WorldWideScience

Sample records for neural networks application

  1. Neural Network Applications

    NARCIS (Netherlands)

    Vonk, E.; Jain, L.C.; Veelenturf, L.P.J.

    1995-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  2. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  3. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  4. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  5. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    examined, and it appears that considering 'normal' neural network models with, say, 500 samples, the problem of over-fitting is neglible, and therefore it is not taken into consideration afterwards. Numerous model types, often met in control applications, are implemented as neural network models....... - Control concepts including parameter estimation - Control concepts including inverse modelling - Control concepts including optimal control For each of the three groups, different control concepts and specific training methods are detailed described.Further, all control concepts are tested on the same......The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...

  6. Neural networks and applications tutorial

    Science.gov (United States)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  7. Neural Networks Methodology and Applications

    CERN Document Server

    Dreyfus, Gérard

    2005-01-01

    Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...

  8. Process Neural Networks Theory and Applications

    CERN Document Server

    He, Xingui

    2010-01-01

    "Process Neural Networks - Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks, and enhancing the expression capability for practical problems, with broad applicability to solving problems relating to process in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are strictly proved. The application methods, network construction principles, and optimization alg

  9. Fuzzy neural network theory and application

    CERN Document Server

    Liu, Puyin

    2004-01-01

    This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he

  10. Application of neural networks in coastal engineering

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    methods. That is why it is becoming popular in various fields including coastal engineering. Waves and tides will play important roles in coastal erosion or accretion. This paper briefly describes the back-propagation neural networks and its application...

  11. Neural Networks for Speech Application.

    Science.gov (United States)

    1987-11-01

    operation and neurocrience theories of how neurons process information in the brain. design. Early studies by McCulloch and Pitts dunng the forties led to...developed the commercially available Mark III and Mark IV neurocom- established by McCulloch and Pits. puters that model neural networks and run...ORGANIZERS Infonuiaonienes (1986) FOR Lashley, K. Brain Mehaius and Cblali (129)SPEECHOTECH 󈨜 McCullch. W and Pitts . W, ’A Logical Calculusof the

  12. Applications of Pulse-Coupled Neural Networks

    CERN Document Server

    Ma, Yide; Wang, Zhaobin

    2011-01-01

    "Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Sci

  13. Neural networks advances and applications 2

    CERN Document Server

    Gelenbe, E

    1992-01-01

    The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret

  14. Application of Partially Connected Neural Network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper focuses mainly on application of Partially Connected Backpropagation Neural Network (PCBP) instead of typical Fully Connected Neural Network (FCBP). The initial neural network is fully connected, after training with sample data using cross-entropy as error function, a clustering method is employed to cluster weights between inputs to hidden layer and from hidden to output layer, and connections that are relatively unnecessary are deleted, thus the initial network becomes a PCBP network.Then PCBP can be used in prediction or data mining by training PCBP with data that comes from database. At the end of this paper, several experiments are conducted to illustrate the effects of PCBP using Iris data set.

  15. Improved Extension Neural Network and Its Applications

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2014-01-01

    Full Text Available Extension neural network (ENN is a new neural network that is a combination of extension theory and artificial neural network (ANN. The learning algorithm of ENN is based on supervised learning algorithm. One of important issues in the field of classification and recognition of ENN is how to achieve the best possible classifier with a small number of labeled training data. Training data selection is an effective approach to solve this issue. In this work, in order to improve the supervised learning performance and expand the engineering application range of ENN, we use a novel data selection method based on shadowed sets to refine the training data set of ENN. Firstly, we use clustering algorithm to label the data and induce shadowed sets. Then, in the framework of shadowed sets, the samples located around each cluster centers (core data and the borders between clusters (boundary data are selected as training data. Lastly, we use selected data to train ENN. Compared with traditional ENN, the proposed improved ENN (IENN has a better performance. Moreover, IENN is independent of the supervised learning algorithms and initial labeled data. Experimental results verify the effectiveness and applicability of our proposed work.

  16. [Application of artificial neural networks in infectious diseases].

    Science.gov (United States)

    Xu, Jun-fang; Zhou, Xiao-nong

    2011-02-28

    With the development of information technology, artificial neural networks has been applied to many research fields. Due to the special features such as nonlinearity, self-adaptation, and parallel processing, artificial neural networks are applied in medicine and biology. This review summarizes the application of artificial neural networks in the relative factors, prediction and diagnosis of infectious diseases in recent years.

  17. Artificial neural network applications in ionospheric studies

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    1998-06-01

    Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.

  18. Application of Neural Networks for Energy Reconstruction

    CERN Document Server

    Damgov, Jordan

    2002-01-01

    The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant improvement of the energy resolution and linearity is reached in comparison with other weighting methods for energy reconstruction.

  19. Fuzzy logic and neural networks basic concepts & application

    CERN Document Server

    Alavala, Chennakesava R

    2008-01-01

    About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank

  20. Neural network models: Insights and prescriptions from practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Samad, T. [Honeywell Technology Center, Minneapolis, MN (United States)

    1995-12-31

    Neural networks are no longer just a research topic; numerous applications are now testament to their practical utility. In the course of developing these applications, researchers and practitioners have been faced with a variety of issues. This paper briefly discusses several of these, noting in particular the rich connections between neural networks and other, more conventional technologies. A more comprehensive version of this paper is under preparation that will include illustrations on real examples. Neural networks are being applied in several different ways. Our focus here is on neural networks as modeling technology. However, much of the discussion is also relevant to other types of applications such as classification, control, and optimization.

  1. Hidden neural networks: application to speech recognition

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1998-01-01

    We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...... (HNNs) with much fewer parameters than conventional HMMs and other hybrids can obtain comparable performance, and for the broad class task it is illustrated how the HNN can be applied as a purely transition based system, where acoustic context dependent transition probabilities are estimated by neural...

  2. Advances in Artificial Neural Networks – Methodological Development and Application

    Directory of Open Access Journals (Sweden)

    Yanbo Huang

    2009-08-01

    Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological

  3. Introduction to spiking neural networks: Information processing, learning and applications.

    Science.gov (United States)

    Ponulak, Filip; Kasinski, Andrzej

    2011-01-01

    The concept that neural information is encoded in the firing rate of neurons has been the dominant paradigm in neurobiology for many years. This paradigm has also been adopted by the theory of artificial neural networks. Recent physiological experiments demonstrate, however, that in many parts of the nervous system, neural code is founded on the timing of individual action potentials. This finding has given rise to the emergence of a new class of neural models, called spiking neural networks. In this paper we summarize basic properties of spiking neurons and spiking networks. Our focus is, specifically, on models of spike-based information coding, synaptic plasticity and learning. We also survey real-life applications of spiking models. The paper is meant to be an introduction to spiking neural networks for scientists from various disciplines interested in spike-based neural processing.

  4. Applications of Neural Networks in Spinning Prediction

    Institute of Scientific and Technical Information of China (English)

    程文红; 陆凯

    2003-01-01

    The neural network spinning prediction model (BP and RBF Networks) trained by data from the mill can predict yarn qualities and spinning performance. The input parameters of the model are as follows: yarn count, diameter, hauteur, bundle strength, spinning draft, spinning speed, traveler number and twist.And the output parameters are: yarn evenness, thin places, tenacity and elongation, ends-down.Predicting results match the testing data well.

  5. Artificial neural networks: theoretical background and pharmaceutical applications: a review.

    Science.gov (United States)

    Wesolowski, Marek; Suchacz, Bogdan

    2012-01-01

    In recent times, there has been a growing interest in artificial neural networks, which are a rough simulation of the information processing ability of the human brain, as modern and vastly sophisticated computational techniques. This interest has also been reflected in the pharmaceutical sciences. This paper presents a review of articles on the subject of the application of neural networks as effective tools assisting the solution of various problems in science and the pharmaceutical industry, especially those characterized by multivariate and nonlinear dependencies. After a short description of theoretical background and practical basics concerning the computations performed by means of neural networks, the most important pharmaceutical applications of neural networks, with suitable references, are demonstrated. The huge role played by neural networks in pharmaceutical analysis, pharmaceutical technology, and searching for the relationships between the chemical structure and the properties of newly synthesized compounds as candidates for drugs is discussed.

  6. Neural networks: Application to medical imaging

    Science.gov (United States)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  7. Unique Applications for Artificial Neural Networks. Phase 1

    Science.gov (United States)

    1991-08-08

    AD-A243 365’ l!1111iLI[li In M aR C ’ PHASE I FINAL REPORT Unique Applications for Artificial Neural Networks DARPA SBIR 90-115 Contract # DAAH01-91...Contents Unique Applications for Artificial Neural Networks Acknowledgments Table of Contents Abstract i 1.0 Introduction 1 2.0 The NGO-VRP Solver 2...34 solution is thus obtained through analogy. Because of this activity, artificial neural networks have emerged as a primary artificial intelligence

  8. Research on Artificial Neural Network Method for Credit Application

    Institute of Scientific and Technical Information of China (English)

    MingxingLi; PingHeng; PeiwuDong

    2004-01-01

    Considering our country's present situation, in this paper we provide ten evaluation indexes of the credit application management, which is used as the input vector of neural network. Then we set up a three-layer back propagation model for the credit application evaluation based on the artificial neural network. We also analyzed the model using the real data; the testing result indicates that the model is a good method and a good tool.

  9. Integration of Unascertained Method with Neural Networks and Its Application

    Directory of Open Access Journals (Sweden)

    Huawang Shi

    2011-11-01

    Full Text Available This paper presents the adoption of artificial neural network (ANN model and Unascertained system to assist decision-makers in forecasting the early warning of financial in China. Artificial neural network (ANN has outstanding characteristics in machine learning, fault, tolerant, parallel reasoning and processing nonlinear problem abilities. Unascertained system that imitates the human brain's thinking logical is a kind of mathematical tools used to deal with imprecise and uncertain knowledge. Integrating unascertained method with neural network technology, the reasoning process of network coding can be tracked, and the output of the network can be given a physical explanation. Application case shows that combines unascertained systems with feedforward artificial neural networks can obtain more reasonable and more advantage of nonlinear mapping that can handle more complete type of data.

  10. Complex-valued neural networks advances and applications

    CERN Document Server

    Hirose, Akira

    2013-01-01

    Presents the latest advances in complex-valued neural networks by demonstrating the theory in a wide range of applications Complex-valued neural networks is a rapidly developing neural network framework that utilizes complex arithmetic, exhibiting specific characteristics in its learning, self-organizing, and processing dynamics. They are highly suitable for processing complex amplitude, composed of amplitude and phase, which is one of the core concepts in physical systems to deal with electromagnetic, light, sonic/ultrasonic waves as well as quantum waves, namely, electron and

  11. Application of Artificial Neural Network in Indicator Diagram

    Institute of Scientific and Technical Information of China (English)

    WuXiaodong; JiangHua; HanGuoqing

    2004-01-01

    Indicator diagram plays an important role in identifying the production state of oil wells. With an ability to reflect any non-linear mapping relationship, the artificial neural network (ANN) can be used in shape identification. This paper illuminates ANN realization in identifying fault kinds of indicator diagrams, including a back-propagation algorithm, characteristics of the indicator diagram and some examples. It is concluded that the buildup of a neural network and the abstract of indicator diagrams are important to successful application.

  12. Application of neural networks to unsteady aerodynamic control

    Science.gov (United States)

    Faller, William E.; Schreck, Scott J.; Luttges, Marvin W.

    1994-01-01

    The problem under consideration in this viewgraph presentation is to understand, predict, and control the fluid mechanics of dynamic maneuvers, unsteady boundary layers, and vortex dominated flows. One solution is the application of neural networks demonstrating closed-loop control. Neural networks offer unique opportunities: simplify modeling of three dimensional, vortex dominated, unsteady separated flow fields; are effective means for controlling unsteady aerodynamics; and address integration of sensors, controllers, and time lags into adaptive control systems.

  13. Type-2 fuzzy neural networks and their applications

    CERN Document Server

    Aliev, Rafik Aziz

    2014-01-01

    This book deals with the theory, design principles, and application of hybrid intelligent systems using type-2 fuzzy sets in combination with other paradigms of Soft Computing technology such as Neuro-Computing and Evolutionary Computing. It provides a self-contained exposition of the foundation of type-2 fuzzy neural networks and presents a vast compendium of its applications to control, forecasting, decision making, system identification and other real problems. Type-2 Fuzzy Neural Networks and Their Applications is helpful for teachers and students of universities and colleges, for scientis

  14. Delayed transiently chaotic neural networks and their application

    Science.gov (United States)

    Chen, Shyan-Shiou

    2009-09-01

    In this paper, we propose a novel model, a delayed transiently chaotic neural network (DTCNN), and numerically confirm that the model performs better in finding the global minimum for the traveling salesman problem (TSP) than the traditional transiently chaotic neural network. The asymptotic stability and chaotic behavior of the dynamical system with time delay are fully discussed. We not only theoretically prove the existence of Marotto's chaos for the delayed neural network without the cooling schedule by geometrically constructing a transversal homoclinic orbit, but we also discuss the stability of nonautonomous delayed systems using LaSalle's invariance principle. The result of the application to the TSP by the DTCNN might further explain the importance of systems with time delays in the neural system.

  15. Non-linear feedback neural networks VLSI implementations and applications

    CERN Document Server

    Ansari, Mohd Samar

    2014-01-01

    This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.

  16. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    Science.gov (United States)

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  17. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    Science.gov (United States)

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  18. Application of neural networks to waste site screening

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, A.E.; Garrett, M.; Kraft, T.; Hilton, J.; VanHammersveld, M.

    1993-02-01

    Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach consists primarily of drilling boreholes near contaminated sites and chemically analyzing the extracted physical samples and processing the data. This is expensive and time consuming. The feasibility of using neural network techniques to reduce the cost of waste site screening was investigated. Two neural network techniques, gradient descent back propagation and fully recurrent back propagation were utilized. The networks were trained with data received from Westinghouse Hanford Corporation. The results indicate that the network trained with the fully recurrent technique shows satisfactory generalization capability. The predicted results are close to the results obtained from a mathematical flow prediction model. It is possible to develop a new tool to predict the waste plume, thus substantially reducing the number of the bore sites and samplings. There are a variety of applications for this technique in environmental site screening and remediation. One of the obvious applications would be for optimum well siting. A neural network trained from the existing sampling data could be utilized to decide where would be the best position for the next bore site. Other applications are discussed in the report.

  19. Review On Applications Of Neural Network To Computer Vision

    Science.gov (United States)

    Li, Wei; Nasrabadi, Nasser M.

    1989-03-01

    Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.

  20. Self-organization in neural networks - Applications in structural optimization

    Science.gov (United States)

    Hajela, Prabhat; Fu, B.; Berke, Laszlo

    1993-01-01

    The present paper discusses the applicability of ART (Adaptive Resonance Theory) networks, and the Hopfield and Elastic networks, in problems of structural analysis and design. A characteristic of these network architectures is the ability to classify patterns presented as inputs into specific categories. The categories may themselves represent distinct procedural solution strategies. The paper shows how this property can be adapted in the structural analysis and design problem. A second application is the use of Hopfield and Elastic networks in optimization problems. Of particular interest are problems characterized by the presence of discrete and integer design variables. The parallel computing architecture that is typical of neural networks is shown to be effective in such problems. Results of preliminary implementations in structural design problems are also included in the paper.

  1. Practical application of artificial neural networks in the neurosciences

    Science.gov (United States)

    Pinti, Antonio

    1995-04-01

    This article presents a practical application of artificial multi-layer perceptron (MLP) neural networks in neurosciences. The data that are processed are labeled data from the visual analysis of electrical signals of human sleep. The objective of this work is to automatically classify into sleep stages the electrophysiological signals recorded from electrodes placed on a sleeping patient. Two large data bases were designed by experts in order to realize this study. One data base was used to train the network and the other to test its generalization capacity. The classification results obtained with the MLP network were compared to a type K nearest neighbor Knn non-parametric classification method. The MLP network gave a better result in terms of classification than the Knn method. Both classification techniques were implemented on a transputer system. With both networks in their final configuration, the MLP network was 160 times faster than the Knn model in classifying a sleep period.

  2. The Application of BP Neural Network In Oil-Field

    Directory of Open Access Journals (Sweden)

    Pei-Ying ZHANG

    2013-09-01

    Full Text Available Aiming at the situation that many techniques of production performance analysis acquire lots of data and are expensive considering the computational and human resources, and their applications are limited, this paper puts forward a new method to analyze the production performance of oil-field based on the BP neural network. It builds a dataset with some available measured data such as well logs and production history, then, builds a field-wide production model by neural network technique, a model will be used to predict. The technique is verified, which shows that the predicted results are consistent with the maximum error of rate of oil production lower than 7% and maximum error of rate of water production lower than 5%, having certain application and research value.  

  3. Neural Network Applications: A Literature Review

    Science.gov (United States)

    1992-11-01

    Detection In Chemical Plants Hoskins, Kaliyur, and Himmelblau (1990) applied a back propagation network to a chemical plant diagnostic problem whirh had...Austin, TX: Microelectronics and Computer Technology Corporation. Hoskins, J.C., Kaliyur, K.M., Himmelblau , D.M., (1990). Insipient fault detection

  4. Artificial Neural Networks in Applications of Industrial Robots

    Institute of Scientific and Technical Information of China (English)

    王克胜; JonathanLienhardt; 袁庆丰; 方明伦

    2004-01-01

    Artificial neural networks (ANNs) have been widely used to solve a number of problems to which analytical solutions are difficult to obtain using traditional mathematical approaches.Such problems exist also in the analysis of industrial robots. This paper presents an overview of ANN applications to robot kinematics, dynamics,control, trajectory and path planning, and sensing. Reasons for using or not using ANNs to industrial robots are explained as well.

  5. Workshop on environmental and energy applications of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, S.

    1995-03-01

    This report consists of the abstracts for the papers given at the conference. Applications of neural networks in the environmental, energy and biomedical fields are discussed. Some of the topics covered are: predicting atmospheric pollutant concentrations due to fossil-fired electric power generation; hazardous waste characterization; nondestructive TRU (transuranic) waste assay; risk analysis; load forecasting for electric utilities; design of a wind power storage and generation system; nuclear fuel management; etc.

  6. Advances in Artificial Neural Networks - Methodological Development and Application

    Science.gov (United States)

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  7. Neural network and its application to CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-02-01

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  8. Application of a neural network for reflectance spectrum classification

    Science.gov (United States)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  9. Recurrent Neural Network Applications for Astronomical Time Series

    Science.gov (United States)

    Protopapas, Pavlos

    2017-06-01

    The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.

  10. Application of the minimum fuel neural network to music signals

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2004-01-01

    Finding an optimal representation of a signal in an over-complete dictionary is often quite difficult. Since general results in this field are not very application friendly it truly helps to specify the framework as much as possible. We investigate the method Minimum Fuel Neural Network (MFNN......) for finding sparse representations of music signals. This method is a set of two ordinary differential equations. We argue that the most important parameter for optimal use of this method is the discretization step size, and we demonstrate that this can be a priori determined. This significantly speeds up...

  11. Electric Voltage Control as an Implementation of Neural Network Applications

    Directory of Open Access Journals (Sweden)

    A. A. Al-Rababah

    2008-01-01

    Full Text Available Present study was proposed the monitoring of mathematical model of electric voltage source with using neural network for application in control systems as sensor and command signal. The monitoring system, consist of toroidal choke or transformer with high saturated ferromagnetic cores. The input information we receive from current periodic curves. The current was distributed into Fourier or walsh series. The combination of these harmonics and their amplitude values determine monitoring voltage value directly. For increase of this system precision, the mathematical model was constructed on basis of partial differential quasi-stationary electromagnetic field equations and ordi-nary differential electromagnetic circuit equations combination.

  12. Applications of artificial neural networks (ANNs) in food science.

    Science.gov (United States)

    Huang, Yiqun; Kangas, Lars J; Rasco, Barbara A

    2007-01-01

    Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decades, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs hold a great deal of promise for modeling complex tasks in process control and simulation and in applications of machine perception including machine vision and electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in the field.

  13. Neural networks and graph theory

    Institute of Scientific and Technical Information of China (English)

    许进; 保铮

    2002-01-01

    The relationships between artificial neural networks and graph theory are considered in detail. The applications of artificial neural networks to many difficult problems of graph theory, especially NP-complete problems, and the applications of graph theory to artificial neural networks are discussed. For example graph theory is used to study the pattern classification problem on the discrete type feedforward neural networks, and the stability analysis of feedback artificial neural networks etc.

  14. Application of neural networks in coastal engineering - An overview

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Patil, S.G.; Manjunatha, Y.R.; Hegde, A.V.

    prediction, wave tranquility studies and near shore morphology are highlighted in this paper. 2 Feed forward neural network A neural network model is interconnected by several neurons. Generally, neuron model consists of three layers namely input layer.... Three-layered feed forward neural network INPUT LAYER HIDDEN LAYER OUTPUT LAYER WEIGHTS BIAS SINGLE NEURON NODE 2 0 )( 2 1 ∑ = −= N k kkp tOE (3) ko M i rKjk bzTwxy +×= ∑ −1 )()( ∑ − +×= D i jiiji bxwz 1 (1) (2) (4) ∑ = = P p p E p E 1 1...

  15. Image Filtering with Neural Networks: applications and performance evaluation

    NARCIS (Netherlands)

    Spreeuwers, Lieuwe Jan

    1992-01-01

    A simple and elegant method to design image filters with neural networks is proposed: using small networks that scan the image and perform position invariant filtering. In the theses examples of image filtering with error backpropagation networks for edge detection, image deblurring and noise

  16. Applications of artificial neural networks in medical science.

    Science.gov (United States)

    Patel, Jigneshkumar L; Goyal, Ramesh K

    2007-09-01

    Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.

  17. Tutorial on neural network applications in high energy physics: A 1992 perspective

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B.

    1992-04-01

    Feed forward and recurrent neural networks are introduced and related to standard data analysis tools. Tips are given on applications of neural nets to various areas of high energy physics. A review of applications within high energy physics and a summary of neural net hardware status are given.

  18. Application of Artificial Neural Networks to Contraception Study

    Institute of Scientific and Technical Information of China (English)

    周利锋; 高尔生; 金丕焕

    1998-01-01

    As a newly developed border line science, the artificial neural network (ANN)has been applied in many fields. The ANN was used in the selection of contraceptives in the article, and the performances of the artificial neural networks and traditional multivariate logistic regression analysis method were compared with the training data and the testing data by receiver operating characteristic (ROC) curves. The results imply that ANN may be applied and developed further in statistics and medical fields hopefully.

  19. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Musson, John C. [JLAB; Seaton, Chad [JLAB; Spata, Mike F. [JLAB; Yan, Jianxun [JLAB

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.

  20. The Application of Neural Network in Lifetime Prediction of Concrete

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There are many difficulties in concrete endurance prediction, especially in accurate predicting service life of concrete engineering. It is determined by the concentration of SO2-4/ Mg2+/Cl-/Ca2+, reaction areas, the cycles of freezing and dissolving, alternatives of dry and wet state, the kind of cement, etc.. In general, because of complexity itself and cognitive limitation, endurance prediction under sulphate erosion is still illegible and uncertain,so this paper adopts neural network technology to research this problem. Through analyzing, the paper sets up a 3-levels neural network and a 4-levels neural network to predict the endurance under sulphate erosion. The 3-levels neural network includes 13 inputting nodes, 7 outputting nodes and 34 hidden nodes. The 4-levels neural network also has 13 inputting nodes and 7 outputting nodes with two hidden levels which has 7 nodes and 8 nodes separately. In the end the paper give a example with laboratorial data and discussion the result and deviation. The paper shows that deviation results from some faults of training specimens:such as few training specimens and few distinctions among training specimens. So the more specimens should be collected to reduce data redundancy and improve the reliability of network analysis conclusion.

  1. Applications of Neural Networks in Fault Detection of Rotating Machinery

    Science.gov (United States)

    1993-05-17

    based on the ADALINE (ADAptive LINear Element) perceptron [Ref #4]. They correctly theorized that it would be possible for their 7 network to...Marvin Minski and Seymour Pappert [Ref #5]. After extensive mathematical study, Minski and Pappert concluded that a neural network based on the ADALINE

  2. Practical Application of Neural Networks in State Space Control

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon

    In the present thesis we address some problems in discrete-time state space control of nonlinear dynamical systems and attempt to solve them using generic nonlinear models based on artificial neural networks. The main aim of the work is to examine how well such control algorithms perform when...... applied to a realistic process. The thesis therefore strives to provide a thorough treatment of two classes of neural network-based controllers, and to make a rigorous comparison between them and a classical linear controller. Thus, the thesis starts out with a short review of some relevant system...... theoretic notions followed by a detailed description of the topology, neuron functions and learning rules of the two types of neural networks treated in the thesis, the multilayer perceptron and the neurofuzzy networks. In both cases, a Least Squares second-order gradient method is used to train...

  3. Application of dynamic recurrent neural networks in nonlinear system identification

    Science.gov (United States)

    Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang

    2006-11-01

    An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.

  4. VLSI synthesis of digital application specific neural networks

    Science.gov (United States)

    Beagles, Grant; Winters, Kel

    1991-01-01

    Neural networks tend to fall into two general categories: (1) software simulations, or (2) custom hardware that must be trained. The scope of this project is the merger of these two classifications into a system whereby a software model of a network is trained to perform a specific task and the results used to synthesize a standard cell realization of the network using automated tools.

  5. Embedded Streaming Deep Neural Networks Accelerator With Applications.

    Science.gov (United States)

    Dundar, Aysegul; Jin, Jonghoon; Martini, Berin; Culurciello, Eugenio

    2016-04-08

    Deep convolutional neural networks (DCNNs) have become a very powerful tool in visual perception. DCNNs have applications in autonomous robots, security systems, mobile phones, and automobiles, where high throughput of the feedforward evaluation phase and power efficiency are important. Because of this increased usage, many field-programmable gate array (FPGA)-based accelerators have been proposed. In this paper, we present an optimized streaming method for DCNNs' hardware accelerator on an embedded platform. The streaming method acts as a compiler, transforming a high-level representation of DCNNs into operation codes to execute applications in a hardware accelerator. The proposed method utilizes maximum computational resources available based on a novel-scheduled routing topology that combines data reuse and data concatenation. It is tested with a hardware accelerator implemented on the Xilinx Kintex-7 XC7K325T FPGA. The system fully explores weight-level and node-level parallelizations of DCNNs and achieves a peak performance of 247 G-ops while consuming less than 4 W of power. We test our system with applications on object classification and object detection in real-world scenarios. Our results indicate high-performance efficiency, outperforming all other presented platforms while running these applications.

  6. Application of Improved SOM Neural Network in Anomaly Detection

    Science.gov (United States)

    Jiang, Xueying; Liu, Kean; Yan, Jiegou; Chen, Wenhui

    For the false alarm rate, false negative rate, training time and other issues of SOM neural network algorithm, the author Gives an improved anomaly detection SOM algorithm---FPSOM through the introduction of the learning rate, which can adaptively learn the original sample space, better reflects the status of the original data. At the same time, combined with the artificial neural network, The author also gives the intelligent detection model and the model of the training module, designed the main realization of FPSOM neural network algorithm, and finally simulation experiments were carried out in KDDCUP data sets. The experiments show that the new algorithm is better than SOM which can greatly shorten the training time, and effectively improve the detection rate and reduce the false positive rate.

  7. Application of neural networks for the prediction of energy use in supermarket buildings

    Energy Technology Data Exchange (ETDEWEB)

    Suh, T.J.; Tassou, S.A.; Datta, D. [Brunel Univ., Uxbridge (United Kingdom); Marriott, D. [Safeway Stores 6 Millington, Middx (United Kingdom)

    1996-12-31

    This paper discusses the application of neural networks to predict energy consumption in commercial buildings. To date, many researchers have demonstrated that neural networks can be more reliable energy predictors than the traditional statistical approaches and can also form the basis for predictive controllers of HVAC equipment. This paper shows the preliminary results of research work at Brunel University for predicting the variation of electricity consumption in a supermarket building based on a neural network. A comparison of the prediction performance of the neural network and a traditional regression approach is presented.

  8. Neural networks in seismic discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.

    1995-01-01

    Neural networks are powerful and elegant computational tools that can be used in the analysis of geophysical signals. At Lawrence Livermore National Laboratory, we have developed neural networks to solve problems in seismic discrimination, event classification, and seismic and hydrodynamic yield estimation. Other researchers have used neural networks for seismic phase identification. We are currently developing neural networks to estimate depths of seismic events using regional seismograms. In this paper different types of network architecture and representation techniques are discussed. We address the important problem of designing neural networks with good generalization capabilities. Examples of neural networks for treaty verification applications are also described.

  9. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  10. Applications of artificial neural networks for microbial water quality modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brion, G.M.; Lingireddy, S. [Univ. of Kentucky, Dept. of Civil Engineering, Lexington, Kentucky (United States)]. E-mail: gbrion@engr.uky.edu

    2002-06-15

    There has been a significant shift in the recent past towards protecting chemical and microbial quality of source waters rather than developing advanced methods to treat heavily polluted water. The key to successful best management practices in protecting the source waters is to identify sources of non-point pollution and their collective impact on the quality of water at the intake. This article presents a few successful applications where artificial neural networks (ANN) have proven to be the useful mathematical tools in correlating the nonlinear relationships between routinely measured parameters (such as rainfall, turbidity, fecal coliforms etc.) and quality of source waters and/or nature of fecal sources. These applications include, prediction of peak concentrations of Giardia and Cryptosporidium, sorting of fecal sources (e.g. agricultural animals vs. urban animals), predicting relative ages of the runoff sources, identifying the potential for sewage contamination. The ability of ANNs to work with complex, inter-related multiparameter databases, and provide superior predictive power in non-linear relationships has been the key for their successful application to microbial water quality studies. (author)

  11. A Fuzzy Quantum Neural Network and Its Application in Pattern Recognition

    Institute of Scientific and Technical Information of China (English)

    MIAOFuyou; XIONGYan; CHENHuanhuan; WANGXingfu

    2005-01-01

    This paper proposes a fuzzy quantum neural network model combining quantum neural network and fuzzy logic, which applies the fuzzy logic to design the collapse rules of the quantum neural network, and solves the character recognition problem. Theoretical analysis and experimental results show that fuzzy quantum neural network improves recognizing veracity than the traditional neural network and quantum neural network.

  12. Statistical modelling of neural networks in {gamma}-spectrometry applications

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V.; Martinez, J.M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Morel, J.; Lepy, M.C. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Applications et de la Metrologie des Rayonnements Ionisants

    1995-12-31

    Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ratio {sup 235} U/({sup 235} U + {sup 236} U + {sup 238} U). The usual method consider a limited number of {Gamma}-ray and X-ray peaks, and require previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above convention methods is to reduce the region of interest: this is possible by focusing on the K{sub {alpha}} X region where the three elementary components are present. Real data are used to study the performance of neural networks. Training is done with a Maximum Likelihood method to measure uranium {sup 235} U and {sup 238} U quantities in infinitely thick samples. (authors). 18 refs., 6 figs., 3 tabs.

  13. Neural network based satellite tracking for deep space applications

    Science.gov (United States)

    Amoozegar, F.; Ruggier, C.

    2003-01-01

    The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions and examine the trade-off between tracing accuracy and communication link performance.

  14. Artificial neural networks: fundamentals, computing, design, and application.

    Science.gov (United States)

    Basheer, I A; Hajmeer, M

    2000-12-01

    Artificial neural networks (ANNs) are relatively new computational tools that have found extensive utilization in solving many complex real-world problems. The attractiveness of ANNs comes from their remarkable information processing characteristics pertinent mainly to nonlinearity, high parallelism, fault and noise tolerance, and learning and generalization capabilities. This paper aims to familiarize the reader with ANN-based computing (neurocomputing) and to serve as a useful companion practical guide and toolkit for the ANNs modeler along the course of ANN project development. The history of the evolution of neurocomputing and its relation to the field of neurobiology is briefly discussed. ANNs are compared to both expert systems and statistical regression and their advantages and limitations are outlined. A bird's eye review of the various types of ANNs and the related learning rules is presented, with special emphasis on backpropagation (BP) ANNs theory and design. A generalized methodology for developing successful ANNs projects from conceptualization, to design, to implementation, is described. The most common problems that BPANNs developers face during training are summarized in conjunction with possible causes and remedies. Finally, as a practical application, BPANNs were used to model the microbial growth curves of S. flexneri. The developed model was reasonably accurate in simulating both training and test time-dependent growth curves as affected by temperature and pH.

  15. Application of RBF Neural Network in OptimizingMachining Parameters

    Institute of Scientific and Technical Information of China (English)

    朱喜林; 吴博达; 武星星

    2004-01-01

    In machining processes, errors of rough in dimension, shape and location lead to changes in processing quantity, and the material of a workpiece may not be uniform. For these reasons, cutting force changes in machining, making the machining system deformable. Consequently errors in workpieces may occur. This is called the error reflection phenomenon. Generally, such errors can be reduced through repeated processing while using appropriate processing quantity in each processing based on operator's experience.According to the theory of error reflection, the error reflection coefficient indicates the extent to which errors of rough influence errors of workpieces. It is related to several factors such as machining condition, hardness of the workpiece, etc. This non-linear relation cannot be worked out using any formula. RBF neural network can approximate a non-linear function within any precision and be trained fast. In this paper, non-linear mapping ability of a fuzzy-neural network is utilized to approximate the non-linear relation. After training of the network with swatch collection obtained in experiments, an appropriate output can be obtained when an input is given. In this way, one can get the required number of processing and the processing quantity each time from the machining condition. Angular rigidity of a machining system,hardness of workpiece, etc., can be input in a form of fuzzy values. Feasibility in solving error reflection and optimizing machining parameters with a RBF neural network is verified by a simulation test with MATLAB.

  16. A MULTILAYER COMPLEX NEURAL NETWORK TRAINING ALGORITHM AND ITS APPLICATION IN ADAPTIVE EQUALIZATION

    Institute of Scientific and Technical Information of China (English)

    Li Chunguang; Liao Xiaofeng; Wu Zhongfu; Yu Juebang

    2001-01-01

    In this paper, the layer-by-layer optimizing algorithm for training multilayer neural network is extended for the case of a multilayer neural network whose inputs, weights, and activation functions are all complex. The updating of the weights of each layer in the network is based on the recursive least squares method. The performance of the proposed algorithm is demonstrated with application in adaptive complex communication channel equalization.

  17. Synthesize, optimize, analyze, repeat (SOAR): Application of neural network tools to ECG patient monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, R.; Towell, G.; Glassman, M.S. [Siemens Corporate Research, Princeton, NJ (United States)

    1995-12-31

    Results are reported from the application of tools for synthesizing, optimizing and analyzing neural networks to an ECG Patient Monitoring task. A neural network was synthesized from a rule-based classifier and optimized over a set of normal and abnormal heartbeats. The classification error rate on a separate and larger test set was reduced by a factor of 2. When the network was analyzed and reduced in size by a factor of 40%, the same level of performance was maintained.

  18. A Fast C++ Implementation of Neural Network Backpropagation Training Algorithm: Application to Bayesian Optimal Image Demosaicing

    Directory of Open Access Journals (Sweden)

    Yi-Qing Wang

    2015-09-01

    Full Text Available Recent years have seen a surge of interest in multilayer neural networks fueled by their successful applications in numerous image processing and computer vision tasks. In this article, we describe a C++ implementation of the stochastic gradient descent to train a multilayer neural network, where a fast and accurate acceleration of tanh(· is achieved with linear interpolation. As an example of application, we present a neural network able to deliver state-of-the-art performance in image demosaicing.

  19. Adaptive Sampling for WSAN Control Applications Using Artificial Neural Networks

    OpenAIRE

    2012-01-01

    Wireless sensor actuator networks are becoming a solution for control applications. Reliable data transmission and real time constraints are the most significant challenges. Control applications will have some Quality of Service (QoS) requirements from the sensor network, such as minimum delay and guaranteed delivery of packets. We investigate variable sampling method to mitigate the effects of time delays in wireless networked control systems using an observer based control system model. Our...

  20. Application of Neural Network for Concrete Carbonation Depth Prediction

    OpenAIRE

    Luo, Daming; Niu, Ditao; Dong, Zhenping

    2014-01-01

    Concrete carbonation is one of the most significant causes of deterioration of reinforced concrete structures in atmospheric environment. However, current models based on the laboratory tests cannot predict carbonation depth accurately. In this paper, the BP neural network is optimized by the particle swarm optimization (PSO) algorithm to establish the model of the length of the partial carbonation zone for concrete. After simulation training, the improved model is applied to a concrete bridg...

  1. Application of Artificial Neural Networks for Predicting Generated Wind Power

    OpenAIRE

    Vijendra Singh

    2016-01-01

    This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, gener...

  2. Application of backpropagation neural networks to phonetic element classification

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, S.R.

    1990-01-01

    A need was established in conjunction with an USAF-sponsored project to develop a speech element classifier. This classifier had to be capable of placing continuous speech into a number of phoneme-like categories, and also had to be independent of speaker identity and individual voice characteristics. The feasibility of using a neural network to perform this classification task was explored. The results of this exploration are discussed here.

  3. Research on Application of Neural Networks in Organizational Management

    Science.gov (United States)

    Marinescu, Simona-Ioana

    2014-12-01

    Since there is no clear definition of the terms "neural network" and "neuronal network", this paper is aimed primarily to establish the difference between them by a range of comparative research. Using a chart, the three parts that make up the structure of a neuron will be compared with the structure of an organization to determine who does in terms of role, in order to reproduce the neuron in the structuring level of an organization and give a meaning to the term of "organizational neuron."

  4. Application of neural networks to waste site screening

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, A.E.; Kraft, T.; Hilton, J.M. [Science Applications International Corp., San Diego, CA (United States)

    1993-03-01

    Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach to site screening consists primarily of drilling, boreholes near contaminated site and chemically analyzing the extracted physical samples and processing the data. In addition, hydraulic and geochemical soil properties are obtained so that numerical simulation models can be used to interpret and extrapolate the field data. The objective of this work is to investigate the feasibility of using neural network techniques to reduce the cost of waste site screening. A successful technique may lead to an ability to reduce the number of boreholes and the number of samples analyzed from each borehole to properly screen the waste site. The analytic tool development described here is inexpensive because it makes use of neural network techniques that can interpolate rapidly and which can learn how to analyze data rather than having to be explicitly programmed. In the following sections, data collection and data analyses will be described, followed by a section on different neural network techniques used. The results will be presented and compared with mathematical model. Finally, the last section will summarize the research work performed and make several recommendations for future work.

