WorldWideScience

Sample records for neural pathway typically

  1. Central neural pathways for thermoregulation

    Science.gov (United States)

    Morrison, Shaun F.; Nakamura, Kazuhiro

    2010-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160

  2. Neural Correlates of Reward Processing in Typical and Atypical Development

    Directory of Open Access Journals (Sweden)

    Emma G. Duerden PhD

    2016-09-01

    Full Text Available Atypically developing children including those born preterm or who have autism spectrum disorder can display difficulties with evaluating rewarding stimuli, which may result from impaired maturation of reward and cognitive control brain regions. During functional magnetic resonance imaging, 58 typically and atypically developing children (6-12 years participated in a set-shifting task that included the presentation of monetary reward stimuli. In typically developing children, reward stimuli were associated with age-related increases in activation in cognitive control centers, with weaker changes in reward regions. In atypically developing children, no age-related changes were evident. Maturational disturbances in the frontostriatal regions during atypical development may underlie task-based differences in activation.

  3. Vergence Neural Pathways: A Systematic Narrative Literature Review.

    Science.gov (United States)

    Searle, Annabelle; Rowe, Fiona J

    2016-10-01

    Research in the neural pathway for vergence is less understood in comparison to the other four visual eye movements. The aim of this study was to review the literature on vergence neural pathways and associated disorders. A review of previous published literature though to March 2016 was conducted. Intracranial pathologies that affect entire neural functioning were found to cause convergence insufficiencies. In contrast, pathologies with a more localised intracranial lesion cause more specific vergence disorders. There is debate as to the potential presence of a "divergence centre." Detailed information on the divergence pathway is lacking and warrants further research.

  4. Dopamine system: Manager of neural pathways

    Directory of Open Access Journals (Sweden)

    Simon eHong

    2013-12-01

    Full Text Available There are a growing number of roles that midbrain dopamine (DA neurons assume, such as, reward, aversion, alerting and vigor. Here I propose a theory that may be able to explain why the suggested functions of DA came about. It has been suggested that largely parallel cortico-basal ganglia-thalamo-cortico loops exist to control different aspects of behavior. I propose that (1 the midbrain DA system is organized in a similar manner, with different groups of DA neurons corresponding to these parallel neural pathways (NPs. The DA system can be viewed as the manager of these parallel NPs in that it recruits and activates only the task-relevant NPs when they are needed. It is likely that the functions of those NPs that have been consistently activated by the corresponding DA groups are facilitated. I also propose that (2 there are two levels of DA roles: the How and What roles. The How role is encoded in tonic and phasic DA neuron firing patterns and gives a directive to its target NP: how vigorously its function needs to be carried out. The tonic DA firing is to maintain a certain level of DA in the target NPs to support their expected behavioral and mental functions; it is only when a sudden unexpected boost or suppression of activity is required by the relevant target NP that DA neurons in the corresponding NP act in a phasic manner. The What role is the implementational aspect of the role of DA in the target NP, such as binding to D1 receptors to boost working memory. This What aspect of DA explains why DA seems to assume different functions depending on the region of the brain in which it is involved. In terms of the role of the lateral habenula (LHb, the LHb is expected to suppress maladaptive behaviors and mental processes by controlling the DA system. The demand-based smart management by the DA system may have given animals an edge in evolution with adaptive behaviors and a better survival rate in resource-scarce situations.

  5. Neural pathways for visual speech perception.

    Science.gov (United States)

    Bernstein, Lynne E; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA.

  6. Neural pathways for visual speech perception

    Directory of Open Access Journals (Sweden)

    Lynne E Bernstein

    2014-12-01

    Full Text Available This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1 The visual perception of speech relies on visual pathway representations of speech qua speech. (2 A proposed site of these representations, the temporal visual speech area (TVSA has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS. (3 Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA.

  7. Neural pathways for visual speech perception

    Science.gov (United States)

    Bernstein, Lynne E.; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611

  8. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory.

    Science.gov (United States)

    Shuai, Yichun; Hirokawa, Areekul; Ai, Yulian; Zhang, Min; Li, Wanhe; Zhong, Yi

    2015-12-01

    Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β'1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts.

  9. Comparing the neural bases of self-referential processing in typically developing and 22q11.2 adolescents

    OpenAIRE

    Schneider, Maude; Debbané, Martin; Lagioia, Annalaura; Salomon, Roy; D’Argembeau, Arnaud; Eliez, Stephan

    2012-01-01

    The investigation of self-reflective processing during adolescence is relevant, as this period is characterized by deep reorganization of the self-concept. It may be the case that an atypical development of brain regions underlying self-reflective processing increases the risk for psychological disorders and impaired social functioning. In this study, we investigated the neural bases of self- and other-related processing in typically developing adolescents and youths with 22q11.2 deletion syn...

  10. Functioning of peripheral Ia pathways in infants with typical development: responses in antagonist muscle pairs.

    Science.gov (United States)

    Teulier, Caroline; Ulrich, Beverly D; Martin, Bernard

    2011-02-01

    In muscle responses of proprioceptive origin, including the stretch/tendon reflex (T-reflex), the corresponding reciprocal excitation and irradiation to distant muscles have been described from newborn infants to older adults. However, the functioning of other responses mediated primarily by Ia-afferents has not been investigated in infants. Understanding the typical development of these multiple pathways is critical to determining potential problems in their development in populations affected by neurological disease, such as spina bifida or cerebral palsy. Hence, the goal of the present study was to quantify the excitability of Ia-mediated responses in lower limb muscles of infants with typical development. These responses were elicited by mechanical stimulation applied to the distal tendons of the gastrocnemius-soleus (GS), tibialis anterior (TA) and quadriceps (QAD) muscles of both legs in twelve 2- to 10-month-old infants and recorded simultaneously in antagonist muscle pairs by surface EMG. Tendon taps alone elicited responses in either, both or neither muscle. The homonymous response (T-reflex) was less frequent in the TA than the GS or QAD muscle. An 80 Hz vibration superimposed on tendon taps induced primarily an inhibition of monosynaptic responses; however, facilitation also occurred in either muscle of the recorded pair. These responses were not influenced significantly by age or gender. Vibration alone produced a tonic reflex response in the vibrated muscle (TVR) and/or the antagonist muscle (AVR). However, for the TA muscle the TVR was more frequently elicited in older than younger infants. High variability was common to all responses. Overall, the random distribution and inconsistency of muscle responses suggests that the gain of Ia-mediated feedback is unstable. We propose that during infancy the central nervous system needs to learn to set stable feedback gain, or destination of proprioceptive assistance, based on their use during functional

  11. Neural substrates of child irritability in typically developing and psychiatric populations

    Directory of Open Access Journals (Sweden)

    Susan B. Perlman

    2015-08-01

    Full Text Available Irritability is an aspect of the negative affectivity domain of temperament, but in severe and dysregulated forms is a symptom of a range of psychopathologies. Better understanding of the neural underpinnings of irritability, outside the context of specific disorders, can help to understand normative variation but also characterize its clinical salience in psychopathology diagnosis. This study assessed brain activation during reward and frustration, domains of behavioral deficits in childhood irritability. Children (age 6–9 presenting in mental health clinics for extreme and impairing irritability (n = 26 were compared to healthy children (n = 28. Using developmentally sensitive methods, neural activation was measured via a negative mood induction paradigm during fMRI scanning. The clinical group displayed more activation of the anterior cingulate and middle frontal gyrus during reward, but less activation during frustration, than healthy comparison children. The opposite pattern was found in the posterior cingulate. Further, in clinical subjects, parent report of irritability was dimensionally related to decreased activation of the anterior cingulate and striatum during frustration. The results of this study indicate neural dysfunction within brain regions related to reward processing, error monitoring, and emotion regulation underlying clinically impairing irritability. Results are discussed in the context of a growing field of neuroimaging research investigating irritable children.

  12. Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones.

    Directory of Open Access Journals (Sweden)

    Olivier Brock

    Full Text Available The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus, as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.

  13. Identification of a Typical CSTR Using Optimal Focused Time Lagged Recurrent Neural Network Model with Gamma Memory Filter

    Directory of Open Access Journals (Sweden)

    S. N. Naikwad

    2009-01-01

    Full Text Available A focused time lagged recurrent neural network (FTLR NN with gamma memory filter is designed to learn the subtle complex dynamics of a typical CSTR process. Continuous stirred tank reactor exhibits complex nonlinear operations where reaction is exothermic. It is noticed from literature review that process control of CSTR using neuro-fuzzy systems was attempted by many, but optimal neural network model for identification of CSTR process is not yet available. As CSTR process includes temporal relationship in the input-output mappings, time lagged recurrent neural network is particularly used for identification purpose. The standard back propagation algorithm with momentum term has been proposed in this model. The various parameters like number of processing elements, number of hidden layers, training and testing percentage, learning rule and transfer function in hidden and output layer are investigated on the basis of performance measures like MSE, NMSE, and correlation coefficient on testing data set. Finally effects of different norms are tested along with variation in gamma memory filter. It is demonstrated that dynamic NN model has a remarkable system identification capability for the problems considered in this paper. Thus FTLR NN with gamma memory filter can be used to learn underlying highly nonlinear dynamics of the system, which is a major contribution of this paper.

  14. Impact of a Solution for the Study of Neural Pathways in Morphophysiology III

    OpenAIRE

    José Manuel Ruiz Medina; Alicia Ríos Carbonell; Gisela Trevín Fernández; Elnis Quiala Ballester; Vivian Santoya Varela

    2013-01-01

    Background: current conditions for teaching Morphophysiology subject and awareness of the historical difficulties that students face in understanding the morphological and functional characteristics of neural pathways require a solution. Objective: to create a set of means in order to provide a practical resource for the study of the morphological and functional characteristics of the neural pathways and to assess the impact of its implementation in Morphophysiology III teaching. Methods: we ...

  15. Behavioral and neural correlates of emotional development: typically developing infants and infants of depressed and/or anxious mothers.

    Science.gov (United States)

    A Porto, Juliana; L Nunes, Magda; Nelson, Charles A

    2016-01-01

    To describe the main findings of studies of behavioral and neural correlates regarding the development of facial emotion processing during the first year of life in typically developing infants and infants of depressed and/or anxious mothers. Comprehensive, non-systematic review of the literature on studies about individual differences in facial emotion processing by newborns and infants over the first year of life. Maternal stress related to depression and anxiety has been associated to atypical emotional processing and attentional behaviors in the offspring. Recent neurophysiological studies using electroencephalogram and event-related potentials have begun to shed light on the possible mechanisms underlying such behaviors. Infants of depressed and/or anxious mothers have increased risk for several adverse outcomes across the lifespan. Further neurobehavioral investigations and the promotion of clinical and developmental research integration might eventually contribute to refining screening tools, improving treatment, and enabling primary prevention interventions for children at risk. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  16. Behavioral and neural correlates of emotional development: typically developing infants and infants of depressed and/or anxious mothers

    Directory of Open Access Journals (Sweden)

    Juliana A. Porto

    2016-06-01

    Full Text Available ABSTRACT Objectives: To describe the main findings of studies of behavioral and neural correlates regarding the development of facial emotion processing during the first year of life in typically developing infants and infants of depressed and/or anxious mothers. Sources: Comprehensive, non-systematic review of the literature on studies about individual differences in facial emotion processing by newborns and infants over the first year of life. Summary of the findings: Maternal stress related to depression and anxiety has been associated to atypical emotional processing and attentional behaviors in the offspring. Recent neurophysiological studies using electroencephalogram and event-related potentials have begun to shed light on the possible mechanisms underlying such behaviors. Conclusions: Infants of depressed and/or anxious mothers have increased risk for several adverse outcomes across the lifespan. Further neurobehavioral investigations and the promotion of clinical and developmental research integration might eventually contribute to refining screening tools, improving treatment, and enabling primary prevention interventions for children at risk.

  17. Neural measures of social attention across the first years of life: Characterizing typical development and markers of autism risk

    Directory of Open Access Journals (Sweden)

    Rhiannon J. Luyster

    2014-04-01

    Full Text Available Few studies employing event-related potentials (ERPs to examine infant perception/cognition have systematically characterized age-related changes over the first few years of life. Establishing a ‘normative’ template of development is important in its own right, and doing so may also better highlight points of divergence for high-risk populations of infants, such as those at elevated genetic risk for autism spectrum disorder (ASD. The present investigation explores the developmental progression of the P1, N290, P400 and Nc components for a large sample of young children between 6 and 36 months of age, addressing age-related changes in amplitude, sensitivity to familiar and unfamiliar stimuli and hemispheric lateralization. Two samples of infants are included: those at low- and high-risk for ASD. The four components of interest show differential patterns of change over time and hemispheric lateralization; however, infants at low- and high-risk for ASD do not show significant differences in patterns of neural response to faces. These results will provide a useful point of reference for future developmental cognitive neuroscience research targeting both typical development and vulnerable populations.

  18. Comparing the neural bases of self-referential processing in typically developing and 22q11.2 adolescents.

    Science.gov (United States)

    Schneider, Maude; Debbané, Martin; Lagioia, Annalaura; Salomon, Roy; d'Argembeau, Arnaud; Eliez, Stephan

    2012-04-01

    The investigation of self-reflective processing during adolescence is relevant, as this period is characterized by deep reorganization of the self-concept. It may be the case that an atypical development of brain regions underlying self-reflective processing increases the risk for psychological disorders and impaired social functioning. In this study, we investigated the neural bases of self- and other-related processing in typically developing adolescents and youths with 22q11.2 deletion syndrome (22q11DS), a rare neurogenetic condition associated with difficulties in social interactions and increased risk for schizophrenia. The fMRI paradigm consisted in judging if a series of adjectives applied to the participant himself/herself (self), to his/her best friend or to a fictional character (Harry Potter). In control adolescents, we observed that self- and other-related processing elicited strong activation in cortical midline structures (CMS) when contrasted with a semantic baseline condition. 22q11DS exhibited hypoactivation in the CMS and the striatum during the processing of self-related information when compared to the control group. Finally, the hypoactivation in the anterior cingulate cortex was associated with the severity of prodromal positive symptoms of schizophrenia. The findings are discussed in a developmental framework and in light of their implication for the development of schizophrenia in this at-risk population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy

    NARCIS (Netherlands)

    Willemze, Rose A.; Luyer, Misha D.; Buurman, Wim A.; de Jonge, Wouter J.

    2015-01-01

    Studies in neuroscience and immunology have clarified much of the anatomical and cellular basis for bidirectional interactions between the nervous and immune systems. As with other organs, intestinal immune responses and the development of immunity seems to be modulated by neural reflexes.

  20. Development of Tract-Specific White Matter Pathways During Early Reading Development in At-Risk Children and Typical Controls.

    Science.gov (United States)

    Wang, Yingying; Mauer, Meaghan V; Raney, Talia; Peysakhovich, Barbara; Becker, Bryce L C; Sliva, Danielle D; Gaab, Nadine

    2017-04-01

    Developmental dyslexia is a neurodevelopmental disorder with a strong genetic basis. Previous studies observed white matter alterations in the left posterior brain regions in adults and school-age children with dyslexia. However, no study yet has examined the development of tract-specific white matter pathways from the pre-reading to the fluent reading stage in children at familial risk for dyslexia (FHD+) versus controls (FHD-). This study examined white matter integrity at pre-reading, beginning, and fluent reading stages cross-sectionally ( n = 78) and longitudinally (n = 45) using an automated fiber-tract quantification method. Our findings depict white matter alterations and atypical lateralization of the arcuate fasciculus at the pre-reading stage in FHD+ versus FHD- children. Moreover, we demonstrate faster white matter development in subsequent good versus poor readers and a positive association between white matter maturation and reading development using a longitudinal design. Additionally, the combination of white matter maturation, familial risk, and psychometric measures best predicted later reading abilities. Furthermore, within FHD+ children, subsequent good readers exhibited faster white matter development in the right superior longitudinal fasciculus compared with subsequent poor readers, suggesting a compensatory mechanism. Overall, our findings highlight the importance of white matter pathway maturation in the development of typical and atypical reading skills. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. A dual-pathway neural architecture for specific temporal prediction.

    Science.gov (United States)

    Schwartze, Michael; Kotz, Sonja A

    2013-12-01

    Efficient behavior depends in part on the ability to predict the type and the timing of events in the environment. Specific temporal predictions require an internal representation of the temporal structure of events. Here we propose that temporal prediction recruits adaptive and non-adaptive oscillatory mechanisms involved in establishing such an internal representation. Partial structural and functional convergence of the underlying mechanisms allows speculation about an extended subcortico-cortical network. This network develops around a dual-pathway architecture, which establishes the basis for preparing the organism for perceptual integration, for the generation of specific temporal predictions, and for optimizing the brain's allocation of its limited resources. Key to these functions is rapid cerebellar transmission of an adaptively-filtered, event-based representation of temporal structure. Rapid cerebellar transmission engages a pathway comprising connections from early sensory processing stages to the cerebellum and from there to the thalamus, effectively bypassing more central stages of classical sensory pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Ets Factors Regulate Neural Stem Cell Depletion and Gliogenesis in Ras Pathway Glioma

    Directory of Open Access Journals (Sweden)

    Joshua J. Breunig

    2015-07-01

    Full Text Available As the list of putative driver mutations in glioma grows, we are just beginning to elucidate the effects of dysregulated developmental signaling pathways on the transformation of neural cells. We have employed a postnatal, mosaic, autochthonous glioma model that captures the first hours and days of gliomagenesis in more resolution than conventional genetically engineered mouse models of cancer. We provide evidence that disruption of the Nf1-Ras pathway in the ventricular zone at multiple signaling nodes uniformly results in rapid neural stem cell depletion, progenitor hyperproliferation, and gliogenic lineage restriction. Abolishing Ets subfamily activity, which is upregulated downstream of Ras, rescues these phenotypes and blocks glioma initiation. Thus, the Nf1-Ras-Ets axis might be one of the select molecular pathways that are perturbed for initiation and maintenance in glioma.

  3. Gustatory neural pathways revealed by genetic tracing from taste receptor cells.

    Science.gov (United States)

    Matsumoto, Ichiro

    2013-01-01

    Taste receptor cells encounter chemicals in foods and transmit this information to the gustatory neurons, which convey it further to the gustatory relay nuclei in the lower brainstem. Characterizing neurons involved in the transmission of gustatory information in the peripheral and central nervous systems helps us better understand how we perceive and discriminate tastes. However, it is difficult to anatomically identify them. Using cell-type-specific promoters/enhancers and a transneuronal tracer, we generated transgenic mice to visualize neurons in the gustatory neural pathways. We observed the tracer in the neurons of cranial sensory ganglia and the nucleus of the solitary tract in the medulla where gustatory neurons project. The tracer was also distributed in the reticular formation and several motor nuclei in the medulla that have not been recognized as gustatory ascending pathways. These transgenic mice revealed gustatory relay neurons in the known gustatory ascending pathway and an unexpected, thus presumably novel, neural circuit of gustatory system.

  4. Neural Pathway of Renovative and Innovative Products Appreciation

    Science.gov (United States)

    Huang, Furong; Chiu, Chiyue; Luo, Jing

    2016-12-01

    According to the level of change an invention makes on existing things and how it overrides people’s mental schemas on established categories, new inventions can be classified into two groups: incremental inventions (i.e., renovations), which make minor improvements on existing designs, and radical inventions (i.e., innovations), which make major developments that enable people to do things they have never been able to do before. Although innovation and renovation are two fundamentally different types of creation that feature new changes ranging from those in product development to those in large scale social changes, and people tend to report higher subjective preferences for incremental inventions compared to radical inventions, the cognitive brain mechanisms underlying the mental representation of these two types of inventions remains unknown. Through the use of innovative and renovative designs as materials, we found that relative to non-creative designs, creative (renovative &innovative) designs enhanced memory or association-related activation in the right parahippocampus. In particular, innovations evoked more activation in the conceptual pathway for representing objects than did renovations, whereas renovations evoked more activation in the motor pathway than innovations. These results suggest that operating experiences may provide advantages for understanding and appreciating creative designs.

  5. Female Mice Deficient in Alpha-Fetoprotein Show Female-Typical Neural Responses to Conspecific-Derived Pheromones

    NARCIS (Netherlands)

    Brock, O.; Keller, M.; Douhard, Q.; Bakker, J.

    2012-01-01

    The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to

  6. Neural mechanisms of selective auditory attention are enhanced by computerized training: electrophysiological evidence from language-impaired and typically developing children.

    Science.gov (United States)

    Stevens, Courtney; Fanning, Jessica; Coch, Donna; Sanders, Lisa; Neville, Helen

    2008-04-18

    Recent proposals suggest that some interventions designed to improve language skills might also target or train selective attention. The present study examined whether six weeks of high-intensity (100 min/day) training with a computerized intervention program designed to improve language skills would also influence neural mechanisms of selective auditory attention previously shown to be deficient in children with specific language impairment (SLI). Twenty children received computerized training, including 8 children diagnosed with SLI and 12 children with typically developing language. An additional 13 children with typically developing language received no specialized training (NoTx control group) but were tested and retested after a comparable time period to control for maturational and test-retest effects. Before and after training (or a comparable delay period for the NoTx control group), children completed standardized language assessments and an event-related brain potential (ERP) measure of selective auditory attention. Relative to the NoTx control group, children receiving training showed increases in standardized measures of receptive language. In addition, children receiving training showed larger increases in the effects of attention on neural processing following training relative to the NoTx control group. The enhanced effect of attention on neural processing represented a large effect size (Cohen's d=0.8), and was specific to changes in signal enhancement of attended stimuli. These findings indicate that the neural mechanisms of selective auditory attention, previously shown to be deficient in children with SLI, can be remediated through training and can accompany improvements on standardized measures of language.

  7. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9{+-}4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7{+-} 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder.

  8. Reduction in neural performance following recovery from anoxic stress is mimicked by AMPK pathway activation.

    Directory of Open Access Journals (Sweden)

    Tomas G A Money

    Full Text Available Nervous systems are energetically expensive to operate and maintain. Both synaptic and action potential signalling require a significant investment to maintain ion homeostasis. We have investigated the tuning of neural performance following a brief period of anoxia in a well-characterized visual pathway in the locust, the LGMD/DCMD looming motion-sensitive circuit. We hypothesised that the energetic cost of signalling can be dynamically modified by cellular mechanisms in response to metabolic stress. We examined whether recovery from anoxia resulted in a decrease in excitability of the electrophysiological properties in the DCMD neuron. We further examined the effect of these modifications on behavioural output. We show that recovery from anoxia affects metabolic rate, flight steering behaviour, and action potential properties. The effects of anoxia on action potentials can be mimicked by activation of the AMPK metabolic pathway. We suggest this is evidence of a coordinated cellular mechanism to reduce neural energetic demand following an anoxic stress. Together, this represents a dynamically-regulated means to link the energetic demands of neural signaling with the environmental constraints faced by the whole animal.

  9. AAV-mediated Anterograde Transsynaptic Tagging: Mapping Input-Defined Functional Neural Pathways for Defense Behavior

    Science.gov (United States)

    Zingg, Brian; Chou, Xiao-lin; Zhang, Zheng-gang; Mesik, Lukas; Liang, Feixue; Tao, Huizhong Whit; Zhang, Li I.

    2017-01-01

    To decipher neural circuits underlying brain functions, viral tracers are widely applied to map input and output connectivity of specific neuronal populations. Despite the successful application of retrograde transsynaptic viruses for identifying presynaptic neurons of transduced neurons, analogous anterograde transsynaptic tools for tagging postsynaptically targeted neurons remain under development. Here, we report that adeno-associated virus (AAV1 and AAV9) exhibit anterograde transsynaptic spread properties. AAV1-Cre from transduced presynaptic neurons effectively and specifically drove Cre-dependent transgene expression in selected postsynaptic neuronal targets, and thus allowed the tracing and functional manipulation of axonal projections from the latter input-defined neuronal population. Application of this tool in superior colliculus (SC) revealed that SC neuron subpopulations receiving corticocollicular projections from auditory and visual cortex specifically drove flight and freezing, two different types of defense behavior, respectively. Such anterograde transsynaptic tagging is thus useful for forward screening of distinct functional neural pathways embedded in complex brain circuits. PMID:27989459

  10. Synaptic plasticity-related neural oscillations on hippocampus-prefrontal cortex pathway in depression.

    Science.gov (United States)

    Zheng, C; Zhang, T

    2015-04-30

    It is believed that phase synchronization facilitates neural communication and neural plasticity throughout the hippocampal-cortical network, and further supports cognition and memory. The pathway from the ventral hippocampus to the medial prefrontal cortex (mPFC) is thought to play a significant role in emotional memory processing. Therefore, the information transmission on the pathway was hypothesized to be disrupted in the depressive state, which could be related to its impaired synaptic plasticity. In this study, local field potentials (LFPs) from both ventral CA1 (vCA1) and mPFC were recorded in both normal and chronic unpredictable stress (CUS) model rats under urethane anesthesia. LFPs of all rats were recorded before and after the long-term potentiation (LTP) induced on the vCA1-mPFC pathway in order to figure out the correlation of oscillatory synchronization of LFPs and synaptic plasticity. Our results showed the vCA1-to-mPFC unidirectional phase coupling of the theta rhythm, rather than the power of either region, was significantly enhanced by LTP induction, with less enhancement in the CUS model rats compared to that in the normal rats. In addition, theta phase coupling was positively correlated with synaptic plasticity on vCA1-mPFC pathway. Moreover, the theta-slow gamma phase-amplitude coupling in vCA1 was long-term enhanced after high frequency stimulation. These results suggest that the impaired synaptic plasticity in vCA1-mPFC pathway could be reflected by the attenuated theta phase coupling and theta-gamma cross frequency coupling of LFPs in the depression state. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Physiological evidence of neural pathways involved in reflexogenic penile erection in the rat.

    Science.gov (United States)

    Rampin, O; Giuliano, F; Dompeyre, P; Rousseau, J P

    1994-10-24

    To elucidate neural pathways responsible for the occurrence of reflexogenic erections, the response of the corpus cavernosum to electrical stimulation of the dorsal nerve of the penis (DNP) was measured in anesthetized, acutely spinalized rats. Stimulation elicited a dramatic increase in intracavernous pressure (ICP). ICP response was decreased by 70% after sectioning the pelvic nerve homolaterally to the stimulated DNP and abolished after bilateral section. ICP response was not impaired by curarization, but its latency was lengthened. Thus we physiologically evidenced a reflex loop independent from supraspinal centers between DNP and the pelvic nerve supporting penile reflexogenic erection.

  12. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways

    Directory of Open Access Journals (Sweden)

    Fang Bo

    2009-07-01

    Full Text Available Abstract Background All-trans retinoic acid (RA is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs, we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. Results Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. Conclusion RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.

  13. Fetal DNA hypermethylation in tight junction pathway is associated with neural tube defects: A genome-wide DNA methylation analysis.

    Science.gov (United States)

    Wang, Linlin; Lin, Shanshan; Zhang, Ji; Tian, Tian; Jin, Lei; Ren, Aiguo

    2017-02-01

    Neural tube defects (NTDs) are a spectrum of severe congenital malformations of fusion failure of the neural tube during early embryogenesis. Evidence on aberrant DNA methylation in NTD development remains scarce, especially when exposure to environmental pollutant is taken into consideration. DNA methylation profiling was quantified using the Infinium HumanMethylation450 array in neural tissues from 10 NTD cases and 8 non-malformed controls (stage 1). Subsequent validation was performed using a Sequenom MassARRAY system in neural tissues from 20 NTD cases and 20 non-malformed controls (stage 2). Correlation analysis of differentially methylated CpG sites in fetal neural tissues and polycyclic aromatic hydrocarbons concentrations in fetal neural tissues and maternal serum was conducted. Differentially methylated CpG sites of neural tissues were further validated in fetal mice with NTDs induced by benzo(a)pyrene given to pregnant mice. Differentially hypermethylated CpG sites in neural tissues from 17 genes and 6 pathways were identified in stage 1. Subsequently, differentially hypermethylated CpG sites in neural tissues from 6 genes (BDKRB2, CTNNA1, CYFIP2, MMP7, MYH2, and TIAM2) were confirmed in stage 2. Correlation analysis showed that methylated CpG sites in CTNNA1 and MYH2 from NTD cases were positively correlated to polycyclic aromatic hydrocarbon level in fetal neural tissues and maternal serum. The correlation was confirmed in NTD-affected fetal mice that were exposed to benzo(a)pyrene in utero. In conclusion, hypermethylation of the CTNNA1 and MYH2 genes in tight junction pathway is associated with the risk for NTDs, and the DNA methylation aberration may be caused by exposure to benzo(a)pyrene.

  14. Nutrient pathways and neural tube defects: a semi-Bayesian hierarchical analysis.

    Science.gov (United States)

    Carmichael, Suzan L; Witte, John S; Shaw, Gary M

    2009-01-01

    We used conventional and hierarchical logistic regression to examine the association of neural tube defects (NTDs) with intake of 26 nutrients that contribute to the mechanistic pathways of methylation, glycemic control, and oxidative stress, all of which have been implicated in NTD etiology. The hierarchical approach produces more plausible, more stable estimates than the conventional approach, while adjusting for potential confounding by other nutrients. Analyses included 386 cases and 408 nonmalformed controls with complete data on nutrients and potential confounders (race/ethnicity, education, obesity, and intake of vitamin supplements) from a population-based case-control study of deliveries in California from 1989 to 1991. Nutrients were specified as continuous, and their units were standardized to have a mean of zero and standard deviation (SD) of 1 for comparability of units across pathways. ORs reflect a 1-SD increase in the corresponding nutrient. Among women who took vitamin supplements, semi-Bayesian hierarchical modeling results suggested no associations between nutrient intake and NTDs. Among women who did not take supplements, both conventional and hierarchical models (HM) suggested an inverse association between lutein intake and NTD risk (HM odds ratio [OR] = 0.6; 95% confidence interval = 0.5-0.9) and a positive association with sucrose (HM OR 1.4; 1.1-1.8) and glycemic index (HM OR 1.3; 1.0-1.6). Our findings for lutein, glycemic index, and sucrose suggest that further study of NTDs and the glycemic control and oxidative stress pathways is warranted.

  15. AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors.

    Science.gov (United States)

    Zingg, Brian; Chou, Xiao-Lin; Zhang, Zheng-Gang; Mesik, Lukas; Liang, Feixue; Tao, Huizhong Whit; Zhang, Li I

    2017-01-04

    To decipher neural circuits underlying brain functions, viral tracers are widely applied to map input and output connectivity of neuronal populations. Despite the successful application of retrograde transsynaptic viruses for identifying presynaptic neurons of transduced neurons, analogous anterograde transsynaptic tools for tagging postsynaptically targeted neurons remain under development. Here, we discovered that adeno-associated viruses (AAV1 and AAV9) exhibit anterograde transsynaptic spread properties. AAV1-Cre from transduced presynaptic neurons effectively and specifically drives Cre-dependent transgene expression in selected postsynaptic neuronal targets, thus allowing axonal tracing and functional manipulations of the latter input-defined neuronal population. Its application in superior colliculus (SC) reveals that SC neuron subpopulations receiving corticocollicular projections from auditory and visual cortex specifically drive flight and freezing, two different types of defense behavior, respectively. Together with an intersectional approach, AAV-mediated anterograde transsynaptic tagging can categorize neurons by their inputs and molecular identity, and allow forward screening of distinct functional neural pathways embedded in complex brain circuits. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A DSP for sensing the bladder volume through afferent neural pathways.

    Science.gov (United States)

    Mendez, Arnaldo; Belghith, Abrar; Sawan, Mohamad

    2014-08-01

    In this paper, we present a digital signal processor (DSP) capable of monitoring the urinary bladder volume through afferent neural pathways. The DSP carries out real-time detection and can discriminate extracellular action potentials, also known as on-the-fly spike sorting. Next, the DSP performs a decoding method to estimate either three qualitative levels of fullness or the bladder volume value, depending on the selected output mode. The proposed DSP was tested using both realistic synthetic signals with a known ground-truth, and real signals from bladder afferent nerves recorded during acute experiments with animal models. The spike sorting processing circuit yielded an average accuracy of 92% using signals with highly correlated spike waveforms and low signal-to-noise ratios. The volume estimation circuits, tested with real signals, reproduced accuracies achieved by offline simulations in Matlab, i.e., 94% and 97% for quantitative and qualitative estimations, respectively. To assess feasibility, the DSP was deployed in the Actel FPGA Igloo AGL1000V2, which showed a power consumption of 0.5 mW and a latency of 2.1 ms at a 333 kHz core frequency. These performance results demonstrate that an implantable bladder sensor that perform the detection, discrimination and decoding of afferent neural activity is feasible.

  17. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells.

    Science.gov (United States)

    Yeo, Hyeonju; Lyssiotis, Costas A; Zhang, Yuqing; Ying, Haoqiang; Asara, John M; Cantley, Lewis C; Paik, Ji-Hye

    2013-10-02

    Forkhead Box O (FoxO) transcription factors act in adult stem cells to preserve their regenerative potential. Previously, we reported that FoxO maintains the long-term proliferative capacity of neural stem/progenitor cells (NPCs), and that this occurs, in part, through the maintenance of redox homeostasis. Herein, we demonstrate that among the FoxO3-regulated genes in NPCs are a host of enzymes in central carbon metabolism that act to combat reactive oxygen species (ROS) by directing the flow of glucose and glutamine carbon into defined metabolic pathways. Characterization of the metabolic circuit observed upon loss of FoxO3 revealed a drop in glutaminolysis and filling of the tricarboxylic acid (TCA) cycle. Additionally, we found that glucose uptake, glucose metabolism and oxidative pentose phosphate pathway activity were similarly repressed in the absence of FoxO3. Finally, we demonstrate that impaired glucose and glutamine metabolism compromises the proliferative potential of NPCs and that this is exacerbated following FoxO3 loss. Collectively, our findings show that a FoxO3-dependent metabolic programme supports redox balance and the neurogenic potential of NPCs.

  18. Depression and treatment response: dynamic interplay of signaling pathways and altered neural processes.

    Science.gov (United States)

    Duric, Vanja; Duman, Ronald S

    2013-01-01

    Since the 1960s, when the first tricyclic and monoamine oxidase inhibitor antidepressant drugs were introduced, most of the ensuing agents were designed to target similar brain pathways that elevate serotonin and/or norepinephrine signaling. Fifty years later, the main goal of the current depression research is to develop faster-acting, more effective therapeutic agents with fewer side effects, as currently available antidepressants are plagued by delayed therapeutic onset and low response rates. Clinical and basic science research studies have made significant progress towards deciphering the pathophysiological events within the brain involved in development, maintenance, and treatment of major depressive disorder. Imaging and postmortem brain studies in depressed human subjects, in combination with animal behavioral models of depression, have identified a number of different cellular events, intracellular signaling pathways, proteins, and target genes that are modulated by stress and are potentially vital mediators of antidepressant action. In this review, we focus on several neural mechanisms, primarily within the hippocampus and prefrontal cortex, which have recently been implicated in depression and treatment response.

  19. Metformin Acts on Two Different Molecular Pathways to Enhance Adult Neural Precursor Proliferation/Self-Renewal and Differentiation

    Directory of Open Access Journals (Sweden)

    Michael Fatt

    2015-12-01

    Full Text Available The recruitment of endogenous adult neural stem cells for brain repair is a promising regenerative therapeutic strategy. This strategy involves stimulation of multiple stages of adult neural stem cell development, including proliferation, self-renewal, and differentiation. Currently, there is a lack of a single therapeutic approach that can act on these multiple stages of adult neural stem cell development to enhance neural regeneration. Here we show that metformin, an FDA-approved diabetes drug, promotes proliferation, self-renewal, and differentiation of adult neural precursors (NPCs. Specifically, we show that metformin enhances adult NPC proliferation and self-renewal dependent upon the p53 family member and transcription factor TAp73, while it promotes neuronal differentiation of these cells by activating the AMPK-aPKC-CBP pathway. Thus, metformin represents an optimal candidate neuro-regenerative agent that is capable of not only expanding the adult NPC population but also subsequently driving them toward neuronal differentiation by activating two distinct molecular pathways.

  20. Two neural streams, one voice: pathways for theme and variation in the songbird brain.

    Science.gov (United States)

    Bertram, R; Daou, A; Hyson, R L; Johnson, F; Wu, W

    2014-09-26

    Birdsong offers a unique model system to understand how a developing brain - once given a set of purely acoustic targets - teaches itself the vocal-tract gestures necessary to imitate those sounds. Like human infants, to juvenile male zebra finches (Taeniopygia guttata) falls the burden of initiating the vocal-motor learning of adult sounds. In both species, adult caregivers provide only a set of sounds to be imitated, with little or no information about the vocal-tract gestures used to produce the sounds. Here, we focus on the central control of birdsong and review the recent discovery that zebra finch song is under dual premotor control. Distinct forebrain pathways for structured (theme) and unstructured (variation) singing not only raise new questions about mechanisms of sensory-motor integration, but also provide a fascinating new research opportunity. A cortical locus for a motor memory of the learned song is now firmly established, meaning that anatomical, physiological, and computational approaches are poised to reveal the neural mechanisms used by the brain to compose the songs of birds. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Nrf2/ARE Pathway Involved in Oxidative Stress Induced by Paraquat in Human Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Tingting Dou

    2016-01-01

    Full Text Available Compelling evidences have shown that diverse environmental insults arising during early life can either directly lead to a reduction in the number of dopaminergic neurons or cause an increased susceptibility to neurons degeneration with subsequent environmental insults or with aging alone. Oxidative stress is considered the main effect of neurotoxins exposure. In this study, we investigated the oxidative stress effect of Paraquat (PQ on immortalized human embryonic neural progenitor cells by treating them with various concentrations of PQ. We show that PQ can decrease the activity of SOD and CAT but increase MDA and LDH level. Furthermore, the activities of Cyc and caspase-9 were found increased significantly at 10 μM of PQ treatment. The cytoplasmic Nrf2 protein expressions were upregulated at 10 μM but fell back at 100 μM. The nuclear Nrf2 protein expressions were upregulated as well as the downstream mRNA expressions of HO-1 and NQO1 in a dose-dependent manner. In addition, the proteins expression of PKC and CKII was also increased significantly even at 1 μM. The results suggested that Nrf2/ARE pathway is involved in mild to moderate PQ-induced oxidative stress which is evident from dampened Nrf2 activity and low expression of antioxidant genes in PQ induced oxidative damage.

  2. A segregated neural pathway for prefrontal top-down control of tactile discrimination.

    Science.gov (United States)

    Gogulski, Juha; Boldt, Robert; Savolainen, Petri; Guzmán-López, Jessica; Carlson, Synnöve; Pertovaara, Antti

    2015-01-01

    It has proven difficult to separate functional areas in the prefrontal cortex (PFC), an area implicated in attention, memory, and distraction handling. Here, we assessed in healthy human subjects whether PFC subareas have different roles in top-down regulation of sensory functions by determining how the neural links between the PFC and the primary somatosensory cortex (S1) modulate tactile perceptions. Anatomical connections between the S1 representation area of the cutaneous test site and the PFC were determined using probabilistic tractography. Single-pulse navigated transcranial magnetic stimulation of the middle frontal gyrus-S1 link, but not that of the superior frontal gyrus-S1 link, impaired the ability to discriminate between single and twin tactile pulses. The impairment occurred within a restricted time window and skin area. The spatially and temporally organized top-down control of tactile discrimination through a segregated PFC-S1 pathway suggests functional specialization of PFC subareas in fine-tuned regulation of information processing. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. The sleep and circadian modulation of neural reward pathways: a protocol for a pair of systematic reviews.

    Science.gov (United States)

    Byrne, Jamie E M; Murray, Greg

    2017-12-02

    Animal research suggests that neural reward activation may be systematically modulated by sleep and circadian function. Whether humans also exhibit sleep and circadian modulation of neural reward pathways is unclear. This area is in need of further research, as it has implications for the involvement of sleep and circadian function in reward-related disorders. The aim of this paper is to describe the protocol for a pair of systematic literature reviews to synthesise existing literature related to (1) sleep and (2) circadian modulation of neural reward pathways in healthy human populations. A systematic review of relevant online databases (Scopus, PubMed, Web of Science, ProQuest, PsycINFO and EBSCOhost) will be conducted. Reference lists, relevant reviews and supplementary data will be searched for additional articles. Articles will be included if (a) they contain a sleep- or circadian-related predictor variable with a neural reward outcome variable, (b) use a functional magnetic resonance imaging protocol and (c) use human samples. Articles will be excluded if study participants had disorders known to affect the reward system. The articles will be screened by two independent authors. Two authors will complete the data extraction form, with two authors independently completing the quality assessment tool for the selected articles, with a consensus reached with a third author if needed. Narrative synthesis methods will be used to analyse the data. The findings from this pair of systematic literature reviews will assist in the identification of the pathways involved in the sleep and circadian function modulation of neural reward in healthy individuals, with implications for disorders characterised by dysregulation in sleep, circadian rhythms and reward function. PROSPERO CRD42017064994.

  4. The alexithymic brain: the neural pathways linking alexithymia to physical disorders

    Directory of Open Access Journals (Sweden)

    Kano Michiko

    2013-01-01

    Full Text Available Abstract Alexithymia is a personality trait characterized by difficulties in identifying and describing feelings and is associated with psychiatric and psychosomatic disorders. The mechanisms underlying the link between emotional dysregulation and psychosomatic disorders are unclear. Recent progress in neuroimaging has provided important information regarding emotional experience in alexithymia. We have conducted three brain imaging studies on alexithymia, which we describe herein. This article considers the role of emotion in the development of physical symptoms and discusses a possible pathway that we have identified in our neuroimaging studies linking alexithymia with psychosomatic disorders. In terms of socio-affective processing, alexithymics demonstrate lower reactivity in brain regions associated with emotion. Many studies have reported reduced activation in limbic areas (e.g., cingulate cortex, anterior insula, amygdala and the prefrontal cortex when alexithymics attempt to feel other people’s feelings or retrieve their own emotional episodes, compared to nonalexithymics. With respect to primitive emotional reactions such as the response to pain, alexithymics show amplified activity in areas considered to be involved in physical sensation. In addition to greater hormonal arousal responses in alexithymics during visceral pain, increased activity has been reported in the insula, anterior cingulate cortex, and midbrain. Moreover, in complex social situations, alexithymics may not be able to use feelings to guide their behavior appropriately. The Iowa gambling task (IGT was developed to assess decision-making processes based on emotion-guided evaluation. When alexithymics perform the IGT, they fail to learn an advantageous decision-making strategy and show reduced activity in the medial prefrontal cortex, a key area for successful performance of the IGT, and increased activity in the caudate, a region associated with impulsive choice. The

  5. With a little help from my friends: androgens tap BDNF signaling pathways to alter neural circuits.

    Science.gov (United States)

    Ottem, E N; Bailey, D J; Jordan, C L; Breedlove, S M

    2013-06-03

    Gonadal androgens are critical for the development and maintenance of sexually dimorphic regions of the male nervous system, which is critical for male-specific behavior and physiological functioning. In rodents, the motoneurons of the spinal nucleus of the bulbocavernosus (SNB) provide a useful example of a neural system dependent on androgen. Unless rescued by perinatal androgens, the SNB motoneurons will undergo apoptotic cell death. In adulthood, SNB motoneurons remain dependent on androgen, as castration leads to somal atrophy and dendritic retraction. In a second vertebrate model, the zebra finch, androgens are critical for the development of several brain nuclei involved in song production in males. Androgen deprivation during a critical period during postnatal development disrupts song acquisition and dimorphic size-associated nuclei. Mechanisms by which androgens exert masculinizing effects in each model system remain elusive. Recent studies suggest that brain-derived neurotrophic factor (BDNF) may play a role in androgen-dependent masculinization and maintenance of both SNB motoneurons and song nuclei of birds. This review aims to summarize studies demonstrating that BDNF signaling via its tyrosine receptor kinase (TrkB) receptor may work cooperatively with androgens to maintain somal and dendritic morphology of SNB motoneurons. We further describe studies that suggest the cellular origin of BDNF is of particular importance in androgen-dependent regulation of SNB motoneurons. We review evidence that androgens and BDNF may synergistically influence song development and plasticity in bird species. Finally, we provide hypothetical models of mechanisms that may underlie androgen- and BDNF-dependent signaling pathways. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Estrogen Stimulates Proliferation and Differentiation of Neural Stem/Progenitor Cells through Different Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Makiko Okada

    2010-10-01

    Full Text Available Our previous study indicated that both 17β-estradiol (E2, known to be an endogenous estrogen, and bisphenol A (BPA, known to be a xenoestrogen, could positively influence the proliferation or differentiation of neural stem/progenitor cells (NS/PCs. The aim of the present study was to identify the signal transduction pathways for estrogenic activities promoting proliferation and differentiation of NS/PCs via well known nuclear estrogen receptors (ERs or putative membrane-associated ERs. NS/PCs were cultured from the telencephalon of 15-day-old rat embryos. In order to confirm the involvement of nuclear ERs for estrogenic activities, their specific antagonist, ICI-182,780, was used. The presence of putative membrane-associated ER was functionally examined as to whether E2 can activate rapid intracellular signaling mechanism. In order to confirm the involvement of membrane-associated ERs for estrogenic activities, a cell-impermeable E2, bovine serum albumin-conjugated E2 (E2-BSA was used. We showed that E2 could rapidly activate extracellular signal-regulated kinases 1/2 (ERK 1/2, which was not inhibited by ICI-182,780. ICI-182,780 abrogated the stimulatory effect of these estrogens (E2 and BPA on the proliferation of NS/PCs, but not their effect on the differentiation of the NS/PCs into oligodendroglia. Furthermore, E2-BSA mimicked the activity of differentiation from NS/PCs into oligodendroglia, but not the activity of proliferation. Our study suggests that (1 the estrogen induced proliferation of NS/PCs is mediated via nuclear ERs; (2 the oligodendroglial generation from NS/PCs is likely to be stimulated via putative membrane‑associated ERs.

  7. 2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: Central neural pathways for thermoregulatory cold defense.

    Science.gov (United States)

    Morrison, Shaun F

    2011-05-01

    Central neural circuits orchestrate the homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the research leading to a model representing our current understanding of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for control of heat loss, and brown adipose tissue, skeletal muscle, and the heart for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific core efferent pathways within the central nervous system (CNS) that share a common peripheral thermal sensory input. The thermal afferent circuit from cutaneous thermal receptors includes neurons in the spinal dorsal horn projecting to lateral parabrachial nucleus neurons that project to the medial aspect of the preoptic area. Within the preoptic area, warm-sensitive, inhibitory output neurons control heat production by reducing the discharge of thermogenesis-promoting neurons in the dorsomedial hypothalamus. The rostral ventromedial medulla, including the raphe pallidus, receives projections form the dorsomedial hypothalamus and contains spinally projecting premotor neurons that provide the excitatory drive to spinal circuits controlling the activity of thermogenic effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a platform for further understanding of the functional organization of central thermoregulation.

  8. Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior

    Directory of Open Access Journals (Sweden)

    Hideo eOtsuna

    2014-02-01

    Full Text Available Compared with connections between the retinae and primary visual centers, relatively less is known in both mammals and insects about the functional segregation of neural pathways connecting primary and higher centers of the visual processing cascade. Here, using the Drosophila visual system as a model, we demonstrate two levels of parallel computation in the pathways that connect primary visual centers of the optic lobe to computational circuits embedded within deeper centers in the central brain. We show that a seemingly simple achromatic behavior, namely phototaxis, is under the control of several independent pathways, each of which is responsible for navigation towards unique wavelengths. Silencing just one pathway is enough to disturb phototaxis towards one characteristic monochromatic source, whereas phototactic behavior towards white light is not affected. The response spectrum of each demonstrable pathway is different from that of individual photoreceptors, suggesting subtractive computations. A choice assay between two colors showed that these pathways are responsible for navigation towards, but not for the detection itself of, the monochromatic light. The present study provides novel insights about how visual information is separated and processed in parallel to achieve robust control of an innate behavior.

  9. Typical worlds

    Science.gov (United States)

    Barrett, Jeffrey A.

    2017-05-01

    Hugh Everett III presented pure wave mechanics, sometimes referred to as the many-worlds interpretation, as a solution to the quantum measurement problem. While pure wave mechanics is an objectively deterministic physical theory with no probabilities, Everett sought to show how the theory might be understood as making the standard quantum statistical predictions as appearances to observers who were themselves described by the theory. We will consider his argument and how it depends on a particular notion of branch typicality. We will also consider responses to Everett and the relationship between typicality and probability. The suggestion will be that pure wave mechanics requires a number of significant auxiliary assumptions in order to make anything like the standard quantum predictions.

  10. Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems.

    Science.gov (United States)

    Oldfield, Ronald G; Harris, Rayna M; Hofmann, Hans A

    2015-01-01

    The ultimate-level factors that drive the evolution of mating systems have been well studied, but an evolutionarily conserved neural mechanism involved in shaping behaviour and social organization across species has remained elusive. Here, we review studies that have investigated the role of neural arginine vasopressin (AVP), vasotocin (AVT), and their receptor V1a in mediating variation in territorial behaviour. First, we discuss how aggression and territoriality are a function of population density in an inverted-U relationship according to resource defence theory, and how territoriality influences some mating systems. Next, we find that neural AVP, AVT, and V1a expression, especially in one particular neural circuit involving the lateral septum of the forebrain, are associated with territorial behaviour in males of diverse species, most likely due to their role in enhancing social cognition. Then we review studies that examined multiple species and find that neural AVP, AVT, and V1a expression is associated with territory size in mammals and fishes. Because territoriality plays an important role in shaping mating systems in many species, we present the idea that neural AVP, AVT, and V1a expression that is selected to mediate territory size may also influence the evolution of different mating systems. Future research that interprets proximate-level neuro-molecular mechanisms in the context of ultimate-level ecological theory may provide deep insight into the brain-behaviour relationships that underlie the diversity of social organization and mating systems seen across the animal kingdom.

  11. A neural circuit model of emotional learning using two pathways with different granularity and speed of information processing.

    Science.gov (United States)

    Murakoshi, Kazushi; Saito, Mayuko

    2009-02-01

    We propose a neural circuit model of emotional learning using two pathways with different granularity and speed of information processing. In order to derive a precise time process, we utilized a spiking model neuron proposed by Izhikevich and spike-timing-dependent synaptic plasticity (STDP) of both excitatory and inhibitory synapses. We conducted computer simulations to evaluate the proposed model. We demonstrate some aspects of emotional learning from the perspective of the time process. The agreement of the results with the previous behavioral experiments suggests that the structure and learning process of the proposed model are appropriate.

  12. The ROCK/GGTase Pathway Are Essential to the Proliferation and Differentiation of Neural Stem Cells Mediated by Simvastatin.

    Science.gov (United States)

    Zhang, Chan; Wu, Jian-Min; Liao, Min; Wang, Jun-Ling; Xu, Chao-Jin

    2016-12-01

    Simvastatin, a lipophilic and fermentation-derived natural statin, is reported to treat neurological disorders, such as traumatic brain injury, Parkinson's disease (PD), Alzheimer disease (AD), etc. Recently, research also indicated that simvastatin could promote regeneration in the dentate gyrus of adult mice by Wnt/β-catenin signaling (Robin et al. in Stem Cell Reports 2:9-17, 2014). However, the effect and mechanisms by which simvastatin may affect the neural stem cells (NSCs; from the embryonic day 14.5 (E14.5) SD rat brain) are not fully understood. Here, we investigated the effects of different doses of simvastatin on the survival, proliferation, differentiation, migration, and cell cycle of NSCs as well as underlying intracellular signaling pathways. The results showed that simvastatin not only inhibits the proliferation of NSCs but also enhances the βIII-tubulin(+) neuron differentiation rate. Additionally, we find that simvastatin could also promote NSC migration and induce cell cycle arrest at M2 phrase. All these effects of simvastatin on NSCs were mimicked with an inhibitor of Rho kinase (ROCK) and a specific inhibitor of geranylgeranyl transferase (GGTase). In conclusion, these data indicate that simvastatin could promote neurogenesis of neural stem cells, and these effects were mediated through the ROCK/GGTase pathway.

  13. Distinct neural pathways mediate alpha7 nicotinic acetylcholine receptor-dependent activation of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hay-Schmidt, Anders; Hansen, Henrik H

    2010-01-01

    important for cognitive function. However, the neural substrates involved in these effects remain elusive. Here we identify cortically projecting cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain (BF) as important targets for alpha(7) nAChR activation...

  14. Behavioral and Physiological Neural Network Analyses: A Common Pathway toward Pattern Recognition and Prediction

    Science.gov (United States)

    Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.

    2012-01-01

    Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…

  15. Developmental Pathway Genes and Neural Plasticity Underlying Emotional Learning and Stress-Related Disorders

    Science.gov (United States)

    Maheau, Marissa E.; Ressler, Kerry J.

    2017-01-01

    The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk…

  16. [Retinoic acid signal pathway regulation of zebra fish tooth development through manipulation of the differentiation of neural crest].

    Science.gov (United States)

    Liu, Xin; Huang, Xing; Xu, Zhiyun; Yang, Deqin

    2016-04-01

    To investigate the mechanism of retinoic acid (RA) signal in dental evolution, RA is used to explore the influence of the mechanism on neural crest's migration during the early stage of zebra fish embryos. We divided embryos of wild type and transgenic line zebra fish into three groups. 1 x 10(-7) to 6 x 10(-7) mol x L(-1) RA and 1 x 10(-7) mo x L(-1) 4-diethylaminobenzaldehyde (DEAB) were added into egg water at 24 hpf for 9 h. Dimethyl sulfoxid (DMSO) with the concentration was used as control group. Then, antisense probes of dlx2a, dlx2b, and barxl were formulated to perform whole-mount in situ hybridization to check the expressions of the genes in 48 hpf to 72 hpf embryos. We observed fluorescence of transgenic line in 4 dpf embryos. We obtained three mRNA probes successfully. Compared with DMSO control group, a low concentration (1 x 10(-7) mol x L(-1)) of RA could up-regulate the expression of mRNA (barx1, dlx2a) in neural crest. Obvious migration trend was observed toward the pharyngeal arch in which teeth adhered. Transgenic fish had spreading fluorescence tendency in pharyngeal arch. However, a high concentration (4 x 10(-7) mol x L(-1)) of RA malformed the embryos and killed them after treatment. One third of the embryos of middle concentration (3 x 10(-7) mo x L(-1)) exhibited delayed development. DEAB resulted in neural crest dysplasia. The expression of barxl and dlx2a were suppressed, and the appearance of dlx2b in tooth was delayed. RA signal pathway can regulate the progenitors of tooth by controlling the growth of the neural crest and manipulating tooth development

  17. Lymphovascular and neural regulation of metastasis: Shared tumour signalling pathways and novel therapeutic approaches

    Science.gov (United States)

    Le, C.P.; Karnezis, T.; Achen, M. G.; Stacker, S.A.; Sloan, E.K.

