable process control in particleboard manufacture. The networks made it possible to obtain the mean and standard deviation of the internal bond strength of the particleboard within acceptable margins using known data of thickness, density, moisture content, swelling and absorption. The networks obtained met the acceptance criteria for test values from non-standard test methods, as well as the criteria for using these values in statistical process control. (Author) 47 refs.

  11. Optimization of steel casting feeding system based on BP neural network and genetic algorithm

    Directory of Open Access Journals (Sweden)

    Xue-dan Gong

    2016-05-01

    Full Text Available The trial-and-error method is widely used for the current optimization of the steel casting feeding system, which is highly random, subjective and thus inefficient. In the present work, both the theoretical and the experimental research on the modeling and optimization methods of the process are studied. An approximate alternative model is established based on the Back Propagation (BP neural network and experimental design. The process parameters of the feeding system are taken as the input, the volumes of shrinkage cavities and porosities calculated by simulation are simultaneously taken as the output. Thus, a mathematical model is established by the BP neural network to combine the input variables with the output response. Then, this model is optimized by the nonlinear optimization function of the genetic algorithm. Finally, a feeding system optimization of a steel traveling wheel is conducted. No shrinkage cavities and porosities are induced through the optimization. Compared to the initial design scheme, the process yield is increased by 4.1% and the volume of the riser is decreased by 5.48×106 mm3.

  12. Design Process for High Speed Civil Transport Aircraft Improved by Neural Network and Regression Methods

    Science.gov (United States)

    Hopkins, Dale A.

    1998-01-01

    A key challenge in designing the new High Speed Civil Transport (HSCT) aircraft is determining a good match between the airframe and engine. Multidisciplinary design optimization can be used to solve the problem by adjusting parameters of both the engine and the airframe. Earlier, an example problem was presented of an HSCT aircraft with four mixed-flow turbofan engines and a baseline mission to carry 305 passengers 5000 nautical miles at a cruise speed of Mach 2.4. The problem was solved by coupling NASA Lewis Research Center's design optimization testbed (COMETBOARDS) with NASA Langley Research Center's Flight Optimization System (FLOPS). The computing time expended in solving the problem was substantial, and the instability of the FLOPS analyzer at certain design points caused difficulties. In an attempt to alleviate both of these limitations, we explored the use of two approximation concepts in the design optimization process. The two concepts, which are based on neural network and linear regression approximation, provide the reanalysis capability and design sensitivity analysis information required for the optimization process. The HSCT aircraft optimization problem was solved by using three alternate approaches; that is, the original FLOPS analyzer and two approximate (derived) analyzers. The approximate analyzers were calibrated and used in three different ranges of the design variables; narrow (interpolated), standard, and wide (extrapolated).

  13. Digital TV processing system

    Science.gov (United States)

    1975-01-01

    Two digital video data compression systems directly applicable to the Space Shuttle TV Communication System were described: (1) For the uplink, a low rate monochrome data compressor is used. The compression is achieved by using a motion detection technique in the Hadamard domain. To transform the variable source rate into a fixed rate, an adaptive rate buffer is provided. (2) For the downlink, a color data compressor is considered. The compression is achieved first by intra-color transformation of the original signal vector, into a vector which has lower information entropy. Then two-dimensional data compression techniques are applied to the Hadamard transformed components of this last vector. Mathematical models and data reliability analyses were also provided for the above video data compression techniques transmitted over a channel encoded Gaussian channel. It was shown that substantial gains can be achieved by the combination of video source and channel coding.

  14. Neural processing of musical meter in musicians and non-musicians.

    Science.gov (United States)

    Zhao, T Christina; Lam, H T Gloria; Sohi, Harkirat; Kuhl, Patricia K

    2017-11-01

    Musical sounds, along with speech, are the most prominent sounds in our daily lives. They are highly dynamic, yet well structured in the temporal domain in a hierarchical manner. The temporal structures enhance the predictability of musical sounds. Western music provides an excellent example: while time intervals between musical notes are highly variable, underlying beats can be realized. The beat-level temporal structure provides a sense of regular pulses. Beats can be further organized into units, giving the percept of alternating strong and weak beats (i.e. metrical structure or meter). Examining neural processing at the meter level offers a unique opportunity to understand how the human brain extracts temporal patterns, predicts future stimuli and optimizes neural resources for processing. The present study addresses two important questions regarding meter processing, using the mismatch negativity (MMN) obtained with electroencephalography (EEG): 1) how tempo (fast vs. slow) and type of metrical structure (duple: two beats per unit vs. triple: three beats per unit) affect the neural processing of metrical structure in non-musically trained individuals, and 2) how early music training modulates the neural processing of metrical structure. Metrical structures were established by patterns of consecutive strong and weak tones (Standard) with occasional violations that disrupted and reset the structure (Deviant). Twenty non-musicians listened passively to these tones while their neural activities were recorded. MMN indexed the neural sensitivity to the meter violations. Results suggested that MMNs were larger for fast tempo and for triple meter conditions. Further, 20 musically trained individuals were tested using the same methods and the results were compared to the non-musicians. While tempo and meter type similarly influenced MMNs in both groups, musicians overall exhibited significantly reduced MMNs, compared to their non-musician counterparts. Further analyses

  15. Analysis of the developing neural system using an in vitro model by Raman spectroscopy.

    Science.gov (United States)

    Hashimoto, Kosuke; Kudoh, Suguru N; Sato, Hidetoshi

    2015-04-07

    We developed an in vitro model of early neural cell development. The maturation of a normal neural cell was studied in vitro using Raman spectroscopy for 120 days. The Raman spectra datasets were analyzed by principal component analysis (PCA) to investigate the relationship between maturation stages and molecular composition changes in neural cells. According to the PCA, the Raman spectra datasets can be classified into four larger groups. Previous electrophysiological studies have suggested that a normal neural cell goes through three maturation states. The groups we observed by Raman analysis showed good agreement with the electrophysiological results, except with the addition of a fourth state. The results demonstrated that Raman analysis was powerful to investigate the daily changes in molecular composition of the growing neural cell. This in vitro model system may be useful for future studies of the effects of endocrine disrupters in the developing early neural system.

  16. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    Directory of Open Access Journals (Sweden)

    Heidi Wichmann

    2016-05-01

    Full Text Available The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP, produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA, a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2. Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells.

  17. Characterization of Apoptosis Signaling Cascades During the Differentiation Process of Human Neural ReNcell VM Progenitor Cells In Vitro.

    Science.gov (United States)

    Jaeger, Alexandra; Fröhlich, Michael; Klum, Susanne; Lantow, Margareta; Viergutz, Torsten; Weiss, Dieter G; Kriehuber, Ralf

    2015-11-01

    Apoptosis is an essential physiological process accompanying the development of the central nervous system and human neurogenesis. However, the time scale and the underlying molecular mechanisms are yet poorly understood. Due to this fact, we investigated the functionality and general inducibility of apoptosis in the human neural ReNcell VM progenitor cell line during differentiation and also after exposure to staurosporine (STS) and ultraviolet B (UVB) irradiation. Transmission light microscopy, flow cytometry, and Western-/Immunoblot analysis were performed to compare proliferating and differentiating, in addition to STS- and UVB-treated cells. In particular, from 24 to 72 h post-initiation of differentiation, G0/G1 cell cycle arrest, increased loss of apoptotic cells, activation of pro-apoptotic BAX, Caspase-3, and cleavage of its substrate PARP were observed during cell differentiation and, to a higher extent, after treatment with STS and UVB. We conclude that redundant or defective cells are eliminated by apoptosis, while otherwise fully differentiated cells were less responsive to apoptosis induction by STS than proliferating cells, likely as a result of reduced APAF-1 expression, and increased levels of BCL-2. These data provide the evidence that apoptotic mechanisms in the neural ReNcell VM progenitor cell line are not only functional, but also inducible by external stimuli like growth factor withdrawal or treatment with STS and UVB, which marks this cell line as a suitable model to investigate apoptosis signaling pathways in respect to the differentiation processes of human neural progenitor cells in vitro.

  18. PIMS Data Storage, Access, and Neural Network Processing

    Science.gov (United States)

    McPherson, Kevin M.; Moskowitz, Milton E.

    1998-01-01

    The Principal Investigator Microgravity Services (PIMS) project at NASA's Lewis Research Center has supported microgravity science Principal Investigator's (PIs) by processing, analyzing, and storing the acceleration environment data recorded on the NASA Space Shuttles and the Russian Mir space station. The acceleration data recorded in support of the microgravity science investigated on these platforms has been generated in discrete blocks totaling approximately 48 gigabytes for the Orbiter missions and 50 gigabytes for the Mir increments. Based on the anticipated volume of acceleration data resulting from continuous or nearly continuous operations, the International Space Station (ISS) presents a unique set of challenges regarding the storage of and access to microgravity acceleration environment data. This paper presents potential microgravity environment data storage, access, and analysis concepts for the ISS era.

  19. Modulated neural processing of Western harmony in folk musicians.

    Science.gov (United States)

    Brattico, Elvira; Tupala, Tiina; Glerean, Enrico; Tervaniemi, Mari

    2013-07-01

    A chord deviating from the conventions of Western tonal music elicits an early right anterior negativity (ERAN) in inferofrontal brain regions. Here, we tested whether the ERAN is modulated by expertise in more than one music culture, as typical of folk musicians. Finnish folk musicians and nonmusicians participated in electroencephalography recordings. The cadences consisted of seven chords. In incongruous cadences, the third, fifth, or seventh chord was a Neapolitan. The ERAN to the Neapolitans was enhanced in folk musicians compared to nonmusicians. Folk musicians showed an enhanced P3a for the ending Neapolitan. The Neapolitan at the fifth position was perceived differently and elicited a late enhanced ERAN in folk musicians. Hence, expertise in more than one music culture seems to modify chord processing by enhancing the ERAN to ambivalent chords and the P3a to incongruous chords, and by altering their perceptual attributes. Copyright © 2013 Society for Psychophysiological Research.

  20. Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises.

    Science.gov (United States)

    Borrajo, M Lourdes; Baruque, Bruno; Corchado, Emilio; Bajo, Javier; Corchado, Juan M

    2011-08-01

    During the last years there has been a growing need of developing innovative tools that can help small to medium sized enterprises to predict business failure as well as financial crisis. In this study we present a novel hybrid intelligent system aimed at monitoring the modus operandi of the companies and predicting possible failures. This system is implemented by means of a neural-based multi-agent system that models the different actors of the companies as agents. The core of the multi-agent system is a type of agent that incorporates a case-based reasoning system and automates the business control process and failure prediction. The stages of the case-based reasoning system are implemented by means of web services: the retrieval stage uses an innovative weighted voting summarization of self-organizing maps ensembles-based method and the reuse stage is implemented by means of a radial basis function neural network. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.

  1. Adaptive Neural Control for a Class of Outputs Time-Delay Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Ruliang Wang

    2012-01-01

    Full Text Available This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.

  2. Neural outcome processing of peer-influenced risk-taking behavior in late adolescence: Preliminary evidence for gene × environment interactions.