  5. Applications of neural networks in environmental and energy sciences and engineering. Proceedings of the 1995 workshop on environmental and energy applications of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-12-31

    These proceedings contain edited versions of the technical presentations of the Workshop on Environmental and Energy Applications of Neural Networks, held on March 30--31, 1995, in Richland, Washington. The purpose of the workshop was to provide a forum for discussing environmental, energy, and biomedical applications of neural networks. Panels were held to discuss various research and development issues relating to real-world applications in each of the three areas. The applications covered in the workshop were: Environmental applications -- modeling and predicting soil, air and water pollution, environmental sensing, spectroscopy, hazardous waste handling and cleanup; Energy applications -- process monitoring and optimization of power systems, modeling and control of power plants, environmental monitoring for power systems, power load forecasting, fault location and diagnosis of power systems; and Biomedical applications -- medical image and signal analysis, medical diagnosis, analysis of environmental health effects, and modeling biological systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Neural Network Based on Rough Sets and Its Application to Remote Sensing Image Classification

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the survey and analysis of RBPNN for the classification of remote sensing multi-spectral image is discussed.The successful application of RBPNN to a land cover classification illustrates the simple computation and high accuracy of the new neural network and the flexibility and practicality of this new approach.

  7. Disorder generated by interacting neural networks: application to econophysics and cryptography

    Energy Technology Data Exchange (ETDEWEB)

    Kinzel, Wolfgang [Institut fuer Theoretische Physik, Universitaet Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Kanter, Ido [Department of Physics, Bar Ilan University, Ramat Gan (Israel)

    2003-10-31

    When neural networks are trained on their own output signals they generate disordered time series. In particular, when two neural networks are trained on their mutual output they can synchronize; they relax to a time-dependent state with identical synaptic weights. Two applications of this phenomenon are discussed for (a) econophysics and (b) cryptography. (a) When agents competing in a closed market (minority game) are using neural networks to make their decisions, the total system relaxes to a state of good performance. (b) Two partners communicating over a public channel can find a common secret key.

  8. Artificial Neural Networks Applications: from Aircraft Design Optimization to Orbiting Spacecraft On-board Environment Monitoring

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2002-01-01

    This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.

  9. Color control using neural networks and its application

    Science.gov (United States)

    Tominaga, Shoji

    1996-03-01

    A method is proposed for solving the mapping problem from the 3D color space to the 4D CMYK space of printer ink signals by means of neural network. The CIE-L*a*b* color system is used as the color space. The color reproduction problem is considered as the problem of controlling an unknown static system with four inputs and three outputs. A controller finds the CMYK signals necessary to produce the desired L*a*b* values from a printer. Our solution method for this control is based on a two-phase procedure. Validity of our method is shown in an experiment using a dye sublimation printer.

  10. Application of neural networks for the prediction of multidirectional magnetostriction

    CERN Document Server

    Baumgartinger, N; Pfützner, H; Krismanic, G

    2000-01-01

    This paper describes attempts to use artificial neural networks (ANNs) for the prediction of magnetostriction (MS) characteristics of transformer core materials. In this first approach, the ANNs were trained with data from a rotational single-sheet tester to predict MS in rolling direction (r.d.) as a function of material grade, amplitude and shape of multidirectional magnetisation as well as the level of additional mechanical stress. It is shown that ANNs are able to forecast the corresponding relative MS changes in an approximate way.

  11. Application of MBAM Neural Network in CNC Machine Fault Diagnosis

    Institute of Scientific and Technical Information of China (English)

    宋刚; 胡德金

    2004-01-01

    In order to improve the bidirectional associative memory (BAM) performance, a modified BAM model (MBAM) is used to enhance neural network(NN)'s memory capacity and error correction capability, theoretical analysis and experiment results illuminate that MBAM performs much better than the original BAM. The MBAM is used in computer numeric control(CNC) machine fault diagnosis, it not only can complete fault diagnosis correctly but also have fairly high error correction capability for disturbed Input Information sequence. Moreover MBAM model is a more convenient and effective method of solving the problem of CNC electric system fault diagnosis.

  12. Application of Adaptive Neural Network Observer in Chaotic Systems

    Directory of Open Access Journals (Sweden)

    Milad Malekzadeh

    2014-01-01

    Full Text Available Chaos control is an important subject in control theory. Chaos control usually confronts with some problems due to unavailability of states or losing the system characteristics during the modeling process. In this situation, using an appropriate observer in control strategy may overcome the problem. In this paper, states are estimated using an observer without having complete prior information from nonlinear term based on neural network. Simulation results verify performance of the proposed structure in estimating nonlinear term specifically for an online practical use.

  13. Measuring human emotions with modular neural networks and computer vision based applications

    Directory of Open Access Journals (Sweden)

    Veaceslav Albu

    2015-05-01

    Full Text Available This paper describes a neural network architecture for emotion recognition for human-computer interfaces and applied systems. In the current research, we propose a combination of the most recent biometric techniques with the neural networks (NN approach for real-time emotion and behavioral analysis. The system will be tested in real-time applications of customers' behavior for distributed on-land systems, such as kiosks and ATMs.

  14. Application of functional-link neural network in evaluation of sublayer suspension based on FWD test

    Institute of Scientific and Technical Information of China (English)

    陈瑜; 张起森

    2004-01-01

    Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these methods, the evaluation principles were improved and a new type of the neural network, functional-link neural network was proposed to evaluate the sublayer suspension with FWD test results. The concept of function link, learning method of functional-link neural network and the establishment process of neural network model were studied in detail. Based on the old pavement over-repairing engineering of Kaiping section, Guangdong Province in G325 National Highway, the application of functional-link neural network in evaluation of sublayer suspension beneath old pavement based on FWD test data on the spot was investigated. When learning rate is 0.1 and training cycles are 405, the functional-link network error is less than 0.0001, while the optimum chosen 4-8-1 BP needs over 10000 training cycles to reach the same accuracy with less precise evaluation results. Therefore, in contrast to common BP neural network,the functional-link neural network adopts single layer structure to learn and calculate, which simplifies the network, accelerates the convergence speed and improves the accuracy. Moreover the trained functional-link neural network can be adopted to directly evaluate the sublayer suspension based on FWD test data on the site. Engineering practice indicates that the functional-link neural model gains very excellent results and effectively guides the pavement over-repairing construction.

  15. Image Finder Mobile Application Based on Neural Networks

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2017-04-01

    Full Text Available Nowadays taking photos via mobile phone has become a very important part of everyone’s life. Almost each and every person who has a smart phone also has thousands of photos in their mobile device. At times it becomes very difficult to find a particular photo from thousands of photos, and it takes time. This research was done to come up with an innovative solution that could solve this problem. The solution will allow the user to find the required photo by simply drawing a sketch on the objects in the required picture, for example a tree or car, etc. Two types of supervised Artificial Neural Networks are used for this purpose; one is trained to identify the handmade sketches and other is trained to identify the images. The proposed approach introduces a mechanism to relate the sketches with the images by matching them after training. The experimentation results for testing the trained neural networks reached 100% for the sketches, and 84% for the images of two objects as a case study.

  16. Application of Artificial Neural Networks for Predicting Generated Wind Power

    Directory of Open Access Journals (Sweden)

    Vijendra Singh

    2016-03-01

    Full Text Available This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, generator hours, seasons of an area, and wind turbine position. During a particular season, wind power generation access can be increased. In such a case, wind energy generation prediction is crucial for transmission of generated wind energy to a power grid system. It is advisable for the wind power generation industry to predict wind power capacity to diagnose it. The present paper proposes an effort to apply artificial neural network technique for measurement of the wind energy generation capacity by wind farms in Harshnath, Sikar, Rajasthan, India.

  17. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    Science.gov (United States)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  18. Wavelet neural networks with applications in financial engineering, chaos, and classification

    CERN Document Server

    Alexandridis, Antonios K

    2014-01-01

    Through extensive examples and case studies, Wavelet Neural Networks provides a step-by-step introduction to modeling, training, and forecasting using wavelet networks. The acclaimed authors present a statistical model identification framework to successfully apply wavelet networks in various applications, specifically, providing the mathematical and statistical framework needed for model selection, variable selection, wavelet network construction, initialization, training, forecasting and prediction, confidence intervals, prediction intervals, and model adequacy testing. The text is ideal for

  19. Global exponential stability of Hopfield-type neural network and its applications

    Institute of Scientific and Technical Information of China (English)

    梁学斌; 吴立德

    1995-01-01

    If the matrix measure of connection weight of Hopfield-type continuous feedback neural network is less than the reciprocal of maximal product of resistance and gain constants, then the network system is globally and exponentially stable. The above reciprocal is a sharp upper bound of matrix measure of connection weight which guarantees that the above conclusion holds. The above result answers partially the open problem proposed by Vidyasagar recently, i. e whether neural network with "nearly" symmetric connection weight can exhibit limit cycles. The relation between the network time constant and the global exponential convergence rate is pointed out, and application to optimization computation of our results is also given.

  20. Identification model of multi-layered neural network parameters and its applications in the petroleum production

    Institute of Scientific and Technical Information of China (English)

    Liu Ranbing; Liu Leiming; Zhang Faqiang; Li Changhua

    2008-01-01

    This paper creates a LM (Levenberg-Marquardt) algorithm model which is appropriate to solve the problem a-bout weights value of feedforward neural network. On the base of this model, we provide two applications in the oilfield production. Firstly, we simulated the functional relationships between the petrophysical and electrical properties of the rock by neural networks model, and studied oil saturation. Under the precision of data is confirmed, this method can re-duce the number of experiments. Secondly, we simulated the relationships between investment and income by the neural networks model, and studied invest saturation point and income growth rate. It is very significant to guide the investment decision. The research result shows that the model is suitable for the modeling and identification of nonlinear systems due to the great fit characteristic of neural network and very fast convergence speed of LM algorithm.

  1. Neural network decoupling technique and its application to a powered wheelchair system.

    Science.gov (United States)

    Tuan Nghia Nguyen; Nguyen, Hung T

    2015-08-01

    This paper proposes a neural network decoupling technique for an uncertain multivariable system. Based on a linear diagonalization technique, a reference model is designed using nominal parameters to provide training signals for a neural network decoupler. A neural network model is designed to learn the dynamics of the uncertain multivariable system in order to avoid required calculations of the plant Jacobian. To avoid overfitting problem, both neural networks are trained by the Lavenberg-Marquardt with Bayesian regulation algorithm that uses a real-time recurrent learning algorithm to obtain gradient information. Three experimental results in the powered wheelchair control application confirm that the proposed technique effectively minimises the coupling effects caused by input-output interactions even under the condition of system uncertainties.

  2. Application of Artificial Neural Networks in Canola Crop Yield Prediction

    Directory of Open Access Journals (Sweden)

    S. J. Sajadi

    2014-02-01

    Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.

  3. Spiking DNA Computing with applications to BP Neural Networks Classification

    Directory of Open Access Journals (Sweden)

    Wenke Zang

    2012-08-01

    Full Text Available The study uses the idea of the extreme parallel to solve the BP neural network classification. Modification of the weights is not the traditional method which is to modify the connection weights between neurons repeatedly, but to find a group of weights in all possible weights combinations. The groups of weights are suitable for the relationship of the ideal input and the ideal output. Therefore, the model has some advantages compared with the traditional serial model in time miscellaneous. In the actual DNA computing, we also associate the coding problem with the model design. The coding problem is an important issue worthy to study in the DNA computing. There are many factors affecting the coding. The coding in this study is made when certain factors are overlooked.

  4. Application of New Type BP Neural Networks for Magnetic Measurement

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Magnetic measurement is a typical inverse problem in Biomedical field. In this kind of problem we always need to locate the positions and moments of one or more magnetic dipoles. Although using the traditional methods to solve this kind of inverse problem has all kinds of shortcomings, BPNN (Back Propagation Neural Networks) method can be used to solve this typical inverse problem fast enough for real time measurement. In the traditional BPNN method, gradient descent search method is performed for error propagation. In this paper the authors propose a new algorithm that Newton method is performed for error propagation. For the cost function is highly nonconvex in the magnetic measurement problem, the new kind of BPNN can get convergent results quickly and precisely. A simulation result for this method is also presented.

  5. Evolvable Block-Based Neural Network Design for Applications in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Saumil G. Merchant

    2010-01-01

    Full Text Available Dedicated hardware implementations of artificial neural networks promise to provide faster, lower-power operation when compared to software implementations executing on microprocessors, but rarely do these implementations have the flexibility to adapt and train online under dynamic conditions. A typical design process for artificial neural networks involves offline training using software simulations and synthesis and hardware implementation of the obtained network offline. This paper presents a design of block-based neural networks (BbNNs on FPGAs capable of dynamic adaptation and online training. Specifically the network structure and the internal parameters, the two pieces of the multiparametric evolution of the BbNNs, can be adapted intrinsically, in-field under the control of the training algorithm. This ability enables deployment of the platform in dynamic environments, thereby significantly expanding the range of target applications, deployment lifetimes, and system reliability. The potential and functionality of the platform are demonstrated using several case studies.

  6. The Application of Artificial Neural Networks to Astronomical Classification

    Science.gov (United States)

    Naim, A.

    1995-12-01

    Galaxies are fundamental to the understanding of the structure and evolution of the universe. They contain stars, gas and dust, and serve as an astrophysical laboratory in which physical processes can be examined. In the context of the large scale structure of the universe galaxies can be viewed as test particles. They are bright and therefore visible at very large distances, and also numerous and so can be used to provide reliable statistics. In previous decades the major obstacle to studying the large scale structure of the universe was the relatively sparse data samples, because obtaining large quantities of galaxian images and spectra requires a lot of observing time, and the accumulation of significant data bases was therefore a slow process. This obstacle is in the process of being removed today, with the advent of large-scale surveys (e.g., the APM galaxy survey, the Sloan Digital Sky Survey and the 2 degree Field survey). The new challenge with which the astronomical community is faced is the management and analysis of the forthcoming extragalactic data bases. On top of the obvious need for better hardware to give large storage volumes and quick access, one needs to devise automated tools for data analysis. The sheer volume of the data renders manual analysis impractical. It would be best if one could somehow transfer the knowledge and expertise accumulated over years of painstaking manual analysis to a machine. This thesis is part of an effort to achieve this goal. I borrowed techniques that have proved useful in other fields (e.g., engineering) and applied them to astronomical datasets. The major tool I used was Artificial Neural Networks (ANNs), which was originally conceived as a simplified computational model for the brain. The scope of methods and algorithms referred to as ANNs is quite wide. In particular, a distinction is made between Supervised Learning algorithms and Unsupervised methods. The former put the emphasis on ``teaching'' a machine to do

  7. DOBD Algorithm for Training Neural Network:Part II. Application

    Institute of Scientific and Technical Information of China (English)

    吴建昱; 何小荣

    2002-01-01

    In the first part of the article, a new algorithm for pruning network?Dynamic Optimal Brain Damage(DOBD) is introduced. In this part, two cases and an industrial application are worked out to test the new algorithm. It is verified that the algorithm can obtain good generalization through deleting weight parameters with low sensitivities dynamically and get better result than the Marquardt algorithm or the cross-validation method. Although the initial construction of network may be different, the finial number of free weights pruned by the DOBD algorithm is similar and the number is just close to the optimal number of free weights. The algorithm is also helpful to design the optimal structure of network.

  8. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    Science.gov (United States)

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  9. Artificial neural network applications in the calibration of spark-ignition engines: An overview

    Directory of Open Access Journals (Sweden)

    Richard Fiifi Turkson

    2016-09-01

    Full Text Available Emission legislation has become progressively tighter, making the development of new internal combustion engines very challenging. New engine technologies for complying with these regulations introduce an exponential dependency between the number of test combinations required for obtaining optimum results and the time and cost outlays. This makes the calibration task very expensive and virtually impossible to carry out. The potential use of trained neural networks in combination with Design of Experiments (DoE methods for engine calibration has been a subject of research activities in recent times. This is because artificial neural networks, compared with other data-driven modeling techniques, perform better in satisfying a majority of the modeling requirements for engine calibration including the curse of dimensionality; the use of DoE for obtaining few measurements as practicable, with the aim of reducing engine calibration costs; the required flexibility that allows model parameters to be optimized to avoid overfitting; and the facilitation of automated online optimization during the engine calibration process that eliminates the need for user intervention. The purpose of this review is to give an overview of the various applications of neural networks in the calibration of spark-ignition engines. The identified and discussed applications include system identification for rapid prototyping, virtual sensing, use of neural networks as look-up table surrogates, emerging control strategies and On-Board Diagnostic (OBD applications. The demerits of neural networks, future possibilities and alternatives were also discussed.

  10. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  11. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  12. Application of neural networks with orthogonal activation functions in control of dynamical systems

    Science.gov (United States)

    Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.

    2016-04-01

    In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.

  13. Application of Artificial Neural Network to Predict the use of Runway at Juanda International Airport

    Science.gov (United States)

    Putra, J. C. P.; Safrilah

    2017-06-01

    Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.

  14. Application of recurrent neural networks for drought projections in California

    Science.gov (United States)

    Le, J. A.; El-Askary, H. M.; Allali, M.; Struppa, D. C.

    2017-05-01

    We use recurrent neural networks (RNNs) to investigate the complex interactions between the long-term trend in dryness and a projected, short but intense, period of wetness due to the 2015-2016 El Niño. Although it was forecasted that this El Niño season would bring significant rainfall to the region, our long-term projections of the Palmer Z Index (PZI) showed a continuing drought trend, contrasting with the 1998-1999 El Niño event. RNN training considered PZI data during 1896-2006 that was validated against the 2006-2015 period to evaluate the potential of extreme precipitation forecast. We achieved a statistically significant correlation of 0.610 between forecasted and observed PZI on the validation set for a lead time of 1 month. This gives strong confidence to the forecasted precipitation indicator. The 2015-2016 El Niño season proved to be relatively weak as compared with the 1997-1998, with a peak PZI anomaly of 0.242 standard deviations below historical averages, continuing drought conditions.

  15. AN APPLICATION OF SPEAKER RECOGNITION USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Murat CANER

    2006-02-01

    Full Text Available In this study an artificial neural network (ANN is implemented, which has been used frequently as an implementation model in recent years, to recognize speaker identification. Generally, recognition is consist of three stages that, processing of signal, obtaining attributes and comparing them. Speech samples are transformed into digital data according to voice card of PC. In the analysis of voice stage, recurrent periods and white noise of voice data are trimmed by hamming window method and voice attribute part of the digital data is obtained. For obtaining attribute of voice data LPC (linear predictive coding and DFT (discrete fourier transform methods are used. Of those 28 coefficents, that is used for speaker recognition, 16 were obtained by the analysis of DFT and 12 were obtained by the analysis of LPC. The parameters that represent speaker voice, is used for training and test of ANN. Multilayer perceptron model is used as an architecture of ANN and backpropagation algorithm is used for training method. Voices of "a" is taken from 7 different person and their attributes are found. ANN is trained with these features to find the speaker who is the owner of the sample voice. And then using the test data that is not used for training part, recognition achievement of ANN is tested. As a result, good results were obtained with low failure rate.

  16. Application of neural networks for permanent magnet synchronous motor direct torque control

    Institute of Scientific and Technical Information of China (English)

    Zhang Chunmei; Liu Heping; Chen Shujin; Wang Fangjun

    2008-01-01

    Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response.

  17. Constructive neural network learning

    OpenAIRE

    Lin, Shaobo; Zeng, Jinshan; Zhang, Xiaoqin

    2016-01-01

    In this paper, we aim at developing scalable neural network-type learning systems. Motivated by the idea of "constructive neural networks" in approximation theory, we focus on "constructing" rather than "training" feed-forward neural networks (FNNs) for learning, and propose a novel FNNs learning system called the constructive feed-forward neural network (CFN). Theoretically, we prove that the proposed method not only overcomes the classical saturation problem for FNN approximation, but also ...

  18. Generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2013-03-01

    In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.

  19. Application of nonlinear neural network to analyze the stope structure parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lai, X.; Cai, M.; Zhang, B. [University of Science and Technoogy of Beijing (China). Civil and Environmental School

    2001-06-01

    In this paper, the state-of-the-art of neural computing in geotechnical structural analysis and design has been surveyed. Its computing strategies and research trends are given. The principle of the BP neural networks and computing for constitutive modelling have been discussed, then achieved in applying to analyse the underground stope structure parameters in the Xincheng gold mine with the applications of BP network, it is proven that the neurocomputing is a practical tool for solving large-scale rock underground structural engineering problems. 4 refs., 2 figs., 2 tabs.

  20. Artificial Neural Networks: A New Approach for Predicting Application Behavior. AIR 2001 Annual Forum Paper.

    Science.gov (United States)

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    This paper examines how predictive modeling can be used to study application behavior. A relatively new technique, artificial neural networks (ANNs), was applied to help predict which students were likely to get into a large Research I university. Data were obtained from a university in Iowa. Two cohorts were used, each containing approximately…

  1. Absolute stability of nonlinear systems with time delays and applications to neural networks

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    2001-01-01

    Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.

  2. Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas

    Science.gov (United States)

    The transport of sediment and nutrients from land application areas is an environmental concern. New methods are needed for estimating soil and nutrient concentrations of runoff from cropland areas on which manure is applied. Artificial Neural Networks (ANN) trained with a Backpropagation (BP) algor...

  3. Discrete-time delayed standard neural network model and its application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel neural network model, termed the discrete-time delayed standard neural network model (DDSNNM), and similar to the nominal model in linear robust control theory, is suggested to facilitate the stability analysis of discrete-time recurrent neural networks (RNNs) and to ease the synthesis of controllers for discrete-time nonlinear systems. The model is composed of a discrete-time linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. By combining various Lyapunov functionals with the S-procedure, sufficient conditions for the global asymptotic stability and global exponential stability of the DDSNNM are derived, which are formulated as linear or nonlinear matrix inequalities. Most discrete-time delayed or non-delayed RNNs, or discrete-time neural-network-based nonlinear control systems can be transformed into the DDSNNMs for stability analysis and controller synthesis in a unified way. Two application examples are given where the DDSNNMs are employed to analyze the stability of the discrete-time cellular neural networks (CNNs) and to synthesize the neuro-controllers for the discrete-time nonlinear systems, respectively. Through these examples, it is demonstrated that the DDSNNM not only makes the stability analysis of the RNNs much easier, but also provides a new approach to the synthesis of the controllers for the nonlinear systems.

  4. Application of Artificial Neural Networks and Chaos in Chemical Processes

    Science.gov (United States)

    Otawara, Kentaro

    1995-01-01

    An artificial neural network (ANN) and chaos, conceived and developed independently, are beginning to play essential roles in chemical engineering. Nonetheless, the ANN possesses an appreciable number of deficiencies that need be remedied, and the capability of the ANN to explore and tame chaos or an irregularly behaving system is yet to be fully realized. The present dissertation attempts to make substantial progress toward such ends. The problem of controlling the temperature of an industrial reactor carrying out semibatch polymerization has been solved by an innovative adaptive hybrid control system comprising an ANN and fuzzy expert system (FES) complemented by two supervisory ANN's. The system enhances the strength and compensates for the weaknesses of both the ANN and FES. The system, named dual ANN (DANN), has been proposed for characterizing the nonlinear nature of chaotic time -series data. Its capability to approximate the behavior of a chaotic system has been found to far exceed that of a conventional ANN. A novel approach has been devised for training an ANN through the modified interactive training (MIT) mode. This mode of training has been demonstrated to substantially outperform a conventional interactive training (CIT) mode. A method has been established for synchronizing chaos by resorting to an ANN. This method is capable of causing to be coherent the trajectories of systems whose deterministic governing equations are insufficiently known. This requires training the ANN with a time series and a common driving signal or signals. Examples are given for chaos generated by difference as well as differential equations. An alternative to the OGY method has been proposed for controlling chaos; it meticulously perturbs an accessible parameter of the chaotic system. A single, highly precise ANN suffices to render stable any of an infinite number of unstable periodic orbits embedded in a chaotic or strange attractor. A method for estimating sub

  5. Abstracts for the symposium on the Application of neural networks to the earth sciences

    Science.gov (United States)

    Singer, Donald A.

    2002-01-01

    Artificial neural networks are a group of mathematical methods that attempt to mimic some of the processes in the human mind. Although the foundations for these ideas were laid as early as 1943 (McCulloch and Pitts, 1943), it wasn't until 1986 (Rumelhart and McClelland, 1986; Masters, 1995) that applications to practical problems became possible. It is the acknowledged superiority of the human mind at recognizing patterns that the artificial neural networks are trying to imitate with their interconnected neurons. Interconnections used in the methods that have been developed allow robust learning. Capabilities of neural networks fall into three kinds of applications: (1) function fitting or prediction, (2) noise reduction or pattern recognition, and (3) classification or placing into types. Because of these capabilities and the powerful abilities of artificial neural networks, there have been increasing applications of these methods in the earth sciences. The abstracts in this document represent excellent samples of the range of applications. Talks associated with the abstracts were presented at the Symposium on the Application of Neural Networks to the Earth Sciences: Seventh International Symposium on Mineral Exploration (ISME–02), held August 20–21, 2002, at NASA Moffett Field, Mountain View, California. This symposium was sponsored by the Mining and Materials Processing Institute of Japan (MMIJ), the U.S. Geological Survey, the Circum-Pacific Council, and NASA. The ISME symposia have been held every two years in order to bring together scientists actively working on diverse quantitative methods applied to the earth sciences. Although the title, International Symposium on Mineral Exploration, suggests exclusive focus on mineral exploration, interests and presentations have always been wide-ranging—abstracts presented here are no exception.

  6. An Improved Recurrent Neural Network for Complex-Valued Systems of Linear Equation and Its Application to Robotic Motion Tracking.

    Science.gov (United States)

    Ding, Lei; Xiao, Lin; Liao, Bolin; Lu, Rongbo; Peng, Hua

    2017-01-01

    To obtain the online solution of complex-valued systems of linear equation in complex domain with higher precision and higher convergence rate, a new neural network based on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network for complex-valued systems of linear equation in complex domain is proposed and theoretically proved to be convergent within finite time. Then, the illustrative results show that the new neural network model has the higher precision and the higher convergence rate, as compared with the gradient neural network (GNN) model and the ZNN model. Finally, the application for controlling the robot using the proposed method for the complex-valued systems of linear equation is realized, and the simulation results verify the effectiveness and superiorness of the new neural network for the complex-valued systems of linear equation.

  7. APPLICATION OF NEURAL NETWORK TO SUPPORT OF ROADWAY IN SOFT ROCK

    Institute of Scientific and Technical Information of China (English)

    Han Fengshan; Kang Lixun

    2000-01-01

    It is well known that artificial neural network which has marvelous ability to gain knowledge has been widely used in various engineering field.In this paper, support of roadway in soft rock has been researched based on neural network.

  8. Application of artificial neural network model combined with four biomarkers in auxiliary diagnosis of lung cancer.

    Science.gov (United States)

    Duan, Xiaoran; Yang, Yongli; Tan, Shanjuan; Wang, Sihua; Feng, Xiaolei; Cui, Liuxin; Feng, Feifei; Yu, Songcheng; Wang, Wei; Wu, Yongjun

    2017-08-01

    The purpose of the study was to explore the application of artificial neural network model in the auxiliary diagnosis of lung cancer and compare the effects of back-propagation (BP) neural network with Fisher discrimination model for lung cancer screening by the combined detections of four biomarkers of p16, RASSF1A and FHIT gene promoter methylation levels and the relative telomere length. Real-time quantitative methylation-specific PCR was used to detect the levels of three-gene promoter methylation, and real-time PCR method was applied to determine the relative telomere length. BP neural network and Fisher discrimination analysis were used to establish the discrimination diagnosis model. The levels of three-gene promoter methylation in patients with lung cancer were significantly higher than those of the normal controls. The values of Z(P) in two groups were 2.641 (0.008), 2.075 (0.038) and 3.044 (0.002), respectively. The relative telomere lengths of patients with lung cancer (0.93 ± 0.32) were significantly lower than those of the normal controls (1.16 ± 0.57), t = 4.072, P neural network were 0.670 (0.569-0.761) and 0.760 (0.664-0.840). The AUC of BP neural network was higher than that of Fisher discrimination analysis, and Z(P) was 0.76. Four biomarkers are associated with lung cancer. BP neural network model for the prediction of lung cancer is better than Fisher discrimination analysis, and it can provide an excellent and intelligent diagnosis tool for lung cancer.

  9. Fuzzy logic systems are equivalent to feedforward neural networks

    Institute of Scientific and Technical Information of China (English)

    李洪兴

    2000-01-01

    Fuzzy logic systems and feedforward neural networks are equivalent in essence. First, interpolation representations of fuzzy logic systems are introduced and several important conclusions are given. Then three important kinds of neural networks are defined, i.e. linear neural networks, rectangle wave neural networks and nonlinear neural networks. Then it is proved that nonlinear neural networks can be represented by rectangle wave neural networks. Based on the results mentioned above, the equivalence between fuzzy logic systems and feedforward neural networks is proved, which will be very useful for theoretical research or applications on fuzzy logic systems or neural networks by means of combining fuzzy logic systems with neural networks.

  10. Interval probabilistic neural network.

    Science.gov (United States)

    Kowalski, Piotr A; Kulczycki, Piotr

    2017-01-01

    Automated classification systems have allowed for the rapid development of exploratory data analysis. Such systems increase the independence of human intervention in obtaining the analysis results, especially when inaccurate information is under consideration. The aim of this paper is to present a novel approach, a neural networking, for use in classifying interval information. As presented, neural methodology is a generalization of probabilistic neural network for interval data processing. The simple structure of this neural classification algorithm makes it applicable for research purposes. The procedure is based on the Bayes approach, ensuring minimal potential losses with regard to that which comes about through classification errors. In this article, the topological structure of the network and the learning process are described in detail. Of note, the correctness of the procedure proposed here has been verified by way of numerical tests. These tests include examples of both synthetic data, as well as benchmark instances. The results of numerical verification, carried out for different shapes of data sets, as well as a comparative analysis with other methods of similar conditioning, have validated both the concept presented here and its positive features.

  11. Chaotic diagonal recurrent neural network

    Institute of Scientific and Technical Information of China (English)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.

  12. Artificial Neural Networks

    OpenAIRE

    Chung-Ming Kuan

    2006-01-01

    Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods.

  13. Radial basis function neural networks with sequential learning MRAN and its applications

    CERN Document Server

    Sundararajan, N; Wei Lu Ying

    1999-01-01

    This book presents in detail the newly developed sequential learning algorithm for radial basis function neural networks, which realizes a minimal network. This algorithm, created by the authors, is referred to as Minimal Resource Allocation Networks (MRAN). The book describes the application of MRAN in different areas, including pattern recognition, time series prediction, system identification, control, communication and signal processing. Benchmark problems from these areas have been studied, and MRAN is compared with other algorithms. In order to make the book self-contained, a review of t

  14. The design and analysis of effective and efficient neural networks and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Makovoz, W.V.

    1989-01-01

    A complicated design issue of efficient Multilayer neural networks is addressed, and the perception and similar neural networks are examined. It shows that a three-layer perceptron neural network with specially designed learning algorithms provides an efficient framework to solve an exclusive OR problem using only n {minus} 1 processing elements in the second layer. Two efficient rapidly converging algorithms for any symmetric Boolean function were developed using only n {minus} 1 processing elements in the perceptron neural network and int(n/2) processing elements in the Adaline and perceptron neural network with the stepfunction transfer function. Similar results were obtained for the quasi-symmetric Boolean functions using a linear number of processing elements in perceptron neural networks, Adaline's, and perceptron neural networks with the stepfunction transfer functions. Generalized Boolean functions are discussed and two rapidly converging algorithms are shown for perceptron neural networks, Adaline's, and perceptron neural network with stepfunction transfer function. Many other interesting perceptron neural networks are discussed in the dissertation. Perceptron neural networks are applied to find the largest value of the n inputs. A new perceptron neural network is designed to find the largest value of the n inputs with the minimum number of inputs and the minimum number of layers. New perceptron neural networks are developed to sort n inputs. New, effective and efficient back-propagation Neural networks are designed to sort n inputs. The Sigmoid transfer function was discussed and a generalized Sigmoid function to improve Neural network performance was developed. A modified back-propagation learning algorithm was developed that builds any n input symmetric Boolean function using only int(n/2) processing elements in the second layer.

  15. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    Science.gov (United States)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  16. NEURAL NETWORK ANALYSIS APPLICATION TO PERMEABILITY DETERMINATION OF FIBERGLASS AND CARBON PREFORMS

    Institute of Scientific and Technical Information of China (English)

    Hossein Golestanian; Mehrdad Poursina

    2009-01-01

    Preform permeability is an important process parameter in liquid injection molding of composite parts.This parameter is currently determined with time consuming and expensive experimental procedures.This paper presents the application of a back-propagation neural network to predicting fiber bed permeability of three types of reinforcement mats.Resin flow experiments were performed to simulate the injection cycle of a resin transfer molding process.The results of these experiments were used to prepare a training set for the back propagation neural network program.The reinforcements consisted of plain-weave carbon,plain-weave fiberglass,and chopped fiberglass mats.The effects of reinforcement type,porosity and injection pressure on fiber bed permeability in the preform principal directions were investigated.Therefore,in the training of the neural network reinforcement type,these process parameters were used as the input data.Fiber bed permeability values were the specified output of the program.As a result of the specified parameters,the program was able to estimate fiber bed permeability in the preform principal directions for any given processing condition.The results indicate that neural network may be used to predict preform permeability.

  17. Logic Mining Using Neural Networks

    CERN Document Server

    Sathasivam, Saratha

    2008-01-01

    Knowledge could be gained from experts, specialists in the area of interest, or it can be gained by induction from sets of data. Automatic induction of knowledge from data sets, usually stored in large databases, is called data mining. Data mining methods are important in the management of complex systems. There are many technologies available to data mining practitioners, including Artificial Neural Networks, Regression, and Decision Trees. Neural networks have been successfully applied in wide range of supervised and unsupervised learning applications. Neural network methods are not commonly used for data mining tasks, because they often produce incomprehensible models, and require long training times. One way in which the collective properties of a neural network may be used to implement a computational task is by way of the concept of energy minimization. The Hopfield network is well-known example of such an approach. The Hopfield network is useful as content addressable memory or an analog computer for s...

  18. Application of artificial neural networks to rainfall forecasting in Queensland, Australia

    Science.gov (United States)

    Abbot, John; Marohasy, Jennifer

    2012-07-01

    In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009, were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared. The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is considered preliminary, with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.

  19. NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHMS: APPLICATIONS AND POSSIBILITIES IN FINANCE AND ACCOUNTING

    Directory of Open Access Journals (Sweden)

    José Alonso Borba

    2010-04-01

    Full Text Available There are problems in Finance and Accounting that can not be easily solved by means of traditional techniques (e.g. bankruptcy prediction and strategies for investing in common stock. In these situations, it is possible to use methods of Artificial Intelligence. This paper analyzes empirical works published in international journals between 2000 and 2007 that present studies about the application of Neural Networks, Fuzzy Logic and Genetic Algorithms to problems in Finance and Accounting. The objective is to identify and quantify the relationships established between the available techniques and the problems studied by the researchers. Analyzing 258 papers, it was noticed that the most used technique is the Artificial Neural Network. The most researched applications are from the field of Finance, especially those related to stock exchanges (forecasting of common stock and indices prices.

  20. Medical diagnosis using neural network

    CERN Document Server

    Kamruzzaman, S M; Siddiquee, Abu Bakar; Mazumder, Md Ehsanul Hoque

    2010-01-01

    This research is to search for alternatives to the resolution of complex medical diagnosis where human knowledge should be apprehended in a general fashion. Successful application examples show that human diagnostic capabilities are significantly worse than the neural diagnostic system. This paper describes a modified feedforward neural network constructive algorithm (MFNNCA), a new algorithm for medical diagnosis. The new constructive algorithm with backpropagation; offer an approach for the incremental construction of near-minimal neural network architectures for pattern classification. The algorithm starts with minimal number of hidden units in the single hidden layer; additional units are added to the hidden layer one at a time to improve the accuracy of the network and to get an optimal size of a neural network. The MFNNCA was tested on several benchmarking classification problems including the cancer, heart disease and diabetes. Experimental results show that the MFNNCA can produce optimal neural networ...

  1. A Novel Training Algorithm of Genetic Neural Networks and Its Application to Classification

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    First of all, this paper discusses the drawbacks of multilayer perceptron (MLP), which is trained by the traditional back propagation (BP) algorithm and used in a special classification problem. A new training algorithm for neural networks based on genetic algorithm and BP algorithm is developed. The difference between the new training algorithm and BP algorithm in the ability of nonlinear approaching is expressed through an example, and the application foreground is illustrated by an example.

  2. "Geo-statistics methods and neural networks in geophysical applications: A case study"

    Science.gov (United States)

    Rodriguez Sandoval, R.; Urrutia Fucugauchi, J.; Ramirez Cruz, L. C.

    2008-12-01

    The study is focus in the Ebano-Panuco basin of northeastern Mexico, which is being explored for hydrocarbon reservoirs. These reservoirs are in limestones and there is interest in determining porosity and permeability in the carbonate sequences. The porosity maps presented in this study are estimated from application of multiattribute and neural networks techniques, which combine geophysics logs and 3-D seismic data by means of statistical relationships. The multiattribute analysis is a process to predict a volume of any underground petrophysical measurement from well-log and seismic data. The data consist of a series of target logs from wells which tie a 3-D seismic volume. The target logs are neutron porosity logs. From the 3-D seismic volume a series of sample attributes is calculated. The objective of this study is to derive a set of attributes and the target log values. The selected set is determined by a process of forward stepwise regression. The analysis can be linear or nonlinear. In the linear mode the method consists of a series of weights derived by least-square minimization. In the nonlinear mode, a neural network is trained using the select attributes as inputs. In this case we used a probabilistic neural network PNN. The method is applied to a real data set from PEMEX. For better reservoir characterization the porosity distribution was estimated using both techniques. The case shown a continues improvement in the prediction of the porosity from the multiattribute to the neural network analysis. The improvement is in the training and the validation, which are important indicators of the reliability of the results. The neural network showed an improvement in resolution over the multiattribute analysis. The final maps provide more realistic results of the porosity distribution.

  3. Simplified LQG Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...

  4. Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling

    Science.gov (United States)

    Bakanovskaya, L. N.

    2016-08-01

    The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.

  5. Neural networks for learning and prediction with applications to remote sensing and speech perception

    Science.gov (United States)

    Gjaja, Marin N.