    2014-01-01

    The progression of cancer is supported by a wide variety of non-neoplastic cell types which make up the tumour stroma, including immune cells, endothelial cells, cancer-associated fibroblasts and nerve fibres. These host cells contribute molecular signals that enhance primary tumour growth and provide physical avenues for metastatic dissemination. This article provides an overview of the role of blood vessels, lymphatic vessels and nerve fibres in the tumour microenvironment, and highlights the interconnected molecular signalling pathways that control their development and activation in cancer. Further the review highlights the known pharmacological agents which target these pathways and discusses the potential therapeutic uses of drugs that target angiogenesis, lymphangiogenesis and stress response pathways in the different stages of cancer care. PMID:24267548

  18. Enhanced food anticipatory activity associated with enhanced activation of extrahypothalamic neural pathways in serotonin2C receptor null mutant mice.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hsu

    Full Text Available The ability to entrain circadian rhythms to food availability is important for survival. Food-entrained circadian rhythms are characterized by increased locomotor activity in anticipation of food availability (food anticipatory activity. However, the molecular components and neural circuitry underlying the regulation of food anticipatory activity remain unclear. Here we show that serotonin(2C receptor (5-HT2CR null mutant mice subjected to a daytime restricted feeding schedule exhibit enhanced food anticipatory activity compared to wild-type littermates, without phenotypic differences in the impact of restricted feeding on food consumption, body weight loss, or blood glucose levels. Moreover, we show that the enhanced food anticipatory activity in 5-HT2CR null mutant mice develops independent of external light cues and persists during two days of total food deprivation, indicating that food anticipatory activity in 5-HT2CR null mutant mice reflects the locomotor output of a food-entrainable oscillator. Whereas restricted feeding induces c-fos expression to a similar extent in hypothalamic nuclei of wild-type and null mutant animals, it produces enhanced expression in the nucleus accumbens and other extrahypothalamic regions of null mutant mice relative to wild-type subjects. These data suggest that 5-HT2CRs gate food anticipatory activity through mechanisms involving extrahypothalamic neural pathways.

  19. Associations between proprioceptive neural pathway structural connectivity and balance in people with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Brett W Fling

    2014-10-01

    Full Text Available Mobility and balance impairments are a hallmark of multiple sclerosis (MS, affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to 1 map the cortical proprioceptive pathway in-vivo using diffusion weighted imaging and 2 assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls. Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere’s proprioceptive pathway was significantly correlated with overall balance performance in healthy controls, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon 1 cerebellar-regulated proprioceptive control, 2 the vestibular system, and/or 3 the visual system.

  20. Abnormal regional spontaneous neural activity in visual pathway in retinal detachment patients: a resting-state functional MRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2017-11-01

    Full Text Available Xin Huang,1,2,* Dan Li,3,* Hai-Jun Li,3 Yu-Lin Zhong,1 Shelby Freeberg,4 Jing Bao,1 Xian-Jun Zeng,3 Yi Shao1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, People’s Republic of China; 2Department of Ophthalmology, Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China; 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 4Department of Ophthalmology, University of Florida, Gainesville, FL, USA *These authors contributed equally to this work Objective: The aim of the study was to investigate changes of brain neural homogeneity in retinal detachment (RD patients using the regional homogeneity (ReHo method to understand their relationships with clinical features. Materials and methods: A total of 30 patients with RD (16 men and 14 women, and 30 healthy controls (HCs (16 men and 14 women closely matched in age and sex were recruited. Resting-state functional magnetic resonance imaging scans were performed for all subjects. The ReHo method was used to investigate the brain regional neural homogeneity. Patients with RD were distinguished from HCs by receiver operating characteristic curve. The relationships between the mean ReHo signal values in many brain regions and clinical features in RD patients were calculated by Pearson correlation analysis. Results: Compared with HCs, RD patients had significantly decreased ReHo values in the right occipital lobe, right superior temporal gyrus, bilateral cuneus and left middle frontal gyrus. Moreover, we found that the mean ReHo signal of the bilateral cuneus showed positive relationships with the duration of the RD (r=0.392, P=0.032. Conclusion: The RD patients showed brain neural homogeneity dysfunction in the visual pathway, which may underline the pathological mechanism

  1. Differential Contribution of the Guanylyl Cyclase-Cyclic GMP-Protein Kinase G Pathway to the Proliferation of Neural Stem Cells Stimulated by Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Bruno P. Carreira

    2012-02-01

    Full Text Available Nitric oxide (NO is an important inflammatory mediator involved in the initial boost in the proliferation of neural stem cells following brain injury. However, the mechanisms underlying the proliferative effect of NO are still unclear. The aim of this work was to investigate whether cyclic GMP (cGMP and the cGMP-dependent kinase (PKG are involved in the proliferative effect triggered by NO in neural stem cells. For this purpose, cultures of neural stem cells isolated from the mouse subventricular zone (SVZ were used. We observed that long-term exposure to the NO donor (24 h, NOC-18, increased the proliferation of SVZ cells in a cGMP-dependent manner, since the guanylate cyclase inhibitor, ODQ, prevented cell proliferation. Similarly to NOC-18, the cGMP analogue, 8-Br-cGMP, also increased cell proliferation. Interestingly, shorter exposures to NO (6 h increased cell proliferation in a cGMP-independent manner via the ERK/MAP kinase pathway. The selective inhibitor of PKG, KT5823, prevented the proliferative effect induced by NO at 24 h but not at 6 h. In conclusion, the proliferative effect of NO is initially mediated by the ERK/MAPK pathway, and at later stages by the GC/cGMP/PKG pathway. Thus, our work shows that NO induces neural stem cell proliferation by targeting these two pathways in a biphasic manner.

  2. Morphological covariance in anatomical MRI scans can identify discrete neural pathways in the brain and their disturbances in persons with neuropsychiatric disorders.

    Science.gov (United States)

    Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S

    2015-05-01

    We hypothesize that coordinated functional activity within discrete neural circuits induces morphological organization and plasticity within those circuits. Identifying regions of morphological covariation that are independent of morphological covariation in other regions therefore may therefore allow us to identify discrete neural systems within the brain. Comparing the magnitude of these variations in individuals who have psychiatric disorders with the magnitude of variations in healthy controls may allow us to identify aberrant neural pathways in psychiatric illnesses. We measured surface morphological features by applying nonlinear, high-dimensional warping algorithms to manually defined brain regions. We transferred those measures onto the surface of a unit sphere via conformal mapping and then used spherical wavelets and their scaling coefficients to simplify the data structure representing these surface morphological features of each brain region. We used principal component analysis (PCA) to calculate covariation in these morphological measures, as represented by their scaling coefficients, across several brain regions. We then assessed whether brain subregions that covaried in morphology, as identified by large eigenvalues in the PCA, identified specific neural pathways of the brain. To do so, we spatially registered the subnuclei for each eigenvector into the coordinate space of a Diffusion Tensor Imaging dataset; we used these subnuclei as seed regions to track and compare fiber pathways with known fiber pathways identified in neuroanatomical atlases. We applied these procedures to anatomical MRI data in a cohort of 82 healthy participants (42 children, 18 males, age 10.5 ± 2.43 years; 40 adults, 22 males, age 32.42 ± 10.7 years) and 107 participants with Tourette's Syndrome (TS) (71 children, 59 males, age 11.19 ± 2.2 years; 36 adults, 21 males, age 37.34 ± 10.9 years). We evaluated the construct validity of the identified covariation in morphology

  3. Prospero-related homeobox 1 (Prox1) at the crossroads of diverse pathways during adult neural fate specification.

    Science.gov (United States)

    Stergiopoulos, Athanasios; Elkouris, Maximilianos; Politis, Panagiotis K

    2014-01-01

    Over the last decades, adult neurogenesis in the central nervous system (CNS) has emerged as a fundamental process underlying physiology and disease. Recent evidence indicates that the homeobox transcription factor Prox1 is a critical intrinsic regulator of neurogenesis in the embryonic CNS and adult dentate gyrus (DG) of the hippocampus, acting in multiple ways and instructed by extrinsic cues and intrinsic factors. In the embryonic CNS, Prox1 is mechanistically involved in the regulation of proliferation vs. differentiation decisions of neural stem cells (NSCs), promoting cell cycle exit and neuronal differentiation, while inhibiting astrogliogenesis. During the complex differentiation events in adult hippocampal neurogenesis, Prox1 is required for maintenance of intermediate progenitors (IPs), differentiation and maturation of glutamatergic interneurons, as well as specification of DG cell identity over CA3 pyramidal fate. The mechanism by which Prox1 exerts multiple functions involves distinct signaling pathways currently not fully highlighted. In this mini-review, we thoroughly discuss the Prox1-dependent phenotypes and molecular pathways in adult neurogenesis in relation to different upstream signaling cues and cell fate determinants. In addition, we discuss the possibility that Prox1 may act as a cross-talk point between diverse signaling cascades to achieve specific outcomes during adult neurogenesis.

  4. Variances handling method of clinical pathways based on T-S fuzzy neural networks with novel hybrid learning algorithm.

    Science.gov (United States)

    Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Ye, Yan; Yao, Yang

    2012-06-01

    Clinical pathways' variances present complex, fuzzy, uncertain and high-risk characteristics. They could cause complicating diseases or even endanger patients' life if not handled effectively. In order to improve the accuracy and efficiency of variances handling by Takagi-Sugeno (T-S) fuzzy neural networks (FNNs), a new variances handling method for clinical pathways (CPs) is proposed in this study, which is based on T-S FNNs with novel hybrid learning algorithm. And the optimal structure and parameters can be achieved simultaneously by integrating the random cooperative decomposing particle swarm optimization algorithm (RCDPSO) and discrete binary version of PSO (DPSO) algorithm. Finally, a case study on liver poisoning of osteosarcoma preoperative chemotherapy CP is used to validate the proposed method. The result demonstrates that T-S FNNs based on the proposed algorithm achieves superior performances in efficiency, precision, and generalization ability to standard T-S FNNs, Mamdani FNNs and T-S FNNs based on other algorithms (CPSO and PSO) for variances handling of CPs.

  5. Neural pathways for language in autism: the potential for music-based treatments

    Science.gov (United States)

    Wan, Catherine Y; Schlaug, Gottfried

    2010-01-01

    Language deficits represent the core diagnostic characteristics of autism, and some of these individuals never develop functional speech. The language deficits in autism may be due to structural and functional abnormalities in certain language regions (e.g., frontal and temporal), or due to altered connectivity between these brain regions. In particular, a number of anatomical pathways that connect auditory and motor brain regions (e.g., the arcuate fasciculus, the uncinate fasciculus and the extreme capsule) may be altered in individuals with autism. These pathways may also provide targets for experimental treatments to facilitate communication skills in autism. We propose that music-based interventions (e.g., auditory–motor mapping training) would take advantage of the musical strengths of these children, and are likely to engage, and possibly strengthen, the connections between frontal and temporal regions bilaterally. Such treatments have important clinical potential in facilitating expressive language in nonverbal children with autism. PMID:21197137

  6. Neural pathways for language in autism: the potential for music-based treatments

    OpenAIRE

    Wan, Catherine Y; Schlaug, Gottfried

    2010-01-01

    Language deficits represent the core diagnostic characteristics of autism, and some of these individuals never develop functional speech. The language deficits in autism may be due to structural and functional abnormalities in certain language regions (e.g., frontal and temporal), or due to altered connectivity between these brain regions. In particular, a number of anatomical pathways that connect auditory and motor brain regions (e.g., the arcuate fasciculus, the uncinate fasciculus and the...

  7. Endoplasmic reticulum stress pathway required for immune homeostasis is neurally controlled by arrestin-1.

    Science.gov (United States)

    Singh, Varsha; Aballay, Alejandro

    2012-09-28

    In response to pathogen infection, the host innate immune system activates microbial killing pathways and cellular stress pathways that need to be balanced because insufficient or excessive immune responses have deleterious consequences. Recent studies demonstrate that two G protein-coupled receptors (GPCRs) in the nervous system of Caenorhabditis elegans control immune homeostasis. To investigate further how GPCR signaling controls immune homeostasis at the organismal level, we studied arrestin-1 (ARR-1), which is the only GPCR adaptor protein in C. elegans. The results indicate that ARR-1 is required for GPCR signaling in ASH, ASI, AQR, PQR, and URX neurons, which control the unfolded protein response and a p38 mitogen-activated protein kinase signaling pathway required for innate immunity. ARR-1 activity also controlled immunity through ADF chemosensory and AFD thermosensory neurons that regulate longevity. Furthermore, we found that although ARR-1 played a key role in the control of immunity by AFD thermosensory neurons, it did not control longevity through these cells. However, ARR-1 partially controlled longevity through ADF neurons.

  8. Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing

    Science.gov (United States)

    Sengupta, Abhronil; Roy, Kaushik

    2017-12-01

    Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform every day. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this paper attempts to provide a review of the recent developments in the field of spintronic device based neuromorphic computing. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing device structures mimicking neural and synaptic functionalities is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations.

  9. Different neural pathways to negative affect in youth with pediatric bipolar disorder and severe mood dysregulation

    Science.gov (United States)

    Rich, Brendan A.; Carver, Frederick W.; Holroyd, Tom; Rosen, Heather R.; Mendoza, Jennifer K.; Cornwell, Brian R.; Fox, Nathan A.; Pine, Daniel S.; Coppola, Richard; Leibenluft, Ellen

    2011-01-01

    Questions persist regarding the presentation of bipolar disorder (BD) in youth and the nosological significance of irritability. Of particular interest is whether severe mood dysregulation (SMD), characterized by severe non-episodic irritability, hyperarousal, and hyper-reactivity to negative emotional stimuli, is a developmental presentation of pediatric BD and, therefore, whether the two conditions are pathophysiologically similar. We administered the affective Posner paradigm, an attentional task with a condition involving blocked goal attainment via rigged feedback. The sample included 60 youth (20 BD, 20 SMD, and 20 controls) ages 8–17. Magnetoencephalography (MEG) examined neuronal activity (4–50 Hz) following negative versus positive feedback. We also examined reaction time (RT), response accuracy, and self-reported affect. Both BD and SMD youth reported being less happy than controls during the rigged condition. Also, SMD youth reported greater arousal following negative feedback than both BD and controls, and they responded to negative feedback with significantly greater activation of the anterior cingulate cortex (ACC) and medial frontal gyrus (MFG) than controls. Compared to SMD and controls, BD youth displayed greater superior frontal gyrus (SFG) activation and decreased insula activation following negative feedback. Data suggest a greater negative affective response to blocked goal attainment in SMD versus BD and control youth. This occurs in tandem with hyperactivation of medial frontal regions in SMD youth, while BD youth show dysfunction in the SFG and insula. Data add to a growing empirical base that differentiates pediatric BD and SMD and begin to elucidate potential neural mechanisms of irritability. PMID:21561628

  10. Different neural pathways to negative affect in youth with pediatric bipolar disorder and severe mood dysregulation.

    Science.gov (United States)

    Rich, Brendan A; Carver, Frederick W; Holroyd, Tom; Rosen, Heather R; Mendoza, Jennifer K; Cornwell, Brian R; Fox, Nathan A; Pine, Daniel S; Coppola, Richard; Leibenluft, Ellen

    2011-10-01

    Questions persist regarding the presentation of bipolar disorder (BD) in youth and the nosological significance of irritability. Of particular interest is whether severe mood dysregulation (SMD), characterized by severe non-episodic irritability, hyper-arousal, and hyper-reactivity to negative emotional stimuli, is a developmental presentation of pediatric BD and, therefore, whether the two conditions are pathophysiologically similar. We administered the affective Posner paradigm, an attentional task with a condition involving blocked goal attainment via rigged feedback. The sample included 60 youth (20 BD, 20 SMD, and 20 controls) ages 8-17. Magnetoencephalography (MEG) examined neuronal activity (4-50 Hz) following negative versus positive feedback. We also examined reaction time (RT), response accuracy, and self-reported affect. Both BD and SMD youth reported being less happy than controls during the rigged condition. Also, SMD youth reported greater arousal following negative feedback than both BD and controls, and they responded to negative feedback with significantly greater activation of the anterior cingulate cortex (ACC) and medial frontal gyrus (MFG) than controls. Compared to SMD and controls, BD youth displayed greater superior frontal gyrus (SFG) activation and decreased insula activation following negative feedback. Data suggest a greater negative affective response to blocked goal attainment in SMD versus BD and control youth. This occurs in tandem with hyperactivation of medial frontal regions in SMD youth, while BD youth show dysfunction in the SFG and insula. Data add to a growing empirical base that differentiates pediatric BD and SMD and begin to elucidate potential neural mechanisms of irritability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Qualitative analysis of the maintenance politics of the systems of a typical PWR by artificial neural networks; Analise qualitativa da politica de manutencoes dos sistemas de um PWR tipico por redes neurais artificiais

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, Victor Hugo Moreno

    2010-02-15

    Proceedings and techniques in order to maximize the reliability and the availability of industrial plants have been used along the last decades by specialists and professionals of maintenance. However, the modem industrial systems' sizing, and the increasing complexity and interdependence among its components have become this activity's planning a more and more difficult task. Considering this scenario, the objective of the present work is to provide a computational tool which is able to help about the taking decision's task, and about planning policies of maintenance practiced in thermonuclear plants. The tool developed is based on the artificial neural networks (ANN) for the recognition of standards and establishment of correlations among events occurred in the components of pressurized water reactor (PWR) typical systems. The ANN work as miners of database of failure events, and are able to identify connections and to establish imperceptible inferences even for the most experienced specialists in maintenance of nuclear systems. The results were attained from realistic data and are confronted against the maintenance's classic policies which are practiced nowadays on PWR thermonuclear plants. These results show the solidity of the technique in valuing and predicting failures in a real power plant, and is able to be used as a tool for supporting decisions about planning maintenance policies on a typical PWR. (author)

  12. Nonassociative learning as gated neural integrator and differentiator in stimulus-response pathways

    Directory of Open Access Journals (Sweden)

    Young Daniel L

    2006-08-01

    Full Text Available Abstract Nonassociative learning is a basic neuroadaptive behavior exhibited across animal phyla and sensory modalities but its role in brain intelligence is unclear. Current literature on habituation and sensitization, the classic "dual process" of nonassociative learning, gives highly incongruous accounts between varying experimental paradigms. Here we propose a general theory of nonassociative learning featuring four base modes: habituation/primary sensitization in primary stimulus-response pathways, and desensitization/secondary sensitization in secondary stimulus-response pathways. Primary and secondary modes of nonassociative learning are distinguished by corresponding activity-dependent recall, or nonassociative gating, of neurotransmission memory. From the perspective of brain computation, nonassociative learning is a form of integral-differential calculus whereas nonassociative gating is a form of Boolean logic operator – both dynamically transforming the stimulus-response relationship. From the perspective of sensory integration, nonassociative gating provides temporal filtering whereas nonassociative learning affords low-pass, high-pass or band-pass/band-stop frequency filtering – effectively creating an intelligent sensory firewall that screens all stimuli for attention and resultant internal model adaptation and reaction. This unified framework ties together many salient characteristics of nonassociative learning and nonassociative gating and suggests a common kernel that correlates with a wide variety of sensorimotor integration behaviors such as central resetting and self-organization of sensory inputs, fail-safe sensorimotor compensation, integral-differential and gated modulation of sensorimotor feedbacks, alarm reaction, novelty detection and selective attention, as well as a variety of mental and neurological disorders such as sensorimotor instability, attention deficit hyperactivity, sensory defensiveness, autism

  13. Nonassociative learning as gated neural integrator and differentiator in stimulus-response pathways.

    Science.gov (United States)

    Poon, Chi-Sang; Young, Daniel L

    2006-08-08

    Nonassociative learning is a basic neuroadaptive behavior exhibited across animal phyla and sensory modalities but its role in brain intelligence is unclear. Current literature on habituation and sensitization, the classic "dual process" of nonassociative learning, gives highly incongruous accounts between varying experimental paradigms. Here we propose a general theory of nonassociative learning featuring four base modes: habituation/primary sensitization in primary stimulus-response pathways, and desensitization/secondary sensitization in secondary stimulus-response pathways. Primary and secondary modes of nonassociative learning are distinguished by corresponding activity-dependent recall, or nonassociative gating, of neurotransmission memory. From the perspective of brain computation, nonassociative learning is a form of integral-differential calculus whereas nonassociative gating is a form of Boolean logic operator--both dynamically transforming the stimulus-response relationship. From the perspective of sensory integration, nonassociative gating provides temporal filtering whereas nonassociative learning affords low-pass, high-pass or band-pass/band-stop frequency filtering--effectively creating an intelligent sensory firewall that screens all stimuli for attention and resultant internal model adaptation and reaction. This unified framework ties together many salient characteristics of nonassociative learning and nonassociative gating and suggests a common kernel that correlates with a wide variety of sensorimotor integration behaviors such as central resetting and self-organization of sensory inputs, fail-safe sensorimotor compensation, integral-differential and gated modulation of sensorimotor feedbacks, alarm reaction, novelty detection and selective attention, as well as a variety of mental and neurological disorders such as sensorimotor instability, attention deficit hyperactivity, sensory defensiveness, autism, nonassociative fear and anxiety

  14. NEURAL PAIN PATHWAY TRACING OF RABBIT ISCHEMIC HEART BY DOUBLE-RETROGRADE NEUROTRACING

    Directory of Open Access Journals (Sweden)

    Theodorus Dapamede

    2015-01-01

    Full Text Available Background. Myocardial ischaemia occurs due to inadequate supply of oxygen to fulfill the myocardial tissue oxygen demand. This leads to angina pectoris or referred pain, whichhappens because of the inability of the brain to distinguish the visceral afferent inputs from the somatic afferent inputs since they run along a common pathway via the dorsal root ganglia. Aims. This study aims to distinguish specific areas of the rabbit heart that are projected to specific dorsal root ganglia, which then associates to its specific dermatomes. Methods. A double-retrograde neurotracing method was used, with True Blue and Nuclear Yellow as the neurotracers. Rabbits were divided into 3 groups, which the first and second groups were ligated at the left anterior descending artery and at the left circumflex artery, respectively.The third group acted as the control group, without ligation.True blue was injected at ischaemic sites following ligation. Nuclear yellowwas injected at the skin, dermatomes T1-T4. Dorsal root ganglia levels T1-T4 were then examined for both neurotracers at 3 days post injection. Results. There is significant association between the site of ligation to the projection of the neurotracers at specific dorsal root ganglia (p<0.05. The first group showed high tendency to be projected to T2 and the second group showed a high tendency to project to T1. Conclusion. This study shows that the rabbit heart can be specifically projected neuronally to specific dorsal root ganglia, following coronary artery ligation.

  15. NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mei, E-mail: limeihit@163.com [Department of Anatomy and Neurobiology, Xuzhou Medical College, Xuzhou (China); Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing (China); Zhang, Dong-Qing; Wang, Xiang-Zhen [Department of Anatomy and Neurobiology, Xuzhou Medical College, Xuzhou (China); Xu, Tie-Jun, E-mail: xztjxu@163.com [Department of Anatomy and Neurobiology, Xuzhou Medical College, Xuzhou (China); Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing (China)

    2011-08-12

    Highlights: {yields} The NR2B component of the NMDARs is important for the NSPC proliferation. {yields} pCaMKIV and pCREB exist in NSPCs. {yields} The CaMKIV/CREB pathway mediates NSPC proliferation. -- Abstract: Accumulating evidence indicates the involvement of N-methyl-D-aspartate receptors (NMDARs) in regulating neural stem/progenitor cell (NSPC) proliferation. Functional properties of NMDARs can be markedly influenced by incorporating the regulatory subunit NR2B. Here, we aim to analyze the effect of NR2B-containing NMDARs on the proliferation of hippocampal NSPCs and to explore the mechanism responsible for this effect. NSPCs were shown to express NMDAR subunits NR1 and NR2B. The NR2B selective antagonist, Ro 25-6981, prevented the NMDA-induced increase in cell proliferation. Moreover, we demonstrated that the phosphorylation levels of calcium/calmodulin-dependent protein kinase IV (CaMKIV) and cAMP response element binding protein (CREB) were increased by NMDA treatment, whereas Ro 25-6981 decreased them. The role that NR2B-containing NMDARs plays in NSPC proliferation was abolished when CREB phosphorylation was attenuated by CaMKIV silencing. These results suggest that NR2B-containing NMDARs have a positive role in regulating NSPC proliferation, which may be mediated through CaMKIV phosphorylation and subsequent induction of CREB activation.

  16. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway

    Directory of Open Access Journals (Sweden)

    Lü He-Zuo

    2009-10-01

    Full Text Available Abstract Background Neural precursor cells (NPCs are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs are prominent components of the extracellular matrix (ECM in the central nervous system (CNS and are assumed to play important roles in controlling neuronal differentiation and development. Results In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs. Conclusion The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

  17. Early life social stress induced changes in depression and anxiety associated neural pathways which are correlated with impaired maternal care.

    Science.gov (United States)

    Murgatroyd, Christopher A; Peña, Catherine J; Podda, Giovanni; Nestler, Eric J; Nephew, Benjamin C

    2015-08-01

    Exposures to various types of early life stress can be robust predictors of the development of psychiatric disorders, including depression and anxiety. The objective of the current study was to investigate the roles of the translationally relevant targets of central vasopressin, oxytocin, ghrelin, orexin, glucocorticoid, and the brain-derived neurotrophic factor (BDNF) pathway in an early chronic social stress (ECSS) based rodent model of postpartum depression and anxiety. The present study reports novel changes in gene expression and extracellular signal related kinase (ERK) protein levels in the brains of ECSS exposed rat dams that display previously reported depressed maternal care and increased maternal anxiety. Decreases in oxytocin, orexin, and ERK proteins, increases in ghrelin receptor, glucocorticoid and mineralocorticoid receptor mRNA levels, and bidirectional changes in vasopressin underscore related work on the adverse long-term effects of early life stress on neural activity and plasticity, maternal behavior, responses to stress, and depression and anxiety-related behavior. The differences in gene and protein expression and robust correlations between expression and maternal care and anxiety support increased focus on these targets in animal and clinical studies of the adverse effects of early life stress, especially those focusing on depression and anxiety in mothers and the transgenerational effects of these disorders on offspring. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effect of coffee combining green coffee bean constituents with typical roasting products on the Nrf2/ARE pathway in vitro and in vivo.

    Science.gov (United States)

    Volz, Nadine; Boettler, Ute; Winkler, Swantje; Teller, Nicole; Schwarz, Christoph; Bakuradze, Tamara; Eisenbrand, Gerhard; Haupt, Larissa; Griffiths, Lyn R; Stiebitz, Herbert; Bytof, Gerhard; Lantz, Ingo; Lang, Roman; Hofmann, Thomas; Somoza, Veronika; Marko, Doris

    2012-09-26

    This study investigated Nrf2-activating properties of a coffee blend combining raw coffee bean constituents with 5-O-caffeoylquinic acid (CGA) as a lead component with typical roasting products such as N-methylpyridinium (NMP). In cell culture (HT29) the respective coffee extract (CN-CE) increased nuclear Nrf2 translocation and enhanced the transcription of ARE-dependent genes as exemplified for NAD(P)H:quinone oxidoreductase and glutathione-S-transferase (GST)A1, reflected in the protein level by an increase in GST enzyme activity. In a pilot human intervention study (29 healthy volunteers), daily consumption of 750 mL of CN-coffee for 4 weeks increased Nrf2 transcription in peripheral blood lymphocytes on average. However, the transcriptional response pattern of Nrf2/ARE-dependent genes showed substantial interindividual variations. The presence of SNPs in the Nrf2-promoter, reported recently, as well as the detection of GSTT1*0 (null) genotypes in the study collective strengthens the hypothesis that coffee acts as a modulator of Nrf2-dependent gene response in humans, but genetic polymorphisms play an important role in the individual response pattern.

  19. AICAR induces astroglial differentiation of neural stem cells via activating the JAK/STAT3 pathway independently of AMP-activated protein kinase.

    Science.gov (United States)

    Zang, Yi; Yu, Li-Fang; Pang, Tao; Fang, Lei-Ping; Feng, Xu; Wen, Tie-Qiao; Nan, Fa-Jun; Feng, Lin-Yin; Li, Jia

    2008-03-07

    Neural stem cell differentiation and the determination of lineage decision between neuronal and glial fates have important implications in the study of developmental, pathological, and regenerative processes. Although small molecule chemicals with the ability to control neural stem cell fate are considered extremely useful tools in this field, few were reported. AICAR is an adenosine analog and extensively used to activate AMP-activated protein kinase (AMPK), a metabolic "fuel gauge" of the biological system. In the present study, we found an unrecognized astrogliogenic activity of AICAR on not only immortalized neural stem cell line C17.2 (C17.2-NSC), but also primary neural stem cells (NSCs) derived from post-natal (P0) rat hippocampus (P0-NSC) and embryonic day 14 (E14) rat embryonic cortex (E14-NSC). However, another AMPK activator, Metformin, did not alter either the C17.2-NSC or E14-NSC undifferentiated state although both Metformin and AICAR can activate the AMPK pathway in NSC. Furthermore, overexpression of dominant-negative mutants of AMPK in C17.2-NSC was unable to block the gliogenic effects of AICAR. We also found AICAR could activate the Janus kinase (JAK) STAT3 pathway in both C17.2-NSC and E14-NSC but Metformin fails. JAK inhibitor I abolished the gliogenic effects of AICAR. Taken together, these results suggest that the astroglial differentiation effect of AICAR on neural stem cells was acting independently of AMPK and that the JAK-STAT3 pathway is essential for the gliogenic effect of AICAR.

  20. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N

    2000-01-01

    The signal transduction pathways associated with neural cell adhesion molecule (NCAM)-induced neuritogenesis are only partially characterized. We here demonstrate that NCAM-induced neurite outgrowth depends on activation of p59(fyn), focal adhesion kinase (FAK), phospholipase Cgamma (PLCgamma......), protein kinase C (PKC), and the Ras-mitogen-activated protein (MAP) kinase pathway. This was done using a coculture system consisting of PC12-E2 cells grown on fibroblasts, with or without NCAM expression, allowing NCAM-NCAM interactions resulting in neurite outgrowth. PC12-E2 cells were transiently...... propose a model of NCAM signaling involving two pathways: NCAM-Ras-MAP kinase and NCAM-FGF receptor-PLCgamma-PKC, and we propose that PKC serves as the link between the two pathways activating Raf and thereby creating the sustained activity of the MAP kinases necessary for neuronal differentiation....

  1. [Selective ablation of certain neural pathways by gene transfer using viral vectors: analysis of primate basal ganglia functions by using immunotoxin-mediated tract targeting].

    Science.gov (United States)

    Takada, Masahiko

    2013-06-01

    Using a neuron-specific retrograde gene-transfer vector based on the lentivirus, we established immunotoxin (IT)-mediated tract targeting in the primate brain; this technique allows ablation of a neuronal population constituting a certain pathway. Here, we introduce a recent study on selective removal of the cortico-subthalamic "hyperdirect" pathway. Together with the direct and indirect pathways, the hyperdirect pathway plays a crucial role in motor information processing in the basal ganglia. This pathway links the motor-related areas of the frontal lobe directly to the subthalamic nucleus (STN) without relay at the striatum. After electrical stimulation of the motor-related areas, such as the supplementary motor area (SMA), triphasic responses consisting of an early excitation, an inhibition, and a late excitation are usually detected in the internal segment of the globus pallidus (GPi). Several lines of evidence suggest that the early excitation may be derived from the hyperdirect pathway. We injected the lentiviral vector expressing human interleukin-2 receptor α-subunit into the monkey STN. IT was then injected into the SMA. We recorded GPi neuron responses to SMA stimulation. We found that the early excitation was reduced neither with the inhibition nor with the late excitation. The spontaneous firing rate and pattern of GPi neurons remained unchanged. This indicated that IT-mediated tract targeting successfully and selectively eliminated the hyperdirect pathway from the basal ganglia circuitry without affecting the spontaneous activity of STN neurons. This electrophysiological finding was confirmed using anatomical data obtained from retrograde and anterograde neural tracings. The present results show that the cortically driven early excitation in GPi neurons is mediated by the hyperdirect pathway. The IT-mediated tract targeting technique will provide us with novel strategies for elucidating various neural network functions.

  2. Burst firing in a motion-sensitive neural pathway correlates with expansion properties of looming objects that evoke avoidance behaviours

    Directory of Open Access Journals (Sweden)

    Glyn Allan McMillan

    2015-12-01

    Full Text Available The locust visual system contains a well-defined motion-sensitive pathway that transfers visual input to motor centers involved in predator evasion and collision avoidance. One interneuron in this pathway, the descending contralateral movement detector (DCMD, is typically described as using rate coding; edge expansion of approaching objects causes an increased rate of neuronal firing that peaks after a certain retinal threshold angle is exceeded. However, evidence of intrinsic DCMD bursting properties combined with observable oscillations in mean firing rates and tight clustering of spikes in raw traces, suggest that bursting may be important for motion detection. Sensory neuron bursting provides important timing information about dynamic stimuli in many model systems, yet no studies have rigorously investigated if bursting occurs in the locust DCMD during object approach. We presented repetitions of 30 looming stimuli known to generate behavioural responses to each of 20 locusts in order to identify and quantify putative bursting activity in the DCMD. Overall, we found a bimodal distribution of inter-spike intervals (ISI with peaks of more frequent and shorter ISIs occurring from 1-8 ms and longer less frequent ISIs occurring from 40-50 ms. Subsequent analysis identified bursts and isolated single spikes from the responses. Bursting frequency increased in the latter phase of an approach and peaked at the time of collision, while isolated spiking was predominant during the beginning of stimulus approach. We also found that the majority of inter-burst intervals occurred at 40-50 ms (or 20-25 bursts/s. Bursting also occurred across varied stimulus parameters and suggests that burst timing may be a key component of looming detection. Our findings suggest that the DCMD uses two modes of coding to transmit information about looming stimuli and that these modes change dynamically with a changing stimulus at a behaviourally-relevant time.

  3. Burst Firing in a Motion-Sensitive Neural Pathway Correlates with Expansion Properties of Looming Objects that Evoke Avoidance Behaviors.

    Science.gov (United States)

    McMillan, Glyn A; Gray, John R

    2015-01-01

    The locust visual system contains a well-defined motion-sensitive pathway that transfers visual input to motor centers involved in predator evasion and collision avoidance. One interneuron in this pathway, the descending contralateral movement detector (DCMD), is typically described as using rate coding; edge expansion of approaching objects causes an increased rate of neuronal firing that peaks after a certain retinal threshold angle is exceeded. However, evidence of intrinsic DCMD bursting properties combined with observable oscillations in mean firing rates and tight clustering of spikes in raw traces, suggest that bursting may be important for motion detection. Sensory neuron bursting provides important timing information about dynamic stimuli in many model systems, yet no studies have rigorously investigated if bursting occurs in the locust DCMD during object approach. We presented repetitions of 30 looming stimuli known to generate behavioral responses to each of 20 locusts in order to identify and quantify putative bursting activity in the DCMD. Overall, we found a bimodal distribution of inter-spike intervals (ISI) with peaks of more frequent and shorter ISIs occurring from 1-8 ms and longer less frequent ISIs occurring from 40-50 ms. Subsequent analysis identified bursts and isolated single spikes from the responses. Bursting frequency increased in the latter phase of an approach and peaked at the time of collision, while isolated spiking was predominant during the beginning of stimulus approach. We also found that the majority of inter-burst intervals (IBIs) occurred at 40-50 ms (or 20-25 bursts/s). Bursting also occurred across varied stimulus parameters and suggests that burst timing may be a key component of looming detection. Our findings suggest that the DCMD uses two modes of coding to transmit information about looming stimuli and that these modes change dynamically with a changing stimulus at a behaviorally-relevant time.

  4. Cold atmospheric plasma (CAP), a novel physicochemical source, induces neural differentiation through cross-talk between the specific RONS cascade and Trk/Ras/ERK signaling pathway.

    Science.gov (United States)

    Jang, Ja-Young; Hong, Young June; Lim, Junsup; Choi, Jin Sung; Choi, Eun Ha; Kang, Seongman; Rhim, Hyangshuk

    2018-02-01

    Plasma, formed by ionization of gas molecules or atoms, is the most abundant form of matter and consists of highly reactive physicochemical species. In the physics and chemistry fields, plasma has been extensively studied; however, the exact action mechanisms of plasma on biological systems, including cells and humans, are not well known. Recent evidence suggests that cold atmospheric plasma (CAP), which refers to plasma used in the biomedical field, may regulate diverse cellular processes, including neural differentiation. However, the mechanism by which these physicochemical signals, elicited by reactive oxygen and nitrogen species (RONS), are transmitted to biological system remains elusive. In this study, we elucidated the physicochemical and biological (PCB) connection between the CAP cascade and Trk/Ras/ERK signaling pathway, which resulted in neural differentiation. Excited atomic oxygen in the plasma phase led to the formation of RONS in the PCB network, which then interacted with reactive atoms in the extracellular liquid phase to form nitric oxide (NO). Production of large amounts of superoxide radical (O2-) in the mitochondria of cells exposed to CAP demonstrated that extracellular NO induced the reversible inhibition of mitochondrial complex IV. We also demonstrated that cytosolic hydrogen peroxide, formed by O2- dismutation, act as an intracellular messenger to specifically activate the Trk/Ras/ERK signaling pathway. This study is the first to elucidate the mechanism linking physicochemical signals from the CAP cascade to the intracellular neural differentiation signaling pathway, providing physical, chemical and biological insights into the development of therapeutic techniques to treat neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Concise Review: Reprogramming, Behind the Scenes: Noncanonical Neural Stem Cell Signaling Pathways Reveal New, Unseen Regulators of Tissue Plasticity With Therapeutic Implications.

    Science.gov (United States)

    Poser, Steven W; Chenoweth, Josh G; Colantuoni, Carlo; Masjkur, Jimmy; Chrousos, George; Bornstein, Stefan R; McKay, Ronald D; Androutsellis-Theotokis, Andreas

    2015-11-01

    Interest is great in the new molecular concepts that explain, at the level of signal transduction, the process of reprogramming. Usually, transcription factors with developmental importance are used, but these approaches give limited information on the signaling networks involved, which could reveal new therapeutic opportunities. Recent findings involving reprogramming by genetic means and soluble factors with well-studied downstream signaling mechanisms, including signal transducer and activator of transcription 3 (STAT3) and hairy and enhancer of split 3 (Hes3), shed new light into the molecular mechanisms that might be involved. We examine the appropriateness of common culture systems and their ability to reveal unusual (noncanonical) signal transduction pathways that actually operate in vivo. We then discuss such novel pathways and their importance in various plastic cell types, culminating in their emerging roles in reprogramming mechanisms. We also discuss a number of reprogramming paradigms (mouse induced pluripotent stem cells, direct conversion to neural stem cells, and in vivo conversion of acinar cells to β-like cells). Specifically for acinar-to-β-cell reprogramming paradigms, we discuss the common view of the underlying mechanism (involving the Janus kinase-STAT pathway that leads to STAT3-tyrosine phosphorylation) and present alternative interpretations that implicate STAT3-serine phosphorylation alone or serine and tyrosine phosphorylation occurring in sequential order. The implications for drug design and therapy are important given that different phosphorylation sites on STAT3 intercept different signaling pathways. We introduce a new molecular perspective in the field of reprogramming with broad implications in basic, biotechnological, and translational research. Reprogramming is a powerful approach to change cell identity, with implications in both basic and applied biology. Most efforts involve the forced expression of key transcription

  6. Platelet-rich plasma for regeneration of neural feedback pathways around dental implants: a concise review and outlook on future possibilities

    Science.gov (United States)

    Huang, Yan; Bornstein, Michael M; Lambrichts, Ivo; Yu, Hai-Yang; Politis, Constantinus; Jacobs, Reinhilde

    2017-01-01

    Along with the development of new materials, advanced medical imaging and surgical techniques, osseointegrated dental implants are considered a successful and constantly evolving treatment modality for the replacement of missing teeth in patients with complete or partial edentulism. The importance of restoring the peripheral neural feedback pathway and thus repairing the lack of periodontal mechanoreceptors after tooth extraction has been highlighted in the literature. Nevertheless, regenerating the nerve fibers and reconstructing the neural feedback pathways around osseointegrated implants remain a challenge. Recent studies have provided evidence that platelet-rich plasma (PRP) therapy is a promising treatment for musculoskeletal injuries. Because of its high biological safety, convenience and usability, PRP therapy has gradually gained popularity in the clinical field. Although much remains to be learned, the growth factors from PRP might play key roles in peripheral nerve repair mechanisms. This review presents known growth factors contributing to the biological efficacy of PRP and illustrates basic and (pre-)clinical evidence regarding the use of PRP and its relevant products in peripheral nerve regeneration. In addition, the potential of local application of PRP for structural and functional recovery of injured peripheral nerves around dental implants is discussed. PMID:28282030

  7. Variants in TNIP1, a regulator of the NF-kB pathway, found in two patients with neural tube defects.

    Science.gov (United States)

    Francesca, La Carpia; Claudia, Rendeli; Molinario, Clelia; Annamaria, Milillo; Chiara, Farroni; Natalia, Cannelli; Emanuele, Ausili; Valentina, Paolucci; Giovanni, Neri; Costantino, Romagnoli; Eugenio, Sangiorgi; Fiorella, Gurrieri

    2016-06-01

    Neural tube defects (NTDs) occur in 1:1000 births. The etiology is complex, with the influence of environmental and genetic factors. Environmental factors, such as folate deficiency, diabetes, or hypoxia strongly contribute to the occurrence of NTD. Also, there is a strong genetic contribution to NTD, as highlighted by the number of genes so far identified in several different developmental pathways usually altered in NTD. Each gene identified so far accounts for a small percentage of all NTD cases, indicating a very high heterogeneity. Exome sequencing was performed in seven sporadic patients with severe mielomeningocele. Novel coding variants shared by two or more patients were selected for further analysis. We identified in two unrelated patients two different variants in TNIP1, a gene not previously involved in NTD whose main role is downregulation of the NF-kB pathway. One variant, c.1089T>G (p.Phe363Leu), is de novo, whereas the c.1781C>T (p.Pro594Leu) is absent in the mother, but could not be tested in the father, as he was unavailable. The latter variant is a very rare variant in the ExAC database. These findings suggest that TNIP1 is a new potential predisposing gene to spina bifida (SB) and its pathway needs to be investigated in human NTD in order to confirm its role and to plan appropriate counseling to families.

  8. IGF-1 promotes Brn-4 expression and neuronal differentiation of neural stem cells via the PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Xinhua Zhang

    Full Text Available Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1 in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002, but not MAPK inhibitor (PD98059; levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024 and mTOR (rapamycin both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways.

  9. Modulation of calcium-induced cell death in human neural stem cells by the novel peptidylarginine deiminase-AIF pathway.

    Science.gov (United States)

    U, Kin Pong; Subramanian, Venkataraman; Nicholas, Antony P; Thompson, Paul R; Ferretti, Patrizia

    2014-06-01

    PADs (peptidylarginine deiminases) are calcium-dependent enzymes that change protein-bound arginine to citrulline (citrullination/deimination) affecting protein conformation and function. PAD up-regulation following chick spinal cord injury has been linked to extensive tissue damage and loss of regenerative capability. Having found that human neural stem cells (hNSCs) expressed PAD2 and PAD3, we studied PAD function in these cells and investigated PAD3 as a potential target for neuroprotection by mimicking calcium-induced secondary injury responses. We show that PAD3, rather than PAD2 is a modulator of cell growth/death and that PAD activity is not associated with caspase-3-dependent cell death, but is required for AIF (apoptosis inducing factor)-mediated apoptosis. PAD inhibition prevents association of PAD3 with AIF and AIF cleavage required for its translocation to the nucleus. Finally, PAD inhibition also hinders calcium-induced cytoskeleton disassembly and association of PAD3 with vimentin, that we show to be associated also with AIF; together this suggests that PAD-dependent cytoskeleton disassembly may play a role in AIF translocation to the nucleus. This is the first study highlighting a role of PAD activity in balancing hNSC survival/death, identifying PAD3 as an important upstream regulator of calcium-induced apoptosis, which could be targeted to reduce neural loss, and shedding light on the mechanisms involved. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Sensory neural pathways revisited to unravel the temporal dynamics of the Simon effect: A model-based cognitive neuroscience approach.

    Science.gov (United States)

    Salzer, Yael; de Hollander, Gilles; Forstmann, Birte U

    2017-06-01

    The Simon task is one of the most prominent interference tasks and has been extensively studied in experimental psychology and cognitive neuroscience. Despite years of research, the underlying mechanism driving the phenomenon and its temporal dynamics are still disputed. Within the framework of the review, we adopt a model-based cognitive neuroscience approach. We first go over key findings in the literature of the Simon task, discuss competing qualitative cognitive theories and the difficulty of testing them empirically. We then introduce sequential sampling models, a particular class of mathematical cognitive process models. Finally, we argue that the brain architecture accountable for the processing of spatial ('where') and non-spatial ('what') information, could constrain these models. We conclude that there is a clear need to bridge neural and behavioral measures, and that mathematical cognitive models may facilitate the construction of this bridge and work towards revealing the underlying mechanisms of the Simon effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Prospero-related homeobox 1 (Prox1 at the crossroads of diverse pathways during adult neural fate specification

    Directory of Open Access Journals (Sweden)

    Athanasios eStergiopoulos

    2015-01-01

    Full Text Available Over the last decades, adult neurogenesis in the central nervous system (CNS has emerged as a fundamental process underlying physiology and disease. Recent evidence indicates that the homeobox transcription factor Prox1 is a critical intrinsic regulator of neurogenesis in the embryonic CNS and adult dentate gyrus (DG of the hippocampus, acting in multiple ways and instructed by extrinsic cues and intrinsic factors. In the embryonic CNS, Prox1 is mechanistically involved in the regulation of proliferation versus differentiation decisions of NSCs, promoting cell cycle exit and neuronal differentiation, while inhibits astrogliogenesis. During the complex differentiation events in adult hippocampal neurogenesis, Prox1 is required for maintenance of intermediate progenitors (IPs, differentiation and maturation of glutamatergic interneurons, as well as specification of DG cell identity over CA3 pyramidal fate. The mechanism by which Prox1 exerts multiple functions involves distinct signaling pathways currently not fully highlighted. In this mini-review, we thoroughly discuss the Prox1-dependent phenotypes and molecular pathways in adult neurogenesis in relation to different upstream signaling cues and cell fate determinants. In addition, we discuss the possibility that Prox1 may act as a cross-talk point between diverse signaling cascades to achieve specific outcomes during adult neurogenesis.

  12. Genetic variants in the folate pathway and the risk of neural tube defects: a meta-analysis of the published literature.

    Directory of Open Access Journals (Sweden)

    Ti Zhang

    Full Text Available BACKGROUND: Neural Tube Defects (NTDs are among the most prevalent and most severe congenital malformations worldwide. Polymorphisms in key genes involving the folate pathway have been reported to be associated with the risk of NTDs. However, the results from these published studies are conflicting. We surveyed the literature (1996-2011 and performed a comprehensive meta-analysis to provide empirical evidence on the association. METHODS AND FINDINGS: We investigated the effects of 5 genetic variants from 47 study populations, for a total of 85 case-control comparisons MTHFR C677T (42 studies; 4374 cases, 7232 controls, MTHFR A1298C (22 studies; 2602 cases, 4070 controls, MTR A2756G (9 studies; 843 cases, 1006 controls, MTRR A66G (8 studies; 703 cases, 1572 controls, and RFC-1 A80G (4 studies; 1107 cases, 1585 controls. We found a convincing evidence of dominant effects of MTHFR C677T (OR 1.23; 95%CI 1.07-1.42 and suggestive evidence of RFC-1 A80G (OR 1.55; 95%CI 1.24-1.92. However, we found no significant effects of MTHFR A1298C, MTR A2756G, MTRR A66G in risk of NTDs in dominant, recessive or in allelic models. CONCLUSIONS: Our meta-analysis strongly suggested a significant association of the variant MTHFR C677T and a suggestive association of RFC-1 A80G with increased risk of NTDs. However, other variants involved in folate pathway do not demonstrate any evidence for a significant marginal association on susceptibility to NTDs.

  13. Typicals/Típicos

    Directory of Open Access Journals (Sweden)

    Silvia Vélez

    2004-01-01

    Full Text Available Typicals is a series of 12 colour photographs digitally created from photojournalistic images from Colombia combined with "typical" craft textiles and text from guest writers. Typicals was first exhibited as photographs 50cm x 75cm in size, each with their own magnifying glass, at the Contemporary Art Space at Gorman House in Canberra, Australia, in 2000. It was then exhibited in "Feedback: Art Social Consciousness and Resistance" at Monash University Museum of Art in Melbourne, Australia, from March to May 2003. From May to June 2003 it was exhibited at the Museo de Arte de la Universidad Nacional de Colombia Santa Fé Bogotá, Colombia. In its current manifestation the artwork has been adapted from the catalogue of the museum exhibitions. It is broken up into eight pieces corresponding to the contributions of the writers. The introduction by Sylvia Vélez is the PDF file accessible via a link below this abstract. The other seven PDF files are accessible via the 'Research Support Tool' section to the right of your screen. Please click on 'Supp. Files'. Please note that these files are around 4 megabytes each, so it may be difficult to access them from a dial-up connection.

  14. Interaction of Notch signaling modulator Numb with α-Adaptin regulates endocytosis of Notch pathway components and cell fate determination of neural stem cells.

    Science.gov (United States)

    Song, Yan; Lu, Bingwei

    2012-05-18

    The ability to balance self-renewal and differentiation is a hallmark of stem cells. In Drosophila neural stem cells (NSCs), Numb/Notch (N) signaling plays a key role in this process. However, the molecular and cellular mechanisms underlying Numb function in a stem cell setting remain poorly defined. Here we show that α-Adaptin (α-Ada), a subunit of the endocytic AP-2 complex, interacts with Numb through a new mode of interaction to regulate NSC homeostasis. In α-ada mutants, N pathway component Sanpodo and the N receptor itself exhibited altered trafficking, and N signaling was up-regulated in the intermediate progenitors of type II NSC lineages, leading to their transformation into ectopic NSCs. Surprisingly, although the Ear domain of α-Ada interacts with the C terminus of Numb and is important for α-Ada function in the sensory organ precursor lineage, it was dispensable in the NSCs. Instead, α-Ada could regulate Sanpodo, N trafficking, and NSC homeostasis by interacting with Numb through new domains in both proteins previously not known to mediate their interaction. This interaction could be bypassed when α-Ada was directly fused to the phospho-tyrosine binding domain of Numb. Our results identify a critical role for the AP-2-mediated endocytosis in regulating NSC behavior and reveal a new mechanism by which Numb regulates NSC behavior through N. These findings are likely to have important implications for cancer biology.

  15. Artificial neural network-based exploration of gene-nutrient interactions in folate and xenobiotic metabolic pathways that modulate susceptibility to breast cancer.

    Science.gov (United States)

    Naushad, Shaik Mohammad; Ramaiah, M Janaki; Pavithrakumari, Manickam; Jayapriya, Jaganathan; Hussain, Tajamul; Alrokayan, Salman A; Gottumukkala, Suryanarayana Raju; Digumarti, Raghunadharao; Kutala, Vijay Kumar

    2016-04-15

    In the current study, an artificial neural network (ANN)-based breast cancer prediction model was developed from the data of folate and xenobiotic pathway genetic polymorphisms along with the nutritional and demographic variables to investigate how micronutrients modulate susceptibility to breast cancer. The developed ANN model explained 94.2% variability in breast cancer prediction. Fixed effect models of folate (400 μg/day) and B12 (6 μg/day) showed 33.3% and 11.3% risk reduction, respectively. Multifactor dimensionality reduction analysis showed the following interactions in responders to folate: RFC1 G80A × MTHFR C677T (primary), COMT H108L × CYP1A1 m2 (secondary), MTR A2756G (tertiary). The interactions among responders to B12 were RFC1G80A × cSHMT C1420T and CYP1A1 m2 × CYP1A1 m4. ANN simulations revealed that increased folate might restore ER and PR expression and reduce the promoter CpG island methylation of extra cellular superoxide dismutase and BRCA1. Dietary intake of folate appears to confer protection against breast cancer through its modulating effects on ER and PR expression and methylation of EC-SOD and BRCA1. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. rsfMRI effects of KB220Z™ on Neural Pathways in Reward Circuitry of Abstinent Genotyped Heroin Addicts

    Science.gov (United States)

    Blum, Kenneth; Liu, Yijun; Wang, Wei; Wang, Yarong; Zhang, Yi; Oscar-Berman, Marlene; Smolen, Andrew; Febo, Marcelo; Han, David; Simpatico, Thomas; Cronjé, Frans J; Demetrovics, Zsolt; Gold, Mark S.

    2016-01-01

    Recently Willuhn et al. reported that cocaine use and even non-substance related addictive behavior, increases, as dopaminergic function is reduced. Chronic cocaine exposure has been associated with decreases in D2/D3 receptors, also associated with lower activation to cues in occipital cortex and cerebellum in a recent PET study from Volkow’s group. Therefore, treatment strategies, like dopamine agonist therapy, that might conserve dopamine function may be an interesting approach to relapse prevention in psychoactive drug and behavioral addictions. To this aim, we evaluated the effect of KB220Z™ on reward circuitry of ten heroin addicts undergoing protracted abstinence, an average 16.9 months. In a randomized placebo-controlled crossover study of KB220Z™ five subjects completed a triple blinded–experiment in which the subject, the person administering the treatment and the person evaluating the response to treatment were blinded as to which treatment any particular subject was receiving. In addition, nine subjects total were genotyped utilizing the GARSRX™ test. We preliminarily report that KB220Z ™ induced an increase in BOLD activation in caudate-accumbens-dopaminergic pathways compared to placebo following one-hour acute administration. Furthermore, KB220Z™ also reduced resting state activity in the putamen of abstinent heroin addicts. In the second phase of this pilot study of all ten abstinent heroin-dependent subjects, three brain regions of interest (ROIs) we observed to be significantly activated from resting state by KB220Z compared to placebo (P addiction by direct or indirect dopaminergic interaction. Due to small sample size, we caution definitive interpretation of these preliminary results and confirmation with additional research and ongoing rodent and human studies of KB220Z, is required. PMID:25526228

  17. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    Science.gov (United States)

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  18. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  19. Intelligent ensemble T-S fuzzy neural networks with RCDPSO_DM optimization for effective handling of complex clinical pathway variances.

    Science.gov (United States)

    Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang

    2013-07-01

    Takagi-Sugeno (T-S) fuzzy neural networks (FNNs) can be used to handle complex, fuzzy, uncertain clinical pathway (CP) variances. However, there are many drawbacks, such as slow training rate, propensity to become trapped in a local minimum and poor ability to perform a global search. In order to improve overall performance of variance handling by T-S FNNs, a new CP variance handling method is proposed in this study. It is based on random cooperative decomposing particle swarm optimization with double mutation mechanism (RCDPSO_DM) for T-S FNNs. Moreover, the proposed integrated learning algorithm, combining the RCDPSO_DM algorithm with a Kalman filtering algorithm, is applied to optimize antecedent and consequent parameters of constructed T-S FNNs. Then, a multi-swarm cooperative immigrating particle swarm algorithm ensemble method is used for intelligent ensemble T-S FNNs with RCDPSO_DM optimization to further improve stability and accuracy of CP variance handling. Finally, two case studies on liver and kidney poisoning variances in osteosarcoma preoperative chemotherapy are used to validate the proposed method. The result demonstrates that intelligent ensemble T-S FNNs based on the RCDPSO_DM achieves superior performances, in terms of stability, efficiency, precision and generalizability, over PSO ensemble of all T-S FNNs with RCDPSO_DM optimization, single T-S FNNs with RCDPSO_DM optimization, standard T-S FNNs, standard Mamdani FNNs and T-S FNNs based on other algorithms (cooperative particle swarm optimization and particle swarm optimization) for CP variance handling. Therefore, it makes CP variance handling more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons from Oxidative Damage through Nrf2-ERK1/2 MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Qin Wang

    2015-06-01

    Full Text Available Multiple sclerosis (MS is the most common multifocal inflammatory demyelinating disease of the central nervous system (CNS. Due to the progressive neurodegenerative nature of MS, developing treatments that exhibit direct neuroprotective effects are needed. Tecfidera™ (BG-12 is an oral formulation of the fumaric acid esters (FAE, containing the active metabolite dimethyl fumarate (DMF. Although BG-12 showed remarkable efficacy in lowering relapse rates in clinical trials, its mechanism of action in MS is not yet well understood. In this study, we reported the potential neuroprotective effects of dimethyl fumarate (DMF on mouse and rat neural stem/progenitor cells (NPCs and neurons. We found that DMF increased the frequency of the multipotent neurospheres and the survival of NPCs following oxidative stress with hydrogen peroxide (H2O2 treatment. In addition, utilizing the reactive oxygen species (ROS assay, we showed that DMF reduced ROS production induced by H2O2. DMF also decreased oxidative stress-induced apoptosis. Using motor neuron survival assay, DMF significantly promoted survival of motor neurons under oxidative stress. We further analyzed the expression of oxidative stress-induced genes in the NPC cultures and showed that DMF increased the expression of transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2 at both levels of RNA and protein. Furthermore, we demonstrated the involvement of Nrf2-ERK1/2 MAPK pathway in DMF-mediated neuroprotection. Finally, we utilized SuperArray gene screen technology to identify additional anti-oxidative stress genes (Gstp1, Sod2, Nqo1, Srxn1, Fth1. Our data suggests that analysis of anti-oxidative stress mechanisms may yield further insights into new targets for treatment of multiple sclerosis (MS.