    Science.gov (United States)

    Webber, Troy A; Soder, Heather E; Potts, Geoffrey F; Park, Jong Y; Bornovalova, Marina A

    2017-02-01

    Adolescent brains are particularly susceptible to the rewarding properties of risky decisions in social contexts. Individual differences in genetic influences on dopamine transmission moderate neural outcome processing of risky decisions and may exert pronounced effects on adolescent risk-taking behavior (RTB) and corresponding neural outcome processing in peer contexts, a process called gene-environment interaction (G × E). Eighty-five undergraduate students completed a behavioral risk task alone and in the presence of a confederate peer providing "risky" feedback. We tested for G × E effects using a polygenic risk index that included 3 candidate genetic variations associated with high dopamine transmission efficiency, as well as the moderating role of family history of behavioral disinhibition. Difference waves for the P300 and FRN (i.e., feedback-related negativity) were examined as indices of neural outcome processing. A G × E effect was observed for RTB and the P300, but not the FRN. Family history of behavioral disinhibition also interacted with peer influence to predict P300 amplitude. These data provide preliminary evidence for G × E for peer-influenced RTB and neural outcome processing during late adolescence. Genetic influences on dopaminergic function may be particularly relevant for attentional and motivational neural systems, as indexed by the P300, which exert downstream effects on peer-influenced RTB. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Virtual Credit Card Processing System

    OpenAIRE

    Gray, Geraldine; Church, Karen; Ayres, Tony

    2015-01-01

    The virtual credit card processing system is an e-business system we have developed which provides a secure and universal mechanism for making purchases over the Internet. The system uses Remote Method Invocation (RMI), Java Server Pages (JSP), Java Servlets and Java Database Connectivity (JDBC). We also look at the possibility of implementing the system using the Web Services architecture.

  4. Fluvial particle characterization using artificial neural network and spectral image processing

    Science.gov (United States)

    Shrestha, Bim Prasad; Gautam, Bijaya; Nagata, Masateru

    2008-03-01

    Sand, chemical waste, microbes and other solid materials flowing with the water bodies are of great significance to us as they cause substantial impact to different sectors including drinking water management, hydropower generation, irrigation, aquatic life preservation and various other socio-ecological factors. Such particles can't completely be avoided due to the high cost of construction and maintenance of the waste-treatment methods. A detailed understanding of solid particles in surface water system can have benefit in effective, economic, environmental and social management of water resources. This paper describes an automated system of fluvial particle characterization based on spectral image processing that lead to the development of devices for monitoring flowing particles in river. Previous research in coherent field has shown that it is possible to automatically classify shapes and sizes of solid particles ranging from 300-400 μm using artificial neural networks (ANN) and image processing. Computer facilitated with hyper spectral and multi spectral images using ANN can further classify fluvial materials into organic, inorganic, biodegradable, bio non degradable and microbes. This makes the method attractive for real time monitoring of particles, sand and microorganism in water bodies at strategic locations. Continuous monitoring can be used to determine the effect of socio-economic activities in upstream rivers, or to monitor solid waste disposal from treatment plants and industries or to monitor erosive characteristic of sand and its contribution to degradation of efficiency of hydropower plant or to identify microorganism, calculate their population and study the impact of their presence. Such system can also be used to characterize fluvial particles for planning effective utilization of water resources in micro-mega hydropower plant, irrigation, aquatic life preservation etc.

  5. Model Building and Optimization Analysis of MDF Continuous Hot-Pressing Process by Neural Network

    Directory of Open Access Journals (Sweden)

    Qingfa Li

    2016-01-01

    Full Text Available We propose a one-layer neural network for solving a class of constrained optimization problems, which is brought forward from the MDF continuous hot-pressing process. The objective function of the optimization problem is the sum of a nonsmooth convex function and a smooth nonconvex pseudoconvex function, and the feasible set consists of two parts, one is a closed convex subset of Rn, and the other is defined by a class of smooth convex functions. By the theories of smoothing techniques, projection, penalty function, and regularization term, the proposed network is modeled by a differential equation, which can be implemented easily. Without any other condition, we prove the global existence of the solutions of the proposed neural network with any initial point in the closed convex subset. We show that any accumulation point of the solutions of the proposed neural network is not only a feasible point, but also an optimal solution of the considered optimization problem though the objective function is not convex. Numerical experiments on the MDF hot-pressing process including the model building and parameter optimization are tested based on the real data set, which indicate the good performance of the proposed neural network in applications.

  6. Prediction of Increasing Production Activities using Combination of Query Aggregation on Complex Events Processing and Neural Network

    Directory of Open Access Journals (Sweden)

    Achmad Arwan

    2016-07-01

    Full Text Available AbstrakProduksi, order, penjualan, dan pengiriman adalah serangkaian event yang saling terkait dalam industri manufaktur. Selanjutnya hasil dari event tersebut dicatat dalam event log. Complex Event Processing adalah metode yang digunakan untuk menganalisis apakah terdapat pola kombinasi peristiwa tertentu (peluang/ancaman yang terjadi pada sebuah sistem, sehingga dapat ditangani secara cepat dan tepat. Jaringan saraf tiruan adalah metode yang digunakan untuk mengklasifikasi data peningkatan proses produksi. Hasil pencatatan rangkaian proses yang menyebabkan peningkatan produksi digunakan sebagai data latih untuk mendapatkan fungsi aktivasi dari jaringan saraf tiruan. Penjumlahan hasil catatan event log dimasukkan ke input jaringan saraf tiruan untuk perhitungan nilai aktivasi. Ketika nilai aktivasi lebih dari batas yang ditentukan, maka sistem mengeluarkan sinyal untuk meningkatkan produksi, jika tidak, sistem tetap memantau kejadian. Hasil percobaan menunjukkan bahwa akurasi dari metode ini adalah 77% dari 39 rangkaian aliran event.Kata kunci: complex event processing, event, jaringan saraf tiruan, prediksi peningkatan produksi, proses. AbstractProductions, orders, sales, and shipments are series of interrelated events within manufacturing industry. Further these events were recorded in the event log. Complex event processing is a method that used to analyze whether there are patterns of combinations of certain events (opportunities / threats that occur in a system, so it can be addressed quickly and appropriately. Artificial neural network is a method that we used to classify production increase activities. The series of events that cause the increase of the production used as a dataset to train the weight of neural network which result activation value. An aggregate stream of events inserted into the neural network input to compute the value of activation. When the value is over a certain threshold (the activation value results

  7. Neural correlates of somatosensory processing in patients with neglect.

    Science.gov (United States)

    Hassa, Thomas; Schoenfeld, Mircea Ariel; Dettmers, Christian; Stoppel, Christian Michael; Weiller, Cornelius; Lange, Rüdiger

    2011-01-01

    Recent evidence from neuroimaging studies using visual tasks suggests that the right superior parietal cortex plays a pivotal role for the recovery of neglect. Importantly, neglect-related deficits are not limited to the visual system and have a rather multimodal nature. We employed somatosensory stimulation in patients with neglect in order to analyze activity changes in networks that are presumably associated with this condition. Eleven chronic neglect patients with right hemispherical stroke were investigated with a fMRI paradigm in which the affected and unaffected hand were passively moved. Brain activation was correlated with the performance in clinical neglect tests. Significant positive correlations with brain activation were found for the lesion duration, the performance in bells and letter cancellation tests and the line bisection test. These activated areas formed a distributed pattern in the right superior parietal cortex. The results suggest a shared representation of visual and somatosensory networks in the right superior parietal cortex in patients with right hemispherical strokes and neglect. The spatial pattern of activity in the superior parietal cortex points out to a different representation of changes related to lesion duration and neglect.

  8. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview...

  9. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...

  10. Automatic neural processing of disorder-related stimuli in Social Anxiety Disorder (SAD: Faces and more

    Directory of Open Access Journals (Sweden)

    Claudia eSchulz

    2013-05-01

    Full Text Available It has been proposed that social anxiety disorder (SAD is associated with automatic information processing biases resulting in hypersensitivity to signals of social threat such as negative facial expressions. However, the nature and extent of automatic processes in SAD on the behavioral and neural level is not entirely clear yet. The present review summarizes neuroscientific findings on automatic processing of facial threat but also other disorder-related stimuli such as emotional prosody or negative words in SAD. We review initial evidence for automatic activation of the amygdala, insula, and sensory cortices as well as for automatic early electrophysiological components. However, findings vary depending on tasks, stimuli, and neuroscientific methods. Only few studies set out to examine automatic neural processes directly and systematic attempts are as yet lacking. We suggest that future studies should (1 use different stimulus modalities, (2 examine different emotional expressions, (3 compare findings in SAD with other anxiety disorders, (4 use more sophisticated experimental designs to investigate features of automaticity systematically, and (5 combine different neuroscientific methods (such as functional neuroimaging and electrophysiology. Finally, the understanding of neural automatic processes could also provide hints for therapeutic approaches.

  11. Neural processes in symmetry perception: a parallel spatio-temporal model.

    Science.gov (United States)

    Zhu, Tao

    2014-04-01

    Symmetry is usually computationally expensive to detect reliably, while it is relatively easy to perceive. In spite of many attempts to understand the neurofunctional properties of symmetry processing, no symmetry-specific activation was found in earlier cortical areas. Psychophysical evidence relating to the processing mechanisms suggests that the basic processes of symmetry perception would not perform a serial, point-by-point comparison of structural features but rather operate in parallel. Here, modeling of neural processes in psychophysical detection of bilateral texture symmetry is considered. A simple fine-grained algorithm that is capable of performing symmetry estimation without explicit comparison of remote elements is introduced. A computational model of symmetry perception is then described to characterize the underlying mechanisms as one-dimensional spatio-temporal neural processes, each of which is mediated by intracellular horizontal connections in primary visual cortex and adopts the proposed algorithm for the neural computation. Simulated experiments have been performed to show the efficiency and the dynamics of the model. Model and human performances are comparable for symmetry perception of intensity images. Interestingly, the responses of V1 neurons to propagation activities reflecting higher-order perceptual computations have been reported in neurophysiologic experiments.

  12. Automatic Neural Processing of Disorder-Related Stimuli in Social Anxiety Disorder: Faces and More

    Science.gov (United States)

    Schulz, Claudia; Mothes-Lasch, Martin; Straube, Thomas

    2013-01-01

    It has been proposed that social anxiety disorder (SAD) is associated with automatic information processing biases resulting in hypersensitivity to signals of social threat such as negative facial expressions. However, the nature and extent of automatic processes in SAD on the behavioral and neural level is not entirely clear yet. The present review summarizes neuroscientific findings on automatic processing of facial threat but also other disorder-related stimuli such as emotional prosody or negative words in SAD. We review initial evidence for automatic activation of the amygdala, insula, and sensory cortices as well as for automatic early electrophysiological components. However, findings vary depending on tasks, stimuli, and neuroscientific methods. Only few studies set out to examine automatic neural processes directly and systematic attempts are as yet lacking. We suggest that future studies should: (1) use different stimulus modalities, (2) examine different emotional expressions, (3) compare findings in SAD with other anxiety disorders, (4) use more sophisticated experimental designs to investigate features of automaticity systematically, and (5) combine different neuroscientific methods (such as functional neuroimaging and electrophysiology). Finally, the understanding of neural automatic processes could also provide hints for therapeutic approaches. PMID:23745116

  13. Ultra-low-power and robust digital-signal-processing hardware for implantable neural interface microsystems.

    Science.gov (United States)

    Narasimhan, S; Chiel, H J; Bhunia, S

    2011-04-01

    Implantable microsystems for monitoring or manipulating brain activity typically require on-chip real-time processing of multichannel neural data using ultra low-power, miniaturized electronics. In this paper, we propose an integrated-circuit/architecture-level hardware design framework for neural signal processing that exploits the nature of the signal-processing algorithm. First, we consider different power reduction techniques and compare the energy efficiency between the ultra-low frequency subthreshold and conventional superthreshold design. We show that the superthreshold design operating at a much higher frequency can achieve comparable energy dissipation by taking advantage of extensive power gating. It also provides significantly higher robustness of operation and yield under large process variations. Next, we propose an architecture level preferential design approach for further energy reduction by isolating the critical computation blocks (with respect to the quality of the output signal) and assigning them higher delay margins compared to the noncritical ones. Possible delay failures under parameter variations are confined to the noncritical components, allowing graceful degradation in quality under voltage scaling. Simulation results using prerecorded neural data from the sea-slug (Aplysia californica) show that the application of the proposed design approach can lead to significant improvement in total energy, without compromising the output signal quality under process variations, compared to conventional design approaches.