    1997-11-01

    Neural networks for supervised and unsupervised learning are developed and applied to problems in remote sensing, continuous map learning, and speech perception. Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART networks synthesize fuzzy logic and neural networks, and supervised ARTMAP networks incorporate ART modules for prediction and classification. New ART and ARTMAP methods resulting from analyses of data structure, parameter specification, and category selection are developed. Architectural modifications providing flexibility for a variety of applications are also introduced and explored. A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on fuzzy ARTMAP, is developed. System capabilities are tested on a challenging remote sensing problem, prediction of vegetation classes in the Cleveland National Forest from spectral and terrain features. After training at the pixel level, performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, back propagation neural networks, and K-nearest neighbor algorithms. Best performance is obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. This work forms the foundation for additional studies exploring fuzzy ARTMAP's capability to estimate class mixture composition for non-homogeneous sites. Exploratory simulations apply ARTMAP to the problem of learning continuous multidimensional mappings. A novel system architecture retains basic ARTMAP properties of incremental and fast learning in an on-line setting while adding components to solve this class of problems. The perceptual magnet effect is a language-specific phenomenon arising early in infant speech development that is characterized by a warping of speech sound perception. An

  6. Learning from a carbon dioxide capture system dataset: Application of the piecewise neural network algorithm

    Directory of Open Access Journals (Sweden)

    Veronica Chan

    2017-03-01

    Full Text Available This paper presents the application of a neural network rule extraction algorithm, called the piece-wise linear artificial neural network or PWL-ANN algorithm, on a carbon capture process system dataset. The objective of the application is to enhance understanding of the intricate relationships among the key process parameters. The algorithm extracts rules in the form of multiple linear regression equations by approximating the sigmoid activation functions of the hidden neurons in an artificial neural network (ANN. The PWL-ANN algorithm overcomes the weaknesses of the statistical regression approach, in which accuracies of the generated predictive models are often not satisfactory, and the opaqueness of the ANN models. The results show that the generated PWL-ANN models have accuracies that are as high as the originally trained ANN models of the four datasets of the carbon capture process system. An analysis of the extracted rules and the magnitude of the coefficients in the equations revealed that the three most significant parameters of the CO2 production rate are the steam flow rate through reboiler, reboiler pressure, and the CO2 concentration in the flue gas.

  7. High-resolution Image Reconstruction by Neural Network and Its Application in Infrared Imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nan; JIN Wei-qi; SU Bing-hua

    2005-01-01

    As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.

  8. Water quality forecast through application of BP neural network at Yuqiao reservoir

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper deals with the study of a water quality forecast model through application of BP neural network technique and GUI (Graphical User Interfaces) function of MATLAB at Yuqiao reservoir in Tianjin. To overcome the shortcomings of traditional BP algorithm as being slow to converge and easy to reach extreme minimum value, the model adopts LM (Levenberg-Marquardt) algorithm to achieve a higher speed and a lower error rate. When factors affecting the study object are identified,the reservoir's 2005 measured values are used as sample data to test the model. The number of neurons and the type of transfer functions in the hidden layer of the neural network are changed from time to time to achieve the best forecast results. Through simulation testing the model shows high efficiency in forecasting the water quality of the reservoir.

  9. Application of Artificial Neural Networks in Aircraft Maintenance, Repair and Overhaul Solutions

    CERN Document Server

    Paul, Soumitra; Jasani, Devashish; Dudhwewala, Rachit; Gowda, Vijay Bore; Nair, T R Gopalakrishnan

    2010-01-01

    This paper reviews application of Artificial Neural Networks in Aircraft Maintenance, Repair and Overhaul (MRO). MRO solutions are designed to facilitate the authoring and delivery of maintenance and repair information to the line maintenance technicians who need to improve aircraft repair turn around time, optimize the efficiency and consistency of fleet maintenance and ensure regulatory compliance. The technical complexity of aircraft systems, especially in avionics, has increased to the point at which it poses a significant troubleshotting and repair challenge for MRO personnel. As per the existing scenario, the MRO systems in place are inefficient. In this paper, we propose the centralization and integration of the MRO database to increase its efficiency. Moreover the implementation of Artificial Neural Networks in this system can rid the system of many of its deficiencies. In order to make the system more efficient we propose to integrate all the modules so as to reduce the efficacy of repair.

  10. Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation

    Directory of Open Access Journals (Sweden)

    Chunqing Li

    2012-01-01

    Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.

  11. Application of feedback connection artificial neural network to seismic data filtering

    CERN Document Server

    Djarfour, Noureddine; Baddari, Kamel; Mihoubi, Abdelhafid; Ferahtia, Jalal; 10.1016/j.crte.2008.03.003

    2008-01-01

    The Elman artificial neural network (ANN) (feedback connection) was used for seismic data filtering. The recurrent connection that characterizes this network offers the advantage of storing values from the previous time step to be used in the current time step. The proposed structure has the advantage of training simplicity by a back-propagation algorithm (steepest descent). Several trials were addressed on synthetic (with 10% and 50% of random and Gaussian noise) and real seismic data using respectively 10 to 30 neurons and a minimum of 60 neurons in the hidden layer. Both an iteration number up to 4000 and arrest criteria were used to obtain satisfactory performances. Application of such networks on real data shows that the filtered seismic section was efficient. Adequate cross-validation test is done to ensure the performance of network on new data sets.

  12. An Examination of Application of Artificial Neural Network in Cognitive Radios

    Science.gov (United States)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  13. Dynamics of Transiently Chaotic Neural Network and Its Application to Optimization

    Institute of Scientific and Technical Information of China (English)

    YANG Li-Jiang; CHEN Tian-Lun; HUANG Wu-Qun

    2001-01-01

    Through adding a nonlinear self-feedback term in the evolution equations of neural network, we introduced a transiently chaotic neural network model. In order to utilize the transiently chaotic dynamics mechanism in optimization problem efficiently, we have analyzed the dynamical procedure of the transiently chaotic neural network rnodel and studied the function of the crucial bifurcation parameter which governs the chaotic behavior of the system. Based on the dynamical analysis of the transiently chaotic neural network model, chaotic annealing algorithm is also examined and improved. As an example, we applied chaotic annealing method to the traveling salesman problem and obtained good results.``

  14. Application of artificial neural networks for decision support in medicine.

    Science.gov (United States)

    Larder, Brendan; Wang, Dechao; Revell, Andy

    2008-01-01

    The emergence of drug resistant pathogens can reduce the efficacy of drugs commonly used to treat infectious diseases. Human immunodeficiency virus (HIV) is particularly sensitive to drug selection pressure, rapidly evolving into drug resistant variants on exposure to anti-HIV drugs. Over 200 mutations within the genetic material of HIV have been shown to be associated with drug resistance to date, and complex mutational patterns have been found in HIV isolates from infected patients exposed to multiple antiretroviral drugs. Genotyping is commonly used in clinical practice as a tool to identify drug resistance mutations in HIV from individual patients. This information is then used to help guide the choice of future therapy for patients whose drug regimen is failing because of the development of drug resistant HIV. Many sets of rules and algorithms are available to predict loss of susceptibility to individual antiretroviral drugs from genotypic data. Although this approach has been helpful, the interpretation of genotypic data remains challenging. We describe here the development and application of ANN models as alternative tools for the interpretation of HIV genotypic drug resistance data. A large amount of clinical and virological data, from around 30,000 patients treated with antiretroviral drugs, has been collected by the HIV Resistance Response Database Initiative (RDI, www.hivrdi.org) in a centralized database. Treatment change episodes (TCEs) have been extracted from these data and used along with HIV drug resistance mutations as the basic input variables to train ANN models. We performed a series of analyses that have helped define the following: (1) the reliability of ANN predictions for HIV patients receiving routine clinical care; (2) the utility of ANN models to identify effective treatments for patients failing therapy; (3) strategies to increase the accuracy of ANN predictions; and (4) performance of ANN models in comparison to the rules-based methods

  15. Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns.

    Science.gov (United States)

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.

  16. Gait Phases Recognition from Accelerations and Ground Reaction Forces: Application of Neural Networks

    Directory of Open Access Journals (Sweden)

    S. Rafajlović

    2009-06-01

    Full Text Available The goal of this study was to test the applicability of accelerometer as the sensor for assessment of the walking. We present here the comparison of gait phases detected from the data recorded by force sensing resistors mounted in the shoe insoles, non-processed acceleration and processed acceleration perpendicular to the direction of the foot. The gait phases in all three cases were detected by means of a neural network. The output from the neural network was the gait phase, while the inputs were data from the sensors. The results show that the errors were in the ranges: 30 ms (2.7% – force sensors; 150 ms (13.6% – nonprocessed acceleration, and 120 ms (11% – processed acceleration data. This result suggests that it is possible to use the accelerometer as the gait phase detector, however, with the knowledge that the gait phases are time shifted for about 100 ms with respect the neural network predicted times.

  17. Porosity Estimation By Artificial Neural Networks Inversion . Application to Algerian South Field

    Science.gov (United States)

    Eladj, Said; Aliouane, Leila; Ouadfeul, Sid-Ali

    2017-04-01

    One of the main geophysicist's current challenge is the discovery and the study of stratigraphic traps, this last is a difficult task and requires a very fine analysis of the seismic data. The seismic data inversion allows obtaining lithological and stratigraphic information for the reservoir characterization . However, when solving the inverse problem we encounter difficult problems such as: Non-existence and non-uniqueness of the solution add to this the instability of the processing algorithm. Therefore, uncertainties in the data and the non-linearity of the relationship between the data and the parameters must be taken seriously. In this case, the artificial intelligence techniques such as Artificial Neural Networks(ANN) is used to resolve this ambiguity, this can be done by integrating different physical properties data which requires a supervised learning methods. In this work, we invert the acoustic impedance 3D seismic cube using the colored inversion method, then, the introduction of the acoustic impedance volume resulting from the first step as an input of based model inversion method allows to calculate the Porosity volume using the Multilayer Perceptron Artificial Neural Network. Application to an Algerian South hydrocarbon field clearly demonstrate the power of the proposed processing technique to predict the porosity for seismic data, obtained results can be used for reserves estimation, permeability prediction, recovery factor and reservoir monitoring. Keywords: Artificial Neural Networks, inversion, non-uniqueness , nonlinear, 3D porosity volume, reservoir characterization .

  18. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    Directory of Open Access Journals (Sweden)

    Melike Bildirici

    2014-01-01

    Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.

  19. Artificial Neural Networks for Processing Graphs with Application to Image Understanding: A Survey

    Science.gov (United States)

    Bianchini, Monica; Scarselli, Franco

    In graphical pattern recognition, each data is represented as an arrangement of elements, that encodes both the properties of each element and the relations among them. Hence, patterns are modelled as labelled graphs where, in general, labels can be attached to both nodes and edges. Artificial neural networks able to process graphs are a powerful tool for addressing a great variety of real-world problems, where the information is naturally organized in entities and relationships among entities and, in fact, they have been widely used in computer vision, f.i. in logo recognition, in similarity retrieval, and for object detection. In this chapter, we propose a survey of neural network models able to process structured information, with a particular focus on those architectures tailored to address image understanding applications. Starting from the original recursive model (RNNs), we subsequently present different ways to represent images - by trees, forests of trees, multiresolution trees, directed acyclic graphs with labelled edges, general graphs - and, correspondingly, neural network architectures appropriate to process such structures.

  20. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    Science.gov (United States)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  1. Application of neural network in market segmentation: A review on recent trends

    Directory of Open Access Journals (Sweden)

    Manojit Chattopadhyay

    2012-04-01

    Full Text Available Despite the significance of Artificial Neural Network (ANN algorithm to market segmentation, there is a need of a comprehensive literature review and a classification system for it towards identification of future trend of market segmentation research. The present work is the first identifiable academic literature review of the application of neural network based techniques to segmentation. Our study has provided an academic database of literature between the periods of 2000–2010 and proposed a classification scheme for the articles. One thousands (1000 articles have been identified, and around 100 relevant selected articles have been subsequently reviewed and classified based on the major focus of each paper. Findings of this study indicated that the research area of ANN based applications are receiving most research attention and self organizing map based applications are second in position to be used in segmentation. The commonly used models for market segmentation are data mining, intelligent system etc. Our analysis furnishes a roadmap to guide future research and aid knowledge accretion and establishment pertaining to the application of ANN based techniques in market segmentation. Thus the present work will significantly contribute to both the industry and academic research in business and marketing as a sustainable valuable knowledge source of market segmentation with the future trend of ANN application in segmentation.

  2. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  3. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  4. Application of Smith Predictor Based on Single Neural Network in Cold Rolling Shape Control

    Institute of Scientific and Technical Information of China (English)

    WANG Yiqun; SUN Fu; LIU Jian; SUN Menghui; XIE Yihan

    2009-01-01

    Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automatic shape control system. However, in the shape control system, the shape-meter is always installed at the down way of the exit of the cold rolling mill and can not sense the changes of the strip flatness in the rolling gap directly. This kind of installation results in the delay of the feedback in the control system. Therefore, the stability and response performance of the system are strongly affected by the delay. At present, there is still no mature way to design controllers for systems with time delay. Although the conventional PID controller used in most practical applications has the capability to comte the delay, the effect of the compensation is limited, especially for the systems with long time delay. Smith predictor, as a compensator for solving this problem, is now widely used in industry systems. However, the request of highly precise model of the system and the poor adaptive performance to the changes of related parameters limit the application of the Smith predictor in practice. In order to overcome the drawbacks of the Smith predictor, a new Smith predictor based on single neural network PID (SNN-PID) is proposed. Because the single neural network is employed into the Smith predictor to improve the controller's self-adaptability, the adaptive capability to the varying parameters of the system is improved. Meanwhile, for the purpose of solving the problems such as time-consuming and complicated calculation of the neural networks in real time, the learning coefficient of neural network is divided into several stages as usually done in expert control system. Therefore, the control system can obtain fast response due to the improved calculation speed of the neural networks. In order to validate the performance of the proposed controller, the

  5. Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility

    Science.gov (United States)

    Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.

    2013-03-01

    is 93.02%, whereas units without landslide occurrence are predicted with an accuracy of 81.13%. To sum up, the verification shows satisfactory agreement with an accuracy of 86.46% between the susceptibility map and the landslide locations. In the landslide susceptibility assessment, ten new slopes were predicted to show potential for failure, which can be confirmed by the engineering geological conditions of these slopes. It was also observed that some disadvantages could be overcome in the application of the neural networks with back propagation, for example, the low convergence rate and local minimum, after the network was optimized using genetic algorithms. To conclude, neural networks with back propagation that are optimized by genetic algorithms are an effective method to predict landslide susceptibility with high accuracy.

  6. MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION

    Directory of Open Access Journals (Sweden)

    Artur Popko

    2013-06-01

    Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.

  7. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  8. Application of Artificial Neural Network in Active Vibration Control of Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-shun; ZHANG Jian-wu

    2005-01-01

    Artificial Neural Network (ANN) is applied to diesel twostage vibration isolating system and an AVC (Active Vibration Control) system is developed. Both identifier and controller are constructed by three-layer BP neural network. Besides computer simulation, experiment research is carried out on both analog bench and diesel bench. The results of simulation and experiment show a diminished response of vibration.

  9. Application of Neural network PID Controller in Constant Temperature and Constant Liquid-level System

    Institute of Scientific and Technical Information of China (English)

    Chen,Guochu; Zhang,Lin; Hao,Ninmei; Liu,Xianguang; Wang,Junhong

    2003-01-01

    Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show that this controller has high accuracy and strong robustness and good characters.

  10. A design philosophy for multi-layer neural networks with applications to robot control

    Science.gov (United States)

    Vadiee, Nader; Jamshidi, MO

    1989-01-01

    A system is proposed which receives input information from many sensors that may have diverse scaling, dimension, and data representations. The proposed system tolerates sensory information with faults. The proposed self-adaptive processing technique has great promise in integrating the techniques of artificial intelligence and neural networks in an attempt to build a more intelligent computing environment. The proposed architecture can provide a detailed decision tree based on the input information, information stored in a long-term memory, and the adapted rule-based knowledge. A mathematical model for analysis will be obtained to validate the cited hypotheses. An extensive software program will be developed to simulate a typical example of pattern recognition problem. It is shown that the proposed model displays attention, expectation, spatio-temporal, and predictory behavior which are specific to the human brain. The anticipated results of this research project are: (1) creation of a new dynamic neural network structure, and (2) applications to and comparison with conventional multi-layer neural network structures. The anticipated benefits from this research are vast. The model can be used in a neuro-computer architecture as a building block which can perform complicated, nonlinear, time-varying mapping from a multitude of input excitory classes to an output or decision environment. It can be used for coordinating different sensory inputs and past experience of a dynamic system and actuating signals. The commercial applications of this project can be the creation of a special-purpose neuro-computer hardware which can be used in spatio-temporal pattern recognitions in such areas as air defense systems, e.g., target tracking, and recognition. Potential robotics-related applications are trajectory planning, inverse dynamics computations, hierarchical control, task-oriented control, and collision avoidance.

  11. Learning algorithm and application of quantum BP neural networks based on universal quantum gates

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A quantum BP neural networks model with learning algorithm is proposed.First,based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate,a quantum neuron model is constructed,which is composed of input,phase rotation,aggregation,reversal rotation and output.In this model,the input is described by qubits,and the output is given by the probability of the state in which |1> is observed.The phase rotation and the reversal rotation are performed by the universal quantum gates.Secondly,the quantum BP neural networks model is constructed,in which the output layer and the hide layer are quantum neurons.With the application of the gradient descent algorithm,a learning algorithm of the model is proposed,and the continuity of the model is proved.It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed,convergence rate and robustness,by two application examples of pattern recognition and function approximation.

  12. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  13. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  14. APPLICATION OF EXPERT SYSTEM BASED ON NEURAL NETWORK IN MINING THE GENTLE INCLINED THICK SEAM

    Institute of Scientific and Technical Information of China (English)

    朱川曲; 施式亮

    1997-01-01

    This paper presents a new method for the correct selection of mining methods and prediction of main technological and economic indexes of the face in the gentle inclined thick seams with the application of the artificial neural network theory and the expert system. The theory analysis and calculating results indicate that the method is reliable, practical and precise. This method has strongly capabilities of self-study and non-linear dynamic data process. It is expected to be widely applied in the policy decision and prediction of mining technology in coal mine.

  15. Neural Network Applications in Petroleum Exploration Based on Statistical Space Mapping

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper, we propose the statistical space mapping thought and classify the seismic body space through lithology space clustering combining to the actual application background of petroleum exploration. A new method of stratum petroleum recognition based on neural network was set up through the foundation of the data mapping relation between log and seismic body. It can break a new path for recognition petroleum using both log and seismic data. And this method has been validated in the practical data analysis in Liaohe oil field.

  16. Application of artificial neural network with extreme learning machine for economic growth estimation

    Science.gov (United States)

    Milačić, Ljubiša; Jović, Srđan; Vujović, Tanja; Miljković, Jovica

    2017-01-01

    The purpose of this research is to develop and apply the artificial neural network (ANN) with extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. The economic growth forecasting was analyzed based on agriculture, manufacturing, industry and services value added in GDP. The results were compared with ANN with back propagation (BP) learning approach since BP could be considered as conventional learning methodology. The reliability of the computational models was accessed based on simulation results and using several statistical indicators. Based on results, it was shown that ANN with ELM learning methodology can be applied effectively in applications of GDP forecasting.

  17. Rule Extraction using Artificial Neural Networks

    OpenAIRE

    2010-01-01

    Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can...

  18. Wavelet neural network and its application in fault diagnosis of rolling bearing

    Science.gov (United States)

    Wang, Guo-Feng; Wang, Tai-Yong

    2005-12-01

    In order to realize diagnosis of rolling bearing of rotating machines, the wavelet neural network was proposed. This kind of artificial neural network takes wavelet function as neuron of hidden layer so as to realize nonlinear mapping between fault and symptoms. A algorithm based on minimum mean square error was given to obtain the weight value of network, dilation and translation parameter of wavelet function. To testify the correctness of wavelet neural network, it was adopted in diagnosing the fault type and location of rolling bearing. The final result shows that it can recognize the fault of outer race, inner race and roller accurately.

  19. Research on Application of Enhanced Neural Networks in Software Risk Analysis

    Institute of Scientific and Technical Information of China (English)

    Zhenbang Rong; Juhua Chen; Mei Liu; Yong Hu

    2006-01-01

    This paper puts forward a risk analysis model for software projects using enranced neural networks. The data for analysis are acquired through questionnaires from real software projects. To solve the multicollinearity in software risks, the method of principal components analysis is adopted in the model to enhance network stability. To solve uncertainty of the neural networks structure and the uncertainty of the initial weights, genetic algorithms is employed. The experimental result reveals that the precision of software risk analysis can be improved by using the erhanced neural networks model.

  20. The Application of Imperialist Competitive Algorithm based on Chaos Theory in Perceptron Neural Network

    Science.gov (United States)

    Zhang, Xiuping

    In this paper, the weights of a Neural Network using Chaotic Imperialist Competitive Algorithm are updated. A three-layered Perseptron Neural Network applied for prediction of the maximum worth of the stocks changed in TEHRAN's bourse market. We trained this neural network with CICA, ICA, PSO and GA algorithms and compared the results with each other. The consideration of the results showed that the training and test error of the network trained by the CICA algorithm has been reduced in comparison to the other three methods.

  1. Application of simple dynamic recurrent neural networks in solid granule flowrate modeling

    Science.gov (United States)

    Du, Yun; Sun, Huiqin; Tian, Qiang; Ren, Haiping; Zhang, Suying

    2008-10-01

    To build the solid granule flowrate model by the simple dynamic recurrent neural network (SRNN) is presented in this paper. Because of the dynamic recurrent neural network has the characteristic of intricate network structure and slow training algorithm rate, the simple recurrent neural network without the weight values on recursion layer is studied. The recurrent prediction error (RPE) learning algorithm for SRNN by adjustment the weight value and the threshold value is reduced. The modeling result of solid granule flowrate indicates that it has fast convergence rate and the high precision the model. It can be used on real time.

  2. Application of experimental design techniques to structural simulation meta-model building using neural network

    Institute of Scientific and Technical Information of China (English)

    费庆国; 张令弥

    2004-01-01

    Neural networks are being used to construct meta-models in numerical simulation of structures. In addition to network structures and training algorithms, training samples also greatly affect the accuracy of neural network models. In this paper, some existing main sampling techniques are evaluated, including techniques based on experimental design theory,random selection, and rotating sampling. First, advantages and disadvantages of each technique are reviewed. Then, seven techniques are used to generate samples for training radial neural networks models for two benchmarks: an antenna model and an aircraft model. Results show that the uniform design, in which the number of samples and mean square error network models are considered, is the best sampling technique for neural network based meta-model building.

  3. Application of neural networks to the dynamic spatial distribution of nodes within an urban wireless network

    Science.gov (United States)

    Hortos, William S.

    1995-04-01

    The optimal location of wireless transceivers or communicating sensor devices in an urban area and within large human-made structures is considered. The purpose of the positioning of the devices is formation of a distributed network, either in a mesh or hub-spoke topology, that achieves robust connectivity of the nodes. Real-world examples include wireless local area networks (LANs) within buildings and radio beacons in an outdoor mobile radio environment. Operating environments contain both fixed and moving interferers that correspond to both stationary and time-varying spatial distributions of path distortion of stationary and transient fading and multipath delays that impede connectivity. The positioning of the autonomous wireless devices in an area with an unknown spatial pattern of interferers would normally be a slow incremental process. The proposed objective is determination of the spatial distribution of the devices to achieve the maximum radio connectivity in a minimal number of iterative steps. Impeding the optimal distribution of wireless nodes is the corresponding distribution of environmental interferers in the area or volume of network operation. The problem of network formation is posed as an adaptive learning problem, in particular, a self-organizing map of locally competitive wireless units that recursively update their positions and individual operating configurations at each iterative step of the neural algorithm. The scheme allows the wireless units to adaptively learn the pattern distribution of interferers in their operating environment based on the level of radio interference measured at each node by an equivalent received signal strength from wireless units within the node's hearing distance. Two cases are considered. The first is an indoor human-made environment where the interference pattern is largely deterministic and stationary and the units are positioned to form a wireless LAN. The second situation applies to an outdoor urban

  4. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  5. Neural networks in astronomy.

    Science.gov (United States)

    Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo

    2003-01-01

    In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

  6. Quality-on-Demand Compression of EEG Signals for Telemedicine Applications Using Neural Network Predictors

    Directory of Open Access Journals (Sweden)

    N. Sriraam

    2011-01-01

    Full Text Available A telemedicine system using communication and information technology to deliver medical signals such as ECG, EEG for long distance medical services has become reality. In either the urgent treatment or ordinary healthcare, it is necessary to compress these signals for the efficient use of bandwidth. This paper discusses a quality on demand compression of EEG signals using neural network predictors for telemedicine applications. The objective is to obtain a greater compression gains at a low bit rate while preserving the clinical information content. A two-stage compression scheme with a predictor and an entropy encoder is used. The residue signals obtained after prediction is first thresholded using various levels of thresholds and are further quantized and then encoded using an arithmetic encoder. Three neural network models, single-layer and multi-layer perceptrons and Elman network are used and the results are compared with linear predictors such as FIR filters and AR modeling. The fidelity of the reconstructed EEG signal is assessed quantitatively using parameters such as PRD, SNR, cross correlation and power spectral density. It is found from the results that the quality of the reconstructed signal is preserved at a low PRD thereby yielding better compression results compared to results obtained using lossless scheme.

  7. Application of Artificial Neural Networks to Rainfall Forecasting in Queensland, Australia

    Institute of Scientific and Technical Information of China (English)

    John ABBOT; Jennifer MAROHASY

    2012-01-01

    In this study,the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland,Australia,was assessed by inputting recognized climate indices,monthly historical rainfall data,and atmospheric temperatures into a prototype stand-alone,dynamic,recurrent,time-delay,artificial neural network.Outputs,as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009,were compared with observed rainfall data using time-series plots,root mean squared error (RMSE),and Pearson correlation coefficients.A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared.The application of artificial neural networks to rainfall forecasting was reviewed.The prototype design is considered preliminary,with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.

  8. A hybrid neural network structure for application to nondestructive TRU waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The determination of transuranic (TRU) and associated radioactive material quantities entrained in waste forms is a necessary component. of waste characterization. Measurement performance requirements are specified in the National TRU Waste Characterization Program quality assurance plan for which compliance must be demonstrated prior to the transportation and disposition of wastes. With respect to this criterion, the existing TRU nondestructive waste assay (NDA) capability is inadequate for a significant fraction of the US Department of Energy (DOE) complex waste inventory. This is a result of the general application of safeguard-type measurement and calibration schemes to waste form configurations. Incompatibilities between such measurement methods and actual waste form configurations complicate regulation compliance demonstration processes and illustrate the need for an alternate measurement interpretation paradigm. Hence, it appears necessary to supplement or perhaps restructure the perceived solution and approach to the waste NDA problem. The first step is to understand the magnitude of the waste matrix/source attribute space associated with those waste form configurations in inventory and how this creates complexities and unknowns with respect to existing NDA methods. Once defined and/or bounded, a conceptual method must be developed that specifies the necessary tools and the framework in which the tools are used. A promising framework is a hybridized neural network structure. Discussed are some typical complications associated with conventional waste NDA techniques and how improvements can be obtained through the application of neural networks.

  9. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2016-07-14

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  10. Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) using Complex Quantum Neuron (CQN): Applications to time series prediction.

    Science.gov (United States)

    Cui, Yiqian; Shi, Junyou; Wang, Zili

    2015-11-01

    Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction.

  11. Application of artificial neural networks for modelling correlations in age hardenable aluminium alloys

    Directory of Open Access Journals (Sweden)

    F. Musharavati

    2010-07-01

    Full Text Available Purpose: This paper discusses some of the preliminary results of an ongoing research on the applications of artificial neural networks (ANNs in modelling, predicting and simulating correlations between mechanical properties of age hardenable aluminium alloys as a function of alloy composition.Design/methodology/approach: Appropriate combinations of inputs and outputs were selected for neural network modelling. Multilayer feedforward networks were created and trained using datasets from public literature. Influences of alloying elements, alloy composition and processing parameters on mechanical properties of aluminium alloys were predicted and simulated using ANNs models.Two sample t-tests were used to analyze the prediction accuracy of the trained ANNs.Findings: Good performances of the neural network models were achieved. The models were able to predict mechanical properties within acceptable margins of error and were able to provide relevant simulated data for correlating alloy composition and processing parameters with mechanical properties. Therefore, ANNs models are convenient and powerful tools that can provide useful information which can be used to identify desired properties in new aluminium alloys for practical applications in new and/or improved aluminium products.Research limitations/implications: Few public data bases are available for modelling properties. Minor contradictions on the experimental values of properties and alloy compositions were also observed. Future work will include further development of simulated data into property charts.Practical implications: Correlations between mechanical properties and alloy compositions can help in identifying a suitable alloy for a new or improved aluminum product application. In addition, availability of simulated structure-process-property data or charts assists in reducing the time and costs of trial and error experimental approaches by providing near-optimal values that can be used

  12. Application of Hopfield Neural Networks Approach in Solar Energy Product Conceptual Design

    Institute of Scientific and Technical Information of China (English)

    XIA Zhi-qiu; WANG Ling; REN Na; WEI Xiao-peng; ZHANG Qiang; ZHAO Ting-ting

    2013-01-01

    A new product conceptual design approach is put forward based on Hopfield neural networks models. By research on the mechanisms of Hopfield neural networks, the associative simulation approaches are proposed. The approach is given by Hebb learn-ing law, Hopfield neural networks and crossover and mutation. The calculating models and the calculating formulas for the concep-tual design are put forward. Finally, an example for the conceptual design of a solar energy lamp is given. The better results are ob-tained in the conceptual design.

  13. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  14. The application of neural networks to comprehensive prediction by seismology prediction method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is called as the character parameter W0 describing enhancement of seismicity. We applied this method to space scanning of North China. The result shows that the mid-term anomalous zone of W0-value usually appeared obviously around the future epicenter 1~3 years before earthquake. It is effective to mid-term prediction.

  15. Study and Application of Fault Prediction Methods with Improved Reservoir Neural Networks

    Institute of Scientific and Technical Information of China (English)

    Qunxiong Zhu; Yiwen Jia; Di Peng; Yuan Xu

    2014-01-01

    Time-series prediction is one of the major methodologies used for fault prediction. The methods based on recur-rent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping ability. As a new recurrent neural network, reservoir neural network can effectively process the time-series pre-diction. However, the il-posedness problem of reservoir neural networks has seriously restricted the generaliza-tion performance. In this paper, a fault prediction algorithm based on time-series is proposed using improved reservoir neural networks. The basic idea is taking structure risk into consideration, that is, the cost function in-volves not only the experience risk factor but also the structure risk factor. Thus a regulation coefficient is intro-duced to calculate the output weight of the reservoir neural network. As a result, the amplitude of output weight is effectively controlled and the il-posedness problem is solved. Because the training speed of ordinary reservoir networks is naturally fast, the improved reservoir networks for time-series prediction are good in speed and gen-eralization ability. Experiments on Mackey-Glass and sunspot time series prediction prove the effectiveness of the algorithm. The proposed algorithm is applied to TE process fault prediction. We first forecast some time-series obtained from TE and then predict the fault type adopting the static reservoirs with the predicted data. The final prediction correct rate reaches 81%.

  16. An Introduction to Neural Networks for Hearing Aid Noise Recognition.

    Science.gov (United States)

    Kim, Jun W.; Tyler, Richard S.

    1995-01-01

    This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…

  17. Application of artificial neural networks for conformity analysis of fuel performed with an optical fiber sensor

    Science.gov (United States)

    Possetti, Gustavo Rafael Collere; Coradin, Francelli Klemba; Côcco, Lílian Cristina; Yamamoto, Carlos Itsuo; de Arruda, Lucia Valéria Ramos; Falate, Rosane; Muller, Marcia; Fabris, José Luís

    2008-04-01

    The liquid fuel quality control is an important issue that brings benefits for the State, for the consumers and for the environment. The conformity analysis, in special for gasoline, demands a rigorous sampling technique among gas stations and other economic agencies, followed by a series of standard physicochemical tests. Such procedures are commonly expensive and time demanding and, moreover, a specialist is often required to carry out the tasks. Such drawbacks make the development of alternative analysis tools an important research field. The fuel refractive index is an additional parameter to help the fuel conformity analysis, besides the prospective optical fiber sensors, which operate like transducers with singular properties. When this parameter is correlated with the sample density, it becomes possible to determine conformity zones that cannot be analytically defined. This work presents an application of artificial neural networks based on Radial Basis Function to determine these zones. A set of 45 gasoline samples, collected in several gas stations and previously analyzed according to the rules of Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, a Brazilian regulatory agency, constituted the database to build two neural networks. The input variables of first network are the samples refractive indices, measured with an Abbe refractometer, and the density of the samples measured with a digital densimeter. For the second network the input variables included, besides the samples densities, the wavelength response of a long-period grating to the samples refractive indices. The used grating was written in an optical fiber using the point-to-point technique by submitting the fiber to consecutive electrical arcs from a splice machine. The output variables of both Radial Basis Function Networks are represented by the conformity status of each sample, according to report of tests carried out following the American Society for Testing and Materials

  18. Spin glasses and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Parga, N. (Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche; Universidad Nacional de Cuyo, San Carlos de Bariloche (Argentina). Inst. Balseiro)

    1989-07-01

    The mean-field theory of spin glass models has been used as a prototype of systems with frustration and disorder. One of the most interesting related systems are models of associative memories. In these lectures we review the main concepts developed to solve the Sherrington-Kirkpatrick model and its application to neural networks. (orig.).

  19. Artificial neural networks in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.

    1994-07-01

    This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.

  20. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  1. Synchronization of Markovian jumping inertial neural networks and its applications in image encryption.

    Science.gov (United States)

    Prakash, M; Balasubramaniam, P; Lakshmanan, S

    2016-11-01

    This study is mainly concerned with the problem on synchronization criteria for Markovian jumping time delayed bidirectional associative memory neural networks and their applications in secure image communications. Based on the variable transformation method, the addressed second order differential equations are transformed into first order differential equations. Then, by constructing a suitable Lyapunov-Krasovskii functional and based on integral inequalities, the criteria which ensure the synchronization between the uncontrolled system and controlled system are established through designed feedback controllers and linear matrix inequalities. Further, the proposed results proved that the error system is globally asymptotically stable in the mean square. Moreover, numerical illustrations are provided to validate the effectiveness of the derived analytical results. Finally, the application of addressed system is explored via image encryption/decryption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Application of Extension Neural Network Type-1 to Fault Diagnosis of Electronic Circuits

    Directory of Open Access Journals (Sweden)

    Meng-Hui Wang

    2012-01-01

    Full Text Available The values of electronic components are always deviated, but the functions of the modern circuits are more and more precise, which makes the automatic fault diagnosis of analog circuits very complex and difficult. This paper presents an extension-neural-network-type-1-(ENN-1- based method for fault diagnosis of analog circuits. This proposed method combines the extension theory and neural networks to create a novel neural network. Using the matter-element models of fault types and a correlation function, can be calculated the correlation degree between the tested pattern and every fault type; then, the cause of the circuit malfunction can be directly diagnosed by the analysis of the correlation degree. The experimental results show that the proposed method has a high diagnostic accuracy and is more fault tolerant than the multilayer neural network (MNN and the k-means based methods.

  3. Seafloor classification using acoustic backscatter echo-waveform - Artificial neural network applications

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mahale, V.; Navelkar, G.S.; Desai, R.G.P.

    In this paper seafloor classifications system based on artificial neural network (ANN) has been designed. The ANN architecture employed here is a combination of Self Organizing Feature Map (SOFM) and Linear Vector Quantization (LVQ1). Currently...

  4. Modeling of PEM Fuel Cell Stack System using Feed-forward and Recurrent Neural Networks for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Mr. M. Karthik

    2014-05-01

    Full Text Available Artificial Neural Network (ANN has become a significant modeling tool for predicting the performance of complex systems that provide appropriate mapping between input-output variables without acquiring any empirical relationship due to the intrinsic properties. This paper is focussed towards the modeling of Proton Exchange Membrane (PEM Fuel Cell system using Artificial Neural Networks especially for automotive applications. Three different neural networks such as Static Feed Forward Network (SFFN, Cascaded Feed Forward Network (CFFN & Fully Connected Dynamic Recurrent Network (FCRN are discussed in this paper for modeling the PEM Fuel Cell System. The numerical analysis is carried out between the three Neural Network architectures for predicting the output performance of the PEM Fuel Cell. The performance of the proposed Networks is evaluated using various error criteria such as Mean Square Error, Mean Absolute Percentage Error, Mean Absolute Error, Coefficient of correlation and Iteration Values. The optimum network with high performance indices (low prediction error values and iteration values can be used as an ancillary model in developing the PEM Fuel Cell powered vehicle system. The development of the fuel cell driven vehicle model also incorporates the modeling of DC-DC Power Converter and Vehicle Dynamics. Finally the Performance of the Electric vehicle model is analyzed for two different drive cycle such as M-NEDC & M-UDDS.

  5. The Ridge Function Representation of Polynomials and an Application to Neural Networks

    Institute of Scientific and Technical Information of China (English)

    Ting Fan XIE; Fei Long CAO

    2011-01-01

    The first goal of this paper is to establish some properties of the ridge function representation for multivariate polynomials,and the second one is to apply these results to the problem of approximation by neural networks.We find that for continuous functions,the rate of approximation obtained by a neural network with one hidden layer is no slower than that of an algebraic polynomial.

  6. Application of a Back-Propagation Neural Network to Isolated-Word Speech Recognition

    Science.gov (United States)

    1993-06-01

    discusses the limitations of the proposed BNN system, and offers ideas for further reseach . 2 II. NEURAL NETWORKS A. WHY NEURAL NETWORKS? Recently...Besides the syntactic and semantic issues in the linguistic theories, speech segmentation is a big concern. Boundaries between words and phonemes are...can be estimated by a sudden large variation in the speech spectrum, this method is not very reliable due to coarticulation, i.e., the changes in the

  7. A chaotic neural network mimicking an olfactory system and its application on image recognition

    Institute of Scientific and Technical Information of China (English)

    WANG Le; LI Guang; LI Xu; GUO Hong-ji; Walter J. Freeman

    2004-01-01

    Based on the research of a biological olfactory system, a novel chaotic neural network model - K set model has been established. This chaotic neural network not only simulates the real brain activity of an olfactory system, but also presents a novel chaotic concept for signal processing and pattern recognition. The characteristics of the K set models are investigated and show that a KⅢ model can be used for image pattern classification.

  8. Morphological self-organizing feature map neural network with applications to automatic target recognition

    Institute of Scientific and Technical Information of China (English)

    Shijun Zhang; Zhongliang Jing; Jianxun Li

    2005-01-01

    @@ The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and realworld infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.

  9. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    Science.gov (United States)

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Neural Network Ensemble Residual Kriging Application for Spatial Variability of Soil Properties

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhang-Quan; SHI Jie-Bin; WANG Ke; KONG Fan-Sheng; J. S. BAILEY

    2004-01-01

    High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the capability of interpolating soil properties based on neural network ensemble residual kriging, a silage field at Hayes, Northern Ireland, UK, was selected for this study with all samples being split into independent training and validation data sets. The training data set, comprised of five soil properties: soil pH, soil available P, soil available K, soil available Mg and soil available S,was modeled for spatial variability using 1) neural network ensemble residual kriging, 2) neural network ensemble and 3) kriging with their accuracies being estimated by means of the validation data sets. Ordinary kriging of the residuals provided accurate local estimates, while final estimates were produced as a sum of the artificial neural network (ANN)ensemble estimates and the ordinary kriging estimates of the residuals. Compared to kriging and neural network ensemble,the neural network ensemble residual kriging achieved better or similar accuracy for predicting and estimating contour maps. Thus, the results demonstrated that ANN ensemble residual kriging was an efficient alternative to the conventional geo-statistical models that were usually used for interpolation of a data set in the soil science area.