  1. HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway.

    Directory of Open Access Journals (Sweden)

    Hui Peng

    Full Text Available Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD. In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia drive central nervous system (CNS inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS activated monocyte-derived macrophages (MDM inhibit human neural progenitor cell (NPC neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α, in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3, a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM induced Janus kinase 1 (Jak1 and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3 decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID mice with HIV-1 encephalitis (HIVE. In HIVE mice, siRNA control (without target sequence, sicon pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these

  2. Caveolin-1 plays a crucial role in inhibiting neuronal differentiation of neural stem/progenitor cells via VEGF signaling-dependent pathway.

    Directory of Open Access Journals (Sweden)

    Yue Li

    Full Text Available In the present study, we aim to elucidate the roles of caveolin-1(Cav-1, a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs. In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O₂ for 24 h and then switched to 21% O₂ for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O₂. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs.

  3. Neural network optimization, components, and design selection

    Science.gov (United States)

    Weller, Scott W.

    1990-07-01

    Neural Networks are part of a revived technology which has received a lot of hype in recent years. As is apt to happen in any hyped technology, jargon and predictions make its assimilation and application difficult. Nevertheless, Neural Networks have found use in a number of areas, working on non-trivial and noncontrived problems. For example, one net has been trained to "read", translating English text into phoneme sequences. Other applications of Neural Networks include data base manipulation and the solving of muting and classification types of optimization problems. Neural Networks are constructed from neurons, which in electronics or software attempt to model but are not constrained by the real thing, i.e., neurons in our gray matter. Neurons are simple processing units connected to many other neurons over pathways which modify the incoming signals. A single synthetic neuron typically sums its weighted inputs, runs this sum through a non-linear function, and produces an output. In the brain, neurons are connected in a complex topology: in hardware/software the topology is typically much simpler, with neurons lying side by side, forming layers of neurons which connect to the layer of neurons which receive their outputs. This simplistic model is much easier to construct than the real thing, and yet can solve real problems. The information in a network, or its "memory", is completely contained in the weights on the connections from one neuron to another. Establishing these weights is called "training" the network. Some networks are trained by design -- once constructed no further learning takes place. Other types of networks require iterative training once wired up, but are not trainable once taught Still other types of networks can continue to learn after initial construction. The main benefit to using Neural Networks is their ability to work with conflicting or incomplete ("fuzzy") data sets. This ability and its usefulness will become evident in the following

  4. Neural Computations in Binaural Hearing

    Science.gov (United States)

    Wagner, Hermann

    Binaural hearing helps humans and animals to localize and unmask sounds. Here, binaural computations in the barn owl's auditory system are discussed. Barn owls use the interaural time difference (ITD) for azimuthal sound localization, and they use the interaural level difference (ELD) for elevational sound localization. ITD and ILD and their precursors are processed in separate neural pathways, the time pathway and the intensity pathway, respectively. Representation of ITD involves four main computational steps, while the representation of ILD is accomplished in three steps. In the discussion neural processing in the owl's auditory system is compared with neural computations present in mammals.

  5. NEMEFO: NEural MEteorological FOrecast

    Energy Technology Data Exchange (ETDEWEB)

    Pasero, E.; Moniaci, W.; Meindl, T.; Montuori, A. [Polytechnic of Turin (Italy). Dept. of Electronics

    2004-07-01

    Artificial Neural Systems are a well-known technique used to classify and recognize objects. Introducing the time dimension they can be used to forecast numerical series. NEMEFO is a ''nowcasting'' tool, which uses both statistical and neural systems to forecast meteorological data in a restricted area close to a meteorological weather station in a short time range (3 hours). Ice, fog, rain are typical events which can be anticipated by NEMEFO. (orig.)

  6. PTL: A Propositional Typicality Logic

    CSIR Research Space (South Africa)

    Booth, R

    2012-09-01

    Full Text Available reasoning: Let K1 = fp ! b; b ! fg (penguins are birds, and birds typically fly), and let K2 = K1 [ fp ! :fg (add to K1 that penguins typically do not fly). We want p ! f 2 Cn (K1) (penguins typically fly as a consequence of K1), but we want p ! f 62 Cn... (K2) (penguins typically fly not as a consequence of K2), thereby invalidating Monotonicity. In addition to Inclusion and Idempotency we require j= to behave classically when presented with propositional information only (below j= denotes classical...

  7. Diallyl trisufide protects against oxygen glucose deprivation -induced apoptosis by scavenging free radicals via the PI3K/Akt -mediated Nrf2/HO-1 signaling pathway in B35 neural cells.

    Science.gov (United States)

    Xu, Xian Hua; Li, Gai Li; Wang, Bing Ang; Qin, Yang; Bai, Shu Rong; Rong, Jian; Deng, Tao; Li, Qiang

    2015-07-21

    Oxidative stress contributes to development of ischemic brain damage. Many antioxidants have been proven effective in ameliorating cerebral ischemia injury by inhibiting oxidative stress. DATS, an organosulfuric component of garlic oil, exhibits antioxidative effects. In present study, we used OGD model to investigate the neuroprotective effects of DATS and the mechanisms related to these effects. B35 neural cells exposed to OGD caused a decrease in cell viability and increases in the percentage of apoptotic cells and the level of intracellular cleaved caspase-3, all of which were markedly attenuated by DATS. Further, DATS treatment significantly increased Nrf2 expression and nuclear translocation, upregulated downstream gene HO-1 and inhibited intracellular ROS and MDA generation, all of which were markedly attenuated in cells transfected with Nrf2-specific siRNA. In addition, inhibition of PI3K/Akt signaling by PI3K-specific siRNA not only decreased the expression level of Nrf2 and HO-1 proteins, but also diminished the antioxidative and neuroprotective effect of DATS. Taken together, these results indicate that DATS protects B35 neural cells against OGD-induced cell injury by inhibiting ROS production via upregulating the PI3K/Akt-mediated Nrf2 pathway, which further activates HO-1. Based on our results, DATS may be a potential candidate for intervention in hypoxic-ischemic brain injuries such as stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. In vivo Brain Delivery of v-myc Overproduced Human Neural Stem Cells via the Intranasal Pathway: Tumor Characteristics in the Lung of a Nude Mouse

    Directory of Open Access Journals (Sweden)

    Eun Seong Lee

    2015-01-01

    Full Text Available We aimed to monitor the successful brain delivery of stem cells via the intranasal route and to observe the long-term consequence of the immortalized human neural stem cells in the lungs of a nude mouse model. Stably immortalized HB1.F3 human neural stem cells with firefly luciferase gene (F3-effluc were intranasally delivered to BALB/c nude mice. Bioluminescence images were serially acquired until 41 days in vivo and at 4 hours and 41 days ex vivo after intranasal delivery. Lungs were evaluated by histopathology. After intranasal delivery of F3-effluc cells, the intense in vivo signals were detected in the nasal area, migrated toward the brain areas at 4 hours (4 of 13, 30.8%, and gradually decreased for 2 days. The brain signals were confirmed by ex vivo imaging (2 of 4, 50%. In the mice with initial lung signals (4 of 9, 44.4%, the lung signals disappeared for 5 days but reappeared 2 weeks later. The intense lung signals were confirmed to originate from the tumors in the lungs formed by F3-effluc cells by ex vivo imaging and histopathology. We propose that intranasal delivery of immortalized stem cells should be monitored for their successful delivery to the brain and their tumorigenicity longitudinally.

  9. Typical errors of ESP users

    Science.gov (United States)

    Eremina, Svetlana V.; Korneva, Anna A.

    2004-07-01

    The paper presents analysis of the errors made by ESP (English for specific purposes) users which have been considered as typical. They occur as a result of misuse of resources of English grammar and tend to resist. Their origin and places of occurrence have also been discussed.

  10. Cholera toxin regulates a signaling pathway critical for the expansion of neural stem cell cultures from the fetal and adult rodent brains.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    Full Text Available BACKGROUND: New mechanisms that regulate neural stem cell (NSC expansion will contribute to improved assay systems and the emerging regenerative approach that targets endogenous stem cells. Expanding knowledge on the control of stem cell self renewal will also lead to new approaches for targeting the stem cell population of cancers. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that Cholera toxin regulates two recently characterized NSC markers, the Tie2 receptor and the transcription factor Hes3, and promotes the expansion of NSCs in culture. Cholera toxin increases immunoreactivity for the Tie2 receptor and rapidly induces the nuclear localization of Hes3. This is followed by powerful cultured NSC expansion and induction of proliferation both in the presence and absence of mitogen. CONCLUSIONS/SIGNIFICANCE: Our data suggest a new cell biological mechanism that regulates the self renewal and differentiation properties of stem cells, providing a new logic to manipulate NSCs in the context of regenerative disease and cancer.

  11. Stroke pathways.

    Science.gov (United States)

    Venketasubramanian, N

    2001-07-01

    Stroke pathways are task-orientated structured multidisciplinary care plans which detail essential steps and interventions during the period of care of a "typical" stroke patient. Pathway development and implementation are best achieved by an appointed champion leading a multidisciplinary team of health care workers and administrators, who will also be the end users of the pathway. Pathway development involves reviews of existing clinical practice guidelines and pathways, followed by documentation, interdigitation and prioritization of care requirements at different time points in the various spheres, taking into consideration local philosophies and practices. These spheres could include investigations, pharmacologic treatment, rehabilitative therapy, nursing measures, and patient education. This would result in evidence-based holistic quality care, wide support base, efficient service provision, reduced costs and length of stay, less practice variation, improved communication among disciplines, enhanced patient-staff relationship, ease of audit and research opportunities. Components of the pathway could include a patient summary sheet, multidisciplinary record of the various activities structured on a day-to-day basis, sign-off columns for staff responsible for performing those activity, variance sheet, and separate protocols for specific issues. Implementation requires training of users, pilot runs, feedback, regular revisions, monitoring of compliance, and analysis of variances. Widespread implementation of pathways may be hindered by lack of support, and concerns about increased time requirements and costs, stifling of innovation, restriction of application of clinical judgement, lack of applicability to all patients, misuse and legal issues. However, a well-designed pathway will ensure quality care in a cost-efficient manner, benefiting the patient, carer and the health care service.

  12. Critical role of the neural pathway from the intermediate medial mesopallium to the intermediate hyperpallium apicale in filial imprinting of domestic chicks (Gallus gallus domesticus).

    Science.gov (United States)

    Aoki, N; Yamaguchi, S; Kitajima, T; Takehara, A; Katagiri-Nakagawa, S; Matsui, R; Watanabe, D; Matsushima, T; Homma, K J

    2015-11-12

    Filial imprinting in precocial birds is a useful model for studying early learning and cognitive development, as it is characterized by a well-defined sensitive or critical period. We recently showed that the thyroid hormone 3,5,3'-triiodothyronine (T3) determines the onset of the sensitive period. Moreover, exogenous injection of T3 into the intermediate medial mesopallium (IMM) region (analogous to the associative cortex in mammals) enables imprinting even on post-hatch day 4 or 6 when the sensitive period has been terminated. However, the neural mechanisms downstream from T3 action in the IMM region remain elusive. Here, we analyzed the functional involvement of the intermediate hyperpallium apicale (IMHA) in T3 action. Bilateral excitotoxic ablation of the IMHA prevented imprinting in newly hatched chicks, and also suppressed the recovery of the sensitive period by systemic intra-venous or localized intra-IMM injection of T3 in day-4 chicks. In contrast to the effect in the IMM, direct injection of T3 into the IMHA did not enable imprinting in day-4 chicks. Moreover, bilateral ablation of IMHA after imprinting training impaired recall. These results suggest that the IMHA is critical for memory acquisition downstream following T3 action in the IMM and further, that it receives and retains information stored in the IMM for recall. Furthermore, both an avian adeno-associated viral construct containing an anterograde tracer (wheat-germ agglutinin) and a retrograde tracer (cholera toxin subunit B) revealed neural connections from the IMM to the IMHA. Taken together, our findings suggest that hierarchical processes from the primary area (IMM) to the secondary area (IMHA) are required for imprinting. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Hyperbolic Hopfield neural networks.

    Science.gov (United States)

    Kobayashi, M

    2013-02-01

    In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states.

  14. Valproic acid inhibits neural progenitor cell death by activation of NF-κB signaling pathway and up-regulation of Bcl-XL

    Directory of Open Access Journals (Sweden)

    Han Seol

    2011-07-01

    Full Text Available Abstract Background At the beginning of neurogenesis, massive brain cell death occurs and more than 50% of cells are eliminated by apoptosis along with neuronal differentiation. However, few studies were conducted so far regarding the regulation of neural progenitor cells (NPCs death during development. Because of the physiological role of cell death during development, aberration of normal apoptotic cell death is detrimental to normal organogenesis. Apoptosis occurs in not only neuron but also in NPCs and neuroblast. When growth and survival signals such as EGF or LIF are removed, apoptosis is activated as well as the induction of differentiation. To investigate the regulation of cell death during developmental stage, it is essential to investigate the regulation of apoptosis of NPCs. Methods Neural progenitor cells were cultured from E14 embryonic brains of Sprague-Dawley rats. For in vivo VPA animal model, pregnant rats were treated with VPA (400 mg/kg S.C. diluted with normal saline at E12. To analyze the cell death, we performed PI staining and PARP and caspase-3 cleavage assay. Expression level of proteins was investigated by Western blot and immunocytochemical assays. The level of mRNA expression was investigated by RT-PCR. Interaction of Bcl-XL gene promoter and NF-κB p65 was investigated by ChIP assay. Results In this study, FACS analysis, PI staining and PARP and caspase-3 cleavage assay showed that VPA protects cultured NPCs from cell death after growth factor withdrawal both in basal and staurosporine- or hydrogen peroxide-stimulated conditions. The protective effect of prenatally injected VPA was also observed in E16 embryonic brain. Treatment of VPA decreased the level of IκBα and increased the nuclear translocation of NF-κB, which subsequently enhanced expression of anti-apoptotic protein Bcl-XL. Conclusion To the best of our knowledge, this is the first report to indicate the reduced death of NPCs by VPA at developmentally

  15. Effects of rehabilitation training on apoptosis of nerve cells and the recovery of neural and motor functions in rats with ischemic stroke through the PI3K/Akt and Nrf2/ARE signaling pathways.

    Science.gov (United States)

    Jin, Xiao-Fei; Wang, Shan; Shen, Min; Wen, Xin; Han, Xin-Rui; Wu, Jun-Chang; Tang, Gao-Zhuo; Wu, Dong-Mei; Lu, Jun; Zheng, Yuan-Lin

    2017-09-01

    This study was designed in order to investigate the effects between rehabilitation training on the apoptosis of nerve cells and the recovery of neural and motor functions of rats with ischemic stroke by way of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and nuclear factor E2-related factor 2/antioxidant responsive element (Nrf2/ARE) signaling pathways. In total, 110 healthy adult male Sprague-Dawley (SD) rats were selected in order to take part in this study. Ninety SD rats were used in order to establish the middle cerebral artery occlusion (MCAO), among which 80 rats were randomly assigned as part of the natural recovery, natural recovery+Rp-PI3K (the rats injected with PI3K/Akt inhibitor LY294002), rehabilitation training, and rehabilitation training+Rp-PI3K groups. Meanwhile, 20 rats were selected as part of the sham operation group. The neural and motor functions of these rats were evaluated using a balance beam test and the Bederson score. The mRNA expressions of PI3K, Akt, Nrf2 and HO-1 were measured using an RT-qPCR. The protein expressions of PI3K, p-PI3K, Akt, p-Akt, Nrf2 and HO-1 were also detected by using western blotting and the immunohistochemistry process. The cell cycle and cell apoptosis were detected by using a flow cytometry and TUNEL assay. The sham operation group exhibited lower neural and motor function scores than other groups. At the 7, 14, and 21 d marks of this study, the neural and motor function scores were increased in the natural recovery, natural recovery+Rp-PI3K, and rehabilitation training+Rp-PI3K groups in comparison with the rehabilitation training group but found to be decreased in the natural recovery group in comparison with the natural recovery+Rp-PI3K group. In comparison with the sham operation group, expressions of PI3K, Nrf2 and HO-1, and proportions of p-PI3K/PI3K and p-Akt/Akt were all higher in the natural recovery, rehabilitation training, and rehabilitation training+Rp-PI3K groups. Same trends were

  16. Distinct developmental profiles in typical speech acquisition

    Science.gov (United States)

    Campbell, Thomas F.; Shriberg, Lawrence D.; Green, Jordan R.; Abdi, Hervé; Rusiewicz, Heather Leavy; Venkatesh, Lakshmi; Moore, Christopher A.

    2012-01-01

    Three- to five-year-old children produce speech that is characterized by a high level of variability within and across individuals. This variability, which is manifest in speech movements, acoustics, and overt behaviors, can be input to subgroup discovery methods to identify cohesive subgroups of speakers or to reveal distinct developmental pathways or profiles. This investigation characterized three distinct groups of typically developing children and provided normative benchmarks for speech development. These speech development profiles, identified among 63 typically developing preschool-aged speakers (ages 36–59 mo), were derived from the children's performance on multiple measures. These profiles were obtained by submitting to a k-means cluster analysis of 72 measures that composed three levels of speech analysis: behavioral (e.g., task accuracy, percentage of consonants correct), acoustic (e.g., syllable duration, syllable stress), and kinematic (e.g., variability of movements of the upper lip, lower lip, and jaw). Two of the discovered group profiles were distinguished by measures of variability but not by phonemic accuracy; the third group of children was characterized by their relatively low phonemic accuracy but not by an increase in measures of variability. Analyses revealed that of the original 72 measures, 8 key measures were sufficient to best distinguish the 3 profile groups. PMID:22357794

  17. Lithium Suppresses Astrogliogenesis by Neural Stem and Progenitor Cells by Inhibiting STAT3 Pathway Independently of Glycogen Synthase Kinase 3 Beta

    Science.gov (United States)

    Zhu, Zhenzhong; Kremer, Penny; Tadmori, Iman; Ren, Yi; Sun, Dongming; He, Xijing; Young, Wise

    2011-01-01

    Transplanted neural stem and progenitor cells (NSCs) produce mostly astrocytes in injured spinal cords. Lithium stimulates neurogenesis by inhibiting GSK3b (glycogen synthetase kinase 3-beta) and increasing WNT/beta catenin. Lithium suppresses astrogliogenesis but the mechanisms were unclear. We cultured NSCs from subventricular zone of neonatal rats and showed that lithium reduced NSC production of astrocytes as well as proliferation of glia restricted progenitor (GRP) cells. Lithium strongly inhibited STAT3 (signal transducer and activator of transcription 3) activation, a messenger system known to promote astrogliogenesis and cancer. Lithium abolished STAT3 activation and astrogliogenesis induced by a STAT3 agonist AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), suggesting that lithium suppresses astrogliogenesis by inhibiting STAT3. GSK3β inhibition either by a specific GSK3β inhibitor SB216763 or overexpression of GID5-6 (GSK3β Interaction Domain aa380 to 404) did not suppress astrogliogenesis and GRP proliferation. GSK3β inhibition also did not suppress STAT3 activation. Together, these results indicate that lithium inhibits astrogliogenesis through non-GSK3β-mediated inhibition of STAT. Lithium may increase efficacy of NSC transplants by increasing neurogenesis and reducing astrogliogenesis. Our results also may explain the strong safety record of lithium treatment of manic depression. Millions of people take high-dose (>1 gram/day) lithium carbonate for a lifetime. GSK3b inhibition increases WNT/beta catenin, associated with colon and other cancers. STAT3 inhibition may reduce risk for cancer. PMID:21931595

  18. The cell division control protein 42-Src family kinase-neural Wiskott-Aldrich syndrome protein pathway regulates human proplatelet formation.

    Science.gov (United States)

    Palazzo, A; Bluteau, O; Messaoudi, K; Marangoni, F; Chang, Y; Souquere, S; Pierron, G; Lapierre, V; Zheng, Y; Vainchenker, W; Raslova, H; Debili, N

    2016-12-01

    Essentials The role of the cytoskeleton during megakaryocyte differentiation was examined. Human megakaryocytes are derived from in vitro cultured CD34(+) cells. Cell division control protein 42 (CDC42) positively regulates proplatelet formation (PPF). Neural Wiskott-Aldrich syndrome protein, the main effector of CDC42 with Src positively regulates PPF. Background Cytoskeletal rearrangements are essential for platelet release. The RHO small GTPase family, as regulators of the actin cytoskeleton, play an important role in proplatelet formation (PPF). In the neuronal system, CDC42 is involved in axon formation, a process that combines elongation and branching as for PPF. Objective To analyze the role of CDC42 and its effectors of the Wiskott-Aldrich syndrome protein (WASP) family in PPF. Methods Human megakaryocytes (MKs) were obtained from CD34(+) cells. Inhibition of CDC42 in MKs was performed with the chemical inhibitor CASIN or with an active or a dominant-negative form of CDC42. The knock-down of N-WASP was obtained with a small hairpin RNA strategy Results Herein, we show that CDC42 activity increased during MK differentiation. The use of the chemical inhibitor CASIN or of an active or a dominant-negative form of CDC42 demonstrated that CDC42 positively regulated PPF in vitro. We determined that N-WASP, but not WASP, regulated PPF. We found that N-WASP knockdown led to a marked decrease in PPF, owing to a defect in the demarcation membrane system (DMS). This was associated with RHOA activation, and a concomitant augmentation in the phosphorylation of mysosin light chain 2. Phosphorylation of N-WASP, creating a primed form of N-WASP, increased during MK differentiation. Phosphorylation inhibition by two Src family kinase inhibitors decreased PPF. Conclusions We conclude that N-WASP positively regulates DMS development and PPF, and that the Src family kinases in association with CDC42 regulate PPF through N-WASP. © 2016 International Society on Thrombosis and

  19. White Matter Microstructure Correlates of Narrative Production in Typically Developing Children and Children with High Functioning Autism

    Science.gov (United States)

    Mills, Brian; Lai, Janie; Brown, Timothy T.; Erhart, Matthew; Halgren, Eric; Reilly, Judy; Dale, Anders; Appelbaum, Mark; Moses, Pamela

    2013-01-01

    This study investigated the relationship between white matter microstructure and the development of morphosyntax in a spoken narrative in typically developing children (TD) and in children with high functioning autism (HFA). Autism is characterized by language and communication impairments, yet the relationship between morphosyntactic development in spontaneous discourse contexts and neural development is not well understood in either this population or typical development. Diffusion tensor imaging (DTI) was used to assess multiple parameters of diffusivity as indicators of white matter tract integrity in language-related tracts in children between 6 and 13 years of age. Children were asked to spontaneously tell a story about at time when someone made them sad, mad, or angry. The story was evaluated for morphological accuracy and syntactic complexity. Analysis of the relationship between white matter microstructure and language performance in TD children showed that diffusivity correlated with morphosyntax production in the superior longitudinal fasciculus (SLF), a fiber tract traditionally associated with language. At the anatomical level, the HFA group showed abnormal diffusivity in the right inferior longitudinal fasciculus (ILF) relative to the TD group. Within the HFA group, children with greater white matter integrity in the right ILF displayed greater morphological accuracy during their spoken narrative. Overall, the current study shows an association between white matter structure in a traditional language pathway and narrative performance in TD children. In the autism group, associations were only found in the ILF, suggesting that during real world language use, children with HFA rely less on typical pathways and instead rely on alternative ventral pathways that possibly mediate visual elements of language. PMID:23810972

  20. Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach

    Science.gov (United States)

    2016-03-30

    Undergraduate Student Paper Postgraduate Student Paper Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach...monitoring, flight parameter, nonlinear modeling, Artificial Neural Network , typical loadcase. Introduction Aircraft load monitoring is an... Neural Networks (ANN), i.e. the BP network and Kohonen Clustering Network , are applied and revised by Kalman Filter and Genetic Algorithm to build

  1. Neural crest contributions to the lamprey head

    Science.gov (United States)

    McCauley, David W.; Bronner-Fraser, Marianne

    2003-01-01

    The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.

  2. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  3. Stock Price Prediction Based on Procedural Neural Networks

    OpenAIRE

    Jiuzhen Liang; Wei Song; Mei Wang

    2011-01-01

    We present a spatiotemporal model, namely, procedural neural networks for stock price prediction. Compared with some successful traditional models on simulating stock market, such as BNN (backpropagation neural networks, HMM (hidden Markov model) and SVM (support vector machine)), the procedural neural network model processes both spacial and temporal information synchronously without slide time window, which is typically used in the well-known recurrent neural networks. Two differen...

  4. Reciprocal Neural Pathways and Associative Networks.

    Science.gov (United States)

    1982-12-15

    is that newly-born humans may have as much as 8 hours of REM sleep per day . There is also evidence to suggest that in the womb , especially in the...manner. Any purely psychological theory is hard pressed to explain the large amount of REM sleep in the womb , and any purely developmental theory must...useful for artificial intelligence machines of the future, especially those having extensive parallel processing, a learning mechanism and a certain amount

  5. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  6. On typical properties of Hilbert space operators

    NARCIS (Netherlands)

    Eisner, T.; Mátrai, T.

    2013-01-01

    We study the typical behavior of bounded linear operators on infinite-dimensional complex separable Hilbert spaces in the norm, strong-star, strong, weak polynomial and weak topologies. In particular, we investigate typical spectral properties, the problem of unitary equivalence of typical

  7. Alzheimer disease: functional abnormalities in the dorsal visual pathway.

    LENUS (Irish Health Repository)

    Bokde, Arun L W

    2012-02-01

    PURPOSE: To evaluate whether patients with Alzheimer disease (AD) have altered activation compared with age-matched healthy control (HC) subjects during a task that typically recruits the dorsal visual pathway. MATERIALS AND METHODS: The study was performed in accordance with the Declaration of Helsinki, with institutional ethics committee approval, and all subjects provided written informed consent. Two tasks were performed to investigate neural function: face matching and location matching. Twelve patients with mild AD and 14 age-matched HC subjects were included. Brain activation was measured by using functional magnetic resonance imaging. Group statistical analyses were based on a mixed-effects model corrected for multiple comparisons. RESULTS: Task performance was not statistically different between the two groups, and within groups there were no differences in task performance. In the HC group, the visual perception tasks selectively activated the visual pathways. Conversely in the AD group, there was no selective activation during performance of these same tasks. Along the dorsal visual pathway, the AD group recruited additional regions, primarily in the parietal and frontal lobes, for the location-matching task. There were no differences in activation between groups during the face-matching task. CONCLUSION: The increased activation in the AD group may represent a compensatory mechanism for decreased processing effectiveness in early visual areas of patients with AD. The findings support the idea that the dorsal visual pathway is more susceptible to putative AD-related neuropathologic changes than is the ventral visual pathway.

  8. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  9. Serotonin, neural markers and memory

    Directory of Open Access Journals (Sweden)

    Alfredo eMeneses

    2015-07-01

    Full Text Available Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals’ species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 receptors as well as SERT (serotonin transporter seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence

  10. The Neural Crest in Cardiac Congenital Anomalies

    Science.gov (United States)

    Keyte, Anna; Hutson, Mary Redmond

    2012-01-01

    This review discusses the function of neural crest as they relate to cardiovascular defects. The cardiac neural crest cells are a subpopulation of cranial neural crest discovered nearly 30 years ago by ablation of premigratory neural crest. The cardiac neural crest cells are necessary for normal cardiovascular development. We begin with a description of the crest cells in normal development, including their function in remodeling the pharyngeal arch arteries, outflow tract septation, valvulogenesis, and development of the cardiac conduction system. The cells are also responsible for modulating signaling in the caudal pharynx, including the second heart field. Many of the molecular pathways that are known to influence specification, migration, patterning and final targeting of the cardiac neural crest cells are reviewed. The cardiac neural crest cells play a critical role in the pathogenesis of various human cardiocraniofacial syndromes such as DiGeorge, Velocardiofacial, CHARGE, Fetal Alcohol, Alagille, LEOPARD, and Noonan syndromes, as well as Retinoic Acid Embryopathy. The loss of neural crest cells or their dysfunction may not always directly cause abnormal cardiovascular development, but are involved secondarily because crest cells represent a major component in the complex tissue interactions in the head, pharynx and outflow tract. Thus many of the human syndromes linking defects in the heart, face and brain can be better understood when considered within the context of a single cardiocraniofacial developmental module with the neural crest being a key cell type that interconnects the regions. PMID:22595346

  11. Typicality, physiological activity and concept identification.

    NARCIS (Netherlands)

    Das-Smaal, E.A.; Swart, de J.H.

    1981-01-01

    The extent to which instances are good or poor examples of their categories (typicality) was varied in a concept identification (CI) task. Typicality was first established for the kind of artificial material traditionally used in CI tasks (experiment 1). This material was employed in a CI task

  12. Classical typicality of the canonical distribution

    NARCIS (Netherlands)

    Plastino, A.R.; Daffertshofer, A.

    2008-01-01

    We consider the typicality of the canonical ensemble's probability distribution from a classical perspective, resuming recent discussions on quantum-mechanical aspects of canonical typicality. In the conventional derivation of the classical canonical distribution for a system S that is weakly

  13. Social cognition and neural substrates of face perception: implications for neurodevelopmental and neuropsychiatric disorders.

    Science.gov (United States)

    Lazar, Steven M; Evans, David W; Myers, Scott M; Moreno-De Luca, Andres; Moore, Gregory J

    2014-04-15

    Social cognition is an important aspect of social behavior in humans. Social cognitive deficits are associated with neurodevelopmental and neuropsychiatric disorders. In this study we examine the neural substrates of social cognition and face processing in a group of healthy young adults to examine the neural substrates of social cognition. Fifty-seven undergraduates completed a battery of social cognition tasks and were assessed with electroencephalography (EEG) during a face-perception task. A subset (N=22) were administered a face-perception task during functional magnetic resonance imaging. Variance in the N170 EEG was predicted by social attribution performance and by a quantitative measure of empathy. Neurally, face processing was more bilateral in females than in males. Variance in fMRI voxel count in the face-sensitive fusiform gyrus was predicted by quantitative measures of social behavior, including the Social Responsiveness Scale (SRS) and the Empathizing Quotient. When measured as a quantitative trait, social behaviors in typical and pathological populations share common neural pathways. The results highlight the importance of viewing neurodevelopmental and neuropsychiatric disorders as spectrum phenomena that may be informed by studies of the normal distribution of relevant traits in the general population. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Neural correlates of task switching in paternal 15q11-q13 deletion Prader-Willi syndrome.

    Science.gov (United States)

    Woodcock, Kate A; Humphreys, Glyn W; Oliver, Chris; Hansen, Peter C

    2010-12-02

    We report a first study of brain activity linked to task switching in individuals with Prader-Willi syndrome (PWS). PWS individuals show a specific cognitive deficit in task switching which may be associated with the display of temper outbursts and repetitive questioning. The performance of participants with PWS and typically developing controls was matched in a cued task switching procedure, and brain activity was contrasted on switching and non-switching blocks using fMRI. Individuals with PWS did not show the typical frontal-parietal pattern of neural activity associated with switching blocks, with significantly reduced activation in regions of the posterior parietal and ventromedial prefrontal cortices. We suggest that this is linked to a difficulty in PWS in setting appropriate attentional weights to enable task-set reconfiguration. In addition to this, PWS individuals did not show the typical pattern of deactivation, with significantly less deactivation in an anterior region of the ventromedial prefrontal cortex. One plausible explanation for this is that individuals with PWS show dysfunction within the default mode network, which has been linked to attentional control. The data point to functional changes in the neural circuitry supporting task switching in PWS even when behavioural performance is matched to controls and thus highlight neural mechanisms that may be involved in a specific pathway between genes, cognition and behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Neural Tube Defects

    Science.gov (United States)

    ... vitamin, before and during pregnancy prevents most neural tube defects. Neural tube defects are usually diagnosed before the infant is ... or imaging tests. There is no cure for neural tube defects. The nerve damage and loss of function ...

  16. Kinetic properties of Cellulomonas sp. purine nucleoside phosphorylase with typical and non-typical substrates: implications for the reaction mechanism.

    Science.gov (United States)

    Wielgus-Kutrowska, Beata; Bzowska, Agnieszka

    2005-01-01

    Phosphorolysis catalyzed by Cellulomonas sp. PNP with typical nucleoside substrate, inosine (Ino), and non-typical 7-methylguanosine (m7Guo), with either nucleoside or phosphate (Pd) as the varied substrate, kinetics of the reverse synthetic reaction with guanine (Gua) and ribose-1-phosphate (R1P) as the varied substrates, and product inhibition patterns of synthetic and phosphorolytic reaction pathways were studied by steady-state kinetic methods. It is concluded that, like for mammalian trimeric PNP, complex kinetic characteristics observed for Cellulomonas enzyme results from simultaneous occurrence of three phenomena. These are sequential but random, not ordered binding of substrates, tight binding of one substrate purine bases, leading to the circumstances that for such substrates (products) rapid-equilibrium assumptions do not hold, and a dual role of Pi, a substrate, and also a reaction modifier that helps to release a tightly bound purine base.

  17. Typical ways of web communities development

    OpenAIRE

    Peleschyshyn, A.; Syerov, Yu.

    2006-01-01

    This article considers important problems of typical ways of web communities development analyzing. Also main types of web community participants are given, their behavior models are analyzed, ways of web communities development and evolution are investigated.

  18. Some typical solid propellant rocket motors

    NARCIS (Netherlands)

    Zandbergen, B.T.C.

    2013-01-01

    Typical Solid Propellant Rocket Motors (shortly referred to as Solid Rocket Motors; SRM's) are described with the purpose to form a database, which allows for comparative analysis and applications in practical SRM engineering.

  19. How typical are 'typical' tremor characteristics? : Sensitivity and specificity of five tremor phenomena

    NARCIS (Netherlands)

    van der Stouwe, A. M. M.; Elting, J. W.; van der Hoeven, J. H.; van Laar, T.; Leenders, K. L.; Maurits, N. M.; Tijssen, M. Aj.

    Introduction: Distinguishing between different tremor disorders can be challenging. Some tremor disorders are thought to have typical tremor characteristics: the current study aims to provide sensitivity and specificity for five 'typical' tremor phenomena. Methods: Retrospectively, we examined 210

  20. What is typical about the typicality effect in category-based induction?

    Science.gov (United States)

    Rein, Jonathan R; Goldwater, Micah B; Markman, Arthur B

    2010-04-01

    Research on category-based induction has documented a consistent typicality effect: Typical exemplars promote stronger inferences about their broader category than atypical exemplars. This work has been largely confined to categories whose central tendencies are also the most typical members of the category. Does the typicality effect apply to the broad set of categories for which the ideal category member is considered most typical? In experiments with natural and artificial categories, typicality and induction-strength ratings were obtained for ideal and central-tendency exemplars. Induction strength was greatest for the central-tendency exemplars, regardless of whether the central tendency or the ideal was rated more typical. These results suggest that the so-called "typicality" effect is a special case of a more universal central-tendency effect in category-based induction.

  1. Neural Systems for Speech and Song in Autism

    Science.gov (United States)

    Lai, Grace; Pantazatos, Spiro P.; Schneider, Harry; Hirsch, Joy

    2012-01-01

    Despite language disabilities in autism, music abilities are frequently preserved. Paradoxically, brain regions associated with these functions typically overlap, enabling investigation of neural organization supporting speech and song in autism. Neural systems sensitive to speech and song were compared in low-functioning autistic and age-matched…

  2. [Neural repair].

    Science.gov (United States)

    Kitada, Masaaki; Dezawa, Mari

    2008-05-01

    Recent progress of stem cell biology gives us the hope for neural repair. We have established methods to specifically induce functional Schwann cells and neurons from bone marrow stromal cells (MSCs). The effectiveness of these induced cells was evaluated by grafting them either into peripheral nerve injury, spinal cord injury, or Parkinson' s disease animal models. MSCs-derived Schwann cells supported axonal regeneration and re-constructed myelin to facilitate the functional recovery in peripheral and spinal cord injury. MSCs-derived dopaminergic neurons integrated into host striatum and contributed to behavioral repair. In this review, we introduce the differentiation potential of MSCs and finally discuss about their benefits and drawbacks of these induction systems for cell-based therapy in neuro-traumatic and neuro-degenerative diseases.

  3. Brain bases of reading fluency in typical reading and impaired fluency in dyslexia.

    Directory of Open Access Journals (Sweden)

    Joanna A Christodoulou

    Full Text Available Although the neural systems supporting single word reading are well studied, there are limited direct comparisons between typical and dyslexic readers of the neural correlates of reading fluency. Reading fluency deficits are a persistent behavioral marker of dyslexia into adulthood. The current study identified the neural correlates of fluent reading in typical and dyslexic adult readers, using sentences presented in a word-by-word format in which single words were presented sequentially at fixed rates. Sentences were presented at slow, medium, and fast rates, and participants were asked to decide whether each sentence did or did not make sense semantically. As presentation rates increased, participants became less accurate and slower at making judgments, with comprehension accuracy decreasing disproportionately for dyslexic readers. In-scanner performance on the sentence task correlated significantly with standardized clinical measures of both reading fluency and phonological awareness. Both typical readers and readers with dyslexia exhibited widespread, bilateral increases in activation that corresponded to increases in presentation rate. Typical readers exhibited significantly larger gains in activation as a function of faster presentation rates than readers with dyslexia in several areas, including left prefrontal and left superior temporal regions associated with semantic retrieval and semantic and phonological representations. Group differences were more extensive when behavioral differences between conditions were equated across groups. These findings suggest a brain basis for impaired reading fluency in dyslexia, specifically a failure of brain regions involved in semantic retrieval and semantic and phonological representations to become fully engaged for comprehension at rapid reading rates.

  4. Typicality in random matrix product states

    Science.gov (United States)

    Garnerone, Silvano; de Oliveira, Thiago R.; Zanardi, Paolo

    2010-03-01

    Recent results suggest that the use of ensembles in statistical mechanics may not be necessary for isolated systems, since typically the states of the Hilbert space would have properties similar to those of the ensemble. Nevertheless, it is often argued that most of the states of the Hilbert space are nonphysical and not good descriptions of realistic systems. Therefore, to better understand the actual power of typicality it is important to ask if it is also a property of a set of physically relevant states. Here we address this issue, studying if and how typicality emerges in the set of matrix product states. We show analytically that typicality occurs for the expectation value of subsystems’ observables when the rank of the matrix product state scales polynomially with the size of the system with a power greater than 2. We illustrate this result numerically and present some indications that typicality may appear already for a linear scaling of the rank of the matrix product state.

  5. Typical horticultural products between tradition and innovation

    Directory of Open Access Journals (Sweden)

    Innocenza Chessa

    2009-10-01

    Full Text Available Recent EU and National policies for agriculture and rural development are mainly focused to foster the production of high quality products as a result of the increasing demand of food safety, typical foods and traditional processing methods. Another word very often used to describe foods in these days is “typicality” which pools together the concepts of “food connected with a specific place”, “historical memory and tradition” and “culture”. The importance for the EU and the National administrations of the above mentioned kind of food is demonstrated, among other things, by the high number of the PDO, PGI and TSG certificated products in Italy. In this period of global markets and economical crisis farmers are realizing how “typical products” can be an opportunity to maintain their market share and to improve the economy of local areas. At the same time, new tools and strategy are needed to reach these goals. A lack of knowledge has being recognized also on how new technologies and results coming from recent research can help in exploiting traditional product and in maintaining the biodiversity. Taking into account the great variety and richness of typical products, landscapes and biodiversity, this report will describe and analyze the relationships among typicality, innovation and research in horticulture. At the beginning “typicality” and “innovation” will be defined also through some statistical features, which ranks Italy at the first place in terms of number of typical labelled products, then will be highlighted how typical products of high quality and connected with the tradition and culture of specific production areas are in a strict relationship with the value of agro-biodiversity. Several different examples will be used to explain different successful methods and/or strategies used to exploit and foster typical Italian vegetables, fruits and flowers. Finally, as a conclusion, since it is thought that

  6. Modelling object typicality in description logics

    CSIR Research Space (South Africa)

    Britz, K

    2009-12-01

    Full Text Available ∀habitat.Southern (2) Southern v ¬Equatorial (3) GalapagosPenguin v Penguin (4) Penguin v ∀�1 .P enguin (5) ∃habitat.Equatorial v ∀�2 .∃habitat.Equatorial (6) Line (2) of the TBox states that the habitat of typical penguins is restricted... to the southern regions. Note that we cannot derive from (2) and (4) that the habitat of typical Galapagos penguins is restricted to the southern regions. Lines (5-6) ensure that �1 and �2 are indeed, respectively, a Penguin-order and an ∃habitat...

  7. Is Artificial Neural Network Suitable for Damage Level Determination of Rc- Structures?

    OpenAIRE

    Baltacıoğlu, A. K.; Öztürk, B.; Civalek, Ö.; Akgöz, B.

    2010-01-01

    In the present study, an artificial neural network (ANN) application is introduced for estimation of damage level of reinforced concrete structures. Back-propagation learning algorithm is adopted. A typical neural network architecture is proposed and some conclusions are presented. Applicability of artificial neural network (ANN) for the assessment of earthquake related damage is investigated

  8. Neural network topology design for nonlinear control

    Science.gov (United States)

    Haecker, Jens; Rudolph, Stephan

    2001-03-01

    Neural networks, especially in nonlinear system identification and control applications, are typically considered to be black-boxes which are difficult to analyze and understand mathematically. Due to this reason, an in- depth mathematical analysis offering insight into the different neural network transformation layers based on a theoretical transformation scheme is desired, but up to now neither available nor known. In previous works it has been shown how proven engineering methods such as dimensional analysis and the Laplace transform may be used to construct a neural controller topology for time-invariant systems. Using the knowledge of neural correspondences of these two classical methods, the internal nodes of the network could also be successfully interpreted after training. As further extension to these works, the paper describes the latest of a theoretical interpretation framework describing the neural network transformation sequences in nonlinear system identification and control. This can be achieved By incorporation of the method of exact input-output linearization in the above mentioned two transform sequences of dimensional analysis and the Laplace transformation. Based on these three theoretical considerations neural network topologies may be designed in special situations by pure translation in the sense of a structural compilation of the known classical solutions into their correspondent neural topology. Based on known exemplary results, the paper synthesizes the proposed approach into the visionary goals of a structural compiler for neural networks. This structural compiler for neural networks is intended to automatically convert classical control formulations into their equivalent neural network structure based on the principles of equivalence between formula and operator, and operator and structure which are discussed in detail in this work.

  9. Weak and strong typicality in quantum systems.

    Science.gov (United States)

    Santos, Lea F; Polkovnikov, Anatoli; Rigol, Marcos

    2012-07-01

    We study the properties of mixed states obtained from eigenstates of many-body lattice Hamiltonians after tracing out part of the lattice. Two scenarios emerge for generic systems: (i) The diagonal entropy becomes equivalent to the thermodynamic entropy when a few sites are traced out (weak typicality); and (ii) the von Neumann (entanglement) entropy becomes equivalent to the thermodynamic entropy when a large fraction of the lattice is traced out (strong typicality). Remarkably, the results for few-body observables obtained with the reduced, diagonal, and canonical density matrices are very similar to each other, no matter which fraction of the lattice is traced out. Hence, for all physical quantities studied here, the results in the diagonal ensemble match the thermal predictions.

  10. Herpes zoster - typical and atypical presentations.

    Science.gov (United States)

    Dayan, Roy Rafael; Peleg, Roni

    2017-08-01

    Varicella- zoster virus infection is an intriguing medical entity that involves many medical specialties including infectious diseases, immunology, dermatology, and neurology. It can affect patients from early childhood to old age. Its treatment requires expertise in pain management and psychological support. While varicella is caused by acute viremia, herpes zoster occurs after the dormant viral infection, involving the cranial nerve or sensory root ganglia, is re-activated and spreads orthodromically from the ganglion, via the sensory nerve root, to the innervated target tissue (skin, cornea, auditory canal, etc.). Typically, a single dermatome is involved, although two or three adjacent dermatomes may be affected. The lesions usually do not cross the midline. Herpes zoster can also present with unique or atypical clinical manifestations, such as glioma, zoster sine herpete and bilateral herpes zoster, which can be a challenging diagnosis even for experienced physicians. We discuss the epidemiology, pathophysiology, diagnosis and management of Herpes Zoster, typical and atypical presentations.

  11. The neural correlates of placebo effects: a disruption account.

    Science.gov (United States)

    Lieberman, Matthew D; Jarcho, Johanna M; Berman, Steve; Naliboff, Bruce D; Suyenobu, Brandall Y; Mandelkern, Mark; Mayer, Emeran A

    2004-05-01

    The neurocognitive pathways by which placebo effects operate are poorly understood. Positron emission tomography (PET) imaging was used to assess the brain response of patients with chronic abdominal pain (irritable bowel syndrome; IBS) to induced intestinal discomfort both before and after a 3-week placebo regimen. A daily symptom diary was used to measure symptom improvement. Increases in right ventrolateral prefrontal cortex (RVLPFC) activity from pre- to post-placebo predicted self-reported symptom improvement, and this relationship was mediated by changes in dorsal anterior cingulate (dACC), typically associated with pain unpleasantness. These results are consistent with disruption theory [Lieberman, M.D., 2003. Reflective and reflexive judgment processes: a social cognitive neuroscience approach. In: Forgas, J.P., Williams, K.R., von Hippel, W. (Eds.), Social Judgments: Explicit and Implicit Processes. Cambridge Univ. Press, New York, pp. 44-67], which proposes that activation of prefrontal regions associated with thinking about negative affect can diminish dACC and amygdala reactivity to negative affect stimuli. This is the first study to identify a neural pathway from a region of the brain associated with placebos and affective thought to a region closely linked to the placebo-related outcome of diminished pain unpleasantness.

  12. Implementing and Composing MDSD-Typical DSLs

    OpenAIRE

    Dinkelaker, Tom; Wende, Christian; Lochmann, Henrik

    2009-01-01

    In this document, we have studied two orthogonal approaches of building DSLs and their advantages and disadvantages with respect to MDSD. We show that embedded DSLs can be used to implement a MDSD-typical DSL rapidly. Further, we show that embedded DSLs and aspect-oriented programming can be used in concert. We also discuss how modular language engineering and language composition enables new reuse capabilities among modelling languages with a slightly higher initial development effort.

  13. A typical raw food restaurant in Kallio

    OpenAIRE

    Kattelus, Laura

    2017-01-01

    The objective of this thesis was to find out what kind of raw food restaurants there are in Kallio and what kind of concept is typical for them. Another target was, how could those restaurants be developed. The first part of theoretical framework contains a definition of raw food and raw food as a diet. The second part describes what is a concept and its main points; location, design, menu, kitchen planning, food and beverage systems and budgeting and control. The empirical ...

  14. Typicality ratings of male and female voices

    Science.gov (United States)

    Spisak, Brian; Mullennix, John; Moro, Kelly; Will, Jessica; Farnsworth, Lynn

    2002-05-01

    Researchers have suggested that human voices are represented in memory in terms of prototypes [e.g., Kreiman and Papcun (1991); Papcun et al. (1989)]. Others have suggested that speech utterances are stored in memory via detailed exemplar-based representations [e.g., Lachs et al. (2000)]. The goal of the present study was to provide the first step toward assessing the viability of a prototype view of voice. Ten hVd utterances were recorded from each of 20 male and 20 female speakers. The utterances were blocked by speaker gender and presented to male and female listeners who rated each stimulus on a 1-7 typicality scale from ``least typical voice'' to ``most typical voice.'' There were significant effects of the type of vowel and speaker voice on the ratings, as well as interactions of vowel type with gender of subject and speaker voice. The results are discussed in terms of the strength of evidence for a graded category structure of voice categories that would be consistent with a prototype perspective of long-term memory representations of voice.

  15. What Is Typical Is Good : The Influence of Face Typicality on Perceived Trustworthiness

    NARCIS (Netherlands)

    Sofer, Carmel; Dotsch, Ron|info:eu-repo/dai/nl/328554197; Wigboldus, Daniel H J; Todorov, Alexander

    2015-01-01

    The role of face typicality in face recognition is well established, but it is unclear whether face typicality is important for face evaluation. Prior studies have focused mainly on typicality’s influence on attractiveness, although recent studies have cast doubt on its importance for attractiveness

  16. Pansharpening by Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Giuseppe Masi

    2016-07-01

    Full Text Available A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem. Moreover, to improve performance without increasing complexity, we augment the input by including several maps of nonlinear radiometric indices typical of remote sensing. Experiments on three representative datasets show the proposed method to provide very promising results, largely competitive with the current state of the art in terms of both full-reference and no-reference metrics, and also at a visual inspection.

  17. Introduction to neural networks

    CERN Document Server

    James, Frederick E

    1994-02-02

    1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.

  18. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  19. Group typicality, group loyalty and cognitive development.

    Science.gov (United States)

    Patterson, Meagan M

    2014-09-01

    Over the course of childhood, children's thinking about social groups changes in a variety of ways. Developmental Subjective Group Dynamics (DSGD) theory emphasizes children's understanding of the importance of conforming to group norms. Abrams et al.'s study, which uses DSGD theory as a framework, demonstrates the social cognitive skills underlying young elementary school children's thinking about group norms. Future research on children's thinking about groups and group norms should explore additional elements of this topic, including aspects of typicality beyond loyalty. © 2014 The British Psychological Society.

  20. Artificial neural network in cosmic landscape

    Science.gov (United States)

    Liu, Junyu

    2017-12-01

    In this paper we propose that artificial neural network, the basis of machine learning, is useful to generate the inflationary landscape from a cosmological point of view. Traditional numerical simulations of a global cosmic landscape typically need an exponential complexity when the number of fields is large. However, a basic application of artificial neural network could solve the problem based on the universal approximation theorem of the multilayer perceptron. A toy model in inflation with multiple light fields is investigated numerically as an example of such an application.

  1. Neural plasticity and its initiating conditions in tinnitus.

    Science.gov (United States)

    Roberts, L E

    2017-12-12

    Deafferentation caused by cochlear pathology (which can be hidden from the audiogram) activates forms of neural plasticity in auditory pathways, generating tinnitus and its associated conditions including hyperacusis. This article discusses tinnitus mechanisms and suggests how these mechanisms may relate to those involved in normal auditory information processing. Research findings from animal models of tinnitus and from electromagnetic imaging of tinnitus patients are reviewed which pertain to the role of deafferentation and neural plasticity in tinnitus and hyperacusis. Auditory neurons compensate for deafferentation by increasing their input/output functions (gain) at multiple levels of the auditory system. Forms of homeostatic plasticity are believed to be responsible for this neural change, which increases the spontaneous and driven activity of neurons in central auditory structures in animals expressing behavioral evidence of tinnitus. Another tinnitus correlate, increased neural synchrony among the affected neurons, is forged by spike-timing-dependent neural plasticity in auditory pathways. Slow oscillations generated by bursting thalamic neurons verified in tinnitus animals appear to modulate neural plasticity in the cortex, integrating tinnitus neural activity with information in brain regions supporting memory, emotion, and consciousness which exhibit increased metabolic activity in tinnitus patients. The latter process may be induced by transient auditory events in normal processing but it persists in tinnitus, driven by phantom signals from the auditory pathway. Several tinnitus therapies attempt to suppress tinnitus through plasticity, but repeated sessions will likely be needed to prevent tinnitus activity from returning owing to deafferentation as its initiating condition.

  2. Bridging the Gaps in the Study of Typical and Atypical Cognitive Development: A Commentary

    Science.gov (United States)

    Graham, Susan A.; Madigan, Sheri

    2016-01-01

    The articles in this special issue of the "Journal of Cognition and Development" examine the cognitive development of children who are following typical and atypical developmental pathways. The articles offer a mixture of theory-based considerations, reviews of the literature, and new empirical data addressing fundamental aspects of…

  3. Manipulating decision making of typical agents

    CERN Document Server

    Yukalov, V I

    2014-01-01

    We investigate how the choice of decision makers can be varied under the presence of risk and uncertainty. Our analysis is based on the approach we have previously applied to individual decision makers, which we now generalize to the case of decision makers that are members of a society. The approach employs the mathematical techniques that are common in quantum theory, justifying our naming as Quantum Decision Theory. However, we do not assume that decision makers are quantum objects. The techniques of quantum theory are needed only for defining the prospect probabilities taking into account such hidden variables as behavioral biases and other subconscious feelings. The approach describes an agent's choice as a probabilistic event occurring with a probability that is the sum of a utility factor and of an attraction factor. The attraction factor embodies subjective and unconscious dimensions in the mind of the decision maker. We show that the typical aggregate amplitude of the attraction factor is $1/4$, and ...

  4. Typical and Atypical Manifestations of Intrathoracic Sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Jin; Jung, Jung Im; Chung, Myung Hee; Song, Sun Wha; Kim, Hyo Lim; Baik, Jun Hyun; Han, Dae Hee [St. Vincent' s Hospital, The Catholic University of Korea, Suwon (Korea, Republic of); Kim, Ki Jun [Incheon St. Mary' s Hospital, The Catholic University of Korea, Incheon (Korea, Republic of); Lee, Kyo Young [Seoul St. Mary' s Hospital, The Catholic University of Korea, Seoul (Korea, Republic of)

    2009-12-15

    Sarcoidosis is a systemic disorder of unknown cause that is characterized by the presence of noncaseating granulomas. The radiological findings associated with sarcoidosis have been well described. The findings include symmetric, bilateral hilar and paratracheal lymphadenopathy, with or without concomitant parenchymal abnormalities (multiple small nodules in a peribronchovascular distribution along with irregular thickening of the interstitium). However, in 25% to 30% of cases, the radiological findings are atypical and unfamiliar to most radiologists, which cause difficulty for making a correct diagnosis. Many atypical forms of intrathoracic sarcoidosis have been described sporadically. We have collected cases with unusual radiological findings associated with pulmonary sarcoidosis (unilateral or asymmetric lymphadenopathy, necrosis or cavitation, large opacity, ground glass opacity, an airway abnormality and pleural involvement) and describe the typical forms of the disorder as well. The understanding of a wide range of the radiological manifestations of sarcoidosis will be very helpful for making a proper diagnosis.

  5. [Typical forms of schizophrenia in old age].

    Science.gov (United States)

    Sternberg, E; Konzewoi, V

    1978-01-01

    Aside from typical forms of late schizophrenia which generally conform to the definition given by M. Bleuler, there also are psychoses appearing in old age which differ significantly from the atypical symptoms and consequently present certain diagnostic difficulties. This report contains descriptions of late manifestations in schizophrenic psychoses, which develop with a continuous or assault-like course with a prevalence of parnoial disorders. Paranoid delusions, in such cases, are characterized by aging traits (concrete and short-term delusions, exaggeration of the degree of superficial persecution and prejudice, and a limited number of people involved in the delusions). The development of such forms of late schizophrenia takes a slowly progressing course. The results of these studies, especially the psychopathological symptomatology, the genetic-constitutional background and the development and outcome of these psychoses are analyzed in detail. The data permit to consider such forms of psychose as atypical variants of late schizophrenia.