  14. Prediction of Groundwater Arsenic Contamination using Geographic Information System and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Md. Moqbul Hossain

    2013-01-01

    Full Text Available Ground water arsenic contamination is a well known health and environmental problem in Bangladesh. Sources of this heavy metal are known to be geogenic, however, the processes of its release into groundwater are poorly understood phenomena. In quest of mitigation of the problem it is necessary to predict probable contamination before it causes any damage to human health. Hence our research has been carried out to find the factor relations of arsenic contamination and develop an arsenic contamination prediction model. Researchers have generally agreed that the elevated concentration of arsenic is affected by several factors such as soil reaction (pH, organic matter content, geology, iron content, etc. However, the variability of concentration within short lateral and vertical intervals, and the inter-relationships of variables among themselves, make the statistical analyses highly non-linear and difficult to converge with a meaningful relationship. Artificial Neural Networks (ANN comes in handy for such a black box type problem. This research uses Back propagation Neural Networks (BPNN to train and validate the data derived from Geographic Information System (GIS spatial distribution grids. The neural network architecture with (6-20-1 pattern was able to predict the arsenic concentration with reasonable accuracy.

  15. Neural synchrony within the motor system: what have we learned so far?

    Directory of Open Access Journals (Sweden)

    Bernadette C. M. van Wijk

    2012-09-01

    Full Text Available Synchronization of neural activity is considered essential for information processing in the nervous system. Both local and inter-regional synchronization are omnipresent in different frequency regimes and relate to a variety of behavioral and cognitive functions. Over the years, many studies have sought to elucidate the question how alpha/mu, beta, and gamma synchronization contribute to motor control. Here, we review these studies with the purpose to delineate what they have added to our understanding of the neural control of movement. We highlight important findings regarding oscillations in primary motor cortex, synchronization between cortex and spinal cord, synchronization between cortical regions, as well as abnormal synchronization patterns in a selection of motor dysfunctions. The interpretation of synchronization patterns benefits from combining results of invasive and non-invasive recordings, different data analysis tools, and modeling work. Importantly, although synchronization is deemed to play a vital role, it is not the only mechanism for neural communication. Spike timing and rate coding act together during motor control and should therefore both be accounted for when interpreting movement-related activity.

  16. Toward a distributed free-floating wireless implantable neural recording system.

    Science.gov (United States)

    Pyungwoo Yeon; Xingyuan Tong; Byunghun Lee; Mirbozorgi, Abdollah; Ash, Bruce; Eckhardt, Helmut; Ghovanloo, Maysam

    2016-08-01

    To understand the complex correlations between neural networks across different regions in the brain and their functions at high spatiotemporal resolution, a tool is needed for obtaining long-term single unit activity (SUA) across the entire brain area. The concept and preliminary design of a distributed free-floating wireless implantable neural recording (FF-WINeR) system are presented, which can enabling SUA acquisition by dispersedly implanting tens to hundreds of untethered 1 mm3 neural recording probes, floating with the brain and operating wirelessly across the cortical surface. For powering FF-WINeR probes, a 3-coil link with an intermediate high-Q resonator provides a minimum S21 of -22.22 dB (in the body medium) and -21.23 dB (in air) at 2.8 cm coil separation, which translates to 0.76%/759 μW and 0.6%/604 μW of power transfer efficiency (PTE) / power delivered to a 9 kΩ load (PDL), in body and air, respectively. A mock-up FF-WINeR is implemented to explore microassembly method of the 1×1 mm2 micromachined silicon die with a bonding wire-wound coil and a tungsten micro-wire electrode. Circuit design methods to fit the active circuitry in only 0.96 mm2 of die area in a 130 nm standard CMOS process, and satisfy the strict power and performance requirements (in simulations) are discussed.

  17. A hybrid intelligent system for PID controller using in a steel rolling process

    OpenAIRE

    Calvo Rolle, José L..; Casteleiro Roca, José L.; Quintián Pardo, Héctor; Meizoso López, M.Carmen

    2017-01-01

    With the aim to improve the steel rolling process performance, this research presents a novel hybrid system for selecting the best parameters for tuning in open loop a PID controller. The novel hybrid system combines rule based system and Artificial Neural Networks. With the rule based system, it is modeled the existing knowledge of the PID controller tuning in open loop and, with Artificial Neural Network, it is completed the rule based model that allow to choose the optimal parameters for t...

  18. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  19. Processing of Sensory Information in the Olfactory System

    DEFF Research Database (Denmark)

    The olfactory system is an attractive model system due to the easy control of sensory input and the experimental accessibility in animal studies. The odorant signals are processed from receptor neurons to a neural network of mitral and granular cells while various types of nonlinear behaviour can...... and equation-free techniques allow for a better reproduction and understanding of recent experimental findings. Talks: Olfaction as a Model System for Sensory-Processing Neural Networks (Jens Midtgaard, University of Copenhagen, Denmark) Nonlinear Effects of Signal Transduction in Olfactory Sensory Neurons......, Bayer Technology Services) Axonal Pathfinding and Sorting in the Olfactory System (Noemi Hummel, ETH Zuerich, Switzerland; Simon Kokkendorff and Jens Starke, Technical University of Denmark, Denmark) Analysis of Macroscopic Network Activities (Jens Starke, Technical University of Denmark, Denmark...

  20. Artificial neural networks: Principle and application to model based control of drying systems -- A review

    Energy Technology Data Exchange (ETDEWEB)

    Thyagarajan, T.; Ponnavaikko, M. [Crescent Engineering Coll., Madras (India); Shanmugam, J. [Madras Inst. of Tech. (India); Panda, R.C.; Rao, P.G. [Central Leather Research Inst., Madras (India)

    1998-07-01

    This paper reviews the developments in the model based control of drying systems using Artificial Neural Networks (ANNs). Survey of current research works reveals the growing interest in the application of ANN in modeling and control of non-linear, dynamic and time-variant systems. Over 115 articles published in this area are reviewed. All landmark papers are systematically classified in chronological order, in three distinct categories; namely, conventional feedback controllers, model based controllers using conventional methods and model based controllers using ANN for drying process. The principles of ANN are presented in detail. The problems and issues of the drying system and the features of various ANN models are dealt with up-to-date. ANN based controllers lead to smoother controller outputs, which would increase actuator life. The paper concludes with suggestions for improving the existing modeling techniques as applied to predicting the performance characteristics of dryers. The hybridization techniques, namely, neural with fuzzy logic and genetic algorithms, presented, provide, directions for pursuing further research for the implementation of appropriate control strategies. The authors opine that the information presented here would be highly beneficial for pursuing research in modeling and control of drying process using ANN. 118 refs.

  1. On the Computational Power of Spiking Neural P Systems with Self-Organization

    Science.gov (United States)

    Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan

    2016-06-01

    Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun.

  2. ANOMALY NETWORK INTRUSION DETECTION SYSTEM BASED ON DISTRIBUTED TIME-DELAY NEURAL NETWORK (DTDNN

    Directory of Open Access Journals (Sweden)

    LAHEEB MOHAMMAD IBRAHIM

    2010-12-01

    Full Text Available In this research, a hierarchical off-line anomaly network intrusion detection system based on Distributed Time-Delay Artificial Neural Network is introduced. This research aims to solve a hierarchical multi class problem in which the type of attack (DoS, U2R, R2L and Probe attack detected by dynamic neural network. The results indicate that dynamic neural nets (Distributed Time-Delay Artificial Neural Network can achieve a high detection rate, where the overall accuracy classification rate average is equal to 97.24%.

  3. Neural network based optimal control of HVAC&R systems

    Science.gov (United States)

    Ning, Min

    Heating, Ventilation, Air-Conditioning and Refrigeration (HVAC&R) systems have wide applications in providing a desired indoor environment for different types of buildings. It is well acknowledged that 30%-40% of the total energy generated is consumed by buildings and HVAC&R systems alone account for more than 50% of the building energy consumption. Low operational efficiency especially under partial load conditions and poor control are part of reasons for such high energy consumption. To improve energy efficiency, HVAC&R systems should be properly operated to maintain a comfortable and healthy indoor environment under dynamic ambient and indoor conditions with the least energy consumption. This research focuses on the optimal operation of HVAC&R systems. The optimization problem is formulated and solved to find the optimal set points for the chilled water supply temperature, discharge air temperature and AHU (air handling unit) fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. The system model is modular in structure, which includes a water-cooled vapor compression chiller model and a two-zone VAV system model. A fuzzy-set based extended transformation approach is then applied to investigate the uncertainties of this model caused by uncertain parameters and the sensitivities of the control inputs with respect to the interested model outputs. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. In order to implement the optimal set points predicted by the

  4. Anger-sensitive networks: characterizing neural systems recruited during aggressive social interactions using data-driven analysis

    Science.gov (United States)

    Krämer, Ulrike M; Beckmann, Christian F

    2017-01-01

    Abstract Social neuroscience uses increasingly complex paradigms to improve ecological validity, as investigating aggressive interactions with functional magnetic resonance imaging (fMRI). Standard analyses for fMRI data typically use general linear models (GLM), which require a priori models of task effects on neural processes. These may inadequately model non-stimulus-locked or temporally overlapping cognitive processes, as mentalizing about other agents. We used the data-driven approach of independent component analysis (ICA) to investigate neural processes involved in a competitive interaction. Participants were confronted with an angry-looking opponent while having to anticipate the trial outcome and the opponent’s behaviour. We show that several spatially distinctive neural networks with associated temporal dynamics were modulated by the opponent’s facial expression. These results dovetail and extend the main effects observed in the GLM analysis of the same data. Additionally, the ICA approach identified effects of the experimental condition on neural systems during inter-trial intervals. We demonstrate that cognitive processes during aggressive interactions are poorly modelled by simple stimulus onset/duration variables and instead have more complex temporal dynamics. This highlights the utility of using data-driven analyses to elucidate the distinct cognitive processes recruited during complex social paradigms. PMID:29040743

  5. Neural integration of speech and gesture in schizophrenia: evidence for differential processing of metaphoric gestures.