  11. Fuzzy Multiresolution Neural Networks

    Science.gov (United States)

    Ying, Li; Qigang, Shang; Na, Lei

    A fuzzy multi-resolution neural network (FMRANN) based on particle swarm algorithm is proposed to approximate arbitrary nonlinear function. The active function of the FMRANN consists of not only the wavelet functions, but also the scaling functions, whose translation parameters and dilation parameters are adjustable. A set of fuzzy rules are involved in the FMRANN. Each rule either corresponding to a subset consists of scaling functions, or corresponding to a sub-wavelet neural network consists of wavelets with same dilation parameters. Incorporating the time-frequency localization and multi-resolution properties of wavelets with the ability of self-learning of fuzzy neural network, the approximation ability of FMRANN can be remarkable improved. A particle swarm algorithm is adopted to learn the translation and dilation parameters of the wavelets and adjusting the shape of membership functions. Simulation examples are presented to validate the effectiveness of FMRANN.

  12. Application of hopfield-type neural network to switch planning problem of power distribution system. Denryoku keito no fuka yuzu mondai ni okeru hopfield kei neural network no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, C.; Kawakami, J. (Hitachi Ltd., Tokyo (Japan))

    1991-01-20

    Reserches are actively carried on for neural computing which employs neural network. Hopfield-type neural network is attracting attention as a solution mechanism for combinatorial optimization problems. Most of the reports made on the application of Hopfield-type neural network deal only with equality conditions as the constraints for the optimization problems. Adopting auxiliary variables, a method for the solution, by regular Hopfield-type neural networks, of combinatorial optimization problems including inequality constraints was developed. With the switch planning problem as an example, stability analysis of the energy functions was performed, and conditions for the stabilization were clarified although they are partial. To deal with the inequality constraints, special neurons were introduced which converge to intermediate values between 0 and 1. This method was applied to the switch planning problem of the power distribution system. It was made clear that reasonable solution can be obtained by this method. 10 refs., 9 figs., 3 tabs.

  13. Application of Recurrent Wavelet Neural Networks to the Digital Communications Channel Blind Equalization

    Institute of Scientific and Technical Information of China (English)

    HeShichun; HeZhenya

    1997-01-01

    This paper investigates the application of a Recurrent Wavelet Neural Network(RWNN)to the blind equalization of nonlinear communication channels.In contrast to the wavelet networks introduced in,the RWNN is well suited for use in real time adaptive signal processing.Furthermore,the RWNN has the advantage that a priori information of the underlying system need not be known,the dynamics of the system are configured in the recurrent connections and the network approximates the system over time.An RWNN based structure and a novel training approach for blind equalization was proposed and its performance evaluated via computer simulations for nolnlinear communication channel model.It is shown that the RWNN blind equalizer performs much better than the linear Constant Modulus Algorithm(CMA) and the Recurrent Radial Basis Function(RRBF) Networks based blind equalizers in nonlinear channel case.The small size and high performance of the RWNN equalizer make it suitable for high speed channel blind equalization.

  14. Optical implementation of a feature-based neural network with application to automatic target recognition

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1993-01-01

    An optical neural network based on the neocognitron paradigm is introduced. A novel aspect of the architecture design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by feeding back the ouput of the feature correlator interatively to the input spatial light modulator and by updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved. A detailed system description is provided. Experimental demonstrations of a two-layer neural network for space-object discrimination is also presented.

  15. Rule Extraction:Using Neural Networks or for Neural Networks?

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Zhou

    2004-01-01

    In the research of rule extraction from neural networks, fidelity describes how well the rules mimic the behavior of a neural network while accuracy describes how well the rules can be generalized. This paper identifies the fidelity-accuracy dilemma. It argues to distinguish rule extraction using neural networks and rule extraction for neural networks according to their different goals, where fidelity and accuracy should be excluded from the rule quality evaluation framework, respectively.

  16. Improved wavelet neural network combined with particle swarm optimization algorithm and its application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function.

  17. Self-organizing fuzzy clustering neural network and application to electronic countermeasures effectiveness evaluation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed.This network model is designed for the effectiveness evaluation of electronic countermeasures,which not only exerts the advantages of the fuzzy theory,but also has a good ability in machine learning and data analysis.The subjective value of sample versus class is computed by the fuzzy computing theory,and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer.Meanwhile,the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples.The simulation result indicates that the proposed algorithm is feasible and effective.

  18. Application of artificial neural networks in analysis of CHF experimental data in round tubes

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan-Ping; SHAN Jian-Qiang; CHEN Bing-De; LANG Xue-Mei; JIA Dou-Nan; WANG Xiao-Jun

    2004-01-01

    Artificial neural networks (ANNs) are applied successfully to analyze the critical heat flux (CHF) experimental data from some round tubes in this paper. A set of software adopting artificial neural network method for predicting CHF in round tube and a set of CHF database are gotten. Comparing with common CHF correlations and CHF look-up table, ANN method has stronger ability of allow-wrong and nice robustness. The CHF predicting software adopting artificial neural network technology can improve the predicting accuracy in a wider parameter range,and is easier to update and to use. The artificial neural nefwork method used in this paper can be applied to some similar physical problems.

  19. AN INTELLIGENT CONTROL SYSTEM BASED ON RECURRENT NEURAL FUZZY NETWORK AND ITS APPLICATION TO CSTR

    Institute of Scientific and Technical Information of China (English)

    JIA Li; YU Jinshou

    2005-01-01

    In this paper, an intelligent control system based on recurrent neural fuzzy network is presented for complex, uncertain and nonlinear processes, in which a recurrent neural fuzzy network is used as controller (RNFNC) to control a process adaptively and a recurrent neural network based on recursive predictive error algorithm (RNNM) is utilized to estimate the gradient information (ey)/(e)u for optimizing the parameters of controller.Compared with many neural fuzzy control systems, it uses recurrent neural network to realize the fuzzy controller. Moreover, recursive predictive error algorithm (RPE) is implemented to construct RNNM on line. Lastly, in order to evaluate the performance of theproposed control system, the presented control system is applied to continuously stirred tank reactor (CSTR). Simulation comparisons, based on control effect and output error,with general fuzzy controller and feed-forward neural fuzzy network controller (FNFNC),are conducted. In addition, the rates of convergence of RNNM respectively using RPE algorithm and gradient learning algorithm are also compared. The results show that the proposed control system is better for controlling uncertain and nonlinear processes.

  20. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  1. Application of the concepts of neural network and tree structure in rare earth separa-tions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The concepts of neural network and tree structure are introduced to rare earth separations. The recursive relations and analytical expression for calculating the possible flow sheets and processes are derived in multi- component systems based on dichotomy. As an example, the application of the concepts is elucidated in detail in a separation of light rare earths containing La, Ce, Pr and Nd in the HEH(EHP)-HCl system. The results show that this method is beneficial to summarizing and classifying the flow sheets and processes in rare earth separations, and is essential to the optimization of separation flow sheets. It can also be applied to the separation into group situations and other similar cases, too.

  2. Application of Artificial Neural Network into the Water Level Modeling and Forecast

    Directory of Open Access Journals (Sweden)

    Marzenna Sztobryn

    2013-06-01

    Full Text Available The dangerous sea and river water level increase does not only destroy the human lives, but also generate the severe flooding in coastal areas. The rapidly changes in the direction and velocity of wind and associated with them sea level changes could be the severe threat for navigation, especially on the fairways of small fishery harbors located in the river mouth. There is the area of activity of two external forcing: storm surges and flood wave. The aim of the work was the description of an application of Artificial Neural Network (ANN methodology into the water level forecast in the case study field in Swibno harbor located is located at 938.7 km of the Wisla River and at a distance of about 3 km up the mouth (Gulf of Gdansk - Baltic Sea.

  3. Application of artificial neural network to predict Vickers microhardness of AA6061 friction stir welded sheets

    Institute of Scientific and Technical Information of China (English)

    Vahid Moosabeiki Dehabadi; Saeede Ghorbanpour; Ghasem Azimi

    2016-01-01

    The application of friction stir welding (FSW) is growing owing to the omission of difficulties in traditional welding processes. In the current investigation, artificial neural network (ANN) technique was employed to predict the microhardness of AA6061 friction stir welded plates. Specimens were welded employing triangular and tapered cylindrical pins. The effects of thread and conical shoulder of each pin profile on the microhardness of welded zone were studied using tow ANNs through the different distances from weld centerline. It is observed that using conical shoulder tools enhances the quality of welded area. Besides, in both pin profiles threaded pins and conical shoulders increase yield strength and ultimate tensile strength. Mean absolute percentage error (MAPE) for train and test data sets did not exceed 5.4% and 7.48%, respectively. Considering the accurate results and acceptable errors in the models’ responses, the ANN method can be used to economize material and time.

  4. Recursive neural networks for processing graphs with labelled edges: theory and applications.

    Science.gov (United States)

    Bianchini, M; Maggini, M; Sarti, L; Scarselli, F

    2005-10-01

    In this paper, we introduce a new recursive neural network model able to process directed acyclic graphs with labelled edges. The model uses a state transition function which considers the edge labels and is independent both from the number and the order of the children of each node. The computational capabilities of the new recursive architecture are assessed. Moreover, in order to test the proposed architecture on a practical challenging application, the problem of object detection in images is also addressed. In fact, the localization of target objects is a preliminary step in any recognition system. The proposed technique is general and can be applied in different detection systems, since it does not exploit any a priori knowledge on the particular problem. Some experiments on face detection, carried out on scenes acquired by an indoor camera, are reported, showing very promising results.

  5. Application of real time recurrent neural network for detection of small natural earthquakes in Poland

    Science.gov (United States)

    Wiszniowski, Jan; Plesiewicz, Beata; Trojanowski, Jacek

    2014-06-01

    This study is an application of a Real Time Recurrent Neural Network (RTRN) in the detection of small natural seismic events in Poland. Most of the events studied are from the Podhale region with a magnitude of 0.4 to 2.5. The population distribution of the region required that seismic signals be recorded using temporary stations deployed in populated areas. As a consequence, the high level of seismic noise that cannot be removed by filtration made it impossible to detect small events by STA/LTA based algorithms. The presence of high noise requires an alternate method of seismic detection capable of recognizing small seismic events. We applied the RTRN, which potentially can detect seismic signals in the frequency domain as well as in the phase arrival times. Data results of small local seismic events showed that the RTRN has the ability to correctly detect most of the events with fewer false detections than STA/LTA methods.

  6. Technical note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding.

    Science.gov (United States)

    Pérez-Rodríguez, P; Gianola, D; Weigel, K A; Rosa, G J M; Crossa, J

    2013-08-01

    In recent years, several statistical models have been developed for predicting genetic values for complex traits using information on dense molecular markers, pedigrees, or both. These models include, among others, the Bayesian regularized neural networks (BRNN) that have been widely used in prediction problems in other fields of application and, more recently, for genome-enabled prediction. The R package described here (brnn) implements BRNN models and extends these to include both additive and dominance effects. The implementation takes advantage of multicore architectures via a parallel computing approach using openMP (Open Multiprocessing) for the computations. This note briefly describes the classes of models that can be fitted using the brnn package, and it also illustrates its use through several real examples.

  7. Implementation of recurrent artificial neural networks for nonlinear dynamic modeling in biomedical applications.

    Science.gov (United States)

    Stošovic, Miona V Andrejevic; Litovski, Vanco B

    2013-11-01

    Simulation is indispensable during the design of many biomedical prostheses that are based on fundamental electrical and electronic actions. However, simulation necessitates the use of adequate models. The main difficulties related to the modeling of such devices are their nonlinearity and dynamic behavior. Here we report the application of recurrent artificial neural networks for modeling of a nonlinear, two-terminal circuit equivalent to a specific implantable hearing device. The method is general in the sense that any nonlinear dynamic two-terminal device or circuit may be modeled in the same way. The model generated was successfully used for simulation and optimization of a driver (operational amplifier)-transducer ensemble. This confirms our claim that in addition to the proper design and optimization of the hearing actuator, optimization in the electronic domain, at the electronic driver circuit-to-actuator interface, should take place in order to achieve best performance of the complete hearing aid.

  8. Application of gray correlation analysis and artificial neural network in rock mass blasting

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong-bing; WU Liang

    2005-01-01

    Studied forecasting and controlling the blasting fragmentation by using artificial neural network for multi-ingredients. At the same time, according to the characteristic of multi-parameters input to network model, the gray correlation theory was employed to find out key factors, which can not only save time of computation and parameters input, but improve the stability of the model.

  9. Compressing Convolutional Neural Networks

    OpenAIRE

    Chen, Wenlin; Wilson, James T.; Tyree, Stephen; Weinberger, Kilian Q.; Chen, Yixin

    2015-01-01

    Convolutional neural networks (CNN) are increasingly used in many areas of computer vision. They are particularly attractive because of their ability to "absorb" great quantities of labeled data through millions of parameters. However, as model sizes increase, so do the storage and memory requirements of the classifiers. We present a novel network architecture, Frequency-Sensitive Hashed Nets (FreshNets), which exploits inherent redundancy in both convolutional layers and fully-connected laye...

  10. Application of Global Dynamic Reconfiguration in Artificial Neural Network System based on Field Programmable Gate Array

    Institute of Scientific and Technical Information of China (English)

    LI Wei; WANG Wei; MA Yi-mei; WANG Jin-hai

    2008-01-01

    Presented is a global dynamic reconfiguration design of an artificial neural network based on field programmable gate array(FPGA). Discussed are the dynamic reconfiguration principles and methods. Proposed is a global dynamic reconfiguration scheme using Xilinx FPGA and platform flash. Using the revision capabilities of Xilinx XCF32P platform flash, an artificial neural network based on Xilinx XC2V30P Virtex-Ⅱ can be reconfigured dynamically from back propagation(BP) learning algorithms to BP network testing algorithms. The experimental results indicate that the scheme is feasible, and that, using dynamic reconfiguration technology, FPGA resource utilization can be reduced remarkably.

  11. Application of neural networks to autonomous rendezvous and docking of space vehicles

    Science.gov (United States)

    Dabney, Richard W.

    1992-01-01

    NASA-Marshall has investigated the feasibility of numerous autonomous rendezvous and docking (ARD) candidate techniques. Neural networks have been studied as a viable basis for such systems' implementation, due to their intrinsic representation of such nonlinear functions as those for which analytical solutions are either difficult or nonexistent. Neural networks are also able to recognize and adapt to changes in their dynamic environment, thereby enhancing redundancy and fault tolerance. Outstanding performance has been obtained from ARD azimuth, elevation, and roll networks of this type.

  12. Critical branching neural networks.

    Science.gov (United States)

    Kello, Christopher T

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.

  13. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  14. Accurate and Precise Computation Using Analog VLSI, with Applications to Computer Graphics and Neural Networks.

    Science.gov (United States)

    Kirk, David Blair

    This thesis develops an engineering practice and design methodology to enable us to use CMOS analog VLSI chips to perform more accurate and precise computation. These techniques form the basis of an approach that permits us to build computer graphics and neural network applications using analog VLSI. The nature of the design methodology focuses on defining goals for circuit behavior to be met as part of the design process. To increase the accuracy of analog computation, we develop techniques for creating compensated circuit building blocks, where compensation implies the cancellation of device variations, offsets, and nonlinearities. These compensated building blocks can be used as components in larger and more complex circuits, which can then also be compensated. To this end, we develop techniques for automatically determining appropriate parameters for circuits, using constrained optimization. We also fabricate circuits that implement multi-dimensional gradient estimation for a gradient descent optimization technique. The parameter-setting and optimization tools allow us to automatically choose values for compensating our circuit building blocks, based on our goals for the circuit performance. We can also use the techniques to optimize parameters for larger systems, applying the goal-based techniques hierarchically. We also describe a set of thought experiments involving circuit techniques for increasing the precision of analog computation. Our engineering design methodology is a step toward easier use of analog VLSI to solve problems in computer graphics and neural networks. We provide data measured from compensated multipliers built using these design techniques. To demonstrate the feasibility of using analog VLSI for more quantitative computation, we develop small applications using the goal-based design approach and compensated components. Finally, we conclude by discussing the expected significance of this work for the wider use of analog VLSI for

  15. Application of CMAC Neural Network to Solar Energy Heliostat Field Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Neng-Sheng Pai

    2013-01-01

    Full Text Available Solar energy heliostat fields comprise numerous sun tracking platforms. As a result, fault detection is a highly challenging problem. Accordingly, the present study proposes a cerebellar model arithmetic computer (CMAC neutral network for automatically diagnosing faults within the heliostat field in accordance with the rotational speed, vibration, and temperature characteristics of the individual heliostat transmission systems. As compared with radial basis function (RBF neural network and back propagation (BP neural network in the heliostat field fault diagnosis, the experimental results show that the proposed neural network has a low training time, good robustness, and a reliable diagnostic performance. As a result, it provides an ideal solution for fault diagnosis in modern, large-scale heliostat fields.

  16. APPLICATION OF ARTIFICIAL NEURAL NETWORKS FOR PREDICTION OF AIR POLLUTION LEVELS IN ENVIRONMENTAL MONITORING

    Directory of Open Access Journals (Sweden)

    Małgorzata Pawul

    2016-09-01

    Full Text Available Recently, a lot of attention was paid to the improvement of methods which are used to air quality forecasting. Artificial neural networks can be applied to model these problems. Their advantage is that they can solve the problem in the conditions of incomplete information, without the knowledge of the analytical relationship between the input and output data. In this paper we applied artificial neural networks to predict the PM 10 concentrations as factors determining the occurrence of smog phenomena. To create these networks we used meteorological data and concentrations of PM 10. The data were recorded in 2014 and 2015 at three measuring stations operating in Krakow under the State Environmental Monitoring. The best results were obtained by three-layer perceptron with back-propagation algorithm. The neural networks received a good fit in all cases.

  17. Application of artificial neural network to calculation of solitary wave run-up

    Directory of Open Access Journals (Sweden)

    You-xing WEI

    2010-09-01

    Full Text Available The prediction of solitary wave run-ups has important practical significance in coastal and ocean engineering. But the precision of calculating is limited from the existing models. Artificial neural network technology has rapidly developed and been widely used in many fields. In this paper, a solitary wave run-up calculation model is established based on artificial neural networks. A BP network with one hidden layer is modified by an additional momentum method and an auto-adjusting learning rate. The correlation coefficients between the model results and the experimental values are 0.9635 and 0.9965, respectively. It is concluded that the neural network model is an appropriate methodology to be applied to solitary wave run-up scenario calculation and analysis.

  18. Isolated Speech Recognition Using Artificial Neural Networks

    Science.gov (United States)

    2007-11-02

    In this project Artificial Neural Networks are used as research tool to accomplish Automated Speech Recognition of normal speech. A small size...the first stage of this work are satisfactory and thus the application of artificial neural networks in conjunction with cepstral analysis in isolated word recognition holds promise.

  19. Application of an artificial neural network in the enumeration of yeasts and bacteria adhering to solid substrata

    NARCIS (Netherlands)

    Wit, P; Busscher, HJ

    1998-01-01

    Artificial neural networks (ANNs) combined with automated image processing are bring used in a growing number of applications, ranging from car license plate identification to speech recognition. ANN analysis is capable of handling complicated images that cannot be dealt with using conventional imag

  20. Discriminating signal from background using neural networks application to top-quark search at the Fermilab Tevatron

    CERN Document Server

    Ametller, L; Stimpfl-Abele, G; Talavera, P; Yepes, P

    1996-01-01

    The application of Neural Networks in High Energy Physics to the separation of signal from background events is studied. A variety of problems usually encountered in this sort of analyses, from variable selection to systematic errors, are presented. The top--quark search is used as an example to illustrate the problems and proposed solutions.

  1. Generalized Adaptive Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  2. A new upper bound for the norm of interval matrices with application to robust stability analysis of delayed neural networks.

    Science.gov (United States)

    Faydasicok, Ozlem; Arik, Sabri

    2013-08-01

    The main problem with the analysis of robust stability of neural networks is to find the upper bound norm for the intervalized interconnection matrices of neural networks. In the previous literature, the major three upper bound norms for the intervalized interconnection matrices have been reported and they have been successfully applied to derive new sufficient conditions for robust stability of delayed neural networks. One of the main contributions of this paper will be the derivation of a new upper bound for the norm of the intervalized interconnection matrices of neural networks. Then, by exploiting this new upper bound norm of interval matrices and using stability theory of Lyapunov functionals and the theory of homomorphic mapping, we will obtain new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slope-bounded activation functions. The results obtained in this paper will be shown to be new and they can be considered alternative results to previously published corresponding results. We also give some illustrative and comparative numerical examples to demonstrate the effectiveness and applicability of the proposed robust stability condition.

  3. Application of neural networks to channel assignment for cellular CDMA networks with multiple services and mobile base stations

    Science.gov (United States)

    Hortos, William S.

    1996-03-01

    of channels to each cell such that these constraints are satisfied. This study applies and extends the Hopfield-Tank neural network models to the channel assignment problem for both uniform and non-homogeneous cellular CDMA network topologies. These models are shown to be applicable to future networks that provide multiple types of service, dynamic demand, and mobile base stations. The derived algorithms minimize energy functions representing interference constraints and traffic demand based on local data at the cell sites. The primary objectives of the approach are to increase the forward and reverse link capacities and to distribute selected management tasks at the Mobile Telecommunications Switching Office to the cell sites. The structure of the resulting neural network algorithms have the advantage of inherent parallelism and the potential for extension to a wide range of interference criteria. Two cases are considered. In the first case, traffic demands are uniform over the radio cells, while the radio cells are assumed to be a fixed hexagonal pattern. The second case corresponds to an urban cellular radio environment, where the location of the radio cells are not homogeneous and the spatial distribution of traffic demand are non-uniform.

  4. Drift chamber tracking with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  5. Neural network data association with application to multiple-target tracking

    Science.gov (United States)

    Leung, Henry

    1996-03-01

    Data association is the process of relating sensor measurements in a data fusion system. It can be structured in a basic framework very similar to that of the classic traveling salesman problem. The derivation of the energy function is presented, and the solution is based on a modified Hopfield network which uses the Runge-Kutta method and Aiyer's network structure. The neural data association is then applied to the problem of multiple-target tracking (MTT). The proposed neural MTT system consists of a modified Hough transform track initiator, a Kalman filter state estimator and the Hopfield probabilistic data association. Real- life air surveillance data are used to evaluate the practicality of the neural MTT system, and the results show that the neural system works efficiently in real-life tracking environments.

  6. Application of artificial neural networks to assess pesticide contamination in shallow groundwater

    Science.gov (United States)

    Sahoo, G.B.; Ray, C.; Mehnert, E.; Keefer, D.A.

    2006-01-01

    In this study, a feed-forward back-propagation neural network (BPNN) was developed and applied to predict pesticide concentrations in groundwater monitoring wells. Pesticide concentration data are challenging to analyze because they tend to be highly censored. Input data to the neural network included the categorical indices of depth to aquifer material, pesticide leaching class, aquifer sensitivity to pesticide contamination, time (month) of sample collection, well depth, depth to water from land surface, and additional travel distance in the saturated zone (i.e., distance from land surface to midpoint of well screen). The output of the neural network was the total pesticide concentration detected in the well. The model prediction results produced good agreements with observed data in terms of correlation coefficient (R = 0.87) and pesticide detection efficiency (E = 89%), as well as good match between the observed and predicted "class" groups. The relative importance of input parameters to pesticide occurrence in groundwater was examined in terms of R, E, mean error (ME), root mean square error (RMSE), and pesticide occurrence "class" groups by eliminating some key input parameters to the model. Well depth and time of sample collection were the most sensitive input parameters for predicting the pesticide contamination potential of a well. This infers that wells tapping shallow aquifers are more vulnerable to pesticide contamination than those wells tapping deeper aquifers. Pesticide occurrences during post-application months (June through October) were found to be 2.5 to 3 times higher than pesticide occurrences during other months (November through April). The BPNN was used to rank the input parameters with highest potential to contaminate groundwater, including two original and five ancillary parameters. The two original parameters are depth to aquifer material and pesticide leaching class. When these two parameters were the only input parameters for the BPNN

  7. Quantum Neural Networks

    CERN Document Server

    Gupta, S; Gupta, Sanjay

    2002-01-01

    This paper initiates the study of quantum computing within the constraints of using a polylogarithmic ($O(\\log^k n), k\\geq 1$) number of qubits and a polylogarithmic number of computation steps. The current research in the literature has focussed on using a polynomial number of qubits. A new mathematical model of computation called \\emph{Quantum Neural Networks (QNNs)} is defined, building on Deutsch's model of quantum computational network. The model introduces a nonlinear and irreversible gate, similar to the speculative operator defined by Abrams and Lloyd. The precise dynamics of this operator are defined and while giving examples in which nonlinear Schr\\"{o}dinger's equations are applied, we speculate on its possible implementation. The many practical problems associated with the current model of quantum computing are alleviated in the new model. It is shown that QNNs of logarithmic size and constant depth have the same computational power as threshold circuits, which are used for modeling neural network...

  8. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, J.P.

    1992-01-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  9. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, J.P.

    1992-12-31

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  10. Application of Artificial Neural Networks for Efficient High-Resolution 2D DOA Estimation

    Directory of Open Access Journals (Sweden)

    M. Agatonović

    2012-12-01

    Full Text Available A novel method to provide high-resolution Two-Dimensional Direction of Arrival (2D DOA estimation employing Artificial Neural Networks (ANNs is presented in this paper. The observed space is divided into azimuth and elevation sectors. Multilayer Perceptron (MLP neural networks are employed to detect the presence of a source in a sector while Radial Basis Function (RBF neural networks are utilized for DOA estimation. It is shown that a number of appropriately trained neural networks can be successfully used for the high-resolution DOA estimation of narrowband sources in both azimuth and elevation. The training time of each smaller network is significantly re¬duced as different training sets are used for networks in detection and estimation stage. By avoiding the spectral search, the proposed method is suitable for real-time ap¬plications as it provides DOA estimates in a matter of seconds. At the same time, it demonstrates the accuracy comparable to that of the super-resolution 2D MUSIC algorithm.

  11. Rule Extraction using Artificial Neural Networks

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can gain a better understanding of the solution. This paper presents an efficient algorithm to extract rules from artificial neural networks. We use two-phase training algorithm for backpropagation learning. In the first phase, the number of hidden nodes of the network is determined automatically in a constructive fashion by adding nodes one after another based on the performance of the network on training data. In the second phase, the number of relevant input units of the network is determined using pruning algorithm. The ...

  12. Application of fuzzy neural network to the nuclear power plant in process fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-kuo; XIA Hong; XIE Chun-li

    2005-01-01

    The fuzzy logic and neural networks are combined in this paper,setting up the fuzzy neural network (FNN); meanwhile, the distinct differences and connections between the fuzzy logic and neural network are compared. Furthermore, the algorithm and structure of the FNN are introduced. In order to diagnose the faults of nuclear power plant, the FNN is applied to the nuclear power plant, and the intelligence fault diagnostic system of the nuclear power plant is built based on the FNN . The fault symptoms and the possibility of the inverted U-tube break accident of steam generator are discussed. In order to test the system's validity, the inverted U-tube break accident of steam generator is used as an example and many simulation experiments are performed. The test result shows that the FNN can identify the fault.

  13. An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings

    Directory of Open Access Journals (Sweden)

    Luis Gonzaga Baca Ruiz

    2016-08-01

    Full Text Available This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR and the nonlinear autoregressive neural network with exogenous inputs (NARX, respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.

  14. APPLICATION OF HIERARCHY ARTIFICIAL NEURAL NETWORK TO EVALUATE THE EXPLOITATION CONDITITONS OF SURFACE MINING AREA

    Institute of Scientific and Technical Information of China (English)

    李新春; 范力军

    1998-01-01

    It always adopts the direct hierarchy analysis to value the exploitation conditions of surface mining areas. This way has some unavoidable shortcomings because it is mainly under theaid of experts and it is affected by the subjective thinking of the experts. This paper puts forwards a new approach that divides the whole exploitation conditions into sixteen subsidiary systems and each subsidiary system forms a neural network system. The whole decision system of exploitation conditions of surface mining areas is composed of sixteen subsidiary neural network systems. Each neural network is practiced with the data of the worksite, which is reasonable and scientific. This way will be a new decision approach for exploiting the surface mining areas.

  15. Application of the Backpropagation Neural Network Method in Designing Tungsten Heavy Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-hui; WANG Wei-jie; WANG Fu-chi; LI Shu-kui

    2006-01-01

    The model describing the dependence of the mechanical properties on the chemical composition and as deformation techniques of tungsten heavy alloy is established by the method of improved the backpropagation neural network. The mechanical properties' parameters of tungsten alloy and deformation techniques for tungsten alloy are used as the inputs. The chemical composition and deformation amount of tungsten alloy are used as the outputs. Then they are used for training the neural network. At the same time,the optimal number of the hidden neurons is obtained through the experiential equations,and the varied step learning method is adopted to ensure the stability of the training process. According to the requirements for mechanical properties,the chemical composition and the deformation condition for tungsten heavy alloy can be designed by this artificial neural network system.

  16. Application of artificial neural networks to predict the deflections of reinforced concrete beams

    Science.gov (United States)

    Kaczmarek, Mateusz; Szymańska, Agnieszka

    2016-06-01

    Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.

  17. The Application of Neural Network in Recognition of Fabric Weave Parameters

    Institute of Scientific and Technical Information of China (English)

    张星烨; 高卫东; 徐伯俊

    2004-01-01

    This paper describes a new method to identify the type of fabric weave by using a neural network classifier. The characteristic parameters of the input layer, derived from fabric image, are composed of the Markov random field character, the difference between the maximum and the minimum of gray level projections in weft and warp directions, the area ratio of the brightness region to the total area in image, the weft and the warp yarn count. The experimental results show that the neural network classifier can effectively classify fabric weave with 98.33% of accuracy, which is helpful in the recognition of fabric weave parameters.

  18. Video Traffic Prediction Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Miloš Oravec

    2008-10-01

    Full Text Available In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP, radial basis function networks (RBF networksand backpropagation through time (BPTT neural networks. At first, we briefly introducetheoretical background of neural networks, the prediction methods and the differencebetween them. We propose also video time-series processing using moving averages.Simulation results for each type of neural network together with final comparisons arepresented. For comparison purposes, also conventional (non-neural prediction isincluded. The purpose of our work is to construct suitable neural networks for variable bitrate video prediction and evaluate them. We use video traces from [1].

  19. Neural Networks for Dynamic Flight Control

    Science.gov (United States)

    1993-12-01

    uses the Adaline (22) model for development of the neural networks. Neural Graphics and other AFIT applications use a slightly different model. The...primary difference in the Nguyen application is that the Adaline uses the nonlinear function .f(a) = tanh(a) where standard backprop uses the sigmoid

  20. Artificial neural networks in gynaecological diseases: current and potential future applications.

    Science.gov (United States)

    Siristatidis, Charalampos S; Chrelias, Charalampos; Pouliakis, Abraham; Katsimanis, Evangelos; Kassanos, Dimitrios

    2010-10-01

    Current (and probably future) practice of medicine is mostly associated with prediction and accurate diagnosis. Especially in clinical practice, there is an increasing interest in constructing and using valid models of diagnosis and prediction. Artificial neural networks (ANNs) are mathematical systems being used as a prospective tool for reliable, flexible and quick assessment. They demonstrate high power in evaluating multifactorial data, assimilating information from multiple sources and detecting subtle and complex patterns. Their capability and difference from other statistical techniques lies in performing nonlinear statistical modelling. They represent a new alternative to logistic regression, which is the most commonly used method for developing predictive models for outcomes resulting from partitioning in medicine. In combination with the other non-algorithmic artificial intelligence techniques, they provide useful software engineering tools for the development of systems in quantitative medicine. Our paper first presents a brief introduction to ANNs, then, using what we consider the best available evidence through paradigms, we evaluate the ability of these networks to serve as first-line detection and prediction techniques in some of the most crucial fields in gynaecology. Finally, through the analysis of their current application, we explore their dynamics for future use.

  1. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications.

    Science.gov (United States)

    Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén

    2016-08-11

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure-Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron-Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.

  2. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    Directory of Open Access Journals (Sweden)

    Lucas Antón Pastur-Romay

    2016-08-01

    Full Text Available Over the past decade, Deep Artificial Neural Networks (DNNs have become the state-of-the-art algorithms in Machine Learning (ML, speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs. All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS, Quantitative Structure–Activity Relationship (QSAR research, protein structure prediction and genomics (and other omics data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.

  3. An introduction to artificial neural networks in bioinformatics--application to complex microarray and mass spectrometry datasets in cancer studies.

    Science.gov (United States)

    Lancashire, Lee J; Lemetre, Christophe; Ball, Graham R

    2009-05-01

    Applications of genomic and proteomic technologies have seen a major increase, resulting in an explosion in the amount of highly dimensional and complex data being generated. Subsequently this has increased the effort by the bioinformatics community to develop novel computational approaches that allow for meaningful information to be extracted. This information must be of biological relevance and thus correlate to disease phenotypes of interest. Artificial neural networks are a form of machine learning from the field of artificial intelligence with proven pattern recognition capabilities and have been utilized in many areas of bioinformatics. This is due to their ability to cope with highly dimensional complex datasets such as those developed by protein mass spectrometry and DNA microarray experiments. As such, neural networks have been applied to problems such as disease classification and identification of biomarkers. This review introduces and describes the concepts related to neural networks, the advantages and caveats to their use, examples of their applications in mass spectrometry and microarray research (with a particular focus on cancer studies), and illustrations from recent literature showing where neural networks have performed well in comparison to other machine learning methods. This should form the necessary background knowledge and information enabling researchers with an interest in these methodologies, but not necessarily from a machine learning background, to apply the concepts to their own datasets, thus maximizing the information gain from these complex biological systems.

  4. Distributed computing methodology for training neural networks in an image-guided diagnostic application.

    Science.gov (United States)

    Plagianakos, V P; Magoulas, G D; Vrahatis, M N

    2006-03-01

    Distributed computing is a process through which a set of computers connected by a network is used collectively to solve a single problem. In this paper, we propose a distributed computing methodology for training neural networks for the detection of lesions in colonoscopy. Our approach is based on partitioning the training set across multiple processors using a parallel virtual machine. In this way, interconnected computers of varied architectures can be used for the distributed evaluation of the error function and gradient values, and, thus, training neural networks utilizing various learning methods. The proposed methodology has large granularity and low synchronization, and has been implemented and tested. Our results indicate that the parallel virtual machine implementation of the training algorithms developed leads to considerable speedup, especially when large network architectures and training sets are used.

  5. Application of BP neural networks in non-linearity correction of optical tweezers

    Institute of Scientific and Technical Information of China (English)

    Ziqiang WANG; Yinmei LI; Liren LOU; Henghua WEI; Zhong WANG

    2008-01-01

    The back-propagation (BP) neural network is proposed to correct nonlinearity and optimize the force measurement and calibration of an optical tweezer sys-tem. Considering the low convergence rate of the BP algo-rithm, the Levenberg-Marquardt (LM) algorithm is used to improve the BP network. The proposed method is experimentally studied for force calibration in a typical optical tweezer system using hydromechanics. The result shows that with the nonlinear correction using BP net-works, the range of force measurement of an optical tweezer system is enlarged by 30% and the precision is also improved compared with the polynomial fitting method. It is demonstrated that nonlinear correction by the neural network method effectively improves the per-formance of optical tweezers without adding or changing the measuring system.

  6. Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kapil Nahar

    2012-12-01

    Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information.The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems.Ann’s, like people, learn by example.

  7. Neural networks for triggering

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  8. Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kapil Nahar

    2012-12-01

    Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems. Ann’s, like people, learn by example.

  9. Modelling of the Relaxation Least Squares-Based Neural Networks and Its Application

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A relaxation least squares-based learning algorithm for neural networks is proposed. Not only does it have a fast convergence rate, but it involves less computation quantity. Therefore, it is suitable to deal with the case when a network has a large scale but the number of training data is very limited. It has been used in converting furnace process modelling, and impressive result has been obtained.

  10. Application of CMAC Neural Network to Solar Energy Heliostat Field Fault Diagnosis

    OpenAIRE

    Neng-Sheng Pai; Her-Terng Yau; Tzu-Hsiang Hung; Chin-Pao Hung

    2013-01-01

    Solar energy heliostat fields comprise numerous sun tracking platforms. As a result, fault detection is a highly challenging problem. Accordingly, the present study proposes a cerebellar model arithmetic computer (CMAC) neutral network for automatically diagnosing faults within the heliostat field in accordance with the rotational speed, vibration, and temperature characteristics of the individual heliostat transmission systems. As compared with radial basis function (RBF) neural network and ...

  11. An application of mapping neural networks and a digital signal processor for cochlear neuroprostheses.

    Science.gov (United States)

    Zadák, J; Unbehauen, R

    1993-01-01

    Cochlear neuroprostheses strive to restore the sensation of hearing to patients with a profound sensorineural deafness. They exhibit a stimulation of the surviving auditory nerve neurons by electrical currents delivered through electrodes placed on or within the cochlea. The present article describes a new method for an efficient derivation of the required information from the incoming speech signal necessary for the implant stimulation. Also some realization aspects of the new approach are addressed. In the new strategy, a multilayer neural network is employed in the formant frequency estimation having some suitable speech signal descriptors as particular input signals. The proposed method allows us a fast formant frequency estimation necessary for the implant stimulation. With the developed strategy, the prosthesis can be adjusted to the environment which the patient is supposed to live in. Moreover, the neural network concept offers us an alternative for dealing with the areas of neural loss or "holes" in the frequency map of the patient's ear.

  12. Combined application of mixture experimental design and artificial neural networks in the solid dispersion development.

    Science.gov (United States)

    Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana

    2016-01-01

    This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.

  13. A Real Valued Neural Network Based Autoregressive Energy Detector for Cognitive Radio Application.

    Science.gov (United States)

    Onumanyi, A J; Onwuka, E N; Aibinu, A M; Ugweje, O C; Salami, M J E

    2014-01-01

    A real valued neural network (RVNN) based energy detector (ED) is proposed and analyzed for cognitive radio (CR) application. This was developed using a known two-layered RVNN model to estimate the model coefficients of an autoregressive (AR) system. By using appropriate modules and a well-designed detector, the power spectral density (PSD) of the AR system transfer function was estimated and subsequent receiver operating characteristic (ROC) curves of the detector generated and analyzed. A high detection performance with low false alarm rate was observed for varying signal to noise ratio (SNR), sample number, and model order conditions. The proposed RVNN based ED was then compared to the simple periodogram (SP), Welch periodogram (WP), multitaper (MT), Yule-Walker (YW), Burg (BG), and covariance (CV) based ED techniques. The proposed detector showed better performance than the SP, WP, and MT while providing better false alarm performance than the YW, BG, and CV. Data provided here support the effectiveness of the proposed RVNN based ED for CR application.

  14. GPU Implementation of Bayesian Neural Network Construction for Data-Intensive Applications

    Science.gov (United States)

    Perry, Michelle; Prosper, Harrison B.; Meyer-Baese, Anke

    2014-06-01

    We describe a graphical processing unit (GPU) implementation of the Hybrid Markov Chain Monte Carlo (HMC) method for training Bayesian Neural Networks (BNN). Our implementation uses NVIDIA's parallel computing architecture, CUDA. We briefly review BNNs and the HMC method and we describe our implementations and give preliminary results.