  6. Typicity in Potato: Characterization of Geographic Origin

    Directory of Open Access Journals (Sweden)

    Marco Manzelli

    2010-03-01

    Full Text Available A two-year study was carried out in three regions of Italy and the crop performance and the chemical composition of tubers of three typical potato varieties evaluated. Carbon and nitrogen tuber content was determined by means of an elemental analyzer and the other mineral elements by means of a spectrometer. The same determinations were performed on soil samples taken from experimental areas. The Principal Component Analysis, applied to the results of mineral element tuber analysis, permitted the classification of all potato tuber samples according to their geographic origin. Only a partial discrimination was obtained in function of potato varieties. Some correlations between mineral content in the tubers and in the soil were also detected. Analytical and statistical methods proved to be useful in verifying the authenticity of guaranteed geographical food denominations.

  7. Revolutionary Pathways

    DEFF Research Database (Denmark)

    Colgan, Jeff; Lucas, Edward

    2017-01-01

    How much and in what ways do individual leaders matter for international politics? This article sheds new light on these questions by considering the consequences of domestic revolutions in international relations. We argue that revolutions have international effects due to two separate pathways......, one associated with the event and one associated with the new leader's administration. In the first pathway, a revolutionary event disrupts established relationships and perceptions, creating uncertainty both within the state and abroad. In the second pathway, revolutions put individuals into office...... who are more willing to challenge the status quo and who have publicly committed to a sustained shift in policies during their administration. These two distinct pathways suggest that the important question about revolutions is not whether leaders or events matter most but rather the conditions under...

  8. Metabolic Pathways.

    Science.gov (United States)

    Voige, William H.

    1981-01-01

    Two new packages designed to aid students in typical undergraduate biochemistry courses are described. These packages deal with alcoholic fermentation and the reversal of glycolysis and the reactions of the citric cycle. (MP)

  9. [Glutamate signaling and neural plasticity].

    Science.gov (United States)

    Watanabe, Masahiko

    2013-07-01

    Proper functioning of the nervous system relies on the precise formation of neural circuits during development. At birth, neurons have redundant synaptic connections not only to their proper targets but also to other neighboring cells. Then, functional neural circuits are formed during early postnatal development by the selective strengthening of necessary synapses and weakening of surplus connections. Synaptic connections are also modified so that projection fields of active afferents expand at the expense of lesser ones. We have studied the molecular mechanisms underlying these activity-dependent prunings and the plasticity of synaptic circuitry using gene-engineered mice defective in the glutamatergic signaling system. NMDA-type glutamate receptors are critically involved in the establishment of the somatosensory pathway ascending from the brainstem trigeminal nucleus to the somatosensory cortex. Without NMDA receptors, whisker-related patterning fails to develop, whereas lesion-induced plasticity occurs normally during the critical period. In contrast, mice lacking the glutamate transporters GLAST or GLT1 are selectively impaired in the lesion-induced critical plasticity of cortical barrels, although whisker-related patterning itself develops normally. In the developing cerebellum, multiple climbing fibers initially innervating given Purkinje cells are eliminated one by one until mono-innervation is achieved. In this pruning process, P/Q-type Ca2+ channels expressed on Purkinje cells are critically involved by the selective strengthening of single main climbing fibers against other lesser afferents. Therefore, the activation of glutamate receptors that leads to an activity-dependent increase in the intracellular Ca2+ concentration plays a key role in the pruning of immature synaptic circuits into functional circuits. On the other hand, glutamate transporters appear to control activity-dependent plasticity among afferent fields, presumably through adjusting

  10. ONE TYPICAL EXTREMUM IN ELECTRICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    V. I. Goroshko

    2014-01-01

    Full Text Available The aim of this work is to attract attention of teachers, scientific personnel, engineers and students to one peculiarity of extremum seeking in different electrical problems. This feature lies in the fact that in many parts of electrical engineering extremum seeking comes to analysis one and the same mathematical structure (T-structure, but differences lie only in many symbols (designation.In one problems this structure appear in finale, the most simple form, but in others – T-structure is “veiled”, and as a rule  we need  elementary algebraic transformation to detect it.Taking into account high frequency of this structure appearing in electrical problems, in the first part of article the authors  carried out the investigation of extremum characteristics of T-structure and show the results in easy algorithms. To determine the typical T-structure there were taken five problems-examples for extremum seeking  from different parts of electrical engineering. The first and the second examples belong to the theory of electrical circuits.In the first example the problem of maximum active load power obtaining was considered, in the second we see the solution of problem for inductive coupled circuit adjustment in order to obtain the hump current. In the third example the band active filter, built on operating amplifier, is analyzed. According to these methods, taken in the first part of article, the frequency is determined, on which amplifier provides maximum  amplification factor. The forth example deals with analysis of efficiency of transformer. According to algorithm, the optimal efficiency of transformer’s load and also equation for its maximum was determined in this article. In the fifth example the mechanical characteristics of induction motor is analyzed. It is indicated how, on the basis of algorithms article, to obtain equations for critical slip and motor moment, and also the simple development of formula Klossa.The methods of

  11. Longitudinal Brain Development of Numerical Skills in Typically Developing Children and Children with Developmental Dyscalculia

    Directory of Open Access Journals (Sweden)

    Ursina McCaskey

    2018-01-01

    Full Text Available Developmental dyscalculia (DD is a learning disability affecting the acquisition of numerical-arithmetical skills. Studies report persistent deficits in number processing and aberrant functional activation of the fronto-parietal numerical network in DD. However, the neural development of numerical abilities has been scarcely investigated. The present paper provides a first attempt to investigate behavioral and neural trajectories of numerical abilities longitudinally in typically developing (TD and DD children. During a study period of 4 years, 28 children (8–11 years were evaluated twice by means of neuropsychological tests and a numerical order fMRI paradigm. Over time, TD children improved in numerical abilities and showed a consistent and well-developed fronto-parietal network. In contrast, DD children revealed persistent deficits in number processing and arithmetic. Brain imaging results of the DD group showed an age-related activation increase in parietal regions (intraparietal sulcus, pointing to a delayed development of number processing areas. Besides, an activation increase in frontal areas was observed over time, indicating the use of compensatory mechanisms. In conclusion, results suggest a continuation in neural development of number representation in DD, whereas the neural network for simple ordinal number estimation seems to be stable or show only subtle changes in TD children over time.

  12. Longitudinal Brain Development of Numerical Skills in Typically Developing Children and Children with Developmental Dyscalculia.

    Science.gov (United States)

    McCaskey, Ursina; von Aster, Michael; Maurer, Urs; Martin, Ernst; O'Gorman Tuura, Ruth; Kucian, Karin

    2017-01-01

    Developmental dyscalculia (DD) is a learning disability affecting the acquisition of numerical-arithmetical skills. Studies report persistent deficits in number processing and aberrant functional activation of the fronto-parietal numerical network in DD. However, the neural development of numerical abilities has been scarcely investigated. The present paper provides a first attempt to investigate behavioral and neural trajectories of numerical abilities longitudinally in typically developing (TD) and DD children. During a study period of 4 years, 28 children (8-11 years) were evaluated twice by means of neuropsychological tests and a numerical order fMRI paradigm. Over time, TD children improved in numerical abilities and showed a consistent and well-developed fronto-parietal network. In contrast, DD children revealed persistent deficits in number processing and arithmetic. Brain imaging results of the DD group showed an age-related activation increase in parietal regions (intraparietal sulcus), pointing to a delayed development of number processing areas. Besides, an activation increase in frontal areas was observed over time, indicating the use of compensatory mechanisms. In conclusion, results suggest a continuation in neural development of number representation in DD, whereas the neural network for simple ordinal number estimation seems to be stable or show only subtle changes in TD children over time.

  13. Neural correlates of forethought in ADHD.

    Science.gov (United States)

    Poissant, Hélène; Mendrek, Adrianna; Senhadji, Noureddine

    2014-04-01

    The purpose of the present investigation was to delineate the neural correlates of forethought in the ADHD children relative to typically developing (TD) children. In all, 21 TD and 23 ADHD adolescents underwent functional magnetic resonance imaging (fMRI) while performing a forethought task. The participants had to identify congruent and incongruent stimuli from cartoon stories representing sequences of action. The findings revealed significantly greater activation in the bilateral prefrontal cortex (PFC) in TD versus ADHD children, and more activation in the cerebellar vermis in the adolescents with ADHD versus TD, during performance of the incongruent relative to congruent condition. The inverse pattern of activation of the PFC and the cerebellar vermis in both groups could reflect a compensatory role played by the cerebellum or suggest the malfunction of the neural network between those regions in ADHD. Further research of the neural correlates of forethought in ADHD is warranted.

  14. [Analysis of typical mangrove spectral reflectance characteristics].

    Science.gov (United States)

    Yu, Xiang; Zhang, Feng-Shou; Liu, Qing; Li, De-Yi; Zhao, Dong-Zhi

    2013-02-01

    Acquisition of mangrove spectrum properties and detecting the sensitive bands provide technology basis for inverse modeling and estimation by remote sensing for various indexes of mangrove. The typical mangroves of Guangxi Shankou Mangrove Reserve were taken for study objects, the standard spectrum curves of Bruguiera gymnorrhiza (Linn.) Savigny, Rhizophora stylosa, Kandelia candel, Avicennia marina, Aegiceras corniculatum, Spartina anglica and mudflat were gained by denoising analysis of field-measured spectrum curves acquired by ASD FieldSpec 2. Analyzing the spectral characteristics and their differences, the authors found that the spectrum curves for various kinds of mangrove are coincident, the bands that appeared with reflection peaks and reflection valleys are basically identical, the within-class differentiated characteristics are comparatively small, the spectrum characteristics of mangroves are obviously different with Spartina anglica and mudflat. In order to gain the quantitative description for within-class differentiated characteristics of mangrove, space distance method, correlation coefficient method and spectral angle mapping method were used to calculate the within-class differentiated characteristics. The division accuracy of correlation coefficient method is higher than spectral angle mapping method which is higher than space distance method, and the result indicates that the spectrum differences of within-class mangrove and Spartina anglica are relatively small with correlation coefficients more than 0.995, and spectrum curve angle cosine values more than 0.95.

  15. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  16. Genetics and development of neural tube defects

    Science.gov (United States)

    Copp, Andrew J.; Greene, Nicholas D. E.

    2014-01-01

    Congenital defects of neural tube closure (neural tube defects; NTDs) are among the commonest and most severe disorders of the fetus and newborn. Disturbance of any of the sequential events of embryonic neurulation produce NTDs, with the phenotype (e.g. anencephaly, spina bifida) varying depending on the region of neural tube that remains open. While mutation of more than 200 genes is known to cause NTDs in mice, the pattern of occurrence in humans suggests a multifactorial polygenic or oligogenic aetiology. This emphasises the importance of gene-gene and gene-environment interactions in the origin of these defects. A number of cell biological functions are essential for neural tube closure, with defects of the cytoskeleton, cell cycle and molecular regulation of cell viability prominent among the mouse NTD mutants. Many transcriptional regulators and proteins that affect chromatin structure are also required for neural tube closure, although the downstream molecular pathways regulated by these proteins is unknown. Some key signalling pathways for NTDs have been identified: over-activation of sonic hedgehog signalling and loss of function in the planar cell polarity (non-canonical Wnt) pathway are potent causes of NTD, with requirements also for retinoid and inositol signalling. Folic acid supplementation is an effective method for primary prevention of a proportion of NTDs, in both humans and mice, although the embryonic mechanism of folate action remains unclear. Folic acid-resistant cases can be prevented by inositol supplementation in mice, raising the possibility that this could lead to an additional preventive strategy for human NTDs in future. PMID:19918803

  17. Typical tumors of the petrous bone; Typische Tumoren des Felsenbeins

    Energy Technology Data Exchange (ETDEWEB)

    Ahlhelm, F.; Mueller, U. [Kantonsspital Baden AG, Abteilung fuer Neuroradiologie, Institut fuer Radiologie, Baden (Switzerland); Ulmer, S. [Medizinisch-Radiologisches Institut, Zuerich (Switzerland)

    2014-04-15

    In the region of the petrous bone, inner acoustic canal and cerebellopontine angle, a variety of different tissues can be found, such as bony, epithelial, neural and vascular structures. Tumorous or tumor-like lesions, vascular or bony malformations or other pathologies can therefore be found in all of these areas. We discuss various frequently occurring tumorous or tumor-like pathologies including congential lesions, such as mucoceles, inflammatory disorders including osteomyelitis, pseudotumors and Wegener's granulomatosis. Benign non-neoplastic lesions, such as cholesteatoma, cholesterol granuloma, epidermoid and benign neoplastic tumors, such as the most commonly found vestibular schwannoma, meningeoma, paraganglioma, vascular pathologies and finally malignant lesions, such as metastasis, chordoma or chondrosarcoma and endolymphatic sac tumor (ELST) are also discussed. The emphasis of this article is on the appearance of these entities in computed tomography (CT) and more so magnetic resonance imaging (MRI), it provides key facts and typical images and discusses possibilities how to distinguish these pathologies. (orig.) [German] In der Region des Felsenbein, inneren Gehoerkanals und Kleinhirnbrueckenwinkels findet sich eine Vielzahl an unterschiedlichen Gewebearten inklusive knoechernes, epitheliales, nervales und vaskulaeres Gewebe. Tumoren oder tumoraehnliche Laesionen, ossaere oder vaskulaere Pathologien koennen entsprechend dort gefunden werden. Wir diskutieren verschiedene Tumoren oder tumoraehnliche Pathologien inklusive angeborene Laesionen wie Muko- und Meningozelen, entzuendliche Veraenderungen wie die Osteomyelitis, Pseudotumoren, die Wegener-Granulomatose, nichtneoplastische Tumoren wie das Epidermoid, Cholesteatom oder Cholesterolgranulom und gutartige neoplastische Tumoren wie das am haeufigsten zu findende Vestibularisschwannom, das Paragangliom und das Meningeom, Gefaessprozesse/-pathologien und schliesslich maligne Laesionen wie Metastasen

  18. Multimodal interactions in typically and atypically developing children: natural versus artificial environments.

    Science.gov (United States)

    Giannopulu, Irini

    2013-11-01

    This review addresses the central role played by multimodal interactions in neurocognitive development. We first analyzed our studies of multimodal verbal and nonverbal cognition and emotional interactions within neuronal, that is, natural environments in typically developing children. We then tried to relate them to the topic of creating artificial environments using mobile toy robots to neurorehabilitate severely autistic children. By doing so, both neural/natural and artificial environments are considered as the basis of neuronal organization and reorganization. The common thread underlying the thinking behind this approach revolves around the brain's intrinsic properties: neuroplasticity and the fact that the brain is neurodynamic. In our approach, neural organization and reorganization using natural or artificial environments aspires to bring computational perspectives into cognitive developmental neuroscience.

  19. Epigallocatechin-3-gallate and related phenol compounds redirect the amyloidogenic aggregation pathway of ataxin-3 towards non-toxic aggregates and prevent toxicity in neural cells and Caenorhabditis elegans animal model.

    Science.gov (United States)

    Visentin, Cristina; Pellistri, Francesca; Natalello, Antonino; Vertemara, Jacopo; Bonanomi, Marcella; Gatta, Elena; Penco, Amanda; Relini, Annalisa; De Gioia, Luca; Airoldi, Cristina; Regonesi, Maria E; Tortora, Paolo

    2017-09-01

    The protein ataxin-3 (ATX3) triggers an amyloid-related neurodegenerative disease when its polyglutamine stretch is expanded beyond a critical threshold. We formerly demonstrated that the polyphenol epigallocatechin-3-gallate (EGCG) could redirect amyloid aggregation of a full-length, expanded ATX3 (ATX3-Q55) towards non-toxic, soluble, SDS-resistant aggregates. Here, we have characterized other related phenol compounds, although smaller in size, i.e. (-)-epigallocatechin gallate (EGC), and gallic acid (GA). We analysed the aggregation pattern of ATX3-Q55 and of the N-terminal globular Josephin domain (JD) by assessing the time course of the soluble protein, as well its structural features by FTIR and AFM, in the presence and the absence of the mentioned compounds. All of them redirected the aggregation pattern towards soluble, SDS-resistant aggregates. They also prevented the appearance of ordered side-chain hydrogen bonding in ATX3-Q55, which is the hallmark of polyQ-related amyloids. Molecular docking analyses on the JD highlighted three interacting regions, including the central, aggregation-prone one. All three compounds bound to each of them, although with different patterns. This might account for their capability to prevent amyloidogenesis. Saturation transfer difference NMR experiments also confirmed EGCG and EGC binding to monomeric JD. ATX3-Q55 pre-incubation with any of the three compounds prevented its calcium-influx-mediated cytotoxicity towards neural cells. Finally, all the phenols significantly reduced toxicity in a transgenic Caenorhabditis elegans strain expressing an expanded ATX3. Overall, our results show that the three polyphenols act in a substantially similar manner. GA, however, might be more suitable for antiamyloid treatments due to its simpler structure and higher chemical stability. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... a dynamic entity, which physical structure changes according to its use and environment. This change may take the form of growth of new neurons, the creation of new networks and structures, and change within network structures, that is, changes in synaptic strengths. Plasticity raises questions about...

  1. Statistical Physics, Neural Networks, Brain Studies

    OpenAIRE

    TOULOUSE, Gérard

    2014-01-01

    An overview of some aspects of a vast domain, located at the crossroads of physics, biology and computer science is presented: 1) During the last fifteen years, physicists advancing along various pathways have come into contact with biology (computational neurosciences) and engineering (formal neural nets). 2) This move may actually be viewed as one component in a larger picture. A prominent trend of recent years, observable over many countries, has been the establishment of interdis...

  2. Carbon tetrachloride pollution pathway of groundwater a typical contaminated site in the east of the city

    Science.gov (United States)

    Jiang, P.; Ma, Z. M.; Yu, W. W.; Wen, M.

    2017-08-01

    Determine 40 sampling points basing on a comprehensive monitoring. Determine the spatial distribution characteristics of the carbon tetrachloride by using the software of ArcGIS. Determine the location of the pollution sources by using MT3DMS program and Hook-Jeeves arithmetic to simulate, and connecting with the actual situation of carbon tetrachloride to analyze pollution causes. The results show that the source of carbon tetrachloride is located in the northeast near a chemical plant in the study area, whose pollutant concentration is diminishing from northeast to southwest. The main reasons to the pollution are that factories discharge waste water at random, leakage of open channel and culvert, sewage irrigation and the vulnerability of geological conditions in this area.

  3. Shared molecular networks in orofacial and neural tube development.

    Science.gov (United States)

    Kousa, Youssef A; Mansour, Tamer A; Seada, Haitham; Matoo, Samaneh; Schutte, Brian C

    2017-01-30

    Single genetic variants can affect multiple tissues during development. Thus it is possible that disruption of shared gene regulatory networks might underlie syndromic presentations. In this study, we explore this idea through examination of two critical developmental programs that control orofacial and neural tube development and identify shared regulatory factors and networks. Identification of these networks has the potential to yield additional candidate genes for poorly understood developmental disorders and assist in modeling and perhaps managing risk factors to prevent morbidly and mortality. We reviewed the literature to identify genes common between orofacial and neural tube defects and development. We then conducted a bioinformatic analysis to identify shared molecular targets and pathways in the development of these tissues. Finally, we examine publicly available RNA-Seq data to identify which of these genes are expressed in both tissues during development. We identify common regulatory factors in orofacial and neural tube development. Pathway enrichment analysis shows that folate, cancer and hedgehog signaling pathways are shared in neural tube and orofacial development. Developing neural tissues differentially express mouse exencephaly and cleft palate genes, whereas developing orofacial tissues were enriched for both clefting and neural tube defect genes. These data suggest that key developmental factors and pathways are shared between orofacial and neural tube defects. We conclude that it might be most beneficial to focus on common regulatory factors and pathways to better understand pathology and develop preventative measures for these birth defects. Birth Defects Research 109:169-179, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Molecular pathways

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine Terra

    2014-01-01

    that 45% of deaths in the developed world are linked to fibrotic disease. Fibrosis and cancer are known to be inextricably linked; however, we are only just beginning to understand the common and overlapping molecular pathways between the two. Here, we discuss what is known about the intersection...... of fibrosis and cancer, with a focus on cancer metastasis, and highlight some of the exciting new potential clinical targets that are emerging from analysis of the molecular pathways associated with these two devastating diseases. Clin Cancer Res; 20(14); 3637-43. ©2014 AACR....

  5. Fuzzy and neural control

    Science.gov (United States)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  6. Neural tube closure: cellular, molecular and biomechanical mechanisms.

    Science.gov (United States)

    Nikolopoulou, Evanthia; Galea, Gabriel L; Rolo, Ana; Greene, Nicholas D E; Copp, Andrew J

    2017-02-15

    Neural tube closure has been studied for many decades, across a range of vertebrates, as a paradigm of embryonic morphogenesis. Neurulation is of particular interest in view of the severe congenital malformations - 'neural tube defects' - that result when closure fails. The process of neural tube closure is complex and involves cellular events such as convergent extension, apical constriction and interkinetic nuclear migration, as well as precise molecular control via the non-canonical Wnt/planar cell polarity pathway, Shh/BMP signalling, and the transcription factors Grhl2/3, Pax3, Cdx2 and Zic2. More recently, biomechanical inputs into neural tube morphogenesis have also been identified. Here, we review these cellular, molecular and biomechanical mechanisms involved in neural tube closure, based on studies of various vertebrate species, focusing on the most recent advances in the field. © 2017. Published by The Company of Biologists Ltd.

  7. Architecture Analysis of an FPGA-Based Hopfield Neural Network

    Directory of Open Access Journals (Sweden)

    Miguel Angelo de Abreu de Sousa

    2014-01-01

    Full Text Available Interconnections between electronic circuits and neural computation have been a strongly researched topic in the machine learning field in order to approach several practical requirements, including decreasing training and operation times in high performance applications and reducing cost, size, and energy consumption for autonomous or embedded developments. Field programmable gate array (FPGA hardware shows some inherent features typically associated with neural networks, such as, parallel processing, modular executions, and dynamic adaptation, and works on different types of FPGA-based neural networks were presented in recent years. This paper aims to address different aspects of architectural characteristics analysis on a Hopfield Neural Network implemented in FPGA, such as maximum operating frequency and chip-area occupancy according to the network capacity. Also, the FPGA implementation methodology, which does not employ multipliers in the architecture developed for the Hopfield neural model, is presented, in detail.

  8. TYPICAL ABSENCES: RESULTS OF OWN INVESTIGATIONS

    Directory of Open Access Journals (Sweden)

    K. Yu. Mukhin

    2015-01-01

    Full Text Available Typical absences (TA are brief primary generalized epileptic seizures characterized by sudden onset and termination. According to their definition, absences consist of impairment of consciousness that is synchronously accompanied by electroencephalographic (EEG changes as generalized spike–slow wave discharges of 3 or more Hz. The authors conducted an investigation of 1261 patients with different forms of epilepsy with onset of seizures from the first days of life to the age of 18 years. The patients were followed up from 1990 to 2010. Absence seizures were detected in 231 patients, which accounts for 18.3 % of all the epileptic patients. TA were found in 102 patients, which constitutes 8.1 % of all cases of epilepsy with onset of seizures beyond the age of 18 years. The paper provides a detailed analysis of a group of patients with TA in terms of anamnestic, clinical, electroencephalographic, and neuroimaging features and the results of therapy with antiepileptic drugs (AEDs. The age of onset of TA-associated epilepsy was from 9 months to 17 years (mean 9.4 ± 4.06 years. The disease occurred most frequently in young school-age children (41.2 %. Isolated TA as the only type of seizures were observed in the clinical picture of 28 (27.5 % patients. TA were concurrent with other types of seizures in other cases. The investigators have identified 4 types of seizures which TA (generalized convulsions, myoclonic seizures, febrile seizures, and eyelid myoclonia may be concurrent with. Neuroimaging stated there were no brain changes in 85.3 % of TA-associated epilepsy cases. Moderate diffuse subatrophic changes were detected in other cases (14.7 %. Local cerebral structural abnormalities were absent. The use of antiepileptic therapy as both monotherapy and polytherapy using different combinations showed the high efficacy of AEDs. Complete remission was achieved in 84.3 % of TA-associated epilepsy cases. An AED-induced reduction in the frequency of

  9. What Is Neural Plasticity?

    Science.gov (United States)

    von Bernhardi, Rommy; Bernhardi, Laura Eugenín-von; Eugenín, Jaime

    2017-01-01

    "Neural plasticity" refers to the capacity of the nervous system to modify itself, functionally and structurally, in response to experience and injury. As the various chapters in this volume show, plasticity is a key component of neural development and normal functioning of the nervous system, as well as a response to the changing environment, aging, or pathological insult. This chapter discusses how plasticity is necessary not only for neural networks to acquire new functional properties, but also for them to remain robust and stable. The article also reviews the seminal proposals developed over the years that have driven experiments and strongly influenced concepts of neural plasticity.

  10. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  11. A neural flow estimator

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur; Bruun, Erik

    1995-01-01

    is implemented using switched-current technique and is capable of estimating flow in the μl/s range. The neural estimator is built around a multiplierless neural network, containing 96 synaptic weights which are updated using the LMS1-algorithm. An experimental chip has been designed that operates at 5 V......This paper proposes a new way to estimate the flow in a micromechanical flow channel. A neural network is used to estimate the delay of random temperature fluctuations induced in a fluid. The design and implementation of a hardware efficient neural flow estimator is described. The system...

  12. Chaotic Hopfield Neural Network Swarm Optimization and Its Application

    Directory of Open Access Journals (Sweden)

    Yanxia Sun

    2013-01-01

    Full Text Available A new neural network based optimization algorithm is proposed. The presented model is a discrete-time, continuous-state Hopfield neural network and the states of the model are updated synchronously. The proposed algorithm combines the advantages of traditional PSO, chaos and Hopfield neural networks: particles learn from their own experience and the experiences of surrounding particles, their search behavior is ergodic, and convergence of the swarm is guaranteed. The effectiveness of the proposed approach is demonstrated using simulations and typical optimization problems.

  13. Signaling Pathways in Melanogenesis

    Directory of Open Access Journals (Sweden)

    Stacey A. N. D’Mello

    2016-07-01

    Full Text Available Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis.

  14. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  15. Neural mechanisms of auditory categorization: from across brain areas to within local microcircuits

    Directory of Open Access Journals (Sweden)

    Joji eTsunada

    2014-06-01

    Full Text Available Categorization enables listeners to efficiently encode and respond to auditory stimuli. Behavioral evidence for auditory categorization has been well documented across a broad range of human and non-human animal species. Moreover, neural correlates of auditory categorization have been documented in a variety of different brain regions in the ventral auditory pathway, which is thought to underlie auditory-object processing and auditory perception. Here, we review and discuss how neural representations of auditory categories are transformed across different scales of neural organization in the ventral auditory pathway: from across different brain areas to within local microcircuits. We propose different neural transformations across different scales of neural organization in auditory categorization. Along the ascending auditory system in the ventral pathway, there is a progression in the encoding of categories from simple acoustic categories to categories for abstract information. On the other hand, in local microcircuits, different classes of neurons differentially compute categorical information.

  16. Neural circuits involved in the renewal of extinguished fear.

    Science.gov (United States)

    Chen, Weihai; Wang, Yan; Wang, Xiaqing; Li, Hong

    2017-07-01

    The last 10 years have witnessed a substantial progress in understanding the neural mechanisms for the renewal of the extinguished fear memory. Based on the theory of fear extinction, exposure therapy has been developed as a typical cognitive behavioral therapy for posttraumatic stress disorder. Although the fear memory can be extinguished by repeated presentation of conditioned stimulus without unconditioned stimulus, the fear memory is not erased and tends to relapse outside of extinction context, which is referred to as renewal. Therefore, the renewal is regarded as a great obstruction interfering with the effect of exposure therapy. In recent years, there has been a great deal of studies in understanding the neurobiological underpinnings of fear renewal. These offer a foundation upon which novel therapeutic interventions for the renewal may be built. This review focuses on behavioral, anatomical and electrophysiological studies that interpret roles of the hippocampus, prelimbic cortex and amygdala as well as the connections between them for the renewal of the extinguished fear. Additionally, this review suggests the possible pathways for the renewal: (1) the prelimbic cortex may integrate contextual information from hippocampal inputs and project to the basolateral amygdala to mediate the renewal of extinguished fear memory; the ventral hippocampus may innervate the activities of the basolateral amygdala or the central amygdala directly for the renewal. © 2017 IUBMB Life, 69(7):470-478, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  17. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  18. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  19. Lateral medullary syndrome following injury of the vestibular pathway to the core vestibular cortex: Diffusion tensor imaging study.

    Science.gov (United States)

    Yeo, Sang Seok; Jang, Sung Ho; Kwon, Jung Won

    2017-12-05

    The parieto-insular vestibular cortex (PIVC) is a core region of vestibular input into regions of the cortex. The vestibular nuclei have reciprocal connections with the PIVC. However, little is known about injury of the core vestibular pathway to the PIVC in patients with dorsolateral medullary infarctions. In this study, using diffusion tensor tractography (DTT), we investigated injury of the neural connections between the vestibular nuclei and the PIVC in patients with typical central vestibular disorder. Eight consecutive patients with lateral medullary syndrome and 10 control subjects were recruited for this study. To reconstruct the core vestibular pathway to the PIVC, we defined the seed region of interest (ROI) as the vestibular nuclei of the pons and the target ROI as the PIVC. Fractional anisotropy (FA), mean diffusivity (MD), and tract volume were measured. The core vestibular pathway to the PIVC showed significantly lower tract volume in patients compared with the control group (p0.05). In conclusion, injury of the core vestibular pathway to the PIVC was demonstrated in patients with lateral vestibular syndrome following dorsolateral medullary infarcts. We believe that analysis of the core vestibular pathway to the PIVC using DTT would be helpful in evaluating patients with lateral medullary syndrome. Copyright © 2017. Published by Elsevier B.V.

  20. Neural computational modeling reveals a major role of corticospinal gating of central oscillations in the generation of essential tremor

    Directory of Open Access Journals (Sweden)

    Hong-en Qu

    2017-01-01

    Full Text Available Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.

  1. Role of ciliary neurotrophic factor in the proliferation and differentiation of neural stem cells.

    Science.gov (United States)

    Ding, Jun; He, Zhili; Ruan, Juan; Ma, Zilong; Liu, Ying; Gong, Chengxin; Iqbal, Khalid; Sun, Shenggang; Chen, Honghui

    2013-01-01

    Ciliary neurotrophic factor (CNTF) is a pleiotropic cytokine that has been fully studied for its structure, receptor, and signaling pathways and its multiplex effects on neural system, skeletal muscle, and weight control. Recent research demonstrates that CNTF also plays an important role in neurogenesis and the differentiation of neural stem cells. In this article, we summarize the general characteristics of CNTF and its function on neural stem cells, which could be a valuable therapeutic strategy in treating neurological disorders.

  2. The neural subjective frame: from bodily signals to perceptual consciousness

    Science.gov (United States)

    Park, Hyeong-Dong; Tallon-Baudry, Catherine

    2014-01-01

    The report ‘I saw the stimulus’ operationally defines visual consciousness, but where does the ‘I’ come from? To account for the subjective dimension of perceptual experience, we introduce the concept of the neural subjective frame. The neural subjective frame would be based on the constantly updated neural maps of the internal state of the body and constitute a neural referential from which first person experience can be created. We propose to root the neural subjective frame in the neural representation of visceral information which is transmitted through multiple anatomical pathways to a number of target sites, including posterior insula, ventral anterior cingulate cortex, amygdala and somatosensory cortex. We review existing experimental evidence showing that the processing of external stimuli can interact with visceral function. The neural subjective frame is a low-level building block of subjective experience which is not explicitly experienced by itself which is necessary but not sufficient for perceptual experience. It could also underlie other types of subjective experiences such as self-consciousness and emotional feelings. Because the neural subjective frame is tightly linked to homeostatic regulations involved in vigilance, it could also make a link between state and content consciousness. PMID:24639580

  3. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    Directory of Open Access Journals (Sweden)

    Paige Snider

    2007-01-01

    Full Text Available Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators. Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest

  4. Application of a neural network for reflectance spectrum classification

    Science.gov (United States)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  5. Neural correlates of motor learning, transfer of learning, and learning to learn.

    Science.gov (United States)

    Seidler, Rachael D

    2010-01-01

    Recent studies on the neural bases of sensorimotor adaptation demonstrate that the cerebellar and striatal thalamocortical pathways contribute to early learning. Transfer of learning involves a reduction in the contribution of early learning networks and increased reliance on the cerebellum. The neural correlates of learning to learn remain to be determined but likely involve enhanced functioning of the general aspects of early learning.

  6. Classifying Symmetrical Differences and Temporal Change in Mammography Using Deep Neural Networks

    NARCIS (Netherlands)

    Kooi, T.; Karssemeijer, N.

    2017-01-01

    Neural networks, in particular deep Convolutional Neural Networks (CNN), have recently gone through a renaissance sparked by the introduction of more efficient training procedures and massive amounts of raw annotated data. Barring a handful of modalities, medical images are typically too large to

  7. G-protein-coupled receptor signaling and neural tube closure defects.

    Science.gov (United States)

    Shimada, Issei S; Mukhopadhyay, Saikat

    2017-01-30

    Disruption of the normal mechanisms that mediate neural tube closure can result in neural tube defects (NTDs) with devastating consequences in affected patients. With the advent of next-generation sequencing, we are increasingly detecting mutations in multiple genes in NTD cases. However, our ability to determine which of these genes contribute to the malformation is limited by our understanding of the pathways controlling neural tube closure. G-protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors in humans and have been historically favored as drug targets. Recent studies implicate several GPCRs and downstream signaling pathways in neural tube development and closure. In this review, we will discuss our current understanding of GPCR signaling pathways in pathogenesis of NTDs. Notable examples include the orphan primary cilia-localized GPCR, Gpr161 that regulates the basal suppression machinery of sonic hedgehog pathway by means of activation of cAMP-protein kinase A signaling in the neural tube, and protease-activated receptors that are activated by a local network of membrane-tethered proteases during neural tube closure involving the surface ectoderm. Understanding the role of these GPCR-regulated pathways in neural tube development and closure is essential toward identification of underlying genetic causes to prevent NTDs. Birth Defects Research 109:129-139, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Dynamics of neural cryptography.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  9. Social cognition, face processing, and oxytocin receptor single nucleotide polymorphisms in typically developing children

    Directory of Open Access Journals (Sweden)

    Mylissa M. Slane

    2014-07-01

    Full Text Available Recent research has provided evidence of a link between behavioral measures of social cognition (SC and neural and genetic correlates. Differences in face processing and variations in the oxytocin receptor (OXTR gene have been associated with SC deficits and autism spectrum disorder (ASD traits. Much work has examined the qualitative differences between those with ASD and typically developing (TD individuals, but very little has been done to quantify the natural variation in ASD-like traits in the typical population. The present study examines this variation in TD children using a multidimensional perspective involving behavior assessment, neural electroencephalogram (EEG testing, and OXTR genotyping. Children completed a series of neurocognitive assessments, provided saliva samples for sequencing, and completed a face processing task while connected to an EEG. No clear pattern emerged for EEG covariates or genotypes for individual OXTR single nucleotide polymorphisms (SNPs. However, SNPs rs2254298 and rs53576 consistently interacted such that the AG/GG allele combination of these SNPs was associated with poorer performance on neurocognitive measures. These results suggest that neither SNP in isolation is risk-conferring, but rather that the combination of rs2254298(A/G and rs53576(G/G confers a deleterious effect on SC across several neurocognitive measures.

  10. Designing pathways

    DEFF Research Database (Denmark)

    2010-01-01

    The theoretical background in this chapter is organizational studies and especially theories about design and design processes in organizations. The concept of design is defined as a particular kind of work aimed at making arrangements in order to change existing situations into desired ones....... The illustrative case example is the introduction of clinical pathways in a psychiatric department. The contribution to a general core of design research is the development of the concept of design work and a critical discussion of the role of technological rules in design work....

  11. ANT Advanced Neural Tool

    Energy Technology Data Exchange (ETDEWEB)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-07-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.

  12. Identifying Broadband Rotational Spectra with Neural Networks

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  13. Pathway collages: personalized multi-pathway diagrams.

    Science.gov (United States)

    Paley, Suzanne; O'Maille, Paul E; Weaver, Daniel; Karp, Peter D

    2016-12-13

    Metabolic pathway diagrams are a classical way of visualizing a linked cascade of biochemical reactions. However, to understand some biochemical situations, viewing a single pathway is insufficient, whereas viewing the entire metabolic network results in information overload. How do we enable scientists to rapidly construct personalized multi-pathway diagrams that depict a desired collection of interacting pathways that emphasize particular pathway interactions? We define software for constructing personalized multi-pathway diagrams called pathway-collages using a combination of manual and automatic layouts. The user specifies a set of pathways of interest for the collage from a Pathway/Genome Database. Layouts for the individual pathways are generated by the Pathway Tools software, and are sent to a Javascript Pathway Collage application implemented using Cytoscape.js. That application allows the user to re-position pathways; define connections between pathways; change visual style parameters; and paint metabolomics, gene expression, and reaction flux data onto the collage to obtain a desired multi-pathway diagram. We demonstrate the use of pathway collages in two application areas: a metabolomics study of pathogen drug response, and an Escherichia coli metabolic model. Pathway collages enable facile construction of personalized multi-pathway diagrams.

  14. Neural Control of the Lower Urinary Tract

    Science.gov (United States)

    de Groat, William C.; Griffiths, Derek; Yoshimura, Naoki

    2015-01-01

    This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed. PMID:25589273

  15. Localizing Tortoise Nests by Neural Networks.

    Directory of Open Access Journals (Sweden)

    Roberto Barbuti

    Full Text Available The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating. Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN. We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours, the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.

  16. Feature to prototype transition in neural networks

    Science.gov (United States)

    Krotov, Dmitry; Hopfield, John

    Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.

  17. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  18. [Neural codes for perception].

    Science.gov (United States)

    Romo, R; Salinas, E; Hernández, A; Zainos, A; Lemus, L; de Lafuente, V; Luna, R

    This article describes experiments designed to show the neural codes associated with the perception and processing of tactile information. The results of these experiments have shown the neural activity correlated with tactile perception. The neurones of the primary somatosensory cortex (S1) represent the physical attributes of tactile perception. We found that these representations correlated with tactile perception. By means of intracortical microstimulation we demonstrated the causal relationship between S1 activity and tactile perception. In the motor areas of the frontal lobe is to be found the connection between sensorial and motor representation whilst decisions are being taken. S1 generates neural representations of the somatosensory stimuli which seen to be sufficient for tactile perception. These neural representations are subsequently processed by central areas to S1 and seem useful in perception, memory and decision making.

  19. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  20. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  1. Neural cryptography with feedback

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  2. Neural network applications

    Science.gov (United States)

    Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.

    1993-01-01

    A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.

  3. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  4. Fractionating the Neural Substrates of Incidental Recognition Memory

    Science.gov (United States)

    Greene, Ciara M.; Vidaki, Kleio; Soto, David

    2015-01-01

    Familiar stimuli are typically accompanied by decreases in neural response relative to the presentation of novel items, but these studies often include explicit instructions to discriminate old and new items; this creates difficulties in partialling out the contribution of top-down intentional orientation to the items based on recognition goals.…

  5. DHODH modulates transcriptional elongation in the neural crest and melanoma.

    Science.gov (United States)

    White, Richard Mark; Cech, Jennifer; Ratanasirintrawoot, Sutheera; Lin, Charles Y; Rahl, Peter B; Burke, Christopher J; Langdon, Erin; Tomlinson, Matthew L; Mosher, Jack; Kaufman, Charles; Chen, Frank; Long, Hannah K; Kramer, Martin; Datta, Sumon; Neuberg, Donna; Granter, Scott; Young, Richard A; Morrison, Sean; Wheeler, Grant N; Zon, Leonard I

    2011-03-24

    Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation.

  6. Diverging Pathways

    DEFF Research Database (Denmark)

    Langevang, Thilde; Gough, Katherine

    2012-01-01

    Shrinking public sectors and limited opportunities for gaining formal wage employment in the private sector have resulted in entrepreneurship being promoted as a means of generating youth employment. This discourse is being widely promoted within sub-Saharan Africa despite little being known about...... how best to support youth employment and entrepreneurship. This paper focuses on two of the main trades which young women in sub-Saharan Africa have typically entered: hairdressing and dressmaking. Through drawing on a qualitative case study of hairdressers and seamstresses in Ghana, it is shown how...... of young women to enter the professions and the experiences of those that do. As the paper shows, geographers potentially have much to contribute to employment and entrepreneurship debates by providing more contextualised studies which recognise the complex interplay between globalisation, institutions...

  7. The relationship between Sonic hedgehog signalling, cilia and neural tube defects

    Science.gov (United States)

    Murdoch, Jennifer N.; Copp, Andrew J.

    2013-01-01

    The Hedgehog signalling pathway is essential for many aspects of normal embryonic development, including formation and patterning of the neural tube. Absence of Shh ligand is associated with the midline defect holoprosencephaly, while increased Shh signalling is associated with exencephaly and spina bifida. To complicate this apparently simple relationship, mutation of proteins required for function of cilia often leads to impaired Shh signalling and to disruption of neural tube closure. In this manuscript, we review the literature on Shh pathway mutants and discuss the relationship between Shh signalling, cilia and neural tube defects. PMID:20544799

  8. Neural reuse: a fundamental organizational principle of the brain.

    Science.gov (United States)

    Anderson, Michael L

    2010-08-01

    An emerging class of theories concerning the functional structure of the brain takes the reuse of neural circuitry for various cognitive purposes to be a central organizational principle. According to these theories, it is quite common for neural circuits established for one purpose to be exapted (exploited, recycled, redeployed) during evolution or normal development, and be put to different uses, often without losing their original functions. Neural reuse theories thus differ from the usual understanding of the role of neural plasticity (which is, after all, a kind of reuse) in brain organization along the following lines: According to neural reuse, circuits can continue to acquire new uses after an initial or original function is established; the acquisition of new uses need not involve unusual circumstances such as injury or loss of established function; and the acquisition of a new use need not involve (much) local change to circuit structure (e.g., it might involve only the establishment of functional connections to new neural partners). Thus, neural reuse theories offer a distinct perspective on several topics of general interest, such as: the evolution and development of the brain, including (for instance) the evolutionary-developmental pathway supporting primate tool use and human language; the degree of modularity in brain organization; the degree of localization of cognitive function; and the cortical parcellation problem and the prospects (and proper methods to employ) for function to structure mapping. The idea also has some practical implications in the areas of rehabilitative medicine and machine interface design.

  9. The neural signature of emotional memories in serial crimes.

    Science.gov (United States)

    Chassy, Philippe

    2017-10-01

    Neural plasticity is the process whereby semantic information and emotional responses are stored in neural networks. It is hypothesized that the neural networks built over time to encode the sexual fantasies that motivate serial killers to act should display a unique, detectable activation pattern. The pathological neural watermark hypothesis posits that such networks comprise activation of brain sites that reflect four cognitive components: autobiographical memory, sexual arousal, aggression, and control over aggression. The neural sites performing these cognitive functions have been successfully identified by previous research. The key findings are reviewed to hypothesise the typical pattern of activity that serial killers should display. Through the integration of biological findings into one framework, the neural approach proposed in this paper is in stark contrast with the many theories accounting for serial killers that offer non-medical taxonomies. The pathological neural watermark hypothesis offers a new framework to understand and detect deviant individuals. The technical and legal issues are briefly discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Consumer Perception of Typical Food Products in Europe

    OpenAIRE

    Giraud, Georges

    2002-01-01

    Formerly neglected, typical food products nowadays support a higher involvement of an increasing number of farmers as well as they seem to be in phase with consumers' expectations. Since directives 2081/92 and 2082/92 European Union had set up PDO and PGI labels as means of valorisation with benefits to typical food products. This paper aims firstly at considering typical food products with respect to consumer perception and secondly at pointing out some methodological results on consumer sur...

  11. Cognitive and emotional empathy in typical and impaired readers and its relationship to reading competence.

    Science.gov (United States)

    Gabay, Yafit; Shamay-Tsoory, Simone G; Goldfarb, Liat

    2016-12-01

    Studies indicate a strong relationship between empathy and language skills, but the relationship between reading and empathy remains elusive, although a shared neural substrate (the temporoparietal junction; TPJ) has been implicated in both reading and empathy. Motivated by these observations, the purpose of the current study was to examine empathic skills in a large spectrum of reading abilities, including typical readers and individuals with dyslexia, and their relationship to reading competence. We administered the Intrapersonal Reactivity Index (IRI) test, which differentiates between two subscales of empathy (cognitive and emotional empathy), to a group of participants with dyslexia and typical readers. Results indicate that the general reading score (average z scores of all reading tests) was significantly positively correlated with empathic scores. In addition, tests of specific reading abilities-decoding, reading fluency, and reading-related measures of phonological awareness-were significantly positively correlated with empathic scores. Finally, participants with dyslexia who showed low reading abilities had significantly lower scores in total empathy and cognitive empathy, as measured by the IRI test, than did typical participants with high reading abilities. Taken together, these results indicate a strong association between reading-related skills and empathic abilities and may point to involvement of the TPJ in both empathy and reading.

  12. Conducting Polymers for Neural Prosthetic and Neural Interface Applications

    Science.gov (United States)

    2015-01-01

    Neural interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review the application of CPs for neural prostheses and other neural interfacing devices are discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery. PMID:26414302

  13. A Translational Approach to Vocalization Deficits and Neural Recovery after Behavioral Treatment in Parkinson Disease

    Science.gov (United States)

    Ciucci, Michelle R.; Vinney, Lisa; Wahoske, Emerald J.; Connor, Nadine P.

    2010-01-01

    Parkinson disease is characterized by a complex neuropathological profile that primarily affects dopaminergic neural pathways in the basal ganglia, including pathways that modulate cranial sensorimotor functions such as swallowing, voice and speech. Prior work from our lab has shown that the rat model of unilateral 6-hydroxydopamine infusion to…

  14. Neural Semantic Encoders.

    Science.gov (United States)

    Munkhdalai, Tsendsuren; Yu, Hong

    2017-04-01

    We present a memory augmented neural network for natural language understanding: Neural Semantic Encoders. NSE is equipped with a novel memory update rule and has a variable sized encoding memory that evolves over time and maintains the understanding of input sequences through read, compose and write operations. NSE can also access multiple and shared memories. In this paper, we demonstrated the effectiveness and the flexibility of NSE on five different natural language tasks: natural language inference, question answering, sentence classification, document sentiment analysis and machine translation where NSE achieved state-of-the-art performance when evaluated on publically available benchmarks. For example, our shared-memory model showed an encouraging result on neural machine translation, improving an attention-based baseline by approximately 1.0 BLEU.

  15. The neural crest and neural crest cells: discovery and significance ...

    Indian Academy of Sciences (India)

    In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of ...

  16. Developmental plasticity in neural circuits for a learned behavior.

    Science.gov (United States)

    Bottjer, S W; Arnold, A P

    1997-01-01

    The neural substrate underlying learned vocal behavior in songbirds provides a textbook illustration of anatomical localization of function for a complex learned behavior in vertebrates. The song-control system has become an important model for studying neural systems related to learning, behavior, and development. The song system of zebra finches is characterized by a heightened capacity for both neural and behavioral change during development and has taught us valuable information regarding sensitive periods, rearrangement of synaptic connections, topographic specificity, cell death and neurogenesis, experience-dependent neural plasticity, and sexual differentiation. The song system differs in some interesting ways from some well-studied mammalian model systems and thus offers fresh perspectives on specific theoretical issues. In this highly selective review, we concentrate on two major questions: What are the developmental changes in the song system responsible for song learning and the restriction of learning to a sensitive period, and what factors explain the highly sexually dimorphic development of this system? We discuss the important role of sex steroid hormones and of neurotrophins in creating a male-typical neural song circuit (which can learn to produce complex vocalizations) instead of a reduced, female-typical song circuit that does not produce learned song.

  17. The spatiotemporal variability of groundwater depth in a typical ...

    Indian Academy of Sciences (India)

    37

    degradation, soil salinization, desertification, serious drops in groundwater levels and frequent sand storms (Li et al. 2004; Gao ... typical oasis-desert ecotone at the southern edge of the Badain Jaran Desert. The area has a typical temperate desert ..... reaches of Heihe River; Inner Mongolia Meteorol. 1 38-41 (in Chinese).

  18. 49 CFR 178.356-5 - Typical assembly detail.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Typical assembly detail. 178.356-5 Section 178.356-5 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... PACKAGINGS Specifications for Packagings for Class 7 (Radioactive) Materials § 178.356-5 Typical assembly...

  19. 49 CFR 178.358-6 - Typical assembly detail.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Typical assembly detail. 178.358-6 Section 178.358-6 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... PACKAGINGS Specifications for Packagings for Class 7 (Radioactive) Materials § 178.358-6 Typical assembly...

  20. Mechanotransduction of Neural Cells Through Cell–Substrate Interactions

    Science.gov (United States)

    Stukel, Jessica M.

    2016-01-01

    Neurons and neural stem cells are sensitive to their mechanical and topographical environment, and cell–substrate binding contributes to this sensitivity to activate signaling pathways for basic cell functions. Many transmembrane proteins transmit signals into and out of the cell, including integrins, growth factor receptors, G-protein-coupled receptors, cadherins, cell adhesion molecules, and ion channels. Specifically, integrins are one of the main transmembrane proteins that transmit force across the cell membrane between a cell and its extracellular matrix, making them critical in the study of cell–material interactions. This review focuses on mechanotransduction, defined as the conversion of force a cell generates through cell–substrate bonds to a chemical signal, of neural cells. The chemical signals relay information via pathways through the cellular cytoplasm to the nucleus, where signaling events can affect gene expression. Pathways and the cellular response initiated by substrate binding are explored to better understand their effect on neural cells mechanotransduction. As the results of mechanotransduction affect cell adhesion, cell shape, and differentiation, knowledge regarding neural mechanotransduction is critical for most regenerative strategies in tissue engineering, where novel environments are developed to improve conduit design for central and peripheral nervous system repair in vivo. PMID:26669274

  1. Mechanotransduction of Neural Cells Through Cell-Substrate Interactions.

    Science.gov (United States)

    Stukel, Jessica M; Willits, Rebecca Kuntz

    2016-06-01

    Neurons and neural stem cells are sensitive to their mechanical and topographical environment, and cell-substrate binding contributes to this sensitivity to activate signaling pathways for basic cell functions. Many transmembrane proteins transmit signals into and out of the cell, including integrins, growth factor receptors, G-protein-coupled receptors, cadherins, cell adhesion molecules, and ion channels. Specifically, integrins are one of the main transmembrane proteins that transmit force across the cell membrane between a cell and its extracellular matrix, making them critical in the study of cell-material interactions. This review focuses on mechanotransduction, defined as the conversion of force a cell generates through cell-substrate bonds to a chemical signal, of neural cells. The chemical signals relay information via pathways through the cellular cytoplasm to the nucleus, where signaling events can affect gene expression. Pathways and the cellular response initiated by substrate binding are explored to better understand their effect on neural cells mechanotransduction. As the results of mechanotransduction affect cell adhesion, cell shape, and differentiation, knowledge regarding neural mechanotransduction is critical for most regenerative strategies in tissue engineering, where novel environments are developed to improve conduit design for central and peripheral nervous system repair in vivo.

  2. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  3. Deconvolution using a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  4. [Neural mechanism of blindsight].

    Science.gov (United States)

    Yoshida, Masatoshi

    2013-06-01

    "Blindsight" is a phenomenon whereby hemianopic patients with damage in the primary visual cortex (V1) are able to process visual information in their blind visual field. Two pathways that bypass the V1 may be responsible for this residual vision. The first pathway is the retinotectal pathway in which the superior colliculus in the midbrain receives direct retinal signals and sends them to the extrastriate cortex via the pulvinar. The second pathway is the geniculo-extrastriate pathway in which direct retinal input to the lateral geniculate nucleus is sent straight to the extrastriate cortex. Herein, I summarize evidence supporting the involvement of either pathway. The evidence was obtained from anatomical, neurophysiological, imaging, and behavioral studies carried out on macaque monkeys and humans. I emphasize three points: 1) crosstalk exists between the retinotectal pathway and the geniculo-extrastriate pathway, that is, the projection from the superficial layer of the superior colliculus to the koniocellular layer of the lateral geniculate nucleus; 2) three visual channels (the luminance in the magnocellular pathway, the red-green opponency in the parvocellular pathway, and the blue-yellow opponency in the koniocellular pathway) are not independent, as previously assumed; and 3) a global reorganization in the brain circuit occurs following the lesions of the V1 and subsequent recovery. Finally, I introduce a recent study that employed a saliency computational model to quantitatively evaluate the residual visual channels in blindsight monkeys during free-viewing behavior. Their findings suggest that plastic changes occur in the color-processing pathways.

  5. Affective neural response to restricted interests in autism spectrum disorders.

    Science.gov (United States)

    Cascio, Carissa J; Foss-Feig, Jennifer H; Heacock, Jessica; Schauder, Kimberly B; Loring, Whitney A; Rogers, Baxter P; Pryweller, Jennifer R; Newsom, Cassandra R; Cockhren, Jurnell; Cao, Aize; Bolton, Scott

    2014-01-01

    Restricted interests are a class of repetitive behavior in autism spectrum disorders (ASD) whose intensity and narrow focus often contribute to significant interference with daily functioning. While numerous neuroimaging studies have investigated executive circuits as putative neural substrates of repetitive behavior, recent work implicates affective neural circuits in restricted interests. We sought to explore the role of affective neural circuits and determine how restricted interests are distinguished from hobbies or interests in typical development. We compared a group of children with ASD to a typically developing (TD) group of children with strong interests or hobbies, employing parent report, an operant behavioral task, and functional imaging with personalized stimuli based on individual interests. While performance on the operant task was similar between the two groups, parent report of intensity and interference of interests was significantly higher in the ASD group. Both the ASD and TD groups showed increased BOLD response in widespread affective neural regions to the pictures of their own interest. When viewing pictures of other children's interests, the TD group showed a similar pattern, whereas BOLD response in the ASD group was much more limited. Increased BOLD response in the insula and anterior cingulate cortex distinguished the ASD from the TD group, and parent report of the intensity and interference with daily life of the child's restricted interest predicted insula response. While affective neural network response and operant behavior are comparable in typical and restricted interests, the narrowness of focus that clinically distinguishes restricted interests in ASD is reflected in more interference in daily life and aberrantly enhanced insula and anterior cingulate response to individuals' own interests in the ASD group. These results further support the involvement of affective neural networks in repetitive behaviors in ASD. © 2013 The

  6. Effects of atypical (risperidone) and typical (haloperidol) antipsychotic agents on astroglial functions.

    Science.gov (United States)

    Quincozes-Santos, André; Bobermin, Larissa Daniele; Tonial, Rafaela Pestana Leques; Bambini-Junior, Victorio; Riesgo, Rudimar; Gottfried, Carmem

    2010-09-01

    Although classical and atypical antipsychotics may have different neurotoxic effects, their underlying mechanisms remain to be elucidated, especially regarding neuroglial function. In the present study, we compared the atypical antipsychotic risperidone (0.01-10 μM) with the typical antipsychotic haloperidol (0.01-10 μM) regarding different aspects such as glutamate uptake, glutamine synthetase (GS) activity, glutathione (GSH) content, and intracellular reactive oxygen species (ROS) production in C6 astroglial cells. Risperidone significantly increased glutamate uptake (up to 27%), GS activity (14%), and GSH content (up to 17%). In contrast, haloperidol was not able to change any of these glial functions. However, at concentration of 10 μM, haloperidol increased (12%) ROS production. Our data contribute to the clarification of different hypothesis concerning the putative neural responses after stimulus with different antipsychotics, and may establish important insights about how brain rewiring could be enhanced.