    Science.gov (United States)

    Straube, Benjamin; Green, Antonia; Sass, Katharina; Kirner-Veselinovic, André; Kircher, Tilo

    2013-07-01

    Gestures are an important component of interpersonal communication. Especially, complex multimodal communication is assumed to be disrupted in patients with schizophrenia. In healthy subjects, differential neural integration processes for gestures in the context of concrete [iconic (IC) gestures] and abstract sentence contents [metaphoric (MP) gestures] had been demonstrated. With this study we wanted to investigate neural integration processes for both gesture types in patients with schizophrenia. During functional magnetic resonance imaging-data acquisition, 16 patients with schizophrenia (P) and a healthy control group (C) were shown videos of an actor performing IC and MP gestures and associated sentences. An isolated gesture (G) and isolated sentence condition (S) were included to separate unimodal from bimodal effects at the neural level. During IC conditions (IC > G ∩ IC > S) we found increased activity in the left posterior middle temporal gyrus (pMTG) in both groups. Whereas in the control group the left pMTG and the inferior frontal gyrus (IFG) were activated for the MP conditions (MP > G ∩ MP > S), no significant activation was found for the identical contrast in patients. The interaction of group (P/C) and gesture condition (MP/IC) revealed activation in the bilateral hippocampus, the left middle/superior temporal and IFG. Activation of the pMTG for the IC condition in both groups indicates intact neural integration of IC gestures in schizophrenia. However, failure to activate the left pMTG and IFG for MP co-verbal gestures suggests a disturbed integration of gestures embedded in an abstract sentence context. This study provides new insight into the neural integration of co-verbal gestures in patients with schizophrenia. Copyright © 2012 Wiley Periodicals, Inc.

  6. Altered neural reward and loss processing and prediction error signalling in depression

    Science.gov (United States)

    Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela

    2015-01-01

    Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. PMID:25567763

  7. Hidden sources of joy, fear, and sadness: Explicit versus implicit neural processing of musical emotions.

    Science.gov (United States)

    Bogert, Brigitte; Numminen-Kontti, Taru; Gold, Benjamin; Sams, Mikko; Numminen, Jussi; Burunat, Iballa; Lampinen, Jouko; Brattico, Elvira

    2016-08-01

    Music is often used to regulate emotions and mood. Typically, music conveys and induces emotions even when one does not attend to them. Studies on the neural substrates of musical emotions have, however, only examined brain activity when subjects have focused on the emotional content of the music. Here we address with functional magnetic resonance imaging (fMRI) the neural processing of happy, sad, and fearful music with a paradigm in which 56 subjects were instructed to either classify the emotions (explicit condition) or pay attention to the number of instruments playing (implicit condition) in 4-s music clips. In the implicit vs. explicit condition, stimuli activated bilaterally the inferior parietal lobule, premotor cortex, caudate, and ventromedial frontal areas. The cortical dorsomedial prefrontal and occipital areas activated during explicit processing were those previously shown to be associated with the cognitive processing of music and emotion recognition and regulation. Moreover, happiness in music was associated with activity in the bilateral auditory cortex, left parahippocampal gyrus, and supplementary motor area, whereas the negative emotions of sadness and fear corresponded with activation of the left anterior cingulate and middle frontal gyrus and down-regulation of the orbitofrontal cortex. Our study demonstrates for the first time in healthy subjects the neural underpinnings of the implicit processing of brief musical emotions, particularly in frontoparietal, dorsolateral prefrontal, and striatal areas of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A neural network based model to analyze rice parboiling process with small dataset.

    Science.gov (United States)

    Behroozi-Khazaei, Nasser; Nasirahmadi, Abozar

    2017-07-01

    In this study, milling recovery, head rice yield, degree of milling and whiteness were utilized to characterize the milling quality of Tarom parboiled rice variety. The parboiled rice was prepared with three soaking temperatures and steaming times. Then the samples were dried to three levels of final moisture contents [8, 10 and 12% (w.b)]. Modeling of process and validating of the results with small dataset are always challenging. So, the aim of this study was to develop models based on the milling quality data in parboiling process by means of multivariate regression and artificial neural network. In order to validate the neural network model with a little dataset, K-fold cross validation method was applied. The ANN structure with one hidden layer and Tansig transfer function by 18 neurons in the hidden layer was selected as the best model in this study. The results indicated that the neural network could model the parboiling process with higher degree of accuracy. This method was a promising procedure to create accuracy and can be used as a reliable model to select the best parameters for the parboiling process with little experiment dataset.

  9. Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements.

    Science.gov (United States)

    Munzert, Jörn; Zentgraf, Karen; Stark, Rudolf; Vaitl, Dieter

    2008-07-01

    The simulation concept suggested by Jeannerod (Neuroimage 14:S103-S109, 2001) defines the S-states of action observation and mental simulation of action as action-related mental states lacking overt execution. Within this framework, similarities and neural overlap between S-states and overt execution are interpreted as providing the common basis for the motor representations implemented within the motor system. The present brain imaging study compared activation overlap and differential activation during mental simulation (motor imagery) with that while observing gymnastic movements. The fMRI conjunction analysis revealed overlapping activation for both S-states in primary motor cortex, premotor cortex, and the supplementary motor area as well as in the intraparietal sulcus, cerebellar hemispheres, and parts of the basal ganglia. A direct contrast between the motor imagery and observation conditions revealed stronger activation for imagery in the posterior insula and the anterior cingulate gyrus. The hippocampus, the superior parietal lobe, and the cerebellar areas were differentially activated in the observation condition. In general, these data corroborate the concept of action-related S-states because of the high overlap in core motor as well as in motor-related areas. We argue that differential activity between S-states relates to task-specific and modal information processing.

  10. Experimental and Computational Studies of Cortical Neural Network Properties Through Signal Processing

    Science.gov (United States)

    Clawson, Wesley Patrick

    Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized using mutual information between sensory input, visual stimulus, and neural response,. The primary finding of our experiments in the visual cortex in turtles and neuronal network modeling confirms this theoretical prediction. We show that sensory discrimination is maximized when visual cortex operates near criticality. In addition to presenting this primary finding in detail, this thesis will also address our preliminary results on change-point-detection in experimentally measured cortical dynamics.

  11. PERFORMANCE COMPARISON FOR INTRUSION DETECTION SYSTEM USING NEURAL NETWORK WITH KDD DATASET

    Directory of Open Access Journals (Sweden)

    S. Devaraju

    2014-04-01

    Full Text Available Intrusion Detection Systems are challenging task for finding the user as normal user or attack user in any organizational information systems or IT Industry. The Intrusion Detection System is an effective method to deal with the kinds of problem in networks. Different classifiers are used to detect the different kinds of attacks in networks. In this paper, the performance of intrusion detection is compared with various neural network classifiers. In the proposed research the four types of classifiers used are Feed Forward Neural Network (FFNN, Generalized Regression Neural Network (GRNN, Probabilistic Neural Network (PNN and Radial Basis Neural Network (RBNN. The performance of the full featured KDD Cup 1999 dataset is compared with that of the reduced featured KDD Cup 1999 dataset. The MATLAB software is used to train and test the dataset and the efficiency and False Alarm Rate is measured. It is proved that the reduced dataset is performing better than the full featured dataset.

  12. Review: the role of neural crest cells in the endocrine system.

    Science.gov (United States)

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  13. Process-focused Salary System

    Institute of Scientific and Technical Information of China (English)

    MEI Shao-zu; LI Wei

    2002-01-01

    Salary often acts as the main incentive by managers to push employees to adjust their behaviors so as to realize organization's goal. With the transfer from function-focused organization to proeess-focused organization, the new relative salary system should be established at the same time. This article is intended to introduce an original salary system-process-focused salary system. After pointing out faults of traditional function-focused salary system, the article explains the design thoughts behind the new process-focused salary system, summaries its three styles: based-on-cost, based-on-quality and based-on-task; and at last defines its application scope.

  14. A Monte Carlo EM approach for partially observable diffusion processes: theory and applications to neural networks.

    Science.gov (United States)

    Movellan, Javier R; Mineiro, Paul; Williams, R J

    2002-07-01

    We present a Monte Carlo approach for training partially observable diffusion processes. We apply the approach to diffusion networks, a stochastic version of continuous recurrent neural networks. The approach is aimed at learning probability distributions of continuous paths, not just expected values. Interestingly, the relevant activation statistics used by the learning rule presented here are inner products in the Hilbert space of square integrable functions. These inner products can be computed using Hebbian operations and do not require backpropagation of error signals. Moreover, standard kernel methods could potentially be applied to compute such inner products. We propose that the main reason that recurrent neural networks have not worked well in engineering applications (e.g., speech recognition) is that they implicitly rely on a very simplistic likelihood model. The diffusion network approach proposed here is much richer and may open new avenues for applications of recurrent neural networks. We present some analysis and simulations to support this view. Very encouraging results were obtained on a visual speech recognition task in which neural networks outperformed hidden Markov models.

  15. Optimization of magnetically driven directional solidification of silicon using artificial neural networks and Gaussian process models

    Science.gov (United States)

    Dropka, Natasha; Holena, Martin

    2017-08-01

    In directional solidification of silicon, the solid-liquid interface shape plays a crucial role for the quality of crystals. The interface shape can be influenced by forced convection using travelling magnetic fields. Up to now, there is no general and explicit methodology to identify the relation and the optimum combination of magnetic and growth parameters e.g., frequency, phase shift, current magnitude and interface deflection in a buoyancy regime. In the present study, 2D CFD modeling was used to generate data for the design and training of artificial neural networks and for Gaussian process modeling. The aim was to quickly assess the complex nonlinear dependences among the parameters and to optimize them for the interface flattening. The first encouraging results are presented and the pros and cons of artificial neural networks and Gaussian process modeling discussed.

  16. Recognition of Roasted Coffee Bean Levels using Image Processing and Neural Network

    Science.gov (United States)

    Nasution, T. H.; Andayani, U.

    2017-03-01

    The coffee beans roast levels have some characteristics. However, some people cannot recognize the coffee beans roast level. In this research, we propose to design a method to recognize the coffee beans roast level of images digital by processing the image and classifying with backpropagation neural network. The steps consist of how to collect the images data with image acquisition, pre-processing, feature extraction using Gray Level Co-occurrence Matrix (GLCM) method and finally normalization of data extraction using decimal scaling features. The values of decimal scaling features become an input of classifying in backpropagation neural network. We use the method of backpropagation to recognize the coffee beans roast levels. The results showed that the proposed method is able to identify the coffee roasts beans level with an accuracy of 97.5%.

  17. The Process of Systemic Change

    Science.gov (United States)

    Duffy, Francis M.; Reigeluth, Charles M.; Solomon, Monica; Caine, Geoffrey; Carr-Chellman, Alison A.; Almeida, Luis; Frick, Theodore; Thompson, Kenneth; Koh, Joyce; Ryan, Christopher D.; DeMars, Shane

    2006-01-01

    This paper presents several brief papers about the process of systemic change. These are: (1) Step-Up-To-Excellence: A Protocol for Navigating Whole-System Change in School Districts by Francis M. Duffy; (2) The Guidance System for Transforming Education by Charles M. Reigeluth; (3) The Schlechty Center For Leadership In School Reform by Monica…

  18. Computer vision system for egg volume prediction using backpropagation neural network

    Science.gov (United States)

    Siswantoro, J.; Hilman, M. Y.; Widiasri, M.