  15. Artificial Neural Networks and Their Applications in Diagnostics of Incipient Faults in Rotating Machinery

    Science.gov (United States)

    1991-03-01

    20 2. Perceptrons..................21 3. Adaline /Madaline................24 4. Backpropagation................28 a. General Architecture...perceptron called an Adaline (Adaptive Linear Element) , which was the basis of the first commercially successful neural network enterprise, the...Memistor corporation. They also developed a theorem which stated that an adaline and a perceptron are each capable of classifying any input space that could

  16. Machine and Component Residual Life Estimation through the Application of Neural Networks

    CERN Document Server

    Herzog, M A; Heyns, P S

    2007-01-01

    This paper concerns the use of neural networks for predicting the residual life of machines and components. In addition, the advantage of using condition-monitoring data to enhance the predictive capability of these neural networks was also investigated. A number of neural network variations were trained and tested with the data of two different reliability-related datasets. The first dataset represents the renewal case where the failed unit is repaired and restored to a good-as-new condition. Data was collected in the laboratory by subjecting a series of similar test pieces to fatigue loading with a hydraulic actuator. The average prediction error of the various neural networks being compared varied from 431 to 841 seconds on this dataset, where test pieces had a characteristic life of 8,971 seconds. The second dataset was collected from a group of pumps used to circulate a water and magnetite solution within a plant. The data therefore originated from a repaired system affected by reliability degradation. W...

  17. Application of neural networks for identification of faults in a 3D seismic survey offshore Tunisia

    Science.gov (United States)

    Mastouri, Raja; Marchant, Robin; Marillier, François; Jaboyedoff, Michel; Bouaziz, Samir

    2013-04-01

    The Kerkennah High area (offshore Tunisia) is dominated by series of horst and grabens resulting from multiple tectonic events and multiphase stress (extension, compression, translation). In order to decipher this complex structural history from a 3D seismic survey, a neural network is applied to extract a fault-cube from the amplitude data (which does not image faults directly). The neural network transforms seismic attributes into a new 3D data cube in which faults are highlighted. This technique comprises the following steps. First, we compute several seismic attributes (dip-steering similarity, curvature, frequency, ridge and fault enhancement filters…) that enhance different aspects of the seismic data related to faulting. In a second step, a number of points in the seismic data are selected as representative of either faults or areas devoid of faults. These points are tested by the artificial neural network to determine the range in which the different attributes are representative of faults or not. Based on this learning phase, the neural network is then applied to the entire 3D seismic cube to produce a fault-cube that contains only faults which contrast and continuity have been enhance.

  18. On-Line Real Time Realization and Application of Adaptive Fuzzy Inference Neural Network

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper,a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm,combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear mu Iti-variable systems is introduced and discussed.

  19. Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors.

    Science.gov (United States)

    Sabour, Mohammad Reza; Moftakhari Anasori Movahed, Saman

    2017-02-01

    The soil sorption partition coefficient logKoc is an indispensable parameter that can be used in assessing the environmental risk of organic chemicals. In order to predict soil sorption partition coefficient for different and even unknown compounds in a fast and accurate manner, a radial basis function neural network (RBFNN) model was developed. Eight topological descriptors of 800 organic compounds were used as inputs of the model. These 800 organic compounds were chosen from a large and very diverse data set. Generalized Regression Neural Network (GRNN) was utilized as the function in this neural network model due to its capability to adapt very quickly. Hence, it can be used to predict logKoc for new chemicals, as well. Out of total data set, 560 organic compounds were used for training and 240 to test efficiency of the model. The obtained results indicate that the model performance is very well. The correlation coefficients (R2) for training and test sets were 0.995 and 0.933, respectively. The root-mean square errors (RMSE) were 0.2321 for training set and 0.413 for test set. As the results for both training and test set are extremely satisfactory, the proposed neural network model can be employed not only to predict logKoc of known compounds, but also to be adaptive for prediction of this value precisely for new products that enter the market each year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Application of an artificial neural network and morphing techniques in the redesign of dysplastic trochlea.

    Science.gov (United States)

    Cho, Kyung Jin; Müller, Jacobus H; Erasmus, Pieter J; DeJour, David; Scheffer, Cornie

    2014-01-01

    Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.

  1. Application of neural networks and fuzzy control to the welding robot

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Intelligent control is applied in welding robot. The neural network was used for detecting the deviation of the torch from the center of the gap. The robot tracing the welding line with the fuzzy controller. The proposed method was successfully used to seam tracking in V-groove weld configuration .

  2. Gapped sequence alignment using artificial neural networks: application to the MHC class I system

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2016-01-01

    . On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. Results: We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods...

  3. Application of Artificial Neural Network to Predicting Hardenability of Gear Steel

    Institute of Scientific and Technical Information of China (English)

    GAO Xiu-hua; QI Ke-min; DENG Tian-yong; QIU Chun-lin; ZHOU Ping; DU Xian-bin

    2006-01-01

    The prediction of the hardenability and chemical composition of gear steel was studied using artificial neural networks. A software was used to quantitatively forecast the hardenability by its chemical composition or the chemical composition by its hardenability. The prediction result is more precise than that obtained from the traditional method based on the simple mathematical regression model.

  4. An application of multilayer neural network on hepatitis disease diagnosis using approximations of sigmoid activation function

    Directory of Open Access Journals (Sweden)

    Onursal Çetin

    2015-06-01

    Full Text Available Objective: Implementation of multilayer neural network (MLNN with sigmoid activation function for the diagnosis of hepatitis disease. Methods: Artificial neural networks (ANNs are efficient tools currently in common use for medical diagnosis. In hardware based architectures activation functions play an important role in ANN behavior. Sigmoid function is the most frequently used activation function because of its smooth response. Thus, sigmoid function and its close approximations were implemented as activation function. The dataset is taken from the UCI machine learning database. Results: For the diagnosis of hepatitis disease, MLNN structure was implemented and Levenberg Morquardt (LM algorithm was used for learning. Our method of classifying hepatitis disease produced an accuracy of 91.9% to 93.8% via 10 fold cross validation. Conclusion: When compared to previous work that diagnosed hepatitis disease using artificial neural networks and the identical data set, our results are promising in order to reduce the size and cost of neural network based hardware. Thus, hardware based diagnosis systems can be developed effectively by using approximations of sigmoid function.

  5. A Novel Application of Artificial Neural Network for the Solution of Inverse Kinematics Controls of Robotic Manipulators

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Nanda

    2012-08-01

    Full Text Available In robotic applications and research, inverse kinematics is one of the most important problems in terms of robot kinematics and control. Consequently, finding the solution of Inverse Kinematics in now days is considered as one of the most important problems in robot kinematics and control. As the intricacy of robot manipulator increases, obtaining the mathematical, statistical solutions of inverse kinematics are difficult and computationally expensive. For that reason, now soft-computing based highly intelligent based model applications should be adopted to getting appropriate solution for inverse kinematics. In this paper, a novel application of artificial neural network is used for controlling a robotic manipulator. The proposed methods are based on the establishments of the non-linear mapping between Cartesian and joint coordinates using multi layer perceptron and functional link artificial neural network.

  6. Neural Networks Application For Current, Salinity And Temperature Forecasting In Osaka Bay

    Science.gov (United States)

    Aguilar, Sandra G.; El Serafy, Ghada Y.

    2010-05-01

    Artificial neural networks (ANNs) have been wide used in hydraulic applications. The main advantage of this method lies in its ability to represent both linear and non-linear relationships that are present in the processes and thus in the measured data. The artificial neural network is a well established technique for representing and predicting the dynamic state of water systems and environmental systems. In comparison to more conventional model techniques and complicated softwares, the ANN is specifically an attractive technique for operational forecasting systems that are focusing on forecasting few state variables at few essential locations. In this paper, an application of ANN for Osaka bay in Japan is presented. The human activities in the bay have an influence in the deterioration of regional seawater quality giving an importance to assess the behavior of water quality variables at three essential monitoring points. Those points are located in the northwest part of the bay and considered in this paper to be the locations of interest for operational forecasting. Moreover, in the presence of spatial and temporal variability of the dynamic state, the selection of appropriate set of input variables during the ANN development is important and rather difficult. In this study, a correlation analysis was used to help in defining the most important input variables and lag time in the recursive ANN here presented. Different ANN structures are presented to show that spatial and temporal correlations patters found in the correlation analysis have an impact in the performance of the ANN when choosing inputs and outputs. The results show that ANNs have great potential to simulate salinity, temperature and velocity field at locations of interest. Finally, a comparison with a numerical model (Osaka Bay Forecasting System) is presented to show the efficiency and accuracy of the ANN. The results were also compared to a simple data assimilation scheme that is also available

  7. Signal processing and neural network toolbox and its application to failure diagnosis and prognosis

    Science.gov (United States)

    Tu, Fang; Wen, Fang; Willett, Peter K.; Pattipati, Krishna R.; Jordan, Eric H.

    2001-07-01

    Many systems are comprised of components equipped with self-testing capability; however, if the system is complex involving feedback and the self-testing itself may occasionally be faulty, tracing faults to a single or multiple causes is difficult. Moreover, many sensors are incapable of reliable decision-making on their own. In such cases, a signal processing front-end that can match inference needs will be very helpful. The work is concerned with providing an object-oriented simulation environment for signal processing and neural network-based fault diagnosis and prognosis. In the toolbox, we implemented a wide range of spectral and statistical manipulation methods such as filters, harmonic analyzers, transient detectors, and multi-resolution decomposition to extract features for failure events from data collected by data sensors. Then we evaluated multiple learning paradigms for general classification, diagnosis and prognosis. The network models evaluated include Restricted Coulomb Energy (RCE) Neural Network, Learning Vector Quantization (LVQ), Decision Trees (C4.5), Fuzzy Adaptive Resonance Theory (FuzzyArtmap), Linear Discriminant Rule (LDR), Quadratic Discriminant Rule (QDR), Radial Basis Functions (RBF), Multiple Layer Perceptrons (MLP) and Single Layer Perceptrons (SLP). Validation techniques, such as N-fold cross-validation and bootstrap techniques, are employed for evaluating the robustness of network models. The trained networks are evaluated for their performance using test data on the basis of percent error rates obtained via cross-validation, time efficiency, generalization ability to unseen faults. Finally, the usage of neural networks for the prediction of residual life of turbine blades with thermal barrier coatings is described and the results are shown. The neural network toolbox has also been applied to fault diagnosis in mixed-signal circuits.

  8. International Conference on Artificial Neural Networks (ICANN)

    CERN Document Server

    Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics

    2015-01-01

    The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...

  9. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  10. VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK

    African Journals Online (AJOL)

    VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF RUMUOLA DISTRIBUTION NETWORK. ... The artificial neural networks controller engaged to controlling the dynamic voltage ... Article Metrics.

  11. Medical image analysis with artificial neural networks.

    Science.gov (United States)

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. On The Application Of Neural Networks To The Solution Of Image Restoration Problems

    Science.gov (United States)

    Abbiss, John B.; Brames, Bryan J.; Fiddy, Michael A.

    1989-05-01

    The purpose of this paper is to describe the implementation of a super-resolution (or spectral extrapolation) procedure on a neural network, based on the Hopfield model. This was first proposed by Abbess et al.1 We show the computational advantages and disadvantages of such an approach for different coding schemes and for networks consisting of very simple two state elements as well as those made up of more complex nodes capable of representing a continuum. With the appropriate hardware, we show that there is a computational advantage in using the Hopfield architecture over some alternative methods for computing the same solution. We also discuss the relationship between a particular mode of operation of the neural network and the regularized Gerchberg-Papoulis algorithm.

  13. Application of artificial neural networks for response surface modelling in HPLC method development

    Directory of Open Access Journals (Sweden)

    Mohamed A. Korany

    2012-01-01

    Full Text Available This paper discusses the usefulness of artificial neural networks (ANNs for response surface modelling in HPLC method development. In this study, the combined effect of pH and mobile phase composition on the reversed-phase liquid chromatographic behaviour of a mixture of salbutamol (SAL and guaiphenesin (GUA, combination I, and a mixture of ascorbic acid (ASC, paracetamol (PAR and guaiphenesin (GUA, combination II, was investigated. The results were compared with those produced using multiple regression (REG analysis. To examine the respective predictive power of the regression model and the neural network model, experimental and predicted response factor values, mean of squares error (MSE, average error percentage (Er%, and coefficients of correlation (r were compared. It was clear that the best networks were able to predict the experimental responses more accurately than the multiple regression analysis.

  14. RECURRENT NEURAL NETWORK MODEL BASED ON PROJECTIVE OPERATOR AND ITS APPLICATION TO OPTIMIZATION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The recurrent neural network (RNN) model based on projective operator was studied. Different from the former study, the value region of projective operator in the neural network in this paper is a general closed convex subset of n-dimensional Euclidean space and it is not a compact convex set in general, that is, the value region of projective operator is probably unbounded. It was proved that the network has a global solution and its solution trajectory converges to some equilibrium set whenever objective function satisfies some conditions. After that, the model was applied to continuously differentiable optimization and nonlinear or implicit complementarity problems. In addition, simulation experiments confirm the efficiency of the RNN.

  15. Constraints of Biological Neural Networks and Their Consideration in AI Applications

    Directory of Open Access Journals (Sweden)

    Richard Stafford

    2010-01-01

    Full Text Available Biological organisms do not evolve to perfection, but to out compete others in their ecological niche, and therefore survive and reproduce. This paper reviews the constraints imposed on imperfect organisms, particularly on their neural systems and ability to capture and process information accurately. By understanding biological constraints of the physical properties of neurons, simpler and more efficient artificial neural networks can be made (e.g., spiking networks will transmit less information than graded potential networks, spikes only occur in nature due to limitations of carrying electrical charges over large distances. Furthermore, understanding the behavioural and ecological constraints on animals allows an understanding of the limitations of bio-inspired solutions, but also an understanding of why bio-inspired solutions may fail and how to correct these failures.

  16. Global exponential stability of neural networks with globally Lipschitz continuous activations and its application to linear variational inequality problem.

    Science.gov (United States)

    Liang, X B; Si, J

    2001-01-01

    This paper investigates the existence, uniqueness, and global exponential stability (GES) of the equilibrium point for a large class of neural networks with globally Lipschitz continuous activations including the widely used sigmoidal activations and the piecewise linear activations. The provided sufficient condition for GES is mild and some conditions easily examined in practice are also presented. The GES of neural networks in the case of locally Lipschitz continuous activations is also obtained under an appropriate condition. The analysis results given in the paper extend substantially the existing relevant stability results in the literature, and therefore expand significantly the application range of neural networks in solving optimization problems. As a demonstration, we apply the obtained analysis results to the design of a recurrent neural network (RNN) for solving the linear variational inequality problem (VIP) defined on any nonempty and closed box set, which includes the box constrained quadratic programming and the linear complementarity problem as the special cases. It can be inferred that the linear VIP has a unique solution for the class of Lyapunov diagonally stable matrices, and that the synthesized RNN is globally exponentially convergent to the unique solution. Some illustrative simulation examples are also given.

  17. Application Of Artificial Neural Networks In Modeling Of Manufactured Front Metallization Contact Resistance For Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Musztyfaga-Staszuk M.

    2015-09-01

    Full Text Available This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace and unconventional (2. Selective Laser Sintering. Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM. Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.

  18. Neural network subtyping of depression.

    Science.gov (United States)

    Florio, T M; Parker, G; Austin, M P; Hickie, I; Mitchell, P; Wilhelm, K

    1998-10-01

    To examine the applicability of a neural network classification strategy to examine the independent contribution of psychomotor disturbance (PMD) and endogeneity symptoms to the DSM-III-R definition of melancholia. We studied 407 depressed patients with the clinical dataset comprising 17 endogeneity symptoms and the 18-item CORE measure of behaviourally rated PMD. A multilayer perception neural network was used to fit non-linear models of varying complexity. A linear discriminant function analysis was also used to generate a model for comparison with the non-linear models. Models (linear and non-linear) using PMD items only and endogeneity symptoms only had similar rates of successful classification, while non-linear models combining both PMD and symptoms scores achieved the best classifications. Our current non-linear model was superior to a linear analysis, a finding which may have wider application to psychiatric classification. Our non-linear analysis of depressive subtypes supports the binary view that melancholic and non-melancholic depression are separate clinical disorders rather than different forms of the same entity. This study illustrates how non-linear modelling with neural networks is a potentially fruitful approach to the study of the diagnostic taxonomy of psychiatric disorders and to clinical decision-making.

  19. Neural Network for Estimating Conditional Distribution

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Kulczycki, P.

    Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...

  20. Using an Artificial Neural Network Approach for Supplier Evaluation Process and a Sectoral Application

    Directory of Open Access Journals (Sweden)

    A. Yeşim Yayla

    2011-02-01

    Full Text Available In this study, a-three layered feed-forward backpropagation Artificial Neural Network (ANN model is developed for the supplier firms in ceramic sector on the bases of user effectiveness for using concurrent engineering method. The developed model is also questioned for its usability in the supplier evaluation process. The network's independent variables of the developed model are considered as input variables of the network and dependent variables are used as output variables. The values of these variables are determined with factor analysis. For obtaining the date set to be used in the analysis, a questionnaire form with 34 questions explaining the network's input and output variables are prepared and sent out to 52 firms active in related sector. For obtaining more accurate results from the network, the questions having factor load below 0,6 are eliminated from the analysis. With the elimination of the questions from the analysis, the answers given for 22 questions explaining 8 input variables are used for the evaluation the network's inputs, the answers given for 3 questions explaining output variables are used for the evaluation the network's outputs. The data set of the network's are divided into four equal groups with k-fold method in order to get four different alternative network structures. As a conclusion, the forecasted firm scores giving the minimum error from the network test simulation and real firm scores are found to be very close to each other, thus, it is concluded that the developed artificial neural network model can be used effectively in the supplier evaluation process.

  1. Application of an artificial neural network to ready-mixed concretes mix design

    Directory of Open Access Journals (Sweden)

    Setién, J.

    2003-06-01

    Full Text Available This paper presents the practical application of cm artificial neural network (ANN to the problem of concrete mix in a factory. After a brief introduction to the complex problem of concrete mixes design and a quick review of the fundamental basis of neurocomputation, an optimal neural network model has been developed to cope with such a problem. For training the net, several control mixes have been fabricated recording in all cases both the characteristic 28 days compressive strength and the workability measured in terms of the slump of the Abrams' cone. After the training process of the net, the power of its predictive ability is checked by comparison of the results obtained with those corresponding to four reference mixes; in this way, it is shown that the considered approach can be used in multicriterial search for optimal concrete mixes.

    En este trabajo se presenta la aplicación práctica de una red neuronal artificial (ANN al problema de la dosificación de hormigones en planta. Tras una breve introducción a la compleja problemática de la dosificación de hormigones y un repaso a los fundamentos de la neurocomputación, se diseña un modelo de red neuronal óptimo para abordar el problema. Para entrenar dicha red, se realizan varias amasadas de prueba, registrándose para cada una de ellas la trabajabilidad, mediante la medida del asiento del cono de Abrams, y ¡a resistencia característica a los 28 días. Una vez entrenada la red, se pone a prueba su carácter predictivo comparando los resultados que proporciona con los de cuatro amasadas de referencia, demostrándose que esta aproximación puede ser utilizada como método multicriterial para la obtención de mezclas óptimas de hormigón.

  2. Optimization of a hardware implementation for pulse coupled neural networks for image applications

    Science.gov (United States)

    Gimeno Sarciada, Jesús; Lamela Rivera, Horacio; Warde, Cardinal

    2010-04-01

    Pulse Coupled Neural Networks are a very useful tool for image processing and visual applications, since it has the advantages of being invariant to image changes as rotation, scale, or certain distortion. Among other characteristics, the PCNN changes a given image input into a temporal representation which can be easily later analyzed for pattern recognition. The structure of a PCNN though, makes it necessary to determine all of its parameters very carefully in order to function optimally, so that the responses to the kind of inputs it will be subjected are clearly discriminated allowing for an easy and fast post-processing yielding useful results. This tweaking of the system is a taxing process. In this paper we analyze and compare two methods for modeling PCNNs. A purely mathematical model is programmed and a similar circuital model is also designed. Both are then used to determine the optimal values of the several parameters of a PCNN: gain, threshold, time constants for feed-in and threshold and linking leading to an optimal design for image recognition. The results are compared for usefulness, accuracy and speed, as well as the performance and time requirements for fast and easy design, thus providing a tool for future ease of management of a PCNN for different tasks.

  3. Memristor-based cellular nonlinear/neural network: design, analysis, and applications.

    Science.gov (United States)

    Duan, Shukai; Hu, Xiaofang; Dong, Zhekang; Wang, Lidan; Mazumder, Pinaki

    2015-06-01

    Cellular nonlinear/neural network (CNN) has been recognized as a powerful massively parallel architecture capable of solving complex engineering problems by performing trillions of analog operations per second. The memristor was theoretically predicted in the late seventies, but it garnered nascent research interest due to the recent much-acclaimed discovery of nanocrossbar memories by engineers at the Hewlett-Packard Laboratory. The memristor is expected to be co-integrated with nanoscale CMOS technology to revolutionize conventional von Neumann as well as neuromorphic computing. In this paper, a compact CNN model based on memristors is presented along with its performance analysis and applications. In the new CNN design, the memristor bridge circuit acts as the synaptic circuit element and substitutes the complex multiplication circuit used in traditional CNN architectures. In addition, the negative differential resistance and nonlinear current-voltage characteristics of the memristor have been leveraged to replace the linear resistor in conventional CNNs. The proposed CNN design has several merits, for example, high density, nonvolatility, and programmability of synaptic weights. The proposed memristor-based CNN design operations for implementing several image processing functions are illustrated through simulation and contrasted with conventional CNNs. Monte-Carlo simulation has been used to demonstrate the behavior of the proposed CNN due to the variations in memristor synaptic weights.

  4. APPLICATION OF CONVOLUTIONAL NEURAL NETWORK IN CLASSIFICATION OF HIGH RESOLUTION AGRICULTURAL REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available With the rapid development of Precision Agriculture (PA promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN. For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  5. Application of Convolutional Neural Network in Classification of High Resolution Agricultural Remote Sensing Images

    Science.gov (United States)

    Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H.

    2017-09-01

    With the rapid development of Precision Agriculture (PA) promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN). For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  6. Artificial neural networks a practical course

    CERN Document Server

    da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco

    2017-01-01

    This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.

  7. Trimaran Resistance Artificial Neural Network

    Science.gov (United States)

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  8. Neural network uncertainty assessment using Bayesian statistics: a remote sensing application

    Science.gov (United States)

    Aires, F.; Prigent, C.; Rossow, W. B.

    2004-01-01

    Neural network (NN) techniques have proved successful for many regression problems, in particular for remote sensing; however, uncertainty estimates are rarely provided. In this article, a Bayesian technique to evaluate uncertainties of the NN parameters (i.e., synaptic weights) is first presented. In contrast to more traditional approaches based on point estimation of the NN weights, we assess uncertainties on such estimates to monitor the robustness of the NN model. These theoretical developments are illustrated by applying them to the problem of retrieving surface skin temperature, microwave surface emissivities, and integrated water vapor content from a combined analysis of satellite microwave and infrared observations over land. The weight uncertainty estimates are then used to compute analytically the uncertainties in the network outputs (i.e., error bars and correlation structure of these errors). Such quantities are very important for evaluating any application of an NN model. The uncertainties on the NN Jacobians are then considered in the third part of this article. Used for regression fitting, NN models can be used effectively to represent highly nonlinear, multivariate functions. In this situation, most emphasis is put on estimating the output errors, but almost no attention has been given to errors associated with the internal structure of the regression model. The complex structure of dependency inside the NN is the essence of the model, and assessing its quality, coherency, and physical character makes all the difference between a blackbox model with small output errors and a reliable, robust, and physically coherent model. Such dependency structures are described to the first order by the NN Jacobians: they indicate the sensitivity of one output with respect to the inputs of the model for given input data. We use a Monte Carlo integration procedure to estimate the robustness of the NN Jacobians. A regularization strategy based on principal component

  9. Application of neural network to humanoid robots-development of co-associative memory model.

    Science.gov (United States)

    Itoh, Kazuko; Miwa, Hiroyasu; Takanobu, Hideaki; Takanishi, Atsuo

    2005-01-01

    We have been studying a system of many harmonic oscillators (neurons) interacting via a chaotic force since 2002. Each harmonic oscillator is driven by chaotic force whose bifurcation parameter is modulated by the position of the harmonic oscillator. Moreover, a system of mutually coupled chaotic neural networks was investigated. Different patterns were stored in each network and the associative memory problem was discussed in these networks. Each network can retrieve the pattern stored in the other network. On the other hand, we have been developing new mechanisms and functions for a humanoid robot with the ability to express emotions and communicate with humans in a human-like manner. We introduced a mental model which consisted of the mental space, the mood, the equations of emotion, the robot personality, the need model, the consciousness model and the behavior model. This type of mental model was implemented in Emotion Expression Humanoid Robot WE-4RII (Waseda Eye No.4 Refined II). In this paper, an associative memory model using mutually coupled chaotic neural networks is proposed for retrieving optimum memory (recognition) in response to a stimulus. We implemented this model in Emotion Expression Humanoid Robot WE-4RII (Waseda Eye No.4 Refined II).

  10. [Artificial neural networks in Neurosciences].

    Science.gov (United States)

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  11. via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    J. Reyes-Reyes

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  12. Neural Network-Based Modeling of PEM fuel cell and Controller Synthesis of a stand-alone system for residential application

    OpenAIRE

    Khaled Mammar; Abdelkader Chaker

    2012-01-01

    The paper is focused especially on presenting possibilities of applying artificial neural networks at creating the optimal model PEM fuel cell. Various ANN approaches have been tested; the back-propagation feed-forward networks show satisfactory performance with regard to cell voltage prediction. The model is then used in a power system for residential application. This models include an ANN fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a neural network (NNTC) an...

  13. Quantile regression neural networks: Implementation in R and application to precipitation downscaling

    Science.gov (United States)

    Cannon, Alex J.

    2011-09-01

    The qrnn package for R implements the quantile regression neural network, which is an artificial neural network extension of linear quantile regression. The model formulation follows from previous work on the estimation of censored regression quantiles. The result is a nonparametric, nonlinear model suitable for making probabilistic predictions of mixed discrete-continuous variables like precipitation amounts, wind speeds, or pollutant concentrations, as well as continuous variables. A differentiable approximation to the quantile regression error function is adopted so that gradient-based optimization algorithms can be used to estimate model parameters. Weight penalty and bootstrap aggregation methods are used to avoid overfitting. For convenience, functions for quantile-based probability density, cumulative distribution, and inverse cumulative distribution functions are also provided. Package functions are demonstrated on a simple precipitation downscaling task.

  14. Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting

    Directory of Open Access Journals (Sweden)

    Jianjin Wang

    2017-01-01

    Full Text Available Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper and knowledge-based method (traditional hydrological model may booster simulation accuracy. In this study, we proposed a new back-propagation (BP neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction.

  15. RESEARCH AND APPLICATION OF A NEURAL NETWORK CLASSIFIER BASED ON DYNAMIC THRESHOLD

    Institute of Scientific and Technical Information of China (English)

    Zhang Li; Luo Jianhua; Yang Suying

    2009-01-01

    In this study,a Multi-Layer BP neural network (MLBP) with dynamic thresholds is employed to build a classifier model.As to the design of the neural network structure,theoretical guidance and plentiful experiments are combined to optimize the hidden layers'parameters which include the number of hidden layers and their node numbers.The classifier with dynamic thresholds is used to standardize the output for the first time.and it improves the robustness of the model to a high level.Finally,the classifier is applied to forecast box office revenue of a movie before its theatrical release.The comparison results with the MLP method show that the MLBP classifier model achieves more satisfactory results,and it is more reliable and effective to solve the problem.

  16. Application of hybrid coded genetic algorithm in fuzzy neural network controller

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the fuzzy neural network optimized by hybrid coded genetic algorithm of decimal encoding and bi nary encoding, the searching ability and stability of genetic algorithms enhanced by using binary encoding during the crossover operation and decimal encoding during the mutation operation, and the way of accepting new individuals by probability adopted, by which a new individual is accepted and its parent is discarded when its fitness is higher than that of its parent, and a new individual is accepted by probability when its fitness is lower than that of its parent. And concludes with calculations made with an example that these improvements enhance the speed of genetic algorithms to optimize the fuzzy neural network controller.

  17. Neural Network Control-Based Drive Design of Servomotor and Its Application to Automatic Guided Vehicle

    Directory of Open Access Journals (Sweden)

    Ming-Shyan Wang

    2015-01-01

    Full Text Available An automatic guided vehicle (AGV is extensively used for productions in a flexible manufacture system with high efficiency and high flexibility. A servomotor-based AGV is designed and implemented in this paper. In order to steer the AGV to go along a predefined path with corner or arc, the conventional proportional-integral-derivative (PID control is used in the system. However, it is difficult to tune PID gains at various conditions. As a result, the neural network (NN control is considered to assist the PID control for gain tuning. The experimental results are first provided to verify the correctness of the neural network plus PID control for 400 W-motor control system. Secondly, the AGV includes two sets of the designed motor systems and CAN BUS transmission so that it can move along the straight line and curve paths shown in the taped videos.

  18. An Adaptive Recursive Least Square Algorithm for Feed Forward Neural Network and Its Application

    Science.gov (United States)

    Qing, Xi-Hong; Xu, Jun-Yi; Guo, Fen-Hong; Feng, Ai-Mu; Nin, Wei; Tao, Hua-Xue

    In high dimension data fitting, it is difficult task to insert new training samples and remove old-fashioned samples for feed forward neural network (FFNN). This paper, therefore, studies dynamical learning algorithms with adaptive recursive regression (AR) and presents an advanced adaptive recursive (AAR) least square algorithm. This algorithm can efficiently handle new samples inserting and old samples removing. This AAR algorithm is applied to train FFNN and makes FFNN be capable of simultaneously implementing three processes of new samples dynamical learning, old-fashioned samples removing and neural network (NN) synchronization computing. It efficiently solves the problem of dynamically training of FFNN. This FFNN algorithm is carried out to compute residual oil distribution.

  19. A Neural Network: Family Competition Genetic Algorithm and Its Applications in Electromagnetic Optimization

    Directory of Open Access Journals (Sweden)

    P.-Y. Chen

    2009-01-01

    Full Text Available This study proposes a neural network-family competition genetic algorithm (NN-FCGA for solving the electromagnetic (EM optimization and other general-purpose optimization problems. The NN-FCGA is a hybrid evolutionary-based algorithm, combining the good approximation performance of neural network (NN and the robust and effective optimum search ability of the family competition genetic algorithms (FCGA to accelerate the optimization process. In this study, the NN-FCGA is used to extract a set of optimal design parameters for two representative design examples: the multiple section low-pass filter and the polygonal electromagnetic absorber. Our results demonstrate that the optimal electromagnetic properties given by the NN-FCGA are comparable to those of the FCGA, but reducing a large amount of computation time and a well-trained NN model that can serve as a nonlinear approximator was developed during the optimization process of the NN-FCGA.

  20. Gene identification and analysis: an application of neural network-based information fusion

    Energy Technology Data Exchange (ETDEWEB)

    Matis, S.; Xu, Y.; Shah, M.B.; Mural, R.J.; Einstein, J.R.; Uberbacher, E.C.

    1996-10-01

    Identifying genes within large regions of uncharacterized DNA is a difficult undertaking and is currently the focus of many research efforts. We describe a gene localization and modeling system called GRAIL. GRAIL is a multiple sensor-neural network based system. It localizes genes in anonymous DNA sequence by recognizing gene features related to protein-coding slice sites, and then combines the recognized features using a neural network system. Localized coding regions are then optimally parsed into a gene mode. RNA polymerase II promoters can also be predicted. Through years of extensive testing, GRAIL consistently localizes about 90 percent of coding portions of test genes with a false positive rate of about 10 percent. A number of genes for major genetic diseases have been located through the use of GRAIL, and over 1000 research laboratories worldwide use GRAIL on regular bases for localization of genes on their newly sequenced DNA.

  1. Application of Neural Network in Simple Tool Wear Monitoring and Indentification System in MDF Milling

    Directory of Open Access Journals (Sweden)

    Marcin Zbieć

    2011-03-01

    Full Text Available This paper deals with simple neural network-based diagnostic system, applied to tool wear prediction in MDF milling. Ten tools were used for the test, and each one was consequently worn in the process of MDF milling. During the wearing process, the key process parameters were measured, such as cutting and thrust forces, temperature and power consumption. The neural network-based system was used for tool wear prediction of all the tools except the fi rst one, based on data collected during the previous attempts. The test has shown that the proposed system has good prediction accuracy and that it could be a useful tool in the optimization of the woodworking process.

  2. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  3. Estimation of Conditional Quantile using Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1999-01-01

    The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....

  4. Estimation of Conditional Quantile using Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1999-01-01

    The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....

  5. Recognition of Continuous Digits by Quantum Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper describes a new kind of neural network-Quantum Neural Network (QNN) and its application to recognition of continuous digits. QNN combines the advantages of neural modeling and fuzzy theoretic principles. Experiment results show that more than 15 percent error reduction is achieved on a speaker-independent continuous digits recognition task compared with BP networks.

  6. A Fuzzy Neural Network for Fault Pattern Recognition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper combines fuzzy set theory with AR T neural network, and demonstrates some important properties of the fuzzy ART neural network algorithm. The results from application on a ball bearing diagnosis indicate that a fuzzy ART neural network has an effect of fast stable recognition for fuzzy patterns.

  7. Artificial neural network, genetic algorithm, and logistic regression applications for predicting renal colic in emergency settings.

    Science.gov (United States)

    Eken, Cenker; Bilge, Ugur; Kartal, Mutlu; Eray, Oktay

    2009-06-03

    Logistic regression is the most common statistical model for processing multivariate data in the medical literature. Artificial intelligence models like an artificial neural network (ANN) and genetic algorithm (GA) may also be useful to interpret medical data. The purpose of this study was to perform artificial intelligence models on a medical data sheet and compare to logistic regression. ANN, GA, and logistic regression analysis were carried out on a data sheet of a previously published article regarding patients presenting to an emergency department with flank pain suspicious for renal colic. The study population was composed of 227 patients: 176 patients had a diagnosis of urinary stone, while 51 ultimately had no calculus. The GA found two decision rules in predicting urinary stones. Rule 1 consisted of being male, pain not spreading to back, and no fever. In rule 2, pelvicaliceal dilatation on bedside ultrasonography replaced no fever. ANN, GA rule 1, GA rule 2, and logistic regression had a sensitivity of 94.9, 67.6, 56.8, and 95.5%, a specificity of 78.4, 76.47, 86.3, and 47.1%, a positive likelihood ratio of 4.4, 2.9, 4.1, and 1.8, and a negative likelihood ratio of 0.06, 0.42, 0.5, and 0.09, respectively. The area under the curve was found to be 0.867, 0.720, 0.715, and 0.713 for all applications, respectively. Data mining techniques such as ANN and GA can be used for predicting renal colic in emergency settings and to constitute clinical decision rules. They may be an alternative to conventional multivariate analysis applications used in biostatistics.

  8. Application of artificial neural network and information theory to detection of insulators

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Information theory is used to obtain the information gain for each identification feature, and this gain is used as the weight factor for this feature to stress the role of effective feature, and the ART model based on artificial neural network theory is then used for identification thereby forming the detection system for poor insulators. Exper-iments and calculations show this approach is correct and feasible.

  9. Application of Artificial Neural Networks in Modeling Direction Wheelchairs Using Neurosky Mindset Mobile (EEG Device

    Directory of Open Access Journals (Sweden)

    Agus Siswoyo

    2017-07-01

    Full Text Available The implementation of Artificial Neural Network in prediction the direction of electric wheelchair from brain signal input for physical mobility impairment.. The control of the wheelchair as an effort in improving disabled person life quality. The interaction from disabled person is helping in relation to social life with others. Because of the mobility impairment, the wheelchair with brain signal input is made. This wheel chair is purposed to help the disabled person and elderly for their daily activity. ANN helps to develop the mapping from input to target. ANN is developed in 3 level: input level, one hidden level, and output level (6-2-1. There are 6 signal from Neurosky Mindset sensor output, Alpha1, Alpha2, Raw signal, Total time signal, Attention Signal, and Meditation signal. The purpose of this research is to find out the output value from ANN: value in turning right, turning left, and forward. From those outputs, we can prove the relevance to the target. One of the main problem that interfering with success is the problem of proper neural network training. Arduino uno is chosen to implement the learning program algorithm because it is a popular microcontroller that is economic and efficient. The training of artificial neural network in this research uses 21 data package from raw data, Alpha1, Aplha2, Meditation data, Attention data, total time data. At the time of the test there is a value of Mean square Error(MSE at the end of training amounted to 0.92495 at epoch 9958, value a correlation coefficient of 0.92804 shows that accuracy the results of the training process good.     Keywords: Navigation, Neural network, Real-time training, Arduino

  10. Application of Artificial Neural Network in Predicting the Survival Rate of Gastric Cancer Patients

    OpenAIRE

    Biglarian, A; E. Hajizadeh; Kazemnejad, A; Zali, MR

    2011-01-01

    "nBackground: The aim of this study was to predict the survival rate of Iranian gastric cancer patients using the Cox proportional hazard and artificial neural network models as well as comparing the ability of these approaches in predicting the survival of these patients."nMethods: In this historical cohort study, the data gathered from 436 registered gastric cancer patients who have had surgery between 2002 and 2007 at the Taleghani Hospital (a referral center for gastrointestinal...

  11. A Neural Network MLSE Receiver Based on Natural Gradient Descent: Application to Satellite Communications

    Directory of Open Access Journals (Sweden)

    Ibnkahla Mohamed

    2004-01-01

    Full Text Available The paper proposes a maximum likelihood sequence estimator (MLSE receiver for satellite communications. The satellite channel model is composed of a nonlinear traveling wave tube (TWT amplifier followed by a multipath propagation channel. The receiver is composed of a neural network channel estimator (NNCE and a Viterbi detector. The natural gradient (NG descent is used for training. Computer simulations show that the performance of our receiver is close to the ideal MLSE receiver in which the channel is perfectly known.

  12. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    OpenAIRE

    Lucas Antón Pastur-Romay; Francisco Cedrón; Alejandro Pazos; Ana Belén Porto-Pazos

    2016-01-01

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by D...

  13. Application of artificial neural network for prediction of marine diesel engine performance

    Science.gov (United States)

    Mohd Noor, C. W.; Mamat, R.; Najafi, G.; Nik, W. B. Wan; Fadhil, M.