  7. Late talking, typical talking, and weak language skills at middle childhood.

    Science.gov (United States)

    Poll, Gerard H; Miller, Carol A

    2013-08-01

    To better understand early predictors of weak language and academic abilities, we identified children with and without weak abilities at age 8. We then looked back at age 2 vocabulary and word combining, and evaluated these measures as predictors of age 8 outcomes. More than 60% of children with weak oral language abilities at 8 were not late talkers at 2. However, no word combining at 2 was a significant risk factor for poor oral language, reading comprehension, and math outcomes at 8. The association of no word combining with age 8 reading comprehension and math ability was mediated by age 8 oral language ability. The findings indicate that children take different developmental pathways to weak language abilities in middle childhood. One begins with a delayed onset of language. A second begins with language measures in the typical range, but ends with language ability falling well below typical peers.

  8. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  9. Neural systems for control

    National Research Council Canada - National Science Library

    Omidvar, Omid; Elliott, David L

    1997-01-01

    ... is reprinted with permission from A. Barto, "Reinforcement Learning," Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.. The MIT Press, Cambridge, MA, pp. 804-809, 1995. Chapter 4, Figures 4-5 and 7-9 and Tables 2-5, are reprinted with permission, from S. Cho, "Map Formation in Proprioceptive Cortex," International Jour...

  10. Neural Tube Defects

    Science.gov (United States)

    ... pregnancies each year in the United States. A baby’s neural tube normally develops into the brain and spinal cord. ... fluid in the brain. This is called hydrocephalus. Babies with this condition are treated with surgery to insert a tube (called a shunt) into the brain. The shunt ...

  11. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    Science.gov (United States)

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects.

  12. Neural Tube Defects, Folic Acid and Methylation

    Science.gov (United States)

    Imbard, Apolline; Benoist, Jean-François; Blom, Henk J.

    2013-01-01

    Neural tube defects (NTDs) are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s) underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects. PMID:24048206

  13. Neural Tube Defects, Folic Acid and Methylation

    Directory of Open Access Journals (Sweden)

    Henk J. Blom

    2013-09-01

    Full Text Available Neural tube defects (NTDs are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects.

  14. Subgradient-based neural networks for nonsmooth nonconvex optimization problems.

    Science.gov (United States)

    Bian, Wei; Xue, Xiaoping

    2009-06-01

    This paper presents a subgradient-based neural network to solve a nonsmooth nonconvex optimization problem with a nonsmooth nonconvex objective function, a class of affine equality constraints, and a class of nonsmooth convex inequality constraints. The proposed neural network is modeled with a differential inclusion. Under a suitable assumption on the constraint set and a proper assumption on the objective function, it is proved that for a sufficiently large penalty parameter, there exists a unique global solution to the neural network and the trajectory of the network can reach the feasible region in finite time and stay there thereafter. It is proved that the trajectory of the neural network converges to the set which consists of the equilibrium points of the neural network, and coincides with the set which consists of the critical points of the objective function in the feasible region. A condition is given to ensure the convergence to the equilibrium point set in finite time. Moreover, under suitable assumptions, the coincidence between the solution to the differential inclusion and the "slow solution" of it is also proved. Furthermore, three typical examples are given to present the effectiveness of the theoretic results obtained in this paper and the good performance of the proposed neural network.

  15. Hybrid discrete-time neural networks.

    Science.gov (United States)

    Cao, Hongjun; Ibarz, Borja

    2010-11-13

    Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

  16. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  17. Role of the JNK Pathway in Varicella-Zoster Virus Lytic Infection and Reactivation.

    Science.gov (United States)

    Kurapati, Sravya; Sadaoka, Tomohiko; Rajbhandari, Labchan; Jagdish, Balaji; Shukla, Priya; Ali, Mir A; Kim, Yong Jun; Lee, Gabsang; Cohen, Jeffrey I; Venkatesan, Arun

    2017-09-01

    Mechanisms of neuronal infection by varicella-zoster virus (VZV) have been challenging to study due to the relatively strict human tropism of the virus and the paucity of tractable experimental models. Cellular mitogen-activated protein kinases (MAPKs) have been shown to play a role in VZV infection of nonneuronal cells, with distinct consequences for infectivity in different cell types. Here, we utilize several human neuronal culture systems to investigate the role of one such MAPK, the c-Jun N-terminal kinase (JNK), in VZV lytic infection and reactivation. We find that the JNK pathway is specifically activated following infection of human embryonic stem cell-derived neurons and that this activation of JNK is essential for efficient viral protein expression and replication. Inhibition of the JNK pathway blocked viral replication in a manner distinct from that of acyclovir, and an acyclovir-resistant VZV isolate was as sensitive to the effects of JNK inhibition as an acyclovir-sensitive VZV isolate in neurons. Moreover, in a microfluidic-based human neuronal model of viral latency and reactivation, we found that inhibition of the JNK pathway resulted in a marked reduction in reactivation of VZV. Finally, we utilized a novel technique to efficiently generate cells expressing markers of human sensory neurons from neural crest cells and established a critical role for the JNK pathway in infection of these cells. In summary, the JNK pathway plays an important role in lytic infection and reactivation of VZV in physiologically relevant cell types and may provide an alternative target for antiviral therapy. IMPORTANCE Varicella-zoster virus (VZV) has infected over 90% of people worldwide. While primary infection leads to the typically self-limiting condition of chickenpox, the virus can remain dormant in the nervous system and may reactivate later in life, leading to shingles or inflammatory diseases of the nervous system and eye with potentially severe consequences. Here

  18. Neural correlates of rhythmic expectancy

    Directory of Open Access Journals (Sweden)

    Theodore P. Zanto

    2006-01-01

    Full Text Available Temporal expectancy is thought to play a fundamental role in the perception of rhythm. This review summarizes recent studies that investigated rhythmic expectancy by recording neuroelectric activity with high temporal resolution during the presentation of rhythmic patterns. Prior event-related brain potential (ERP studies have uncovered auditory evoked responses that reflect detection of onsets, offsets, sustains,and abrupt changes in acoustic properties such as frequency, intensity, and spectrum, in addition to indexing higher-order processes such as auditory sensory memory and the violation of expectancy. In our studies of rhythmic expectancy, we measured emitted responses - a type of ERP that occurs when an expected event is omitted from a regular series of stimulus events - in simple rhythms with temporal structures typical of music. Our observations suggest that middle-latency gamma band (20-60 Hz activity (GBA plays an essential role in auditory rhythm processing. Evoked (phase-locked GBA occurs in the presence of physically presented auditory events and reflects the degree of accent. Induced (non-phase-locked GBA reflects temporally precise expectancies for strongly and weakly accented events in sound patterns. Thus far, these findings support theories of rhythm perception that posit temporal expectancies generated by active neural processes.

  19. Neural correlates of eating disorders: translational potential

    Directory of Open Access Journals (Sweden)

    McAdams CJ

    2015-09-01

    Full Text Available Carrie J McAdams,1,2 Whitney Smith1 1University of Texas at Southwestern Medical Center, 2Department of Psychiatry, Texas Health Presbyterian Hospital of Dallas, Dallas, TX, USA Abstract: Eating disorders are complex and serious psychiatric illnesses whose etiology includes psychological, biological, and social factors. Treatment of eating disorders is challenging as there are few evidence-based treatments and limited understanding of the mechanisms that result in sustained recovery. In the last 20 years, we have begun to identify neural pathways that are altered in eating disorders. Consideration of how these pathways may contribute to an eating disorder can provide an understanding of expected responses to treatments. Eating disorder behaviors include restrictive eating, compulsive overeating, and purging behaviors after eating. Eating disorders are associated with changes in many neural systems. In this targeted review, we focus on three cognitive processes associated with neurocircuitry differences in subjects with eating disorders such as reward, decision-making, and social behavior. We briefly examine how each of these systems function in healthy people, using Neurosynth meta-analysis to identify key regions commonly implicated in these circuits. We review the evidence for disruptions of these regions and systems in eating disorders. Finally, we describe psychiatric and psychological treatments that are likely to function by impacting these regions. Keywords: anorexia nervosa, bulimia nervosa, social cognition, reward processing, decision-making

  20. Neural coordination can be enhanced by occasional interruption of normal firing patterns: a self-optimizing spiking neural network model.

    Science.gov (United States)

    Woodward, Alexander; Froese, Tom; Ikegami, Takashi

    2015-02-01

    The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A propositional typicality logic for extending rational consequence

    CSIR Research Space (South Africa)

    Booth, R

    2013-08-01

    Full Text Available -1 Trends in Belief Revision and Argumentation Dynamics Book chapter A Propositional Typicality Logic for Extending Rational Consequence Richard Booth, Thomas Meyer, Ivan Varzinczak CSIR, Meraka Institute, Pretoria, South Africa, 0001 Corresponding...

  2. Characteristics of a typical lifting symmetric supercritical airfoil

    OpenAIRE

    Ramaswamy, MA

    1987-01-01

    The theoretical aerodynamic characteristics of a typical lifting symmetric supercritical airfoil demonstrating its superiority over thenaca 0012 airfoil from which it was derived are presented in this paper. Further, limited experimental results confirming the theoretical inference are also presented.

  3. Effects of contrasting category, conjoint frequency and typicality on categorization.

    NARCIS (Netherlands)

    Das-Smaal, E.A.; Swart, de J.H.

    1986-01-01

    Two experiments were conducted to investigate whether (a) experience with a contrasting category, (b) conjoint frequency of dimensional values, (c) range of typicality of values, and (d) type of information administered during learning influenced subsequent test performance. Each experiment began

  4. Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2014-01-01

    This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

  5. Foods Inducing Typical Gastroesophageal Reflux Disease Symptoms in Korea.

    Science.gov (United States)

    Choe, Jung Wan; Joo, Moon Kyung; Kim, Hyo Jung; Lee, Beom Jae; Kim, Ji Hoon; Yeon, Jong Eun; Park, Jong-Jae; Kim, Jae Seon; Byun, Kwan Soo; Bak, Young-Tae

    2017-07-30

    Several specific foods are known to precipitate gastroesophageal reflux disease (GERD) symptoms and GERD patients are usually advised to avoid such foods. However, foods consumed daily are quite variable according to regions, cultures, etc. This study was done to elucidate the food items which induce typical GERD symptoms in Korean patients. One hundred and twenty-six Korean patients with weekly typical GERD symptoms were asked to mark all food items that induced typical GERD symptoms from a list containing 152 typical foods consumed daily in Korea. All patients underwent upper gastrointestinal endoscopy followed by 24-hour ambulatory esophageal pH monitoring. The definition of "GERD" was if either of the 2 studies revealed evidence of GERD, and "possible GERD" if both studies were negative. One hundred and twenty-six cases (51 GERD and 75 possible GERD) were enrolled. In 19 (37.3%) of 51 GERD cases and in 17 (22.7%) of 75 possible GERD cases, foods inducing typical GERD symptoms were identified. In the GERD group (n = 19), frequent symptom-inducers were hot spicy stews, rice cakes, ramen noodles, fried foods, and topokki. In the possible GERD group (n = 17), frequent symptom-inducers were hot spicy stews, fried foods, doughnuts, breads, ramen noodles, coffee, pizza, topokki, rice cakes, champon noodles, and hotdogs. In one-third of GERD patients, foods inducing typical symptoms were identified. Hot spicy stews, rice cakes, ramen noodles, fried foods, and topokki were the foods frequently inducing typical symptoms in Korea. The list of foods frequently inducing typical GERD symptoms needs to be modified based on their own local experiences.

  6. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Entrance and escape dynamics for the typical set

    Science.gov (United States)

    Nicholson, Schuyler B.; Greenberg, Jonah S.; Green, Jason R.

    2018-01-01

    According to the asymptotic equipartition property, sufficiently long sequences of random variables converge to a set that is typical. While the size and probability of this set are central to information theory and statistical mechanics, they can often only be estimated accurately in the asymptotic limit due to the exponential growth in possible sequences. Here we derive a time-inhomogeneous dynamics that constructs the properties of the typical set for all finite length sequences of independent and identically distributed random variables. These dynamics link the finite properties of the typical set to asymptotic results and allow the typical set to be applied to small and transient systems. The main result is a geometric mapping—the triangle map—relating sequences of random variables of length n to those of length n +1 . We show that the number of points in this map needed to quantify the properties of the typical set grows linearly with sequence length, despite the exponential growth in the number of typical sequences. We illustrate the framework for the Bernoulli process and the Schlögl model for autocatalytic chemical reactions and demonstrate both the convergence to asymptotic limits and the ability to reproduce exact calculations.

  8. Multiple Pathways Linking Racism to Health Outcomes

    Science.gov (United States)

    Harrell, Camara Jules P.; Burford, Tanisha I.; Cage, Brandi N.; Nelson, Travette McNair; Shearon, Sheronda; Thompson, Adrian; Green, Steven

    2012-01-01

    This commentary discusses advances in the conceptual understanding of racism and selected research findings in the social neurosciences. The traditional stress and coping model holds that racism constitutes a source of aversive experiences that, when perceived by the individual, eventually lead to poor health outcomes. Current evidence points to additional psychophysiological pathways linking facets of racist environments with physiological reactions that contribute to disease. The alternative pathways emphasize prenatal experiences, subcortical emotional neural circuits, conscious and preconscious emotion regulation, perseverative cognitions, and negative affective states stemming from racist cognitive schemata. Recognition of these pathways challenges change agents to use an array of cognitive and self-controlling interventions in mitigating racism’s impact. Additionally, it charges policy makers to develop strategies that eliminate deep-seated structural aspects of racism in society. PMID:22518195

  9. Multimodal imaging of temporal processing in typical and atypical language development.

    Science.gov (United States)

    Kovelman, Ioulia; Wagley, Neelima; Hay, Jessica S F; Ugolini, Margaret; Bowyer, Susan M; Lajiness-O'Neill, Renee; Brennan, Jonathan

    2015-03-01

    New approaches to understanding language and reading acquisition propose that the human brain's ability to synchronize its neural firing rate to syllable-length linguistic units may be important to children's ability to acquire human language. Yet, little evidence from brain imaging studies has been available to support this proposal. Here, we summarize three recent brain imaging (functional near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG)) studies from our laboratories with young English-speaking children (aged 6-12 years). In the first study (fNIRS), we used an auditory beat perception task to show that, in children, the left superior temporal gyrus (STG) responds preferentially to rhythmic beats at 1.5 Hz. In the second study (fMRI), we found correlations between children's amplitude rise-time sensitivity, phonological awareness, and brain activation in the left STG. In the third study (MEG), typically developing children outperformed children with autism spectrum disorder in extracting words from rhythmically rich foreign speech and displayed different brain activation during the learning phase. The overall findings suggest that the efficiency with which left temporal regions process slow temporal (rhythmic) information may be important for gains in language and reading proficiency. These findings carry implications for better understanding of the brain's mechanisms that support language and reading acquisition during both typical and atypical development. © 2014 New York Academy of Sciences.

  10. Neural network technologies

    Science.gov (United States)

    Villarreal, James A.

    1991-01-01

    A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.

  11. Analysis of neural data

    CERN Document Server

    Kass, Robert E; Brown, Emery N

    2014-01-01

    Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.

  12. Neural tube defects

    Directory of Open Access Journals (Sweden)

    M.E. Marshall

    1981-09-01

    Full Text Available Neural tube defects refer to any defect in the morphogenesis of the neural tube, the most common types being spina bifida and anencephaly. Spina bifida has been recognised in skeletons found in north-eastern Morocco and estimated to have an age of almost 12 000 years. It was also known to the ancient Greek and Arabian physicians who thought that the bony defect was due to the tumour. The term spina bifida was first used by Professor Nicolai Tulp of Amsterdam in 1652. Many other terms have been used to describe this defect, but spina bifida remains the most useful general term, as it describes the separation of the vertebral elements in the midline.

  13. Neural networks for triggering

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  14. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  15. Neurally-mediated sincope.

    Science.gov (United States)

    Can, I; Cytron, J; Jhanjee, R; Nguyen, J; Benditt, D G

    2009-08-01

    Syncope is a syndrome characterized by a relatively sudden, temporary and self-terminating loss of consciousness; the causes may vary, but they have in common a temporary inadequacy of cerebral nutrient flow, usually due to a fall in systemic arterial pressure. However, while syncope is a common problem, it is only one explanation for episodic transient loss of consciousness (TLOC). Consequently, diagnostic evaluation should start with a broad consideration of real or seemingly real TLOC. Among those patients in whom TLOC is deemed to be due to ''true syncope'', the focus may then reasonably turn to assessing the various possible causes; in this regard, the neurally-mediated syncope syndromes are among the most frequently encountered. There are three common variations: vasovagal syncope (often termed the ''common'' faint), carotid sinus syndrome, and the so-called ''situational faints''. Defining whether the cause is due to a neurally-mediated reflex relies heavily on careful history taking and selected testing (e.g., tilt-test, carotid massage). These steps are important. Despite the fact that neurally-mediated faints are usually relatively benign from a mortality perspective, they are nevertheless only infrequently an isolated event; neurally-mediated syncope tends to recur, and physical injury resulting from falls or accidents, diminished quality-of-life, and possible restriction from employment or avocation are real concerns. Consequently, defining the specific form and developing an effective treatment strategy are crucial. In every case the goal should be to determine the cause of syncope with sufficient confidence to provide patients and family members with a reliable assessment of prognosis, recurrence risk, and treatment options.

  16. The Neural Noisy Channel

    OpenAIRE

    Yu, Lei; Blunsom, Phil; Dyer, Chris; Grefenstette, Edward; Kocisky, Tomas

    2016-01-01

    We formulate sequence to sequence transduction as a noisy channel decoding problem and use recurrent neural networks to parameterise the source and channel models. Unlike direct models which can suffer from explaining-away effects during training, noisy channel models must produce outputs that explain their inputs, and their component models can be trained with not only paired training samples but also unpaired samples from the marginal output distribution. Using a latent variable to control ...

  17. Food and Wine Tourism: an Analysis of Italian Typical Products

    Directory of Open Access Journals (Sweden)

    Francesco Maria Olivieri

    2015-06-01

    Full Text Available The aim of this work is to focus the specific role of local food productions in spite of its relationship with tourism sector to valorization and promotion of the territorial cultural heritage. The modern agriculture has been and, in the recent years, several specific features are emerging referring to different territorials areas. Tourist would like to have a complete experience consumption of a destination, specifically to natural and cultural heritage and genuine food. This contribute addresses the topics connected to the relationship between typical productions system and tourism sector to underline the competitive advantages to local development. The typical productions are Designation of Protected Origin (Italian DOP, within wine certifications DOCG and DOC and Typical Geographical Indication (IGP and wine’s IGT. The aim is an analysis of the specialization of these kinds of production at Italian regional scale. The implication of the work has connected with defining a necessary and appropriate value strategies based on marketing principles in order to translate the benefit of typical productions to additional value for the local system. Thus, the final part of the paper describes the potential dynamics with the suitable accommodation typology of agriturismo and the typical production system of Italian Administrative Regions.

  18. Early Freezing of Gait: Atypical versus Typical Parkinson Disorders

    Directory of Open Access Journals (Sweden)

    Abraham Lieberman

    2015-01-01

    Full Text Available In 18 months, 850 patients were referred to Muhammad Ali Parkinson Center (MAPC. Among them, 810 patients had typical Parkinson disease (PD and 212 had PD for ≤5 years. Among the 212 patients with early PD, 27 (12.7% had freezing of gait (FOG. Forty of the 850 had atypical parkinsonism. Among these 40 patients, all of whom had symptoms for ≤5 years, 12 (30.0% had FOG. FOG improved with levodopa in 21/27 patients with typical PD but did not improve in the 12 patients with atypical parkinsonism. FOG was associated with falls in both groups of patients. We believe that FOG unresponsive to levodopa in typical PD resembles FOG in atypical parkinsonism. We thus compared the 6 typical PD patients with FOG unresponsive to levodopa plus the 12 patients with atypical parkinsonism with the 21 patients with typical PD responsive to levodopa. We compared them by tests of locomotion and postural stability. Among the patients with FOG unresponsive to levodopa, postural stability was more impaired than locomotion. This finding leads us to believe that, in these patients, postural stability, not locomotion, is the principal problem underlying FOG.

  19. A neural network model of attention-modulated neurodynamics.

    Science.gov (United States)

    Gu, Yuqiao; Liljenström, Hans

    2007-12-01

    Visual attention appears to modulate cortical neurodynamics and synchronization through various cholinergic mechanisms. In order to study these mechanisms, we have developed a neural network model of visual cortex area V4, based on psychophysical, anatomical and physiological data. With this model, we want to link selective visual information processing to neural circuits within V4, bottom-up sensory input pathways, top-down attention input pathways, and to cholinergic modulation from the prefrontal lobe. We investigate cellular and network mechanisms underlying some recent analytical results from visual attention experimental data. Our model can reproduce the experimental findings that attention to a stimulus causes increased gamma-frequency synchronization in the superficial layers. Computer simulations and STA power analysis also demonstrate different effects of the different cholinergic attention modulation action mechanisms.

  20. Neural Based Orthogonal Data Fitting The EXIN Neural Networks

    CERN Document Server

    Cirrincione, Giansalvo

    2008-01-01

    Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh

  1. Typical patterns of oscillations in three-phase circuit

    Science.gov (United States)

    Hisakado, Takashi; Ukai, Shota

    Symmetrical three-phase circuits are fundamental models of power systems. Although the circuits have structural symmetry, asymmetric patterns of oscillations have been observed in real power systems. This paper describes an approach to understanding typical patterns of oscillations in the three-phase circuits using symmetry. In order to figure out oscillation patterns, we introduce a three LC ladder circuit which has a higher symmetry than the three-phase circuit. Using only the symmetries of the three LC ladder circuit, we classify periodic oscillations and construct a lattice of those modes. Further, extending the method to almost periodic oscillations, we decompose and characterize typical almost periodic oscillations by their symmetry. Finally, by observing a global phase space in the three LC ladder circuit, we confirm typical oscillations in the three-phase circuit.

  2. The Incremental Induction of Neuroprotective Properties by Multiple Therapeutic Strategies for Primary and Secondary Neural Injury

    Directory of Open Access Journals (Sweden)

    Seunghoon Lee

    2015-08-01

    Full Text Available Neural diseases including injury by endogenous factors, traumatic brain injury, and degenerative neural injury are eventually due to reactive oxygen species (ROS. Thus ROS generation in neural tissues is a hallmark feature of numerous forms of neural diseases. Neural degeneration and the neural damage process is complex, involving a vast array of tissue structure, transcriptional/translational, electrochemical, metabolic, and functional events within the intact neighbors surrounding injured neural tissues. During aging, multiple changes involving physical, chemical, and biochemical processes occur from the molecular to the morphological levels in neural tissues. Among many recommended therapeutic candidates, melatonin also plays a role in protecting the nervous system from anti-inflammation and efficiently safeguards neuronal cells via antioxidants and other endogenous/exogenous beneficial factors. Therefore, given the wide range of mechanisms responsible for neuronal damage, multi-action drugs or therapies for the treatment of neural injury that make use of two or more agents and target several pathways may have greater efficacy in promoting functional recovery than a single therapy alone.

  3. Using Neural Networks to Determine the Origin of Medical Ultrasound Images

    OpenAIRE

    Fossan, Øivind

    2017-01-01

    This thesis investigates the possibility of using neural networks to determine the body location of medical ultrasound images. Neural networks were trained on several datasets of both synthetic and real ultrasound images, containing labels with the location of each image. Next, the networks predicted the location of unseen images, and the accuracy was measured. The first dataset consisted of images from three typical locations for ultrasound-guided regional anesthesia, where a classificat...

  4. Modelling object typicality in description logics - [Workshop on Description Logics

    CSIR Research Space (South Africa)

    Britz, K

    2009-07-01

    Full Text Available with an illustrative example. Suppose we have the following terminological statements: Penguin v Bird u Flightless uAquatic (1) Penguin @ 18habitat:Southern (2) Southern v :Equatorial (3) GalapagosPenguin v Penguin (4) Line (2) of the TBox states that the habitat... of typical penguins is restricted to the south- ern regions. Note that we cannot derive from (2) and (4) that the habitat of typical Galapagos penguins is restricted to the southern regions. Further, let 1 be a modular Penguin-order that partitions...

  5. Neural dynamics of phonological processing in the dorsal auditory stream.

    Science.gov (United States)

    Liebenthal, Einat; Sabri, Merav; Beardsley, Scott A; Mangalathu-Arumana, Jain; Desai, Anjali

    2013-09-25

    Neuroanatomical models hypothesize a role for the dorsal auditory pathway in phonological processing as a feedforward efferent system (Davis and Johnsrude, 2007; Rauschecker and Scott, 2009; Hickok et al., 2011). But the functional organization of the pathway, in terms of time course of interactions between auditory, somatosensory, and motor regions, and the hemispheric lateralization pattern is largely unknown. Here, ambiguous duplex syllables, with elements presented dichotically at varying interaural asynchronies, were used to parametrically modulate phonological processing and associated neural activity in the human dorsal auditory stream. Subjects performed syllable and chirp identification tasks, while event-related potentials and functional magnetic resonance images were concurrently collected. Joint independent component analysis was applied to fuse the neuroimaging data and study the neural dynamics of brain regions involved in phonological processing with high spatiotemporal resolution. Results revealed a highly interactive neural network associated with phonological processing, composed of functional fields in posterior temporal gyrus (pSTG), inferior parietal lobule (IPL), and ventral central sulcus (vCS) that were engaged early and almost simultaneously (at 80-100 ms), consistent with a direct influence of articulatory somatomotor areas on phonemic perception. Left hemispheric lateralization was observed 250 ms earlier in IPL and vCS than pSTG, suggesting that functional specialization of somatomotor (and not auditory) areas determined lateralization in the dorsal auditory pathway. The temporal dynamics of the dorsal auditory pathway described here offer a new understanding of its functional organization and demonstrate that temporal information is essential to resolve neural circuits underlying complex behaviors.

  6. A model for the neural control of pineal periodicity

    Science.gov (United States)

    de Oliveira Cruz, Frederico Alan; Soares, Marilia Amavel Gomes; Cortez, Celia Martins

    2016-12-01

    The aim of this work was verify if a computational model associating the synchronization dynamics of coupling oscillators to a set of synaptic transmission equations would be able to simulate the control of pineal by a complex neural pathway that connects the retina to this gland. Results from the simulations showed that the frequency and temporal firing patterns were in the range of values found in literature.

  7. Neural Correlates of Stimulus Reportability

    OpenAIRE

    Hulme, Oliver J.; Friston, Karl F.; Zeki, Semir

    2009-01-01

    Most experiments on the “neural correlates of consciousness” employ stimulus reportability as an operational definition of what is consciously perceived. The interpretation of such experiments therefore depends critically on understanding the neural basis of stimulus reportability. Using a high volume of fMRI data, we investigated the neural correlates of stimulus reportability using a partial report object detection paradigm. Subjects were presented with a random array of circularly arranged...

  8. Symbolic processing in neural networks

    OpenAIRE

    Neto, João Pedro; Hava T Siegelmann; Costa,J.Félix

    2003-01-01

    In this paper we show that programming languages can be translated into recurrent (analog, rational weighted) neural nets. Implementation of programming languages in neural nets turns to be not only theoretical exciting, but has also some practical implications in the recent efforts to merge symbolic and sub symbolic computation. To be of some use, it should be carried in a context of bounded resources. Herein, we show how to use resource bounds to speed up computations over neural nets, thro...

  9. Differential diagnosis of dumbbell lesions associated with spinal neural foraminal widening: Imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Kivrak, Ali Sami [Selcuk University, Meram Medical Faculty, Department of Radiology, 42080 Konya (Turkey)], E-mail: alisamikivrak@hotmail.com; Koc, Osman; Emlik, Dilek; Kiresi, Demet; Odev, Kemal [Selcuk University, Meram Medical Faculty, Department of Radiology, 42080 Konya (Turkey); Kalkan, Erdal [Selcuk University, Meram Medical Faculty, Department of Neurosurgery, Konya (Turkey)

    2009-07-15

    Computed tomography (CT) and magnetic resonance imaging (MRI) reliably demonstrate typical features of schwannomas or neurofibromas in the vast majority of dumbbell lesions responsible for neural foraminal widening. However, a large variety of unusual lesions which are causes of neural foraminal widening can also be encountered in the spinal neural foramen. Radiologic findings can be helpful in differential diagnosis of lesions of spinal neural foramen including neoplastic lesions such as benign/malign peripheral nerve sheath tumors (PNSTs), solitary bone plasmacytoma (SBP), chondroid chordoma, superior sulcus tumor, metastasis and non-neoplastic lesions such as infectious process (tuberculosis, hydatid cyst), aneurysmal bone cyst (ABC), synovial cyst, traumatic pseudomeningocele, arachnoid cyst, vertebral artery tortuosity. In this article, we discuss CT and MRI findings of dumbbell lesions which are causes of neural foraminal widening.

  10. [Artificial neural networks in Neurosciences].

    Science.gov (United States)

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  11. Neural Correlates of Face Detection

    National Research Council Canada - National Science Library

    Xu, Xiaokun; Biederman, Irving

    2014-01-01

    Although face detection likely played an essential adaptive role in our evolutionary past and in contemporary social interactions, there have been few rigorous studies investigating its neural correlates...

  12. How learning to abstract shapes neural sound representations

    Directory of Open Access Journals (Sweden)

    Anke eLey

    2014-06-01

    Full Text Available The transformation of acoustic signals into abstract perceptual representations is the essence of the efficient and goal-directed neural processing of sounds in complex natural environments. While the human and animal auditory system is perfectly equipped to process the spectrotemporal sound features, adequate sound identification and categorization require neural sound representations that are invariant to irrelevant stimulus parameters. Crucially, what is relevant and irrelevant is not necessarily intrinsic to the physical stimulus structure but needs to be learned over time, often through integration of information from other senses. This review discusses the main principles underlying categorical sound perception with a special focus on the role of learning and neural plasticity. We examine the role of different neural structures along the auditory processing pathway in the formation of abstract sound representations with respect to hierarchical as well as dynamic and distributed processing models. Whereas most fMRI studies on categorical sound processing employed speech sounds, the emphasis of the current review lies on the contribution of empirical studies using natural or artificial sounds that enable separating acoustic and perceptual processing levels and avoid interference with existing category representations. Finally, we discuss the opportunities of modern analyses techniques (such as multivariate pattern analysis in studying categorical sound representations. With their increased sensitivity to distributed activation changes - even in absence of changes in overall signal level - these analyses techniques provide a promising tool to reveal the neural underpinnings of perceptually invariant sound representations.

  13. Artificial neural networks modeling gene-environment interaction

    Directory of Open Access Journals (Sweden)

    Günther Frauke

    2012-05-01

    Full Text Available Abstract Background Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up to compare neural networks with standard logistic regression models. Eight different structures of gene-environment interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic factor with main effect or with a masking effect only. Results In our simulation study, neural networks are more successful in modeling gene-environment interactions than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of the genetic factor. Conclusion Our study shows that neural networks are a promising approach for analyzing gene-environment interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and response variable is present, neural networks provide a valuable alternative to regression methods that are limited to the analysis of linearly separable data.

  14. Fostering an Interest in Science in a Typically Underrepresented Population

    Science.gov (United States)

    Davis, Sarah F.; McEntire, Jennifer Cleveland; Sarakatsannis, James

    2007-01-01

    This "case study" details how food science was introduced into the classrooms of a typically underrepresented population. James Sarakatsannis, an 8th grade physical science teacher, was planning a unit that would use fast food to teach science to his classes, when he came across the Institute of Food Technologists (IFT) website and a…

  15. Human Behavior, Learning, and the Developing Brain: Typical Development

    Science.gov (United States)

    Coch, Donna, Ed.; Fischer, Kurt W., Ed.; Dawson, Geraldine, Ed.

    2010-01-01

    This volume brings together leading authorities from multiple disciplines to examine the relationship between brain development and behavior in typically developing children. Presented are innovative cross-sectional and longitudinal studies that shed light on brain-behavior connections in infancy and toddlerhood through adolescence. Chapters…

  16. Imitation and the Social Mind: Autism and Typical Development

    Science.gov (United States)

    Rogers, Sally J., Ed.; Williams, Justin H. G., Ed.

    2006-01-01

    From earliest infancy, a typically developing child imitates or mirrors the facial expressions, postures and gestures, and emotional behavior of others. Where does this capacity come from, and what function does it serve? What happens when imitation is impaired? Synthesizing cutting-edge research emerging from a range of disciplines, this…

  17. Pattern of facial palsy in a typical Nigerian specialist hospital ...

    African Journals Online (AJOL)

    Pattern of facial palsy in a typical Nigerian specialist hospital. S Lamina, S Hanif. Abstract. Background: Data on incidence of facial palsy is generally lacking in Nigeria. Objective: To assess six years' incidence of facial palsy in Murtala Muhammed Specialist Hospital (MMSH), Kano, Nigeria. Method: The records of patients ...

  18. Face-to-Face Interference in Typical and Atypical Development

    Science.gov (United States)

    Riby, Deborah M.; Doherty-Sneddon, Gwyneth; Whittle, Lisa

    2012-01-01

    Visual communication cues facilitate interpersonal communication. It is important that we look at faces to retrieve and subsequently process such cues. It is also important that we sometimes look away from faces as they increase cognitive load that may interfere with online processing. Indeed, when typically developing individuals hold face gaze…

  19. The typicality of academic discourse and its relevance for constructs ...

    African Journals Online (AJOL)

    Constructs of academic literacy are used both for test and course design. While the discussion is relevant to both, the focus of this article will be on test design. Constructs of academic literacy necessarily depend on definitions that assume that academic discourse is typically different from other kinds of discourse. The more ...

  20. Gendered Perceptions of Typical Engineers across Specialties for Engineering Majors

    Science.gov (United States)

    Kelley, Margaret S.; Bryan, Kimberley K.

    2018-01-01

    Young women do not choose to be engineers nearly as often as young men, and they tend to cluster in particular specialties when they do. We examine these patterns and the role of gender schemas as applied to perceptions of typical engineers in understanding the choices that women make in terms of engineering specialties. We use Part 1 of two waves…

  1. Anomia: a doubly typical signature of semantic dementia.

    Science.gov (United States)

    Woollams, Anna M; Cooper-Pye, Elisa; Hodges, John R; Patterson, Karalyn

    2008-08-01

    This study was designed to explore the nature of the anomia that is a defining feature of semantic dementia. Using a pool of 225 sets of picture naming data from 78 patients, we assessed the effects on naming accuracy of several characteristics of the target objects or their names: familiarity, frequency, age of acquisition and semantic domain (living/non-living). We also analysed the distribution of different error types according to the severity of the naming deficit. A particular focus of the study was the impact on naming of a previously unconsidered variable: the typicality of an object within its semantic category. This factor had a major influence both on naming success and on the proportions of different error types. Moreover, and increasingly so with declining naming accuracy, the patients' single-word incorrect responses were more typical than the target names. The observed effects of typicality sit well within models of semantic memory that represent concepts in terms of patterns of co-occurrence of constituent features. The results add to a growing body of evidence that, throughout the progressive deterioration of conceptual knowledge that characterises semantic dementia, both accuracy of performance and the nature of error responses are increasingly determined by the domain-specific aspects of typicality relevant to the task in question.

  2. Breast Metastases from Extramammary Malignancies: Typical and Atypical Ultrasound Features

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Sung Hee [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Department of Radiology, Catholic University of Daegu College of Medicine, Daegu 712-702 (Korea, Republic of); Ko, Eun Young; Han, Boo-Kyung; Shin, Jung Hee [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, Suk Jung [Department of Radiology, Inje University College of Medicine, Busan Paik Hospital, Busan 614-735 (Korea, Republic of); Cho, Eun Yoon [Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of)

    2014-07-01

    Breast metastases from extramammary malignancies are uncommon. The most common sources are lymphomas/leukemias and melanomas. Some of the less common sources include carcinomas of the lung, ovary, and stomach, and infrequently, carcinoid tumors, hypernephromas, carcinomas of the liver, tonsil, pleura, pancreas, cervix, perineum, endometrium and bladder. Breast metastases from extramammary malignancies have both hematogenous and lymphatic routes. According to their routes, there are common radiological features of metastatic diseases of the breast, but the features are not specific for metastases. Typical ultrasound (US) features of hematogenous metastases include single or multiple, round to oval shaped, well-circumscribed hypoechoic masses without spiculations, calcifications, or architectural distortion; these masses are commonly located superficially in subcutaneous tissue or immediately adjacent to the breast parenchyma that is relatively rich in blood supply. Typical US features of lymphatic breast metastases include diffusely and heterogeneously increased echogenicities in subcutaneous fat and glandular tissue and a thick trabecular pattern with secondary skin thickening, lymphedema, and lymph node enlargement. However, lesions show variable US features in some cases, and differentiation of these lesions from primary breast cancer or from benign lesions is difficult. In this review, we demonstrate various US appearances of breast metastases from extramammary malignancies as typical and atypical features, based on the results of US and other imaging studies performed at our institution. Awareness of the typical and atypical imaging features of these lesions may be helpful to diagnose metastatic lesions of the breast.

  3. Conversational Profiles of Children with ADHD, SLI and Typical Development

    Science.gov (United States)

    Redmond, Sean M.

    2004-01-01

    Conversational indices of language impairment were used to investigate similarities and differences among children with Attention-Deficit/Hyperactivity Disorder (ADHD), children with Specific Language Impairment (SLI) and children with typical development (TD). Utterance formulation measures (per cent words mazed and average number of words per…

  4. Typical career dilemmas of academic staff during the early career ...

    African Journals Online (AJOL)

    Erna Kinsey

    Job satisfaction is of great importance for any organization, including higher education insti- tutions, as it impacts ... support regarding research and teaching; discrimination; and certain management matters. Introduction. It is well .... typical career dilemmas of academic staff in the early career phase within a changing South.

  5. Attention, Working Memory, and Grammaticality Judgment in Typical Young Adults

    Science.gov (United States)

    Smith, Pamela A.

    2011-01-01

    Purpose: To examine resource allocation and sentence processing, this study examined the effects of auditory distraction on grammaticality judgment (GJ) of sentences varied by semantics (reversibility) and short-term memory requirements. Method: Experiment 1: Typical young adult females (N = 60) completed a whole-sentence GJ task in distraction…

  6. Simulation of seawater intrusion in coastal aquifers: Some typical ...

    Indian Academy of Sciences (India)

    Seawater intrusion in coastal aquifers is generally three dimensional (3-D) in nature. In the literature, there is a general lack of reported results on 3-D simulations. This paper presents some typical example simulations of 3-D seawater intrusion process for a specified hypothetical study area. The simulation results presented ...

  7. Artificial bias typically neglected in comparisons of uncertain atmospheric data

    Science.gov (United States)

    Arola, A. T.; Pitkänen, M. R. A.; Mikkonen, S.; Lipponen, A.; Lehtinen, K. E.

    2016-12-01

    Researchers in atmospheric sciences typically neglect biases caused by regression dilution and regression to the mean (RTM) in comparisons of uncertain data. Regression dilution occurs when the ordinary least squares regression method is used on a predictor with random data uncertainty, which causes the slope to become biased towards zero. RTM on the other hand happens when an extreme observation is accompanied by a less extreme follow-up observation. These biases both originate from random uncertainties of the reference data, which is typically not taken into account and discussed in atmospheric sciences. This is crucial, since essentially all typical atmospheric data have some level of uncertainty. We use synthetic observations of aerosol optical thickness and UV index mimicking real atmospheric data to demonstrate how the biases arise from random data uncertainties of measurements, model output, or satellite retrieval products. Further, we provide examples of typical methods of data comparisons that have a tendency to pronounce the biases. The results show, that data uncertainties can significantly bias data comparisons due regression dilution and RTM, a fact that is known in statistics, but disregarded in atmospheric sciences. Thus we argue, that often these biases are widely regarded as measurement or modeling errors, for instance, while they in fact are artificial. It is essential that atmospheric and geoscience communities become aware of and consider features in research.

  8. Differences in College Student Typical Drinking and Celebration Drinking

    Science.gov (United States)

    Woodyard, Catherine Dane; Hallam, Jeffrey S.

    2010-01-01

    Objective: The purpose of the study was to determine whether students consume alcohol in greater quantities when drinking in celebration of an event or holiday versus typical drinking use. Celebratory occasions include tailgating during football games, holidays, and the beginning and ending of academic semesters. Participants: Traditional…

  9. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Piya Prajumwongs

    2016-01-01

    Full Text Available Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation.

  10. Synchronization of a Class of Fractional-Order Chaotic Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Chai

    2013-08-01

    Full Text Available The synchronization problem is studied in this paper for a class of fractional-order chaotic neural networks. By using the Mittag-Leffler function, M-matrix and linear feedback control, a sufficient condition is developed ensuring the synchronization of such neural models with the Caputo fractional derivatives. The synchronization condition is easy to verify, implement and only relies on system structure. Furthermore, the theoretical results are applied to a typical fractional-order chaotic Hopfield neural network, and numerical simulation demonstrates the effectiveness and feasibility of the proposed method.

  11. Neural systems for tactual memories.

    Science.gov (United States)

    Bonda, E; Petrides, M; Evans, A

    1996-04-01

    1. The aim of this study was to investigate the neural systems involved in the memory processing of experiences through touch. 2. Regional cerebral blood flow was measured with positron emission tomography by means of the water bolus H2(15)O methodology in human subjects as they performed tasks involving different levels of tactual memory. In one of the experimental tasks, the subjects had to palpate nonsense shapes to match each one to a previously learned set, thus requiring constant reference to long-term memory. The other experimental task involved judgements of the recent recurrence of shapes during the scanning period. A set of three control tasks was used to control for the type of exploratory movements and sensory processing inherent in the two experimental tasks. 3. Comparisons of the distribution of activity between the experimental and the control tasks were carried out by means of the subtraction method. In relation to the control conditions, the two experimental tasks requiring memory resulted in significant changes within the posteroventral insula and the central opercular region. In addition, the task requiring recall from long-term memory yielded changes in the perirhinal cortex. 4. The above findings demonstrated that a ventrally directed parietoinsular pathway, leading to the posteroventral insula and the perirhinal cortex, constitutes a system by which long-lasting representations of tactual experiences are formed. It is proposed that the posteroventral insula is involved in tactual feature analysis, by analogy with the similar role of the inferotemporal cortex in vision, whereas the perirhinal cortex is further involved in the integration of these features into long-lasting representations of somatosensory experiences.

  12. Typical load shapes for six categories of Swedish commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Noren, C.

    1997-01-01

    In co-operation with several Swedish electricity suppliers, typical load shapes have been developed for six categories of commercial buildings located in the south of Sweden. The categories included in the study are: hotels, warehouses/grocery stores, schools with no kitchen, schools with kitchen, office buildings, health, health buildings. Load shapes are developed for different mean daily outdoor temperatures and for different day types, normally standard weekdays and standard weekends. The load shapes are presented as non-dimensional normalized 1-hour load. All measured loads for an object are divided by the object`s mean load during the measuring period and typical load shapes are developed for each category of buildings. Thus errors were kept lower as compared to use of W/m{sup 2}-terms. Typical daytime (9 a.m. - 5 p.m.) standard deviations are 7-10% of the mean values for standard weekdays but during very cold or warm weather conditions, single objects can deviate from the typical load shape. On weekends, errors are higher and depending on very different activity levels in the buildings, it is difficult to develop weekend load shapes with good accuracy. The method presented is very easy to use for similar studies and no building simulation programs are needed. If more load data is available, a good method to lower the errors is to make sure that every category only consists of objects with the same activity level, both on weekdays and weekends. To make it easier to use the load shapes, Excel load shape workbooks have been developed, where it is even possible to compare typical load shapes with measured data. 23 refs, 53 figs, 20 tabs

  13. The neural underpinnings of prosody in autism

    Science.gov (United States)

    Eigsti, Inge-Marie; Schuh, Jillian; Mencl, Einar; Schultz, Robert T.; Paul, Rhea

    2012-01-01

    This study examines the processing of prosodic cues to linguistic structure and to affect, drawing on fMRI and behavioral data from 16 high-functioning adolescents with autism spectrum disorders (ASD) and 11 typically-developing controls. Stimuli were carefully matched on pitch, intensity, and duration, while varying systematically in conditions of affective prosody (angry versus neutral speech) and grammatical prosody (questions versus statement). To avoid conscious attention to prosody, which normalizes responses in young people with ASD, the implicit comprehension task directed attention to semantic aspects of the stimuli. Results showed that when perceiving prosodic cues, both affective and grammatical, activation of neural regions was more generalized in ASD than in typical development, and areas recruited reflect heightened reliance on cognitive control, reading of intentions, attentional management, and visualization. This broader recruitment of executive and “mind-reading” brain areas for a relative simple language processing task may be interpreted to suggest that speakers with HFA have developed less automaticity in language processing, and may also suggest that “mind-reading” or theory of mind deficits are intricately bound up in language processing. Data provide support for both a right-lateralized as well as a bilateral model of prosodic processing in typical individuals, depending upon the function of the prosodic information. PMID:22176162

  14. The neural underpinnings of prosody in autism.

    Science.gov (United States)

    Eigsti, Inge-Marie; Schuh, Jillian; Mencl, Einar; Schultz, Robert T; Paul, Rhea

    2012-01-01

    This study examines the processing of prosodic cues to linguistic structure and to affect, drawing on fMRI and behavioral data from 16 high-functioning adolescents with autism spectrum disorders (ASD) and 11 typically developing controls. Stimuli were carefully matched on pitch, intensity, and duration, while varying systematically in conditions of affective prosody (angry versus neutral speech) and grammatical prosody (questions versus statement). To avoid conscious attention to prosody, which normalizes responses in young people with ASD, the implicit comprehension task directed attention to semantic aspects of the stimuli. Results showed that when perceiving prosodic cues, both affective and grammatical, activation of neural regions was more generalized in ASD than in typical development, and areas recruited reflect heightened reliance on cognitive control, reading of intentions, attentional management, and visualization. This broader recruitment of executive and "mind-reading" brain areas for a relative simple language-processing task may be interpreted to suggest that speakers with high-functioning autism (HFA) have developed less automaticity in language processing and may also suggest that "mind-reading" or theory of mind deficits are intricately bound up in language processing. Data provide support for both a right-lateralized as well as a bilateral model of prosodic processing in typical individuals, depending upon the function of the prosodic information.

  15. Overdiagnosis of a typical carcinoid tumor as an adenocarcinoma of the lung: a case report and review of the literature

    OpenAIRE

    Demirci Ilhan; Herold Susanne; Kopp Andreas; Flaßhove Michael; Klosterhalfen Bernd; Janßen Hermann

    2012-01-01

    Abstract Background Overdiagnosis of bronchopulmonary carcinoid tumors together with overtreatment can cause serious postoperative consequences for the patient. We report of a patient with a typical bronchopulmonary carcinoid tumor, which was initially misdiagnosed and treated as an adenocarcinoma of the lung. GnrH receptors and the associated Raf-1/MEK/ERK-1/2-pathway are potential targets for analogs in cancer treatment. We suspected a correlation between the lack of tumor growth, applicati...

  16. Optics in neural computation

    Science.gov (United States)

    Levene, Michael John

    In all attempts to emulate the considerable powers of the brain, one is struck by both its immense size, parallelism, and complexity. While the fields of neural networks, artificial intelligence, and neuromorphic engineering have all attempted oversimplifications on the considerable complexity, all three can benefit from the inherent scalability and parallelism of optics. This thesis looks at specific aspects of three modes in which optics, and particularly volume holography, can play a part in neural computation. First, holography serves as the basis of highly-parallel correlators, which are the foundation of optical neural networks. The huge input capability of optical neural networks make them most useful for image processing and image recognition and tracking. These tasks benefit from the shift invariance of optical correlators. In this thesis, I analyze the capacity of correlators, and then present several techniques for controlling the amount of shift invariance. Of particular interest is the Fresnel correlator, in which the hologram is displaced from the Fourier plane. In this case, the amount of shift invariance is limited not just by the thickness of the hologram, but by the distance of the hologram from the Fourier plane. Second, volume holography can provide the huge storage capacity and high speed, parallel read-out necessary to support large artificial intelligence systems. However, previous methods for storing data in volume holograms have relied on awkward beam-steering or on as-yet non- existent cheap, wide-bandwidth, tunable laser sources. This thesis presents a new technique, shift multiplexing, which is capable of very high densities, but which has the advantage of a very simple implementation. In shift multiplexing, the reference wave consists of a focused spot a few millimeters in front of the hologram. Multiplexing is achieved by simply translating the hologram a few tens of microns or less. This thesis describes the theory for how shift

  17. An Efficient Neural Network Based Modeling Method for Automotive EMC Simulation

    Science.gov (United States)

    Frank, Florian; Weigel, Robert

    2011-09-01

    This paper presents a newly developed methodology for VHDL-AMS model integration into SPICE-based EMC simulations. To this end the VHDL-AMS model, which is available in a compiled version only, is characterized under typical loading conditions, and afterwards a neural network based technique is applied to convert characteristic voltage and current data into an equivalent circuit in SPICE syntax. After the explanation of the whole method and the presentation of a newly developed switched state space dynamic neural network model, the entire analysis process is demonstrated using a typical application from automotive industry.

  18. Rapid neural circuit switching mediated by synaptic plasticity during neural morphallactic regeneration.

    Science.gov (United States)

    Lybrand, Zane R; Zoran, Mark J

    2012-09-01

    The aquatic oligochaete, Lumbriculus variegatus (Lumbriculidae), undergoes a rapid regenerative transformation of its neural circuits following body fragmentation. This type of nervous system plasticity, called neural morphallaxis, involves the remodeling of the giant fiber pathways that mediate rapid head and tail withdrawal behaviors. Extra- and intracellular electrophysiological recordings demonstrated that changes in cellular properties and synaptic connections underlie neurobehavioral plasticity during morphallaxis. Sensory-to-giant interneuron connections, undetectable prior to body injury, emerged within hours of segment amputation. The appearance of functional synaptic transmission was followed by interneuron activation, coupling of giant fiber spiking to motor outputs and overt segmental shortening. The onset of morphallactic plasticity varied along the body axis and emerged more rapidly in segments closer to regions of sensory field overlap between the two giant fiber pathways. The medial and lateral giant fibers were simultaneously activated during a transient phase of network remodeling. Thus, synaptic plasticity at sensory-to-giant interneuron connections mediates escape circuit morphallaxis in this regenerating annelid worm. Copyright © 2011 Wiley Periodicals, Inc.

  19. Pupillary Response and Phenotype in ASD: Latency to Constriction Discriminates ASD from Typically Developing Adolescents.

    Science.gov (United States)

    Lynch, Georgina T F; James, Stephen M; VanDam, Mark

    2017-10-31

    Brain imaging data describe differences in the ASD brain, including amygdala overgrowth, neural interconnectivity, and a three-phase model of neuroanatomical changes from early post-natal development through late adolescence. The pupil reflex test (PRT), a noninvasive measure of brain function, may help improve early diagnosis and elucidate underlying physiology in expression of ASD endophenotype. Commonly observed characteristics of ASD include normal visual acuity but difficulty with eye gaze and photosensitivity, suggesting deficient neuromodulation of cranial nerves. Aims of this study were to confirm sensitivity of the PRT for identifying adolescents with ASD, determine if a phenotype for a subtype of ASD marked by pupil response is present in adolescence, and determine whether differences could be observed on a neurologic exam testing cranial nerves II and III (CNII; CNIII). Using pupillometry, constriction latency was measured serving as a proxy for recording neuromodulation of cranial nerves underlying the pupillary reflex. The swinging flashlight method, used to perform the PRT for measuring constriction latency and return to baseline, discriminated ASD participants from typically developing adolescents on 72.2% of trials. Results further confirmed this measure's sensitivity within a subtype of ASD in later stages of development, serving as a correlate of neural activity within the locus-coeruleus norepinephrine (LC-NE) system. A brainstem model of atypical PRT in ASD is examined in relation to modulation of cranial nerves and atypical arousal levels subserving the atypical pupillary reflex. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Milder forms of autism spectrum disorder (ASD) can be difficult to diagnose based on behavioral testing alone. This study used eye-tracking equipment and a hand-held penlight to measure the pupil reflex in adolescents with "high functioning" ASD and in adolescents without ASD

  20. The neural substrate of the vestibulocollic reflex. What needs to be learned.

    Science.gov (United States)

    Wilson, V J; Schor, R H

    1999-12-01

    The purpose of this review is to assess the role of short-latency pathways in the vestibulocollic reflex (VCR). First the current knowledge about the disynaptic and trisynaptic pathways linking semicircular canal and otolith afferents with cat neck motoneurons is summarized. We then discuss whether these pathways are sufficient or necessary to produce the responses observed in neck muscles by natural vestibular stimulation and conclude that they are neither. Finally, alternate pathways are considered, most likely involving reticulospinal fibers, which are an important part of the neural substrate of the VCR.

  1. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway

    Directory of Open Access Journals (Sweden)

    Joel R. Frandsen

    2018-04-01

    Full Text Available The glyoxalase pathway functions to detoxify reactive dicarbonyl compounds, most importantly methylglyoxal. The glyoxalase pathway is an antioxidant defense mechanism that is essential for neuroprotection. Excessive concentrations of methylglyoxal have deleterious effects on cells, leading to increased levels of inflammation and oxidative stress. Neurodegenerative diseases – including Alzheimer's, Parkinson's, Aging and Autism Spectrum Disorder – are often induced or exacerbated by accumulation of methylglyoxal. Antioxidant compounds possess several distinct mechanisms that enhance the glyoxalase pathway and function as neuroprotectants. Flavonoids are well-researched secondary plant metabolites that appear to be effective in reducing levels of oxidative stress and inflammation in neural cells. Novel flavonoids could be designed, synthesized and tested to protect against neurodegenerative diseases through regulating the glyoxalase pathway. Keywords: Glyoxalase pathway, Neuron, Flavonoid, Antioxidant, Neurodegenerative disease, Neuroprotection, Detoxification, Neurons viable

  2. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  3. Artificial Neural Networks·

    Indian Academy of Sciences (India)

    differences between biological neural networks (BNNs) of the brain and ANN s. A thorough understanding of ... neurons. Artificial neural models are loosely based on biology since a complete understanding of the .... A learning scheme for updating a neuron's connections (weights) was proposed by Donald Hebb in 1949.

  4. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  5. The Neural Support Vector Machine

    NARCIS (Netherlands)

    Wiering, Marco; van der Ree, Michiel; Embrechts, Mark; Stollenga, Marijn; Meijster, Arnold; Nolte, A; Schomaker, Lambertus

    2013-01-01

    This paper describes a new machine learning algorithm for regression and dimensionality reduction tasks. The Neural Support Vector Machine (NSVM) is a hybrid learning algorithm consisting of neural networks and support vector machines (SVMs). The output of the NSVM is given by SVMs that take a

  6. Directed forgetting: differential effects on typical and distinctive faces.

    Science.gov (United States)

    Metzger, Mitchell M

    2011-01-01

    Directed forgetting (DF) occurs when stimuli presented during the study phase are followed by "forget" and "remember" cues. On a subsequent memory test, poor memory is observed for stimuli followed by the forget cues, compared to stimuli followed by the remember cues. Although DF is most commonly observed with verbal tasks, the present study extended intentional forgetting research for nonverbal stimuli and examined whether faces were susceptible to DF. Results confirmed that the presentation of a forget cue significantly reduced recognition for faces, as compared to faces followed by a remember cue. Additionally, a well-established finding in face recognition is that distinctive faces are better remembered than typical faces, and Experiment 2 assessed whether face appearance influenced the degree of DF. Results indicate that the DF effect observed in Experiment 1 was replicated in Experiment 2 and that the effect was more pronounced for those faces that were typical in appearance.