    2017-11-01

    Volume is one of considered aspects in egg sorting process. A rapid and accurate volume measurement method is needed to develop an egg sorting system. Computer vision system (CVS) provides a promising solution for volume measurement problem. Artificial neural network (ANN) has been used to predict the volume of egg in several CVSs. However, volume prediction from ANN could have less accuracy due to inappropriate input features or inappropriate ANN structure. This paper proposes a CVS for predicting the volume of egg using ANN. The CVS acquired an image of egg from top view and then processed the image to extract its 1D and 2 D size features. The features were used as input for ANN in predicting the volume of egg. The experiment results show that the proposed CSV can predict the volume of egg with a good accuracy and less computation time.

  19. Animal Recognition System Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tibor Trnovszky

    2017-01-01

    Full Text Available In this paper, the performances of well-known image recognition methods such as Principal Component Analysis (PCA, Linear Discriminant Analysis (LDA, Local Binary Patterns Histograms (LBPH and Support Vector Machine (SVM are tested and compared with proposed convolutional neural network (CNN for the recognition rate of the input animal images. In our experiments, the overall recognition accuracy of PCA, LDA, LBPH and SVM is demonstrated. Next, the time execution for animal recognition process is evaluated. The all experimental results on created animal database were conducted. This created animal database consist of 500 different subjects (5 classes/ 100 images for each class. The experimental result shows that the PCA features provide better results as LDA and LBPH for large training set. On the other hand, LBPH is better than PCA and LDA for small training data set. For proposed CNN we have obtained a recognition accuracy of 98%. The proposed method based on CNN outperforms the state of the art methods.

  20. Neural systemic impairment from whole-body vibration.

    Science.gov (United States)

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert

    2015-05-01

    Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments. © 2014 Wiley Periodicals, Inc.

  1. Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes.

    Science.gov (United States)

    Galtier, Mathieu N; Marini, Camille; Wainrib, Gilles; Jaeger, Herbert

    2014-08-01

    A method is provided for designing and training noise-driven recurrent neural networks as models of stochastic processes. The method unifies and generalizes two known separate modeling approaches, Echo State Networks (ESN) and Linear Inverse Modeling (LIM), under the common principle of relative entropy minimization. The power of the new method is demonstrated on a stochastic approximation of the El Niño phenomenon studied in climate research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The trait of sensory processing sensitivity and neural responses to changes in visual scenes

    OpenAIRE

    Jagiellowicz, Jadzia; Xu, Xiaomeng; Aron, Arthur; Aron, Elaine; Cao, Guikang; Feng, Tingyong; Weng, Xuchu

    2010-01-01

    This exploratory study examined the extent to which individual differences in sensory processing sensitivity (SPS), a temperament/personality trait characterized by social, emotional and physical sensitivity, are associated with neural response in visual areas in response to subtle changes in visual scenes. Sixteen participants completed the Highly Sensitive Person questionnaire, a standard measure of SPS. Subsequently, they were tested on a change detection task while undergoing functional m...

  3. Supramodal neural processing of abstract information conveyed by speech and gesture

    Directory of Open Access Journals (Sweden)

    Benjamin eStraube

    2013-09-01

    Full Text Available Abstractness and modality of interpersonal communication have a considerable impact on comprehension. They are relevant for determining thoughts and constituting internal models of the environment. Whereas concrete object-related information can be represented in mind irrespective of language, abstract concepts require a representation in speech. Consequently, modality-independent processing of abstract information can be expected. Here we investigated the neural correlates of abstractness (abstract vs. concrete and modality (speech vs. gestures, to identify an abstractness-specific supramodal neural network.During fMRI data acquisition 20 participants were presented with videos of an actor either speaking sentences with an abstract-social [AS] or concrete-object-related content [CS], or performing meaningful abstract-social emblematic [AG] or concrete-object-related tool-use gestures [CG]. Gestures were accompanied by a foreign language to increase the comparability between conditions and to frame the communication context of the gesture videos. Participants performed a content judgment task referring to the person vs. object-relatedness of the utterances.The behavioral data suggest a comparable comprehension of contents communicated by speech or gesture. Furthermore, we found common neural processing for abstract information independent of modality (AS>CS ∩ AG>CG in a left hemispheric network including the left inferior frontal gyrus, temporal pole and medial frontal cortex. Modality specific activations were found in bilateral occipital, parietal and temporal as well as right inferior frontal brain regions for gesture (G>S and in left anterior temporal regions and the left angular gyrus for the processing of speech semantics (S>G.These data support the idea that abstract concepts are represented in a supramodal manner. Consequently, gestures referring to abstract concepts are processed in a predominantly left hemispheric language related

  4. Optimization of Wire Electrical Discharge Machining Process Using Taguchi Method and Back Propagation Neural Network

    OpenAIRE

    SAĞBAŞ, Aysun; KAHRAMAN, Funda; Esme, Uğur

    2017-01-01

    In this study, it isattempted to model and optimize the wire electrical discharge machining (WEDM)process using Taguchi design of experiment and artificial neural network. Aneural network with back propagation algorithm was developed to predict theperformance characteristic, namely surface roughness. An approach to determineoptimal machining parameters setting was proposed based on the Taguchi designmethod. In addition, analysis of variance (ANOVA) was performed to identify thesignificant par...

  5. Application of Neural Network Modeling to Identify Auditory Processing Disorders in School-Age Children

    Directory of Open Access Journals (Sweden)

    Sridhar Krishnamurti

    2015-01-01

    Full Text Available P300 Auditory Event-Related Potentials (P3AERPs were recorded in nine school-age children with auditory processing disorders and nine age- and gender-matched controls in response to tone burst stimuli presented at varying rates (1/second or 3/second under varying levels of competing noise (0 dB, 40 dB, or 60 dB SPL. Neural network modeling results indicated that speed of information processing and task-related demands significantly influenced P3AERP latency in children with auditory processing disorders. Competing noise and rapid stimulus rates influenced P3AERP amplitude in both groups.

  6. Thermomechanical processing optimization for 304 austenitic stainless steel using artificial neural network and genetic algorithm

    Science.gov (United States)

    Feng, Wen; Yang, Sen

    2016-12-01

    Thermomechanical processing has an important effect on the grain boundary character distribution. To obtain the optimal thermomechanical processing parameters is the key of grain boundary engineering. In this study, genetic algorithm (GA) based on artificial neural network model was proposed to optimize the thermomechanical processing parameters. In this model, a back-propagation neural network (BPNN) was established to map the relationship between thermomechanical processing parameters and the fraction of low-Σ CSL boundaries, and GA integrated with BPNN (BPNN/GA) was applied to optimize the thermomechanical processing parameters. The validation of the optimal thermomechanical processing parameters was verified by an experiment. Moreover, the microstructures and the intergranular corrosion resistance of the base material (BM) and the materials produced by the optimal thermomechanical processing parameters (termed as the GBEM) were studied. Compared to the BM specimen, the fraction of low-Σ CSL boundaries was increased from 56.8 to 77.9% and the random boundary network was interrupted by the low-Σ CSL boundaries, and the intergranular corrosion resistance was improved in the GBEM specimen. The results indicated that the BPNN/GA model was an effective and reliable means for the thermomechanical processing parameters optimization, which resulted in improving the intergranular corrosion resistance in 304 austenitic stainless steel.

  7. Error awareness and salience processing in the oddball task: Shared neural mechanisms.

    Directory of Open Access Journals (Sweden)

    Helga A Harsay

    2012-08-01

    Full Text Available A body of work suggests that there are similarities in the way we become aware of an error and process motivationally salient events. Yet, evidence for a shared neural mechanism has not been provided. A within-subject investigation of the brain regions involved in error awareness and salience processing has not been reported. While the neural response to motivationally salient events is classically studied during target detection after longer target-to-target intervals in an oddball task and engages a widespread insula-thalamo-cortical brain network, error awareness has recently been linked to, most prominently, anterior insula cortex. Here we explore whether the anterior insula activation for error awareness is related to salience processing, by testing for activation overlap in subjects undergoing two different task settings. Using a within-subjects design, we show activation overlap in six major brain areas during aware errors in an antisaccade task and during target detection (which were associated with longer target-to-target interval conditions in an oddball task: anterior insula, anterior cingulate, supplementary motor area, thalamus, brainstem and parietal lobe. Within subject analyses shows that the insula is engaged in both error awareness and the processing of salience, and that the anterior insula is more involved in both processes than the posterior insula. The results of a fine-grained spatial pattern overlap analysis between active clusters in the same subjects indicated that even if the anterior insula is activated for both error awareness and salience processing, the two types of processes might tend to activate non-identical neural ensembles on a finer-grained spatial level. Together, these outcomes suggest a similar functional phenomenon in the two different task settings. Error awareness and salience processing share a functional anatomy, with a tendency towards subregional dorsal and ventral specialization within the

  8. Error awareness and salience processing in the oddball task: shared neural mechanisms.

    Science.gov (United States)

    Harsay, Helga A; Spaan, Marcus; Wijnen, Jasper G; Ridderinkhof, K Richard

    2012-01-01

    A body of work suggests similarities in the way we become aware of an error and process motivationally salient events. Yet, evidence for a shared neural mechanism has not been provided. A within subject investigation of the brain regions involved in error awareness and salience processing has not been reported. While the neural response to motivationally salient events is classically studied during target detection after longer target-to-target intervals in an oddball task and engages a widespread insula-thalamo-cortical brain network, error awareness has recently been linked to, most prominently, anterior insula cortex. Here we explore whether the anterior insula activation for error awareness is related to salience processing, by testing for activation overlap in subjects undergoing two different task settings. Using a within subjects design, we show activation overlap in six major brain areas during aware errors in an antisaccade task and during target detection after longer target-to-target intervals in an oddball task: anterior insula, anterior cingulate, supplementary motor area, thalamus, brainstem, and parietal lobe. Within subject analyses shows that the insula is engaged in both error awareness and the processing of salience, and that the anterior insula is more involved in both processes than the posterior insula. The results of a fine-grained spatial pattern overlap analysis between active clusters in the same subjects indicates that even if the anterior insula is activated for both error awareness and salience processing, the two types of processes might tend to activate non-identical neural ensembles on a finer-grained spatial level. Together, these outcomes suggest a similar functional phenomenon in the two different task settings. Error awareness and salience processing share a functional anatomy, with a tendency toward subregional dorsal and ventral specialization within the anterior insula.

  9. An artificial neural network system to identify alleles in reference electropherograms.

    Science.gov (United States)

    Taylor, Duncan; Harrison, Ash; Powers, David

    2017-09-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells them about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. This process of interpreting the electropherograms can be time consuming and is prone to subjective differences between analysts. Recently it was demonstrated that artificial neural networks could be used to classify information within an electropherogram as allelic (i.e. representative of a DNA fragment present in the DNA extract) or as one of several different categories of artefactual fluorescence that arise as a result of generating an electropherogram. We extend that work here to demonstrate a series of algorithms and artificial neural networks that can be used to identify peaks on an electropherogram and classify them. We demonstrate the functioning of the system on several profiles and compare the results to a leading commercial DNA profile reading system. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Artificial Neural Networks for Processing Graphs with Application to Image Understanding: A Survey

    Science.gov (United States)

    Bianchini, Monica; Scarselli, Franco

    In graphical pattern recognition, each data is represented as an arrangement of elements, that encodes both the properties of each element and the relations among them. Hence, patterns are modelled as labelled graphs where, in general, labels can be attached to both nodes and edges. Artificial neural networks able to process graphs are a powerful tool for addressing a great variety of real-world problems, where the information is naturally organized in entities and relationships among entities and, in fact, they have been widely used in computer vision, f.i. in logo recognition, in similarity retrieval, and for object detection. In this chapter, we propose a survey of neural network models able to process structured information, with a particular focus on those architectures tailored to address image understanding applications. Starting from the original recursive model (RNNs), we subsequently present different ways to represent images - by trees, forests of trees, multiresolution trees, directed acyclic graphs with labelled edges, general graphs - and, correspondingly, neural network architectures appropriate to process such structures.