    2015-12-01

    This study deals with an artificial neural network (ANN) modelling of a marine diesel engine to predict the brake power, output torque, brake specific fuel consumption, brake thermal efficiency and volumetric efficiency. The input data for network training was gathered from engine laboratory testing running at various engine speed. The prediction model was developed based on standard back-propagation Levenberg-Marquardt training algorithm. The performance of the model was validated by comparing the prediction data sets with the measured experiment data. Results showed that the ANN model provided good agreement with the experimental data with high accuracy.

  14. Application of Optimized BP Neural Network in Addressing for Garbage Power Plant

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Neural network has the abilities of self-studying, self-adapting, fault tolerance and generalization. But there are some defaults in its basic algorithm, such as low convergence speed, local extremes, and uncertain number of implied layer and implied notes. This paper presents a solution for overcoming these shortages from two aspects.One is to adopt principle component analysis to select study samples and make some of them contain sample characteristics as many as possible, the other is to train the network using Levenberg-Marquardt backward propagation algorithm. This new method was proved to be valid and practicable in site selection of practical garbage power generation plants.

  15. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process.

    Science.gov (United States)

    Witek-Krowiak, Anna; Chojnacka, Katarzyna; Podstawczyk, Daria; Dawiec, Anna; Pokomeda, Karol

    2014-05-01

    A review on the application of response surface methodology (RSM) and artificial neural networks (ANN) in biosorption modelling and optimization is presented. The theoretical background of the discussed methods with the application procedure is explained. The paper describes most frequently used experimental designs, concerning their limitations and typical applications. The paper also presents ways to determine the accuracy and the significance of model fitting for both methodologies described herein. Furthermore, recent references on biosorption modelling and optimization with the use of RSM and the ANN approach are shown. Special attention was paid to the selection of factors and responses, as well as to statistical analysis of the modelling results.

  16. Photometric redshifts with the Multilayer Perceptron Neural Network: application to the HDF-S and SDSS

    CERN Document Server

    Vanzella, E; Fontana, A; Nonino, M; Arnouts, S; Giallongo, E; Grazian, A; Fasano, G; Popesso, P; Saracco, P; Zaggia, S R

    2003-01-01

    We present a technique for the estimation of photometric redshifts based on feed-forward neural networks. The Multilayer Perceptron (MLP) Artificial Neural Network is used to predict photometric redshifts in the HDF-S from an ultra deep multicolor catalog. Various possible approaches for the training of the neural network are explored, including the deepest and most complete spectroscopic redshift catalog currently available (the Hubble Deep Field North dataset) and models of the spectral energy distribution of galaxies available in the literature. The MLP can be trained on observed data, theoretical data and mixed samples. The prediction of the method is tested on the spectroscopic sample in the HDF-S (44 galaxies). Over the entire redshift range, $0.1

  17. Using neural networks to estimate redshift distributions. An application to CFHTLenS

    CERN Document Server

    Bonnett, Christopher

    2013-01-01

    We present a novel way of using neural networks (NN) to estimate the redshift distribution of a galaxy sample. We are able to obtain a probability density function (PDF) for each galaxy using a classification neural network. The method is applied to 58714 galaxies in CFHTLenS that have spectroscopic redshifts from DEEP2, VVDS and VIPERS. Using this data we show that the stacked PDF's give an excellent representation of the true $N(z)$ using information from 5, 4 or 3 photometric bands. We show that the fractional error due to using N(z_(phot)) instead of N(z_(truth)) is <=1 on the lensing power spectrum P_(kappa) in several tomographic bins. Further we investigate how well this method performs when few training samples are available and show that in this regime the neural network slightly overestimates the N(z) at high z. Finally the case where the training sample is not representative of the full data set is investigated. An IPython notebook accompanying this paper is made available here: https://bitbucke...

  18. Neural networks for nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  19. Research of The Deeper Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao You Rong

    2016-01-01

    Full Text Available Neural networks (NNs have powerful computational abilities and could be used in a variety of applications; however, training these networks is still a difficult problem. With different network structures, many neural models have been constructed. In this report, a deeper neural networks (DNNs architecture is proposed. The training algorithm of deeper neural network insides searching the global optimal point in the actual error surface. Before the training algorithm is designed, the error surface of the deeper neural network is analyzed from simple to complicated, and the features of the error surface is obtained. Based on these characters, the initialization method and training algorithm of DNNs is designed. For the initialization, a block-uniform design method is proposed which separates the error surface into some blocks and finds the optimal block using the uniform design method. For the training algorithm, the improved gradient-descent method is proposed which adds a penalty term into the cost function of the old gradient descent method. This algorithm makes the network have a great approximating ability and keeps the network state stable. All of these improve the practicality of the neural network.

  20. Research on prediction for coal and gas outburst based on Matlab neural network toolbox and its application

    Institute of Scientific and Technical Information of China (English)

    XIAO Hong-fei; XU Zhi-sheng; TIAN Yun-li

    2007-01-01

    In order to predict the danger of coal and gas outburst in mine coal layer correctly,on the basis of the VLBP and LMBP algorithm in Matlab neural network toolbox.one kind of modified BP neural network was put forth to speed up the network convergence speed in this paper.Firstly,according to the characteristics of coal and gas outburst.five key influencing factors such as excavation depth,pressure of gas,and geologic destroy degree were selected as the judging indexes of coal and gas outburst.Secondly,the prediction model for coal and gas outburst was built.Finally,it was verified by practical examples.Practical application demonstrates that,on the one hand,the modified BP prediction model based on the Matlab neural network toolbox can overcome the disadvantages of constringency and,on the other hand,it has fast convergence speed and good prediction accuracy.The analysis and computing results show that the computing speed by LMBP algorithm is faster than by VLBP algonthm but needs more memory.And the resuits show that the prediction results are identical with actual results and this model is a very efficient prediction method for mine coal and gas outburst,and has an important practical meaning for the mine production safety.So we conclude that it can be used to predict coal and gas outburst precisely in actual engineering.

  1. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    Science.gov (United States)

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  2. Application of Genetic Neural Network in Power Battery Charging State-of-Charge Estimation

    Directory of Open Access Journals (Sweden)

    Yongqin Zhou

    2011-03-01

    Full Text Available With global non-renewable resources and environmental issues becoming more apparent, the development of new energy vehicles have become the trend of auto industry. Hybrid vehicle becomes the key development of new energy vehicles with its long distance, low pollution, low fuel consumption characteristics and so on. The battery performances directly influence the quality of the whole vehicle performance. Considering the importance of the battery state of charge (SOC estimation and the nonlinear relationship between the battery SOC and the external characteristic, genetic algorithm (GA and back propagation (BP neural network are proposed. Because of the strong global search capability of the genetic algorithm and the generalization ability of BP neural network, the hybrid vehicle Ni-MH power battery GA-BP charging model is designed. In this approach, the network training speed is superior to the traditional BP network. According to the real-time data of the batteries, the optimal solution can be concluded in a short time and with high estimation precision.

  3. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  4. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  5. Computer-assisted cytologic diagnosis in pancreatic FNA: An application of neural networks to image analysis.

    Science.gov (United States)

    Momeni-Boroujeni, Amir; Yousefi, Elham; Somma, Jonathan

    2017-09-08

    Fine-needle aspiration (FNA) biopsy is an accurate method for the diagnosis of solid pancreatic masses. However, a significant number of cases still pose a diagnostic challenge. The authors have attempted to design a computer model to aid in the diagnosis of these biopsies. Images were captured of cell clusters on ThinPrep slides from 75 pancreatic FNA cases (20 malignant, 24 benign, and 31 atypical). A K-means clustering algorithm was used to segment the cell clusters into separable regions of interest before extracting features similar to those used for cytomorphologic assessment. A multilayer perceptron neural network (MNN) was trained and then tested for its ability to distinguish benign from malignant cases. A total of 277 images of cell clusters were obtained. K-means clustering identified 68,301 possible regions of interest overall. Features such as contour, perimeter, and area were found to be significantly different between malignant and benign images (P <.05). The MNN was 100% accurate for benign and malignant categories. The model's predictions from the atypical data set were 77% accurate. The results of the current study demonstrate that computer models can be used successfully to distinguish benign from malignant pancreatic cytology. The fact that the model can categorize atypical cases into benign or malignant with 77% accuracy highlights the great potential of this technology. Although further study is warranted to validate its clinical applications in pancreatic and perhaps other areas of cytology as well, the potential for improved patient outcomes using MNN for image analysis in pathology is significant. Cancer Cytopathol 2017. © 2017 American Cancer Society. © 2017 American Cancer Society.

  6. Application of neural networks to determine moisture content on humidity-attenuated NIR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, T. [Westinghouse Hanford Company, Richland, WA (United States); Philipp, B.L. [ICF Kaiser, Richland, WA (United States); Thompson-Bachmeier, S. [Washington State Univ., Pullman, WA (United States)

    1995-12-31

    Moisture has been identified as one of the critical tank waste parameters that impacts the safety status of the wastes, particularly tanks containing ferro/ferricyanide materials. Since water content is affected by a number of factors, including gravity, one hypothesis, currently being tested by Westinghouse Hanford`s Waste Tank Safety organization, is that the surface of the waste contains a minimum of water compared to the material deeper in the tank. Assuming this hypothesis is correct, a minimum internal waste water content will be obtained by measuring the surface water content. Near infrared analysis is a nondestructive technique that takes advantage of the tendency of water molecules to absorb specific wavelengths of NIR energy. When a sample containing water is exposed to those wavelengths, a certain portion of the energy will be absorbed by the water, and the remainder will be reflected. By measuring the reflected energy, the concentration of water in the sample can be determined. An initial investigation into the feasibility of remote sensing for hot cell and waste tank applications was performed at the University of Washington`s Center for Process Analytical Chemistry (CPAC) under the direction of Westinghouse Hanford Company. The BY-104 waste tank simulant test data showed that for these samples, ten percent of the incident radiation is scattered. When collected, this signal is available for determining moisture content because the moisture content of the waste affects the scattering. However, atmospheric relative humidity causes a signal attenuation that will impact any in situ measurements being obtained. For simulation, this spectra was used along with software generated atmospheric transmission data from 0-60 meters to produce a modified sample set. These data are analyzed using a backpropagation neural network algorithm to construct a model that would predict surface moisture content.

  7. Systolic implementation of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, A.J.; Parker, S.R.

    1989-01-01

    The backpropagation algorithm for error gradient calculations in multilayer, feed-forward neural networks is derived in matrix form involving inner and outer products. It is demonstrated that these calculations can be carried out efficiently using systolic processing techniques, particularly using the SPRINT, a 64-element systolic processor developed at Lawrence Livermore National Laboratory. This machine contains one million synapses, and forward-propagates 12 million connections per second, using 100 watts of power. When executing the algorithm, each SPRINT processor performs useful work 97% of the time. The theory and applications are confirmed by some nontrivial examples involving seismic signal recognition. 4 refs., 7 figs.

  8. Error-correction learning for artificial neural networks using the Bayesian paradigm. Application to automated medical diagnosis

    National Research Council Canada - National Science Library

    Belciug, Smaranda; Gorunescu, Florin

    2014-01-01

    .... Due to their adaptive learning and nonlinear mapping properties, the artificial neural networks are widely used to support the human decision capabilities, avoiding variability in practice and errors...

  9. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques

    Directory of Open Access Journals (Sweden)

    Suranjan Panigrahi

    2010-03-01

    Full Text Available Spatial variability in a crop field creates a need for precision agriculture. Economical and rapid means of identifying spatial variability is obtained through the use of geotechnology (remotely sensed images of the crop field, image processing, GIS modeling approach, and GPS usage and data mining techniques for model development. Higher-end image processing techniques are followed to establish more precision. The goal of this paper was to investigate the strength of key spectral vegetation indices for agricultural crop yield prediction using neural network techniques. Four widely used spectral indices were investigated in a study of irrigated corn crop yields in the Oakes Irrigation Test Area research site of North Dakota, USA. These indices were: (a red and near-infrared (NIR based normalized difference vegetation index (NDVI, (b green and NIR based green vegetation index (GVI, (c red and NIR based soil adjusted vegetation index (SAVI, and (d red and NIR based perpendicular vegetation index (PVI. These four indices were investigated for corn yield during 3 years (1998, 1999, and 2001 and for the pooled data of these 3 years. Initially, Back-propagation Neural Network (BPNN models were developed, including 16 models (4 indices * 4 years including the data from the pooled years to test for the efficiency determination of those four vegetation indices in corn crop yield prediction. The corn yield was best predicted using BPNN models that used the means and standard deviations of PVI grid images. In all three years, it provided higher prediction accuracies, coefficient of determination (r2, and lower standard error of prediction than the models involving GVI, NDVI, and SAVI image information. The GVI, NDVI, and SAVI models for all three years provided average testing prediction accuracies of 24.26% to 94.85%, 19.36% to 95.04%, and 19.24% to 95.04%, respectively while the PVI models for all three years provided average testing prediction accuracies

  10. Artificial neural networks in neurosurgery.

    Science.gov (United States)

    Azimi, Parisa; Mohammadi, Hasan Reza; Benzel, Edward C; Shahzadi, Sohrab; Azhari, Shirzad; Montazeri, Ali

    2015-03-01

    Artificial neural networks (ANNs) effectively analyze non-linear data sets. The aimed was A review of the relevant published articles that focused on the application of ANNs as a tool for assisting clinical decision-making in neurosurgery. A literature review of all full publications in English biomedical journals (1993-2013) was undertaken. The strategy included a combination of key words 'artificial neural networks', 'prognostic', 'brain', 'tumor tracking', 'head', 'tumor', 'spine', 'classification' and 'back pain' in the title and abstract of the manuscripts using the PubMed search engine. The major findings are summarized, with a focus on the application of ANNs for diagnostic and prognostic purposes. Finally, the future of ANNs in neurosurgery is explored. A total of 1093 citations were identified and screened. In all, 57 citations were found to be relevant. Of these, 50 articles were eligible for inclusion in this review. The synthesis of the data showed several applications of ANN in neurosurgery, including: (1) diagnosis and assessment of disease progression in low back pain, brain tumours and primary epilepsy; (2) enhancing clinically relevant information extraction from radiographic images, intracranial pressure processing, low back pain and real-time tumour tracking; (3) outcome prediction in epilepsy, brain metastases, lumbar spinal stenosis, lumbar disc herniation, childhood hydrocephalus, trauma mortality, and the occurrence of symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid haemorrhage; (4) the use in the biomechanical assessments of spinal disease. ANNs can be effectively employed for diagnosis, prognosis and outcome prediction in neurosurgery.

  11. Image processing using pulse-coupled neural networks applications in Python

    CERN Document Server

    Lindblad, Thomas

    2013-01-01

    Image processing algorithms based on the mammalian visual cortex are powerful tools for extraction information and manipulating images. This book reviews the neural theory and translates them into digital models. Applications are given in areas of image recognition, foveation, image fusion and information extraction. The third edition reflects renewed international interest in pulse image processing with updated sections presenting several newly developed applications. This edition also introduces a suite of Python scripts that assist readers in replicating results presented in the text and to further develop their own applications.

  12. Application of neural networks and geomorphometry method for purposes of urban planning (Kazan, Russia)

    Science.gov (United States)

    Yermolaev, Oleg; Selivanov, Renat

    2013-04-01

    The landscape structure of a territory imposes serious limitations on the adoption of certain decisions. Differentiation of the relief into separate elementary geomorphological sections yields the basis for most adequate determination of the boundaries of urban geosystems. In paper the results of approbation of relief classification methods based on Artificial Neuron Networks are presented. Approbation of Artificial Neuron Networks (ANN) method (Kohonen's Self-Organizing Maps - SOM) for purposes of automated zoning of a modern city's territory on the example of the city of Kazan. The developed model of the restored landscapes represents the city territory as a system of geomorphologically homogenous terrains. Main research objectives: development of a digital model of relief of the city of Kazan; approbation of relief classification methods based on ANN and expert estimations; creation of a SOM-based map of urban geosystems; verification of the received results of classification, clarification and enlargement of landscape units; determination of the applicability of the method in question for purposes of zoning of big cities' territory, identification of strengths and weaknesses. First stage: analysis and digitalization of the detailed large-scale topographic map of Kazan. Digital model of the relief with a grid size of 10m has been produced. We have used this data for building various analytical maps of certain morphometric characteristics of the relief: height, slope, exposition, profile and plan curvature. Calculated morphometric values were transformed into a data matrix. Software packages use training algorithms without the use of a tutor, whereas weight coefficients are redistributed for each specific operational-territorial unit. After several iterations of the "education" process, neural network leads to gradual clumping of groups of operational-territorial unit with similar sets of morphometric parameters. 81 classes have been distinguished. Such atomism

  13. Estimating Conditional Distributions by Neural Networks

    DEFF Research Database (Denmark)

    Kulczycki, P.; Schiøler, Henrik

    1998-01-01

    Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...

  14. Application of artificial neural network (ANN in Biosorption modeling of Chromium (VI from aqueous solutions

    Directory of Open Access Journals (Sweden)

    F Mohammadi

    2016-03-01

    Full Text Available Background and Objectives: In this work, biosorption of hexavalent chromium from aqueous solution with excess municipal sludge was studied. Moreover, the performance of neural networks to predict the biosorption rate was investigated. Materials and Methods: The effect of operational parameters including initial metal concentration, initial pH, agitation speed, adsorbent dosage, and agitation time on the biosorption of chromium was assessed in a batch system. A part of the experimental results was modeled using Feed-Forward Back propagation Neural Network (FFBP-ANN. Another part of the test results was simulated to assess the model accuracy. Transfer function in the hidden layers and output layers and the number of neurons in the hidden layers were optimized. Results: The maximum removal of chromium obtained from batch studies was more than 96% in 90 mg/L initial concentration, pH 2, agitation speed 200 rpm and adsorbent dosage 4 g/L. Maximum biosorption capacity was 41.69 mg/g. Biosorption data of Cr(VI are described well by Freundlich isotherm model and adsorption kinetic followed pseudo-second order model.  Tangent sigmoid function determined was the most appropriate transfer function in the hidden and output layer. The optimal number of neurons in hidden layers was 13. Predictions of model showed excellent correlation (R=0.984 with the target vector. Simulations performed by the developed neural network model showed good agreement with experimental results. Conclusion: Overall, it can be concluded that excess municipal sludge performs well for the removal of Cr ions from aqueous solution as a biological and low cost biosorbent. FFBP-ANN is an appropriate technique for modeling, estimating, and prediction of biosorption process If the Levenberg-Marquardt training function, tangent sigmoid transfer function in the hidden and output layers and the number of neurons is between 1.6 to 1.8 times the input data, proper predication results could be

  15. 人工神经网络的发展及应用%Application and prospect of Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    毛健; 赵红东; 姚婧婧

    2011-01-01

    人工神经网络是人工智能的重要分支,具有自适应、自组织和自学习的特点。回顾了人工神经网络理论的发展历史.并介绍了其在信息、医学、经济、控制等领域的应用及研究现状。随着人们对人工神经网络不断地探索和研究,并将其与一些传统方法相结合,将推动人工智能的发展,在以后的生产生活中发挥更大的作用。%As an important branch of artificial intelligence, artificial neural network own the characteristics of self-adaption, self-organization and self-learning. Review the development history of artificial neural network theory and its application and research status in the field of information, medicine, economic, control and others are introduced. As continuous exploring and researching the combination of artificial neural network and some traditional methods will promote the development of artificial intelligence and play a bigger role in the production and living later.

  16. Application of neural network method to process planning in ship pipe machining

    Institute of Scientific and Technical Information of China (English)

    ZHONG Yu-guang; QIU Chang-hua; SHI Dong-yan

    2004-01-01

    Based on artificial neural network for process planning decision in ship pipe manufacturing, a novel method is established by analyzing process characteristics of the ship pipe machining. The process knowledge of pipe machining is shifted from the expression of the external rules to the description of the internal net weight value in order for the net inferring engine to decide the process route of pipe machining rapidly and rightly. Simulation shows that the method can resolve problems of process decision, and overcome the drawbacks of "matching difficulty" and "combination explosion" in traditional intelligent CAPP based on symbol reasoning.

  17. Gapped sequence alignment using artificial neural networks: application to the MHC class I system

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2016-01-01

    . On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. Results: We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods...... the length profile of different MHC molecules, and quantified the reduction of the experimental effort required to identify potential epitopes using our prediction algorithm. Availability and implementation: The NetMHC-4.0 method for the prediction of peptide-MHC class I binding affinity using gapped...

  18. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, M P; Guo, S; Kalinin, S V; Jesse, S [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 (United States); Reukov, V V; Thompson, G L; Vertegel, A A, E-mail: sergei2@ornl.go [Department of Bioengineering, Clemson University, Clemson, SC 29634 (United States)

    2009-10-07

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  19. APPLICATION OF ARCHITECTURE-BASED NEURAL NETWORKS IN MODELING AND PARAMETER OPTIMIZATION OF HYDRAULIC BUMPER

    Institute of Scientific and Technical Information of China (English)

    Yang Haiwei; Zhan Yongqi; Qiao Junwei; Shi Guanglin

    2003-01-01

    The dynamic working process of 52SFZ-140-207B type of hydraulic bumper is analyzed. The modeling method using architecture-based neural networks is introduced. Using this modeling method, the dynamic model of the hydraulic bumper is established; Based on this model the structural parameters of the hydraulic bumper are optimized with Genetic algorithm. The result shows that the performance of the dynamic model is close to that of the hydraulic bumper, and the dynamic performance of the hydraulic bumper is improved through parameter optimization.

  20. An FPGA hardware/software co-design towards evolvable spiking neural networks for robotics application.

    Science.gov (United States)

    Johnston, S P; Prasad, G; Maguire, L; McGinnity, T M

    2010-12-01

    This paper presents an approach that permits the effective hardware realization of a novel Evolvable Spiking Neural Network (ESNN) paradigm on Field Programmable Gate Arrays (FPGAs). The ESNN possesses a hybrid learning algorithm that consists of a Spike Timing Dependent Plasticity (STDP) mechanism fused with a Genetic Algorithm (GA). The design and implementation direction utilizes the latest advancements in FPGA technology to provide a partitioned hardware/software co-design solution. The approach achieves the maximum FPGA flexibility obtainable for the ESNN paradigm. The algorithm was applied as an embedded intelligent system robotic controller to solve an autonomous navigation and obstacle avoidance problem.

  1. Application of an artificial neural network for evaluation of activity concentration exemption limits in NORM industry.

    Science.gov (United States)

    Wiedner, Hannah; Peyrés, Virginia; Crespo, Teresa; Mejuto, Marcos; García-Toraño, Eduardo; Maringer, Franz Josef

    2016-12-27

    NORM emits many different gamma energies that have to be analysed by an expert. Alternatively, artificial neural networks (ANNs) can be used. These mathematical software tools can generalize "knowledge" gained from training datasets, applying it to new problems. No expert knowledge of gamma-ray spectrometry is needed by the end-user. In this work an ANN was created that is able to decide from the raw gamma-ray spectrum if the activity concentrations in a sample are above or below the exemption limits.

  2. Establishment of a Fault Prognosis Model Using Wavelet Neural Networks and Its Engineering Application

    Institute of Scientific and Technical Information of China (English)

    LIU Qi-peng; FENG Quan-ke; XIONG Wei

    2004-01-01

    Fault diagnosis is confronted with two problems; how to "measure" the growth of a fault and how to predict the remaining useful lifetime of such a failing component or machine.This paper attempts to solve these two problems by proposing a model of fault prognosis using wavelet basis neural network.Gaussian radial basis functions and Mexican hat wavelet frames are used us scaling functions and wavelets,respectively.The centers of the basis functions are calculated using a dyadic expansion scheme and a k-means clustering algorithm.

  3. Application of neural network to prediction of plate finish cooling temperature

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-xing; ZHANG Dian-hua; WANG Jun; YU Ming; ZHOU Na; CAO Guang-ming

    2008-01-01

    To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between-15 ℃ and 15 ℃.

  4. Partial state feedback control of chaotic neural network and its application

    Energy Technology Data Exchange (ETDEWEB)

    He Guoguang [Aihara Complexity Modelling Project, ERATO, JST, Tokyo 153-8505 (Japan); Department of Physics, College of Science, Zhejiang University, Hangzhou 310027 (China); Institute of Industrial Science, University of Tokyo, Tokyo 153-8505 (Japan)], E-mail: gghe@aihara.jst.go.jp; Shrimali, Manish Dev; Aihara, Kazuyuki [Aihara Complexity Modelling Project, ERATO, JST, Tokyo 153-8505 (Japan); Institute of Industrial Science, University of Tokyo, Tokyo 153-8505 (Japan)

    2007-11-12

    The chaos control in the chaotic neural network is studied using the partial state feedback with a control signal from a few control neurons. The controlled CNN converges to one of the stored patterns with a period which depends on the initial conditions, i.e., the set of control neurons and other control parameters. We show that the controlled CNN can distinguish between two initial patterns even if they have a small difference. This implies that such a controlled CNN can be feasibly applied to information processing such as pattern recognition.

  5. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    Science.gov (United States)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  6. A BP Neural Network Based on Improved Particle Swarm Optimization and its Application in Reliability Forecasting

    Directory of Open Access Journals (Sweden)

    Heqing Li

    2013-07-01

    Full Text Available The basic Particle Swarm Optimization (PSO algorithm and its principle have been introduced, the Particle Swarm Optimization has low accelerate speed and can be easy to fall into local extreme value, so the Particle Swarm Optimization based on the improved inertia weight is presented. This method means using nonlinear decreasing weight factor to change the fundamental ways of PSO. To allow full play to the approximation capability of the function of BP neural network and overcome the main shortcomings of its liability to fall into local extreme value and the study proposed a concept of applying improved PSO algorithm and BP network jointly to optimize the original weight and threshold value of network and incorporating the improved PSO algorithm into BP network to establish a improved PSO-BP network system. This method improves convergence speed and the ability to search optimal value. We apply the improved particle swarm algorithm to reliability prediction. Compared with the traditional BP method, this kind of algorithm can minimize errors and improve convergence speed at the same time.

  7. Stability analysis of discrete-time BAM neural networks based on standard neural network models

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sen-lin; LIU Mei-qin

    2005-01-01

    To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.

  8. Redes neurais e suas aplicações em calibração multivariada Neural networks and its applications in multivariate calibration

    OpenAIRE

    Cerqueira, Eduardo O.; Andrade,João C. de; Ronei J. Poppi; Cesar Mello

    2001-01-01

    Neural Networks are a set of mathematical methods and computer programs designed to simulate the information process and the knowledge acquisition of the human brain. In last years its application in chemistry is increasing significantly, due the special characteristics for model complex systems. The basic principles of two types of neural networks, the multi-layer perceptrons and radial basis functions, are introduced, as well as, a pruning approach to architecture optimization. Two analytic...

  9. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)

    2016-09-11

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.

  10. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Science.gov (United States)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  11. Application of neural networks to classification of internal damages in steels working in creep service

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-01-01

    Full Text Available Purpose: The goal of the paper is the presentation of computer assisted method for analysis of the metallographicimages obtained in the scanning electron microscope (SEM from the low alloyed steel 13CrMo4-5 elements indifferent states of internal damages after long time creep service.Design/methodology/approach: Investigations of the structure and morphology of internal damages resultingfrom creep were made by the use of light microscope and scanning electron microscope. Their topography wereobserved by the use of confocal laser scanning microscope. There was proposed a method based on analysisof images, shape coefficients and neural networks as a tool to evaluate the internal damage classes of materialsused for the high-pressure installations elements working in creep conditions.Findings: The better efficiency of class recognition of damages developed in the material can be achieved as acombining of several methods making use of the image analysis, shape coefficients, and neural networks.Practical implications: The presented method can be use in industrial practice for evaluation and qualificationof creep-damage of power station boiler components operating in creep regime (e.g., steam boilers, chambers,pipelines, and others.Originality/value: Applying of the artificial intelligence method for the classification of internal damage in thesteel during creep service.

  12. Application of FAHP and Artificial Neural Network on Clothing Plant Location

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Clothing manufacturers' direct investment and joint ventures in developing regions have seen to grow rapidly in the past few decades. Non-optimized selection can contribute to adverse effects affecting the performance of the plants on aspects of productivity, manufacturing and logistics cost. Selection of proper plant location is thus crucial. The conventional approaches to sites location are based on the factors and their weights. However, determining the weight of each factor is very difficult and time consuming. While the situation is changed, all the work must be redone again. This study aims to develop a decision-making system onclothing plant location for Hong Kong clothing manufacturer. The proposed system utilizes artificial neural network to study the relationship between the factors and the suitability index of candidate sites. Firstly, the factors are stratified using the fuzzy analytical hierarchy process (FAHP) by review the related references and interviewing the experts.Secondly, the corresponding data are collected from the experts by questionnaire and the related government publication. Finally, the feedforward neural network with error backpropagation(EBP) learning algorithm is trained and applied to make decision. The results show that the proposed system performs well and has the characteristic of adaptability and plasticity.

  13. Wavelet neural networks initialization using hybridized clustering and harmony search algorithm: Application in epileptic seizure detection

    Science.gov (United States)

    Zainuddin, Zarita; Lai, Kee Huong; Ong, Pauline

    2013-04-01

    Artificial neural networks (ANNs) are powerful mathematical models that are used to solve complex real world problems. Wavelet neural networks (WNNs), which were developed based on the wavelet theory, are a variant of ANNs. During the training phase of WNNs, several parameters need to be initialized; including the type of wavelet activation functions, translation vectors, and dilation parameter. The conventional k-means and fuzzy c-means clustering algorithms have been used to select the translation vectors. However, the solution vectors might get trapped at local minima. In this regard, the evolutionary harmony search algorithm, which is capable of searching for near-optimum solution vectors, both locally and globally, is introduced to circumvent this problem. In this paper, the conventional k-means and fuzzy c-means clustering algorithms were hybridized with the metaheuristic harmony search algorithm. In addition to obtaining the estimation of the global minima accurately, these hybridized algorithms also offer more than one solution to a particular problem, since many possible solution vectors can be generated and stored in the harmony memory. To validate the robustness of the proposed WNNs, the real world problem of epileptic seizure detection was presented. The overall classification accuracy from the simulation showed that the hybridized metaheuristic algorithms outperformed the standard k-means and fuzzy c-means clustering algorithms.

  14. Smoothing neural network for constrained non-Lipschitz optimization with applications.

    Science.gov (United States)

    Bian, Wei; Chen, Xiaojun

    2012-03-01

    In this paper, a smoothing neural network (SNN) is proposed for a class of constrained non-Lipschitz optimization problems, where the objective function is the sum of a nonsmooth, nonconvex function, and a non-Lipschitz function, and the feasible set is a closed convex subset of . Using the smoothing approximate techniques, the proposed neural network is modeled by a differential equation, which can be implemented easily. Under the level bounded condition on the objective function in the feasible set, we prove the global existence and uniform boundedness of the solutions of the SNN with any initial point in the feasible set. The uniqueness of the solution of the SNN is provided under the Lipschitz property of smoothing functions. We show that any accumulation point of the solutions of the SNN is a stationary point of the optimization problem. Numerical results including image restoration, blind source separation, variable selection, and minimizing condition number are presented to illustrate the theoretical results and show the efficiency of the SNN. Comparisons with some existing algorithms show the advantages of the SNN.

  15. Comparison of the applicability of neural networks and cluster classification methods on the example company's financial situation

    Directory of Open Access Journals (Sweden)

    Oldřich Trenz

    2010-01-01

    Full Text Available The paper is focused on comparing the classification ability of the model with self-learning neutral network and methods from cluster analysis. The emphasis is particularly on the comparison of different approaches to a specific application example of the commitment, the classification of then financial situation. The aim is to critically evaluate different approaches at the level of application and deployment options.The verify the classification capability of the different approaches were used financial data from the database „Credit Info“, in particular data describing the financial situation of the two hundred eleven farms of homogeneous and uniform primary field.Input data were from the methods used, modified and evaluated by appropriate methodology. Found the final solution showed that the used approaches do not show significant differences, and they can say that they are equivalent. Based on this finding can formulate the conclusion that the approach of artificial intelligence (self-learning neural network is as effective as a partial methods in the field of cluster analysis. In both cases, these approaches can be an invaluable tool in decision making.When the financial situation is evaluated by the expert, the calculation of liquidity, profitability and other financial indicators are making some simplification. In this respect, neural networks perform better, since these simplifications in them selves are not natively included. They can better assess and somewhat ambiguous cases, including businesses with undefined financial situation, the so-called data in the border region. In this respect, support and representation of the graphical layout of the resulting situation sorted out objects using software implemented neural network model.

  16. Application of a neural network model in establishing a stage-discharge relationship for a tidal river

    Science.gov (United States)

    Supharatid, Seree

    2003-10-01

    This paper presents the applicability of neural network (NN) modelling for forecasting and filtering problems. The multilayer feedforward (MLFF) network was first constructed to forecast the tidal-level variations at the mouth of the River Chao Phraya in Thailand. Unlike the well-known conventional harmonic analysis, the NN model uses a set of previous data for learning and then forecasting directly the time-series of tidal levels. It was found that lead time of 1 to 24 hourly tidal levels can be predicted successfully using only a short-time hourly learning data. The MLFF network was further used to establish a stage-discharge relationship for the tidal river. The results show a considerably better performance of the NN model over the conventional models. In addition, the stage-discharge relationship obtained by the NN model can indicate reasonably well the important behaviour of the tidal influences. Copyright

  17. Artificial Neural Network Analysis System

    Science.gov (United States)

    2007-11-02

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  18. An overview of neural network applications for soil moisture retrieval from radar satellite sensors

    Science.gov (United States)

    Santi, E.; Paloscia, S.; Pettinato, S.

    2014-10-01

    Frequent and spatially distributed measurements of soil moisture (SMC), at different spatial scales, are advisable for all applications related to the environmental disciplines, such as climatology, meteorology, hydrology and agriculture. Satellite sensors operating in the low part of microwave spectrum are very suitable for this purpose, and their signals can be directly related to the moisture content of the observed surfaces, provided that all the contributions from soil and vegetation to the measured signal are properly accounted for. Among the algorithms used for the retrieval of SMC from both active (i.e. Synthetic Aperture Radar, SAR or real aperture radars) and passive (radiometers) microwave sensors, the artificial neural networks (ANN) represent the best compromise between accuracy and computation speed. ANN based algorithms have been developed at IFAC, and adapted to several radar and radiometric satellite sensors, in order to generate SMC products at different spatial resolutions, varying from hundreds of meters to tens of kilometers. These algorithms, which use the ANN techniques for inverting theoretical and semi-empirical models, such as Advanced Integral Equation (AIEM), Oh models, and Radiative transfer Theory (RTT), have been adapted to the C-band acquisitions from SAR (Envisat/ASAR) and real aperture radar (ASCAT) and to the X-band SAR acquisitions of Cosmo-SkyMed and TerraSAR-X. Moreover, a specific ANN algorithm has also been implemented for the L-band active and passive acquisitions of the incoming SMAP mission. The latter satellite will carry onboard simultaneously one radar and one radiometer operating at the same frequency, but with different spatial resolutions (3 and 40 km, respectively). Large datasets of co-located satellite acquisitions and direct SMC measurements on several test sites located worldwide have been used along with simulations derived from forward electromagnetic models for setting up, training and validating these

  19. DENSENESS OF RADIAL-BASIS FUNCTIONS IN L2(Rn) AND ITS APPLICATIONS IN NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    CHENTIANPING; CHENHONG

    1996-01-01

    The authors discuss problems of approximation to functions in L2 (Rn)and operators from L2(Rn1)to L2(Rn2)by Radial-Basis Functions. The results obtained solve the parblem of capability of RBF neural networks,a basic problem in neural networks.

  20. Application of a neural network for gentamicin concentration prediction in a general hospital population.

    Science.gov (United States)

    Corrigan, B W; Mayo, P R; Jamali, F

    1997-02-01

    Neural network (NN) computation is computer modeling based in part on simulation of the structure and function of the brain. These modeling techniques have been found useful as pattern recognition tools. In the present study, data including age, sex, height, weight, serum creatinine concentration, dose, dosing interval, and time of measurement were collected from 240 patients with various diseases being treated with gentamicin in a general hospital setting. The patient records were randomly divided into two sets: a training set of 220 patients used to develop relationships between input and output variables (peak and trough plasma concentrations) and a testing set (blinded from the NN) of 20 to test the NN. The network model was the back-propagation, feed-forward model. Various networks were tested, and the most accurate networks for peak and trough (calculated as mean percent error, root mean squared error of the testing group, and tau value between observed and predicted values) were reported. The results indicate that NNs can predict gentamicin serum concentrations accurately from various input data over a range of patient ages and renal function and may offer advantages over traditional dose prediction methods for gentamicin.

  1. Modular, Hierarchical Learning By Artificial Neural Networks

    Science.gov (United States)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  2. Neural network application for illicit substances identification; Aplicacao de redes neurais para a identificacao de substancias ilicitas

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Wallace V.; Silva, Ademir X. da; Crispim, Verginia R.; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    Thermal neutron activation analysis is based on neutron capture prompt gamma-ray analysis and has been used in wide variety of fields, for examples, for inspection of checked airline baggage and for detection of buried land mines. In all of these applications, the detected {gamma}-ray intensities from the elements present are used to estimate their concentrations. A study about application using a trained neutral network is presented to determine the presence of illicit substances, such as explosives and drugs, carried out in the luggages. The illicit substances emit characteristic detected {gamma}-ray which are the fingerprint of each isotope. The fingerprint data-base of the gamma-ray spectrum of substances is obtained via Monte Carlo N-Particle Transport code, MCNP, version 4B. It was possible to train the neural network to determine the presence of explosives and narcotics even hidden by several materials. (author)

  3. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  4. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  5. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  6. The holographic neural network: Performance comparison with other neural networks

    Science.gov (United States)

    Klepko, Robert

    1991-10-01

    The artificial neural network shows promise for use in recognition of high resolution radar images of ships. The holographic neural network (HNN) promises a very large data storage capacity and excellent generalization capability, both of which can be achieved with only a few learning trials, unlike most neural networks which require on the order of thousands of learning trials. The HNN is specially designed for pattern association storage, and mathematically realizes the storage and retrieval mechanisms of holograms. The pattern recognition capability of the HNN was studied, and its performance was compared with five other commonly used neural networks: the Adaline, Hamming, bidirectional associative memory, recirculation, and back propagation networks. The patterns used for testing represented artificial high resolution radar images of ships, and appear as a two dimensional topology of peaks with various amplitudes. The performance comparisons showed that the HNN does not perform as well as the other neural networks when using the same test data. However, modification of the data to make it appear more Gaussian distributed, improved the performance of the network. The HNN performs best if the data is completely Gaussian distributed.

  7. Fuzzy logic and neural network technologies

    Science.gov (United States)

    Villarreal, James A.; Lea, Robert N.; Savely, Robert T.

    1992-01-01

    Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.

  8. Rule Extraction Algorithm for Deep Neural Networks: A Review

    OpenAIRE

    Hailesilassie, Tameru

    2016-01-01

    Despite the highest classification accuracy in wide varieties of application areas, artificial neural network has one disadvantage. The way this Network comes to a decision is not easily comprehensible. The lack of explanation ability reduces the acceptability of neural network in data mining and decision system. This drawback is the reason why researchers have proposed many rule extraction algorithms to solve the problem. Recently, Deep Neural Network (DNN) is achieving a profound result ove...