  7. Verbal communication skills in typical language development: a case series.

    Science.gov (United States)

    Abe, Camila Mayumi; Bretanha, Andreza Carolina; Bozza, Amanda; Ferraro, Gyovanna Junya Klinke; Lopes-Herrera, Simone Aparecida

    2013-01-01

    The aim of the current study was to investigate verbal communication skills in children with typical language development and ages between 6 and 8 years. Participants were 10 children of both genders in this age range without language alterations. A 30-minute video of each child's interaction with an adult (father and/or mother) was recorded, fully transcribed, and analyzed by two trained researchers in order to determine reliability. The recordings were analyzed according to a protocol that categorizes verbal communicative abilities, including dialogic, regulatory, narrative-discursive, and non-interactive skills. The frequency of use of each category of verbal communicative ability was analyzed (in percentage) for each subject. All subjects used more dialogical and regulatory skills, followed by narrative-discursive and non-interactive skills. This suggests that children in this age range are committed to continue dialog, which shows that children with typical language development have more dialogic interactions during spontaneous interactions with a familiar adult.

  8. Memory for radio advertisements: the effect of program and typicality.

    Science.gov (United States)

    Martín-Luengo, Beatriz; Luna, Karlos; Migueles, Malen

    2013-01-01

    We examined the influence of the type of radio program on the memory for radio advertisements. We also investigated the role in memory of the typicality (high or low) of the elements of the products advertised. Participants listened to three types of programs (interesting, boring, enjoyable) with two advertisements embedded in each. After completing a filler task, the participants performed a true/false recognition test. Hits and false alarm rates were higher for the interesting and enjoyable programs than for the boring one. There were also more hits and false alarms for the high-typicality elements. The response criterion for the advertisements embedded in the boring program was stricter than for the advertisements in other types of programs. We conclude that the type of program in which an advertisement is inserted and the nature of the elements of the advertisement affect both the number of hits and false alarms and the response criterion, but not the accuracy of the memory.

  9. Typical homicide ritual of the Italian Mafia (incaprettamento)

    Science.gov (United States)

    Fineschi, V; Dell'Erba, A S; Di Paolo, M; Procaccianti, P

    1998-03-01

    Certain methods of homicide used by the Italian Mafia are intended to have an admonitory significance. One such method is the so-called "incaprettamento." This study analyzes 18 cases of homicidal ligature strangulation in which the body was found in this typical position. The circumstances of the crime and the macroscopic and microscopic evidence were evaluated to determine whether or not the ligatures on the wrists and ankles were placed antemortem or postmortem.

  10. Dealing with typical values via Atanassov's intuitionistic fuzzy sets

    Science.gov (United States)

    Szmidt, Eulalia; Kacprzyk, Janusz

    2010-07-01

    This paper is an improved and extended version of our previous work2 on typicality in terms of Atanassov's intuitionistic fuzzy sets (to be called A-IFSs, for short)3. We follow the line of reasoning known from psychological and cognitive sciences, in particular from linguistic experiments, and verify how those results work in the case of classification - a typical problem in computer science, decision sciences, etc. Our considerations concentrate on a typical example discussed in cognitive sciences - we investigate to which extent a linguistic representation in a psychological space (we start from nominal data - names are assigned to objects as labels) succeeds in predicting categories via A-IFSs. First, we consider a model of categories with a geometrical centroid model in which the similarity is defined in terms of a distance to centroids. Next, we verify if the extreme ideals, which are important in cognitive processes when categories are learnt in the presence of the alternative (contrast) category, give comparative results. Finally, we discuss if the 'reachable extreme ideals' and 'dominating frequency centres' give comparative results. We show that A-IFSs make it possible to reflect a positive and negative information via the concept of membership and non-membership. Although the paper presents ongoing research, the results obtained are promising and point out the usefulness and strength of A-IFSs as a tool to account for more aspects of vague data and information. Based on 'On Some Typical Values for A-IFS', by E. Szmidt and J. Kacprzyk which appeared in the Proceedings of the 4th International IEEE Conference on Intelligent Systems IS'08, pp. 13-2-13-7. There is currently a discussion on the appropriateness of the name IFS introduced by Dubois et al. (2005), and also Atanassov's (2005) response. This is, however, beyond the scope of this paper which will not be dealing with this issue.

  11. Rural Tourism and Local Development: Typical Productions of Lazio

    OpenAIRE

    Francesco Maria Olivieri

    2014-01-01

    The local development is based on the integration of the tourism sector with the whole economy. The rural tourism seems to be a good occasion to analyse the local development: consumption of "tourist products" located in specific local contexts. Starting from the food and wine supply chain and the localization of typical productions, the aim of the present work will be analyse the relationship with local development, rural tourism sustainability and accommodation system, referring to Lazio. W...

  12. TYPICAL LEISHMANIOSIS IN A DOG REGULARLY VACCINATED WITH CANILEISH®

    OpenAIRE

    Alessandra Gavazza; Anyela Andrea Medina Valentin; George Lubas

    2016-01-01

    The vaccine Canileish® is distributed in Europe to reduce the risk of developing an active infection and clinical leishmaniosis. An English Setter dog vaccinated with Canileish® and treated with anti-feeding and repellent medications showed typical clinical signs of leishmaniosis. The dog was presented with dysorexia, weight loss, fever and forelimb lameness. The physical exam revealed moderate generalized external lymph node enlargement, sero-purulent ocular discharge, photophobia, and swoll...

  13. Typical and atypical anorexia nervosa in a Japanese sample.

    Science.gov (United States)

    Nakai, Yoshikatsu; Nin, Kazuko; Teramukai, Satoshi; Taniguchi, Ataru; Fukushima, Mitsuo; Wonderlich, Stephen A

    2014-03-01

    We examined the existence of nonfat-phobic anorexia nervosa (NFP-AN) and fat-phobic AN, with no evidence of distortions related to body shape and weight (AN-NED), in a Japanese sample and studied eating disorder pathology and psychopathology in NFP-AN and AN-NED. The study participants were 200 (52.2%) women with typical AN, 86 (22.5%) women with NFP-AN, and 97 (25.3%) women with AN-NED. Diagnosis of the three types of AN was made by structured clinical interviews. The Eating Attitudes Test (EAT) and the Eating Disorder Inventory (EDI) were administered to all the participants. There were significant differences among the three groups in terms of duration of illness, maximum and minimum BMIs and AN subtypes. There was no transition from the NFP-AN and AN-NED groups to the typical AN group during the 2- to 7-year follow-up period. There were significant differences among the three groups in scores of the EAT, the EDI total, and all the subscales of the EDI. Besides typical AN, there were two types of atypical AN in terms of fat phobia and body image disturbance in this Japanese sample. The findings of the current study suggest that there may be significant differences among the three groups in terms of eating disorder pathology and psychopathology. Copyright © 2013 Wiley Periodicals, Inc.

  14. Rural Tourism and Local Development: Typical Productions of Lazio

    Directory of Open Access Journals (Sweden)

    Francesco Maria Olivieri

    2014-12-01

    Full Text Available The local development is based on the integration of the tourism sector with the whole economy. The rural tourism seems to be a good occasion to analyse the local development: consumption of "tourist products" located in specific local contexts. Starting from the food and wine supply chain and the localization of typical productions, the aim of the present work will be analyse the relationship with local development, rural tourism sustainability and accommodation system, referring to Lazio. Which are the findings to create tourism local system based on the relationship with touristic and food and wine supply chain? Italian tourism is based on accommodation system, so the whole consideration of the Italian cultural tourism: tourism made in Italy. The touristic added value to specific local context takes advantage from the synergy with food and wine supply chain: made in Italy of typical productions. Agritourism could be better accommodation typology to rural tourism and to exclusivity of consumption typical productions. The reciprocity among food and wine supply chain and tourism provides new insights on the key topics related to tourism development and to the organization of geographical space as well and considering its important contribution nowadays to the economic competitiveness.

  15. Typically Female Features in Hungarian Shopping Tourism

    Directory of Open Access Journals (Sweden)

    Gábor Michalkó

    2006-06-01

    Full Text Available Although shopping has been long acknowledged as a major tourist activity, the extent and characteristics of shopping tourism have only recently become the subject of academic research and discussion. As a contribution to this field of knowledge, the paper presents the characteristics of shopping tourism in Hungary, and discusses the typically female features of outbound Hungarian shopping tourism. The research is based on a survey of 2473 Hungarian tourists carried out in 2005. As the findings of the study indicate, while female respondents were altogether more likely to be involved in tourist shopping than male travellers, no significant difference was experienced between the genders concerning the share of shopping expenses compared to their total travel budget. In their shopping behaviour, women were typically affected by price levels, and they proved to be both more selfish and more altruistic than men by purchasing more products for themselves and for their family members. The most significant differences between men and women were found in their product preferences as female tourists were more likely to purchase typically feminine goods such as clothes, shoes, bags and accessories, in the timing of shopping activities while abroad, and in the information sources used by tourists, since interpersonal influences such as friends’, guides’ and fellow travellers’ recommendations played a higher role in female travellers’ decisions.

  16. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  17. The Neural Correlates of Race

    Science.gov (United States)

    Ito, Tiffany A.; Bartholow, Bruce D.

    2009-01-01

    Behavioral analyses are a natural choice for understanding the wide-ranging behavioral consequences of racial stereotyping and prejudice. However, neuroimaging and electrophysiological research has recently considered the neural mechanisms that underlie racial categorization and the activation and application of racial stereotypes and prejudice, revealing exciting new insights. Work reviewed here points to the importance of neural structures previously associated with face processing, semantic knowledge activation, evaluation, and self-regulatory behavioral control, allowing for the specification of a neural model of race processing. We show how research on the neural correlates of race can serve to link otherwise disparate lines of evidence on the neural underpinnings of a broad array of social-cognitive phenomena, and consider implications for effecting change in race relations. PMID:19896410

  18. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... examined, and it appears that considering 'normal' neural network models with, say, 500 samples, the problem of over-fitting is neglible, and therefore it is not taken into consideration afterwards. Numerous model types, often met in control applications, are implemented as neural network models...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...

  19. Neural Adaptation Effects in Conceptual Processing

    Directory of Open Access Journals (Sweden)

    Barbara F. M. Marino

    2015-07-01

    Full Text Available We investigated the conceptual processing of nouns referring to objects characterized by a highly typical color and orientation. We used a go/no-go task in which we asked participants to categorize each noun as referring or not to natural entities (e.g., animals after a selective adaptation of color-edge neurons in the posterior LV4 region of the visual cortex was induced by means of a McCollough effect procedure. This manipulation affected categorization: the green-vertical adaptation led to slower responses than the green-horizontal adaptation, regardless of the specific color and orientation of the to-be-categorized noun. This result suggests that the conceptual processing of natural entities may entail the activation of modality-specific neural channels with weights proportional to the reliability of the signals produced by these channels during actual perception. This finding is discussed with reference to the debate about the grounded cognition view.

  20. Metabolic syndromes and neural crest development

    Directory of Open Access Journals (Sweden)

    A. Berio

    2011-01-01

    Full Text Available Aim of this study is to investigate for the possible connection between abnormal neural crest cell (NCC development and NCC-derived abnormal facial and cerebral structures in 3 children with pyruvate-dehydrogenase (PDH and in 10 cases with oxidative phosphorylation deficiency diagnosed from the Author by standard laboratory assays [i.e. 3 cases of Kearns-Sayre syndrome (KSS, 2 cases of Leigh syndrome, 1 case of KSS with De Toni-Debrè-Fanconi and rachitis (Berio disease, 1 case of KSS with aortic insuffiency and sub-aortic septum hyperthophy, 3 cases of chronic progressive external ophthalmoplegia]. There patients presented with hyperlactacidemia, hyperpyruvicemia and facial abnormalities, similar to those observed in the fetal alcohol syndrome (a typical neurocristopathy due to PDH deficiency, down-regulating NCC genes. The Author hypothesizes that the metabolic defect of scarce energy production is responsible of abnormal NCC proliferation/migration and consequent facial abnormalities.

  1. Natural neural projection dynamics underlying social behavior.

    Science.gov (United States)

    Gunaydin, Lisa A; Grosenick, Logan; Finkelstein, Joel C; Kauvar, Isaac V; Fenno, Lief E; Adhikari, Avishek; Lammel, Stephan; Mirzabekov, Julie J; Airan, Raag D; Zalocusky, Kelly A; Tye, Kay M; Anikeeva, Polina; Malenka, Robert C; Deisseroth, Karl

    2014-06-19

    Social interaction is a complex behavior essential for many species and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social, but not novel object, interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type 1 dopamine receptor signaling downstream in the NAc. Direct observation of deep projection-specific activity in this way captures a fundamental and previously inaccessible dimension of mammalian circuit dynamics. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Neural associative memory with optimal Bayesian learning.

    Science.gov (United States)

    Knoblauch, Andreas

    2011-06-01

    Neural associative memories are perceptron-like single-layer networks with fast synaptic learning typically storing discrete associations between pairs of neural activity patterns. Previous work optimized the memory capacity for various models of synaptic learning: linear Hopfield-type rules, the Willshaw model employing binary synapses, or the BCPNN rule of Lansner and Ekeberg, for example. Here I show that all of these previous models are limit cases of a general optimal model where synaptic learning is determined by probabilistic Bayesian considerations. Asymptotically, for large networks and very sparse neuron activity, the Bayesian model becomes identical to an inhibitory implementation of the Willshaw and BCPNN-type models. For less sparse patterns, the Bayesian model becomes identical to Hopfield-type networks employing the covariance rule. For intermediate sparseness or finite networks, the optimal Bayesian learning rule differs from the previous models and can significantly improve memory performance. I also provide a unified analytical framework to determine memory capacity at a given output noise level that links approaches based on mutual information, Hamming distance, and signal-to-noise ratio.

  3. Dynamic Neural Fields with Intrinsic Plasticity.

    Science.gov (United States)

    Strub, Claudius; Schöner, Gregor; Wörgötter, Florentin; Sandamirskaya, Yulia

    2017-01-01

    Dynamic neural fields (DNFs) are dynamical systems models that approximate the activity of large, homogeneous, and recurrently connected neural networks based on a mean field approach. Within dynamic field theory, the DNFs have been used as building blocks in architectures to model sensorimotor embedding of cognitive processes. Typically, the parameters of a DNF in an architecture are manually tuned in order to achieve a specific dynamic behavior (e.g., decision making, selection, or working memory) for a given input pattern. This manual parameters search requires expert knowledge and time to find and verify a suited set of parameters. The DNF parametrization may be particular challenging if the input distribution is not known in advance, e.g., when processing sensory information. In this paper, we propose the autonomous adaptation of the DNF resting level and gain by a learning mechanism of intrinsic plasticity (IP). To enable this adaptation, an input and output measure for the DNF are introduced, together with a hyper parameter to define the desired output distribution. The online adaptation by IP gives the possibility to pre-define the DNF output statistics without knowledge of the input distribution and thus, also to compensate for changes in it. The capabilities and limitations of this approach are evaluated in a number of experiments.

  4. Online neural monitoring of statistical learning.

    Science.gov (United States)

    Batterink, Laura J; Paller, Ken A

    2017-05-01

    The extraction of patterns in the environment plays a critical role in many types of human learning, from motor skills to language acquisition. This process is known as statistical learning. Here we propose that statistical learning has two dissociable components: (1) perceptual binding of individual stimulus units into integrated composites and (2) storing those integrated representations for later use. Statistical learning is typically assessed using post-learning tasks, such that the two components are conflated. Our goal was to characterize the online perceptual component of statistical learning. Participants were exposed to a structured stream of repeating trisyllabic nonsense words and a random syllable stream. Online learning was indexed by an EEG-based measure that quantified neural entrainment at the frequency of the repeating words relative to that of individual syllables. Statistical learning was subsequently assessed using conventional measures in an explicit rating task and a reaction-time task. In the structured stream, neural entrainment to trisyllabic words was higher than in the random stream, increased as a function of exposure to track the progression of learning, and predicted performance on the reaction time (RT) task. These results demonstrate that monitoring this critical component of learning via rhythmic EEG entrainment reveals a gradual acquisition of knowledge whereby novel stimulus sequences are transformed into familiar composites. This online perceptual transformation is a critical component of learning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Treatment of typical absence seizures and related epileptic syndromes.

    Science.gov (United States)

    Panayiotopoulos, C P

    2001-01-01

    Typical absences are brief (seconds) generalised seizures of sudden onset and termination. They have 2 essential components: clinically, the impairment of consciousness (absence) and, generalised 3 to 4Hz spike/polyspike and slow wave discharges on electroencephalogram (EEG). They differ fundamentally from other seizures and are pharmacologically unique. Their clinical and EEG manifestations are syndrome-related. Impairment of consciousness may be severe, moderate, mild or inconspicuous. This is often associated with motor manifestations, automatisms and autonomic disturbances. Clonic, tonic and atonic components alone or in combination are motor symptoms; myoclonia, mainly of facial muscles, is the most common. The ictal EEG discharge may be consistently brief (2 to 5 seconds) or long (15 to 30 seconds), continuous or fragmented, with single or multiple spikes associated with the slow wave. The intradischarge frequency may be constant or may vary (2.5 to 5Hz). Typical absences are easily precipitated by hyperventilation in about 90% of untreated patients. They are usually spontaneous, but can be triggered by photic, pattern, video games stimuli, and mental or emotional factors. Typical absences usually start in childhood or adolescence. They occur in around 10 to 15% of adults with epilepsies, often combined with other generalised seizures. They may remit with age or be lifelong. Syndromic diagnosis is important for treatment strategies and prognosis. Absences may be severe and the only seizure type, as in childhood absence epilepsy. They may predominate in other syndromes or be mild and nonpredominant in syndromes such as juvenile myoclonic epilepsy where myoclonic jerks and generalised tonic clonic seizures are the main concern. Typical absence status epilepticus occurs in about 30% of patients and is more common in certain syndromes, e.g. idiopathic generalised epilepsy with perioral myoclonia or phantom absences. Typical absence seizures are often easy to

  6. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.

    Science.gov (United States)

    Khalighinejad, Bahar; Cruzatto da Silva, Guilherme; Mesgarani, Nima

    2017-02-22

    Humans are unique in their ability to communicate using spoken language. However, it remains unclear how the speech signal is transformed and represented in the brain at different stages of the auditory pathway. In this study, we characterized electroencephalography responses to continuous speech by obtaining the time-locked responses to phoneme instances (phoneme-related potential). We showed that responses to different phoneme categories are organized by phonetic features. We found that each instance of a phoneme in continuous speech produces multiple distinguishable neural responses occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Comparing the patterns of phoneme similarity in the neural responses and the acoustic signals confirms a repetitive appearance of acoustic distinctions of phonemes in the neural data. Analysis of the phonetic and speaker information in neural activations revealed that different time intervals jointly encode the acoustic similarity of both phonetic and speaker categories. These findings provide evidence for a dynamic neural transformation of low-level speech features as they propagate along the auditory pathway, and form an empirical framework to study the representational changes in learning, attention, and speech disorders.SIGNIFICANCE STATEMENT We characterized the properties of evoked neural responses to phoneme instances in continuous speech. We show that each instance of a phoneme in continuous speech produces several observable neural responses at different times occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Each temporal event explicitly encodes the acoustic similarity of phonemes, and linguistic and nonlinguistic information are best represented at different time intervals. Finally, we show a joint encoding of phonetic and speaker information, where the neural representation of speakers is dependent on phoneme category. These findings provide compelling new evidence for

  7. Are muscle synergies useful for neural control ?

    Directory of Open Access Journals (Sweden)

    Aymar ede Rugy

    2013-03-01

    Full Text Available The observation that the activity of multiple muscles can be well approximated by a few linear synergies is viewed by some as a sign that such low-dimensional modules constitute a key component of the neural control system. Here, we argue that the usefulness of muscle synergies as a control principle should be evaluated in terms of errors produced not only in muscle space, but also in task space. We used data from a force-aiming task in two dimensions at the wrist, using an EMG-driven virtual biomechanics technique that overcomes typical errors in predicting force from recorded EMG, to illustrate through simulation how synergy decomposition inevitably introduces substantial task space errors. Then, we computed the optimal pattern of muscle activation that minimizes summed-squared muscle activities, and demonstrated that synergy decomposition produced similar results on real and simulated data. We further assessed the influence of synergy decomposition on aiming errors in a more redundant system, using the optimal muscle pattern computed for the elbow-joint complex (i.e., 13 muscles acting in two dimensions. Because EMG records are typically not available from all contributing muscles, we also explored reconstructions from incomplete sets of muscles. The redundancy of a given set of muscles had opposite effects on the goodness of muscle reconstruction and on task achievement; higher redundancy is associated with better EMG approximation (lower residuals, but with higher aiming errors. Finally, we showed that the number of synergies required to approximate the optimal muscle pattern for an arbitrary biomechanical system increases with task-space dimensionality, which indicates that the capacity of synergy decomposition to explain behaviour depends critically on the scope of the original database. These results have implications regarding the viability of muscle synergy as a putative neural control mechanism, and also as a control algorithm to

  8. The relation between migraine, typical migraine aura and "visual snow".

    Science.gov (United States)

    Schankin, Christoph J; Maniyar, Farooq H; Sprenger, Till; Chou, Denise E; Eller, Michael; Goadsby, Peter J

    2014-06-01

    To assess the relationship between the phenotype of the "visual snow" syndrome, comorbid migraine, and typical migraine aura on a clinical basis and using functional brain imaging. Patients with "visual snow" suffer from continuous TV-static-like tiny flickering dots in the entire visual field. Most patients describe a syndrome with additional visual symptoms of the following categories: palinopsia ("afterimages" and "trailing"), entopic phenomena arising from the optic apparatus itself (floaters, blue field entoptic phenomenon, photopsia, self-light of the eye), photophobia, nyctalopia (impaired night vision), as well as the non-visual symptom tinnitus. The high prevalence of migraine and typical migraine aura in this population has led to the assumption that "visual snow" is caused by persistent migraine aura. Due to the lack of objective measures, alternative diagnoses are malingering or a psychogenic disorder. (1) The prevalence of additional visual symptoms, tinnitus, and comorbid migraine as well as typical migraine aura was assessed in a prospective semi-structured telephone interview of patients with "visual snow." Correlations were calculated using standard statistics with P metabolism in a group of "visual snow" patients in comparison to healthy controls were identified using [(18) F]-2-fluoro-2-deoxy-D-glucose positron emission tomography and statistical parametric mapping (SPM8 with whole brain analysis; statistical significance was defined by P migraine and 37 had typical migraine aura. Having comorbid migraine was associated with an increased likelihood of having palinopsia (odds ratio [OR] 2.8; P = .04 for "afterimages" and OR 2.6; P = .01 for "trailing"), spontaneous photopsia (OR 2.9; P = .004), photophobia (OR 3.2; P = .005), nyctalopia (OR 2.7; P = .01), and tinnitus (OR 2.9; P = .006). Typical migraine aura was associated with an increased likelihood of spontaneous photopsia (OR 2.4; P = .04). (2) After adjusting

  9. Preterm birth results in alterations in neural connectivity at age 16 years.

    Science.gov (United States)

    Mullen, Katherine M; Vohr, Betty R; Katz, Karol H; Schneider, Karen C; Lacadie, Cheryl; Hampson, Michelle; Makuch, Robert W; Reiss, Allan L; Constable, R Todd; Ment, Laura R

    2011-02-14

    Very low birth weight preterm (PT) children are at high risk for brain injury. Employing diffusion tensor imaging (DTI), we tested the hypothesis that PT adolescents would demonstrate microstructural white matter disorganization relative to term controls at 16 years of age. Forty-four PT subjects (600-1250 g birth weight) without neonatal brain injury and 41 term controls were evaluated at age 16 years with DTI, the Wechsler Intelligence Scale for Children-III (WISC), the Peabody Picture Vocabulary Test-Revised (PPVT), and the Comprehensive Test of Phonological Processing (CTOPP). PT subjects scored lower than term subjects on WISC full scale (p=0.003), verbal (p=0.043), and performance IQ tests (p=0.001), as well as CTOPP phonological awareness (p=0.004), but scored comparably to term subjects on PPVT and CTOPP Rapid Naming tests. PT subjects had lower fractional anisotropy (FA) values in multiple regions including bilateral uncinate fasciculi (left: p=0.01; right: p=0.004), bilateral external capsules (left: planguage task) in the PT subjects (left: r=0.314, p=0.038; right: r=0.336, p=0.026). FA values in the left and right arcuate fasciculi correlated with CTOPP Rapid Naming scores (a phonologic task) in the PT subjects (left: r=0.424, p=0.004; right: r=0.301, p=0.047). These data support for the first time that dual pathways underlying language function are present in PT adolescents. The striking bilateral dorsal correlations for the PT group suggest that prematurely born subjects rely more heavily on the right hemisphere than typically developing adults for performance of phonological language tasks. These findings may represent either a delay in maturation or the engagement of alternative neural pathways for language in the developing PT brain. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. The NPY system and its neural and neuroendocrine regulation of bone.

    Science.gov (United States)

    Khor, Ee Cheng; Baldock, Paul

    2012-06-01

    The past decade has seen a significant expansion of our understanding of the interaction between the neural system and bone. While innervation of bone was long appreciated, the discovery of central relays from the hypothalamus to the cells of bone has seen the identification of a number of efferent neural pathways to bone. The neuropeptide Y (NPY) system has proven to represent a major central pathway, regulating the activity of osteoblasts and osteoclasts, through signaling of central and peripheral ligands, through specific receptors within the hypothalamus and the osteoblast. Moreover, this pathway is now recognized as acting to coordinate both skeletal and energy homeostasis. This review examines the mechanism and actions of the NPY pathway to regulate bone mass and bone cell activity.

  11. An Optoelectronic Neural Network

    Science.gov (United States)

    Neil, Mark A. A.; White, Ian H.; Carroll, John E.

    1990-02-01

    We describe and present results of an optoelectronic neural network processing system. The system uses an algorithm based on the Hebbian learning rule to memorise a set of associated vector pairs. Recall occurs by the processing of the input vector with these stored associations in an incoherent optical vector multiplier using optical polarisation rotating liquid crystal spatial light modulators to store the vectors and an optical polarisation shadow casting technique to perform multiplications. Results are detected on a photodiode array and thresholded electronically by a controlling microcomputer. The processor is shown to work in autoassociative and heteroassociative modes with up to 10 stored memory vectors of length 64 (equivalent to 64 neurons) and a cycle time of 50ms. We discuss the limiting factors at work in this system, how they affect its scalability and the general applicability of its principles to other systems.

  12. Neural Darwinism and consciousness.

    Science.gov (United States)

    Seth, Anil K; Baars, Bernard J

    2005-03-01

    Neural Darwinism (ND) is a large scale selectionist theory of brain development and function that has been hypothesized to relate to consciousness. According to ND, consciousness is entailed by reentrant interactions among neuronal populations in the thalamocortical system (the 'dynamic core'). These interactions, which permit high-order discriminations among possible core states, confer selective advantages on organisms possessing them by linking current perceptual events to a past history of value-dependent learning. Here, we assess the consistency of ND with 16 widely recognized properties of consciousness, both physiological (for example, consciousness is associated with widespread, relatively fast, low amplitude interactions in the thalamocortical system), and phenomenal (for example, consciousness involves the existence of a private flow of events available only to the experiencing subject). While no theory accounts fully for all of these properties at present, we find that ND and its recent extensions fare well.

  13. Cortical neural prosthetics.

    Science.gov (United States)

    Schwartz, Andrew B

    2004-01-01

    Control of prostheses using cortical signals is based on three elements: chronic microelectrode arrays, extraction algorithms, and prosthetic effectors. Arrays of microelectrodes are permanently implanted in cerebral cortex. These arrays must record populations of single- and multiunit activity indefinitely. Information containing position and velocity correlates of animate movement needs to be extracted continuously in real time from the recorded activity. Prosthetic arms, the current effectors used in this work, need to have the agility and configuration of natural arms. Demonstrations using closed-loop control show that subjects change their neural activity to improve performance with these devices. Adaptive-learning algorithms that capitalize on these improvements show that this technology has the capability of restoring much of the arm movement lost with immobilizing deficits.

  14. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung, E-mail: keejung@skku.edu

    2015-02-27

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics.

  15. A model of neural cross-talk and irritation in the pelvis: implications for the overlap of chronic pelvic pain disorders.

    Science.gov (United States)

    Pezzone, Michael A; Liang, Ruomei; Fraser, Matthew O

    2005-06-01

    Irritable bowel syndrome, interstitial cystitis, and other chronic pelvic pain (CPP) disorders often occur concomitantly. Neural cross-talk may play a role in the overlap of CPP disorders via the convergence of pelvic afferents. We investigated the hypothesis that afferent irritation of one pelvic organ may adversely influence and sensitize another via neural interactions. We measured pelvic organ smooth muscle and striated muscle reflexes during micturition and colorectal distention (CRD) in urethane-anesthetized rats. The effects of acute cystitis on distal colonic sensory thresholds to CRD and the effects of acute colonic irritation on micturition parameters were assessed. External urethral sphincter (EUS) electromyography (EMG) was typical for the rat, with phasic firing during micturition. External anal sphincter EMG also showed phasic firing during micturition in synchrony with EUS activity but, in addition, showed both tonic bursts and phasic firing independent of EUS activity. Before bladder irritation, graded CRDs to 40 cm H2O produced no notable changes in abdominal wall EMG activity. Following acute bladder irritation, dramatic increases in abdominal wall EMG activity in response to CRD were observed at much lower distention pressures, indicating colonic afferent sensitization. Analogously, following acute colonic irritation, bladder contraction frequency increased 66%, suggesting sensitization of lower urinary tract afferents. We report compelling evidence of bidirectional cross-sensitization of the colon and lower urinary tract in a novel experimental model. This cross-sensitization may account for the substantial overlap of CPP disorders; however, further studies are needed to fully characterize these pathways.

  16. Perspectives on the rhythm–grammar link and its implications for typical and atypical language development

    Science.gov (United States)

    Gordon, Reyna L.; Jacobs, Magdalene S.; Schuele, C. Melanie; McAuley, J. Devin

    2014-01-01

    This paper reviews the mounting evidence for shared cognitive mechanisms and neural resources for rhythm and grammar. Evidence for a role of rhythm skills in language development and language comprehension is reviewed here in three lines of research: (a) behavioral and brain data from adults and children, showing that prosody and other aspects of timing of sentences influence online morpho-syntactic processing; (b) co-morbidity of impaired rhythm with grammatical deficits in children with language impairment; and (c) our recent work showing a strong positive association between rhythm perception skills and expressive grammatical skills in young school-age children with typical development. Our preliminary follow-up study presented here revealed that musical rhythm perception predicted variance in six-year-old children’s production of complex syntax, as well as online reorganization of grammatical information (transformation); these data provide an additional perspective on the hierarchical relations potentially shared by rhythm and grammar. A theoretical framework for shared cognitive resources for the role of rhythm in perceiving and learning grammatical structure is elaborated on in light of potential implications for using rhythm-emphasized musical training to improve language skills in children. PMID:25773612

  17. Neuromagnetic Vistas into Typical and Atypical Development of Frontal Lobe Functions

    Science.gov (United States)

    Taylor, Margot J.; Doesburg, Sam M.; Pang, Elizabeth W.

    2014-01-01

    The frontal lobes are involved in many higher-order cognitive functions such as social cognition executive functions and language and speech. These functions are complex and follow a prolonged developmental course from childhood through to early adulthood. Magnetoencephalography (MEG) is ideal for the study of development of these functions, due to its combination of temporal and spatial resolution which allows the determination of age-related changes in both neural timing and location. There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity. Here, we review our MEG research on social and executive functions, and speech in typically developing children and in two clinical groups – children with autism spectrum disorder and children born very preterm. The studies include facial emotional processing, inhibition, visual short-term memory, speech production, and resting-state networks. We present data from event-related analyses as well as on oscillations and connectivity analyses and review their contributions to understanding frontal lobe cognitive development. We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms. PMID:24994980

  18. Perspectives on the rhythm-grammar link and its implications for typical and atypical language development.

    Science.gov (United States)

    Gordon, Reyna L; Jacobs, Magdalene S; Schuele, C Melanie; McAuley, J Devin

    2015-03-01

    This paper reviews the mounting evidence for shared cognitive mechanisms and neural resources for rhythm and grammar. Evidence for a role of rhythm skills in language development and language comprehension is reviewed here in three lines of research: (1) behavioral and brain data from adults and children, showing that prosody and other aspects of timing of sentences influence online morpho-syntactic processing; (2) comorbidity of impaired rhythm with grammatical deficits in children with language impairment; and (3) our recent work showing a strong positive association between rhythm perception skills and expressive grammatical skills in young school-age children with typical development. Our preliminary follow-up study presented here revealed that musical rhythm perception predicted variance in 6-year-old children's production of complex syntax, as well as online reorganization of grammatical information (transformation); these data provide an additional perspective on the hierarchical relations potentially shared by rhythm and grammar. A theoretical framework for shared cognitive resources for the role of rhythm in perceiving and learning grammatical structure is elaborated on in light of potential implications for using rhythm-emphasized musical training to improve language skills in children. © 2015 New York Academy of Sciences.

  19. Neuromagnetic vistas into typical and atypical development of frontal lobe functions

    Directory of Open Access Journals (Sweden)

    Margot J Taylor

    2014-06-01

    Full Text Available The frontal lobes are involved in many higher-order cognitive functions such as social cognition executive functions and language and speech. These functions are complex and follow a prolonged developmental course from childhood through to early adulthood. Magnetoencephalography (MEG is ideal for the study of development of these functions, due to its combination of temporal and spatial resolution which allows the determination of age-related changes in both neural timing and location. There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity. Here, we review our MEG research on social and executive functions, and speech in typically developing children and in two clinical groups – children with ASD and children born very preterm. The studies include facial emotional processing, inhibition, visual short-term memory, speech production and resting-state networks. We present data from event-related analyses as well as on oscillations and connectivity analyses and review their contributions to understanding frontal lobe cognitive development. We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms.

  20. Typical exposure of children to EMF: exposimetry and dosimetry.

    Science.gov (United States)

    Valič, Blaž; Kos, Bor; Gajšek, Peter

    2015-01-01

    A survey study with portable exposimeters, worn by 21 children under the age of 17, and detailed measurements in an apartment above a transformer substation were carried out to determine the typical individual exposure of children to extremely low- and radio-frequency (RF) electromagnetic field. In total, portable exposimeters were worn for >2400 h. Based on the typical individual exposure the in situ electric field and specific absorption rate (SAR) values were calculated for an 11-y-old female human model. The average exposure was determined to be low compared with ICNIRP reference levels: 0.29 μT for an extremely low-frequency (ELF) magnetic field and 0.09 V m(-1) for GSM base stations, 0.11 V m(-1) for DECT and 0.10 V m(-1) for WiFi; other contributions could be neglected. However, some of the volunteers were more exposed: the highest realistic exposure, to which children could be exposed for a prolonged period of time, was 1.35 μT for ELF magnetic field and 0.38 V m(-1) for DECT, 0.13 V m(-1) for WiFi and 0.26 V m(-1) for GSM base stations. Numerical calculations of the in situ electric field and SAR values for the typical and the worst-case situation show that, compared with ICNIRP basic restrictions, the average exposure is low. In the typical exposure scenario, the extremely low frequency exposure is <0.03 % and the RF exposure <0.001 % of the corresponding basic restriction. In the worst-case situation, the extremely low frequency exposure is <0.11 % and the RF exposure <0.007 % of the corresponding basic restrictions. Analysis of the exposures and the individual's perception of being exposed/unexposed to an ELF magnetic field showed that it is impossible to estimate the individual exposure to an ELF magnetic field based only on the information provided by the individuals, as they do not have enough knowledge and information to properly identify the sources in their vicinity. © The Author 2014. Published by Oxford University Press. All rights reserved

  1. Lipomatosis of the sciatic nerve: typical and atypical MRI features

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bernadette Zhi Ying [Mayo Clinic School of Medicine, Rochester, MN (United States); University College London, Royal Free and University College Medical School, London (United Kingdom); Amrami, Kimberly K.; Wenger, Doris E. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Dyck, P. James B. [Mayo Clinic, Department of Neurology, Rochester, MN (United States); Scheithauer, Bernd W. [Mayo Clinic, Department of Pathology, Rochester, MN (United States); Spinner, Robert J. [Mayo Clinic, Department of Neurologic Surgery, Rochester, MN (United States); Mayo Clinic, Department of Orthopedics, Rochester, MN (United States)

    2006-03-15

    Lipomatosis of nerve, also known as fibrolipomatous hamartoma, is a rare condition of nerve, usually affecting the median nerve. The MRI appearance is characteristic. We describe two cases of lipomatosis of nerve involving the sciatic nerve, an extremely unusual location for this lesion, in patients with sciatic neuropathy. These cases share the typical features previously described in the literature for other nerves, but also contain atypical features not previously highlighted, relating to the variability in distribution and extent of the fatty deposition. Recognition of the MRI appearance of this entity is important in order to avoid unnecessary attempts at surgical resection of this lesion. (orig.)

  2. Working memory training improves reading processes in typically developing children.

    Science.gov (United States)

    Loosli, Sandra V; Buschkuehl, Martin; Perrig, Walter J; Jaeggi, Susanne M

    2012-01-01

    The goal of this study was to investigate whether a brief cognitive training intervention results in a specific performance increase in the trained task, and whether there are transfer effects to other nontrained measures. A computerized, adaptive working memory intervention was conducted with 9- to 11-year-old typically developing children. The children considerably improved their performance in the trained working memory task. Additionally, compared to a matched control group, the experimental group significantly enhanced their reading performance after training, providing further evidence for shared processes between working memory and reading.

  3. Convergent evolution of neural systems in ctenophores.

    Science.gov (United States)

    Moroz, Leonid L

    2015-02-15

    Neurons are defined as polarized secretory cells specializing in directional propagation of electrical signals leading to the release of extracellular messengers - features that enable them to transmit information, primarily chemical in nature, beyond their immediate neighbors without affecting all intervening cells en route. Multiple origins of neurons and synapses from different classes of ancestral secretory cells might have occurred more than once during ~600 million years of animal evolution with independent events of nervous system centralization from a common bilaterian/cnidarian ancestor without the bona fide central nervous system. Ctenophores, or comb jellies, represent an example of extensive parallel evolution in neural systems. First, recent genome analyses place ctenophores as a sister group to other animals. Second, ctenophores have a smaller complement of pan-animal genes controlling canonical neurogenic, synaptic, muscle and immune systems, and developmental pathways than most other metazoans. However, comb jellies are carnivorous marine animals with a complex neuromuscular organization and sophisticated patterns of behavior. To sustain these functions, they have evolved a number of unique molecular innovations supporting the hypothesis of massive homoplasies in the organization of integrative and locomotory systems. Third, many bilaterian/cnidarian neuron-specific genes and 'classical' neurotransmitter pathways are either absent or, if present, not expressed in ctenophore neurons (e.g. the bilaterian/cnidarian neurotransmitter, γ-amino butyric acid or GABA, is localized in muscles and presumed bilaterian neuron-specific RNA-binding protein Elav is found in non-neuronal cells). Finally, metabolomic and pharmacological data failed to detect either the presence or any physiological action of serotonin, dopamine, noradrenaline, adrenaline, octopamine, acetylcholine or histamine - consistent with the hypothesis that ctenophore neural systems evolved

  4. Cooperating attackers in neural cryptography.

    Science.gov (United States)

    Shacham, Lanir N; Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2004-06-01

    A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The success of the advanced attacker presented here, called the "majority-flipping attacker," does not decay with the parameters of the model. This attacker's outstanding success is due to its using a group of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known. An analytical description of this attack is also presented, and fits the results of simulations.

  5. Cooperating attackers in neural cryptography

    Science.gov (United States)

    Shacham, Lanir N.; Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2004-06-01

    A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The success of the advanced attacker presented here, called the “majority-flipping attacker,” does not decay with the parameters of the model. This attacker’s outstanding success is due to its using a group of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known. An analytical description of this attack is also presented, and fits the results of simulations.

  6. A Case of Typical Carcinoid of the Larynx

    Directory of Open Access Journals (Sweden)

    Shintaro Sato

    2012-01-01

    Full Text Available We report herein a rare case of typical carcinoid occurring primarily in the epiglottis. The patient was a 70-year-old man. On initial examination, a polypoid lesion with irregular surface near the center right-hand side of the laryngeal surface of the epiglottis was observed, and a biopsy was performed. Pathological examination of the specimen suggested the possibility of adenocarcinoma. Surgical excision was performed by means of laryngomicrosurgery. A Weerda-type laryngoscope was used to open the larynx, supplemented by rigid nasal sinus surgery endoscopes, and the right-hand half of the epiglottis were excised was ensured using a CO2 laser. Postoperative pathological diagnosis was negative for adenocarcinoma and squamous cell cancer; typical carcinoid was diagnosed according to the World Health Organization criteria. Aspiration occurred postoperatively, swallowing training was therefore provided, and the patient was discharged from hospital 2 months after surgery when he was able to eat normally. As of 4 years after surgery, the patient remains under follow-up observation by means of PET-CT and neck, thoracic, and abdominal CT administered at appropriate intervals, but no findings indicating obvious recurrence or metastasis have been observed, and the patient displays good swallowing function.

  7. Diversity of amino acids in a typical chernozem of Moldova

    Science.gov (United States)

    Frunze, N. I.

    2014-12-01

    The content and composition of the amino acids in typical chernozems were studied. The objects of the study included a reference soil under an old fallow and three variants under fodder crop rotations: not fertilized, with mineral fertilizers, and with organic fertilizers. The contents of 18 amino acids were determined in these soils. The amino acids were extracted by the method of acid hydrolysis and identified by the method of ion-exchange chromatography. The total content of most of the amino acids was maximal in the reference soil; it was much lower in the cultivated soils and decreased in the following sequence: organic background > mineral background > no fertilization. The diversity of amino acids was evaluated quantitatively using different parameters applied in ecology for estimating various aspects of the species composition of communities (Simpson, Margalef, Menhinick, and Shannon's indices). The diversity and contribution of different amino acids to the total pool of amino acids also varied significantly in the studied variants. The maximum diversity of amino acids and maximum evenness of their relative abundance indices were typical of the reference chernozem; these parameters were lower in the cultivated soils. It was concluded that the changes in the structure of the amino acids under the impact of agricultural loads are similar to those that are usually observed under stress conditions.

  8. Typical magnitude and spatial extent of crowding in autism

    Science.gov (United States)

    Freyberg, Jan; Robertson, Caroline E.; Baron-Cohen, Simon

    2016-01-01

    Enhanced spatial processing of local visual details has been reported in individuals with autism spectrum conditions (ASC), and crowding is postulated to be a mechanism that may produce this ability. However, evidence for atypical crowding in ASC is mixed, with some studies reporting a complete lack of crowding in autism and others reporting a typical magnitude of crowding between individuals with and without ASC. Here, we aim to disambiguate these conflicting results by testing both the magnitude and the spatial extent of crowding in individuals with ASC (N = 25) and age- and IQ-matched controls (N = 23) during an orientation discrimination task. We find a strong crowding effect in individuals with and without ASC, which falls off as the distance between target and flanker is increased. Both the magnitude and the spatial range of this effect were comparable between individuals with and without ASC. We also find typical (uncrowded) orientation discrimination thresholds in individuals with ASC. These findings suggest that the spatial extent of crowding is unremarkable in ASC, and is therefore unlikely to account for the visual symptoms reported in individuals with the diagnosis. PMID:26998801

  9. A study on prioritizing typical women’s entrepreneur characteristics

    Directory of Open Access Journals (Sweden)

    Ebrahim Ramezani

    2014-07-01

    Full Text Available Entrepreneurship is one of the main pivot of progress and growth of every country. The spread of entrepreneurship particularly the role of women in this category has speeded up today more than any other times. Many of researchers believe that attention to women entrepreneurship plays remarkable role in soundness and safety of nation’s economy. Maybe in Iran less attention has been paid to this matter in proportion to other countries and due to various reasons, there are not many entrepreneur woman. However, employing typical entrepreneur women in various fields of productivity, industrial, commercial, social and cultural and even higher than these, in country’s political issue proves that women’s role is magnificent and in many cases they enjoy higher abilities in portion to men. In this paper, using additive ratio assessment (ARAS as a prioritizing method, eleven entrepreneur women were chosen for prioritizing criteria for measuring a typical women’s entrepreneurship characteristics. The results show that the balance between work and family among criteria are propounded as the highest weight and fulfilling different jobs simultaneously as the lowest weight.

  10. Emotion, gender, and gender typical identity in autobiographical memory.

    Science.gov (United States)

    Grysman, Azriel; Merrill, Natalie; Fivush, Robyn

    2017-03-01

    Gender differences in the emotional intensity and content of autobiographical memory (AM) are inconsistent across studies, and may be influenced as much by gender identity as by categorical gender. To explore this question, data were collected from 196 participants (age 18-40), split evenly between men and women. Participants narrated four memories, a neutral event, high point event, low point event, and self-defining memory, completed ratings of emotional intensity for each event, and completed four measures of gender typical identity. For self-reported emotional intensity, gender differences in AM were mediated by identification with stereotypical feminine gender norms. For narrative use of affect terms, both gender and gender typical identity predicted affective expression. The results confirm contextual models of gender identity (e.g., Diamond, 2012 . The desire disorder in research on sexual orientation in women: Contributions of dynamical systems theory. Archives of Sexual Behavior, 41, 73-83) and underscore the dynamic interplay between gender and gender identity in the emotional expression of autobiographical memories.

  11. [Removal technology of typical odorant in drinking water].

    Science.gov (United States)

    Li, Yong; Chen, Chao; Zhang, Xiao-Jian; Liu, Yao; Zhang, Xiao-Hui; Zhu, Xiao-Hui; Dai, Ji-Sheng; Xu, Huan

    2008-11-01

    To eliminate the odor in drinking water of one City in China, a study was performed on the typical odorant removal technology and removal processes. Its results showed that as typical odorants, ethanethiol was effectively removed by oxidation and geosmin and 2-MIB were removed by both oxidation and adsorption, but geosmin and 2-MIB's adsorption effect was better than oxidation. When thiol and thioether in raw water was less than 20 microg/L, furthermore, there was not any other odorant, potassium permanganate oxidation should be equipped with enhanced coagulations. When geosmin and 2-MIB in raw was less than 30 ng/L, activated carbon adsorption should be equipped with enhanced coagulations. When thiol and thioether in raw water was more than 20 microg/L, or geosmin and 2-MIB was more than 30 ng/L, ozone-activated carbon process should be added after the conventional water treatment process. When thiol and thioether in raw water was more than 150 microg/L, or geosmin and 2-MIB was more than 100 ng/L, preoxidation or adsorption of powder activated carbon at intake should be combined with ozone-activated carbon according to the odorant composing.

  12. Word Retrieval Ability on Phonemic Fluency in Typically Developing Children.

    Science.gov (United States)

    John, Sunila; Rajashekhar, Bellur; Guddattu, Vasudeva

    2016-01-01

    Verbal fluency tasks are simple behavioral measures useful in assessing word retrieval abilities. Among the verbal fluency tasks, the utility of the Phonemic Fluency Task in children has received less attention. As the task is dependent on phonemic characteristics of each language, there is a great need for understanding its developmental trend. The present study, therefore, aims to delineate the performance on phonemic fluency in typically developing Malayalam-speaking children. Verbal fluency performance on 2 tasks of phonemic fluency was tested using a cross-sectional study design among 1,015 school-going Malayalam-speaking typically developing children aged 5 to 15 years old. Performance with respect to word productivity and clustering-switching measures was analyzed. The effect of age, gender, and tasks on the outcome measures were investigated in the present study. Study findings revealed a positive influence of age with no statistically significant gender effects. Children employed both task-discrepant and task-consistent organizational strategies during tasks of phonemic fluency, dependent purely on the Malayalam language. Future research focusing on developmental trends across different languages is vital for enhancing the task's clinical sensitivity and specificity among childhood disorders.

  13. Typical action perception and interpretation without motor simulation.

    Science.gov (United States)

    Vannuscorps, Gilles; Caramazza, Alfonso

    2016-01-05

    Every day, we interact with people synchronously, immediately understand what they are doing, and easily infer their mental state and the likely outcome of their actions from their kinematics. According to various motor simulation theories of perception, such efficient perceptual processing of others' actions cannot be achieved by visual analysis of the movements alone but requires a process of motor simulation--an unconscious, covert imitation of the observed movements. According to this hypothesis, individuals incapable of simulating observed movements in their motor system should have difficulty perceiving and interpreting observed actions. Contrary to this prediction, we found across eight sensitive experiments that individuals born with absent or severely shortened upper limbs (upper limb dysplasia), despite some variability, could perceive, anticipate, predict, comprehend, and memorize upper limb actions, which they cannot simulate, as efficiently as typically developed participants. We also found that, like the typically developed participants, the dysplasic participants systematically perceived the position of moving upper limbs slightly ahead of their real position but only when the anticipated position was not biomechanically awkward. Such anticipatory bias and its modulation by implicit knowledge of the body biomechanical constraints were previously considered as indexes of the crucial role of motor simulation in action perception. Our findings undermine this assumption and the theories that place the locus of action perception and comprehension in the motor system and invite a shift in the focus of future research to the question of how the visuo-perceptual system represents and processes observed body movements and actions.

  14. TYPICAL LEISHMANIOSIS IN A DOG REGULARLY VACCINATED WITH CANILEISH®

    Directory of Open Access Journals (Sweden)

    Alessandra Gavazza

    2016-11-01

    Full Text Available The vaccine Canileish® is distributed in Europe to reduce the risk of developing an active infection and clinical leishmaniosis. An English Setter dog vaccinated with Canileish® and treated with anti-feeding and repellent medications showed typical clinical signs of leishmaniosis. The dog was presented with dysorexia, weight loss, fever and forelimb lameness. The physical exam revealed moderate generalized external lymph node enlargement, sero-purulent ocular discharge, photophobia, and swollen and painful right carpal joint. Clinico-pathological findings revealed moderate microcytic-hypochromic non-regenerative anemia, mild neutropenia and thrombocytopenia, hyperglobulinemia, hematuria and mild elevation of urine protein-to-creatinine ratio, polyclonal peak in the gamma globulins, Leishmania spp. amastigotes in lymph nodes and bone marrow, and immunofluorescence antibody titer (IFAT of 1:5120. The successful treatment included meglumine antimonate and allopurinol for 40 days, and metronidazole-spyramicin for 24 days. The dog was monitored up to 9 months and normalization of most hemato-biochemical abnormalities was achieved. The bone marrow qPCR for Leishmania infantum was negative, while IFAT was 1:160. Despite the systematic leishmaniosis prevention, the typical clinical disease can occur.

  15. Intentions vs. resemblance: understanding pictures in typical development and autism.

    Science.gov (United States)

    Hartley, Calum; Allen, Melissa L

    2014-04-01

    Research has debated whether children reflect on artists' intentions when comprehending pictures, or instead derive meaning entirely from resemblance. We explore these hypotheses by comparing how typically developing toddlers and low-functioning children with autism (a population impaired in intentional reasoning) interpret abstract pictures. In Experiment 1, both groups mapped familiar object names onto abstract pictures, however, they related the same representations to different 3-D referents. Toddlers linked abstract pictures with intended referents they did not resemble, while children with autism mapped picture-referent relations based on resemblance. Experiment 2 showed that toddlers do not rely upon linguistic cues to determine intended referential relations. Experiment 3 confirmed that the responding of children with autism was not due to perseveration or associative word learning, and also provided independent evidence of their intention-reading difficulties. We argue that typically developing children derive meaning from the social-communicative intentions underlying pictures when resemblance is an inadequate cue to meaning. By contrast, children with autism do not reflect on artists' intentions and simply relate pictures to whatever they happen to resemble. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Lamictal (lamotrigine) monotherapy for typical absence seizures in children.

    Science.gov (United States)

    Frank, L M; Enlow, T; Holmes, G L; Manasco, P; Concannon, S; Chen, C; Womble, G; Casale, E J

    1999-07-01

    To investigate whether lamotrigine (LTG) monotherapy is effective and safe for newly diagnosed typical absence seizures in children and adolescents (aged 3-15 years, n = 45). A "responder-enriched" study design was used: open-label dose escalation was followed by placebo-controlled, double-blind testing of LTG. Conventional hyperventilation testing with EEG recording was used to confirm diagnoses and assess treatment success defined as complete freedom from seizures. Ambulatory 24-h EEG recordings provided supporting evidence of effectiveness. Safety was assessed by evaluation of adverse events, vital signs, and physical, neurologic, and laboratory examinations. Plasma samples were taken to evaluate the pharmacokinetics of LTG. During initial open-label dose escalation, 71.4% of patients (intent-to-treat) or 82% (per protocol analysis) became seizure free; individual patients responded at doses ranging from 2 to 15 mg/kg/day (median, 5.0). In the placebo-controlled, double-blind phase of the study, statistically significantly more patients remained seizure free when treated with LTG (62%) than with placebo (21%; p < 0.02; for the intent-to-treat analysis). Mean plasma concentrations of LTG, were linearly related to dose, although there was substantial interindividual variation. No patients were withdrawn from the study for any safety-related reason. LTG monotherapy is effective for typical absence seizures in children and is generally well tolerated.

  17. Neural Manifolds for the Control of Movement.

    Science.gov (United States)

    Gallego, Juan A; Perich, Matthew G; Miller, Lee E; Solla, Sara A

    2017-06-07

    The analysis of neural dynamics in several brain cortices has consistently uncovered low-dimensional manifolds that capture a significant fraction of neural variability. These neural manifolds are spanned by specific patterns of correlated neural activity, the "neural modes." We discuss a model for neural control of movement in which the time-dependent activation of these neural modes is the generator of motor behavior. This manifold-based view of motor cortex may lead to a better understanding of how the brain controls movement. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Neural Networks for Mindfulness and Emotion Suppression.

    Directory of Open Access Journals (Sweden)

    Hiroki Murakami

    Full Text Available Mindfulness, an attentive non-judgmental focus on "here and now" experiences, has been incorporated into various cognitive behavioral therapy approaches and beneficial effects have been demonstrated. Recently, mindfulness has also been identified as a potentially effective emotion regulation strategy. On the other hand, emotion suppression, which refers to trying to avoid or escape from experiencing and being aware of one's own emotions, has been identified as a potentially maladaptive strategy. Previous studies suggest that both strategies can decrease affective responses to emotional stimuli. They would, however, be expected to provide regulation through different top-down modulation systems. The present study was aimed at elucidating the different neural systems underlying emotion regulation via mindfulness and emotion suppression approaches. Twenty-one healthy participants used the two types of strategy in response to emotional visual stimuli while functional magnetic resonance imaging was conducted. Both strategies attenuated amygdala responses to emotional triggers, but the pathways to regulation differed across the two. A mindful approach appears to regulate amygdala functioning via functional connectivity from the medial prefrontal cortex, while suppression uses connectivity with other regions, including the dorsolateral prefrontal cortex. Thus, the two types of emotion regulation recruit different top-down modulation processes localized at prefrontal areas. These different pathways are discussed.

  19. Neural progestin receptors and female sexual behavior

    Science.gov (United States)

    Mani, Shaila K.; Blaustein, Jeffrey D.