  11. Artificial Neural Network-Based System for PET Volume Segmentation

    Directory of Open Access Journals (Sweden)

    Mhd Saeed Sharif

    2010-01-01

    Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  12. Honey characterization using computer vision system and artificial neural networks.

    Science.gov (United States)

    Shafiee, Sahameh; Minaei, Saeid; Moghaddam-Charkari, Nasrollah; Barzegar, Mohsen

    2014-09-15

    This paper reports the development of a computer vision system (CVS) for non-destructive characterization of honey based on colour and its correlated chemical attributes including ash content (AC), antioxidant activity (AA), and total phenolic content (TPC). Artificial neural network (ANN) models were applied to transform RGB values of images to CIE L*a*b* colourimetric measurements and to predict AC, TPC and AA from colour features of images. The developed ANN models were able to convert RGB values to CIE L*a*b* colourimetric parameters with low generalization error of 1.01±0.99. In addition, the developed models for prediction of AC, TPC and AA showed high performance based on colour parameters of honey images, as the R(2) values for prediction were 0.99, 0.98, and 0.87, for AC, AA and TPC, respectively. The experimental results show the effectiveness and possibility of applying CVS for non-destructive honey characterization by the industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Predictive Control of Hydronic Floor Heating Systems using Neural Networks and Genetic Algorithms

    DEFF Research Database (Denmark)

    Vinther, Kasper; Green, Torben; Østergaard, Søren

    2017-01-01

    This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures. Additio...... space is not guaranteed. Evaluation of the performance of multiple neural networks is performed, using different levels of information, and optimization results are presented on a detailed house simulation model.......This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures...

  14. Compensating for Channel Fading in DS-CDMA Communication Systems Employing ICA Neural Network Detectors

    Directory of Open Access Journals (Sweden)

    David Overbye

    2005-06-01

    Full Text Available In this paper we examine the impact of channel fading on the bit error rate of a DS-CDMA communication system. The system employs detectors that incorporate neural networks effecting methods of independent component analysis (ICA, subspace estimation of channel noise, and Hopfield type neural networks. The Rayleigh fading channel model is used. When employed in a Rayleigh fading environment, the ICA neural network detectors that give superior performance in a flat fading channel did not retain this superior performance. We then present a new method of compensating for channel fading based on the incorporation of priors in the ICA neural network learning algorithms. When the ICA neural network detectors were compensated using the incorporation of priors, they give significantly better performance than the traditional detectors and the uncompensated ICA detectors. Keywords: CDMA, Multi-user Detection, Rayleigh Fading, Multipath Detection, Independent Component Analysis, Prior Probability Hebbian Learning, Natural Gradient

  15. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  16. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars Aqueous Processing System (MAPS) is an innovative method to produce useful building materials from Martian regolith. Acids and bases produced from the regolith...

  17. Musical intervention enhances infants' neural processing of temporal structure in music and speech.

    Science.gov (United States)

    Zhao, T Christina; Kuhl, Patricia K

    2016-05-10

    Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants' neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants' neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants' neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants' ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing.

  18. Musical intervention enhances infants’ neural processing of temporal structure in music and speech

    Science.gov (United States)

    Zhao, T. Christina; Kuhl, Patricia K.

    2016-01-01

    Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants’ neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants’ neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants’ neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants’ ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing. PMID:27114512

  19. Handbook of signal processing systems

    CERN Document Server

    Deprettere, Ed; Leupers, Rainer; Takala, Jarmo

    2013-01-01

    Handbook of Signal Processing Systems is organized in three parts. The first part motivates representative applications that drive and apply state-of-the art methods for design and implementation of signal processing systems; the second part discusses architectures for implementing these applications; the third part focuses on compilers and simulation tools, describes models of computation and their associated design tools and methodologies. This handbook is an essential tool for professionals in many fields and researchers of all levels.

  20. Automatic Optimization of Focal Point Position in CO2 Laser Welding with Neural Network in A Focus Control System

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    acquisition card - DAQCard-700, and a self-learning mechanism - Neural Network. The optimization procedure starts with the welding process being carried out by continuously moving the focal point position from above a welding plate to below the plate, thus the process is ensured to be shifted from initially...... surface welding to deep/full penetration welding and back to surface welding again. A clear change on plasma brightness from the process is monitored by the photo diode on the front side of the plate with a viewing angle of 45o. The photo diode signal is acquired with the A/D converter card and installed......-learning mechanism - neural network as the essence of the control system is trained with the photo diode signals extracted from various welding processes with the changes on the laser power, translation speed, material and thickness of the plate, shielding gas type and flow rate, and welding configuration...

  1. Automated identification of copepods using digital image processing and artificial neural network.

    Science.gov (United States)

    Leow, Lee Kien; Chew, Li-Lee; Chong, Ving Ching; Dhillon, Sarinder Kaur

    2015-01-01

    Copepods are planktonic organisms that play a major role in the marine food chain. Studying the community structure and abundance of copepods in relation to the environment is essential to evaluate their contribution to mangrove trophodynamics and coastal fisheries. The routine identification of copepods can be very technical, requiring taxonomic expertise, experience and much effort which can be very time-consuming. Hence, there is an urgent need to introduce novel methods and approaches to automate identification and classification of copepod specimens. This study aims to apply digital image processing and machine learning methods to build an automated identification and classification technique. We developed an automated technique to extract morphological features of copepods' specimen from captured images using digital image processing techniques. An Artificial Neural Network (ANN) was used to classify the copepod specimens from species Acartia spinicauda, Bestiolina similis, Oithona aruensis, Oithona dissimilis, Oithona simplex, Parvocalanus crassirostris, Tortanus barbatus and Tortanus forcipatus based on the extracted features. 60% of the dataset was used for a two-layer feed-forward network training and the remaining 40% was used as testing dataset for system evaluation. Our approach demonstrated an overall classification accuracy of 93.13% (100% for A. spinicauda, B. similis and O. aruensis, 95% for T. barbatus, 90% for O. dissimilis and P. crassirostris, 85% for O. similis and T. forcipatus). The methods presented in this study enable fast classification of copepods to the species level. Future studies should include more classes in the model, improving the selection of features, and reducing the time to capture the copepod images.

  2. Rapid-onset antidepressant efficacy of glutamatergic system modulators: the neural plasticity hypothesis of depression.

    Science.gov (United States)

    Wang, Jing; Jing, Liang; Toledo-Salas, Juan-Carlos; Xu, Lin

    2015-02-01

    Depression is a devastating psychiatric disorder widely attributed to deficient monoaminergic signaling in the central nervous system. However, most clinical antidepressants enhance monoaminergic neurotransmission with little delay but require 4-8 weeks to reach therapeutic efficacy, a paradox suggesting that the monoaminergic hypothesis of depression is an oversimplification. In contrast to the antidepressants targeting the monoaminergic system, a single dose of the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid (within 2 h) and sustained (over 7 days) antidepressant efficacy in treatment-resistant patients. Glutamatergic transmission mediated by NMDARs is critical for experience-dependent synaptic plasticity and learning, processes that can be modified indirectly by the monoaminergic system. To better understand the mechanisms of action of the new antidepressants like ketamine, we review and compare the monoaminergic and glutamatergic antidepressants, with emphasis on neural plasticity. The pathogenesis of depression may involve maladaptive neural plasticity in glutamatergic circuits that may serve as a new class of targets to produce rapid antidepressant effects.

  3. A case for spiking neural network simulation based on configurable multiple-FPGA systems.

    Science.gov (United States)

    Yang, Shufan; Wu, Qiang; Li, Renfa

    2011-09-01

    Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.

  4. Neural Correlates of Contrast and Humor: Processing Common Features of Verbal Irony.

    Science.gov (United States)

    Obert, Alexandre; Gierski, Fabien; Calmus, Arnaud; Flucher, Aurélie; Portefaix, Christophe; Pierot, Laurent; Kaladjian, Arthur; Caillies, Stéphanie

    2016-01-01

    Irony is a kind of figurative language used by a speaker to say something that contrasts with the context and, to some extent, lends humor to a situation. However, little is known about the brain regions that specifically support the processing of these two common features of irony. The present study had two main aims: (i) investigate the neural basis of irony processing, by delivering short ironic spoken sentences (and their literal counterparts) to participants undergoing fMRI; and (ii) assess the neural effect of two irony parameters, obtained from normative studies: degree of contrast and humor appreciation. Results revealed activation of the bilateral inferior frontal gyrus (IFG), posterior part of the left superior temporal gyrus, medial frontal cortex, and left caudate during irony processing, suggesting the involvement of both semantic and theory-of-mind networks. Parametric models showed that contrast was specifically associated with the activation of bilateral frontal and subcortical areas, and that these regions were also sensitive to humor, as shown by a conjunction analysis. Activation of the bilateral IFG is consistent with the literature on humor processing, and reflects incongruity detection/resolution processes. Moreover, the activation of subcortical structures can be related to the reward processing of social events.

  5. Image processing using pulse-coupled neural networks applications in Python

    CERN Document Server

    Lindblad, Thomas

    2013-01-01

    Image processing algorithms based on the mammalian visual cortex are powerful tools for extraction information and manipulating images. This book reviews the neural theory and translates them into digital models. Applications are given in areas of image recognition, foveation, image fusion and information extraction. The third edition reflects renewed international interest in pulse image processing with updated sections presenting several newly developed applications. This edition also introduces a suite of Python scripts that assist readers in replicating results presented in the text and to further develop their own applications.

  6. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)

    2006-07-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  7. Artificial neural network approach to modeling of alcoholic fermentation of thick juice from sugar beet processing

    Directory of Open Access Journals (Sweden)

    Jokić Aleksandar I.

    2012-01-01

    Full Text Available In this paper the bioethanol production in batch culture by free Saccharomyces cerevisiae cells from thick juice as intermediate product of sugar beet processing was examined. The obtained results suggest that it is possible to decrease fermentation time for the cultivation medium based on thick juice with starting sugar content of 5-15 g kg-1. For the fermentation of cultivation medium based on thick juice with starting sugar content of 20 and 25 g kg-1 significant increase in ethanol content was attained during the whole fermentation process, resulting in 12.51 and 10.95 dm3 m-3 ethanol contents after 48 h, respectively. Other goals of this work were to investigate the possibilities for experimental results prediction using artificial neural networks (ANNs and to find its optimal topology. A feed-forward back-propagation artificial neural network was used to test the hypothesis. As input variables fermentation time and starting sugar content were used. Neural networks had one output value, ethanol content, yeast cell number or sugar content. There was one hidden layer and the optimal number of neurons was found to be nine for all selected network outputs. In this study transfer function was tansig and the selected learning rule was Levenberg-Marquardt. Results suggest that artificial neural networks are good prediction tool for selected network outputs. It was found that experimental results are in very good agreement with computed ones. The coefficient of determination (the R-squared was found to be 0.9997, 0.9997 and 0.9999 for ethanol content, yeast cell number and sugar content, respectively.