  9. An algorithm for generating modular hierarchical neural network classifiers: a step toward larger scale applications

    Science.gov (United States)

    Roverso, Davide

    2003-08-01

    Many-class learning is the problem of training a classifier to discriminate among a large number of target classes. Together with the problem of dealing with high-dimensional patterns (i.e. a high-dimensional input space), the many class problem (i.e. a high-dimensional output space) is a major obstacle to be faced when scaling-up classifier systems and algorithms from small pilot applications to large full-scale applications. The Autonomous Recursive Task Decomposition (ARTD) algorithm is here proposed as a solution to the problem of many-class learning. Example applications of ARTD to neural classifier training are also presented. In these examples, improvements in training time are shown to range from 4-fold to more than 30-fold in pattern classification tasks of both static and dynamic character.

  10. Application of Artificial Neural Network to Predict Colour Change, Shrinkage and Texture of Osmotically Dehydrated Pumpkin

    Science.gov (United States)

    Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.

    2017-06-01

    The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.

  11. Application of artificial neural networks to a study of nursing burnout.

    Science.gov (United States)

    Ladstätter, F; Garrosa, E; Badea, C; Moreno, B

    2010-09-01

    Nursing is generally considered to be a profession with high levels of emotional and physical stress that tend to increase. These high stress levels lead to a high risk of burnout. The objective was to assess whether artificial neural network (ANN) paradigms offer greater predictive accuracy than statistical methodologies, which are commonly used in the field of burnout. A radial basis function (RBF) network and hierarchical stepwise regression was used to assess burnout. The comparison of the two methodologies was carried out by analysing a sample of 462 nurses and student nurses. The subjects were from three hospitals in Madrid (Spain), who completed the 'Nursing Burnout Scale' survey. A RBF network was better suited for the analysis of burnout than hierarchical stepwise regression. The outcomes indicate furthermore that the relationship with the burnout process of the predictive variables age, job status, workload, experience with pain and death, conflictive interaction, role ambiguity and hardy personality is not entirely linear. The usage of ANNs in the field of burnout has been justified due to their superior ability to capture non-linear relationships, which is relevant for theory development. STATEMENT OF RELEVANCE: Due to the superior ability to capture non-linear relationships, ANNs are better suited to explain and predict burnout and its subdimensions than common statistical methods. From this perspective, more specific programmes to prevent burnout and its consequences in the workplace can be designed.

  12. Neural Network Communications Signal Processing

    Science.gov (United States)

    1994-08-01

    Technical Information Report for the Neural Network Communications Signal Processing Program, CDRL A003, 31 March 1993. Software Development Plan for...track changing jamming conditions to provide the decoder with the best log- likelihood ratio metrics at a given time. As part of our development plan we...Artificial Neural Networks (ICANN-91) Volume 2, June 24-28, 1991, pp. 1677-1680. Kohonen, Teuvo, Raivio, Kimmo, Simula, Oli, Venta , 011i, Henriksson

  13. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  14. Artificial astrocytes improve neural network performance.

    Science.gov (United States)

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  15. Neural Networks and Their Applications for the Oil Industry Les réseaux neuronaux et leurs applications pour l'industrie pétrolière

    Directory of Open Access Journals (Sweden)

    Fogelman-Soulie F.

    2006-11-01

    Full Text Available Neural Networks can be used in many different areas of problems related to Petroleum Exploration and Production. There already exist well defined classes of applications, together with appropriate Neural Networks architectures. Detailed theoretical results allow to monitor and evaluate the results obtained by Neural Networks. Sophisticated applications will certainly require the use of multi-modular architectures. Les réseaux neuronaux peuvent être utilisés pour de nombreux problèmes dans les domaines de l'exploration et la production de pétrole. Il existe d'ores et déjà des classes d'applications bien définies, pour lesquelles on connaît les architectures neuronales les plus adaptées. Des résultats théoriques précis permettent de contrôler et d'évaluer les performances obtenues avec les réseaux neuronaux. Les applications complexes demanderont certainement la mise en oeuvre d'architectures multi-modulaires.

  16. Toward implementation of artificial neural networks that "really work".

    Science.gov (United States)

    Leon, M. A.; Keller, J.

    1997-01-01

    Artificial neural networks are established analytical methods in bio-medical research. They have repeatedly outperformed traditional tools for pattern recognition and clinical outcome prediction while assuring continued adaptation and learning. However, successful experimental neural networks systems seldom reach a production state. That is, they are not incorporated into clinical information systems. It could be speculated that neural networks simply must undergo a lengthy acceptance process before they become part of the day to day operations of health care systems. However, our experience trying to incorporate experimental neural networks into information systems lead us to believe that there are technical and operational barriers that greatly difficult neural network implementation. A solution for these problems may be the delineation of policies and procedures for neural network implementation and the development a new class of neural network client/server applications that fit the needs of current clinical information systems. PMID:9357613

  17. Evolving Chart Pattern Sensitive Neural Network Based Forex Trading Agents

    CERN Document Server

    Sher, Gene I

    2011-01-01

    Though machine learning has been applied to the foreign exchange market for quiet some time now, and neural networks have been shown to yield good results, in modern approaches neural network systems are optimized through the traditional methods, and their input signals are vectors containing prices and other indicator elements. The aim of this paper is twofold, the presentation and testing of the application of topology and weight evolving artificial neural network (TWEANN) systems to automated currency trading, and the use of chart images as input to a geometrical regularity aware indirectly encoded neural network systems. This paper presents the benchmark results of neural network based automated currency trading systems evolved using TWEANNs, and compares the generalization capabilities of these direct encoded neural networks which use the standard price vector inputs, and the indirect (substrate) encoded neural networks which use chart images as input. The TWEANN algorithm used to evolve these currency t...

  18. Application of competitive Hopfield neural network to brain-computer interface systems.

    Science.gov (United States)

    Hsu, Wei-Yen

    2012-02-01

    We propose an unsupervised recognition system for single-trial classification of motor imagery (MI) electroencephalogram (EEG) data in this study. Competitive Hopfield neural network (CHNN) clustering is used for the discrimination of left and right MI EEG data posterior to selecting active segment and extracting fractal features in multi-scale. First, we use continuous wavelet transform (CWT) and Student's two-sample t-statistics to select the active segment in the time-frequency domain. The multiresolution fractal features are then extracted from wavelet data by means of modified fractal dimension. At last, CHNN clustering is adopted to recognize extracted features. Due to the characteristic of non-supervision, it is proper for CHNN to classify non-stationary EEG signals. The results indicate that CHNN achieves 81.9% in average classification accuracy in comparison with self-organizing map (SOM) and several popular supervised classifiers on six subjects from two data sets.

  19. Application of generalized regression neural network on fast 3D reconstruction

    Institute of Scientific and Technical Information of China (English)

    Babakhani Asad; DU Zhi-jiang; SUN Li-ning; Kardan Reza; Mianji A. Fereidoun

    2007-01-01

    In robot-assisted surgery projects,researchers should be able to make fast 3 D reconstruction. Usually 2D images acquired with common diagnostic equipments such as UT, CT and MRI are not enough and complete for an accurate 3D reconstruction. There are some interpolation methods for approximating non value voxels which consume large execution time. A novel algorithm is introduced based on generalized regression neural network (GRNN) which can interpolate unknown voxles fast and reliable. The GRNN interpolation is used to produce new 2D images between each two succeeding ultrasonic images. It is shown that the composition of GRNN with image distance transformation can produce higher quality 3D shapes. The results of this method are compared with other interpolation methods practically. It shows this method can decrease overall time consumption on online 3D reconstruction.

  20. An orientation selective neural network and its application to cosmic muon identification

    CERN Document Server

    Abramowicz, H; Naftaly, U; Sahar-Pikielny, C; Abramowicz, Halina; Horn, David; Naftaly, Ury; Sahar-Pikielny, Carmit

    1996-01-01

    We propose a novel method for identification of a linear pattern of pixels on a two-dimensional grid. Following principles employed by the visual cortex, we employ orientation selective neurons in a neural network which performs this task. The method is then applied to a sample of data collected with the ZEUS detector at HERA in order to identify cosmic muons which leave a linear pattern of signals in the segmented uranium-scintillator calorimeter. A two dimensional representation of the relevant part of the detector is used. The results compared with a visual scan point to a very satisfactory cosmic muon identification. The algorithm performs well in the presence of noise and pixels with limited efficiency. Given its architecture, this system becomes a good candidate for fast pattern recognition in parallel processing devices.

  1. Calibration of neural networks using genetic algorithms, with application to optimal path planning

    Science.gov (United States)

    Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel

    1987-01-01

    Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.

  2. Stationary oscillation of an impulsive delayed system and its application to chaotic neural networks.

    Science.gov (United States)

    Sun, Jitao; Lin, Hai

    2008-09-01

    This paper investigates the stationary oscillation for an impulsive delayed system which represents a class of nonlinear hybrid systems. First, a new concept of S-stability is introduced for nonlinear impulsive delayed systems. Based on this new concept and fixed point theorem, the relationship between S-stability and stationary oscillation (i.e., existence, uniqueness and global stability of periodic solutions) for the nonlinear impulsive delayed system is explored. It is shown that the nonlinear impulsive delayed system has a stationary oscillation if the system is S-stable. Second, an easily verifiable sufficient condition is then obtained for stationary oscillations of nonautonomous neural networks with both time delays and impulses by using the new criterion. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed method.

  3. A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control

    Directory of Open Access Journals (Sweden)

    Zhekang Dong

    2014-01-01

    Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  4. Application of neural networks and support vector machine for significant wave height prediction

    Directory of Open Access Journals (Sweden)

    Jadran Berbić

    2017-07-01

    Full Text Available For the purposes of planning and operation of maritime activities, information about wave height dynamics is of great importance. In the paper, real-time prediction of significant wave heights for the following 0.5–5.5 h is provided, using information from 3 or more time points. In the first stage, predictions are made by varying the quantity of significant wave heights from previous time points and various ways of using data are discussed. Afterwards, in the best model, according to the criteria of practicality and accuracy, the influence of wind is taken into account. Predictions are made using two machine learning methods – artificial neural networks (ANN and support vector machine (SVM. The models were built using the built-in functions of software Weka, developed by Waikato University, New Zealand.

  5. Application of laser-induced breakdown spectroscopy (LIBS) and neural networks to olive oils analysis.

    Science.gov (United States)

    Caceres, Jorge O; Moncayo, Samuel; Rosales, Juan D; de Villena, Francisco Javier Manuel; Alvira, Fernando C; Bilmes, Gabriel M

    2013-09-01

    The adulteration and traceability of olive oils are serious problems in the olive oil industry. In this work, a method based on laser-induced breakdown spectroscopy (LIBS) and neural networks (NNs) has been developed and applied to the identification, quality control, traceability, and adulteration detection of extra virgin olive oils. Instant identification of the samples is achieved using a spectral library, which was obtained by analysis of representative samples using a single laser pulse and treatment by NNs. The samples used in this study belong to four countries. The study also included different regions of each country. The results obtained allow the identification of the oils tested with a certainty of more than 95%. Single-shot measurements were enough for clear identification of the samples. The method can be developed for automatic real-time, fast, reliable, and robust measurements, and the system can be packed into portable form for non-specialist users.

  6. An orientation selective neural network and its application to cosmic muon identification

    Science.gov (United States)

    Abramowicz, Halina; Horn, David; Naftaly, Ury; Sahar-Pikielny, Carmit

    1996-02-01

    We propose a novel method for identification of a linear pattern of pixels on a two-dimensional grid. Following principles employed by the visual cortex, we employ orientation selective neurons in a neural network which performs this task. The method is then applied to a sample of data collected with the ZEUS detector at HERA in order to identify cosmic muons which leave a linear pattern of signals in the segmented uranium-scintillator calorimeter. A two dimensional representation of the relevant part of the detector is used. The results compared with a visual scan point to a very satisfactory cosmic muon identification. The algorithm performs well in the presence of noise and pixels with limited efficiency. Given its architecture, this system becomes a good candidate for fast pattern recognition in parallel processing devices.

  7. A RBF neural network model with GARCH errors: Application to electricity price forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Leandro dos Santos [Industrial and Systems Engineering Graduate Program, PPGEPS, Pontifical Catholic University of Parana, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Santos, Andre A.P. [Department of Statistics, Universidad Carlos III de Madrid, C/ Madrid, 126, 28903 Getafe, Madrid (Spain)

    2011-01-15

    In this article, we propose a nonlinear forecasting model based on radial basis function neural networks (RBF-NNs) with Gaussian activation functions and robust clustering algorithms to model the conditional mean and a parametric generalized autoregressive conditional heteroskedasticity (GARCH) specification to model the conditional volatility. Instead of calibrating the parameters of the RBF-NNs via numerical simulations, we propose an estimation procedure by which the number of basis functions, their corresponding widths and the parameters of the GARCH model are jointly estimated via maximum likelihood along with a genetic algorithm to maximize the likelihood function. We use this model to provide multi-step-ahead point and direction-of-change forecasts of the Spanish electricity pool prices. (author)

  8. Forecasting Monthly Electricity Demands: An Application of Neural Networks Trained by Heuristic Algorithms

    Directory of Open Access Journals (Sweden)

    Jeng-Fung Chen

    2017-03-01

    Full Text Available Electricity demand forecasting plays an important role in capacity planning, scheduling, and the operation of power systems. Reliable and accurate prediction of electricity demands is therefore vital. In this study, artificial neural networks (ANNs trained by different heuristic algorithms, including Gravitational Search Algorithm (GSA and Cuckoo Optimization Algorithm (COA, are utilized to estimate monthly electricity demands. The empirical data used in this study are the historical data affecting electricity demand, including rainy time, temperature, humidity, wind speed, etc. The proposed models are applied to Hanoi, Vietnam. Based on the performance indices calculated, the constructed models show high forecasting performances. The obtained results also compare with those of several well-known methods. Our study indicates that the ANN-COA model outperforms the others and provides more accurate forecasting than traditional methods.

  9. Short-term load forecasting using neural network for future smart grid application

    Science.gov (United States)

    Zennamo, Joseph Anthony, III

    Short-term load forecasting of power system has been a classic problem for a long time. Not merely it has been researched extensively and intensively, but also a variety of forecasting methods has been raised. This thesis outlines some aspects and functions of smart meter. It also presents different policies and current statuses as well as future projects and objectives of SG development in several countries. Then the thesis compares main aspects about latest products of smart meter from different companies. Lastly, three types of prediction models are established in MATLAB to emulate the functions of smart grid in the short-term load forecasting, and then their results are compared and analyzed in terms of accuracy. For this thesis, more variables such as dew point temperature are used in the Neural Network model to achieve more accuracy for better short-term load forecasting results.

  10. Application of multi regressive linear model and neural network for wear prediction of grinding mill liners

    Directory of Open Access Journals (Sweden)

    Farzaneh Ahmadzadeh

    2013-06-01

    Full Text Available The liner of an ore grinding mill is a critical component in the grinding process, necessary for both high metal recovery and shell protection. From an economic point of view, it is important to keep mill liners in operation as long as possible, minimising the downtime for maintenance or repair. Therefore, predicting their wear is crucial. This paper tests different methods of predicting wear in the context of remaining height and remaining life of the liners. The key concern is to make decisions on replacement and maintenance without stopping the mill for extra inspection as this leads to financial savings. The paper applies linear multiple regression and artificial neural networks (ANN techniques to determine the most suitable methodology for predicting wear. The advantages of the ANN model over the traditional approach of multiple regression analysis include its high accuracy.

  11. Impulsive control of stochastic systems with applications in chaos control, chaos synchronization, and neural networks.

    Science.gov (United States)

    Li, Chunguang; Chen, Luonan; Aihara, Kazuyuki

    2008-06-01

    Real systems are often subject to both noise perturbations and impulsive effects. In this paper, we study the stability and stabilization of systems with both noise perturbations and impulsive effects. In other words, we generalize the impulsive control theory from the deterministic case to the stochastic case. The method is based on extending the comparison method to the stochastic case. The method presented in this paper is general and easy to apply. Theoretical results on both stability in the pth mean and stability with disturbance attenuation are derived. To show the effectiveness of the basic theory, we apply it to the impulsive control and synchronization of chaotic systems with noise perturbations, and to the stability of impulsive stochastic neural networks. Several numerical examples are also presented to verify the theoretical results.

  12. Digital systems for artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Atlas, L.E. (Interactive Systems Design Lab., Univ. of Washington, WA (US)); Suzuki, Y. (NTT Human Interface Labs. (US))

    1989-11-01

    A tremendous flurry of research activity has developed around artificial neural systems. These systems have also been tested in many applications, often with positive results. Most of this work has taken place as digital simulations on general-purpose serial or parallel digital computers. Specialized neural network emulation systems have also been developed for more efficient learning and use. The authors discussed how dedicated digital VLSI integrated circuits offer the highest near-term future potential for this technology.

  13. A new fuzzy regression model based on interval-valued fuzzy neural network and its applications to management

    Directory of Open Access Journals (Sweden)

    Somaye Yeylaghi

    2017-06-01

    Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.

  14. The application of artificial neural network model in the non-invasive diagnosis of liver fibrosis

    Directory of Open Access Journals (Sweden)

    Bo LI

    2012-12-01

    Full Text Available Objective  To construct and evaluate an artificial neural network (ANN model as a new non-invasive diagnostic method for clinical assessment of liver fibrosis at early stage. Methods  The model was set up and tested among 683 chronic hepatitis B (CHB patients, with authentic positive clinical biopsy results, proved to have liver fibrosis or cirrhosis, admitted to 302 Hospital of PLA from May 2008 to March 2011. Among 683 samples, 504 samples were diagnosed as cirrhosis as a result of CHB, and 179 liver fibrosis due to other liver diseases. 134 out of 683 patients were included in training group by stratified sampling, and the others for verification. Six items (age, AST, PTS, PLT, GGT and DBil were selected as input layer indexes to set up the model for evaluation. Results  The ANN model for diagnosis of liver fibrosis was set up. The diagnostic accuracy was 77.4%, sensitivity was 76.8%, and specificity was 77.8%. Its Kappa concordance tests showed the diagnosis result of the model was consistent with biopsy result (Kappa index=0.534. The accuracy, sensitivity and specificity of CHB patients were 80.4%, 79.9% and 80.7% (Kappa index=0.598 respectively, and those for other liver diseases were 67.9%, 64.3% and 69.7% (Kappa index=0.316. Conclusion  The artificial neural network model established by the authors demonstrates its high sensitivity and specificity as a new non-invasive diagnostic method for liver fibrosis induced by HBV infection. However, it shows limited diagnostic reliability to fibrosis as a result of other liver diseases.

  15. Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis

    Science.gov (United States)

    Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.

    2016-05-01

    Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.

  16. VLSI implementation of neural networks.

    Science.gov (United States)

    Wilamowski, B M; Binfet, J; Kaynak, M O

    2000-06-01

    Currently, fuzzy controllers are the most popular choice for hardware implementation of complex control surfaces because they are easy to design. Neural controllers are more complex and hard to train, but provide an outstanding control surface with much less error than that of a fuzzy controller. There are also some problems that have to be solved before the networks can be implemented on VLSI chips. First, an approximation function needs to be developed because CMOS neural networks have an activation function different than any function used in neural network software. Next, this function has to be used to train the network. Finally, the last problem for VLSI designers is the quantization effect caused by discrete values of the channel length (L) and width (W) of MOS transistor geometries. Two neural networks were designed in 1.5 microm technology. Using adequate approximation functions solved the problem of activation function. With this approach, trained networks were characterized by very small errors. Unfortunately, when the weights were quantized, errors were increased by an order of magnitude. However, even though the errors were enlarged, the results obtained from neural network hardware implementations were superior to the results obtained with fuzzy system approach.

  17. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  18. A Novel Method in Two-Step-Ahead Weight Adjustment of Recurrent Neural Networks: Application in Market Forecasting

    Directory of Open Access Journals (Sweden)

    Narges Talebi Motlagh

    2016-07-01

    Full Text Available Gold price prediction is a very complex nonlinear problem which is severely difficult. Real-time price prediction, as a principle of many economic models, is one of the most challenging tasks for economists since the context of the financial agents are often dynamic. Since in financial time series, direction prediction is important, in this work, an innovative Recurrent Neural Network (RNN is utilized to obtain accurate Two-Step- Ahead (2SA prediction results and ameliorate forecasting per- formances of gold market. The training method of the proposed network has been combined with an adaptive learning rate algorithm and a linear combination of Directional Symmetry (DS is utilized in the training phase. The proposed method has been developed for online and offline applications. Simulations and experiments on the daily Gold market data and the benchmark time series of Lorenz and Rossler shows the high efficiency of proposed method which could forecast future gold price precisely.

  19. Application of Artificial Neural Network to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts

    CERN Document Server

    Kim, Kyungmin; Hodge, Kari A; Kim, Young-Min; Lee, Chang-Hwan; Lee, Hyun Kyu; Oh, John J; Oh, Sang Hoon; Son, Edwin J

    2014-01-01

    We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts. The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability is improved by the artificial neural network in comparison to the conventional detection statistic. Therefore, this algorithm increases the distance at which a gravitational-wave signal could be observed in coincidence with a gamma-ray burst. In order to demonstrate the performance, we also evaluate a few seconds of gravitational-wave data segment using the trained networks and obtain the false alarm probability. We suggest that the artificial neural network can be a complementary method to the conventio...

  20. Long time series of soil moisture obtained using neural networks: application to AMSR-E and SMOS

    Science.gov (United States)

    Rodriguez-Fernandez, Nemesio J.; Kerr, Yann H.; de Jeu, Rcihard A. M.; van der Schalie, Robin; Wigneron, Jean Pierre; Ayaari, Amen al; Dolman, Han; Drusch, Matthias; Mecklenburg, Sussane

    2015-04-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite is the first mission specifically designed to measure soil moisture (hereafter SM) from space. The instrument on-board SMOS is a L-band aperture synthesis radiometer, with full-polarization and multi-angular capabilities (Mecklenburg et al. 2012). The operational SM retrieval algorithm is based on a physical model (Kerr et al. 2012). In addition, Rodriguez-Fernandez et al. (2014) have recently implemented an inverse model based in neural networks using the approach of Aires & Prigent (2006), which consists in training the neural networks with numerical weather prediction models (ECMWF, Balsamo et al. 2009). In the context of an ESA funded project (de Jeu et al, this conference, session CL 5.7), we have studied this neural network approach to create a consistent soil moisture dataset from 2003 to 2014 using NASA/JAXA Advanced Scanning Microwave Radiometer (AMSR-E) and ESA SMOS radiometers as input data. Two neural networks algorithms have been defined and optimized using AMSR-E or SMOS as input data in the periods 2003-Oct 2011 and 2010-2014, respectively. The two missions overlapping period has been used to demonstrate the consistency of the SM dataset produced with both algorithms by comparing monthly averages of SM and by comparing with time series of in situ measurements at selected locations and other SM products such as the SMOS operational SM, ECMWF model SM, and AMSR-E LPRM SM (Owe et al. 2008). Finally, the long time series of SM obtained with neural networks will be compared to in-situ measurements and ECMWF ERA-Interim SM at selected locations. This long-term soil moisture dataset can be used for hydrological and climate applications and it is the first step towards a longer dataset which will include additional sensors. References Aires, F. & Prigent, C. Toward a new generation of satellite surface products? Journal of Geophysical Research: Atmospheres (1984--2012), Wiley Online Library, 2006, 11

  1. Convolutional neural networks for P300 detection with application to brain-computer interfaces.

    Science.gov (United States)

    Cecotti, Hubert; Gräser, Axel

    2011-03-01

    A Brain-Computer Interface (BCI) is a specific type of human-computer interface that enables the direct communication between human and computers by analyzing brain measurements. Oddball paradigms are used in BCI to generate event-related potentials (ERPs), like the P300 wave, on targets selected by the user. A P300 speller is based on this principle, where the detection of P300 waves allows the user to write characters. The P300 speller is composed of two classification problems. The first classification is to detect the presence of a P300 in the electroencephalogram (EEG). The second one corresponds to the combination of different P300 responses for determining the right character to spell. A new method for the detection of P300 waves is presented. This model is based on a convolutional neural network (CNN). The topology of the network is adapted to the detection of P300 waves in the time domain. Seven classifiers based on the CNN are proposed: four single classifiers with different features set and three multiclassifiers. These models are tested and compared on the Data set II of the third BCI competition. The best result is obtained with a multiclassifier solution with a recognition rate of 95.5 percent, without channel selection before the classification. The proposed approach provides also a new way for analyzing brain activities due to the receptive field of the CNN models.

  2. Modeling activity-dependent plasticity in BCM spiking neural networks with application to human behavior recognition.

    Science.gov (United States)

    Meng, Yan; Jin, Yaochu; Yin, Jun

    2011-12-01

    Spiking neural networks (SNNs) are considered to be computationally more powerful than conventional NNs. However, the capability of SNNs in solving complex real-world problems remains to be demonstrated. In this paper, we propose a substantial extension of the Bienenstock, Cooper, and Munro (BCM) SNN model, in which the plasticity parameters are regulated by a gene regulatory network (GRN). Meanwhile, the dynamics of the GRN is dependent on the activation levels of the BCM neurons. We term the whole model "GRN-BCM." To demonstrate its computational power, we first compare the GRN-BCM with a standard BCM, a hidden Markov model, and a reservoir computing model on a complex time series classification problem. Simulation results indicate that the GRN-BCM significantly outperforms the compared models. The GRN-BCM is then applied to two widely used datasets for human behavior recognition. Comparative results on the two datasets suggest that the GRN-BCM is very promising for human behavior recognition, although the current experiments are still limited to the scenarios in which only one object is moving in the considered video sequences.

  3. Application of neural network model coupling with the partial least-squares method for forecasting watre yield of mine

    Institute of Scientific and Technical Information of China (English)

    CHEN Nan-xiang; CAO Lian-hai; HUANG Qiang

    2005-01-01

    Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.

  4. Application of cluster analysis and autoregressive neural networks for the noise diagnostics of the IBR-2M reactor

    Science.gov (United States)

    Pepelyshev, Yu. N.; Tsogtsaikhan, Ts.; Ososkov, G. A.

    2016-09-01

    The pattern recognition methodologies and artificial neural networks were used widely for the IBR-2M pulsed reactor noise diagnostics. The cluster analysis allows a detailed study of the structure and fast reactivity effects of IBR-2M and nonlinear autoregressive neural network (NAR) with local feedback connection allows predicting slow reactivity effects. In this work we present results of a study on pulse energy noise dynamics and prediction of liquid sodium flow rate through the core of the IBR-2M reactor using cluster analysis and an artificial neural network.

  5. Neural network model for growth of Salmonella serotypes in ground chicken subjected to temperature abuse during cold storage for application in HACCP and risk assessment

    Science.gov (United States)

    With the advent of commercial software applications, it is now easy to develop neural network models for predictive microbiology applications. However, different versions of the model may be required to meet the divergent needs of model users. In the current study, the commercial software applicat...

  6. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  7. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  8. A new C++ implemented feed forward neural network simulator

    Directory of Open Access Journals (Sweden)

    J. Sütő

    2013-12-01

    Full Text Available This paper presents the implementation of a simulator application for feed forward neural networks which was made in Qt application framework. The paper demonstrates the object oriented design and the performance of the software. The main topics cover the class organization and some test results where the Matlab neural network toolbox was used as reference.

  9. Foreign currency rate forecasting using neural networks

    Science.gov (United States)

    Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad

    2000-03-01

    Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.

  10. Layered learning of soccer robot based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Discusses the application of artificial neural network for MIROSOT, introduces a layered model of BP network of soccer robot for learning basic behavior and cooperative behavior, and concludes from experimental results that the model is effective.

  11. Semantic segmentation of bioimages using convolutional neural networks

    CSIR Research Space (South Africa)

    Wiehman, S

    2016-07-01

    Full Text Available Convolutional neural networks have shown great promise in both general image segmentation problems as well as bioimage segmentation. In this paper, the application of different convolutional network architectures is explored on the C. elegans live...

  12. The Application of Cognitive Diagnostic Approaches via Neural Network Analysis of Serious Educational Games

    Science.gov (United States)

    Lamb, Richard L.

    Serious Educational Games (SEGs) have been a topic of increased popularity within the educational realm since the early millennia. SEGs are generalized form of Serious Games to mean games for purposes other than entertainment but, that also specifically include training, educational purpose and pedagogy within their design. This rise in popularity (for SEGs) has occurred at a time when school systems have increased the type, number, and presentations of student achievement tests for decision-making purposes. These tests often task the form of end of course (year) tests and periodic benchmark testing. As the use of these tests, has increased policymakers have suggested their use as a measure for teacher accountability. The change in testing resulted from a push by school districts and policy makers at various component levels for a data-driven decision-making (D3M) approach. With the data-driven decision making approaches by school districts, there has been an increased focus on the measurement and assessment of student content knowledge with little focus on the contributing factors and cognitive attributes within learning that cross multiple-content areas. One-way to increase the focus on these aspects of learning (factors and attributes) that are additional to content learning is through assessments based in cognitive diagnostics. Cognitive diagnostics are a family of methodological approaches in which tasks tie to specific cognitive attributes for analytical purposes. This study explores data derived from computer data logging (n=158,000) in an observational design, using traditional statistical techniques such as clustering (exploratory and confirmatory), item response theory and through data mining techniques such as artificial neural network analysis. From these analyses, a model of student learning emerges illustrating student thinking and learning while engaged in SEG Design. This study seeks to use cognitive diagnostic type approaches to measure student

  13. Modeling of Magneto-Rheological Damper with Neural Network

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With the revival of magnetorheological technology research in the 1980's, its application in vehicles is increasingly focused on vibration suppression. Based on the importance of magnetorheological damper modeling, nonparametric modeling with neural network, which is a promising development in semi-active online control of vehicles with MR suspension, has been carried out in this study. A two layer neural network with 7 neurons in a hidden layer and 3 inputs and 1 output was established to simulate the behavior of MR damper at different excitation currents. In the neural network modeling, the damping force is a function of displacement, velocity and the applied current. A MR damper for vehicles is fabricated and tested by MTS; the data acquired are utilized for neural network training and validation. The application and validation show that the predicted forces of the neural network match well with the forces tested with a small variance, which demonstrates the effectiveness and precision of neural network modeling.

  14. Application of artificial neural networks and DFT-based parameters for prediction of reaction kinetics of ethylbenzene dehydrogenase

    Science.gov (United States)

    Szaleniec, Maciej; Witko, Małgorzata; Tadeusiewicz, Ryszard; Goclon, Jakub

    2006-03-01

    Artificial neural networks (ANNs) are used for classification and prediction of enzymatic activity of ethylbenzene dehydrogenase from EbN1 Azoarcus sp. bacterium. Ethylbenzene dehydrogenase (EBDH) catalyzes stereo-specific oxidation of ethylbenzene and its derivates to alcohols, which find its application as building blocks in pharmaceutical industry. ANN systems are trained based on theoretical variables derived from Density Functional Theory (DFT) modeling, topological descriptors, and kinetic parameters measured with developed spectrophotometric assay. Obtained models exhibit high degree of accuracy (100% of correct classifications, correlation between predicted and experimental values of reaction rates on the 0.97 level). The applicability of ANNs is demonstrated as useful tool for the prediction of biochemical enzyme activity of new substrates basing only on quantum chemical calculations and simple structural characteristics. Multi Linear Regression and Molecular Field Analysis (MFA) are used in order to compare robustness of ANN and both classical and 3D-quantitative structure-activity relationship (QSAR) approaches.

  15. Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data.

    Science.gov (United States)

    Luque-Baena, Rafael Marcos; Urda, Daniel; Subirats, Jose Luis; Franco, Leonardo; Jerez, Jose M

    2014-05-07

    Extracting relevant information from microarray data is a very complex task due to the characteristics of the data sets, as they comprise a large number of features while few samples are generally available. In this sense, feature selection is a very important aspect of the analysis helping in the tasks of identifying relevant genes and also for maximizing predictive information. Due to its simplicity and speed, Stepwise Forward Selection (SFS) is a widely used feature selection technique. In this work, we carry a comparative study of SFS and Genetic Algorithms (GA) as general frameworks for the analysis of microarray data with the aim of identifying group of genes with high predictive capability and biological relevance. Six standard and machine learning-based techniques (Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Naive Bayes (NB), C-MANTEC Constructive Neural Network, K-Nearest Neighbors (kNN) and Multilayer perceptron (MLP)) are used within both frameworks using six free-public datasets for the task of predicting cancer outcome. Better cancer outcome prediction results were obtained using the GA framework noting that this approach, in comparison to the SFS one, leads to a larger selection set, uses a large number of comparison between genetic profiles and thus it is computationally more intensive. Also the GA framework permitted to obtain a set of genes that can be considered to be more biologically relevant. Regarding the different classifiers used standard feedforward neural networks (MLP), LDA and SVM lead to similar and best results, while C-MANTEC and k-NN followed closely but with a lower accuracy. Further, C-MANTEC, MLP and LDA permitted to obtain a more limited set of genes in comparison to SVM, NB and kNN, and in particular C-MANTEC resulted in the most robust classifier in terms of changes in the parameter settings. This study shows that if prediction accuracy is the objective, the GA-based approach lead to better results

  16. Application of artificial neural networks to segmentation and classification of topographic profiles of ridge-flank seafloor

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Lourenco, E.; Kodagali, V.N.; Baracho, J.

    In this paper, we have utilized Artificial Neural Networks (ANN) for seafloor topographic data segmentation and roughness classification using the multibeam- Hydrosweep system (installed onboard ocean research vessel Sagar Kanya) data. Bathymetric...

  17. The novel application of artificial neural network on bioelectrical impedance analysis to assess the body composition in elderly

    National Research Council Canada - National Science Library

    Hsieh, Kuen-Chang; Chen, Yu-Jen; Lu, Hsueh-Kuan; Lee, Ling-Chun; Huang, Yong-Cheng; Chen, Yu-Yawn

    2013-01-01

    ...) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA...

  18. A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer.

    Science.gov (United States)

    Lisboa, P J G; Wong, H; Harris, P; Swindell, R

    2003-05-01

    A Bayesian framework is introduced to carry out Automatic Relevance Determination (ARD) in feedforward neural networks to model censored data. A procedure to identify and interpret the prognostic group allocation is also described. These methodologies are applied to 1616 records routinely collected at Christie Hospital, in a monthly cohort study with 5-year follow-up. Two cohort studies are presented, for low- and high-risk patients allocated by standard clinical staging. The results of contrasting the Partial Logistic Artificial Neural Network (PLANN)-ARD model with the proportional hazards model are that the two are consistent, but the neural network may be more specific in the allocation of patients into prognostic groups. With automatic model selection, the regularised neural network is more conservative than the default stepwise forward selection procedure implemented by SPSS with the Akaike Information Criterion.

  19. Spectral classification using convolutional neural networks

    CERN Document Server

    Hála, Pavel

    2014-01-01

    There is a great need for accurate and autonomous spectral classification methods in astrophysics. This thesis is about training a convolutional neural network (ConvNet) to recognize an object class (quasar, star or galaxy) from one-dimension spectra only. Author developed several scripts and C programs for datasets preparation, preprocessing and postprocessing of the data. EBLearn library (developed by Pierre Sermanet and Yann LeCun) was used to create ConvNets. Application on dataset of more than 60000 spectra yielded success rate of nearly 95%. This thesis conclusively proved great potential of convolutional neural networks and deep learning methods in astrophysics.

  20. Simulation of photosynthetic production using neural network

    Science.gov (United States)

    Kmet, Tibor; Kmetova, Maria

    2013-10-01

    This paper deals with neural network based optimal control synthesis for solving optimal control problems with control and state constraints and discrete time delay. The optimal control problem is transcribed into nonlinear programming problem which is implemented with adaptive critic neural network. This approach is applicable to a wide class of nonlinear systems. The proposed simulation methods is illustrated by the optimal control problem of photosynthetic production described by discrete time delay differential equations. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  1. Intelligent neural network classifier for automatic testing

    Science.gov (United States)

    Bai, Baoxing; Yu, Heping

    1996-10-01

    This paper is concerned with an application of a multilayer feedforward neural network for the vision detection of industrial pictures, and introduces a high characteristics image processing and recognizing system which can be used for real-time testing blemishes, streaks and cracks, etc. on the inner walls of high-accuracy pipes. To take full advantage of the functions of the artificial neural network, such as the information distributed memory, large scale self-adapting parallel processing, high fault-tolerance ability, this system uses a multilayer perceptron as a regular detector to extract features of the images to be inspected and classify them.

  2. Representations in neural network based empirical potentials

    Science.gov (United States)

    Cubuk, Ekin D.; Malone, Brad D.; Onat, Berk; Waterland, Amos; Kaxiras, Efthimios

    2017-07-01

    Many structural and mechanical properties of crystals, glasses, and biological macromolecules can be modeled from the local interactions between atoms. These interactions ultimately derive from the quantum nature of electrons, which can be prohibitively expensive to simulate. Machine learning has the potential to revolutionize materials modeling due to its ability to efficiently approximate complex functions. For example, neural networks can be trained to reproduce results of density functional theory calculations at a much lower cost. However, how neural networks reach their predictions is not well understood, which has led to them being used as a "black box" tool. This lack of understanding is not desirable especially for applications of neural networks in scientific inquiry. We argue that machine learning models trained on physical systems can be used as more than just approximations since they had to "learn" physical concepts in order to reproduce the labels they were trained on. We use dimensionality reduction techniques to study in detail the representation of silicon atoms at different stages in a neural network, which provides insight into how a neural network learns to model atomic interactions.

  3. Neural Network Based on GA-BP Algorithm and its Application in the Protein Secondary Structure Prediction

    Institute of Scientific and Technical Information of China (English)

    YANG Yang; LI Kai-yang

    2006-01-01

    The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication-the highest prediction rate 75.65%, the average prediction rate 65.04%.

  4. APPLICATION OF NEURAL NETWORK WITH MULTI-HIERARCHIC STRUCTURE TO EVALUATE SUSTAINABLE DEVELOPMENT OF THE COAL MINES

    Institute of Scientific and Technical Information of China (English)

    李新春; 陶学禹

    2000-01-01

    The neural network with multi-hierarchic structure is provided in this paper to evaluate sustainable development of the coal mines based on analyzing its effect factors. The whole evaluating system is composed of 5 neural networks.The feasibility of this method has been proved by case study. This study will provide a scientfic and theoretic foundation for evaluating the sustainable development of coal mines.

  5. Models of neural networks with fuzzy activation functions

    Science.gov (United States)

    Nguyen, A. T.; Korikov, A. M.

    2017-02-01

    This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.

  6. Time Series Prediction based on Hybrid Neural Networks

    Directory of Open Access Journals (Sweden)

    S. A. Yarushev

    2016-01-01

    Full Text Available In this paper, we suggest to use hybrid approach to time series forecasting problem. In first part of paper, we create a literature review of time series forecasting methods based on hybrid neural networks and neuro-fuzzy approaches. Hybrid neural networks especially effective for specific types of applications such as forecasting or classification problem, in contrast to traditional monolithic neural networks. These classes of problems include problems with different characteristics in different modules. The main part of paper create a detailed overview of hybrid networks benefits, its architectures and performance under traditional neural networks. Hybrid neural networks models for time series forecasting are discussed in the paper. Experiments with modular neural networks are given.

  7. Kannada character recognition system using neural network

    Science.gov (United States)

    Kumar, Suresh D. S.; Kamalapuram, Srinivasa K.; Kumar, Ajay B. R.

    2013-03-01

    Handwriting recognition has been one of the active and challenging research areas in the field of pattern recognition. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. As there is no sufficient number of works on Indian language character recognition especially Kannada script among 15 major scripts in India. In this paper an attempt is made to recognize handwritten Kannada characters using Feed Forward neural networks. A handwritten Kannada character is resized into 20x30 Pixel. The resized character is used for training the neural network. Once the training process is completed the same character is given as input to the neural network with different set of neurons in hidden layer and their recognition accuracy rate for different Kannada characters has been calculated and compared. The results show that the proposed system yields good recognition accuracy rates comparable to that of other handwritten character recognition systems.

  8. Recurrent Neural Network for Computing Outer Inverse.

    Science.gov (United States)

    Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin

    2016-05-01

    Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.

  9. Combined application of Artificial Neural Networks and life cycle assessment in lentil farming in Iran

    Directory of Open Access Journals (Sweden)

    Behzad Elhami

    2017-03-01

    Full Text Available In this study, an Artificial Neural Network (ANN was applied to model yield and environmental emissions from lentil cultivation in Esfahan province of Iran. Data was gathered from lentil farmers using face to face questionnaire method during 2014–2015 cropping season. Life cycle assessment (LCA was applied to investigate the environmental impact categories associated with lentil production. Based on the results, total energy input, energy output to input ratio and energy productivity were determined to be 32,970.10 MJ ha−1, 0.902 and 0.06 kg MJ−1, respectively. The greatest amount of energy consumption was attributed to chemical fertilizer (42.76%. Environmental analysis indicated that the acidification potential was higher than other environmental impact categories in lentil production system. Also results showed that the production of agricultural machinery was the main hotspot in abiotic depletion, eutrophication, global warming, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity impact categories, while direct emissions associated with lentil cultivation was the main hotspot in acidification potential and photochemical oxidation potential. In addition, diesel fuel was the main hotspot only in ozone layer depletion. The ANN model with 9-10-6-11 structure was identified as the most appropriate network for predicting yield and related environmental impact categories of lentil cultivation. Overall, the results of sensitivity analysis revealed that farmyard manure had the greatest effect on the most of the environmental impacts, while machinery was the most affecting parameter on the yield of the crop.

  10. Multigradient for Neural Networks for Equalizers

    Directory of Open Access Journals (Sweden)

    Chulhee Lee

    2003-06-01

    Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.

  11. Neural networks-based operational prototype for flash flood forecasting: application to Liane flash floods (France

    Directory of Open Access Journals (Sweden)

    Bertin Dominique

    2016-01-01

    Full Text Available The Liane River is a small costal river, famous for its floods, which can affect the city of Boulogne-sur-Mer. Due to the complexity of land cover and hydrologic processes, a black-box non-linear modelling was chosen using neural networks. The multilayer perceptron model, known for its property of universal approximation is thus chosen. Four models were designed, each one for one forecasting horizon using rainfall forecasts: 24h, 12h, 6h, 3h. The desired output of the model is original: it represents the maximal value of the water level respectively 24h, 12h, 6h, 3h ahead. Working with best forecasts of rain (the observed ones during the event in the past, on the major flood of the database in test set, the model provides excellent forecasts. Nash criteria calculated for the four lead times are 0.98 (3h, 0.97 (6h, 0.91 (12h, 0.89 (24h. Designed models were thus estimated as efficient enough to be implemented in a specific tool devoted to real time operational use. The software tool is described hereafter: designed in Java, it presents a friendly interface allowing applying various scenarios of future rainfalls, and a graphical visualization of the predicted maximum water levels and their associated real time observed values.

  12. Application of backpropagation artificial neural network prediction model for the PAH bioremediation of polluted soil.

    Science.gov (United States)

    Olawoyin, Richard

    2016-10-01

    The backpropagation (BP) artificial neural network (ANN) is a renowned and extensively functional mathematical tool used for time-series predictions and approximations; which also define results for non-linear functions. ANNs are vital tools in the predictions of toxicant levels, such as polycyclic aromatic hydrocarbons (PAH) potentially derived from anthropogenic activities in the microenvironment. In the present work, BP ANN was used as a prediction tool to study the potential toxicity of PAH carcinogens (PAHcarc) in soils. Soil samples (16 × 4 = 64) were collected from locations in South-southern Nigeria. The concentration of PAHcarc in laboratory cultivated white melilot, Melilotus alba roots grown on treated soils was predicted using ANN model training. Results indicated the Levenberg-Marquardt back-propagation training algorithm converged in 2.5E+04 epochs at an average RMSE value of 1.06E-06. The averagedR(2) comparison between the measured and predicted outputs was 0.9994. It may be deduced from this study that, analytical processes involving environmental risk assessment as used in this study can successfully provide prompt prediction and source identification of major soil toxicants.

  13. Convolutional Neural Networks for Biomedical Text Classification: Application in Indexing Biomedical Articles.

    Science.gov (United States)

    Rios, Anthony; Kavuluru, Ramakanth

    2015-09-01

    Building high accuracy text classifiers is an important task in biomedicine given the wealth of information hidden in unstructured narratives such as research articles and clinical documents. Due to large feature spaces, traditionally, discriminative approaches such as logistic regression and support vector machines with n-gram and semantic features (e.g., named entities) have been used for text classification where additional performance gains are typically made through feature selection and ensemble approaches. In this paper, we demonstrate that a more direct approach using convolutional neural networks (CNNs) outperforms several traditional approaches in biomedical text classification with the specific use-case of assigning medical subject headings (or MeSH terms) to biomedical articles. Trained annotators at the national library of medicine (NLM) assign on an average 13 codes to each biomedical article, thus semantically indexing scientific literature to support NLM's PubMed search system. Recent evidence suggests that effective automated efforts for MeSH term assignment start with binary classifiers for each term. In this paper, we use CNNs to build binary text classifiers and achieve an absolute improvement of over 3% in macro F-score over a set of selected hard-to-classify MeSH terms when compared with the best prior results on a public dataset. Additional experiments on 50 high frequency terms in the dataset also show improvements with CNNs. Our results indicate the strong potential of CNNs in biomedical text classification tasks.

  14. Application of Artificial Neural Network for Damage Detection in Planetary Gearbox of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Marcin Strączkiewicz

    2016-01-01

    Full Text Available In the monitoring process of wind turbines the utmost attention should be given to gearboxes. This conclusion is derived from numerous summary papers. They reveal that, on the one hand, gearboxes are one of the most fault susceptible elements in the drive-train and, on the other, the most expensive to replace. Although state-of-the-art CMS can usually provide advanced signal processing tools for extraction of diagnostic information, there are still many installations, where the diagnosis is based simply on the averaged wideband features like root-mean-square (RMS or peak-peak (PP. Furthermore, for machinery working in highly changing operational conditions, like wind turbines, those estimators are strongly fluctuating, and this fluctuation is not linearly correlated to operation parameters. Thus, the sudden increase of a particular feature does not necessarily have to indicate the development of fault. To overcome this obstacle, it is proposed to detect a fault development with Artificial Neural Network (ANN and further observation of linear regression parameters calculated on the estimation error between healthy and unknown condition. The proposed reasoning is presented on the real life example of ring gear fault in wind turbine’s planetary gearbox.

  15. Application of neural networks and genetic algorithms for sizing of photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, Adel [Faculty of Sciences and Technology, Department of Electronics, LAMEL, Jijel University, Ouled-Aissa, P.O. Box 98, Jijel 18000 (Algeria); Kalogirou, Soteris A. [Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O. Box 50329, Limassol 3603 (Cyprus); Drif, Mahmoud [Centre de dEveloppement des Energies Renouvelables (CDER), B.P 62, Bouzareah, Alger 16340 (Algeria)

    2010-12-15

    In this paper, an artificial neural network-based genetic algorithm (ANN-GA) model was developed for generating the sizing curve of stand-alone photovoltaic (SAPV) systems. Firstly, a numerical method is used for generating the sizing curves for different loss of load probability (LLP) corresponding to 40 sites located in Algeria. The inputs of ANN-GA are the geographical coordinates (Lat, Lon and Alt) and the LLP while the output is the sizing curve represented by C{sub A}=f(C{sub S}). Subsequently, the proposed ANN-GA model has been trained by using a set of 36 sites, whereas data for 4 sites which are not included in the training dataset have been used for testing the ANN-GA model. The results obtained are compared and tested with those of the numerical method. In addition, two new regression models have been developed and compared with the conventional regression models. The results show that, the proposed exponential regression model with three coefficients presents more accurate results than the conventional regression models. A new ANN has been used for predicting the sizing coefficients for the best regression model. These coefficients can be used for developing the sizing curve in different locations in Algeria. The results obtained showed that the coefficient of multiple determination (R{sup 2}) is 0.9998, which can be considered as very promising. (author)

  16. Application of Artificial Neural Network in the Research of the Bohai Bay Eutrophication

    Institute of Scientific and Technical Information of China (English)

    WU Qing; ZHAO Xinhua; ZHAO Quan

    2007-01-01

    In order to research the feasibility of artificial neural network (ANN) in the research of eutrophication of the Bohai Bay in China, an ANN model simulating chlorophyll a, b and c concentrations, concerning temperature, dissolved oxygen, salinity, pH value, chemical oxygen demand(COD), PO43- , NO2- and NO3- factors in the Bohai Bay was presented and validated. After experiencing and training by Matlab, the model's validation mean square error (MSE) performance is0.009 985 02. R-squared between estimated and observed concentrations of chlorophyll a, b and care 0.965 7, 0.998 7 and 0.970 7 respectively, indicating that the estimated value agrees with the observed value well, and the model can be used in the prediction of eutrophication of the Bohai Sea. In order to study the influence of model input factors on chlorophyll concentration (I. E. Model outputs), hypothetical scenarios were introduced to show model output responses to variations in in-put factors. The limitation of temperature, salinity and phosphate that induce red tide in the Bohai Bay was also presented.

  17. An Artificial Neural Network Application for Estimation of Natural Frequencies of Beams

    Directory of Open Access Journals (Sweden)

    Mehmet Avcar

    2015-06-01

    Full Text Available In this study, natural frequencies of the prismatical steel beams with various geometrical characteristics under the four different boundary conditions are determined using Artificial Neural Network (ANN technique. In that way, an alternative efficient method is aimed to develop for the solution of the present problem, which provides avoiding loss of time for computing some necessary parameters. In this context, initially, first ten frequency parameters of the beam are found, where Bernoulli-Euler beam theory was adopted, and then natural frequencies are computed theoretically. With the aid of theoretically obtained results, the data sets are formed and ANN models are constructed. Here, 36 models are developed using primary 3 models. The results are found from these models by changing the number and properties of the neurons and input data. The handiness of the present models is examined by comparing the results of these models with theoretically obtained results. The effects of the number of neurons, input data and training function on the models are investigated. In addition, multiple regression models are developed with the data, and adjusted R-square is examined for determining the inefficient input parameters

  18. Prediction of the thermal imaging minimum resolvable (circle) temperature difference with neural network application.

    Science.gov (United States)

    Fang, Yi-Chin; Wu, Bo-Wen

    2008-12-01

    Thermal imaging is an important technology in both national defense and the private sector. An advantage of thermal imaging is its ability to be deployed while fully engaged in duties, not limited by weather or the brightness of indoor or outdoor conditions. However, in an outdoor environment, many factors, including atmospheric decay, target shape, great distance, fog, temperature out of range and diffraction limits can lead to bad image formation, which directly affects the accuracy of object recognition. The visual characteristics of the human eye mean that it has a much better capacity for picture recognition under normal conditions than artificial intelligence does. However, conditions of interference significantly reduce this capacity for picture recognition for instance, fatigue impairs human eyesight. Hence, psychological and physiological factors can affect the result when the human eye is adopted to measure MRTD (minimum resolvable temperature difference) and MRCTD (minimum resolvable circle temperature difference). This study explores thermal imaging recognition, and presents a method for effectively choosing the characteristic values and processing the images fully. Neural network technology is successfully applied to recognize thermal imaging and predict MRTD and MRCTD (Appendix A), exceeding thermal imaging recognition under fatigue and the limits of the human eye.

  19. Deep biomarkers of human aging: Application of deep neural networks to biomarker development.

    Science.gov (United States)

    Putin, Evgeny; Mamoshina, Polina; Aliper, Alexander; Korzinkin, Mikhail; Moskalev, Alexey; Kolosov, Alexey; Ostrovskiy, Alexander; Cantor, Charles; Vijg, Jan; Zhavoronkov, Alex

    2016-05-01

    One of the major impediments in human aging research is the absence of a comprehensive and actionable set of biomarkers that may be targeted and measured to track the effectiveness of therapeutic interventions. In this study, we designed a modular ensemble of 21 deep neural networks (DNNs) of varying depth, structure and optimization to predict human chronological age using a basic blood test. To train the DNNs, we used over 60,000 samples from common blood biochemistry and cell count tests from routine health exams performed by a single laboratory and linked to chronological age and sex. The best performing DNN in the ensemble demonstrated 81.5 % epsilon-accuracy r = 0.90 with R(2) = 0.80 and MAE = 6.07 years in predicting chronological age within a 10 year frame, while the entire ensemble achieved 83.5% epsilon-accuracy r = 0.91 with R(2) = 0.82 and MAE = 5.55 years. The ensemble also identified the 5 most important markers for predicting human chronological age: albumin, glucose, alkaline phosphatase, urea and erythrocytes. To allow for public testing and evaluate real-life performance of the predictor, we developed an online system available at http://www.aging.ai. The ensemble approach may facilitate integration of multi-modal data linked to chronological age and sex that may lead to simple, minimally invasive, and affordable methods of tracking integrated biomarkers of aging in humans and performing cross-species feature importance analysis.

  20. The Application of Neural Networks in Balancing Production of Crude Sunflower Oil and Meal

    Directory of Open Access Journals (Sweden)

    Bojan Ivetic

    2014-08-01

    Full Text Available The aim of the research is to predict specific output characteristics of half finished goods (crude sunflower oil and meal on the basis of specific input variables (quality and composition of sunflower seeds, with the help of artificial neural networks. This is an attempt to predict the amount much more precisely than is the case with technological calculations commonly used in the oil industry. All input variables are representing the data received by the laboratory, and the output variables except category % of oil which is obtained by measuring the physical quantity of produced crude sunflower oil and sunflower consumed quantity of the processing quality. The correct prediction of the output variables contributes to better sales planning, production of sunflower oil, and better use of storage. Also, the correct prediction of technological results of the quality of crude oil and meal provides timely response and also preventing getting rancid and poor-quality oil, timely categorizing meal, which leads to proper planning and sales to the rational utilization of storage space, allows timely response technologists and prevents the growth of microorganisms in the meal.

  1. Artificial-neural-network-based atmospheric correction algorithm: application to MERIS data

    Science.gov (United States)

    Schroeder, Thomas; Fischer, Juergen; Schaale, Michael; Fell, Frank

    2003-05-01

    After the successful launch of the Medium Resolution Imaging Spectrometer (MERIS) on board of the European Space Agency (ESA) Environmental Satellite (ENVISAT) on March 1st 2002, first MERIS data are available for validation purposes. The primary goal of the MERIS mission is to measure the color of the sea with respect to oceanic biology and marine water quality. We present an atmospheric correction algorithm for case-I waters based on the inverse modeling of radiative transfer calculations by artificial neural networks. The proposed correction scheme accounts for multiple scattering and high concentrations of absorbing aerosols (e.g. desert dust). Above case-I waters, the measured near infrared path radiance at Top-Of-Atmosphere (TOA) is assumed to originate from atmospheric processes only and is used to determine the aerosol properties with the help of an additional classification test in the visible spectral region. A synthetic data set is generated from radiative transfer simulations and is subsequently used to train different Multi-Layer-Perceptrons (MLP). The atmospheric correction scheme consists of two steps. First a set of MLPs is used to derive the aerosol optical thickness (AOT) and the aerosol type for each pixel. Second these quantities are fed into a further MLP trained with simulated data for various chlorophyll concentrations to perform the radiative transfer inversion and to obtain the water-leaving radiance. In this work we apply the inversion algorithm to a MERIS Level 1b data track covering the Indian Ocean along the west coast of Madagascar.

  2. Application of artificial neural networks for versatile preprocessing of electrocardiogram recordings.

    Science.gov (United States)

    Mateo, J; Rieta, J J

    2012-02-01

    The electrocardiogram (ECG) is the most widely used method for diagnosis of heart diseases, where a good quality of recordings allows the proper interpretation and identification of physiological and pathological phenomena. However, ECG recordings often have interference from noises including thermal, muscle, baseline and powerline noises. These signals severely limit ECG recording utility and, hence, have to be removed. To deal with this problem, the present paper proposes an artificial neural network (ANN) as a filter to remove all kinds of noise in just one step. The method is based on a growing ANN which optimizes both the number of nodes in the hidden layer and the coefficient matrices, which are optimized by means of the Widrow-Hoff delta algorithm. The ANN has been trained with a database comprising all kinds of noise, both from synthesized and real ECG recordings, in order to handle any noise signal present in the ECG. The proposed system improves results yielded by conventional techniques of ECG filtering, such as FIR-based systems, adaptive filtering and wavelet filtering. Therefore, the algorithm could serve as an effective framework to substantially reduce noise in ECG recordings. In addition, the resulting ECG signal distortion is notably more reduced in comparison with conventional methodologies. In summary, the current contribution introduces a new method which is able to suppress all ECG interference signals in only one step with low ECG distortion and a high noise reduction.

  3. Compressing Neural Networks with the Hashing Trick

    OpenAIRE

    Chen, Wenlin; Wilson, James T.; Tyree, Stephen; Weinberger, Kilian Q.; Chen, Yixin

    2015-01-01

    As deep nets are increasingly used in applications suited for mobile devices, a fundamental dilemma becomes apparent: the trend in deep learning is to grow models to absorb ever-increasing data set sizes; however mobile devices are designed with very little memory and cannot store such large models. We present a novel network architecture, HashedNets, that exploits inherent redundancy in neural networks to achieve drastic reductions in model sizes. HashedNets uses a low-cost hash function to ...

  4. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection.

    Science.gov (United States)

    Kim, Jihun; Kim, Jonghong; Jang, Gil-Jin; Lee, Minho

    2017-03-01

    Deep learning has received significant attention recently as a promising solution to many problems in the area of artificial intelligence. Among several deep learning architectures, convolutional neural networks (CNNs) demonstrate superior performance when compared to other machine learning methods in the applications of object detection and recognition. We use a CNN for image enhancement and the detection of driving lanes on motorways. In general, the process of lane detection consists of edge extraction and line detection. A CNN can be used to enhance the input images before lane detection by excluding noise and obstacles that are irrelevant to the edge detection result. However, training conventional CNNs requires considerable computation and a big dataset. Therefore, we suggest a new learning algorithm for CNNs using an extreme learning machine (ELM). The ELM is a fast learning method used to calculate network weights between output and hidden layers in a single iteration and thus, can dramatically reduce learning time while producing accurate results with minimal training data. A conventional ELM can be applied to networks with a single hidden layer; as such, we propose a stacked ELM architecture in the CNN framework. Further, we modify the backpropagation algorithm to find the targets of hidden layers and effectively learn network weights while maintaining performance. Experimental results confirm that the proposed method is effective in reducing learning time and improving performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Neural networks for damage identification

    Energy Technology Data Exchange (ETDEWEB)

    Paez, T.L.; Klenke, S.E.

    1997-11-01

    Efforts to optimize the design of mechanical systems for preestablished use environments and to extend the durations of use cycles establish a need for in-service health monitoring. Numerous studies have proposed measures of structural response for the identification of structural damage, but few have suggested systematic techniques to guide the decision as to whether or not damage has occurred based on real data. Such techniques are necessary because in field applications the environments in which systems operate and the measurements that characterize system behavior are random. This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not damage has occurred in a specific mechanical system, based on experimental measurements. The first PNN is a classical type that casts Bayesian decision analysis into an ANN framework; it uses exemplars measured from the undamaged and damaged system to establish whether system response measurements of unknown origin come from the former class (undamaged) or the latter class (damaged). The second PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures of system response; when presented with system response measures of unknown origin, it makes a probabilistic judgment whether or not the data come from the undamaged population. The physical system used to carry out the experiments is an aerospace system component, and the environment used to excite the system is a stationary random vibration. The results of damage identification experiments are presented along with conclusions rating the effectiveness of the approaches.

  6. Relations Between Wavelet Network and Feedforward Neural Network

    Institute of Scientific and Technical Information of China (English)

    刘志刚; 何正友; 钱清泉

    2002-01-01

    A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.

  7. A robust behavior of Feed Forward Back propagation algorithm of Artificial Neural Networks in the application of vertical electrical sounding data inversion

    Directory of Open Access Journals (Sweden)

    Y. Srinivas

    2012-09-01

    Full Text Available The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non-linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single-layer feed-forward neural network with the back propagation algorithm is chosen as one of the well-suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken for training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7′30"E and 8°48′45"N, Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES data, and this trained network is demonstrated by the field data. Groundwater table depth also has been modeled.

  8. Stability of discrete Hopfield neural networks with delay

    Institute of Scientific and Technical Information of China (English)

    Ma Runnian; Lei Sheping; Liu Naigong

    2005-01-01

    Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundation of the network's applications. The stability of discrete Hopfield neural networks with delay is mainly investigated by using Lyapunov function. The sufficient conditions for the networks with delay converging towards a limit cycle of length 4 are obtained. Also, some sufficient criteria are given to ensure the networks having neither a stable state nor a limit cycle with length 2. The obtained results here generalize the previous results on stability of discrete Hopfield neural network with delay and without delay.

  9. An introduction to neural network methods for differential equations

    CERN Document Server

    Yadav, Neha; Kumar, Manoj

    2015-01-01

    This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks, and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed...

  10. An introduction to bio-inspired artificial neural network architectures.

    Science.gov (United States)

    Fasel, B

    2003-03-01

    In this introduction to artificial neural networks we attempt to give an overview of the most important types of neural networks employed in engineering and explain shortly how they operate and also how they relate to biological neural networks. The focus will mainly be on bio-inspired artificial neural network architectures and specifically to neo-perceptions. The latter belong to the family of convolutional neural networks. Their topology is somewhat similar to the one of the human visual cortex and they are based on receptive fields that allow, in combination with sub-sampling layers, for an improved robustness with regard to local spatial distortions. We demonstrate the application of artificial neural networks to face analysis--a domain we human beings are particularly good at, yet which poses great difficulties for digital computers running deterministic software programs.

  11. Power converters and AC electrical drives with linear neural networks

    CERN Document Server

    Cirrincione, Maurizio

    2012-01-01

    The first book of its kind, Power Converters and AC Electrical Drives with Linear Neural Networks systematically explores the application of neural networks in the field of power electronics, with particular emphasis on the sensorless control of AC drives. It presents the classical theory based on space-vectors in identification, discusses control of electrical drives and power converters, and examines improvements that can be attained when using linear neural networks. The book integrates power electronics and electrical drives with artificial neural networks (ANN). Organized into four parts,

  12. Visual guidance of a pig evisceration robot using neural networks

    DEFF Research Database (Denmark)

    Christensen, S.S.; Andersen, A.W.; Jørgensen, T.M.

    1996-01-01

    The application of a RAM-based neural network to robot vision is demonstrated for the guidance of a pig evisceration robot. Tests of the combined robot-vision system have been performed at an abattoir. The vision system locates a set of feature points on a pig carcass and transmits the 3D...... coordinates of these points to the robot. An active vision strategy taking advantage of the generalisation capabilities of neural networks is used to locate the control points. A neural network PC-expansion board that provides a new classification every 180 mu s is used to speed up the neural network...

  13. Chaotic Time Series Forecasting Using Higher Order Neural Networks

    Directory of Open Access Journals (Sweden)

    Waddah Waheeb

    2016-10-01

    Full Text Available This study presents a novel application and comparison of higher order neural networks (HONNs to forecast benchmark chaotic time series. Two models of HONNs were implemented, namely functional link neural network (FLNN and pi-sigma neural network (PSNN. These models were tested on two benchmark time series; the monthly smoothed sunspot numbers and the Mackey-Glass time-delay differential equation time series. The forecasting performance of the HONNs is compared against the performance of different models previously used in the literature such as fuzzy and neural networks models. Simulation results showed that FLNN and PSNN offer good performance compared to many previously used hybrid models.

  14. Parallelization of learning problems by artificial neural networks. Application in external radiotherapy; Parallelisation de problemes d'apprentissage par des reseaux neuronaux artificiels. Application en radiotherapie externe

    Energy Technology Data Exchange (ETDEWEB)

    Sauget, M

    2007-12-15

    This research is about the application of neural networks used in the external radiotherapy domain. The goal is to elaborate a new evaluating system for the radiation dose distributions in heterogeneous environments. The al objective of this work is to build a complete tool kit to evaluate the optimal treatment planning. My st research point is about the conception of an incremental learning algorithm. The interest of my work is to combine different optimizations specialized in the function interpolation and to propose a new algorithm allowing to change the neural network architecture during the learning phase. This algorithm allows to minimise the al size of the neural network while keeping a good accuracy. The second part of my research is to parallelize the previous incremental learning algorithm. The goal of that work is to increase the speed of the learning step as well as the size of the learned dataset needed in a clinical case. For that, our incremental learning algorithm presents an original data decomposition with overlapping, together with a fault tolerance mechanism. My last research point is about a fast and accurate algorithm computing the radiation dose deposit in any heterogeneous environment. At the present time, the existing solutions used are not optimal. The fast solution are not accurate and do not give an optimal treatment planning. On the other hand, the accurate solutions are far too slow to be used in a clinical context. Our algorithm answers to this problem by bringing rapidity and accuracy. The concept is to use a neural network adequately learned together with a mechanism taking into account the environment changes. The advantages of this algorithm is to avoid the use of a complex physical code while keeping a good accuracy and reasonable computation times. (author)

  15. Application of artificial neural network in 3D imaging with lanthanum bromide calorimeter

    Science.gov (United States)

    Gostojic, A.; Tatischeff, V.; Kiener, J.; Hamadache, C.; Karkour, N.; Linget, D.; Grave, X.; Gibelin, L.; Travers, B.; Blin, S.; Barrillon, P.

    2015-07-01

    Gamma-ray astronomy in the energy range from 0.1 up to 100 MeV holds many understudied questions connected with e.g. stellar nucleosynthesis, the active Sun, neutron stars and black holes. To access the physics behind, a significant improvement in detection sensitivity is needed compared to previous missions, e.g. CGRO and INTEGRAL. One of the promising concepts for a future gamma-ray mission is an Advanced Compton Telescope. Under the project of creating a prototype of such instrument, we study the perspectives of using a novel inorganic scintillator as a calorimeter part. Modern inorganic crystal or ceramics scintillators are constantly improving on qualities such as energy resolution and radiation hardness, and this makes them a smart choice for a new space-borne telescope. At CSNSM Orsay, we have assembled a detection module from a 5 × 5cm2 area and 1 cm thick, cerium-doped lanthanum (III) bromide (LaBr3:Ce) inorganic scintillator coupled to a 64 channel multi-anode photomultiplier. The readout of the PMT signals is carried out with the ASIC MAROC, used previously for the luminometer of the ATLAS detector (CERN). Characterization, thorough measurements with various radioactive sources, as well as, single photoelectron detection have been done. Furthermore, we made a comparison of measurements with a detailed GEANT4-based simulation which includes tracking of the optical photons. Finally, we have studied the 3D reconstruction of the first interaction point of incident gamma rays, utilizing a neural network algorithm. This spatial position resolution plays a crucial part in the future implementations and, together with the other measured properties, it makes our detector module very interesting for the next generation of space telescopes operating in the MeV range.

  16. Artificial neural network application for space station power system fault diagnosis

    Science.gov (United States)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  17. Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions

    Directory of Open Access Journals (Sweden)

    Abdullahi Abubakar Mas’ud

    2016-07-01

    Full Text Available In order to investigate how artificial neural networks (ANNs have been applied for partial discharge (PD pattern recognition, this paper reviews recent progress made on ANN development for PD classification by a literature survey. Contributions from several authors have been presented and discussed. High recognition rate has been recorded for several PD faults, but there are still many factors that hinder correct recognition of PD by the ANN, such as high-amplitude noise or wide spectral content typical from industrial environments, trial and error approaches in determining an optimum ANN, multiple PD sources acting simultaneously, lack of comprehensive and up to date databank of PD faults, and the appropriate selection of the characteristics that allow a correct recognition of the type of source which are currently being addressed by researchers. Several suggestions for improvement are proposed by the authors include: (1 determining the optimum weights in training the ANN; (2 using PD data captured over long stressing period in training the ANN; (3 ANN recognizing different PD degradation levels; (4 using the same resolution sizes of the PD patterns when training and testing the ANN with different PD dataset; (5 understanding the characteristics of multiple concurrent PD faults and effectively recognizing them; and (6 developing techniques in order to shorten the training time for the ANN as applied for PD recognition Finally, this paper critically assesses the suitability of ANNs for both online and offline PD detections outlining the advantages to the practitioners in the field. It is possible for the ANNs to determine the stage of degradation of the PD, thereby giving an indication of the seriousness of the fault.

  18. Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics

    Institute of Scientific and Technical Information of China (English)

    Amin Manouchehrian; Mostafa Sharifzadeh; Rasoul Hamidzadeh Moghadam

    2012-01-01

    Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.

  19. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  20. Ocean wave forecasting using recurrent neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...

  1. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  2. Improved transformer protection using probabilistic neural network ...

    African Journals Online (AJOL)

    user

    This article presents a novel technique to distinguish between magnetizing inrush ... Protective relaying, Probabilistic neural network, Active power relays, Power ... Forward Neural Network (MFFNN) with back-propagation learning technique.

  3. Implementing Signature Neural Networks with Spiking Neurons.

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  4. Implementing Signature Neural Networks with Spiking Neurons

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the

  5. A Bi-Projection Neural Network for Solving Constrained Quadratic Optimization Problems.

    Science.gov (United States)

    Xia, Youshen; Wang, Jun

    2016-02-01

    In this paper, a bi-projection neural network for solving a class of constrained quadratic optimization problems is proposed. It is proved that the proposed neural network is globally stable in the sense of Lyapunov, and the output trajectory of the proposed neural network will converge globally to an optimal solution. Compared with existing projection neural networks (PNNs), the proposed neural network has a very small model size owing to its bi-projection structure. Furthermore, an application to data fusion shows that the proposed neural network is very effective. Numerical results demonstrate that the proposed neural network is much faster than the existing PNNs.

  6. Cotton genotypes selection through artificial neural networks.

    Science.gov (United States)

    Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B

    2017-09-27

    Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.

  7. Neural Network for Sparse Reconstruction

    Directory of Open Access Journals (Sweden)

    Qingfa Li

    2014-01-01

    Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.

  8. The Physics of Neural Networks

    Science.gov (United States)

    Gutfreund, Hanoch; Toulouse, Gerard

    The following sections are included: * Introduction * Historical Perspective * Why Statistical Physics? * Purpose and Outline of the Paper * Basic Elements of Neural Network Models * The Biological Neuron * From the Biological to the Formal Neuron * The Formal Neuron * Network Architecture * Network Dynamics * Basic Functions of Neural Network Models * Associative Memory * Learning * Categorization * Generalization * Optimization * The Hopfield Model * Solution of the Model * The Merit of the Hopfield Model * Beyond the Standard Model * The Gardner Approach * A Microcanonical Formulation * The Case of Biased Patterns * A Canonical Formulation * Constraints on the Synaptic Weights * Learning with Errors * Learning with Noise * Hierarchically Correlated Data and Categorization * Hierarchical Data Structures * Storage of Hierarchical Data Structures * Categorization * Generalization * Learning a Classification Task * The Reference Perceptron Problem * The Contiguity Problem * Discussion - Issues of Relevance * The Notion of Attractors and Modes of Computation * The Nature of Attractors * Temporal versus Spatial Coding * Acknowledgements * References

  9. Development of programmable artificial neural networks

    Science.gov (United States)

    Meade, Andrew J.

    1993-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  10. Artificial Neural Networks in Stellar Astronomy

    Directory of Open Access Journals (Sweden)

    R. K. Gulati

    2001-01-01

    Full Text Available Next generation of optical spectroscopic surveys, such as the Sloan Digital Sky Survey and the 2 degree field survey, will provide large stellar databases. New tools will be required to extract useful information from these. We show the applications of artificial neural networks to stellar databases. In another application of this method, we predict spectral and luminosity classes from the catalog of spectral indices. We assess the importance of such methods for stellar populations studies.

  11. Meta-Learning Evolutionary Artificial Neural Networks

    OpenAIRE

    Abraham, Ajith

    2004-01-01

    In this paper, we present MLEANN (Meta-Learning Evolutionary Artificial Neural Network), an automatic computational framework for the adaptive optimization of artificial neural networks wherein the neural network architecture, activation function, connection weights; learning algorithm and its parameters are adapted according to the problem. We explored the performance of MLEANN and conventionally designed artificial neural networks for function approximation problems. To evaluate the compara...

  12. Building a Chaotic Proved Neural Network

    CERN Document Server

    Bahi, Jacques M; Salomon, Michel

    2011-01-01

    Chaotic neural networks have received a great deal of attention these last years. In this paper we establish a precise correspondence between the so-called chaotic iterations and a particular class of artificial neural networks: global recurrent multi-layer perceptrons. We show formally that it is possible to make these iterations behave chaotically, as defined by Devaney, and thus we obtain the first neural networks proven chaotic. Several neural networks with different architectures are trained to exhibit a chaotical behavior.

  13. [Use of artificial neural networks in clinical psychology and psychiatry].

    Science.gov (United States)

    Starzomska, Małgorzata

    2003-01-01

    Artificial neural networks make a highly specialised tools in data transformation. The human brain has become an inspiration for the makers of artificial neural networks. Although even though artificial neural networks are more frequently used in areas like financial analysis, marketing studies or economical modelling, their application in psychology and medicine has given a lot of promising and fascinating discoveries. It is worth that artificial neurol networks are successfully used in the diagnosis and etiopathogenesis description of various psychiatric disorders such as eating disorders, compulsions, depression or schizophrenia. To sum up, artificial neural networks offer a very promising option of research methodology for modern clinical psychology and psychiatry. The aim of this article is only an illustration of the applications of artificial neural networks in clinical psychology and psychiatry.

  14. Redes neurais e suas aplicações em calibração multivariada Neural networks and its applications in multivariate calibration

    Directory of Open Access Journals (Sweden)

    Eduardo O. de Cerqueira

    2001-12-01

    Full Text Available Neural Networks are a set of mathematical methods and computer programs designed to simulate the information process and the knowledge acquisition of the human brain. In last years its application in chemistry is increasing significantly, due the special characteristics for model complex systems. The basic principles of two types of neural networks, the multi-layer perceptrons and radial basis functions, are introduced, as well as, a pruning approach to architecture optimization. Two analytical applications based on near infrared spectroscopy are presented, the first one for determination of nitrogen content in wheat leaves using multi-layer perceptrons networks and second one for determination of BRIX in sugar cane juices using radial basis functions networks.

  15. Neural network for image segmentation

    Science.gov (United States)

    Skourikhine, Alexei N.; Prasad, Lakshman; Schlei, Bernd R.

    2000-10-01

    Image analysis is an important requirement of many artificial intelligence systems. Though great effort has been devoted to inventing efficient algorithms for image analysis, there is still much work to be done. It is natural to turn to mammalian vision systems for guidance because they are the best known performers of visual tasks. The pulse- coupled neural network (PCNN) model of the cat visual cortex has proven to have interesting properties for image processing. This article describes the PCNN application to the processing of images of heterogeneous materials; specifically PCNN is applied to image denoising and image segmentation. Our results show that PCNNs do well at segmentation if we perform image smoothing prior to segmentation. We use PCNN for obth smoothing and segmentation. Combining smoothing and segmentation enable us to eliminate PCNN sensitivity to the setting of the various PCNN parameters whose optimal selection can be difficult and can vary even for the same problem. This approach makes image processing based on PCNN more automatic in our application and also results in better segmentation.

  16. Pattern Recognition Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Santaji Ghorpade

    2010-12-01

    Full Text Available Face Recognition has been identified as one of the attracting research areas and it has drawn the attention of many researchers due to its varying applications such as security systems, medical systems,entertainment, etc. Face recognition is the preferred mode of identification by humans: it is natural,robust and non-intrusive. A wide variety of systems requires reliable personal recognition schemes to either confirm or determine the identity of an individual requesting their services. The purpose of such schemes is to ensure that the rendered services are accessed only by a legitimate user and no one else.Examples of such applications include secure access to buildings, computer systems, laptops, cellular phones, and ATMs. In the absence of robust personal recognition schemes, these systems are vulnerable to the wiles of an impostor.In this paper we have developed and illustrated a recognition system for human faces using a novel Kohonen self-organizing map (SOM or Self-Organizing Feature Map (SOFM based retrieval system.SOM has good feature extracting property due to its topological ordering. The Facial Analytics results for the 400 images of AT&T database reflects that the face recognition rate using one of the neural network algorithm SOM is 85.5% for 40 persons.

  17. Move Ordering using Neural Networks

    NARCIS (Netherlands)

    Kocsis, L.; Uiterwijk, J.; Van Den Herik, J.

    2001-01-01

    © Springer-Verlag Berlin Heidelberg 2001. The efficiency of alpha-beta search algorithms heavily depends on the order in which the moves are examined. This paper focuses on using neural networks to estimate the likelihood of a move being the best in a certain position. The moves considered more like

  18. Neural Network based Consumption Forecasting

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    2016-01-01

    This paper describe a Neural Network based method for consumption forecasting. This work has been financed by the The ENCOURAGE project. The aims of The ENCOURAGE project is to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable...

  19. Quantum Neural Networks%量子神经网络

    Institute of Scientific and Technical Information of China (English)

    解光军; 庄镇泉

    2001-01-01

    In recent years,the researches on combination of quantum theory and neural networks have attracted much attention. This paper reviews the development and status about this field. Some quantum neural networks(QNN)models are discussed,the applications and prospects are also given,which show that QNN have great competence and potential in the computational intelligence field.

  20. Analog neural network for support vector machine learning.

    Science.gov (United States)

    Perfetti, Renzo; Ricci, Elisa

    2006-07-01

    An analog neural network for support vector machine learning is proposed, based on a partially dual formulation of the quadratic programming problem. It results in a simpler circuit implementation with respect to existing neural solutions for the same application. The effectiveness of the proposed network is shown through some computer simulations concerning benchmark problems.