    2012-01-01

    The steroid hormone, progesterone, modulates neuroendocrine functions in the central nervous system resulting in integration of reproduction and reproductive behaviors in female mammals. Although it is widely recognized that progesterone’s effects on female sex behavior are mediated by the classical neural progestin receptors (PRs) functioning as “ligand-dependent” transcription factors to regulate genes and genomic networks, additional mechanisms of PR activation also contribute to the behavioral response. Cellular and molecular evidence indicates that PRs can be activated in a ligand-independent manner by neurotransmitters, growth factors, cyclic nucleotides, progestin metabolites and mating stimuli. The rapid responses of progesterone may be mediated by a variety of PR types, including membrane-associated PRs or extra-nuclear PRs. Furthermore, these rapid, non-classical progesterone actions involving cytoplasmic kinase signaling and/or extra-nuclear PRs also converge with classical PR-mediated, transcription dependent pathway to regulate reproductive behaviors. In this review, we summarize some of the history of the study of the role of PRs in reproductive behaviors, and update the status of PR-mediated mechanisms involved in the facilitation of female sex behavior. We present an integrative model of PR activation via crosstalk and convergence of multiple signaling pathways. PMID:22538437

  20. A left cerebellar pathway mediates language in prematurely-born young adults.

    Science.gov (United States)

    Constable, R Todd; Vohr, Betty R; Scheinost, Dustin; Benjamin, Jennifer R; Fulbright, Robert K; Lacadie, Cheryl; Schneider, Karen C; Katz, Karol H; Zhang, Heping; Papademetris, Xenophon; Ment, Laura R

    2013-01-01

    Preterm (PT) subjects are at risk for developmental delay, and task-based studies suggest that developmental disorders may be due to alterations in neural connectivity. Since emerging data imply the importance of right cerebellar function for language acquisition in typical development, we hypothesized that PT subjects would have alternate areas of cerebellar connectivity, and that these areas would be responsible for differences in cognitive outcomes between PT subjects and term controls at age 20 years. Nineteen PT and 19 term control young adults were prospectively studied using resting-state functional MRI (fMRI) to create voxel-based contrast maps reflecting the functional connectivity of each tissue element in the grey matter through analysis of the intrinsic connectivity contrast degree (ICC-d). Left cerebellar ICC-d differences between subjects identified a region of interest that was used for subsequent seed-based connectivity analyses. Subjects underwent standardized language testing, and correlations with cognitive outcomes were assessed. There were no differences in gender, hand preference, maternal education, age at study, or Peabody Picture Vocabulary Test (PPVT) scores. Functional connectivity (FcMRI) demonstrated increased tissue connectivity in the biventer, simple and quadrangular lobules of the L cerebellum (palterations in connectivity from L cerebellum to both R and L inferior frontal gyri (IFG) in PTs compared to term controls. For PTs but not term controls, there were significant positive correlations between these connections and PPVT scores (R IFG: r=0.555, p=0.01; L IFG: r=0.454, p=0.05), as well as Verbal Comprehension Index (VCI) scores (R IFG: r=0.472, p=0.04). These data suggest the presence of a left cerebellar language circuit in PT subjects at young adulthood. These findings may represent either a delay in maturation or the engagement of alternative neural pathways for language in the developing PT brain. Copyright © 2012 Elsevier

  1. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex

    Science.gov (United States)

    Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F.; Schnitzer, Mark J.; Anderson, David J.

    2017-10-01

    All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience. Oestrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents. We used microendoscopy to image Esr1+ neuronal activity in the VMHvl of male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male versus female conspecifics. However, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific neuronal ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not to mount or attack conspecifics, ensemble divergence did not occur. However, 30 minutes of sexual experience with a female was sufficient to promote the separation of male and female ensembles and to induce an attack response 24 h later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviours. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a ‘hard-wired’ system.

  2. Future Climate of Colombo Downscaled with SDSM-Neural Network

    Directory of Open Access Journals (Sweden)

    Singay Dorji

    2017-03-01

    Full Text Available The Global Climate Model (GCM run at a coarse spatial resolution cannot be directly used for climate impact studies. Downscaling is required to extract the sub-grid and local scale information. This paper investigates if the artificial neural network (ANN is better than the widely-used regression-based statistical downscaling model (SDSM for downscaling climate for a site in Colombo, Sri Lanka. Based on seasonal and annual model biases and the root mean squared error (RMSE, the ANN performed better than the SDSM for precipitation. This paper proposes a novel methodology for improving climate predictions by combining SDSM with neural networks. This method will allow a user to apply SDSM with a neural network model for higher skills in downscaling. The study uses the Canadian Earth System Model (CanESM2 of the IPCC Fifth Assessment Report, reanalysis from the National Center for Environmental Prediction (NCEP, and the Asian Precipitation Highly Resolved Observational Data Integration towards Evaluation of Water Resources (APHRODITE project data as the observation. SDSM and the focused time-delayed neural network (TDNN models are used for the downscaling. The projected annual increase for Representative Concentration Pathway (RCP is 8.5; the average temperature is 2.83 °C (SDSM and 3.03 °C (TDNN, and rainfall is 33% (SDSM and 63% (TDNN for 2080’s.

  3. Comparison of Energy Performance of Different HVAC Systems for a Typical Office Room and a Typical Classroom

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per; Pomianowski, Michal Zbigniew

    the energy consumption for buildings with cooling demand in cold seasons. In this way, the building system can operate at a very low energy use all the year round. The main purpose of this task is to investigate the energy performance of different HVAC systems used in the office room and the classroom......, and find the potential of energy saving for the proposed new system solution. In this report, a typical room is selected according to the previous study, but the occupation is different for the purpose of the office and the classroom. Energy performance of these two types of room under different internal...

  4. Neural Computations in a Dynamical System with Multiple Time Scales

    Science.gov (United States)

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions. PMID:27679569

  5. Differentiating neural reward responsiveness in autism versus ADHD

    Directory of Open Access Journals (Sweden)

    Gregor Kohls

    2014-10-01

    Full Text Available Although attention deficit hyperactivity disorders (ADHD and autism spectrum disorders (ASD share certain neurocognitive characteristics, it has been hypothesized to differentiate the two disorders based on their brain's reward responsiveness to either social or monetary reward. Thus, the present fMRI study investigated neural activation in response to both reward types in age and IQ-matched boys with ADHD versus ASD relative to typically controls (TDC. A significant group by reward type interaction effect emerged in the ventral striatum with greater activation to monetary versus social reward only in TDC, whereas subjects with ADHD responded equally strong to both reward types, and subjects with ASD showed low striatal reactivity across both reward conditions. Moreover, disorder-specific neural abnormalities were revealed, including medial prefrontal hyperactivation in response to social reward in ADHD versus ventral striatal hypoactivation in response to monetary reward in ASD. Shared dysfunction was characterized by fronto-striato-parietal hypoactivation in both clinical groups when money was at stake. Interestingly, lower neural activation within parietal circuitry was associated with higher autistic traits across the entire study sample. In sum, the present findings concur with the assumption that both ASD and ADHD display distinct and shared neural dysfunction in response to reward.

  6. Economy of typical food: technical restrictions and organizative challenges

    Directory of Open Access Journals (Sweden)

    Elena Viganò

    2009-10-01

    Full Text Available The economic analysis of typical agri-food products requires to be focused on the following issues: i the specific features of the offering system; ii the technical restrictions established by the EU regulations on Protected designation of origin (Pdo and Pgi and, iii the strategies aimed at product differentiation and for value creation for the consumer. Considering this latest aspect, it is important to notice that the specificity of the agricultural raw materials, the use of traditional production techniques of production coming from the tradition of the place and certification represent only a prerequisite for the differentiation of the product on the market against standard products. The problem is that the specificity of local product comes from attributes (tangible and intangible of quality which are not directly accessible, nor verifiable, by the consumer when he/she makes purchasing choices. This situation persists despite the greater propensity of modern consumer to make investments in information and his/her greater attention and larger background towards the acknowledgement of different offers based on quality. This paper tends to develop an analysis on a theoretical and operative basis upon open strategies that can be implemented at the enterprise level, and that of agro-food chain and of territorial system in order to promote the quality of products to consumers. In particular, the work addresses the problems connected to the establishment of competitive advantages for Protected Designation of Origin (Pdo and Protected Geographical Indication (Pgi, highlighting that in order to achieve those advantages, firms offering typical products need to differentiate their offering on both material and immaterial ground acting on intrinsic and extrinsic attributes of quality of products, on specific features (natural, historical, cultural, etc. of territorial, on the efficiency of the offering organizational structure, and finally on the

  7. Economy of typical food: technical restrictions and organizative challenges

    Directory of Open Access Journals (Sweden)

    Elena Viganò

    2011-02-01

    Full Text Available The economic analysis of typical agri-food products requires to be focused on the following issues: i the specific features of the offering system; ii the technical restrictions established by the EU regulations on Protected designation of origin (Pdo and Pgi and, iii the strategies aimed at product differentiation and for value creation for the consumer. Considering this latest aspect, it is important to notice that the specificity of the agricultural raw materials, the use of traditional production techniques of production coming from the tradition of the place and certification represent only a prerequisite for the differentiation of the product on the market against standard products. The problem is that the specificity of local product comes from attributes (tangible and intangible of quality which are not directly accessible, nor verifiable, by the consumer when he/she makes purchasing choices. This situation persists despite the greater propensity of modern consumer to make investments in information and his/her greater attention and larger background towards the acknowledgement of different offers based on quality. This paper tends to develop an analysis on a theoretical and operative basis upon open strategies that can be implemented at the enterprise level, and that of agro-food chain and of territorial system in order to promote the quality of products to consumers. In particular, the work addresses the problems connected to the establishment of competitive advantages for Protected Designation of Origin (Pdo and Protected Geographical Indication (Pgi, highlighting that in order to achieve those advantages, firms offering typical products need to differentiate their offering on both material and immaterial ground acting on intrinsic and extrinsic attributes of quality of products, on specific features (natural, historical, cultural, etc. of territorial, on the efficiency of the offering organizational structure, and finally on the

  8. Epidemiology of neural tube defects

    National Research Council Canada - National Science Library

    Seidahmed, Mohammed Z; Abdelbasit, Omar B; Shaheed, Meeralebbae M; Alhussein, Khalid A; Miqdad, Abeer M; Khalil, Mohamed I; Al-Enazy, Naif M; Salih, Mustafa A

    2014-01-01

    To find the prevalence of neural tube defects (NTDs), and compare the findings with local and international data, and highlight the important role of folic acid supplementation and flour fortification with folic acid in preventing NTDs...

  9. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  10. Memristor-based neural networks

    Science.gov (United States)

    Thomas, Andy

    2013-03-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them.

  11. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    simulated process and compared. The closing chapter describes some practical experiments, where the different control concepts and training methods are tested on the same practical process operating in very noisy environments. All tests confirm that neural networks also have the potential to be trained......The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...

  12. Neural components of altruistic punishment

    Directory of Open Access Journals (Sweden)

    Emily eDu

    2015-02-01

    Full Text Available Altruistic punishment, which occurs when an individual incurs a cost to punish in response to unfairness or a norm violation, may play a role in perpetuating cooperation. The neural correlates underlying costly punishment have only recently begun to be explored. Here we review the current state of research on the neural basis of altruism from the perspectives of costly punishment, emphasizing the importance of characterizing elementary neural processes underlying a decision to punish. In particular, we emphasize three cognitive processes that contribute to the decision to altruistically punish in most scenarios: inequity aversion, cost-benefit calculation, and social reference frame to distinguish self from others. Overall, we argue for the importance of understanding the neural correlates of altruistic punishment with respect to the core computations necessary to achieve a decision to punish.

  13. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  14. CHARGEd with neural crest defects.

    Science.gov (United States)

    Pauli, Silke; Bajpai, Ruchi; Borchers, Annette

    2017-10-30

    Neural crest cells are highly migratory pluripotent cells that give rise to diverse derivatives including cartilage, bone, smooth muscle, pigment, and endocrine cells as well as neurons and glia. Abnormalities in neural crest-derived tissues contribute to the etiology of CHARGE syndrome, a complex malformation disorder that encompasses clinical symptoms like coloboma, heart defects, atresia of the choanae, retarded growth and development, genital hypoplasia, ear anomalies, and deafness. Mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene are causative of CHARGE syndrome and loss-of-function data in different model systems have firmly established a role of CHD7 in neural crest development. Here, we will summarize our current understanding of the function of CHD7 in neural crest development and discuss possible links of CHARGE syndrome to other developmental disorders. © 2017 Wiley Periodicals, Inc.

  15. Neural components of altruistic punishment.

    Science.gov (United States)

    Du, Emily; Chang, Steve W C

    2015-01-01

    Altruistic punishment, which occurs when an individual incurs a cost to punish in response to unfairness or a norm violation, may play a role in perpetuating cooperation. The neural correlates underlying costly punishment have only recently begun to be explored. Here we review the current state of research on the neural basis of altruism from the perspectives of costly punishment, emphasizing the importance of characterizing elementary neural processes underlying a decision to punish. In particular, we emphasize three cognitive processes that contribute to the decision to altruistically punish in most scenarios: inequity aversion, cost-benefit calculation, and social reference frame to distinguish self from others. Overall, we argue for the importance of understanding the neural correlates of altruistic punishment with respect to the core computations necessary to achieve a decision to punish.

  16. Pansharpening by Convolutional Neural Networks

    National Research Council Canada - National Science Library

    Masi, Giuseppe; Cozzolino, Davide; Verdoliva, Luisa; Scarpa, Giuseppe

    2016-01-01

    A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem...

  17. Pathways to Metallic Hydrogen

    OpenAIRE

    Silvera, Isaac F.; Deemyad, Shanti

    2008-01-01

    The traditional pathway that researchers have used in the goal of producing atomic metallic hydrogen is to compress samples with megabar pressures at low temperature. A number of phases have been observed in solid hydrogen and its isotopes, but all are in the insulating phase. The results of experiment and theory for this pathway are reviewed. In recent years a new pathway has become the focus of this challenge of producing metallic hydrogen, namely a path along the melting line. It has bee...

  18. Neural systems for social cognition in Klinefelter syndrome (47.XXY) : evidence from fMRI

    NARCIS (Netherlands)

    van Rijn, S.; Swaab, H; Baas, D; de Haan, E; Kahn, R.S.; Aleman, A.

    Klinefelter syndrome (KS) is a chromosomal condition (47, XXY) that may help us to unravel gene-brain behavior pathways to psychopathology. The phenotype includes social cognitive impairments and increased risk for autism traits. We used functional MRI to study neural mechanisms underlying social

  19. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  20. Indices for Testing Neural Codes

    OpenAIRE

    Jonathan D. Victor; Nirenberg, Sheila

    2008-01-01

    One of the most critical challenges in systems neuroscience is determining the neural code. A principled framework for addressing this can be found in information theory. With this approach, one can determine whether a proposed code can account for the stimulus-response relationship. Specifically, one can compare the transmitted information between the stimulus and the hypothesized neural code with the transmitted information between the stimulus and the behavioral response. If the former is ...

  1. Biologically Inspired Modular Neural Networks

    OpenAIRE

    Azam, Farooq

    2000-01-01

    This dissertation explores the modular learning in artificial neural networks that mainly driven by the inspiration from the neurobiological basis of the human learning. The presented modularization approaches to the neural network design and learning are inspired by the engineering, complexity, psychological and neurobiological aspects. The main theme of this dissertation is to explore the organization and functioning of the brain to discover new structural and learning ...

  2. Typical and atypical shoulder impingement syndrome: diagnosis, treatment, and pitfalls.

    Science.gov (United States)

    Buss, Daniel D; Freehill, Michael Q; Marra, Guido

    2009-01-01

    The cause of shoulder impingement syndrome usually is considered to be compression of the rotator cuff and subacromial bursa against the anterolateral aspect of the acromion. The typical symptom is anterolateral shoulder pain that worsens at night and with overhead activity. However, the pain may be caused by factors other than a hooked acromion. Atypical impingement syndrome most commonly results from an os acromiale, a subcoracoid disorder, acromioclavicular joint undersurface hypertrophy, a deconditioned rotator cuff, or scapular dyskinesis. The correct diagnosis is made through the patient history and physical examination, with appropriate diagnostic imaging. Nonsurgical treatment is successful for most types of impingement syndrome; if it is not successful, all structural causes of mechanical impingement must be corrected.

  3. Conditioned place preference successfully established in typically developing children

    Directory of Open Access Journals (Sweden)

    Leah T Hiller

    2015-07-01

    Full Text Available Affective processing, known to influence attention, motivation and emotional regulation is poorly understood in young children, especially for those with neurodevelopmental disorders characterized by language impairments. Here we faithfully adapt a well-established animal paradigm used for affective processing, conditioned place preference for use in typically developing children between the ages of 30-55 months. Children displayed a conditioned place preference, with an average 2.4 fold increase in time spent in the preferred room. Importantly, associative learning as assessed with conditioned place preference was not correlated with scores on the Mullen Scales of Early Learning, indicating that conditioned place preference can be used with children with a wide range of cognitive skills.

  4. Cockayne syndrome without typical clinical manifestations including neurologic abnormalities.

    Science.gov (United States)

    Miyauchi-Hashimoto, H; Akaeda, T; Maihara, T; Ikenaga, M; Horio, T

    1998-10-01

    Although patients with mild symptoms of atypical Cockayne syndrome (CS) have been described, there has not been a report of a patient with CS whose only clinical manifestation was cutaneous photosensitivity. Cells from patients with CS show UV sensitivity, reduced recovery of RNA synthesis, but normal UV-induced unscheduled DNA synthesis. On the other hand, the patients with UV-sensitive syndrome have only cutaneous photosensitivity and skin freckles, whereas those cells respond to UV radiation in a similar fashion to the CS cells. We describe a patient with CS who showed only photosensitivity without typical clinical manifestations of CS, but his cells showed UV sensitivity, reduced recovery of RNA synthesis, and normal unscheduled DNA synthesis after UV radiation similar to CS cells. Furthermore, the patient was assigned to complementation group B of CS on the basis of the results of complementation analysis. The present report suggests that CS has a wider spectrum than that considered previously.

  5. Air Leakage Rates in Typical Air Barrier Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atchley, Jerald Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Childs, Phillip W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    Estimates for 2010 indicate that infiltration in residential buildings was responsible for 2.85 quads of energy (DOE 2014), which is about 3% of the total energy consumed in the US. One of the mechanisms being implemented to reduce this energy penalty is the use of air barriers as part of the building envelope. These technologies decrease airflow through major leakage sites such as oriented strand board (OSB) joints, and gaps around penetrations (e.g., windows, doors, pipes, electrical outlets) as indicated by Hun et al. (2014). However, most air barrier materials do not properly address leakage spots such as wall-to-roof joints and wall-to-foundation joints because these are difficult to seal, and because air barrier manufacturers usually do not provide adequate instructions for these locations. The present study focuses on characterizing typical air leakage sites in wall assemblies with air barrier materials.

  6. Energy Renovation of a Typical Danish Single-family House

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2007-01-01

    In 2006, new tighter energy performance requirements were introduced in Denmark for both new buildings and renovation, including a new classification system for low energy buildings. These demands are based on the directive on Energy Performance of Buildings, the EPBD (2002/91/EC). In general...... the effect of the new requirements for renovation is that existing buildings should be brought up to the energy performance level of new buildings in connection with larger renovations and other substantial changes in the buildings. To demonstrate how it could be done, a thorough energy efficient renovation...... of a typical Danish single-family house from the 1960/70’s with need of renovation has been initiated and the preliminary results are presented in this paper. It is worth noting that about 500,000 of a total of 1.1 million Danish detached single-family houses were erected in that time period. Specifically...

  7. Typical conservation problems of polychrome wooden sculptures in Slovenia

    Directory of Open Access Journals (Sweden)

    Martina Vuga

    2015-01-01

    Full Text Available The Slovene ethnic territory lies at the contact of Italian and German cultural influences, which can also be traced in gilded works of art. The majority of wooden Gothic art heritage has been lost for good, but a great number of wooden "golden altars" from the 17th century and large 18th century baroque altarpieces with outstanding sculptures survive. Conservators-restorers face great problems resulting from repeated restoration interventions of a great deal of these works of art. The paper describes a recent treatment undertaken at the National Gallery of Slovenia of an 18th century water gilded sculpture from no more existing altar, which was subsequently and typically overpainted several times. The case study is used to illustrate the problems encountered in overpaint removal from gilded areas.

  8. Typical and atypical clinical appearance of atopic dermatitis.

    Science.gov (United States)

    Silverberg, Nanette B

    Atopic dermatitis is a complex, systemic inflammatory disorder associated with a variety of clinical features. The original criteria of Hanifin and Rajka include major criteria and a list of about two dozen minor criteria however, even the minor criteria do not include some features of atopic dermatitis noted less commonly but still seen with some frequency. This contribution first reviews the common clinical appearance of atopic dermatitis in infancy, childhood, and adulthood, as well as the less typical appearances, including lichenoid atopic dermatitis; juvenile plantar dermatosis; nummular-type atopic dermatitis; follicular atopic dermatitis; alopecia of atopic dermatitis; eczema coxsackium; and psoriasiform, perineal, and lip licker's dermatitis. The clinician will be able to recognize and treat rarer forms of atopic dermatitis and incorporate this into their daily practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. NON-TYPICAL MIDDLES IN TAIWAN SOUTHERN MIN

    Directory of Open Access Journals (Sweden)

    Huei-Ling Lin

    2012-12-01

    Full Text Available This paper discusses non-typical middles that involve resultative verbal compounds in Taiwan Southern Min. This paper first applies tests to prove that the patient NP before the compound in question is a subject, not a topic, and thus this compound occurs in a middle construction. Next, this paper distinguishes middles (surface unaccusatives from another type of intransitive compound, deep unaccusatives, which alternate with causatives. The two types differ in that middles retain an implicit agent and thus are paraphrasable by their passive counterparts. Moreover, with an implied agent, middles do not allow another overt agent. As to the derivation stage, this paper proposes a mixed account. Middles are argued to be formed in syntax through verb-incorporation, de-thematization, and NP movement. Even though the implied agent is not available in syntax, it is arbitrarily interpreted at the Conceptual-Intentional interface.

  10. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Pacini, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayes, Randall L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roettgen, Daniel R [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.

  11. Specialized directional beaming through a metalens and a typical application

    Directory of Open Access Journals (Sweden)

    Zhao Kangyi

    2018-01-01

    Full Text Available The anomalous beaming effect of the periodic metallic corrugations functioning as a special case of kSP=2π/Λ is discussed and verified by means of both theoretical calculation and experimental probing. A metalens is designed on the basis of the special case. Unlike the conventional beaming of convergence or divergence, the metalens can realize beam collimating, which is useful for practical applications. As a typical application example of the metalens, we integrate the metalens together with a vertical cavity surface emission laser (VCSEL on the top surface of the aperture area. Our experimental results demonstrate that the integrated metalens is capable of suppressing the divergence angle of the VCSEL for collimation use.

  12. Specialized directional beaming through a metalens and a typical application

    Science.gov (United States)

    Zhao, Kangyi; Zhang, Hui; Fu, Yongqi; Zhu, Shaoli

    2018-01-01

    The anomalous beaming effect of the periodic metallic corrugations functioning as a special case of kSP=2π/Λ is discussed and verified by means of both theoretical calculation and experimental probing. A metalens is designed on the basis of the special case. Unlike the conventional beaming of convergence or divergence, the metalens can realize beam collimating, which is useful for practical applications. As a typical application example of the metalens, we integrate the metalens together with a vertical cavity surface emission laser (VCSEL) on the top surface of the aperture area. Our experimental results demonstrate that the integrated metalens is capable of suppressing the divergence angle of the VCSEL for collimation use.

  13. Typically atypical: histiocytoid Sweet syndrome, associated with malignancy.

    Science.gov (United States)

    Hünermund, Anika; Wendel, Ana-Maria; Geissinger, Eva; Bröcker, Eva-Bettina; Stoevesandt, Johanna

    2011-09-01

    Sweet syndrome (acute febrile neutrophilic dermatosis) is characterized by a dramatic onset of high fever, neutrophilia and typical skin lesions. About 20 % of patients have an associated malignancy, most commonly hematologic diseases. Chronic and paucisymptomatic manifestations of Sweet syndrome may be misdiagnosed or misinterpreted as harmless, resulting in delayed diagnosis. "Atypical" manifestations are especially suspicious for associated malignancies. This is demonstrated by a 39-year old patient with chronic and afebrile disease who was referred to our clinic only after symptoms had persisted for several months. By that point, an underlying nodular lymphocyte predominant Hodgkin's lymphoma had already reached an advanced stage. Skin biopsies revealed dermal infiltrates of histiocytoid cells of myelogenous origin, supporting a diagnosis of histiocytoid Sweet syndrome. Specific cutaneous infiltrates associated with myelogenous leukemia were ruled out. © The Authors • Journal compilation © Blackwell Verlag GmbH, Berlin.

  14. Analysis and Comparison of Typical Models within Distribution Network Design

    DEFF Research Database (Denmark)

    Jørgensen, Hans Jacob; Larsen, Allan; Madsen, Oli B.G.

    This paper investigates the characteristics of typical optimisation models within Distribution Network Design. During the paper fourteen models known from the literature will be thoroughly analysed. Through this analysis a schematic approach to categorisation of distribution network design models...... for educational purposes. Furthermore, the paper can be seen as a practical introduction to network design modelling as well as a being an art manual or recipe when constructing such a model....... are covered in the categorisation include fixed vs. general networks, specialised vs. general nodes, linear vs. nonlinear costs, single vs. multi commodity, uncapacitated vs. capacitated activities, single vs. multi modal and static vs. dynamic. The models examined address both strategic and tactical planning...

  15. GENERATION OF A TYPICAL METEOROLOGICAL YEAR FOR PORT HARCOURT ZONE

    Directory of Open Access Journals (Sweden)

    OGOLOMA O.B.

    2011-04-01

    Full Text Available This paper presents data for the typical meteorological year (TMY for the Port Harcourt climatic zone based on the hourly meteorological data recorded during the period 1983–2002, using the Finkelstein-Schafer statistical method. The data are the global solar radiation, wind velocity, dry bulb temperature, relative humidity, and others. The HVAC outside design conditions for the Port Harcourt climatic zone (latitude 4.44oN, longitude 7.1oE, elevation 20 m were found to be 26.7oC, 78.6% and 3.5 m/s for the dry bulb temperature, relative humidity and wind speed, respectively, and 13.5 MJ/m2/day for the global solar radiation. The TMY data for the zone are shown to be sufficiently reliable for engineering practice.

  16. Modeling electrocortical activity through improved local approximations of integral neural field equations.

    NARCIS (Netherlands)

    Coombes, S.; Venkov, N.A.; Shiau, L.; Bojak, I.; Liley, D.T.; Laing, C.R.

    2007-01-01

    Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal

  17. Minimalist social-affective value for use in joint action: A neural-computational hypothesis

    DEFF Research Database (Denmark)

    Lowe, Robert; Almér, Alexander; Lindblad, Gustaf

    2016-01-01

    Joint Action is typically described as social interaction that requires coordination among two or more co-actors in order to achieve a common goal. In this article, we put forward a hypothesis for the existence of a neural-computational mechanism of affective valuation that may be critically expl...

  18. Challenges to the Use of Artificial Neural Networks for Diagnostic Classifications with Student Test Data

    Science.gov (United States)

    Briggs, Derek C.; Circi, Ruhan

    2017-01-01

    Artificial Neural Networks (ANNs) have been proposed as a promising approach for the classification of students into different levels of a psychological attribute hierarchy. Unfortunately, because such classifications typically rely upon internally produced item response patterns that have not been externally validated, the instability of ANN…

  19. Neural Correlates of Visual Perceptual Expertise: Evidence from Cognitive Neuroscience Using Functional Neuroimaging

    Science.gov (United States)

    Gegenfurtner, Andreas; Kok, Ellen M.; van Geel, Koos; de Bruin, Anique B. H.; Sorger, Bettina

    2017-01-01

    Functional neuroimaging is a useful approach to study the neural correlates of visual perceptual expertise. The purpose of this paper is to review the functional-neuroimaging methods that have been implemented in previous research in this context. First, we will discuss research questions typically addressed in visual expertise research. Second,…

  20. Neural Correlates of Explicit versus Implicit Facial Emotion Processing in ASD

    Science.gov (United States)

    Luckhardt, Christina; Kröger, Anne; Cholemkery, Hannah; Bender, Stephan; Freitag, Christine M.

    2017-01-01

    The underlying neural mechanisms of implicit and explicit facial emotion recognition (FER) were studied in children and adolescents with autism spectrum disorder (ASD) compared to matched typically developing controls (TDC). EEG was obtained from N = 21 ASD and N = 16 TDC. Task performance, visual (P100, N170) and cognitive (late positive…

  1. Fluid intake behavior in athletes during typical training bouts.

    Science.gov (United States)

    Buoite Stella, Alex; Francescato, Maria P; Sims, Stacy T; Morrison, Shawnda A

    2017-11-01

    Hydration habits during training may differ depending on sports mode and individual characteristics. The aim of this study was to assess fluid intake behavior in a wide sample of Italian athletes during their regular training. Data on hydration habits during training were collected from a random sample of competitive athletes. Hydration strategies and personal characteristics were queried via questionnaire, including athletes' quantity and type of fluid ingested during a typical training bout, sport characteristics (e.g. mode and training duration), and whether their coach encouraged them to drink during trainings. Three hundred and fifty-two competitive athletes participated to the study; two hundred eighty-nine athletes correctly completed all survey items (age: 8-63 years, median: 21±13 years). Athletes were involved in international (3.1%), national (34.1%) and regional (44.9%) competitions. Median fluid intakes during training were 0.25 L/h; 150 athletes reported fluid intake below the median, whilst 23 athletes (6.5% of total sample) reported fluid intake at or above currently published exercise hydration guidelines (NATA and ACSM). Binary logistic regression indicated that the number of pauses to drink (B=0.771, P=0.000), duration of a typical training bout (B=-2.237, P=0.000), and a coach's encouragement to drink (B=0.601, P=0.030) were each associated with fluid consumption above or below the median value. Athletes across all disciplines reported drinking less fluid during training than currently espoused in hydration guidelines. A coach's encouragement to drink, the number of pauses during training, and bout duration each influence total fluid volume consumed, regardless of competition level, sex or the age of an athlete.

  2. Theoretical fitting characteristics of typical soft contact lens designs.

    Science.gov (United States)

    Sulley, Anna; Osborn Lorenz, Kathrine; Wolffsohn, James S; Young, Graeme

    2017-08-01

    To calculate theoretical fitting success rates (SR) for a range of typical soft contact lens (SCL) designs using a mathematical model. A spreadsheet mathematical model was used to calculate fitting SR for various SCL designs. Designs were evaluated using ocular topography data from 163 subjects. The model calculated SR based on acceptable edge strain (within range 0-6%) and horizontal diameter overlap (range 0.2-1.2mm). Where lenses had multiple base curves (BCs), eyes unsuccessful with the steeper BC were tested with the flatter BC and aggregate SR calculated. Calculations were based on typical, current, hydrogel and silicone hydrogel SCLs and allowed for appropriate on-eye shrinkage (1.0-2.3%). Theoretical results were compared with those from actual clinical trials. Theoretical success rates for one-BC lenses ranged from 60.7% (95% CI 7.2%) to 90.2% (95% CI 3.7%). With two-BC designs, most combinations showed a SR increase with a second BC (84.0%-90.2%). However, one of the two-BC combinations showed only negligible increase with a second BC (72.4%-73.0%). For designs with lower SR, the greatest contributor to failure was inadequate lens diameter. For a given design, differences in shrinkage (i.e. on-eye bulk dehydration) had a significant effect on success rate. In comparison with historical clinical data, there was a positive correlation between small lens fitting prevalence and discomfort reports (r=+0.95, P=<0.001) with a poor correlation between theoretical and actual tight/loose fittings. Mathematical modelling is a useful method for testing SCL design combinations. The results suggest that judicious choice of additional fittings can expand the range of fitting success. Copyright © 2017 British Contact Lens Association. All rights reserved.

  3. Atypical presentation is dominant and typical for coeliac disease.

    Science.gov (United States)

    Rostami Nejad, Mohammad; Rostami, Kamran; Pourhoseingholi, Mohamad Amin; Nazemalhosseini Mojarad, Ehsan; Habibi, Manijeh; Dabiri, Hossein; Zali, Mohammad Reza

    2009-09-01

    Atypical presentation is the most prevalent form of coeliac disease (CD) and mostly clinically indistinguishable from other gastrointestinal (GI) disorders. The first objective of this study was to determine the prevalence of CD in patients with GI symptoms and the second objective was to characterize the typical manifestations of the atypical forms of CD. This was a cross sectional study comprising 5,176 individuals by random sampling of self-referred people from the Tehran province, during the years 2006-2007 in a primary care setting. From 5,176 individuals, 670 with GI symptoms were selected for coeliac serology including total immunoglobulin A (IgA) and anti-tissue transglutaminase (tTG) antibodies. Those with IgA deficiency were tested with IgG tTG. This study shows that 13% (670/5176) of self-referred patients to a general practice suffer from GI symptoms. Dyspepsia was the most common symptom in 25 seropositive cases similar to the rest of the study group. A positive anti-tTG test was found in 22 from 670 investigated subjects (17 women, 5 men) (95% CI: 1.70-4.30) and 8/670 were IgA deficient. A positive IgG tTG was detected in 3/8 IgA deficient individuals. The prevalence of CD antibodies in serologically screened samples excluding IgA-deficient was 3.3% and 3.7% when including those IgA-deficient with positive tTG-IgG. Non-specific GI symptoms seem to be the typical presentation of atypical CD. This study indicated that there is a high prevalence of CD antibodies among patients with GI symptoms (3.7%). More awareness regarding the atypical presentation of CD could be the key step in identifying asymptomatic patients.

  4. Energy Balance of a Typical U.S. Diet.

    Science.gov (United States)

    Alexandrou, Athanasios; Tenbergen, Klaus; Adhikari, Diganta

    2013-03-28

    Today's agriculture provides an ever increasing population with sufficient quantities of food. During food production, processing, handling and transportation, an amount of energy is invested into the various products. An energy analysis of a typical American diet provides policy makers, farmers and the public with the necessary information to evaluate and make informed decisions as to how to improve the efficient use of energy. At the same time, an informed consumer may become energy conscious and be able to make dietary choices based on food energy balance. This paper studies the energy sequestered in a typical American diet as defined in Food and Agriculture Organization of the United Nations, Statistics Division (FAOSTAT). The amount of energy incorporated in this diet of 3628 kcal (15.18 MJ) per person and day to produce, transport, handle and process the foods is calculated and found to have approximately 39.92 GJ (9.54 Gcal) sequestered per person and year. It is shown that a diet in line with the United States Department of Agriculture (USDA) recommendation of around 2100 kcal (8.79 MJ) per day person will result in a reduction of energy inputs by 42% on an annual basis. This reduction for the whole population of the United States of America (USA), corresponds to approximately 879 million barrels of oil equivalent (boe) savings. Energy efficiency for the food categories studied varies from 3.4% to 56.5% with an average of 21.7%. Food energy efficiency can be further improved in some food categories through either a reduction of energy inputs or yield increase.

  5. Memory for sequences of events impaired in typical aging

    Science.gov (United States)

    Allen, Timothy A.; Morris, Andrea M.; Stark, Shauna M.; Fortin, Norbert J.

    2015-01-01

    Typical aging is associated with diminished episodic memory performance. To improve our understanding of the fundamental mechanisms underlying this age-related memory deficit, we previously developed an integrated, cross-species approach to link converging evidence from human and animal research. This novel approach focuses on the ability to remember sequences of events, an important feature of episodic memory. Unlike existing paradigms, this task is nonspatial, nonverbal, and can be used to isolate different cognitive processes that may be differentially affected in aging. Here, we used this task to make a comprehensive comparison of sequence memory performance between younger (18–22 yr) and older adults (62–86 yr). Specifically, participants viewed repeated sequences of six colored, fractal images and indicated whether each item was presented “in sequence” or “out of sequence.” Several out of sequence probe trials were used to provide a detailed assessment of sequence memory, including: (i) repeating an item from earlier in the sequence (“Repeats”; e.g., ABADEF), (ii) skipping ahead in the sequence (“Skips”; e.g., ABDDEF), and (iii) inserting an item from a different sequence into the same ordinal position (“Ordinal Transfers”; e.g., AB3DEF). We found that older adults performed as well as younger controls when tested on well-known and predictable sequences, but were severely impaired when tested using novel sequences. Importantly, overall sequence memory performance in older adults steadily declined with age, a decline not detected with other measures (RAVLT or BPS-O). We further characterized this deficit by showing that performance of older adults was severely impaired on specific probe trials that required detailed knowledge of the sequence (Skips and Ordinal Transfers), and was associated with a shift in their underlying mnemonic representation of the sequences. Collectively, these findings provide unambiguous evidence that the

  6. New genetic tools to identify and protect typical italian products

    Directory of Open Access Journals (Sweden)

    Sergio Lanteri

    2011-02-01

    Full Text Available During last decades the use of local varieties was strongly reduced due to introduction of modern cultivars characterized by higher yield, and breed for different traits of agronomic value. However, these cultivars not always have the quality aspects that was found in old traditional and typical crops also depending from the know-how of traditional cultivation. Nowadays the practise of intensive agriculture select only a small number of species and varieties with a consequent reduction of the diversity in agro-ecosystems and risk of loss of important alleles characterizing genetic materials adapted to specific environments. The creation of quality marks of the European Union proved to be a successful system to protect typical products through the Denomination of Origins (PDO- Protected Denomination of Origin and PGI- Protected Geographical Indication. However, the protection of quality needs efficient instruments to discriminate DOP or IGP varieties in the field and to trace them along the agro-food chain. DNA fingerprinting represents an excellent system to discriminate herbaceous and tree species as well as to quantify the amount of genetic variability present in germplasm collections. The paper describes several examples in which AFLPs, SSRs and minisatellite markers were successfully used to identify tomato, artichoke, grape, apple and walnut varieties proving to be effective in discriminating also closely related genetic material. DNA fingerprinting based on SSR is also a powerful tool to trace and authenticate row plant materials in agro-food chains. The paper describes examples of varieties traceability in the food chains durum wheat, olive, apple and tomato pursued through the identification of SSR allelic profiles obtained from DNA isolated from complex highly processed food, such as bread, olive oil, apple pureè and nectar and peeled tomato.

  7. New genetic tools to identify and protect typical italian products

    Directory of Open Access Journals (Sweden)

    Rosa Rao

    2009-10-01

    Full Text Available During last decades the use of local varieties was strongly reduced due to introduction of modern cultivars characterized by higher yield, and breed for different traits of agronomic value. However, these cultivars not always have the quality aspects that was found in old traditional and typical crops also depending from the know-how of traditional cultivation. Nowadays the practise of intensive agriculture select only a small number of species and varieties with a consequent reduction of the diversity in agro-ecosystems and risk of loss of important alleles characterizing genetic materials adapted to specific environments. The creation of quality marks of the European Union proved to be a successful system to protect typical products through the Denomination of Origins (PDO- Protected Denomination of Origin and PGI- Protected Geographical Indication. However, the protection of quality needs efficient instruments to discriminate DOP or IGP varieties in the field and to trace them along the agro-food chain. DNA fingerprinting represents an excellent system to discriminate herbaceous and tree species as well as to quantify the amount of genetic variability present in germplasm collections. The paper describes several examples in which AFLPs, SSRs and minisatellite markers were successfully used to identify tomato, artichoke, grape, apple and walnut varieties proving to be effective in discriminating also closely related genetic material. DNA fingerprinting based on SSR is also a powerful tool to trace and authenticate row plant materials in agro-food chains. The paper describes examples of varieties traceability in the food chains durum wheat, olive, apple and tomato pursued through the identification of SSR allelic profiles obtained from DNA isolated from complex highly processed food, such as bread, olive oil, apple pureè and nectar and peeled tomato.

  8. Anterior Hox Genes Interact with Components of the Neural Crest Specification Network to Induce Neural Crest Fates

    Science.gov (United States)

    Gouti, Mina; Briscoe, James; Gavalas, Anthony

    2011-01-01

    Hox genes play a central role in neural crest (NC) patterning particularly in the cranial region of the body. Despite evidence that simultaneous loss of Hoxa1 and Hoxb1 function resulted in NC specification defects, the role of Hox genes in NC specification has remained unclear due to extended genetic redundancy among Hox genes. To circumvent this problem, we expressed anterior Hox genes in the trunk neural tube of the developing chick embryo. This demonstrated that anterior Hox genes play a central role in NC cell specification by rapidly inducing the key transcription factors Snail2 and Msx1/2 and a neural progenitor to NC cell fate switch characterized by cell adhesion changes and an epithelial-to-mesenchymal transition (EMT). Cells delaminated from dorsal and medial neural tube levels and generated ectopic neurons, glia progenitors, and melanocytes. The mobilization of the NC genetic cascade was dependent upon bone morphogenetic protein signaling and optimal levels of Notch signaling. Therefore, anterior Hox patterning genes participate in NC specification and EMT by interacting with NC-inducing signaling pathways and regulating the expression of key genes involved in these processes. Stem Cells 2011;29:858–870 PMID:21433221

  9. Neural-like growing networks

    Science.gov (United States)

    Yashchenko, Vitaliy A.

    2000-03-01

    On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.

  10. Flexibility of neural stem cells

    Directory of Open Access Journals (Sweden)

    Eumorphia eRemboutsika

    2011-04-01

    Full Text Available Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.

  11. Perlecan is required for FGF-2 signaling in the neural stem cell niche

    Directory of Open Access Journals (Sweden)

    Aurelien Kerever

    2014-03-01

    Full Text Available In the adult subventricular zone (neurogenic niche, neural stem cells double-positive for two markers of subsets of neural stem cells in the adult central nervous system, glial fibrillary acidic protein and CD133, lie in proximity to fractones and to blood vessel basement membranes, which contain the heparan sulfate proteoglycan perlecan. Here, we demonstrate that perlecan deficiency reduces the number of both GFAP/CD133-positive neural stem cells in the subventricular zone and new neurons integrating into the olfactory bulb. We also show that FGF-2 treatment induces the expression of cyclin D2 through the activation of the Akt and Erk1/2 pathways and promotes neurosphere formation in vitro. However, in the absence of perlecan, FGF-2 fails to promote neurosphere formation. These results suggest that perlecan is a component of the neurogenic niche that regulates FGF-2 signaling and acts by promoting neural stem cell self-renewal and neurogenesis.

  12. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (PhosphoProteomic Profiling

    Directory of Open Access Journals (Sweden)

    Ilyas Singec

    2016-09-01

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs. This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families, phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt.

  13. Maximum solid concentrations of coal water slurries predicted by neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa

    2010-12-15

    The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)

  14. Interactive extraction of neural structures with user-guided morphological diffusion

    KAUST Repository

    Yong Wan,

    2012-10-01

    Extracting neural structures with their fine details from confocal volumes is essential to quantitative analysis in neurobiology research. Despite the abundance of various segmentation methods and tools, for complex neural structures, both manual and semi-automatic methods are ine ective either in full 3D or when user interactions are restricted to 2D slices. Novel interaction techniques and fast algorithms are demanded by neurobiologists to interactively and intuitively extract neural structures from confocal data. In this paper, we present such an algorithm-technique combination, which lets users interactively select desired structures from visualization results instead of 2D slices. By integrating the segmentation functions with a confocal visualization tool neurobiologists can easily extract complex neural structures within their typical visualization workflow.

  15. Inferring pathway activity toward precise disease classification.

    Directory of Open Access Journals (Sweden)

    Eunjung Lee

    2008-11-01

    Full Text Available The advent of microarray technology has made it possible to classify disease states based on gene expression profiles of patients. Typically, marker genes are selected by measuring the power of their expression profiles to discriminate among patients of different disease states. However, expression-based classification can be challenging in complex diseases due to factors such as cellular heterogeneity within a tissue sample and genetic heterogeneity across patients. A promising technique for coping with these challenges is to incorporate pathway information into the disease classification procedure in order to classify disease based on the activity of entire signaling pathways or protein complexes rather than on the expression levels of individual genes or proteins. We propose a new classification method based on pathway activities inferred for each patient. For each pathway, an activity level is summarized from the gene expression levels of its condition-responsive genes (CORGs, defined as the subset of genes in the pathway whose combined expression delivers optimal discriminative power for the disease phenotype. We show that classifiers using pathway activity achieve better performance than classifiers based on individual gene expression, for both simple and complex case-control studies including differentiation of perturbed from non-perturbed cells and subtyping of several different kinds of cancer. Moreover, the new method outperforms several previous approaches that use a static (i.e., non-conditional definition of pathways. Within a pathway, the identified CORGs may facilitate the development of better diagnostic markers and the discovery of core alterations in human disease.

  16. Alterations of the visual pathways in congenital blindness

    DEFF Research Database (Denmark)

    Ptito, Maurice; Schneider, Fabien C G; Paulson, Olaf B

    2008-01-01

    We used whole brain MRI voxel-based morphometry (VBM) to study the anatomical organization of the visual system in congenitally blind (CB) adults. Eleven CB without a history of visual perception were compared with 21 age- and sex-matched normal-sighted controls (NS). CB showed significant atroph...... somatosensory or auditory inputs, suggesting a reorganization of the neural pathways that transmit sensory information to the visual cortex....

  17. Spiking modular neural networks: A neural network modeling approach for hydrological processes

    National Research Council Canada - National Science Library

    Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey

    2006-01-01

    .... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...

  18. Hox genes: choreographers in neural development, architects of circuit organization.

    Science.gov (United States)

    Philippidou, Polyxeni; Dasen, Jeremy S

    2013-10-02

    The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This Review highlights the functions and mechanisms of Hox gene networks and their multifaceted roles during neuronal specification and connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  20. Neural network design for J function approximation in dynamic programming

    CERN Document Server

    Pang, X

    1998-01-01

    This paper shows that a new type of artificial neural network (ANN) -- the Simultaneous Recurrent Network (SRN) -- can, if properly trained, solve a difficult function approximation problem which conventional ANNs -- either feedforward or Hebbian -- cannot. This problem, the problem of generalized maze navigation, is typical of problems which arise in building true intelligent control systems using neural networks. (Such systems are discussed in the chapter by Werbos in K.Pribram, Brain and Values, Erlbaum 1998.) The paper provides a general review of other types of recurrent networks and alternative training techniques, including a flowchart of the Error Critic training design, arguable the only plausible approach to explain how the brain adapts time-lagged recurrent systems in real-time. The C code of the test is appended. As in the first tests of backprop, the training here was slow, but there are ways to do better after more experience using this type of network.

  1. Cracking the neural code, treating paralysis and the future of bioelectronic medicine.

    Science.gov (United States)

    Bouton, C

    2017-07-01

    The human nervous system is a vast network carrying not only sensory and movement information, but also information to and from our organs, intimately linking it to our overall health. Scientists and engineers have been working for decades to tap into this network and 'crack the neural code' by decoding neural signals and learning how to 'speak' the language of the nervous system. Progress has been made in developing neural decoding methods to decipher brain activity and bioelectronic technologies to treat rheumatoid arthritis, paralysis, epilepsy and for diagnosing brain-related diseases such as Parkinson's and Alzheimer's disease. In a recent first-in-human study involving paralysis, a paralysed male study participant regained movement in his hand, years after his injury, through the use of a bioelectronic neural bypass. This work combined neural decoding and neurostimulation methods to translate and re-route signals around damaged neural pathways within the central nervous system. By extending these methods to decipher neural messages in the peripheral nervous system, status information from our bodily functions and specific organs could be gained. This, one day, could allow real-time diagnostics to be performed to give us a deeper insight into a patient's condition, or potentially even predict disease or allow early diagnosis. The future of bioelectronic medicine is extremely bright and is wide open as new diagnostic and treatment options are developed for patients around the world. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  2. Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells.

    Science.gov (United States)

    Lange, Christian; Mix, Eilhard; Frahm, Jana; Glass, Anne; Müller, Jana; Schmitt, Oliver; Schmöle, Anne-Caroline; Klemm, Kristin; Ortinau, Stefanie; Hübner, Rayk; Frech, Moritz J; Wree, Andreas; Rolfs, Arndt

    2011-01-13

    Human neural progenitor cells provide a source for cell replacement therapy to treat neurodegenerative diseases. Therefore, there is great interest in mechanisms and tools to direct the fate of multipotent progenitor cells during their differentiation to increase the yield of a desired cell type. We tested small molecule inhibitors of glycogen synthase kinase-3 (GSK-3) for their functionality and their influence on neurogenesis using the human neural progenitor cell line ReNcell VM. Here we report the enhancement of neurogenesis of human neural progenitor cells by treatment with GSK-3 inhibitors. We tested different small molecule inhibitors of GSK-3 i.e. LiCl, sodium-valproate, kenpaullone, indirubin-3-monoxime and SB-216763 for their ability to inhibit GSK-3 in human neural progenitor cells. The highest in situ GSK-3 inhibitory effect of the drugs was found for kenpaullone and SB-216763. Accordingly, kenpaullone and SB-216763 were the only drugs tested in this study to stimulate the Wnt/β-catenin pathway that is antagonized by GSK-3. Analysis of human neural progenitor differentiation revealed an augmentation of neurogenesis by SB-216763 and kenpaullone, without changing cell cycle exit or cell survival. Small molecule inhibitors of GSK-3 enhance neurogenesis of human neural progenitor cells and may be used to direct the differentiation of neural stem and progenitor cells in therapeutic applications. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Evaluation of neural gene expression in serum treated embryonic stem cells in Alzheimer′s patients

    Directory of Open Access Journals (Sweden)

    Leila Dehghani

    2013-01-01

    Full Text Available Background: Previous studies confirmed that neural gene expression in embryonic stem cells (ESC could influence by chemical compounds through stimulating apoptotic pathway. We aimed to use ESCs-derived neural cells by embryoid body formation as an in vitro model for determination of neural gene expression changes in groups that treated by sera from Alzheimer′s patients and compare with healthy individuals. Materials and Methods: ESC line which was derived from the C57BL/6 mouse strain was used throughout this study. ESC-derived neural cells were treated with serum from Alzheimer′s patient and healthy individual. Neural gene expression was assessed in both groups by quantitative real-time polymerase chain reaction analysis. The data was analyzed by SPSS Software (version 18. Results: Morphologically, the reducing in neurite out-growth was observed in neural cells in group, which treated by serum from Alzheimer′s patient, while neurite growth was natural in appearance in control group. Microtubule-associated protein 2 and glial fibrillary acidic protein expression significantly reduced in the Alzheimer′s patient group compared with the control group. Nestin expression did not significantly differ among the groups. Conclusion: Neural gene expression could be reduced in serum treated ESC in Alzheimer′s patients.

  4. Developmental pathways to antisocial behavior: the delayed-onset pathway in girls.

    Science.gov (United States)

    Silverthorn, P; Frick, P J

    1999-01-01

    Recent research has suggested that there are two distinct trajectories for the development of antisocial behavior in boys: a childhood-onset pathway and an adolescent-onset pathway. After reviewing the limited available research on antisocial girls, we propose that this influential method of conceptualizing the development of severe antisocial behavior may not apply to girls without some important modifications. Antisocial girls appear to show many of the correlates that have been associated with the childhood-onset pathway in boys, and they tend to show impaired adult adjustment, which is also similar to boys in the childhood-onset pathway. However, antisocial girls typically show an adolescent-onset to their antisocial behavior. We have proposed that these girls show a third developmental pathway which we have labeled the "delayed-onset" pathway. This model rests on the assumption that many of the putative pathogenic mechanisms that contribute to the development of antisocial behavior in girls, such as cognitive and neuropsychological deficits, a dysfunctional family environment, and/or the presence of a callous and unemotional interpersonal style, may be present in childhood, but they do not lead to severe and overt antisocial behavior until adolescence. Therefore, we propose that the delayed-onset pathway for girls is analogous to the childhood-onset pathway in boys and that there is no analogous pathway in girls to the adolescent-onset pathway in boys. Although this model clearly needs to be tested in future research, it highlights the need to test the applicability of current theoretical models for explaining the development of antisocial behavior in girls.

  5. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  6. Career Pathways in Indiana

    Science.gov (United States)

    McCaskey, Steve; Johnson, Tricia

    2010-01-01

    The revisions to the Carl D. Perkins Career and Technical Education Act of 2006 require that career and technical education (CTE) programs provide students with a clear pathway from secondary to postsecondary education, and into high-wage, high-skill and high-demand careers. States nationwide are developing programs, called career pathways, to…

  7. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  8. Longitudinal changes in cortical thickness in autism and typical development

    Science.gov (United States)

    Prigge, Molly B. D.; Nielsen, Jared A.; Froehlich, Alyson L.; Abildskov, Tracy J.; Anderson, Jeffrey S.; Fletcher, P. Thomas; Zygmunt, Kristen M.; Travers, Brittany G.; Lange, Nicholas; Alexander, Andrew L.; Bigler, Erin D.; Lainhart, Janet E.

    2014-01-01

    The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3–36 years) and 60 males with typical development (mean age = 18 years; range 4–39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and

  9. Chaotic Resonance in Typical Routes to Chaos in the Izhikevich Neuron Model

    OpenAIRE

    Sou Nobukawa; Haruhiko Nishimura; Teruya Yamanishi

    2017-01-01

    Chaotic resonance (CR), in which a system responds to a weak signal through the effects of chaotic activities, is a known function of chaos in neural systems. The current belief suggests that chaotic states are induced by different routes to chaos in spiking neural systems. However, few studies have compared the efficiency of signal responses in CR across the different chaotic states in spiking neural systems. We focused herein on the Izhikevich neuron model, comparing the characteristics of ...

  10. Pubertal development in Rett syndrome deviates from typical females.

    Science.gov (United States)

    Killian, John T; Lane, Jane B; Cutter, Gary R; Skinner, Steven A; Kaufmann, Walter E; Tarquinio, Daniel C; Glaze, Daniel G; Motil, Kathleen J; Neul, Jeffrey L; Percy, Alan K

    2014-12-01

    Rett syndrome is a unique neurodevelopmental disorder, affecting approximately one in 10,000 live female births, most experiencing reduced growth. We characterized pubertal trajectories in females with Rett syndrome. We hypothesized that pubertal trajectory deviates from the general female population with early pubertal onset and delayed menarche. Participants were individuals enrolled in the Rett Syndrome Natural History Study with clinical diagnosis of Rett syndrome or mutations in MECP2. Intervals to thelarche, adrenarche, and menarche were assessed by survival analysis; body mass index, mutation type, clinical severity, and pubertal milestone relationships were assessed by log-likelihood test; pathway synchrony (relationship between thelarche, adrenarche, and menarche) was assessed by chi-squared analysis. Compared with the general female population, more than 25% initiated puberty early, yet entered menarche later (median age 13.0 years). A total of 19% experienced delayed menarche. Median length of puberty, from thelarche to menarche, was 3.9 years. Higher body mass index correlated with earlier thelarche and adrenarche but not menarche; milder mutations correlated with earlier menarche; and milder clinical presentation correlated with earlier thelarche and menarche. Fifty-two percent entered puberty in synchrony, but different from the general population, 15% led with thelarche and 32% with adrenarche. Pubertal trajectories in Rett syndrome differ from general population, entering puberty early and reaching menarche later. Body mass index affects pubertal timing, but the relationship between specific mutations, clinical presentation, and underlying neuroendocrine pathology is less clear. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. One-proton radioactivity in a typical shell model potential

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Martha Monique Nogueira; Duarte, Sergio Barbosa [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Teruya, Nilton [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Fisica

    2011-07-01

    Full text: Half-lives for proton emitter nuclei were determined by using a model based on the quantum-mechanical tunneling mechanism of penetration through a potential barrier. A typical shell model potential which includes the coulomb, spin-orbit and centrifugal contribution generate the barrier. Consequently, it is included the generic transition with any orbital angular moment value for the emitted proton. The nuclear radius and diffuseness parameters are determined as following the systematic also used in Ref. (E.L. Medeiros, M.M.N. Rodrigues, S.B. Duarte, and O.A.P. Tavares, Eur. Phys. J. A 34, 417 (2007) (1997). The depth of the nuclear Wood-Saxon potential was adjusted to reproduce the experimental decay energy of the decay in an attempt to determine the half-lives. The results are compared with that ones obtain by using others potential depth in the literature. The half life of around two tens of already detected proton emitters was determined. Our results are in quite good accordance with the experimental values, in particular, the half-life for the resonances of 11N also are in excellent agreement with microscopic calculations of continuum single-particle resonances in ref. (T. N. Leite, N. Teruya and H. Dias, Int. Jour. Mod. Phys. E, Vol. 11, 1 (2002)) and the experimental data of ref. (J. M. Oliveira Jr. et al., Phys. Rev. Lett. 84, 4056 (2000)). (author)

  12. Typical and atypical clinical presentation of uterine myomas

    Directory of Open Access Journals (Sweden)

    Wen-Hsiang Su

    2012-10-01

    Full Text Available Myoma is the most common benign neoplasm that can occur in the female reproductive system, most frequently seen in women in their 50s. Although the majority of myomas are asymptomatic, some patients have symptoms and/or signs of varying degrees. Typical myoma-related symptoms or signs include: (1 menstrual disturbances like menorrhagia, dysmenorrhea and intermenstrual bleeding, (2 pelvic pain unrelated to menstruation, (3 compression symptoms, similar to a sensation of bloatedness, urinary frequency and constipation, (4 subfertility status such as recurrent abortion, preterm labor, dystocia with an increased incidence of Cesarean section, and postpartum hemorrhage, and (5 cosmetic problems due to increased abdominal girth However, there are undoubtedly some clinical presentations secondary to uterine myomas are not so specific, such as: (1 uncommon compression-related symptoms, (2 cardiac symptom and atypical symptoms secondary to vascular involvement or dissemination, (3 abdominal symptoms mimicking pelvic carcinomatosis, (4 dyspnea, (5 pruritus, (6 hiccup or internal bleeding, and (7 vaginal protruding mass or uterine inversion. Familiarization with these symptoms and awareness of other unusual or atypical presentations of uterine myomas will remind clinical practitioners of their significance, and of the necessity of follow-up examinations and individualized management to fit the needs and childbirth desires of the patients.