  8. Selection Process of ERP Systems

    OpenAIRE

    2013-01-01

    Background: The application and introduction of ERP systems have become a central issue for management and operation of enterprises. The competition on market enforces the improvement and optimization of business processes of enterprises to increase their efficiency, effectiveness, and to manage better the resources outside the company. The primary task of ERP systems is to achieve the before-mentioned objectives. Objective: The selection of a particular ERP system has a decisive effect on th...

  9. Image Processing dan Artifical Neural Network Untuk Mengenali Nomor Induk Kependudukan Pada KTP Sebagai Pendukung Layanan Mandiri di Kantor Desa

    Directory of Open Access Journals (Sweden)

    Jaroji Jaroji

    2017-11-01

    population identification number on the ID card. Image processing is done by bileveling, smearing, line determination and extracting digital images into binary images that generate vectors. The vector pattern was tested with artificial neural network backpropagation method which has been trained using 61 vector units  sample data. The result is artificial neural networks are able to recognize data population identification number on the ID card. The population identification number is used as inputs on the system self-service. Keywords: Image processing, Run Lenght Smearing Algorithm, Articial neural network, Backpropagation.

  10. Simulation of Missile Autopilot with Two-Rate Hybrid Neural Network System

    Directory of Open Access Journals (Sweden)

    ASTROV, I.

    2007-04-01

    Full Text Available This paper proposes a two-rate hybrid neural network system, which consists of two artificial neural network subsystems. These neural network subsystems are used as the dynamic subsystems controllers.1 This is because such neuromorphic controllers are especially suitable to control complex systems. An illustrative example - two-rate neural network hybrid control of decomposed stochastic model of a rigid guided missile over different operating conditions - was carried out using the proposed two-rate state-space decomposition technique. This example demonstrates that this research technique results in simplified low-order autonomous control subsystems with various speeds of actuation, and shows the quality of the proposed technique. The obtained results show that the control tasks for the autonomous subsystems can be solved more qualitatively than for the original system. The simulation and animation results with use of software package Simulink demonstrate that this research technique would work for real-time stochastic systems.

  11. Identification of Complex Dynamical Systems with Neural Networks (2/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  12. Identification of Complex Dynamical Systems with Neural Networks (1/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  13. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    Directory of Open Access Journals (Sweden)

    Jinjun Tang

    Full Text Available Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN, two learning processes are proposed: (1 a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2 a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE, root mean square error (RMSE, and mean absolute relative error (MARE are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR, instantaneous model (IM, linear model (LM, neural network (NN, and cumulative plots (CP.

  14. Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers

    Directory of Open Access Journals (Sweden)

    Mauricio R Delgado

    2011-05-01

    Full Text Available Money is a secondary reinforcer commonly used across a range of disciplines in experimental paradigms investigating reward learning and decision-making. The effectiveness of monetary reinforcers during aversive learning and its neural basis, however, remains a topic of debate. Specifically, it is unclear if the initial acquisition of aversive representations of monetary losses depends on similar neural systems as more traditional aversive conditioning that involves primary reinforcers. This study contrasts the efficacy of a biologically defined primary reinforcer (shock and a socially defined secondary reinforcer (money during aversive learning and its associated neural circuitry. During a two-part experiment, participants first played a gambling game where wins and losses were based on performance to gain an experimental bank. Participants were then exposed to two separate aversive conditioning sessions. In one session, a primary reinforcer (mild shock served as an unconditioned stimulus (US and was paired with one of two colored squares, the conditioned stimuli (CS+ and CS-, respectively. In another session, a secondary reinforcer (loss of money served as the US and was paired with one of two different CS. Skin conductance responses were greater for CS+ compared to CS- trials irrespective of type of reinforcer. Neuroimaging results revealed that the striatum, a region typically linked with reward-related processing, was found to be involved in the acquisition of aversive conditioned response irrespective of reinforcer type. In contrast, the amygdala was involved during aversive conditioning with primary reinforcers, as suggested by both an exploratory fMRI analysis and a follow-up case study with a patient with bilateral amygdala damage. Taken together, these results suggest that learning about potential monetary losses may depend on reinforcement learning related systems, rather than on typical structures involved in more biologically based

  15. Quickprop method to speed up learning process of Artificial Neural Network in money's nominal value recognition case

    Science.gov (United States)

    Swastika, Windra

    2017-03-01

    A money's nominal value recognition system has been developed using Artificial Neural Network (ANN). ANN with Back Propagation has one disadvantage. The learning process is very slow (or never reach the target) in the case of large number of iteration, weight and samples. One way to speed up the learning process is using Quickprop method. Quickprop method is based on Newton's method and able to speed up the learning process by assuming that the weight adjustment (E) is a parabolic function. The goal is to minimize the error gradient (E'). In our system, we use 5 types of money's nominal value, i.e. 1,000 IDR, 2,000 IDR, 5,000 IDR, 10,000 IDR and 50,000 IDR. One of the surface of each nominal were scanned and digitally processed. There are 40 patterns to be used as training set in ANN system. The effectiveness of Quickprop method in the ANN system was validated by 2 factors, (1) number of iterations required to reach error below 0.1; and (2) the accuracy to predict nominal values based on the input. Our results shows that the use of Quickprop method is successfully reduce the learning process compared to Back Propagation method. For 40 input patterns, Quickprop method successfully reached error below 0.1 for only 20 iterations, while Back Propagation method required 2000 iterations. The prediction accuracy for both method is higher than 90%.

  16. Erythropoietin modulates neural and cognitive processing of emotional information in biomarker models of antidepressant drug action in depressed patients

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Favaron, Elisa; Hafizi, Sepehr

    2010-01-01

    Erythropoietin (Epo) has neuroprotective and neurotrophic effects, and may be a novel therapeutic agent in the treatment of psychiatric disorders. We have demonstrated antidepressant-like effects of Epo on the neural and cognitive processing of facial expressions in healthy volunteers. The curren...... study investigates the effects of Epo on the neural and cognitive response to emotional facial expressions in depressed patients.......Erythropoietin (Epo) has neuroprotective and neurotrophic effects, and may be a novel therapeutic agent in the treatment of psychiatric disorders. We have demonstrated antidepressant-like effects of Epo on the neural and cognitive processing of facial expressions in healthy volunteers. The current...

  17. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    Science.gov (United States)

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  18. Identifying temporal and causal contributions of neural processes underlying the Implicit Association Test (IAT

    Directory of Open Access Journals (Sweden)

    Chad Edward Forbes

    2012-11-01

    Full Text Available The Implicit Association Test (IAT is a popular behavioral measure that assesses the associative strength between outgroup members and stereotypical and counterstereotypical traits. Less is known, however, about the degree to which the IAT reflects automatic processing. Two studies examined automatic processing contributions to a gender-IAT using a data driven, social neuroscience approach. Performance on congruent (e.g., categorizing male names with synonyms of strength and incongruent (e.g., categorizing female names with synonyms of strength IAT blocks were separately analyzed using EEG (event-related potentials, or ERPs, and coherence; Study 1 and lesion (Study 2 methodologies. Compared to incongruent blocks, performance on congruent IAT blocks was associated with more positive ERPs that manifested in frontal and occipital regions at automatic processing speeds, occipital regions at more controlled processing speeds and was compromised by volume loss in the anterior temporal lobe, insula and medial PFC. Performance on incongruent blocks was associated with volume loss in supplementary motor areas, cingulate gyrus and a region in medial PFC similar to that found for congruent blocks. Greater coherence was found between frontal and occipital regions to the extent individuals exhibited more bias. This suggests there are separable neural contributions to congruent and incongruent blocks of the IAT but there is also a surprising amount of overlap. Given the temporal and regional neural distinctions, these results provide converging evidence that stereotypic associative strength assessed by the IAT indexes automatic processing to a degree.

  19. Neural correlates of attentional and mnemonic processing in event-based prospective memory

    Directory of Open Access Journals (Sweden)

    Justin B Knight

    2010-02-01

    Full Text Available Prospective memory, or memory for realizing delayed intentions, was examined with an event-based paradigm while simultaneously measuring neural activity with high-density EEG recordings. Specifically, the neural substrates of monitoring for an event-based cue were examined, as well as those perhaps associated with the cognitive processes supporting detection of cues and fulfillment of intentions. Participants engaged in a baseline lexical decision task (LDT, followed by a LDT with an embedded prospective memory (PM component. Event-based cues were constituted by color and lexicality (red words. Behavioral data provided evidence that monitoring, or preparatory attentional processes, were used to detect cues. Analysis of the event-related potentials (ERP revealed visual attentional modulations at 140 and 220 ms post-stimulus associated with preparatory attentional processes. In addition, ERP components at 220, 350, and 400 ms post-stimulus were enhanced for intention-related items. Our results suggest preparatory attention may operate by selectively modulating processing of features related to a previously formed event-based intention, as well as provide further evidence for the proposal that dissociable component processes support the fulfillment of delayed intentions.

  20. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  1. Unconscious neural processing differs with method used to render stimuli invisible

    Directory of Open Access Journals (Sweden)

    Sergey Victor Fogelson

    2014-06-01

    Full Text Available Visual stimuli can be kept from awareness using various methods. The extent of processing that a given stimulus receives in the absence of awareness is typically used to make claims about the role of consciousness more generally. The neural processing elicited by a stimulus, however, may also depend on the method used to keep it from awareness, and not only on whether the stimulus reaches awareness. Here we report that the method used to render an image invisible has a dramatic effect on how category information about the unseen stimulus is encoded across the human brain. We collected fMRI data while subjects viewed images of faces and tools, that were rendered invisible using either continuous flash suppression (CFS or chromatic flicker fusion (CFF. In a third condition, we presented the same images under normal fully visible viewing conditions. We found that category information about visible images could be extracted from patterns of fMRI responses throughout areas of neocortex known to be involved in face or tool processing. However, category information about stimuli kept from awareness using CFS could be recovered exclusively within occipital cortex, whereas information about stimuli kept from awareness using CFF was also decodable within temporal and frontal regions. We conclude that unconsciously presented objects are processed differently depending on how they are rendered subjectively invisible. Caution should therefore be used in making generalizations on the basis of any one method about the neural basis of consciousness or the extent of information processing without consciousness.

  2. Adaptive Wavelet Neural Network Backstepping Sliding Mode Tracking Control for PMSM Drive System

    OpenAIRE

    Liu, Da; Li, Muguo

    2015-01-01

    This paper presents a wavelet neural network backstepping sliding mode controller (WNNBSSM) for permanent-magnet synchronous motor (PMSM) position servo control system. Backstepping sliding mode (BSSM) is utilized to guarantee favorable tracking performance and stability of the whole system, meanwhile, wavelet neural network (WNN) is used for approximating nonlinear uncertainties. The designed controller combined the merits of the backstepping sliding mode control with robust characteristics ...

  3. Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity

    Science.gov (United States)

    Just, Marcel Adam; Keller, Timothy A.; Malave, Vicente L.; Kana, Rajesh K.; Varma, Sashank

    2012-01-01

    The underconnectivity theory of autism attributes the disorder to lower anatomical and functional systems connectivity between frontal and more posterior cortical processing. Here we review evidence for the theory and present a computational model of an executive functioning task (Tower of London) implementing the assumptions of underconnectivity. We make two modifications to a previous computational account of performance and brain activity in typical individuals in the Tower of London task (Newman et al., 2003): (1) the communication bandwidth between frontal and parietal areas was decreased and (2) the posterior centers were endowed with more executive capability (i.e., more autonomy, an adaptation is proposed to arise in response to the lowered frontal-posterior bandwidth). The autism model succeeds in matching the lower frontal-posterior functional connectivity (lower synchronization of activation) seen in fMRI data, as well as providing insight into behavioral response time results. The theory provides a unified account of how a neural dysfunction can produce a neural systems disorder and a psychological disorder with the widespread and diverse symptoms of autism. PMID:22353426

  4. DECISION WITH ARTIFICIAL NEURAL NETWORKS IN DISCRETE EVENT SIMULATION MODELS ON A TRAFFIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Marília Gonçalves Dutra da Silva

    2016-04-01

    Full Text Available ABSTRACT This work aims to demonstrate the use of a mechanism to be applied in the development of the discrete-event simulation models that perform decision operations through the implementation of an artificial neural network. Actions that involve complex operations performed by a human agent in a process, for example, are often modeled in simplified form with the usual mechanisms of simulation software. Therefore, it was chosen a traffic system controlled by a traffic officer with a flow of vehicles and pedestrians to demonstrate the proposed solution. From a module built in simulation software itself, it was possible to connect the algorithm for intelligent decision to the simulation model. The results showed that the model elaborated responded as expected when it was submitted to actions, which required different decisions to maintain the operation of the system with changes in the flow of people and vehicles.

  5. NMTPY: A Flexible Toolkit for Advanced Neural Machine Translation Systems

    Directory of Open Access Journals (Sweden)

    Caglayan Ozan

    2017-10-01

    Full Text Available In this paper, we present nmtpy, a flexible Python toolkit based on Theano for training Neural Machine Translation and other neural sequence-to-sequence architectures. nmtpy decouples the specification of a network from the training and inference utilities to simplify the addition of a new architecture and reduce the amount of boilerplate code to be written. nmtpy has been used for LIUM’s top-ranked submissions to WMT Multimodal Machine Translation and News Translation tasks in 2016 and 2017.

  6. 1st International Conference on Cognitive Systems and Information Processing

    CERN Document Server

    Hu, Dewen; Liu, Huaping

    2014-01-01

    "Foundations and Practical Applications of Cognitive Systems and Information Processing" presents selected papers from the First International Conference on Cognitive Systems and Information Processing, held in Beijing, China on December 15-17, 2012 (CSIP2012). The aim of this conference is to bring together experts from different fields of expertise to discuss the state-of-the-art in artificial cognitive systems and advanced information processing, and to present new findings and perspectives on future development. This book introduces multidisciplinary perspectives on the subject areas of Cognitive Systems and Information Processing, including cognitive sciences and technology, autonomous vehicles, cognitive psychology, cognitive metrics, information fusion, image/video understanding, brain-computer interfaces, visual cognitive processing, neural computation, bioinformatics, etc. The book will be beneficial for both researchers and practitioners in the fields of Cognitive Science, Computer Science and Cogni...

  7. Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus.

    Science.gov (United States)

    Silk, Timothy J; Bellgrove, Mark A; Wrafter, Pia; Mattingley, Jason B; Cunnington, Ross

    2010-11-01

    Our ability to remember locations in space (spatial working memory) and our ability to direct attention to those locations (spatial attention) are two fundamental and closely related cognitive processes. A growing body of behavioural evidence suggests that spatial working memory and spatial attention share common resources, while neuroimaging studies show some overlap in the neural regions that mediate these two cognitive functions. The current study used fMRI to directly examine the extent to which spatial working memory and spatial attention rely on common underlying neural mechanisms. Twenty healthy participants underwent functional MRI while performing a dual task of spatial working memory incorporating a visual search task during the working memory retention interval. Working memory and visual search task loads were parametrically modulated. A wide network of prefrontal, premotor, and parietal regions showed increasing activity with increased spatial working memory load. Of these areas, part of the right supramarginal gyrus, lying along the intraparietal sulcus, showed a significant interaction such that the neural activity associated with spatial working memory load was significantly attenuated as visual search load in the dual task was increased. This interaction suggests that this part of the supramarginal gyrus, along the intraparietal sulcus, is critical for mediating both spatial working memory and shifts in spatial attention. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes.

    Science.gov (United States)

    Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso

    2015-06-01

    Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

  9. Affective personality differences in neural processing efficiency confirmed using fMRI.

    Science.gov (United States)

    Gray, Jeremy R; Burgess, Gregory C; Schaefer, Alexandre; Yarkoni, Tal; Larsen, Randy J; Braver, Todd S

    2005-06-01

    To test for a relation between individual differences in personality and neural-processing efficiency, we used functional magnetic resonance imaging (fMRI) to assess brain activity within regions associated with cognitive control during a demanding working memory task. Fifty-three participants completed both the self-report behavioral inhibition sensitivity (BIS) and behavioral approach sensitivity (BAS) personality scales and a standard measure of fluid intelligence (Raven's Advanced Progressive Matrices). They were then scanned as they performed a three-back working memory task. A mixed blocked/ event-related fMRI design enabled us to identify both sustained and transient neural activity. Higher BAS was negatively related to event-related activity in the dorsal anterior cingulate, the lateral prefrontal cortex, and parietal areas in regions of interest identified in previous work. These relationships were not explained by differences in either behavioral performance or fluid intelligence, consistent with greater neural efficiency. The results reveal the high specificity of the relationships among personality, cognition, and brain activity. The data confirm that affective dimensions of personality are independent of intelligence, yet also suggest that they might be interrelated in subtle ways, because they modulate activity in overlapping brain regions that appear to be critical for task performance.

  10. Power to punish norm violations affects the neural processes of fairness-related decision making

    Directory of Open Access Journals (Sweden)

    Xuemei eCheng

    2015-12-01

    Full Text Available Punishing norm violations is considered an important motive during rejection of unfair offers in the Ultimatum Game (UG. The present study investigates the impact of the power to punish norm violations on people’s responses to unfairness and associated neural correlates. In the UG condition participants had the power to punish norm violations, while an alternate condition, the Impunity Game (IG, was presented where participants had no power to punish norm violations since rejection only reduced the responder’s income to zero. Results showed that unfair offers were rejected more often in UG compared to IG. At the neural level, anterior insula and dorsal anterior cingulate cortex were more active when participants received and rejected unfair offers in both UG and IG. Moreover, greater dorsolateral prefrontal cortex activity was observed when participants rejected than accepted unfair offers in UG but not in IG. Ventromedial prefrontal cortex activation was higher in UG than IG when unfair offers were accepted as well as when rejecting unfair offers in IG as opposed to UG. Taken together, our results demonstrate that the power to punish norm violations affects not only people’s behavioral responses to unfairness but also the neural correlates of the fairness-related social decision-making process.

  11. Degraded neural and behavioral processing of speech sounds in a rat model of Rett syndrome.

    Science.gov (United States)

    Engineer, Crystal T; Rahebi, Kimiya C; Borland, Michael S; Buell, Elizabeth P; Centanni, Tracy M; Fink, Melyssa K; Im, Kwok W; Wilson, Linda G; Kilgard, Michael P

    2015-11-01

    Individuals with Rett syndrome have greatly impaired speech and language abilities. Auditory brainstem responses to sounds are normal, but cortical responses are highly abnormal. In this study, we used the novel rat Mecp2 knockout model of Rett syndrome to document the neural and behavioral processing of speech sounds. We hypothesized that both speech discrimination ability and the neural response to speech sounds would be impaired in Mecp2 rats. We expected that extensive speech training would improve speech discrimination ability and the cortical response to speech sounds. Our results reveal that speech responses across all four auditory cortex fields of Mecp2 rats were hyperexcitable, responded slower, and were less able to follow rapidly presented sounds. While Mecp2 rats could accurately perform consonant and vowel discrimination tasks in quiet, they were significantly impaired at speech sound discrimination in background noise. Extensive speech training improved discrimination ability. Training shifted cortical responses in both Mecp2 and control rats to favor the onset of speech sounds. While training increased the response to low frequency sounds in control rats, the opposite occurred in Mecp2 rats. Although neural coding and plasticity are abnormal in the rat model of Rett syndrome, extensive therapy appears to be effective. These findings may help to explain some aspects of communication deficits in Rett syndrome and suggest that extensive rehabilitation therapy might prove beneficial. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Viewing pictures of a romantic partner reduces experimental pain: involvement of neural reward systems.

    Directory of Open Access Journals (Sweden)

    Jarred Younger

    2010-10-01

    Full Text Available The early stages of a new romantic relationship are characterized by intense feelings of euphoria, well-being, and preoccupation with the romantic partner. Neuroimaging research has linked those feelings to activation of reward systems in the human brain. The results of those studies may be relevant to pain management in humans, as basic animal research has shown that pharmacologic activation of reward systems can substantially reduce pain. Indeed, viewing pictures of a romantic partner was recently demonstrated to reduce experimental thermal pain. We hypothesized that pain relief evoked by viewing pictures of a romantic partner would be associated with neural activations in reward-processing centers. In this functional magnetic resonance imaging (fMRI study, we examined fifteen individuals in the first nine months of a new, romantic relationship. Participants completed three tasks under periods of moderate and high thermal pain: 1 viewing pictures of their romantic partner, 2 viewing pictures of an equally attractive and familiar acquaintance, and 3 a word-association distraction task previously demonstrated to reduce pain. The partner and distraction tasks both significantly reduced self-reported pain, although only the partner task was associated with activation of reward systems. Greater analgesia while viewing pictures of a romantic partner was associated with increased activity in several reward-processing regions, including the caudate head, nucleus accumbens, lateral orbitofrontal cortex, amygdala, and dorsolateral prefrontal cortex--regions not associated with distraction-induced analgesia. The results suggest that the activation of neural reward systems via non-pharmacologic means can reduce the experience of pain.

  13. At what stage of neural processing does cocaine act to boost pursuit of rewards?

    Directory of Open Access Journals (Sweden)

    Giovanni Hernandez

    2010-11-01

    Full Text Available Dopamine-containing neurons have been implicated in reward and decision making. One element of the supporting evidence is that cocaine, like other drugs that increase dopaminergic neurotransmission, powerfully potentiates reward seeking. We analyze this phenomenon from a novel perspective, introducing a new conceptual framework and new methodology for determining the stage(s of neural processing at which drugs, lesions and physiological manipulations act to influence reward-seeking behavior. Cocaine strongly boosts the proclivity of rats to work for rewarding electrical brain stimulation. We show that the conventional conceptual framework and methods do not distinguish between three conflicting accounts of how the drug produces this effect: increased sensitivity of brain reward circuitry, increased gain, or decreased subjective reward costs. Sensitivity determines the stimulation strength required to produce a reward of a given intensity (a measure analogous to the KM of an enzyme whereas gain determines the maximum intensity attainable (a measure analogous to the vmax of an enzyme-catalyzed reaction. To distinguish sensitivity changes from the other determinants, we measured and modeled reward seeking as a function of both stimulation strength and opportunity cost. The principal effect of cocaine was a two-fourfold increase in willingness to pay for the electrical reward, an effect consistent with increased gain or decreased subjecti