  13. Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines

    Science.gov (United States)

    Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath

    2017-04-01

    The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.

  14. Evaluation of a sunscreen during a typical beach period

    Directory of Open Access Journals (Sweden)

    Daniela Rego

    2010-01-01

    Full Text Available Purpose : Amongst the radiations reaching the Earth′s surface, the ultraviolet rays are the ones receiving most attention from the scientists, given their damaging potential for humans exposed to them. To minimize the harm caused by such exposure, human beings are strongly recommended to use sunscreens, which are pharmaceutical preparations containing filters that confer protection against radiation. As this protection is strongly dependent on the properties of these filters, it is very important to ensure their stability even when under aggressive conditions, such as the typical high temperatures of summer in South Europe. In this study, a commercial sunscreen emulsion was tested in vitro for a period of time intended to simulate a beach period of 15 days, with regard to the maintenance of its sun protection factor (SPF. Moreover, the organoleptic characteristics were also monitored by macroscopic analysis. Materials and Methods : To perform this study, temperature conditions similar to those observed from June to August in Faro (Portugal were simulated in vitro. The SPF was determined by spectrophotometry, with subsequent application of the Mansur equation. Results and Conclusion : No significant alterations were observed during the considered period under the specific conditions of this study.

  15. Development of Visuospatial Attention in Typically Developing Children

    Directory of Open Access Journals (Sweden)

    Gaétan Ickx

    2017-12-01

    Full Text Available The aim of the present study is to investigate the development of visuospatial attention in typically developing children and to propose reference values for children for the following six visuospatial attention tests: star cancellation, Ogden figure, reading test, line bisection, proprioceptive pointing and visuo-proprioceptive pointing. Data of 159 children attending primary or secondary school in the Fédération Wallonie Bruxelles (Belgium were analyzed. Results showed that the children's performance on star cancellation, Ogden figure and reading test improved until the age of 13 years, whereas their performance on proprioceptive pointing, visuo-proprioceptive pointing and line bisection was stable with increasing age. These results suggest that the execution of different types of visuospatial attention tasks are not following the same developmental trajectories. This dissociation is strengthened by the lack of correlation observed between tests assessing egocentric and allocentric visuospatial attention, except for the star cancellation test (egocentric and the Ogden figure copy (ego- and allocentric. Reference values are proposed that may be useful to examine children with clinical disorders of visuospatial attention.

  16. P3a from visual stimuli: typicality, task, and topography.

    Science.gov (United States)

    Polich, John; Comerchero, Marco D

    2003-01-01

    A visual three-stimulus (target, nontarget, standard) paradigm was employed in which subjects responded only to the target. Nontarget stimulus properties were varied systematically to evaluate how stimulus typicality (non-novel vs. novel) across task discrimination (easy vs. difficult) conditions affects P3a scalp topography. Nontarget stimuli consisted of letters, small squares, large squares, and novel patterns; discrimination difficulty between the target and standard was varied across conditions. When the discrimination was easy, P300 amplitude was larger for the target than the nontarget with parietal maximums for both. In contrast, when the discrimination was difficult, nontarget amplitude (P3a) was larger and earlier than the target P300 over the frontal/central electrode sites, whereas target amplitude (P3b) was larger parietally and occurred later. P3a was largest when elicited by either the large square or novel pattern stimuli. The findings suggest that stimulus context as defined by the target/standard discrimination difficulty rather than stimulus novelty determines P3a generation.

  17. Executive functions and intelligence in typically developing children

    Directory of Open Access Journals (Sweden)

    Buha Nataša

    2016-01-01

    Full Text Available With regard to conceptual similarity between executive functions and intelligence, the aim of this research was to determine their correlation in typically developing children. The sample included 114 children of both sexes (59/51.8% of girls, between 8.7 and 10.8 years of age (M=9.80; SD=0.57. Dodrill's Stroop Test, Go/No-Go Task, Listening Span Task, Digit Span Backward, Odd-one-out span, Figure Span Backward, Wisconsin Card Sorting Test, Twenty Questions Task and Tower of London were used for the assessment of executive functions. Intelligence was assessed by Raven's Progressive Matrices. Pearson's correlation and partial correlation coefficients were used in statistical analysis of the results. A low to moderate correlation was determined between intelligence and the variables of all applied executive functions tasks, both in verbal and non-verbal domain (p≤0.000-0.05. Inhibitory control, cognitive flexibility, and planning ability correlated with fluid intelligence in the range of r=0.20-0.30, while the correlation with working memory was in the range of r=0.40-0.50. The obtained results confirmed the assumption that intelligence and executive functions were different constructs regardless of their conceptual similarity.

  18. Exposure to fumes in typical New Zealand welding operations.

    Science.gov (United States)

    Dryson, E W; Rogers, D A

    1991-08-28

    Sixteen welders, welding under typical New Zealand conditions, had ambient air within their welding helmets sampled and analysed for ozone, nitrogen oxides, fluoride, carbon monoxide, aluminium, chromium, iron, nickel, zinc and total dust. Postshift urinary metals were also analysed, and a respiratory questionnaire completed for each welder. Levels above the New Zealand Workplace Exposure Standard (WES) were found for nitrogen dioxide in four welders (two TIG, one MMA and one plasma cutter), and for total chromium in one plasma cutter, who also had a nickel level of 24% of the WES. Dust levels were highest in the plasma cutters, with one reaching 8.67 mg/m3 (WES = 5 mg/m3). Urinary levels however did not indicate excessive short or long term uptake. Where efficient fume extraction was in use, levels of air contaminants were lower than with natural ventilation. Respiratory symptoms were reported by 67% of welders, 38% meeting criteria for chronic bronchitis (relative risk = 2.0). Smoking welders reported more symptoms than nonsmoking welders.

  19. Typicality effects in contingency-shaped generalized equivalence classes.

    Science.gov (United States)

    Galizio, Mark; Stewart, Katherine L; Pilgrim, Carol

    2004-11-01

    Two experiments were conducted using match-to-sample methodologies in an effort to model lexical classes, which include both arbitrary and perceptual relations between class members. Training in both experiments used a one-to-many mapping procedure with nonsense syllables as samples and eight sets of abstract stimuli as comparisons. These abstract stimuli differed along a number of dimensions, four of which were critical to the experimenter-defined class membership. Stimuli in some comparison sets included only one of the class-defining features, but stimuli in other sets included two, three, or all four of the critical features. After mastery of the baseline training, three types of probe tests were conducted: symmetry, transitivity/equivalence, and novel probe tests in which the training nonsense syllables served as samples, and comparisons were novel abstract stimuli that included one or more of the class-defining features. Symmetry and transitivity/equivalence probe tests showed that the stimuli used in training became members of equivalence classes. The novel stimuli also became class members on the basis of inclusion of any of the critical features. Thus these probe tests revealed the formation of open-ended generalized equivalence classes. In addition, typicality effects were observed such that comparison sets with more critical features were learned with fewer errors, responded to more rapidly, and judged to be better exemplars of the class. Contingency-shaped stimulus classes established through a match-to-sample procedure thus show several important behavioral similarities to natural lexical categories.

  20. Typical intellectual engagement and cognition in old age.

    Science.gov (United States)

    Dellenbach, Myriam; Zimprich, Daniel

    2008-03-01

    Typical Intellectual Engagement (TIE) comprises the preference to engage in cognitively demanding activities and has been proposed as a potential explanatory variable of individual differences in cognitive abilities. Little is known, however, about the factorial structure of TIE, its relations to socio-demographic variables, and its influence on intellectual functioning in old age. In the present study, data of 364 adults (65-81 years) from the Zurich Longitudinal Study on Cognitive Aging (ZULU) were used to investigate the factorial structure of TIE and to examine the hypothesis that TIE is associated more strongly with crystallized intelligence than with fluid intelligence in old age. A measurement model of a second order factor based on a structure of four correlated first order factors (Reading, Problem Solving, Abstract Thinking, and Intellectual Curiosity) evinced an excellent fit. After controlling for age, sex, and formal education, TIE was more strongly associated with crystallized intelligence than with fluid intelligence, comparable to results in younger persons. More detailed analyses showed that this association is mostly defined via Reading and Intellectual Curiosity.

  1. ORGANIC NITROGEN IN A TYPIC HAPLUDOX FERTILIZED WITH PIG SLURRY

    Directory of Open Access Journals (Sweden)

    Marco André Grohskopf

    2015-02-01

    Full Text Available The application of pig slurry may have a different effect on nitrogen dynamics in soil compared to mineral fertilization. Thus, the aim of this study was to determine the different forms of organic N in a Latossolo Vermelho distroférrico (Typic Hapludox and their relationship to N uptake by crops in response to 10 years of annual application of pig slurry and mineral fertilizer. The treatments were application rates of 0, 25, 50, 100, and 200 m3 ha-1 of pig slurry, in addition to mineral fertilizer, organized in a randomized block design with four replications. The N contents were determined in the plant tissue and in the forms of total N and acid hydrolyzed fractions: ammonium-N, hexosamine-N, α-amino-N, amide-N, and unidentified-N. Annual application of pig slurry or mineral fertilizer increased the total-N content in the 0-10 cm depth layer. The main fractions of organic N in the soil were α-amino-N when pig slurry was applied and unidentified-N in the case of mineral fertilizers. Pig slurry increased the N fractions considered as labile: α-amino-N, ammonium-N, and amide-N. The increase in these labile organic N fractions in the soil through pig slurry application allows greater N uptake by the maize and oat crops in a no-tillage system.

  2. Facial affect recognition in autism, ADHD and typical development.

    Science.gov (United States)

    Berggren, Steve; Engström, Ann-Charlotte; Bölte, Sven

    2016-05-01

    Autism spectrum disorder (ASD) and Attention-Deficit Hyperactivity Disorder (ADHD) have been associated with facial affect recognition (FAR) alterations. This study examined accuracy and response times for general and specific FAR in whole face and eye-region stimuli. FAR was assessed in matched samples of children and adolescents with ASD (n = 35), ADHD (n = 32), and typical development (TD) (n = 32) aged 8.6-15.9 years (M = 11.6; SD = 2.0). Compared to TD, the ASD group performed less accurate and showed longer response times for general and specific FAR, mostly driven by problems in neutral and happy face identification. The ADHD group responded faster than the ASD group for global FAR. No differences between ADHD and TD were found. Attentional distractibility had a significant effect on FAR performance in ASD and ADHD. Findings confirm FAR alterations in ASD, but not ADHD, and endorse effects of attentional distractibility on FAR in ASD and ADHD. FAR and attention function training is clinically meaningful in ASD. Future studies should include control for visual attention and facial configuration skills, use naturalistic FAR material and also investigate implicit FAR.

  3. Facilitating complex shape drawing in Williams syndrome and typical development.

    Science.gov (United States)

    Hudson, Kerry D; Farran, Emily K

    2013-07-01

    Individuals with Williams syndrome (WS) produce drawings that are disorganised, likely due to an inability to replicate numerous spatial relations between parts. This study attempted to circumvent these drawing deficits in WS when copying complex combinations of one, two and three shapes. Drawing decisions were reduced by introducing a number of facilitators, for example, by using distinct colours and including facilitatory cues on the response sheet. Overall, facilitation improved drawing in the WS group to a comparable level of accuracy as typically developing participants (matched for non-verbal ability). Drawing accuracy was greatest in both groups when planning demands (e.g. starting location, line lengths and changes in direction) were reduced by use of coloured figures and providing easily distinguished and clearly grouped facilitatory cues to form each shape. This study provides the first encouraging evidence to suggest that drawing of complex shapes in WS can be facilitated; individuals with WS might be receptive to remediation programmes for drawing and handwriting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. New typical meterological years and solar radiation data manual

    Energy Technology Data Exchange (ETDEWEB)

    Marion, W. [National Renewable Energy Lab., Golden, CO (United States)

    1995-09-01

    A new solar radiation data manual and new typical meterological years (TMYs) were developed by the National Renewable Energy Laboratory (NREL) Analytic Studies Division under the Solar Radiation Resource Assessment Project. These tasks were funded and monitored by the Photovoltaics Branch of the Department of Energy Office of Energy Efficiency and Renewable Energy. The new manual and the new TMYs were derived from the 1961-1990 National Solar Radiation Data Base (NSRDB). The new manual is entitled Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors. It provides designers and engineers of solar-energy-related systems with average monthly and yearly solar radiation values for various types of collectors for 239 stations in the United States and its territories. The new TMY data sets are referred to as TMY2s. This distinguishes them from earlier TMY data sets derived from the 1952-1975 SOLMET/ERSATZ data base. This paper describes the new data manual and the new TMY2s.

  5. Neural Differentiation of Human Adipose Tissue-Derived Stem Cells Involves Activation of the Wnt5a/JNK Signalling

    Directory of Open Access Journals (Sweden)

    Sujeong Jang

    2015-01-01

    Full Text Available Stem cells are a powerful resource for cell-based transplantation therapies, but understanding of stem cell differentiation at the molecular level is not clear yet. We hypothesized that the Wnt pathway controls stem cell maintenance and neural differentiation. We have characterized the transcriptional expression of Wnt during the neural differentiation of hADSCs. After neural induction, the expressions of Wnt2, Wnt4, and Wnt11 were decreased, but the expression of Wnt5a was increased compared with primary hADSCs in RT-PCR analysis. In addition, the expression levels of most Fzds and LRP5/6 ligand were decreased, but not Fzd3 and Fzd5. Furthermore, Dvl1 and RYK expression levels were downregulated in NI-hADSCs. There were no changes in the expression of ß-catenin and GSK3ß. Interestingly, Wnt5a expression was highly increased in NI-hADSCs by real time RT-PCR analysis and western blot. Wnt5a level was upregulated after neural differentiation and Wnt3, Dvl2, and Naked1 levels were downregulated. Finally, we found that the JNK expression was increased after neural induction and ERK level was decreased. Thus, this study shows for the first time how a single Wnt5a ligand can activate the neural differentiation pathway through the activation of Wnt5a/JNK pathway by binding Fzd3 and Fzd5 and directing Axin/GSK-3ß in hADSCs.

  6. Myelin plasticity, neural activity, and traumatic neural injury.

    Science.gov (United States)

    Kondiles, Bethany R; Horner, Philip J

    2018-02-01

    The possibility that adult organisms exhibit myelin plasticity has recently become a topic of great interest. Many researchers are exploring the role of myelin growth and adaptation in daily functions such as memory and motor learning. Here we consider evidence for three different potential categories of myelin plasticity: the myelination of previously bare axons, remodeling of existing sheaths, and the removal of a sheath with replacement by a new internode. We also review evidence that points to the importance of neural activity as a mechanism by which oligodendrocyte precursor cells (OPCs) are cued to differentiate into myelinating oligodendrocytes, which may potentially be an important component of myelin plasticity. Finally, we discuss demyelination in the context of traumatic neural injury and present an argument for altering neural activity as a potential therapeutic target for remyelination following injury. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 108-122, 2018. © 2017 Wiley Periodicals, Inc.

  7. Deciphering chemotaxis pathways using cross species comparisons

    Science.gov (United States)

    2010-01-01

    Background Chemotaxis is the process by which motile bacteria sense their chemical environment and move towards more favourable conditions. Escherichia coli utilises a single sensory pathway, but little is known about signalling pathways in species with more complex systems. Results To investigate whether chemotaxis pathways in other bacteria follow the E. coli paradigm, we analysed 206 species encoding at least 1 homologue of each of the 5 core chemotaxis proteins (CheA, CheB, CheR, CheW and CheY). 61 species encode more than one of all of these 5 proteins, suggesting they have multiple chemotaxis pathways. Operon information is not available for most bacteria, so we developed a novel statistical approach to cluster che genes into putative operons. Using operon-based models, we reconstructed putative chemotaxis pathways for all 206 species. We show that cheA-cheW and cheR-cheB have strong preferences to occur in the same operon as two-gene blocks, which may reflect a functional requirement for co-transcription. However, other che genes, most notably cheY, are more dispersed on the genome. Comparison of our operons with shuffled equivalents demonstrates that specific patterns of genomic location may be a determining factor for the observed in vivo chemotaxis pathways. We then examined the chemotaxis pathways of Rhodobacter sphaeroides. Here, the PpfA protein is known to be critical for correct partitioning of proteins in the cytoplasmically-localised pathway. We found ppfA in che operons of many species, suggesting that partitioning of cytoplasmic Che protein clusters is common. We also examined the apparently non-typical chemotaxis components, CheA3, CheA4 and CheY6. We found that though variants of CheA proteins are rare, the CheY6 variant may be a common type of CheY, with a significantly disordered C-terminal region which may be functionally significant. Conclusions We find that many bacterial species potentially have multiple chemotaxis pathways, with grouping

  8. Multigradient for Neural Networks for Equalizers

    Directory of Open Access Journals (Sweden)

    Chulhee Lee

    2003-06-01

    Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.

  9. Age effects on the default mode and control networks in typically developing children.

    Science.gov (United States)

    Sato, João Ricardo; Salum, Giovanni Abrahão; Gadelha, Ary; Picon, Felipe Almeida; Pan, Pedro Mario; Vieira, Gilson; Zugman, André; Hoexter, Marcelo Queiroz; Anés, Mauricio; Moura, Luciana Monteiro; Gomes Del'Aquilla, Marco Antonio; Amaro, Edson; McGuire, Philip; Crossley, Nicolas; Lacerda, Acioly; Rohde, Luis Augusto; Miguel, Euripedes Constantino; Bressan, Rodrigo Affonseca; Jackowski, Andrea Parolin

    2014-11-01

    The investigation of neurodevelopment during late childhood and pre-adolescence has recently attracted a great deal of interest in the field of neuroimaging. One promising topic in this field is the formation of brain networks in healthy subjects. The integration between neural modules characterizes the ability of the network to process information globally. Although many fMRI-based neurodevelopment studies can be found in the literature, the analyses of very large samples (on the order of hundreds of subjects) that focus on the late childhood/pre-adolescence period and resting state fMRI are scarce, and most studies have focused solely on North American and European populations. In this study, we present a descriptive investigation of the developmental formation of the Default Mode Network and the Control Network based on a Brazilian, cross-sectional community sample of 447 typically developing subjects aged 7-15 years old. Resting state fMRI data were acquired using two MRI systems from the same manufacturer using the same acquisition parameters. We estimated the age effects on the strength of the links (between brain regions) and the network features (graph descriptors: degree and eigenvector centrality). Our findings showed an increase in the antero-posterior connectivity in both studied networks during brain development. The graph analyses showed an increase in centrality with age for most regions in the Default Mode Network and the dorsal anterior and posterior cingulate, the right anterior insula and the left posterior temporal cortex in the Control Network. We conclude that the period of 7-15 years of age is crucial for the development of both the Default Mode and Control networks, with integration between the posterior and anterior neuronal modules and an increase in the centrality measures of the hub regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Understanding perception through neural "codes".

    Science.gov (United States)

    Freeman, Walter J

    2011-07-01

    A major challenge for cognitive scientists is to deduce and explain the neural mechanisms of the rapid transposition between stimulus energy and recalled memory-between the specific (sensation) and the generic (perception)-in both material and mental aspects. Researchers are attempting three explanations in terms of neural codes. The microscopic code: cellular neurobiologists correlate stimulus properties with the rates and frequencies of trains of action potentials induced by stimuli and carried by topologically organized axons. The mesoscopic code: cognitive scientists formulate symbolic codes in trains of action potentials from feature-detector neurons of phonemes, lines, odorants, vibrations, faces, etc., that object-detector neurons bind into representations of stimuli. The macroscopic code: neurodynamicists extract neural correlates of stimuli and associated behaviors in spatial patterns of oscillatory fields of dendritic activity, which self-organize and evolve on trajectories through high-dimensional brain state space. This multivariate code is expressed in landscapes of chaotic attractors. Unlike other scientific codes, such as DNA and the periodic table, these neural codes have no alphabet or syntax. They are epistemological metaphors that experimentalists need to measure neural activity and engineers need to model brain functions. My aim is to describe the main properties of the macroscopic code and the grand challenge it poses: how do very large patterns of textured synchronized oscillations form in cortex so quickly? © 2010 IEEE

  11. Neural correlates of stimulus reportability.

    Science.gov (United States)

    Hulme, Oliver J; Friston, Karl F; Zeki, Semir

    2009-08-01

    Most experiments on the "neural correlates of consciousness" employ stimulus reportability as an operational definition of what is consciously perceived. The interpretation of such experiments therefore depends critically on understanding the neural basis of stimulus reportability. Using a high volume of fMRI data, we investigated the neural correlates of stimulus reportability using a partial report object detection paradigm. Subjects were presented with a random array of circularly arranged disc-stimuli and were cued, after variable delays (following stimulus offset), to report the presence or absence of a disc at the cued location, using variable motor actions. By uncoupling stimulus processing, decision, and motor response, we were able to use signal detection theory to deconstruct the neural basis of stimulus reportability. We show that retinotopically specific responses in the early visual cortex correlate with stimulus processing but not decision or report; a network of parietal/temporal regions correlates with decisions but not stimulus presence, whereas classical motor regions correlate with report. These findings provide a basic framework for understanding the neural basis of stimulus reportability without the theoretical burden of presupposing a relationship between reportability and consciousness.

  12. Neural Approaches to Machine Consciousness

    Science.gov (United States)

    Aleksander, Igor; Eng., F. R.

    2008-10-01

    `Machine Consciousness', which some years ago might have been suppressed as an inappropriate pursuit, has come out of the closet and is now a legitimate area of research concern. This paper briefly surveys the last few years of worldwide research in this area which divides into rule-based and neural approaches and then reviews the work of the author's laboratory during the last ten years. The paper develops a fresh perspective on this work: it is argued that neural approaches, in this case, digital neural systems, can address phenomenological consciousness. Important clarifications of phenomenology and virtuality which enter this modelling are explained in the early parts of the paper. In neural models, phenomenology is a form of depictive inner representation that has five specific axiomatic features: a sense of self-presence in an external world; a sense of imagination of past experience and fiction; a sense of attention; a capacity for planning; a sense of emotion-based volition that influences planning. It is shown that these five features have separate but integrated support in dynamic neural systems.

  13. Neural recording and modulation technologies

    Science.gov (United States)

    Chen, Ritchie; Canales, Andres; Anikeeva, Polina

    2017-01-01

    In the mammalian nervous system, billions of neurons connected by quadrillions of synapses exchange electrical, chemical and mechanical signals. Disruptions to this network manifest as neurological or psychiatric conditions. Despite decades of neuroscience research, our ability to treat or even to understand these conditions is limited by the capability of tools to probe the signalling complexity of the nervous system. Although orders of magnitude smaller and computationally faster than neurons, conventional substrate-bound electronics do not recapitulate the chemical and mechanical properties of neural tissue. This mismatch results in a foreign-body response and the encapsulation of devices by glial scars, suggesting that the design of an interface between the nervous system and a synthetic sensor requires additional materials innovation. Advances in genetic tools for manipulating neural activity have fuelled the demand for devices that are capable of simultaneously recording and controlling individual neurons at unprecedented scales. Recently, flexible organic electronics and bio- and nanomaterials have been developed for multifunctional and minimally invasive probes for long-term interaction with the nervous system. In this Review, we discuss the design lessons from the quarter-century-old field of neural engineering, highlight recent materials-driven progress in neural probes and look at emergent directions inspired by the principles of neural transduction.

  14. Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure

    Directory of Open Access Journals (Sweden)

    Erica M. McGreevy

    2015-01-01

    Full Text Available Neural tube closure is a critical developmental event that relies on actomyosin contractility to facilitate specific processes such as apical constriction, tissue bending, and directional cell rearrangements. These complicated processes require the coordinated activities of Rho-Kinase (Rock, to regulate cytoskeletal dynamics and actomyosin contractility, and the Planar Cell Polarity (PCP pathway, to direct the polarized cellular behaviors that drive convergent extension (CE movements. Here we investigate the role of Shroom3 as a direct linker between PCP and actomyosin contractility during mouse neural tube morphogenesis. In embryos, simultaneous depletion of Shroom3 and the PCP components Vangl2 or Wnt5a results in an increased liability to NTDs and CE failure. We further show that these pathways intersect at Dishevelled, as Shroom3 and Dishevelled 2 co-distribute and form a physical complex in cells. We observed that multiple components of the Shroom3 pathway are planar polarized along mediolateral cell junctions in the neural plate of E8.5 embryos in a Shroom3 and PCP-dependent manner. Finally, we demonstrate that Shroom3 mutant embryos exhibit defects in planar cell arrangement during neural tube closure, suggesting a role for Shroom3 activity in CE. These findings support a model in which the Shroom3 and PCP pathways interact to control CE and polarized bending of the neural plate and provide a clear illustration of the complex genetic basis of NTDs.

  15. Seeding neural progenitor cells on silicon-based neural probes.

    Science.gov (United States)

    Azemi, Erdrin; Gobbel, Glenn T; Cui, Xinyan Tracy

    2010-09-01

    Chronically implanted neural electrode arrays have the potential to be used as neural prostheses in patients with various neurological disorders. While these electrodes perform well in acute recordings, they often fail to function reliably in clinically relevant chronic settings because of glial encapsulation and the loss of neurons. Surface modification of these implants may provide a means of improving their biocompatibility and integration within host brain tissue. The authors proposed a method of improving the brain-implant interface by seeding the implant's surface with a layer of neural progenitor cells (NPCs) derived from adult murine subependyma. Neural progenitor cells may reduce the foreign body reaction by presenting a tissue-friendly surface and repair implant-induced injury and inflammation by releasing neurotrophic factors. In this study, the authors evaluated the growth and differentiation of NPCs on laminin-immobilized probe surfaces and explored the potential impact on transplant survival of these cells. Laminin protein was successfully immobilized on the silicon surface via covalent binding using silane chemistry. The growth, adhesion, and differentiation of NPCs expressing green fluorescent protein (GFP) on laminin-modified silicon surfaces were characterized in vitro by using immunocytochemical techniques. Shear forces were applied to NPC cultures in growth medium to evaluate their shearing properties. In addition, neural probes seeded with GFP-labeled NPCs cultured in growth medium for 14 days were implanted in murine cortex. The authors assessed the adhesion properties of these cells during implantation conditions. Moreover, the tissue response around NPC-seeded implants was observed after 1 and 7 days postimplantation. Significantly improved NPC attachment and growth was found on the laminin-immobilized surface compared with an unmodified control before and after shear force application. The NPCs grown on the laminin-immobilized surface

  16. In polymyalgia rheumatica serum prolactin is positively correlated with the number of typical symptoms but not with typical inflammatory markers.

    Science.gov (United States)

    Straub, R H; Georgi, J; Helmke, K; Vaith, P; Lang, B

    2002-04-01

    Hyperprolactinaemia has been associated with the active phase of human systemic lupus erythematosus and rheumatoid arthritis. In the present study, we investigated the role of prolactin (PRL) in relation to the number of typical symptoms and serum markers of systemic inflammation in patients with polymyalgia rheumatica (PMR). One hundred and two PMR patients presented with typical symptoms such as adynamia, bilateral muscular pain in shoulders, upper arms or neck, bilateral muscular pain in the pelvic girdle, headache, morning stiffness, arthralgia, symptoms of depression, fever, initial weight loss (>4 kg/month), and transient visual symptoms. If one of the mentioned symptoms was present, the corresponding item was scored with one point (maximum unweighted item points=10). PRL, interleukin-2 (IL-2), IL-6, IL-1 receptor antagonist (IL-1ra), tumour necrosis factor (TNF), soluble IL-2 receptor (sIL-2R), and soluble vascular cell adhesion molecule (sVCAM) were measured by enzyme-linked immunosorbent assay in patients and 31 age-matched healthy controls. Fifteen PMR patients with elevated PRL had a higher number of symptoms as compared with patients with normal levels (P=0.003). PRL was correlated with the number of symptoms (all PMR patients: r(rank)=+0.380, P<0.001) and duration of morning stiffness (all PMR patients: r(rank)=+0.335, P=0.002) irrespective of prior corticosteroid treatment. However, PRL did not correlate with markers of systemic inflammation such as erythrocyte sedimentation rate, C-reactive protein, serum IL-1ra, IL-2, sIL-2R, IL-6, TNF, and sVCAM. The number of symptoms in PMR patients was positively correlated with PRL, but PRL was not correlated with serum markers of inflammation. This indicates that PRL is not a pro-inflammatory stimulus in patients with PMR. The inter-relationship between PRL and symptoms or duration of morning stiffness may be more a sign of central nervous system involvement, as it can be observed in people with depressed mood

  17. Ballistic Characterization Of A Typical Military Steel Helmet

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Maher

    2017-08-01

    Full Text Available In this study the ballistic limit of a steel helmet against a FMJ 919 mm caliber bullet is estimated. The helmet model is the typical polish helmet wz.31.The helmet material showed high strength low alloy steel material of 0.28 carbon content and 9.125 kgm2 areal density. The tensile test according to ASTM E8 showed a tensile strength of 1236.4 MPa .The average hardness value was about HV550. First shooting experiment has been executed using a 9 mm pistol based on 350 ms muzzle velocity at 5m against the simply supported helmet complete penetrations rose in this test were in the form of cracks on the helmet surface and partial penetrations were in the form of craters on the surface whose largest diameter and depth were 43 mm and 20.2 mm consequently .The second experiment was on a rifled gun arrangement 13 bullets of 919 mm caliber were shot on the examined simply supported steel helmet at a zero obliquity angle at different velocities to determine the ballistic limit velocity V50 according to MIL-STD-662F. Three major outcomes were revealed 1 the value V50 which found to be about 390 ms is higher than the one found in literature 360 ms German steel helmet model 1A1. 2 The smallest the standard deviation of the mixed results zone data the most accurate the ballistic limit is. 3Similar to the performance of blunt-ended projectiles impacting overmatching targets tD near 11 or larger It was found that the dominating failure mode of the steel helmet stuck by a hemispherical-nose projectile was plugging mode despite of having tD ratio of about 19 undermatching.

  18. Using devices to upregulate nonnutritive swallowing in typically developing infants.

    Science.gov (United States)

    Hegyi Szynkiewicz, Sarah; Mulheren, Rachel W; Palmore, Kathryn W; O'Donoghue, Cynthia R; Ludlow, Christy L

    2016-10-01

    The role of various sensory stimuli for stimulating swallowing in infants may be of importance for assisting infants to develop oral feeding. We evaluated the swallowing mechanism response to two devices for increasing the rate of nonnutritive swallowing in two typically developing infant age groups, ages 2-4 mo and 7-9 mo. One device was a pacifier familiar to the infant; the other was a small vibrator placed on the skin overlying the thyroid cartilage. The rate of nonnutritive swallowing while infants were awake was compared in three 10-min conditions: at rest without stimulation (spontaneous); during nonnutritive sucking with a pacifier; and over 10 min containing 18 epochs of vibratory stimulation for 10 s each. To assess whether vibration on the throat over the laryngeal area altered respiration, the mean cycle length was compared between 10-min intervals either containing vibratory stimulation or without stimulation at rest. Both the pacifier and laryngeal vibration stimulation doubled the rate of swallowing in the infants with a mean age of 3 mo 16 days and infants with a mean age of 8 mo 8 days. No differences occurred in the mean respiratory cycle length between intervals with and without vibration in either age group. Results suggest that nonnutritive sucking, vibration, or both might be beneficial in enhancing swallowing in young infants. Because vibration on the neck would not interfere with oral transfer of liquid, it might provide additional stimulation for swallowing during oral feeding. Both stimulation types should be evaluated for enhancing swallowing in infants with immature swallowing skills. Copyright © 2016 the American Physiological Society.

  19. The development of prospective memory in typically developing children.

    Science.gov (United States)

    Yang, Tian-xiao; Chan, Raymond C K; Shum, David

    2011-05-01

    This study aimed to use specifically designed tasks to capture time-based, activity-based, and event-based prospective memory (PM) performance in typically developing school-age children. Two PM tasks (Fishing Game & Happy Week) were used to examine the developmental patterns of PM in these children. Retrospective memory (RM) was also examined in these tasks. A total of 120 children aged between 7 and 12 years (10 girls and 10 boys in each age band) were recruited. Tests of working memory, inhibition, and IQ were also administered. The age effect on PM accuracy was significant, with improvements identified between ages 7 to 8 and 10 to 11 years. For both tasks, performance on the time-based PM task was significantly poorer than that on the event-based PM task, which in turn was significantly poorer than that on the activity-based PM task. In terms of errors, results indicated that while errors associated with the PM component of the tasks decreased with age, errors associated with the RM component showed an inverted-U shape. The different patterns of errors suggest qualitative as well as quantitative differences in PM development in children. Finally, IQ, working memory, and inhibition were found to relate to PM when age was partialed out. Results of the study highlight the importance of contextual cues, such as activities and events, for prospective remembering in children. In addition, they have provided a general picture of PM development in school-age children and have implications for educators and parents.

  20. Do Typical Galaxies in Adolescence Already Host Growing Black Holes?

    Science.gov (United States)

    Trump, Jonathan

    2012-10-01

    This archival grism proposal achieves a 100-fold gain in high-quality {5+sigma} information for discovering which properties of adolescent {0.7typical mass and SFR are linked to AGN activity. We propose to analyze 147 WFC3 G141 and 111 ACS 800L pointings of 2-orbit grism data in the CANDELS fields, for a sample of 3000 galaxies reaching SFR 5 Msun/yr and stellar masses of log{M*/Msun} 9 at z 1.5. We will leverage spatially-resolved line ratios to uniquely distinguish a nuclear AGN from extended low-metallicity or shocked gas. Compared to our 30-galaxy published sample that hints at AGNs in low-mass z 2 galaxies {Trump et al. 2011}, this 3000 galaxy sample enables a 100-fold gain in divisions by galaxy morphology, SFR, and stellar mass to discover which galaxy properties correlate most with rapid SMBH growth. We will stack the deep {0.8-4 Ms} Chandra data available in these fields as an independent check of the grism AGN/SF diagnostics. The unique ancillary data in these fields also include ACS+WFC3 imaging for morphologies, deep multiwavelength data for well-sampled SEDs and stellar masses, and previous optical {and future near-IR} spectroscopy to supplement the G141 coverage. Based on discussions with the GOODS-N and 3D-HST teams, our proposed AGN science does not overlap with their proposed or funded science goals. As a value-added product for the community we will release, via the public Rainbow-CANDELS database server, an atlas of spatial maps of emission lines and line ratios {and associated errors} for the entire sample of 3000 galaxies.

  1. The Typical Metabolic Modifiers Conferring Improvement in Cancer Resistance.

    Science.gov (United States)

    Tan, Wen; Zhong, Zhangfeng; Wang, Shengpeng; Liu, Hui; Yu, Hua; Tan, Rui; Hu, Xiaodong; Pan, Tingrui; Wang, Yitao

    2017-11-17

    Cancer metabolic reprogramming rekindles enthusiasm for the research of metabolic regulation in cancer drug resistance. A growing number of metabolic modifiers combined with cancer drugs obtain the expected efficacy in in vitro or in vivo studies, also in clinical trial studies, indicating a good potential of enhancing efficacy and reducing resistance. Hence, a comprehensive review on the attenuations of metabolic modifiers in cancer drug resistance is necessary for rational drug design and clinical cancer drug research. Cancer drug resistance and cancer metabolic reprogramming were used as the key words to collect publications with reference value in bibliographic databases. Specifically, the focused question is the advances of metabolic modifiers on cancer resistance improvement. Figures and tables were applied to analyze the interventions in accordance with the inclusion criteria. This review summarized the advances of metabolic modifiers combined with cancer drugs in in vitro, in vivo and clinical trial studies, especially for cancer resistance improvement. The relationship between metabolic regulation and cancer resistance was elaborated, and the potential metabolic modifiers were embraced. Metabolic targets were also visualized in categorization in 4 figures and expatiated in 4 tables. Three typical metabolic modifiers, namely lonidamine, 2-DG and 3-BrPA, conferring attenuation to cancer resistance were elucidated systematically. Metabolic regulation is an intervention with targeted perturbation in a modest manner and reflects homeostasis balance. When combined with cancer drugs, the metabolic modifiers always show exciting potential with practical significance, enhancing activity or exerting synergism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Deep Convolutional Neural Networks: Structure, Feature Extraction and Training

    Directory of Open Access Journals (Sweden)

    Namatēvs Ivars

    2017-12-01

    Full Text Available Deep convolutional neural networks (CNNs are aimed at processing data that have a known network like topology. They are widely used to recognise objects in images and diagnose patterns in time series data as well as in sensor data classification. The aim of the paper is to present theoretical and practical aspects of deep CNNs in terms of convolution operation, typical layers and basic methods to be used for training and learning. Some practical applications are included for signal and image classification. Finally, the present paper describes the proposed block structure of CNN for classifying crucial features from 3D sensor data.

  3. Supervised learning of probability distributions by neural networks

    Science.gov (United States)

    Baum, Eric B.; Wilczek, Frank

    1988-01-01

    Supervised learning algorithms for feedforward neural networks are investigated analytically. The back-propagation algorithm described by Werbos (1974), Parker (1985), and Rumelhart et al. (1986) is generalized by redefining the values of the input and output neurons as probabilities. The synaptic weights are then varied to follow gradients in the logarithm of likelihood rather than in the error. This modification is shown to provide a more rigorous theoretical basis for the algorithm and to permit more accurate predictions. A typical application involving a medical-diagnosis expert system is discussed.

  4. Allergic contact dermatitis in psoriasis patients: typical, delayed, and non-interacting.

    Directory of Open Access Journals (Sweden)

    Maria Quaranta

    Full Text Available Psoriasis is characterized by an apoptosis-resistant and metabolic active epidermis, while a hallmark for allergic contact dermatitis (ACD is T cell-induced keratinocyte apoptosis. Here, we induced ACD reactions in psoriasis patients sensitized to nickel (n = 14 to investigate underlying mechanisms of psoriasis and ACD simultaneously. All patients developed a clinically and histologically typical dermatitis upon nickel challenge even in close proximity to pre-existing psoriasis plaques. However, the ACD reaction was delayed as compared to non-psoriatic patients, with a maximum intensity after 7 days. Whole genome expression analysis revealed alterations in numerous pathways related to metabolism and proliferation in non-involved skin of psoriasis patients as compared to non-psoriatic individuals, indicating that even in clinically non-involved skin of psoriasis patients molecular events opposing contact dermatitis may occur. Immunohistochemical comparison of ACD reactions as well as in vitro secretion analysis of lesional T cells showed a higher Th17 and neutrophilic migration as well as epidermal proliferation in psoriasis, while ACD reactions were dominated by cytotoxic CD8+ T cells and a Th2 signature. Based on these findings, we hypothesized an ACD reaction directly on top of a pre-existing psoriasis plaque might influence the clinical course of psoriasis. We observed a strong clinical inflammation with a mixed psoriasis and eczema phenotype in histology. Surprisingly, the initial psoriasis plaque was unaltered after self-limitation of the ACD reaction. We conclude that sensitized psoriasis patients develop a typical, but delayed ACD reaction which might be relevant for patch test evaluation in clinical practice. Psoriasis and ACD are driven by distinct and independent immune mechanisms.

  5. Allergic contact dermatitis in psoriasis patients: typical, delayed, and non-interacting.

    Science.gov (United States)

    Quaranta, Maria; Eyerich, Stefanie; Knapp, Bettina; Nasorri, Francesca; Scarponi, Claudia; Mattii, Martina; Garzorz, Natalie; Harlfinger, Anna T; Jaeger, Teresa; Grosber, Martine; Pennino, Davide; Mempel, Martin; Schnopp, Christina; Theis, Fabian J; Albanesi, Cristina; Cavani, Andrea; Schmidt-Weber, Carsten B; Ring, Johannes; Eyerich, Kilian

    2014-01-01

    Psoriasis is characterized by an apoptosis-resistant and metabolic active epidermis, while a hallmark for allergic contact dermatitis (ACD) is T cell-induced keratinocyte apoptosis. Here, we induced ACD reactions in psoriasis patients sensitized to nickel (n = 14) to investigate underlying mechanisms of psoriasis and ACD simultaneously. All patients developed a clinically and histologically typical dermatitis upon nickel challenge even in close proximity to pre-existing psoriasis plaques. However, the ACD reaction was delayed as compared to non-psoriatic patients, with a maximum intensity after 7 days. Whole genome expression analysis revealed alterations in numerous pathways related to metabolism and proliferation in non-involved skin of psoriasis patients as compared to non-psoriatic individuals, indicating that even in clinically non-involved skin of psoriasis patients molecular events opposing contact dermatitis may occur. Immunohistochemical comparison of ACD reactions as well as in vitro secretion analysis of lesional T cells showed a higher Th17 and neutrophilic migration as well as epidermal proliferation in psoriasis, while ACD reactions were dominated by cytotoxic CD8+ T cells and a Th2 signature. Based on these findings, we hypothesized an ACD reaction directly on top of a pre-existing psoriasis plaque might influence the clinical course of psoriasis. We observed a strong clinical inflammation with a mixed psoriasis and eczema phenotype in histology. Surprisingly, the initial psoriasis plaque was unaltered after self-limitation of the ACD reaction. We conclude that sensitized psoriasis patients develop a typical, but delayed ACD reaction which might be relevant for patch test evaluation in clinical practice. Psoriasis and ACD are driven by distinct and independent immune mechanisms.

  6. EDITORIAL: Commercial opportunities for neural engineers

    Science.gov (United States)

    Cavuoto, James

    2008-03-01

    of the device in 2000. Anthony Ignagni, who worked with Mortimer and Onders as project director and chief biomedical engineer, became a co-founder of Synapse and is currently president and CEO. Afferent Corp., Providence, RI, a manufacturer of sensory stimulation systems based on research at Boston University, Afferent's technology is based on work by James Collins, professor of biomedical engineering at Boston University, who showed that low-level stochastic, or random, vibrations improved sense of touch. Collins went on to demonstrate that generating a subthreshold noise in the sensory pathways with a random electrical stimulation improves detectability of weak mechanical stimuli. In 1999 entrepreneur Jason Harry licensed the stochastic resonance technology from Boston University and received help from the Community Technology Fund-the university's technology transfer incubator. NeuroNexus Technologies, Inc., Ann Arbor, MI, a manufacturer of implanted neural probes, based on a program at the University of Michigan. NeuroNexus was spun out of UM's Center for Neural Communications Technology. Daryl Kipke, head of the Neural Engineering Laboratory at the university, started up NeuroNexus with several colleagues and currently serves as president and CEO. Commercialization issues were discussed recently at a preconference workshop at the 2007 meeting of the International Neuromodulation Society in Acapulco, Mexico. In the session, which was chaired by Chris Coburn of the Cleveland Clinic, neurotech entrepreneurs John Bowers from Northstar Neuroscience and Ben Pless, formerly of NeuroPace, shared their experiences bringing neuromodulation therapies to market. Coburn related his observations from the Cleveland Clinic, which has spun off 22 companies over the last five years. He cited several factors that would influence a neurotech startup's market potential, such as identifying the regulatory pathway, any predicate devices that exist, and the revenue potential for

  7. DMPD: Regulatory pathways in inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17967718 Regulatory pathways in inflammation. Mantovani A, Garlanda C, Locati M, Ro....html) (.csml) Show Regulatory pathways in inflammation. PubmedID 17967718 Title Regulatory pathways in inflamma

  8. Neurobiological Bases of Reading Disorder Part II: The Importance of Developmental Considerations in Typical and Atypical Reading.

    Science.gov (United States)

    Black, Jessica M; Xia, Zhichao; Hoeft, Fumiko

    2017-10-01

    Decoding-based reading disorder (RD; aka developmental dyslexia) is one of the most common neurodevelopmental disorders, affecting approximately 5-10% of school-aged children across languages. Even though neuroimaging studies suggest an impairment of the left reading network in RD, the onset of this deficit and its developmental course, which may include constancy and change, is largely unknown. There is now growing evidence that the recruitment of brain networks underlying perceptual, cognitive and linguistic processes relevant to reading acquisition varies with age. These age-dependent changes may in turn impact the neurocognitive characteristics of RD observed at specific developmental stages. Here we synthesize findings from functional and structural magnetic resonance imaging (MRI) studies to increase our understanding of the developmental time course of the neural bases underlying (a)typical reading. We first provide an overview of the brain bases of typical and atypical (impaired) reading. Next we describe how the understanding of RD can be deepened through scientific attention to age effects, for example, by integrating findings from cross-sectional studies of RD at various ages. Finally, we accent findings from extant longitudinal studies that directly examine developmental reading trajectories beginning in the preliterate stage at both group and individual levels. Although science is at the very early stage of understanding developmental aspects of neural deficits in RD, evidence to date characterizes RD by atypical brain maturation. We know that reading impairment may adversely impact multiple life domains such as academic achievement and social relationships, and unfortunately, that these negative outcomes can persist and compound into adulthood. We contend that exploring the developmental trajectories of RD will contribute to a greater understanding of how neural systems support reading acquisition. Further, we propose and cite evidence that the

  9. Utilising reinforcement learning to develop strategies for driving auditory neural implants

    Science.gov (United States)

    Lee, Geoffrey W.; Zambetta, Fabio; Li, Xiaodong; Paolini, Antonio G.

    2016-08-01

    Objective. In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. Approach. By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. Main results. Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model’s function. We show the ability to effectively learn stimulation patterns which mimic the cochlea’s ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. Significance. These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.

  10. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  11. Multiprocessor Neural Network in Healthcare.

    Science.gov (United States)

    Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes

    2015-01-01

    A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.

  12. Principles of neural information processing

    CERN Document Server

    Seelen, Werner v

    2016-01-01

    In this fundamental book the authors devise a framework that describes the working of the brain as a whole. It presents a comprehensive introduction to the principles of Neural Information Processing as well as recent and authoritative research. The books´ guiding principles are the main purpose of neural activity, namely, to organize behavior to ensure survival, as well as the understanding of the evolutionary genesis of the brain. Among the developed principles and strategies belong self-organization of neural systems, flexibility, the active interpretation of the world by means of construction and prediction as well as their embedding into the world, all of which form the framework of the presented description. Since, in brains, their partial self-organization, the lifelong adaptation and their use of various methods of processing incoming information are all interconnected, the authors have chosen not only neurobiology and evolution theory as a basis for the elaboration of such a framework, but also syst...

  13. Performance sustaining intracortical neural prostheses

    Science.gov (United States)

    Nuyujukian, Paul; Kao, Jonathan C.; Fan, Joline M.; Stavisky, Sergey D.; Ryu, Stephen I.; Shenoy, Krishna V.

    2014-12-01

    Objective. Neural prostheses, or brain-machine interfaces, aim to restore efficient communication and movement ability to those suffering from paralysis. A major challenge these systems face is robust performance, particularly with aging signal sources. The aim in this study was to develop a neural prosthesis that could sustain high performance in spite of signal instability while still minimizing retraining time. Approach. We trained two rhesus macaques implanted with intracortical microelectrode arrays 1-4 years prior to this study to acquire targets with a neurally-controlled cursor. We measured their performance via achieved bitrate (bits per second, bps). This task was repeated over contiguous days to evaluate the sustained performance across time. Main results. We found that in the monkey with a younger (i.e., two year old) implant and better signal quality, a fixed decoder could sustain performance for a month at a rate of 4 bps, the highest achieved communication rate reported to date. This fixed decoder was evaluated across 22 months and experienced a performance decline at a rate of 0.24 bps yr-1. In the monkey with the older (i.e., 3.5 year old) implant and poorer signal quality, a fixed decoder could not sustain performance for more than a few days. Nevertheless, performance in this monkey was maintained for two weeks without requiring additional online retraining time by utilizing prior days’ experimental data. Upon analysis of the changes in channel tuning, we found that this stability appeared partially attributable to the cancelling-out of neural tuning fluctuations when projected to two-dimensional cursor movements. Significance. The findings in this study (1) document the highest-performing communication neural prosthesis in monkeys, (2) confirm and extend prior reports of the stability of fixed decoders, and (3) demonstrate a protocol for system stability under conditions where fixed decoders would otherwise fail. These improvements to decoder

  14. Genetic manipulation of specific neural circuits by use of a viral vector system.

    Science.gov (United States)

    Kobayashi, Kenta; Kato, Shigeki; Kobayashi, Kazuto

    2017-01-05

    To understand the mechanisms underlying higher brain functions, we need to analyze the roles of specific neuronal pathways or cell types forming the complex neural networks. In the neuroscience field, the transgenic approach has provided a useful gene engineering tool for experimental studies of neural functions. The conventional transgenic technique requires the appropriate promoter regions that drive a neuronal type-specific gene expression, but the promoter sequences specifically functioning in each neuronal type are limited. Previously, we developed novel types of lentiviral vectors showing high efficiency of retrograde gene transfer in the central nervous system, termed highly efficient retrograde gene transfer (HiRet) vector and neuron-specific retrograde gene transfer (NeuRet) vector. The HiRet and NeuRet vectors enable genetical manipulation of specific neural pathways in diverse model animals in combination with conditional cell targeting, synaptic transmission silencing, and gene expression systems. These newly developed vectors provide powerful experimental strategies to investigate, more precisely, the machineries exerting various neural functions. In this review, we give an outline of the HiRet and NeuRet vectors and describe recent representative applications of these viral vectors for studies on neural circuits.

  15. Two major gate-keepers in the self-renewal of neural stem cells: Erk1/2 and PLCγ1 in FGFR signaling

    Directory of Open Access Journals (Sweden)

    Lee Jin-A

    2009-06-01

    Full Text Available Abstract Neural stem cells are undifferentiated precursor cells that proliferate, self-renew, and give rise to neuronal and glial lineages. Understanding the molecular mechanisms underlying their self-renewal is an important aspect in neural stem cell biology. The regulation mechanisms governing self-renewal of neural stem cells and the signaling pathways responsible for the proliferation and maintenance of adult stem cells remain largely unknown. In this issue of Molecular Brain [Ma DK et al. Molecular genetic analysis of FGFR1 signaling reveals distinct roles of MAPK and PLCγ1 activation for self-renewal of adult neural stem cells. Molecular Brain 2009, 2:16], characterized the different roles of MAPK and PLCγ1 in FGFR1 signaling in the self-renewal of neural stem cells. These novel findings provide insights into basic neural stem cell biology and clinical applications of potential stem-cell-based therapy.

  16. [Neural mechanisms of mastication].

    Science.gov (United States)

    Inoue, Tomio

    2015-02-01

    Abstract Comminution of food by mastication contributes to an increase in the efficiency of energy intake from food, which supports the high metabolic rate of mammals. The central pattern-generating circuit for mastication produces motor commands for mastication by using sensory information from periodontal mechanoreceptors and muscle spindles in the jaw-closing muscles. The motor commands that are glutamatergic, glycinergic, and GABAergic are transmitted to motoneurons for the jaw, tongue, etc., through premotor neurons that are located in the supratrigeminal region, reticular formation dorsal to the facial nucleus, etc. Our previous studies of N-methyl-D-aspartate-induced fictive suckling using isolated brainstem-spinal cord preparations obtained from neonatal mice revealed that the neuronal network that contributes to the synchronized activity of the jaw and tongue muscles is located in both the right and left sides. The network of either side sends its command to the trigeminal motoneurons mainly via the commissural pathway, while the command is sent to the hypoglossal motoneurons on the same side.

  17. [Neural basis of pain].

    Science.gov (United States)

    Calvino, Bernard

    2006-03-01

    Main elements concerning the physiology of pain are described, as well as the structures of the nervous system at the origin of the central control of pain: peripheral fibres (small diameter myelinated A delta and unmyelinated C fibres); spinal ascending pathways; cerebral structures relaying nociceptive information (medial and ventro-postero-lateral thalamic relays); SI and SII cortical areas; spinal segmentary and supraspinal excitatory and inhibitory controls; diffuse noxious inhibitory controls (DNIC). Chronic pain is a result of two processes: peripheral and central sensitization, in relation with inflammation and nerve injury at peripheral level and with neuroplasticity at central level. Neurotrophins, mainly NGF and BDNF and their receptors (LNTR, TrkA and TrkB) are involved in these processes. Pain is a result of an unpleasant emotional experience: its various components, mainly the emotional one, may be increased or decreased considering the different characteristics of the stimulus and of the affective state of the patient, as well as the context in which this stimulus is applied. The role of physiological systems, unconnected with those classically involved in the physiology of nociception and pain, such as the motor cortex in phantom limb pain, are described in conclusion, to focus on the extreme complexity of the control systems of pain in humans.

  18. Neural Decoder for Topological Codes

    Science.gov (United States)

    Torlai, Giacomo; Melko, Roger G.

    2017-07-01

    We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.

  19. Neural Bases of Automaticity.

    Science.gov (United States)

    Servant, Mathieu; Cassey, Peter; Woodman, Geoffrey F; Logan, Gordon D

    2017-09-21

    Automaticity allows us to perform tasks in a fast, efficient, and effortless manner after sufficient practice. Theories of automaticity propose that across practice processing transitions from being controlled by working memory to being controlled by long-term memory retrieval. Recent event-related potential (ERP) studies have sought to test this prediction, however, these experiments did not use the canonical paradigms used to study automaticity. Specifically, automaticity is typically studied using practice regimes with consistent mapping between targets and distractors and spaced practice with individual targets, features that these previous studies lacked. The aim of the present work was to examine whether the practice-induced shift from working memory to long-term memory inferred from subjects' ERPs is observed under the conditions in which automaticity is traditionally studied. We found that to be the case in 3 experiments, firmly supporting the predictions of theories. In addition, we found that the temporal distribution of practice (massed vs. spaced) modulates the shape of learning curves. The ERP data revealed that the switch to long-term memory is slower for spaced than massed practice, suggesting that memory systems are used in a strategic manner. This finding provides new constraints for theories of learning and automaticity. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance