WorldWideScience

Sample records for neural nets anns

  1. Super capacitor modeling with artificial neural network (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Marie-Francoise, J.N.; Gualous, H.; Berthon, A. [Universite de Franche-Comte, Lab. en Electronique, Electrotechnique et Systemes (L2ES), UTBM, INRETS (LRE T31) 90 - Belfort (France)

    2004-07-01

    This paper presents super-capacitors modeling using Artificial Neural Network (ANN). The principle consists on a black box nonlinear multiple inputs single output (MISO) model. The system inputs are temperature and current, the output is the super-capacitor voltage. The learning and the validation of the ANN model from experimental charge and discharge of super-capacitor establish the relationship between inputs and output. The learning and the validation of the ANN model use experimental results of 2700 F, 3700 F and a super-capacitor pack. Once the network is trained, the ANN model can predict the super-capacitor behaviour with temperature variations. The update parameters of the ANN model are performed thanks to Levenberg-Marquardt method in order to minimize the error between the output of the system and the predicted output. The obtained results with the ANN model of super-capacitor and experimental ones are in good agreement. (authors)

  2. Neural Net Safety Monitor Design

    Science.gov (United States)

    Larson, Richard R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) at the Dryden Flight Research Center (DFRC) has been conducting flight-test research using an F-15 aircraft (figure 1). This aircraft has been specially modified to interface a neural net (NN) controller as part of a single-string Airborne Research Test System (ARTS) computer with the existing quad-redundant flight control system (FCC) shown in figure 2. The NN commands are passed to FCC channels 2 and 4 and are cross channel data linked (CCDL) to the other computers as shown. Numerous types of fault-detection monitors exist in the FCC when the NN mode is engaged; these monitors would cause an automatic disengagement of the NN in the event of a triggering fault. Unfortunately, these monitors still may not prevent a possible NN hard-over command from coming through to the control laws. Therefore, an additional and unique safety monitor was designed for a single-string source that allows authority at maximum actuator rates but protects the pilot and structural loads against excessive g-limits in the case of a NN hard-over command input. This additional monitor resides in the FCCs and is executed before the control laws are computed. This presentation describes a floating limiter (FL) concept1 that was developed and successfully test-flown for this program (figure 3). The FL computes the rate of change of the NN commands that are input to the FCC from the ARTS. A window is created with upper and lower boundaries, which is constantly floating and trying to stay centered as the NN command rates are changing. The limiter works by only allowing the window to move at a much slower rate than those of the NN commands. Anywhere within the window, however, full rates are allowed. If a rate persists in one direction, it will eventually hit the boundary and be rate-limited to the floating limiter rate. When this happens, a persistent counter begins and after a limit is reached, a NN disengage command is generated. The

  3. Musical Audio Synthesis Using Autoencoding Neural Nets

    OpenAIRE

    Sarroff, Andy; Casey, Michael A.

    2014-01-01

    With an optimal network topology and tuning of hyperpa-\\ud rameters, artificial neural networks (ANNs) may be trained\\ud to learn a mapping from low level audio features to one\\ud or more higher-level representations. Such artificial neu-\\ud ral networks are commonly used in classification and re-\\ud gression settings to perform arbitrary tasks. In this work\\ud we suggest repurposing autoencoding neural networks as\\ud musical audio synthesizers. We offer an interactive musi-\\ud cal audio synt...

  4. Review of Artificial Neural Networks (ANN) applied to corrosion monitoring

    International Nuclear Information System (INIS)

    Mabbutt, S; Picton, P; Shaw, P; Black, S

    2012-01-01

    The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.

  5. Visual NNet: An Educational ANN's Simulation Environment Reusing Matlab Neural Networks Toolbox

    Science.gov (United States)

    Garcia-Roselló, Emilio; González-Dacosta, Jacinto; Lado, Maria J.; Méndez, Arturo J.; Garcia Pérez-Schofield, Baltasar; Ferrer, Fátima

    2011-01-01

    Artificial Neural Networks (ANN's) are nowadays a common subject in different curricula of graduate and postgraduate studies. Due to the complex algorithms involved and the dynamic nature of ANN's, simulation software has been commonly used to teach this subject. This software has usually been developed specifically for learning purposes, because…

  6. Modulated error diffusion CGHs for neural nets

    Science.gov (United States)

    Vermeulen, Pieter J. E.; Casasent, David P.

    1990-05-01

    New modulated error diffusion CGHs (computer generated holograms) for optical computing are considered. Specific attention is given to their use in optical matrix-vector, associative processor, neural net and optical interconnection architectures. We consider lensless CGH systems (many CGHs use an external Fourier transform (FT) lens), the Fresnel sampling requirements, the effects of finite CGH apertures (sample and hold inputs), dot size correction (for laser recorders), and new applications for this novel encoding method (that devotes attention to quantization noise effects).

  7. Artificial Neural Networks (ANNs for flood forecasting at Dongola Station in the River Nile, Sudan

    Directory of Open Access Journals (Sweden)

    Sulafa Hag Elsafi

    2014-09-01

    Full Text Available Heavy seasonal rains cause the River Nile in Sudan to overflow and flood the surroundings areas. The floods destroy houses, crops, roads, and basic infrastructure, resulting in the displacement of people. This study aimed to forecast the River Nile flow at Dongola Station in Sudan using an Artificial Neural Network (ANN as a modeling tool and validated the accuracy of the model against actual flow. The ANN model was formulated to simulate flows at a certain location in the river reach, based on flow at upstream locations. Different procedures were applied to predict flooding by the ANN. Readings from stations along the Blue Nile, White Nile, Main Nile, and River Atbara between 1965 and 2003 were used to predict the likelihood of flooding at Dongola Station. The analysis indicated that the ANN provides a reliable means of detecting the flood hazard in the River Nile.

  8. Neural-net based real-time economic dispatch for thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Milosevic, B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-12-01

    This paper proposes the application of artificial neural networks to real-time optimal generation dispatch of thermal units. The approach can take into account the operational requirements and network losses. The proposed economic dispatch uses an artificial neural network (ANN) for generation of penalty factors, depending on the input generator powers and identified system load change. Then, a few additional iterations are performed within an iterative computation procedure for the solution of coordination equations, by using reference-bus penalty-factors derived from the Newton-Raphson load flow. A coordination technique for environmental and economic dispatch of pure thermal systems, based on the neural-net theory for simplified solution algorithms and improved man-machine interface is introduced. Numerical results on two test examples show that the proposed algorithm can efficiently and accurately develop optimal and feasible generator output trajectories, by applying neural-net forecasts of system load patterns.

  9. Neural net based determination of generator-shedding requirements in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Electrical Engineering Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Y -H [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE Inc., Cleveland, OH (United States)

    1992-09-01

    This paper presents an application of artificial neural networks (ANN) in support of a decision-making process by power system operators directed towards the fast stabilisation of multi-machine systems. The proposed approach considers generator shedding as the most effective discrete supplementary control for improving the dynamic performance of faulted power systems and preventing instabilities. The sensitivity of the transient energy function (TEF) with respect to changes in the amount of dropped generation is used during the training phase of ANNs to assess the critical amount of generator shedding required to prevent the loss of synchronism. The learning capabilities of neural nets are used to establish complex mappings between fault information and the amount of generation to be shed, suggesting it as the control signal to the power system operator. (author)

  10. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Sayiter [Engineering Faculty, Cumhuriyet University, Sivas (Turkmenistan)

    2017-09-15

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R{sup 2} value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R{sup 2} values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  11. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    International Nuclear Information System (INIS)

    Yildiz, Sayiter

    2017-01-01

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R"2 value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R"2 values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  12. Neural net prediction of tokamak plasma disruptions

    International Nuclear Information System (INIS)

    Hernandez, J.V.; Lin, Z.; Horton, W.; McCool, S.C.

    1994-10-01

    The computation based on neural net algorithms in predicting minor and major disruptions in TEXT tokamak discharges has been performed. Future values of the fluctuating magnetic signal are predicted based on L past values of the magnetic fluctuation signal, measured by a single Mirnov coil. The time step used (= 0.04ms) corresponds to the experimental data sampling rate. Two kinds of approaches are adopted for the task, the contiguous future prediction and the multi-timescale prediction. Results are shown for comparison. Both networks are trained through the back-propagation algorithm with inertial terms. The degree of this success indicates that the magnetic fluctuations associated with tokamak disruptions may be characterized by a relatively low-dimensional dynamical system

  13. Real-time applications of neural nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs

  14. Accelerator diagnosis and control by Neural Nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-01-01

    Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems, and therefore provide an ideal adaptive control system. Thus, where AI may be good for maintaining a 'golden orbit,' NN should be good for obtaining it via a quantitative approach to 'look and adjust' methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs

  15. Accelerator diagnosis and control by Neural Nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-01-01

    Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphore for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems and therefore provide an ideal adaptive control system. Thus, where A1 may be good for maintaining a golden orbit, NN should be good for obtaining it via a quantitative approach to look and adjust methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs

  16. Real-time applications of neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  17. Real-time applications of neural nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-01-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas e.g. improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. In this paper, such issues are considered, examples given and possibilities discussed

  18. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.

    Science.gov (United States)

    Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J

    2016-11-01

    This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R 2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.

  19. Predicting the Deflections of Micromachined Electrostatic Actuators Using Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Hing Wah LEE

    2009-03-01

    Full Text Available In this study, a general purpose Artificial Neural Network (ANN model based on the feed-forward back-propagation (FFBP algorithm has been used to predict the deflections of a micromachined structures actuated electrostatically under different loadings and geometrical parameters. A limited range of simulation results obtained via CoventorWare™ numerical software will be used initially to train the neural network via back-propagation algorithm. The micromachined structures considered in the analyses are diaphragm, fixed-fixed beams and cantilevers. ANN simulation results are compared with results obtained via CoventorWare™ simulations and existing analytical work for validation purpose. The proposed ANN model accurately predicts the deflections of the micromachined structures with great reduction of simulation efforts, establishing the method superiority. This method can be extended for applications in other sensors particularly for modeling sensors applying electrostatic actuation which are difficult in nature due to the inherent non-linearity of the electro-mechanical coupling response.

  20. Application of artificial neural nets to Shashlik calorimetry

    International Nuclear Information System (INIS)

    Bonesini, M.; Paganoni, M.; Terranova, F.

    1997-01-01

    Artificial neural networks (ANN) are powerful tools widely used in high-energy physics to solve track finding and particle identification problems. An entirely new class of application is related to the problem of recovering the information lost during data taking or signal transmission. Good performances can be reached by ANN when the events are described by quite regular patterns. Such a method was used for the DELPHI luminosity monitor (STIC) to recover calorimeter dead channels. A comparison with more traditional techniques is also given. (orig.)

  1. A Simple Quantum Neural Net with a Periodic Activation Function

    OpenAIRE

    Daskin, Ammar

    2018-01-01

    In this paper, we propose a simple neural net that requires only $O(nlog_2k)$ number of qubits and $O(nk)$ quantum gates: Here, $n$ is the number of input parameters, and $k$ is the number of weights applied to these parameters in the proposed neural net. We describe the network in terms of a quantum circuit, and then draw its equivalent classical neural net which involves $O(k^n)$ nodes in the hidden layer. Then, we show that the network uses a periodic activation function of cosine values o...

  2. Comparison of the accuracy of SST estimates by artificial neural networks (ANN) and other quantitative methods using radiolarian data from the Antarctic and Pacific Oceans

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Malmgren, B.A.

    ) regression, the maximum likelihood (ML) method, and artificial neural networks (ANNs), based on radiolarian faunal abundance data from surface sediments from the Antarctic and Pacific Oceans. Recent studies have suggested that ANNs may represent one...

  3. Artificial neural net system for interactive tissue classification with MR imaging and image segmentation

    International Nuclear Information System (INIS)

    Clarke, L.P.; Silbiger, M.; Naylor, C.; Brown, K.

    1990-01-01

    This paper reports on the development of interactive methods for MR tissue classification that permit mathematically rigorous methods for three-dimensional image segmentation and automatic organ/tumor contouring, as required for surgical and RTP planning. The authors investigate a number of image-intensity based tissue- classification methods that make no implicit assumptions on the MR parameters and hence are not limited by image data set. Similarly, we have trained artificial neural net (ANN) systems for both supervised and unsupervised tissue classification

  4. Dispersion compensation of fiber optic communication system with direct detection using artificial neural networks (ANNs)

    Science.gov (United States)

    Maghrabi, Mahmoud M. T.; Kumar, Shiva; Bakr, Mohamed H.

    2018-02-01

    This work introduces a powerful digital nonlinear feed-forward equalizer (NFFE), exploiting multilayer artificial neural network (ANN). It mitigates impairments of optical communication systems arising due to the nonlinearity introduced by direct photo-detection. In a direct detection system, the detection process is nonlinear due to the fact that the photo-current is proportional to the absolute square of the electric field intensity. The proposed equalizer provides the most efficient computational cost with high equalization performance. Its performance is comparable to the benchmark compensation performance achieved by maximum-likelihood sequence estimator. The equalizer trains an ANN to act as a nonlinear filter whose impulse response removes the intersymbol interference (ISI) distortions of the optical channel. Owing to the proposed extensive training of the equalizer, it achieves the ultimate performance limit of any feed-forward equalizer (FFE). The performance and efficiency of the equalizer is investigated by applying it to various practical short-reach fiber optic communication system scenarios. These scenarios are extracted from practical metro/media access networks and data center applications. The obtained results show that the ANN-NFFE compensates for the received BER degradation and significantly increases the tolerance to the chromatic dispersion distortion.

  5. Exploration of artificial neural network [ANN] to predict the electrochemical characteristics of lithium-ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Parthiban, Thirumalai; Ravi, R.; Kalaiselvi, N. [Central Electrochemical Research Institute (CECRI), Karaikudi 630006 (India)

    2007-12-31

    CoO anode, as an alternate to the carbonaceous anodes of lithium-ion cells has been prepared and investigated for electrochemical charge-discharge characteristics for about 50 cycles. Artificial neural networks (ANNs), which are useful in estimating battery performance, has been deployed for the first time to forecast and to verify the charge-discharge behavior of lithium-ion cells containing CoO anode for a total of 50 cycles. In this novel approach, ANN that has one input layer with one neuron corresponding to one input variable, viz., cycles [charge-discharge cycles] and a hidden layer consisting of three neurons to produce their outputs to the output layer through a sigmoid function has been selected for the present investigation. The output layer consists of two neurons, representing the charge and discharge capacity, whose activation function is also the sigmoid transfer function. In this ever first attempt to exploit ANN as an effective theoretical tool to understand the charge-discharge characteristics of lithium-ion cells, an excellent agreement between the calculated and observed capacity values was found with CoO anodes with the best fit values corresponding to an error factor of <1%, which is the highlight of the present study. (author)

  6. Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN).

    Science.gov (United States)

    Park, Sechan; Kim, Minjeong; Kim, Minhae; Namgung, Hyeong-Gyu; Kim, Ki-Tae; Cho, Kyung Hwa; Kwon, Soon-Bark

    2018-01-05

    The indoor air quality of subway systems can significantly affect the health of passengers since these systems are widely used for short-distance transit in metropolitan urban areas in many countries. The particles generated by abrasion during subway operations and the vehicle-emitted pollutants flowing in from the street in particular affect the air quality in underground subway stations. Thus the continuous monitoring of particulate matter (PM) in underground station is important to evaluate the exposure level of PM to passengers. However, it is difficult to obtain indoor PM data because the measurement systems are expensive and difficult to install and operate for significant periods of time in spaces crowded with people. In this study, we predicted the indoor PM concentration using the information of outdoor PM, the number of subway trains running, and information on ventilation operation by the artificial neural network (ANN) model. As well, we investigated the relationship between ANN's performance and the depth of underground subway station. ANN model showed a high correlation between the predicted and actual measured values and it was able to predict 67∼80% of PM at 6 subway station. In addition, we found that platform shape and depth influenced the model performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. IDI diesel engine performance and exhaust emission analysis using biodiesel with an artificial neural network (ANN

    Directory of Open Access Journals (Sweden)

    K. Prasada Rao

    2017-09-01

    Full Text Available Biodiesel is receiving increasing attention each passing day because of its fuel properties and compatibility. This study investigates the performance and emission characteristics of single cylinder four stroke indirect diesel injection (IDI engine fueled with Rice Bran Methyl Ester (RBME with Isopropanol additive. The investigation is done through a combination of experimental data analysis and artificial neural network (ANN modeling. The study used IDI engine experimental data to evaluate nine engine performance and emission parameters including Exhaust Gas Temperature (E.G.T, Brake Specific Fuel Consumption (BSFC, Brake Thermal Efficiency (B.The and various emissions like Hydrocarbons (HC, Carbon monoxide (CO, Carbon dioxide (CO2, Oxygen (O2, Nitrogen oxides (NOX and smoke. For the ANN modeling standard back propagation algorithm was found to be the optimum choice for training the model. A multi-layer perception (MLP network was used for non-linear mapping between the input and output parameters. It was found that ANN was able to predict the engine performance and exhaust emissions with a correlation coefficient of 0.995, 0.980, 0.999, 0.985, 0.999, 0.999, 0.980, 0.999, and 0.999 for E.G.T, BSFC, B.The, HC, O2, CO2, CO, NOX, smoke respectively.

  8. 22nd Italian Workshop on Neural Nets

    CERN Document Server

    Bassis, Simone; Esposito, Anna; Morabito, Francesco

    2013-01-01

    This volume collects a selection of contributions which has been presented at the 22nd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Italy, Vietri sul Mare (Salerno), during May 17-19, 2012. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop-  is organized in three main components, two special sessions and a group of regular sessions featuring different aspects and point of views of artificial neural networks and natural intelligence, also including applications of present compelling interest.

  9. Hybrid intelligence systems and artificial neural network (ANN approach for modeling of surface roughness in drilling

    Directory of Open Access Journals (Sweden)

    Ch. Sanjay

    2014-12-01

    Full Text Available In machining processes, drilling operation is material removal process that has been widely used in manufacturing since industrial revolution. The useful life of cutting tool and its operating conditions largely controls the economics of machining operations. Drilling is most frequently performed material removing process and is used as a preliminary step for many operations, such as reaming, tapping, and boring. Drill wear has a bad effect on the surface finish and dimensional accuracy of the work piece. The surface finish of a machined part is one of the most important quality characteristics in manufacturing industries. The primary objective of this research is the prediction of suitable parameters for surface roughness in drilling. Cutting speed, cutting force, and machining time were given as inputs to the adaptive fuzzy neural network and neuro-fuzzy analysis for estimating the values of surface roughness by using 2, 3, 4, and 5 membership functions. The best structures were selected based on minimum of summation of square with the actual values with the estimated values by artificial neural fuzzy inference system (ANFIS and neuro-fuzzy systems. For artificial neural network (ANN analysis, the number of neurons was selected from 1, 2, 3, … , 20. The learning rate was selected as .5 and .5 smoothing factor was used. The inputs were selected as cutting speed, feed, machining time, and thrust force. The best structures of neural networks were selected based on the criteria as the minimum of summation of square with the actual value of surface roughness. Drilling experiments with 10 mm size were performed at two cutting speeds and feeds. Comparative analysis has been done between the actual values and the estimated values obtained by ANFIS, neuro-fuzzy, and ANN analysis.

  10. Prediction of Tourism Demand in Iran by Using Artificial Neural Network (ANN and Supporting Vector Machine (SVR

    Directory of Open Access Journals (Sweden)

    Seyedehelham Sadatiseyedmahalleh

    2016-02-01

    Full Text Available This research examines and proves this effectiveness connected with artificial neural networks (ANNs as an alternative approach to the use of Support Vector Machine (SVR in the tourism research. This method can be used for the tourism industry to define the turism’s demands in Iran. The outcome reveals the use of ANNs in tourism research might result in better quotations when it comes to prediction bias and accuracy. Even more applications of ANNs in the context of tourism demand evaluation is needed to establish and validate the effects.

  11. USING ARTIFICIAL NEURAL NETWORKS (ANNs FOR SEDIMENT LOAD FORECASTING OF TALKHEROOD RIVER MOUTH

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2009-01-01

    Full Text Available Without a doubt the carried sediment load by a river is the most important factor in creating and formation of the related Delta in the river mouth. Therefore, accurate forecasting of the river sediment load can play a significant role for study on the river Delta. However considering the complexity and non-linearity of the phenomenon, the classic experimental or physical-based approaches usually could not handle the problem so well. In this paper, Artificial Neural Network (ANN as a non-linear black box interpolator tool is used for modeling suspended sediment load which discharges to the Talkherood river mouth, located in northern west Iran. For this purpose, observed time series of water discharge at current and previous time steps are used as the model input neurons and the model output neuron will be the forecasted sediment load at the current time step. In this way, various schemes of the ANN approach are examined in order to achieve the best network as well as the best architecture of the model. The obtained results are also compared with the results of two other classic methods (i.e., linear regression and rating curve methods in order to approve the efficiency and ability of the proposed method.

  12. Neural nets for massively parallel optimization

    Science.gov (United States)

    Dixon, Laurence C. W.; Mills, David

    1992-07-01

    To apply massively parallel processing systems to the solution of large scale optimization problems it is desirable to be able to evaluate any function f(z), z (epsilon) Rn in a parallel manner. The theorem of Cybenko, Hecht Nielsen, Hornik, Stinchcombe and White, and Funahasi shows that this can be achieved by a neural network with one hidden layer. In this paper we address the problem of the number of nodes required in the layer to achieve a given accuracy in the function and gradient values at all points within a given n dimensional interval. The type of activation function needed to obtain nonsingular Hessian matrices is described and a strategy for obtaining accurate minimal networks presented.

  13. SU-E-T-206: Improving Radiotherapy Toxicity Based On Artificial Neural Network (ANN) for Head and Neck Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Daniel D; Wernicke, A Gabriella; Nori, Dattatreyudu; Chao, KSC; Parashar, Bhupesh; Chang, Jenghwa [Weill Cornell Medical College, NY, NY (United States)

    2014-06-01

    Purpose/Objective(s): The aim of this study is to build the estimator of toxicity using artificial neural network (ANN) for head and neck cancer patients Materials/Methods: An ANN can combine variables into a predictive model during training and considered all possible correlations of variables. We constructed an ANN based on the data from 73 patients with advanced H and N cancer treated with external beam radiotherapy and/or chemotherapy at our institution. For the toxicity estimator we defined input data including age, sex, site, stage, pathology, status of chemo, technique of external beam radiation therapy (EBRT), length of treatment, dose of EBRT, status of post operation, length of follow-up, the status of local recurrences and distant metastasis. These data were digitized based on the significance and fed to the ANN as input nodes. We used 20 hidden nodes (for the 13 input nodes) to take care of the correlations of input nodes. For training ANN, we divided data into three subsets such as training set, validation set and test set. Finally, we built the estimator for the toxicity from ANN output. Results: We used 13 input variables including the status of local recurrences and distant metastasis and 20 hidden nodes for correlations. 59 patients for training set, 7 patients for validation set and 7 patients for test set and fed the inputs to Matlab neural network fitting tool. We trained the data within 15% of errors of outcome. In the end we have the toxicity estimation with 74% of accuracy. Conclusion: We proved in principle that ANN can be a very useful tool for predicting the RT outcomes for high risk H and N patients. Currently we are improving the results using cross validation.

  14. SU-E-T-206: Improving Radiotherapy Toxicity Based On Artificial Neural Network (ANN) for Head and Neck Cancer Patients

    International Nuclear Information System (INIS)

    Cho, Daniel D; Wernicke, A Gabriella; Nori, Dattatreyudu; Chao, KSC; Parashar, Bhupesh; Chang, Jenghwa

    2014-01-01

    Purpose/Objective(s): The aim of this study is to build the estimator of toxicity using artificial neural network (ANN) for head and neck cancer patients Materials/Methods: An ANN can combine variables into a predictive model during training and considered all possible correlations of variables. We constructed an ANN based on the data from 73 patients with advanced H and N cancer treated with external beam radiotherapy and/or chemotherapy at our institution. For the toxicity estimator we defined input data including age, sex, site, stage, pathology, status of chemo, technique of external beam radiation therapy (EBRT), length of treatment, dose of EBRT, status of post operation, length of follow-up, the status of local recurrences and distant metastasis. These data were digitized based on the significance and fed to the ANN as input nodes. We used 20 hidden nodes (for the 13 input nodes) to take care of the correlations of input nodes. For training ANN, we divided data into three subsets such as training set, validation set and test set. Finally, we built the estimator for the toxicity from ANN output. Results: We used 13 input variables including the status of local recurrences and distant metastasis and 20 hidden nodes for correlations. 59 patients for training set, 7 patients for validation set and 7 patients for test set and fed the inputs to Matlab neural network fitting tool. We trained the data within 15% of errors of outcome. In the end we have the toxicity estimation with 74% of accuracy. Conclusion: We proved in principle that ANN can be a very useful tool for predicting the RT outcomes for high risk H and N patients. Currently we are improving the results using cross validation

  15. Computation and control with neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1989-10-04

    As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future microprocessors' are predicted and requested on this basis. 19 refs., 18 figs.

  16. Computation and control with neural nets

    International Nuclear Information System (INIS)

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1989-01-01

    As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future 'microprocessors' are predicted and requested on this basis. 19 refs., 18 figs

  17. Comparative study of landslides susceptibility mapping methods: Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN)

    Science.gov (United States)

    Salleh, S. A.; Rahman, A. S. A. Abd; Othman, A. N.; Mohd, W. M. N. Wan

    2018-02-01

    As different approach produces different results, it is crucial to determine the methods that are accurate in order to perform analysis towards the event. This research aim is to compare the Rank Reciprocal (MCDM) and Artificial Neural Network (ANN) analysis techniques in determining susceptible zones of landslide hazard. The study is based on data obtained from various sources such as local authority; Dewan Bandaraya Kuala Lumpur (DBKL), Jabatan Kerja Raya (JKR) and other agencies. The data were analysed and processed using Arc GIS. The results were compared by quantifying the risk ranking and area differential. It was also compared with the zonation map classified by DBKL. The results suggested that ANN method gives better accuracy compared to MCDM with 18.18% higher accuracy assessment of the MCDM approach. This indicated that ANN provides more reliable results and it is probably due to its ability to learn from the environment thus portraying realistic and accurate result.

  18. Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN Technique

    Directory of Open Access Journals (Sweden)

    Awatif Soaded Alsaqqar

    2016-06-01

    Full Text Available In this research an Artificial Neural Network (ANN technique was applied for the prediction of Ryznar Index (RI of the flowing water from WTPs in Al-Karakh side (left side in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3 have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For Al-Dora WTP, ANN 3 model could be used as R was 92.8%.

  19. Artificial Neural Network (ANN) Model to Predict Depression among Geriatric Population at a Slum in Kolkata, India.

    Science.gov (United States)

    Sau, Arkaprabha; Bhakta, Ishita

    2017-05-01

    Depression is one of the most important causes of mortality and morbidity among the geriatric population. Although, the aging brain is more vulnerable to depression, it cannot be considered as physiological and an inevitable part of ageing. Various sociodemographic and morbidity factors are responsible for the depression among them. Using Artificial Neural Network (ANN) model depression can be predicted from various sociodemographic variables and co morbid conditions even at community level by the grass root level health care workers. To predict depression among geriatric population from sociodemographic and morbidity attributes using ANN. An observational descriptive study with cross-sectional design was carried out at a slum under the service area of Bagbazar Urban Health and Training Centre (UHTC) in Kolkata. Among 126 elderlies under Bagbazar UHTC, 105 were interviewed using predesigned and pretested schedule. Depression status was assessed using 30 item Geriatric Depression Scale. WEKA 3.8.0 was used to develop the ANN model and test its performance. Prevalence of depression among the study population was 45.7%. Various sociodemographic variables like age, gender, literacy, living spouse, working status, personal income, family type, substance abuse and co morbid conditions like visual problem, mobility problem, hearing problem and sleeping problem were taken into consideration to develop the model. Prediction accuracy of this ANN model was 97.2%. Depression among geriatric population can be predicted accurately using ANN model from sociodemographic and morbidity attributes.

  20. The Segmentation of Point Clouds with K-Means and ANN (artifical Neural Network)

    Science.gov (United States)

    Kuçak, R. A.; Özdemir, E.; Erol, S.

    2017-05-01

    Segmentation of point clouds is recently used in many Geomatics Engineering applications such as the building extraction in urban areas, Digital Terrain Model (DTM) generation and the road or urban furniture extraction. Segmentation is a process of dividing point clouds according to their special characteristic layers. The present paper discusses K-means and self-organizing map (SOM) which is a type of ANN (Artificial Neural Network) segmentation algorithm which treats the segmentation of point cloud. The point clouds which generate with photogrammetric method and Terrestrial Lidar System (TLS) were segmented according to surface normal, intensity and curvature. Thus, the results were evaluated. LIDAR (Light Detection and Ranging) and Photogrammetry are commonly used to obtain point clouds in many remote sensing and geodesy applications. By photogrammetric method or LIDAR method, it is possible to obtain point cloud from terrestrial or airborne systems. In this study, the measurements were made with a Leica C10 laser scanner in LIDAR method. In photogrammetric method, the point cloud was obtained from photographs taken from the ground with a 13 MP non-metric camera.

  1. THE SEGMENTATION OF POINT CLOUDS WITH K-MEANS AND ANN (ARTIFICAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. A. Kuçak

    2017-05-01

    Full Text Available Segmentation of point clouds is recently used in many Geomatics Engineering applications such as the building extraction in urban areas, Digital Terrain Model (DTM generation and the road or urban furniture extraction. Segmentation is a process of dividing point clouds according to their special characteristic layers. The present paper discusses K-means and self-organizing map (SOM which is a type of ANN (Artificial Neural Network segmentation algorithm which treats the segmentation of point cloud. The point clouds which generate with photogrammetric method and Terrestrial Lidar System (TLS were segmented according to surface normal, intensity and curvature. Thus, the results were evaluated. LIDAR (Light Detection and Ranging and Photogrammetry are commonly used to obtain point clouds in many remote sensing and geodesy applications. By photogrammetric method or LIDAR method, it is possible to obtain point cloud from terrestrial or airborne systems. In this study, the measurements were made with a Leica C10 laser scanner in LIDAR method. In photogrammetric method, the point cloud was obtained from photographs taken from the ground with a 13 MP non-metric camera.

  2. Artificial neural nets application in the cotton yarn industry

    Directory of Open Access Journals (Sweden)

    Gilberto Clóvis Antoneli

    2016-06-01

    Full Text Available The competitiveness in the yarn production sector has led companies to search for solutions to attain quality yarn at a low cost. Today, the difference between them, and thus the sector, is in the raw material, meaning processed cotton and its characteristics. There are many types of cotton with different characteristics due to its production region, harvest, storage and transportation. Yarn industries work with cotton mixtures, which makes it difficult to determine the quality of the yarn produced from the characteristics of the processed fibers. This study uses data from a conventional spinning, from a raw material made of 100% cotton, and presents a solution with artificial neural nets that determine the thread quality information, using the fibers’ characteristics values and settings of some process adjustments. In this solution a neural net of the type MultiLayer Perceptron with 11 entry neurons (8 characteristics of the fiber and 3 process adjustments, 7 output neurons (yarn quality and two types of training, Back propagation and Conjugate gradient descent. The selection and organization of the production data of the yarn industry of the cocamar® indústria de fios company are described, to apply the artificial neural nets developed. In the application of neural nets to determine yarn quality, one concludes that, although the ideal precision of absolute values is lacking, the presented solution represents an excellent tool to define yarn quality variations when modifying the raw material composition. The developed system enables a simulation to define the raw material percentage mixture to be processed in the plant using the information from the stocked cotton packs, thus obtaining a mixture that maintains the stability of the entire productive process.

  3. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Delnavaz, M. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ayati, B., E-mail: ayati_bi@modares.ac.ir [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ganjidoust, H. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of)

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds.

  4. Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Novicevic, M.; Dobrijevic, D.; Babic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

    1995-12-01

    This paper presents a design technique of a new adaptive optimal controller of the low head hydropower plant using artificial neural networks (ANN). The adaptive controller is to operate in real time to improve the generating unit transients through the exciter input, the guide vane position and the runner blade position. The new design procedure is based on self-organization and the predictive estimation capabilities of neural-nets implemented through the cluster-wise segmented associative memory scheme. The developed neural-net based controller (NNC) whose control signals are adjusted using the on-line measurements, can offer better damping effects for generator oscillations over a wide range of operating conditions than conventional controllers. Digital simulations of hydropower plant equipped with low head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-space optimal control and neural-net based control are presented. Results obtained on the non-linear mathematical model demonstrate that the effects of the NNC closely agree with those obtained using the state-space multivariable discrete-time optimal controllers.

  5. Unfolding code for neutron spectrometry based on neural nets technology

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.

    2012-10-01

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the R obust Design of Artificial Neural Networks Methodology . The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  6. Unfolding code for neutron spectrometry based on neural nets technology

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the {sup R}obust Design of Artificial Neural Networks Methodology{sup .} The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a {sup 6}Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  7. Application of Artificial Neural Networks (ANNs for Weight Predictions of Blue Crabs (Callinectes sapidus RATHBUN, 1896 Using Predictor Variables

    Directory of Open Access Journals (Sweden)

    C. TURELI BILEN

    2011-10-01

    Full Text Available An evaluation of the performance of artificial networks (ANNs to estimate the weights of blue crab (Callinectes sapidus catches in Yumurtalık Cove (Iskenderun Bay that uses measured predictor variables is presented, including carapace width (CW, sex (male, female and female with eggs, and sampling month. Blue crabs (n=410 were collected each month between 15 September 1996 and 15 May 1998. Sex, CW, and sampling month were used and specified in the input layer of the network. The weights of the blue crabs were utilized in the output layer of the network. A multi-layer perception architecture model was used and was calibrated with the Levenberg Marguardt (LM algorithm. Finally, the values were determined by the ANN model using the actual data. The mean square error (MSE was measured as 3.3, and the best results had a correlation coefficient (R of 0.93. We compared the predictive capacity of the general linear model (GLM versus the Artificial Neural Network model (ANN for the estimation of the weights of blue crabs from independent field data. The results indicated the higher performance capacity of the ANN to predict weights compared to the GLM (R=0.97 vs. R=0.95, raw variable when evaluated against independent field data.

  8. Prediction by Artificial Neural Networks (ANN of the diffusivity, mass, moisture, volume and solids on osmotically dehydrated yacon (Smallantus sonchifolius

    Directory of Open Access Journals (Sweden)

    Julio Rojas Naccha

    2012-09-01

    Full Text Available The predictive ability of Artificial Neural Network (ANN on the effect of the concentration (30, 40, 50 y 60 % w/w and temperature (30, 40 y 50°C of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means effective diffusivity with and without shrinkage was evaluated. The Feedforward type ANN with the Backpropagation training algorithms and the Levenberg-Marquardt weight adjustment was applied, using the following topology: 10-5 goal error, 0.01 learning rate, 0.5 moment coefficient, 2 input neurons, 6 output neurons, one hidden layer with 18 neurons, 15 training stages and logsig-pureline transfer functions. The overall average error achieved by the ANN was 3.44% and correlation coefficients were bigger than 0.9. No significant differences were found between the experimental values and the predicted values achieved by the ANN and with the predicted values achieved by a statistical model of second-order polynomial regression (p > 0.95.

  9. The modelling of lead removal from water by deep eutectic solvents functionalized CNTs: artificial neural network (ANN) approach.

    Science.gov (United States)

    Fiyadh, Seef Saadi; AlSaadi, Mohammed Abdulhakim; AlOmar, Mohamed Khalid; Fayaed, Sabah Saadi; Hama, Ako R; Bee, Sharifah; El-Shafie, Ahmed

    2017-11-01

    The main challenge in the lead removal simulation is the behaviour of non-linearity relationships between the process parameters. The conventional modelling technique usually deals with this problem by a linear method. The substitute modelling technique is an artificial neural network (ANN) system, and it is selected to reflect the non-linearity in the interaction among the variables in the function. Herein, synthesized deep eutectic solvents were used as a functionalized agent with carbon nanotubes as adsorbents of Pb 2+ . Different parameters were used in the adsorption study including pH (2.7 to 7), adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and Pb 2+ initial concentration (3 to 60 mg/l). The number of experimental trials to feed and train the system was 158 runs conveyed in laboratory scale. Two ANN types were designed in this work, the feed-forward back-propagation and layer recurrent; both methods are compared based on their predictive proficiency in terms of the mean square error (MSE), root mean square error, relative root mean square error, mean absolute percentage error and determination coefficient (R 2 ) based on the testing dataset. The ANN model of lead removal was subjected to accuracy determination and the results showed R 2 of 0.9956 with MSE of 1.66 × 10 -4 . The maximum relative error is 14.93% for the feed-forward back-propagation neural network model.

  10. Face recognition: Eigenface, elastic matching, and neural nets

    International Nuclear Information System (INIS)

    Zhang, J.; Lades, M.

    1997-01-01

    This paper is a comparative study of three recently proposed algorithms for face recognition: eigenface, autoassociation and classification neural nets, and elastic matching. After these algorithms were analyzed under a common statistical decision framework, they were evaluated experimentally on four individual data bases, each with a moderate subject size, and a combined data base with more than a hundred different subjects. Analysis and experimental results indicate that the eigenface algorithm, which is essentially a minimum distance classifier, works well when lighting variation is small. Its performance deteriorates significantly as lighting variation increases. The elastic matching algorithm, on the other hand, is insensitive to lighting, face position, and expression variations and therefore is more versatile. The performance of the autoassociation and classification nets is upper bounded by that of the eigenface but is more difficult to implement in practice

  11. Neural net generated seismic facies map and attribute facies map

    International Nuclear Information System (INIS)

    Addy, S.K.; Neri, P.

    1998-01-01

    The usefulness of 'seismic facies maps' in the analysis of an Upper Wilcox channel system in a 3-D survey shot by CGG in 1995 in Lavaca county in south Texas was discussed. A neural net-generated seismic facies map is a quick hydrocarbon exploration tool that can be applied regionally as well as on a prospect scale. The new technology is used to classify a constant interval parallel to a horizon in a 3-D seismic volume based on the shape of the wiggle traces using a neural network technology. The tool makes it possible to interpret sedimentary features of a petroleum deposit. The same technology can be used in regional mapping by making 'attribute facies maps' in which various forms of amplitude attributes, phase attributes or frequency attributes can be used

  12. Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices

    International Nuclear Information System (INIS)

    Taghavifar, Hamid; Mardani, Aref

    2014-01-01

    This paper examines the prediction of energy efficiency indices of driven wheels (i.e. traction coefficient and tractive power efficiency) as affected by wheel load, slippage and forward velocity at three different levels with three replicates to form a total of 162 data points. The pertinent experiments were carried out in the soil bin testing facility. A feed-forward ANN (artificial neural network) with standard BP (back propagation) algorithm was practiced to construct a supervised representation to predict the energy efficiency indices of driven wheels. It was deduced, in view of the statistical performance criteria (i.e. MSE (mean squared error) and R 2 ), that a supervised ANN with 3-8-10-2 topology and Levenberg–Marquardt training algorithm represented the optimal model. Modeling implementations indicated that ANN is a powerful technique to prognosticate the stochastic energy efficiency indices as affected by soil-wheel interactions with MSE of 0.001194 and R 2 of 0.987 and 0.9772 for traction coefficient and tractive power efficiency. It was found that traction coefficient and tractive power efficiency increase with increased slippage. A similar trend is valid for the influence of wheel load on the objective parameters. Wherein increase of velocity led to an increment of tractive power efficiency, velocity had no significant effect on traction coefficient. - Highlights: • Energy efficiency indexes were assessed as affected by tire parameters. • ANN was applied for prognostication of the objective parameters. • A 3-8-10-2 ANN with MSE of 0.001194 and R 2 of 0.987 and 0.9772 was designated as optimal model. • Optimal values of learning rate and momentum were found 0.9 and 0.5, respectively

  13. RegnANN: Reverse Engineering Gene Networks using Artificial Neural Networks.

    Directory of Open Access Journals (Sweden)

    Marco Grimaldi

    Full Text Available RegnANN is a novel method for reverse engineering gene networks based on an ensemble of multilayer perceptrons. The algorithm builds a regressor for each gene in the network, estimating its neighborhood independently. The overall network is obtained by joining all the neighborhoods. RegnANN makes no assumptions about the nature of the relationships between the variables, potentially capturing high-order and non linear dependencies between expression patterns. The evaluation focuses on synthetic data mimicking plausible submodules of larger networks and on biological data consisting of submodules of Escherichia coli. We consider Barabasi and Erdös-Rényi topologies together with two methods for data generation. We verify the effect of factors such as network size and amount of data to the accuracy of the inference algorithm. The accuracy scores obtained with RegnANN is methodically compared with the performance of three reference algorithms: ARACNE, CLR and KELLER. Our evaluation indicates that RegnANN compares favorably with the inference methods tested. The robustness of RegnANN, its ability to discover second order correlations and the agreement between results obtained with this new methods on both synthetic and biological data are promising and they stimulate its application to a wider range of problems.

  14. Development of a neural net paradigm that predicts simulator sickness

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.

    1993-03-01

    A disease exists that affects pilots and aircrew members who use Navy Operational Flight Training Systems. This malady, commonly referred to as simulator sickness and whose symptomatology closely aligns with that of motion sickness, can compromise the use of these systems because of a reduced utilization factor, negative transfer of training, and reduction in combat readiness. A report is submitted that develops an artificial neural network (ANN) and behavioral model that predicts the onset and level of simulator sickness in the pilots and aircrews who sue these systems. It is proposed that the paradigm could be implemented in real time as a biofeedback monitor to reduce the risk to users of these systems. The model captures the neurophysiological impact of use (human-machine interaction) by developing a structure that maps the associative and nonassociative behavioral patterns (learned expectations) and vestibular (otolith and semicircular canals of the inner ear) and tactile interaction, derived from system acceleration profiles, onto an abstract space that predicts simulator sickness for a given training flight.

  15. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    Science.gov (United States)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  16. Neural-net disruption predictor in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.

    2003-01-01

    The prediction of major disruptions caused by the density limit, the plasma current ramp-down with high internal inductance l i , the low density locked mode and the β-limit has been investigated in JT-60U. The concept of 'stability level', newly proposed in this paper to predict the occurrence of a major disruption, is calculated from nine input parameters every 2 ms by the neural network and the start of a major disruption is predicted when the stability level decreases to a certain level, the 'alarm level'. The neural network is trained in two steps. It is first trained with 12 disruptive and six non-disruptive shots (total of 8011 data points). Second, the target output data for 12 disruptive shots are modified and the network is trained again with additional data points generated by the operator. The 'neural-net disruption predictor' obtained has been tested for 300 disruptive shots (128 945 data points) and 1008 non-disruptive shots (982 800 data points) selected from nine years of operation (1991-1999) of JT-60U. Major disruptions except for those caused by the -limit have been predicted with a prediction success rate of 97-98% at 10 ms prior to the disruption and higher than 90% at 30 ms prior to the disruption while the false alarm rate is 2.1% for non-disruptive shots. This prediction performance has been confirmed for 120 disruptive shots (56 163 data points), caused by the density limit, as well as 1032 non-disruptive shots (1004 611 data points) in the last four years of operation (1999-2002) of JT-60U. A careful selection of the input parameters supplied to the network and the newly developed two-step training of the network have reduced the false alarm rate resulting in a considerable improvement of the prediction success rate. (author)

  17. Neural nets for job-shop scheduling, will they do the job?

    NARCIS (Netherlands)

    Rooda, J.E.; Willems, T.M.; Goodwin, G.C.; Evans, R.J.

    1993-01-01

    A neural net structure has been developed which is capable of solving deterministic jobshop scheduling problems, part of the large class of np-complete problems. The problem was translated in an integer linear-programming format which facilitated translation in an adequate neural net structure. Use

  18. Neuropathological findings processed by artificial neural networks (ANNs can perfectly distinguish Alzheimer's patients from controls in the Nun Study

    Directory of Open Access Journals (Sweden)

    Snowdon David

    2007-06-01

    Full Text Available Abstract Background Many reports have described that there are fewer differences in AD brain neuropathologic lesions between AD patients and control subjects aged 80 years and older, as compared with the considerable differences between younger persons with AD and controls. In fact some investigators have suggested that since neurofibrillary tangles (NFT can be identified in the brains of non-demented elderly subjects they should be considered as a consequence of the aging process. At present, there are no universally accepted neuropathological criteria which can mathematically differentiate AD from healthy brain in the oldest old. The aim of this study is to discover the hidden and non-linear associations among AD pathognomonic brain lesions and the clinical diagnosis of AD in participants in the Nun Study through Artificial Neural Networks (ANNs analysis Methods The analyses were based on 26 clinically- and pathologically-confirmed AD cases and 36 controls who had normal cognitive function. The inputs used for the analyses were just NFT and neuritic plaques counts in neocortex and hippocampus, for which, despite substantial differences in mean lesions counts between AD cases and controls, there was a substantial overlap in the range of lesion counts. Results By taking into account the above four neuropathological features, the overall predictive capability of ANNs in sorting out AD cases from normal controls reached 100%. The corresponding accuracy obtained with Linear Discriminant Analysis was 92.30%. These results were consistently obtained in ten independent experiments. The same experiments were carried out with ANNs on a subgroup of 13 non severe AD patients and on the same 36 controls. The results obtained in terms of prediction accuracy with ANNs were exactly the same. Input relevance analysis confirmed the relative dominance of NFT in neocortex in discriminating between AD patients and controls and indicated the lesser importance

  19. Neuropathological findings processed by artificial neural networks (ANNs) can perfectly distinguish Alzheimer's patients from controls in the Nun Study.

    Science.gov (United States)

    Grossi, Enzo; Buscema, Massimo P; Snowdon, David; Antuono, Piero

    2007-06-21

    Many reports have described that there are fewer differences in AD brain neuropathologic lesions between AD patients and control subjects aged 80 years and older, as compared with the considerable differences between younger persons with AD and controls. In fact some investigators have suggested that since neurofibrillary tangles (NFT) can be identified in the brains of non-demented elderly subjects they should be considered as a consequence of the aging process. At present, there are no universally accepted neuropathological criteria which can mathematically differentiate AD from healthy brain in the oldest old. The aim of this study is to discover the hidden and non-linear associations among AD pathognomonic brain lesions and the clinical diagnosis of AD in participants in the Nun Study through Artificial Neural Networks (ANNs) analysis The analyses were based on 26 clinically- and pathologically-confirmed AD cases and 36 controls who had normal cognitive function. The inputs used for the analyses were just NFT and neuritic plaques counts in neocortex and hippocampus, for which, despite substantial differences in mean lesions counts between AD cases and controls, there was a substantial overlap in the range of lesion counts. By taking into account the above four neuropathological features, the overall predictive capability of ANNs in sorting out AD cases from normal controls reached 100%. The corresponding accuracy obtained with Linear Discriminant Analysis was 92.30%. These results were consistently obtained in ten independent experiments. The same experiments were carried out with ANNs on a subgroup of 13 non severe AD patients and on the same 36 controls. The results obtained in terms of prediction accuracy with ANNs were exactly the same. Input relevance analysis confirmed the relative dominance of NFT in neocortex in discriminating between AD patients and controls and indicated the lesser importance played by NP in the hippocampus. The results of this study

  20. Applying of the Artificial Neural Networks (ANN) to Identify and Characterize Sweet Spots in Shale Gas Formations

    Science.gov (United States)

    Puskarczyk, Edyta

    2018-03-01

    The main goal of the study was to enhance and improve information about the Ordovician and Silurian gas-saturated shale formations. Author focused on: firstly, identification of the shale gas formations, especially the sweet spots horizons, secondly, classification and thirdly, the accurate characterization of divisional intervals. Data set comprised of standard well logs from the selected well. Shale formations are represented mainly by claystones, siltstones, and mudstones. The formations are also partially rich in organic matter. During the calculations, information about lithology of stratigraphy weren't taken into account. In the analysis, selforganizing neural network - Kohonen Algorithm (ANN) was used for sweet spots identification. Different networks and different software were tested and the best network was used for application and interpretation. As a results of Kohonen networks, groups corresponding to the gas-bearing intervals were found. The analysis showed diversification between gas-bearing formations and surrounding beds. It is also shown that internal diversification in sweet spots is present. Kohonen algorithm was also used for geological interpretation of well log data and electrofacies prediction. Reliable characteristic into groups shows that Ja Mb and Sa Fm which are usually treated as potential sweet spots only partially have good reservoir conditions. It is concluded that ANN appears to be useful and quick tool for preliminary classification of members and sweet spots identification.

  1. A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)

    Science.gov (United States)

    Raj, A. Stanley; Srinivas, Y.; Oliver, D. Hudson; Muthuraj, D.

    2014-03-01

    The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.

  2. Prediction ofWater Quality Parameters (NO3, CL in Karaj Riverby Usinga Combinationof Wavelet Neural Network, ANN and MLRModels

    Directory of Open Access Journals (Sweden)

    T. Rajaee

    2016-10-01

    Full Text Available IntroductionThe water quality is an issue of ongoing concern. Evaluation of the quantity and quality of running waters is considerable in hydro-environmental management.The prediction and control of the quality of Karaj river water, as one of the important needed water supply sources of Tehran, possesses great importance. In this study, Performance of Artificial Neural Network (ANN, Wavelet Neural Network combination (WANN and multi linear regression (MLR models, to predict next month the Nitrate (NO3 and Chloride (CL ions of "gate ofBylaqan sluice" station located in Karaj River has been evaluated. Materials and MethodsIn this research two separate ANN models for prediction of NO3 and CL has been expanded. Each one of the parameters for prediction (NO3 / CL has been put related to the past amounts of the same time series (NO3 / CL and its amounts of Q in past months.From astatisticalperiod of10yearswas usedforthe input of the models. Hence 80% of entire data from (96 initial months of data as training set, next 10% of data (12 months and 10% of the end of time series (terminal 12 months were considered as for validation and test of the models, respectively. In WANNcombination model, the real monthly observed time series of river discharge (Q and mentioned qualityparameters(NO3 / CL were decomposed to some sub-time series at different levels by wavelet analysis.Then the decomposed quality parameters to predict and Q time series were used at different levels as inputs to the ANN technique for predicting one-step-ahead Nitrate and Chloride. These time series play various roles in the original time series and the behavior of each is distinct, so the contribution to the original time series varies from each other. In addition, prediction of high NO3 and CL values greater than mean of data that have great importancewere investigated by the models. The capability of the models was evaluated by Coefficient of Efficiency (E and the Root Mean Square

  3. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN).

    Science.gov (United States)

    Titah, Harmin Sulistiyaning; Halmi, Mohd Izuan Effendi Bin; Abdullah, Siti Rozaimah Sheikh; Hasan, Hassimi Abu; Idris, Mushrifah; Anuar, Nurina

    2018-06-07

    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg -1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R 2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.

  4. Enhancing the top-quark signal at Fermilab Tevatron using neural nets

    International Nuclear Information System (INIS)

    Ametller, L.; Garrido, L.; Talavera, P.

    1994-01-01

    We show, in agreement with previous studies, that neural nets can be useful for top-quark analysis at the Fermilab Tevatron. The main features of t bar t and background events in a mixed sample are projected on a single output, which controls the efficiency, purity, and statistical significance of the t bar t signal. We consider a feed-forward multilayer neural net for the CDF reported top-quark mass, using six kinematical variables as inputs. Our main results are based on the exhaustive comparison of the neural net performances with those obtainable from the standard experimental analysis, by imposing different sets of linear cuts over the same variables, showing how the neural net approach improves the standard analysis results

  5. DeepNet: An Ultrafast Neural Learning Code for Seismic Imaging

    International Nuclear Information System (INIS)

    Barhen, J.; Protopopescu, V.; Reister, D.

    1999-01-01

    A feed-forward multilayer neural net is trained to learn the correspondence between seismic data and well logs. The introduction of a virtual input layer, connected to the nominal input layer through a special nonlinear transfer function, enables ultrafast (single iteration), near-optimal training of the net using numerical algebraic techniques. A unique computer code, named DeepNet, has been developed, that has achieved, in actual field demonstrations, results unattainable to date with industry standard tools

  6. A bat's ear view of neural nets in physics

    International Nuclear Information System (INIS)

    Denby, B.

    1997-01-01

    The use of neural networks in high energy physics has become a field of its own which now has been in existence for ten years. This paper attempts to draw some conclusions on the utility of neural networks for physics applications, and also to make some projections for the future of this line of research. (orig.)

  7. Classifying Sources Influencing Indoor Air Quality (IAQ Using Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Shaharil Mad Saad

    2015-05-01

    Full Text Available Monitoring indoor air quality (IAQ is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN—a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC, base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room’s conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity.

  8. Do neural nets learn statistical laws behind natural language?

    Directory of Open Access Journals (Sweden)

    Shuntaro Takahashi

    Full Text Available The performance of deep learning in natural language processing has been spectacular, but the reasons for this success remain unclear because of the inherent complexity of deep learning. This paper provides empirical evidence of its effectiveness and of a limitation of neural networks for language engineering. Precisely, we demonstrate that a neural language model based on long short-term memory (LSTM effectively reproduces Zipf's law and Heaps' law, two representative statistical properties underlying natural language. We discuss the quality of reproducibility and the emergence of Zipf's law and Heaps' law as training progresses. We also point out that the neural language model has a limitation in reproducing long-range correlation, another statistical property of natural language. This understanding could provide a direction for improving the architectures of neural networks.

  9. Larger bases and mixed analog/digital neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, and bounds on the size of threshold gate circuits. Based on an explicit numerical algorithm for Kolmogorov`s superpositions the authors show that minimum size neural networks--for implementing any Boolean function--have the identity function as the activation function. Conclusions and several comments on the required precision are ending the paper.

  10. Optimization of thermal conductivity lightweight brick type AAC (Autoclaved Aerated Concrete) effect of Si & Ca composition by using Artificial Neural Network (ANN)

    Science.gov (United States)

    Zulkifli; Wiryawan, G. P.

    2018-03-01

    Lightweight brick is the most important component of building construction, therefore it is necessary to have lightweight thermal, mechanical and aqustic thermal properties that meet the standard, in this paper which is discussed is the domain of light brick thermal conductivity properties. The advantage of lightweight brick has a low density (500-650 kg/m3), more economical, can reduce the load 30-40% compared to conventional brick (clay brick). In this research, Artificial Neural Network (ANN) is used to predict the thermal conductivity of lightweight brick type Autoclaved Aerated Concrete (AAC). Based on the training and evaluation that have been done on 10 model of ANN with number of hidden node 1 to 10, obtained that ANN with 3 hidden node have the best performance. It is known from the mean value of MSE (Mean Square Error) validation for three training times of 0.003269. This ANN was further used to predict the thermal conductivity of four light brick samples. The predicted results for each of the AAC1, AAC2, AAC3 and AAC4 light brick samples were 0.243 W/m.K, respectively; 0.29 W/m.K; 0.32 W/m.K; and 0.32 W/m.K. Furthermore, ANN is used to determine the effect of silicon composition (Si), Calcium (Ca), to light brick thermal conductivity. ANN simulation results show that the thermal conductivity increases with increasing Si composition. Si content is allowed maximum of 26.57%, while the Ca content in the range 20.32% - 30.35%.

  11. Neural-net based unstable machine identification using individual energy functions. [Transient disturbances in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Institut Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States)

    1991-10-01

    The identification of the mode of instability plays an essential role in generating principal energy boundary hypersurfaces. We present a new method for unstable machine identification based on the use of supervised learning neural-net technology, and the adaptive pattern recognition concept. It is shown that using individual energy functions as pattern features, appropriately trained neural-nets can retrieve the reliable characterization of the transient process including critical clearing time parameter, mode of instability and energy margins. Generalization capabilities of the neural-net processing allow for these assessments to be made independently of load levels. The results obtained from computer simulations are presented using the New England power system, as an example. (author).

  12. Goal-seeking neural net for recall and recognition

    Science.gov (United States)

    Omidvar, Omid M.

    1990-07-01

    Neural networks have been used to mimic cognitive processes which take place in animal brains. The learning capability inherent in neural networks makes them suitable candidates for adaptive tasks such as recall and recognition. The synaptic reinforcements create a proper condition for adaptation, which results in memorization, formation of perception, and higher order information processing activities. In this research a model of a goal seeking neural network is studied and the operation of the network with regard to recall and recognition is analyzed. In these analyses recall is defined as retrieval of stored information where little or no matching is involved. On the other hand recognition is recall with matching; therefore it involves memorizing a piece of information with complete presentation. This research takes the generalized view of reinforcement in which all the signals are potential reinforcers. The neuronal response is considered to be the source of the reinforcement. This local approach to adaptation leads to the goal seeking nature of the neurons as network components. In the proposed model all the synaptic strengths are reinforced in parallel while the reinforcement among the layers is done in a distributed fashion and pipeline mode from the last layer inward. A model of complex neuron with varying threshold is developed to account for inhibitory and excitatory behavior of real neuron. A goal seeking model of a neural network is presented. This network is utilized to perform recall and recognition tasks. The performance of the model with regard to the assigned tasks is presented.

  13. Artificial Neural Network (ANN) design for Hg-Se interactions and their effect on reduction of Hg uptake by radish plant

    International Nuclear Information System (INIS)

    Kumar Rohit Raj; Abhishek Kardam; Shalini Srivastava; Jyoti Kumar Arora

    2010-01-01

    The tendency of selenium to interact with heavy metals in presence of naturally occurring species has been exploited for the development of green bioremediation of toxic metals from soil using Artificial Neural Network (ANN) modeling. The cross validation of the data for the reduction in uptake of Hg(II) ions in the plant R. sativus grown in soil and sand culture in presence of selenium has been used for ANN modeling. ANN model based on the combination of back propagation and principal component analysis was able to predict the reduction in Hg uptake with a sigmoid axon transfer function. The data of fifty laboratory experimental sets were used for structuring single layer ANN model. Series of experiments resulted into the performance evaluation based on considering 20% data for testing and 20% data for cross validation at 1,500 Epoch with 0.70 momentums The Levenberg-Marquardt algorithm (LMA) was found as the best of BP algorithms with a minimum mean squared error at the eighth place of the decimal for training (MSE) and cross validation. (author)

  14. Exact estimation of biodiesel cetane number (CN) from its fatty acid methyl esters (FAMEs) profile using partial least square (PLS) adapted by artificial neural network (ANN)

    International Nuclear Information System (INIS)

    Hosseinpour, Soleiman; Aghbashlo, Mortaza; Tabatabaei, Meisam; Khalife, Esmail

    2016-01-01

    Highlights: • Estimating the biodiesel CN from its FAMEs profile using ANN-based PLS approach. • Comparing the capability of ANN-adapted PLS approach with the standard PLS model. • Exact prediction of biodiesel CN from it FAMEs profile using ANN-based PLS method. • Developing an easy-to-use software using ANN-PLS model for computing the biodiesel CN. - Abstract: Cetane number (CN) is among the most important properties of biodiesel because it quantifies combustion speed or in better words, ignition quality. Experimental measurement of biodiesel CN is rather laborious and expensive. However, the high proportionality of biodiesel fatty acid methyl esters (FAMEs) profile with its CN is very appealing to develop straightforward and inexpensive computerized tools for biodiesel CN estimation. Unfortunately, correlating the chemical structure of biodiesel to its CN using conventional statistical and mathematical approaches is very difficult. To solve this issue, partial least square (PLS) adapted by artificial neural network (ANN) was introduced and examined herein as an innovative approach for the exact estimation of biodiesel CN from its FAMEs profile. In the proposed approach, ANN paradigm was used for modeling the inner relation between the input and the output PLS score vectors. In addition, the capability of the developed method in predicting the biodiesel CN was compared with the basal PLS method. The accuracy of the developed approaches for computing the biodiesel CN was assessed using three statistical criteria, i.e., coefficient of determination (R"2), mean-squared error (MSE), and percentage error (PE). The ANN-adapted PLS method predicted the biodiesel CN with an R"2 value higher than 0.99 demonstrating the fidelity of the developed model over the classical PLS method with a markedly lower R"2 value of about 0.85. In order to facilitate the use of the proposed model, an easy-to-use computer program was also developed on the basis of ANN-adapted PLS

  15. Vector control of wind turbine on the basis of the fuzzy selective neural net*

    Science.gov (United States)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.

  16. Neural net classification of x-ray pistachio nut data

    Science.gov (United States)

    Casasent, David P.; Sipe, Michael A.; Schatzki, Thomas F.; Keagy, Pamela M.; Le, Lan Chau

    1996-12-01

    Classification results for agricultural products are presented using a new neural network. This neural network inherently produces higher-order decision surfaces. It achieves this with fewer hidden layer neurons than other classifiers require. This gives better generalization. It uses new techniques to select the number of hidden layer neurons and adaptive algorithms that avoid other such ad hoc parameter selection problems; it allows selection of the best classifier parameters without the need to analyze the test set results. The agriculture case study considered is the inspection and classification of pistachio nuts using x- ray imagery. Present inspection techniques cannot provide good rejection of worm damaged nuts without rejecting too many good nuts. X-ray imagery has the potential to provide 100% inspection of such agricultural products in real time. Only preliminary results are presented, but these indicate the potential to reduce major defects to 2% of the crop with 1% of good nuts rejected. Future image processing techniques that should provide better features to improve performance and allow inspection of a larger variety of nuts are noted. These techniques and variations of them have uses in a number of other agricultural product inspection problems.

  17. ChemNet: A Transferable and Generalizable Deep Neural Network for Small-Molecule Property Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Garrett B.; Siegel, Charles M.; Vishnu, Abhinav; Hodas, Nathan O.

    2017-12-08

    With access to large datasets, deep neural networks through representation learning have been able to identify patterns from raw data, achieving human-level accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and with a multitude of chemical properties of interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with the existing Chemception CNN model, to create a transferable and generalizable deep neural network for small-molecule property prediction. Our latest model, ChemNet learns in a semi-supervised manner from inexpensive labels computed from the ChEMBL database. When fine-tuned to the Tox21, HIV and FreeSolv dataset, which are 3 separate chemical tasks that ChemNet was not originally trained on, we demonstrate that ChemNet exceeds the performance of existing Chemception models, contemporary MLP models that trains on molecular fingerprints, and it matches the performance of the ConvGraph algorithm, the current state-of-the-art. Furthermore, as ChemNet has been pre-trained on a large diverse chemical database, it can be used as a universal “plug-and-play” deep neural network, which accelerates the deployment of deep neural networks for the prediction of novel small-molecule chemical properties.

  18. Generation of daily solar irradiation by means of artificial neural net works

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Adalberto N.; Tiba, Chigueru; Fraidenraich, Naum [Departamento de Energia Nuclear, da Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, 1000 - CDU, CEP 50.740-540 Recife, Pernambuco (Brazil)

    2010-11-15

    The present study proposes the utilization of Artificial Neural Networks (ANN) as an alternative for generating synthetic series of daily solar irradiation. The sequences were generated from the use of daily temporal series of a group of meteorological variables that were measured simultaneously. The data used were measured between the years of 1998 and 2006 in two temperate climate localities of Brazil, Ilha Solteira (Sao Paulo) and Pelotas (Rio Grande do Sul). The estimates were taken for the months of January, April, July and October, through two models which are distinguished regarding the use or nonuse of measured bright sunshine hours as an input variable. An evaluation of the performance of the 56 months of solar irradiation generated by way of ANN showed that by using the measured bright sunshine hours as an input variable (model 1), the RMSE obtained were less or equal to 23.2% being that of those, although 43 of those months presented RMSE less or equal to 12.3%. In the case of the model that did not use the measured bright sunshine hours but used a daylight length (model 2), RMSE were obtained that varied from 8.5% to 37.5%, although 38 of those months presented RMSE less or equal to 20.0%. A comparison of the monthly series for all of the years, achieved by means of the Kolmogorov-Smirnov test (to a confidence level of 99%), demonstrated that of the 16 series generated by ANN model only two, obtained by model 2 for the months of April and July in Pelotas, presented significant difference in relation to the distributions of the measured series and that all mean deviations obtained were inferior to 0.39 MJ/m{sup 2}. It was also verified that the two ANN models were able to reproduce the principal statistical characteristics of the frequency distributions of the measured series such as: mean, mode, asymmetry and Kurtosis. (author)

  19. A new neural net approach to robot 3D perception and visuo-motor coordination

    Science.gov (United States)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  20. Simulation of Snowmelt Runoff Using SRM Model and Comparison With Neural Networks ANN and ANFIS (Case Study: Kardeh dam basin

    Directory of Open Access Journals (Sweden)

    morteza akbari

    2017-03-01

    of the basin with 2962 meters above sea level. Kardeh dam was primarily constructed on the Kardehriver for providing drinking and agriculture water demand with an annual volume rate of 21.23 million cubic meters. Satellite image: To estimate the level of snow cover, the satellite Landsat ETM+ data at path 35-159, rows 34-159 over the period 2001-2002 were used. Surfaces covered with snow were separated bysnow distinction normalized index (NDSI, But due to the lack of training data for image classification (areas with snow and no snow, the k-means unsupervised classification algorithm was used. Extracting the data from the meteorological and hydrological Since only a gauging station exists at the Kardeh dam site, the daily discharge data recorded at these stations was used. To extract meteorological parameters such as precipitation and temperature data, the records of the three stations Golmakan, Mashhad and Ghouchan, as the stations closest to the dam basin Kardeh were used. The purpose of this study was to simulate snowmelt runoff using SRM hydrological models and to compare the results with the outputs of the neural network models such as the ANN and the ANFIS model. Flow simulation was carried out using SRM, ANN model with the Multilayer Perceptron with back-propagation algorithm, and Sugeno type ANFIS. To evaluate the performance of the models in addition to the standard statistics such as mean square error or mean absolute percentage error, the regression coefficient measures and the difference in volume were used. The results showed that all three models are almost similar in terms of statistical parameters MSE and R and the differences were negligible. SRM model: SRM model is a daily hydrological model. This equation is composed of different components including 14 parameters. The input values were calculated based on the equations of degree-day factor. The evaluation of the model was performed with flow subside factor, coefficient and subtracting volume

  1. Squeeze-SegNet: a new fast deep convolutional neural network for semantic segmentation

    Science.gov (United States)

    Nanfack, Geraldin; Elhassouny, Azeddine; Oulad Haj Thami, Rachid

    2018-04-01

    The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmentation. Thus, brilliant ideas in the field of semantic segmentation with deep learning have completed the state of the art of accuracy, however this architectures become very difficult to apply in embedded systems as is the case for autonomous driving. We present a new Deep fully Convolutional Neural Network for pixel-wise semantic segmentation which we call Squeeze-SegNet. The architecture is based on Encoder-Decoder style. We use a SqueezeNet-like encoder and a decoder formed by our proposed squeeze-decoder module and upsample layer using downsample indices like in SegNet and we add a deconvolution layer to provide final multi-channel feature map. On datasets like Camvid or City-states, our net gets SegNet-level accuracy with less than 10 times fewer parameters than SegNet.

  2. Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS).

    Science.gov (United States)

    Tan, Juzhong; Kerr, William L

    2018-08-01

    Roasting is a critical step in chocolate processing, where moisture content is decreased and unique flavors and texture are developed. The determination of the degree of roasting in cocoa beans is important to ensure the quality of chocolate. Determining the degree of roasting relies on human specialists or sophisticated chemical analyses that are inaccessible to small manufacturers and farmers. In this study, an electronic nose system was constructed consisting of an array of gas sensors and used to detect volatiles emanating from cocoa beans roasted for 0, 20, 30 and 40 min. The several signals were used to train a three-layer artificial neural network (ANN). Headspace samples were also analyzed by gas chromatography/mass spectrometry (GC/MS), with 23 select volatiles used to train a separate ANN. Both ANNs were used to predict the degree of roasting of cocoa beans. The electronic nose had a prediction accuracy of 94.4% using signals from sensors TGS 813, 826, 822, 830, 830, 2620, 2602 and 2610. In comparison, the GC/MS predicted the degree of roasting with an accuracy of 95.8%. The electronic nose system is able to predict the extent of roasting, as well as a more sophisticated approach using GC/MS. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM and Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2014-08-01

    Full Text Available A high penetration of wind energy into the electricity market requires a parallel development of efficient wind power forecasting models. Different hybrid forecasting methods were applied to wind power prediction, using historical data and numerical weather predictions (NWP. A comparative study was carried out for the prediction of the power production of a wind farm located in complex terrain. The performances of Least-Squares Support Vector Machine (LS-SVM with Wavelet Decomposition (WD were evaluated at different time horizons and compared to hybrid Artificial Neural Network (ANN-based methods. It is acknowledged that hybrid methods based on LS-SVM with WD mostly outperform other methods. A decomposition of the commonly known root mean square error was beneficial for a better understanding of the origin of the differences between prediction and measurement and to compare the accuracy of the different models. A sensitivity analysis was also carried out in order to underline the impact that each input had in the network training process for ANN. In the case of ANN with the WD technique, the sensitivity analysis was repeated on each component obtained by the decomposition.

  4. NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification

    Directory of Open Access Journals (Sweden)

    Min Peng

    2016-10-01

    Full Text Available Near-infrared (NIR face recognition has attracted increasing attention because of its advantage of illumination invariance. However, traditional face recognition methods based on NIR are designed for and tested in cooperative-user applications. In this paper, we present a convolutional neural network (CNN for NIR face recognition (specifically face identification in non-cooperative-user applications. The proposed NIRFaceNet is modified from GoogLeNet, but has a more compact structure designed specifically for the Chinese Academy of Sciences Institute of Automation (CASIA NIR database and can achieve higher identification rates with less training time and less processing time. The experimental results demonstrate that NIRFaceNet has an overall advantage compared to other methods in the NIR face recognition domain when image blur and noise are present. The performance suggests that the proposed NIRFaceNet method may be more suitable for non-cooperative-user applications.

  5. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

    Science.gov (United States)

    Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan

    2017-02-01

    We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction

    International Nuclear Information System (INIS)

    Mousapour, Ashkan; Hajipour, Alireza; Rashidi, Mohammad Mehdi; Freidoonimehr, Navid

    2016-01-01

    In this paper, the first and second-laws efficiencies are applied to performance analysis of an irreversible Miller cycle. In the irreversible cycle, the linear relation between the specific heat of the working fluid and its temperature, the internal irreversibility described using the compression and expansion efficiencies, the friction loss computed according to the mean velocity of the piston and the heat-transfer loss are considered. The effects of various design parameters, such as the minimum and maximum temperatures of the working fluid and the compression ratio on the power output and the first and second-laws efficiencies of the cycle are discussed. In the following, a procedure named ANN is used for predicting the thermal efficiency values versus the compression ratio, and the minimum and maximum temperatures of the Miller cycle. Nowadays, Miller cycle is widely used in the automotive industry and the obtained results of this study will provide some significant theoretical grounds for the design optimization of the Miller cycle. - Highlights: • The performance of an irreversible Miller cycle is investigated using FFT. • The effects of design parameters on the performance of the cycle are investigated. • ANN is applied to predict the thermal efficiency and the power output values. • There is an excellent correlation between FTT and ANN data. • ANN can be applied to predict data where FTT analysis has not been performed.

  7. Turkey's net energy consumption

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezkaymak, Mehmet

    2005-01-01

    The main goal of this study is to develop the equations for forecasting net energy consumption (NEC) using an artificial neural-network (ANN) technique in order to determine the future level of energy consumption in Turkey. In this study, two different models were used in order to train the neural network. In one of them, population, gross generation, installed capacity and years are used in the input layer of the network (Model 1). Other energy sources are used in input layer of network (Model 2). The net energy consumption is in the output layer for two models. Data from 1975 to 2003 are used for the training. Three years (1981, 1994 and 2003) are used only as test data to confirm this method. The statistical coefficients of multiple determinations (R 2 -value) for training data are equal to 0.99944 and 0.99913 for Models 1 and 2, respectively. Similarly, R 2 values for testing data are equal to 0.997386 and 0.999558 for Models 1 and 2, respectively. According to the results, the net energy consumption using the ANN technique has been predicted with acceptable accuracy. Apart from reducing the whole time required, with the ANN approach, it is possible to find solutions that make energy applications more viable and thus more attractive to potential users. It is also expected that this study will be helpful in developing highly applicable energy policies

  8. tf_unet: Generic convolutional neural network U-Net implementation in Tensorflow

    Science.gov (United States)

    Akeret, Joel; Chang, Chihway; Lucchi, Aurelien; Refregier, Alexandre

    2016-11-01

    tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.

  9. Exemplar-based optical neural net classifier for color pattern recognition

    Science.gov (United States)

    Yu, Francis T. S.; Uang, Chii-Maw; Yang, Xiangyang

    1992-10-01

    We present a color exemplar-based neural network that can be used as an optimum image classifier or an associative memory. Color decomposition and composition technique is used for constructing the polychromatic interconnection weight matrix (IWM). The Hamming net algorithm is modified to relax the dynamic range requirement of the spatial light modulator and to reduce the number of iteration cycles in the winner-take-all layer. Computer simulation results demonstrated the feasibility of this approach

  10. [A method of recognizing biology surface spectrum using cascade-connection artificial neural nets].

    Science.gov (United States)

    Shi, Wei-Jie; Yao, Yong; Zhang, Tie-Qiang; Meng, Xian-Jiang

    2008-05-01

    A method of recognizing the visible spectrum of micro-areas on the biological surface with cascade-connection artificial neural nets is presented in the present paper. The visible spectra of spots on apples' pericarp, ranging from 500 to 730 nm, were obtained with a fiber-probe spectrometer, and a new spectrum recognition system consisting of three-level cascade-connection neural nets was set up. The experiments show that the spectra of rotten, scar and bumped spot on an apple's pericarp can be recognized by the spectrum recognition system, and the recognition accuracy is higher than 85% even when noise level is 15%. The new recognition system overcomes the disadvantages of poor accuracy and poor anti-noise with the traditional system based on single cascade neural nets. Finally, a new method of expression of recognition results was proved. The method is based on the conception of degree of membership in fuzzing mathematics, and through it the recognition results can be expressed exactly and objectively.

  11. Wet gas metering with the v-cone and neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Toral, Haluk; Cai, Shiqian; Peters, Robert

    2005-07-01

    The paper presents analysis of extensive measurements taken at NEL, K-Lab and CEESI wet gas test loops. Differential and absolute pressure signals were sampled at high frequency across V-Cone meters. Turbulence characteristics of the flow captured in the sampled signals were characterized by pattern recognition techniques and related to the fractions and flow rates of individual phases. The sensitivity of over-reading to first and higher order features of the high frequency signals were investigated qualitatively. The sensitivities were quantified by means of the saliency test based on back propagating neural nets. A self contained wet gas meter based on neural net characterization of first and higher order features of the pressure, differential pressure and capacitance signals was proposed. Alternatively, a wet gas meter based on a neural net model of just pressure sensor inputs (based on currently available data) and liquid Froude number was shown to offer an accuracy of under 5% if the Froude number could be estimated with 25% accuracy. (author) (tk)

  12. Deep neural nets as a method for quantitative structure-activity relationships.

    Science.gov (United States)

    Ma, Junshui; Sheridan, Robert P; Liaw, Andy; Dahl, George E; Svetnik, Vladimir

    2015-02-23

    Neural networks were widely used for quantitative structure-activity relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on large problems, difficult to train, prone to overfitting, etc.), they were superseded by more robust methods like support vector machine (SVM) and random forest (RF), which arose in the early 2000s. The last 10 years has witnessed a revival of neural networks in the machine learning community thanks to new methods for preventing overfitting, more efficient training algorithms, and advancements in computer hardware. In particular, deep neural nets (DNNs), i.e. neural nets with more than one hidden layer, have found great successes in many applications, such as computer vision and natural language processing. Here we show that DNNs can routinely make better prospective predictions than RF on a set of large diverse QSAR data sets that are taken from Merck's drug discovery effort. The number of adjustable parameters needed for DNNs is fairly large, but our results show that it is not necessary to optimize them for individual data sets, and a single set of recommended parameters can achieve better performance than RF for most of the data sets we studied. The usefulness of the parameters is demonstrated on additional data sets not used in the calibration. Although training DNNs is still computationally intensive, using graphical processing units (GPUs) can make this issue manageable.

  13. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    Science.gov (United States)

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  14. Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model

    International Nuclear Information System (INIS)

    Koutroumanidis, Theodoros; Ioannou, Konstantinos; Arabatzis, Garyfallos

    2009-01-01

    Throughout history, energy resources have acquired a strategic significance for the economic growth and social welfare of any country. The large-scale oil crisis of 1973 coupled with various environmental protection issues, have led many countries to look for new, alternative energy sources. Biomass and fuelwood in particular, constitutes a major renewable energy source (RES) that can make a significant contribution, as a substitute for oil. This paper initially provides a description of the contribution of renewable energy sources to the production of electricity, and also examines the role of forests in the production of fuelwood in Greece. Following this, autoregressive integrated moving average (ARIMA) models, artificial neural networks (ANN) and a hybrid model are used to predict the future selling prices of the fuelwood (from broadleaved and coniferous species) produced by Greek state forest farms. The use of the ARIMA-ANN hybrid model provided the optimum prediction results, thus enabling decision-makers to proceed with a more rational planning for the production and fuelwood market. (author)

  15. Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells.

    Science.gov (United States)

    Yetilmezsoy, Kaan; Demirel, Sevgi

    2008-05-30

    A three-layer artificial neural network (ANN) model was developed to predict the efficiency of Pb(II) ions removal from aqueous solution by Antep pistachio (Pistacia Vera L.) shells based on 66 experimental sets obtained in a laboratory batch study. The effect of operational parameters such as adsorbent dosage, initial concentration of Pb(II) ions, initial pH, operating temperature, and contact time were studied to optimise the conditions for maximum removal of Pb(II) ions. On the basis of batch test results, optimal operating conditions were determined to be an initial pH of 5.5, an adsorbent dosage of 1.0 g, an initial Pb(II) concentration of 30 ppm, and a temperature of 30 degrees C. Experimental results showed that a contact time of 45 min was generally sufficient to achieve equilibrium. After backpropagation (BP) training combined with principal component analysis (PCA), the ANN model was able to predict adsorption efficiency with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and a linear transfer function (purelin) at output layer. The Levenberg-Marquardt algorithm (LMA) was found as the best of 11 BP algorithms with a minimum mean squared error (MSE) of 0.000227875. The linear regression between the network outputs and the corresponding targets were proven to be satisfactory with a correlation coefficient of about 0.936 for five model variables used in this study.

  16. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process

    International Nuclear Information System (INIS)

    Daneshvar, N.; Khataee, A.R.; Djafarzadeh, N.

    2006-01-01

    In this paper, electrocoagulation has been used for removal of color from solution containing C. I. Basic Yellow 28. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration, distance between the electrodes, retention time and solution conductivity were studied in an attempt to reach higher removal efficiency. Our results showed that the increase of current density up to 80 A m -2 enhanced the color removal efficiency, the electrolysis time was 7 min and the range of pH was determined 5-8. It was found that for achieving a high color removal percent, the conductivity of the solution and the initial concentration of dye should be 10 mS cm -1 and 50 mg l -1 , respectively. An artificial neural networks (ANN) model was developed to predict the performance of decolorization efficiency by EC process based on experimental data obtained in a laboratory batch reactor. A comparison between the predicted results of the designed ANN model and experimental data was also conducted. The model can describe the color removal percent under different conditions

  17. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process

    Energy Technology Data Exchange (ETDEWEB)

    Daneshvar, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: nezam_daneshvar@yahoo.com; Khataee, A.R. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: ar_khataee@yahoo.com; Djafarzadeh, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: n.jafarzadeh@gmail.com

    2006-10-11

    In this paper, electrocoagulation has been used for removal of color from solution containing C. I. Basic Yellow 28. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration, distance between the electrodes, retention time and solution conductivity were studied in an attempt to reach higher removal efficiency. Our results showed that the increase of current density up to 80 A m{sup -2} enhanced the color removal efficiency, the electrolysis time was 7 min and the range of pH was determined 5-8. It was found that for achieving a high color removal percent, the conductivity of the solution and the initial concentration of dye should be 10 mS cm{sup -1} and 50 mg l{sup -1}, respectively. An artificial neural networks (ANN) model was developed to predict the performance of decolorization efficiency by EC process based on experimental data obtained in a laboratory batch reactor. A comparison between the predicted results of the designed ANN model and experimental data was also conducted. The model can describe the color removal percent under different conditions.

  18. Comparison between Possibilistic c-Means (PCM and Artificial Neural Network (ANN Classification Algorithms in Land use/ Land cover Classification

    Directory of Open Access Journals (Sweden)

    Ganchimeg Ganbold

    2017-03-01

    Full Text Available There are several statistical classification algorithms available for landuse/land cover classification. However, each has a certain bias orcompromise. Some methods like the parallel piped approach in supervisedclassification, cannot classify continuous regions within a feature. Onthe other hand, while unsupervised classification method takes maximumadvantage of spectral variability in an image, the maximally separableclusters in spectral space may not do much for our perception of importantclasses in a given study area. In this research, the output of an ANNalgorithm was compared with the Possibilistic c-Means an improvementof the fuzzy c-Means on both moderate resolutions Landsat8 and a highresolution Formosat 2 images. The Formosat 2 image comes with an8m spectral resolution on the multispectral data. This multispectral imagedata was resampled to 10m in order to maintain a uniform ratio of1:3 against Landsat 8 image. Six classes were chosen for analysis including:Dense forest, eucalyptus, water, grassland, wheat and riverine sand. Using a standard false color composite (FCC, the six features reflecteddifferently in the infrared region with wheat producing the brightestpixel values. Signature collection per class was therefore easily obtainedfor all classifications. The output of both ANN and FCM, were analyzedseparately for accuracy and an error matrix generated to assess the qualityand accuracy of the classification algorithms. When you compare theresults of the two methods on a per-class-basis, ANN had a crisperoutput compared to PCM which yielded clusters with pixels especiallyon the moderate resolution Landsat 8 imagery.

  19. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices

    Directory of Open Access Journals (Sweden)

    Ziyang He

    2018-04-01

    Full Text Available By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.

  20. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices.

    Science.gov (United States)

    He, Ziyang; Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan

    2018-04-17

    By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.

  1. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?

    Science.gov (United States)

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-06-28

    A multilayer feed-forward artificial neural network (MLP-ANN) with a single, hidden layer that contains a finite number of neurons can be regarded as a universal non-linear approximator. Today, the ANN method and linear regression (MLR) model are widely used for quantum chemistry (QC) data analysis (e.g., thermochemistry) to improve their accuracy (e.g., Gaussian G2-G4, B3LYP/B3-LYP, X1, or W1 theoretical methods). In this study, an alternative approach based on support vector machines (SVMs) is used, the least squares support vector machine (LS-SVM) regression. It has been applied to ab initio (first principle) and density functional theory (DFT) quantum chemistry data. So, QC + SVM methodology is an alternative to QC + ANN one. The task of the study was to estimate the Møller-Plesset (MPn) or DFT (B3LYP, BLYP, BMK) energies calculated with large basis sets (e.g., 6-311G(3df,3pd)) using smaller ones (6-311G, 6-311G*, 6-311G**) plus molecular descriptors. A molecular set (BRM-208) containing a total of 208 organic molecules was constructed and used for the LS-SVM training, cross-validation, and testing. MP2, MP3, MP4(DQ), MP4(SDQ), and MP4/MP4(SDTQ) ab initio methods were tested. Hartree-Fock (HF/SCF) results were also reported for comparison. Furthermore, constitutional (CD: total number of atoms and mole fractions of different atoms) and quantum-chemical (QD: HOMO-LUMO gap, dipole moment, average polarizability, and quadrupole moment) molecular descriptors were used for the building of the LS-SVM calibration model. Prediction accuracies (MADs) of 1.62 ± 0.51 and 0.85 ± 0.24 kcal mol(-1) (1 kcal mol(-1) = 4.184 kJ mol(-1)) were reached for SVM-based approximations of ab initio and DFT energies, respectively. The LS-SVM model was more accurate than the MLR model. A comparison with the artificial neural network approach shows that the accuracy of the LS-SVM method is similar to the accuracy of ANN. The extrapolation and interpolation results show that LS-SVM is

  2. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  3. Three-dimensional neural net for learning visuomotor coordination of a robot arm.

    Science.gov (United States)

    Martinetz, T M; Ritter, H J; Schulten, K J

    1990-01-01

    An extension of T. Kohonen's (1982) self-organizing mapping algorithm together with an error-correction scheme based on the Widrow-Hoff learning rule is applied to develop a learning algorithm for the visuomotor coordination of a simulated robot arm. Learning occurs by a sequence of trial movements without the need for an external teacher. Using input signals from a pair of cameras, the closed robot arm system is able to reduce its positioning error to about 0.3% of the linear dimensions of its work space. This is achieved by choosing the connectivity of a three-dimensional lattice consisting of the units of the neural net.

  4. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material. Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005. Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  5. Performance Parameters Analysis of an XD3P Peugeot Engine Using Artificial Neural Networks (ANN) Concept in MATLAB

    Science.gov (United States)

    Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.

    2015-04-01

    The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.

  6. Assessment of the expected construction company’s net profit using neural network and multiple regression models

    Directory of Open Access Journals (Sweden)

    H.H. Mohamad

    2013-09-01

    This research aims to develop a mathematical model for assessing the expected net profit of any construction company. To achieve the research objective, four steps were performed. First, the main factors affecting firms’ net profit were identified. Second, pertinent data regarding the net profit factors were collected. Third, two different net profit models were developed using the Multiple Regression (MR and the Neural Network (NN techniques. The validity of the proposed models was also investigated. Finally, the results of both MR and NN models were compared to investigate the predictive capabilities of the two models.

  7. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies

    International Nuclear Information System (INIS)

    Sahinkaya, Erkan

    2009-01-01

    Sulfidogenic treatment of sulfate (2-10 g/L) and zinc (65-677 mg/L) containing simulated wastewater was studied in a mesophilic (35 deg. C) CSTR. Ethanol was supplemented (COD/sulfate = 0.67) as carbon and energy source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn, COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2 g/L feed sulfate concentration, steadily decreased with increasing feed sulfate concentration and reached 40% at 10 g/L. Over 99% Zn removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2 g/L feed sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when feed sulfate concentration was 5 g/L or lower. Electron flow from carbon oxidation to sulfate reduction averaged 83 ± 13%. The rest of the electrons were most likely coupled with fermentative reactions as the amount of methane production was insignificant. The developed ANN model was very successful as an excellent to reasonable match was obtained between the measured and the predicted concentrations of sulfate (R = 0.998), COD (R = 0.993), acetate (R = 0.976) and zinc (R = 0.827) in the CSTR effluent

  8. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study

    Science.gov (United States)

    Maghsoudi, M.; Ghaedi, M.; Zinali, A.; Ghaedi, A. M.; Habibi, M. H.

    2015-01-01

    In this research, ZnO nanoparticle loaded on activated carbon (ZnO-NPs-AC) was synthesized simply by a low cost and nontoxic procedure. The characterization and identification have been completed by different techniques such as SEM and XRD analysis. A three layer artificial neural network (ANN) model is applicable for accurate prediction of dye removal percentage from aqueous solution by ZnO-NRs-AC following conduction of 270 experimental data. The network was trained using the obtained experimental data at optimum pH with different ZnO-NRs-AC amount (0.005-0.015 g) and 5-40 mg/L of sunset yellow dye over contact time of 0.5-30 min. The ANN model was applied for prediction of the removal percentage of present systems with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 6 neurons. The minimum mean squared error (MSE) of 0.0008 and coefficient of determination (R2) of 0.998 were found for prediction and modeling of SY removal. The influence of parameters including adsorbent amount, initial dye concentration, pH and contact time on sunset yellow (SY) removal percentage were investigated and optimal experimental conditions were ascertained. Optimal conditions were set as follows: pH, 2.0; 10 min contact time; an adsorbent dose of 0.015 g. Equilibrium data fitted truly with the Langmuir model with maximum adsorption capacity of 142.85 mg/g for 0.005 g adsorbent. The adsorption of sunset yellow followed the pseudo-second-order rate equation.

  9. NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACHINE INDEPENDENT VERSION)

    Science.gov (United States)

    Baffes, P. T.

    1994-01-01

    NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS

  10. NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACINTOSH VERSION)

    Science.gov (United States)

    Phillips, T. A.

    1994-01-01

    NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS

  11. EpiNet : Revue électronique de l'EPI, Année 2006, n° 81-90

    OpenAIRE

    Viaud, Jean-Bernard

    2006-01-01

    Fayon, D. (2006). Les nouveaux outils en entreprise. EpiNet : Revue électronique de l'EPI (Enseignement Public & Informatique), jan. 2006, (81).a0601aArchambault, J.-P. (2006). Un dispositif départemental pour les TIC : le CRI de la Haute-Savoie. EpiNet : Revue électronique de l'EPI (Enseignement Public & Informatique), jan. 2006, (81).a0601bCaraballo, S., Cicala, R. (2006). Vers une Didactique de l'Informatique. EpiNet : Revue électronique de l'EPI (Enseignement Public & Informatique), jan. ...

  12. Empirical modeling of a dewaxing system of lubricant oil using Artificial Neural Network (ANN); Modelagem empirica de um sistema de desparafinacao de oleo lubrificante usando redes neurais artificiais

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Cristiano Hora de Oliveira; Medeiros, Ana Claudia Gondim de; Silva, Marcone Lopes; Neves, Sergio Bello; Carvalho, Luciene Santos de; Guimaraes, Paulo Roberto Britto; Pereira, Magnus; Vianna, Regina Ferreira [Universidade Salvador (UNIFACS), Salvador, BA (Brazil). Dept. de Engenharia e Arquitetura]. E-mail: paulorbg@unifacs.br; Santos, Nilza Maria Querino dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)]. E-mail: nilzaq@petrobras.com.br

    2003-07-01

    The MIBK (m-i-b-ketone) dewaxing unit, located at the Landulpho Alves refinery, allows two different operating modes: dewaxing ND oil removal. The former is comprised of an oil-wax separation process, which generates a wax stream with 2 - 5% oil. The latter involves the reprocessing of the wax stream to reduce its oil content. Both involve a two-stage filtration process (primary and secondary) with rotative filters. The general aim of this research is to develop empirical models to predict variables, for both unit-operating modes, to be used in control algorithms, since many data are not available during normal plant operation and therefore need to be estimated. Studies have suggested that the oil content is an essential variable to develop reliable empirical models and this work is concerned with the development of an empirical model for the prediction of the oil content in the wax stream leaving the primary filters. The model is based on a feed forward Artificial Neural Network (ANN) and tests with one and two hidden layers indicate very good agreement between experimental and predicted values. (author)

  13. ConvNetQuake: Convolutional Neural Network for Earthquake Detection and Location

    Science.gov (United States)

    Denolle, M.; Perol, T.; Gharbi, M.

    2017-12-01

    Over the last decades, the volume of seismic data has increased exponentially, creating a need for efficient algorithms to reliably detect and locate earthquakes. Today's most elaborate methods scan through the plethora of continuous seismic records, searching for repeating seismic signals. In this work, we leverage the recent advances in artificial intelligence and present ConvNetQuake, a highly scalable convolutional neural network for probabilistic earthquake detection and location from single stations. We apply our technique to study two years of induced seismicity in Oklahoma (USA). We detect 20 times more earthquakes than previously cataloged by the Oklahoma Geological Survey. Our algorithm detection performances are at least one order of magnitude faster than other established methods.

  14. Door and cabinet recognition using convolutional neural nets and real-time method fusion for handle detection and grasping

    DEFF Research Database (Denmark)

    Maurin, Adrian Llopart; Ravn, Ole; Andersen, Nils Axel

    2017-01-01

    In this paper we present a new method that robustly identifies doors, cabinets and their respective handles, with special emphasis on extracting useful features from handles to be then manipulated. The novelty of this system relies on the combination of a Convolutional Neural Net (CNN), as a form...

  15. Prediction of Disease Causing Non-Synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP

    DEFF Research Database (Denmark)

    Johansen, Morten Bo; Gonzalez-Izarzugaza, Jose Maria; Brunak, Søren

    2013-01-01

    We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features...

  16. EpiNet : Revue électronique de l'EPI, Année 2012, n° 141-150

    OpenAIRE

    Archambault, Jean-Pierre

    2012-01-01

    Accès aux articles et documents dans le fichier attaché index.html. EPI, Archambault, J.-P. (2012). Éditorial : Une commission de l'Académie des Sciences sur l'enseignement de l'informatique. EpiNet : Revue électronique de l'EPI (Enseignement Public & Informatique), jan. 2012, (141). a1201a Archambault, J.-P. (2012). Au bout de dix ans de pratique du B2i, nous constatons un échec. EpiNet : Revue électronique de l'EPI (Enseignement Public & Informatique), jan. 2012, (141). a1201b Karsenti, ...

  17. MosquitoNet: investigating the use of UAV and artificial neural networks for integrated mosquito management

    Science.gov (United States)

    Case, E.; Ren, Y.; Shragai, T.; Erickson, D.

    2017-12-01

    Integrated mosquito control is expensive and resource intensive, and changing climatic factors are predicted to expand the habitable range of disease-carrying mosquitoes into new regions in the United States. Of particular concern in the northeastern United States are aedes albopictus, an aggressive, invasive species of mosquito that can transmit both native and exotic disease. Ae. albopictus prefer to live near human populations and breed in artificial containers with as little as two millimeters of standing water, exponentially increasing the difficulty of source control in suburban and urban areas. However, low-cost unmanned aerial vehicles (UAVs) can be used to photograph large regions at centimeter-resolution, and can image containers of interest in suburban neighborhoods. While proofs-of-concepts have been shown using UAVs to identify naturally occurring bodies of water, they have not been used to identify mosquito habitat in more populated areas. One of the primary challenges is that post-processing high-resolution aerial imagery is still time intensive, often labelled by hand or with programs built for satellite imagery. Artificial neural networks have been highly successful at image recognition tasks; in the past five years, convolutional neural networks (CNN) have surpassed or aided trained humans in identification of skin cancer, agricultural crops, and poverty levels from satellite imagery. MosquitoNet, a dual classifier built from the Single Shot Multibox Detector and VGG16 architectures, was trained on UAV­­­­­ aerial imagery taken during a larval study in Westchester County in southern New York State in July and August 2017. MosquitoNet was designed to assess the habitat risk of suburban properties by automating the identification and counting of containers like tires, toys, garbage bins, flower pots, etc. The SSD-based architecture marked small containers and other habitat indicators while the VGG16-based architecture classified the type of

  18. Schema generation in recurrent neural nets for intercepting a moving target.

    Science.gov (United States)

    Fleischer, Andreas G

    2010-06-01

    The grasping of a moving object requires the development of a motor strategy to anticipate the trajectory of the target and to compute an optimal course of interception. During the performance of perception-action cycles, a preprogrammed prototypical movement trajectory, a motor schema, may highly reduce the control load. Subjects were asked to hit a target that was moving along a circular path by means of a cursor. Randomized initial target positions and velocities were detected in the periphery of the eyes, resulting in a saccade toward the target. Even when the target disappeared, the eyes followed the target's anticipated course. The Gestalt of the trajectories was dependent on target velocity. The prediction capability of the motor schema was investigated by varying the visibility range of cursor and target. Motor schemata were determined to be of limited precision, and therefore visual feedback was continuously required to intercept the moving target. To intercept a target, the motor schema caused the hand to aim ahead and to adapt to the target trajectory. The control of cursor velocity determined the point of interception. From a modeling point of view, a neural network was developed that allowed the implementation of a motor schema interacting with feedback control in an iterative manner. The neural net of the Wilson type consists of an excitation-diffusion layer allowing the generation of a moving bubble. This activation bubble runs down an eye-centered motor schema and causes a planar arm model to move toward the target. A bubble provides local integration and straightening of the trajectory during repetitive moves. The schema adapts to task demands by learning and serves as forward controller. On the basis of these model considerations the principal problem of embedding motor schemata in generalized control strategies is discussed.

  19. A Restricted Boltzman Neural Net to Infer Carbon Uptake from OCO-2 Satellite Data

    Science.gov (United States)

    Halem, M.; Dorband, J. E.; Radov, A.; Barr-Dallas, M.; Gentine, P.

    2015-12-01

    For several decades, scientists have been using satellite observations to infer climate budgets of terrestrial carbon uptake employing inverse methods in conjunction with ecosystem models and coupled global climate models. This is an extremely important Big Data calculation today since the net annual photosynthetic carbon uptake changes annually over land and removes on average ~20% of the emissions from human contributions to atmospheric loading of CO2 from fossil fuels. Unfortunately, such calculations have large uncertainties validated with in-situ networks of measuring stations across the globe. One difficulty in using satellite data for these budget calculations is that the models need to assimilate surface fluxes of CO2 as well as soil moisture, vegatation cover and the eddy covariance of latent and sensible heat to calculate the carbon fixed in the soil while satellite spectral observations only provide near surface concentrations of CO2. In July 2014, NASA successfully launched OCO-2 which provides 3km surface measurements of CO2 over land and oceans. We have collected nearly one year of Level 2 XCO2 data from the OCO-2 satellite for 3 sites of ~200 km2 at equatorial, temperate and high latitudes. Each selected site was part of the Fluxnet or ARM system with tower stations for measuring and collecting CO2 fluxes on an hourly basis, in addition to eddy transports of the other parameters. We are also planning to acquire the 4km NDVI products from MODIS and registering the data to the 3km XCO2 footprints for the three sites. We have implemented a restricted Boltzman machine on the quantum annealing D-Wave computer, a novel deep learning neural net, to be used for training with station data to infer CO2 fluxes from collocated XCO2, MODIS vegetative land cover and MERRA reanalysis surface exchange products. We will present performance assessments of the D-Wave Boltzman machine for generating XCO2 fluxes from the OCO-2 satellite observations for the 3 sites by

  20. EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation.

    Science.gov (United States)

    Amidi, Afshine; Amidi, Shervine; Vlachakis, Dimitrios; Megalooikonomou, Vasileios; Paragios, Nikos; Zacharaki, Evangelia I

    2018-01-01

    During the past decade, with the significant progress of computational power as well as ever-rising data availability, deep learning techniques became increasingly popular due to their excellent performance on computer vision problems. The size of the Protein Data Bank (PDB) has increased more than 15-fold since 1999, which enabled the expansion of models that aim at predicting enzymatic function via their amino acid composition. Amino acid sequence, however, is less conserved in nature than protein structure and therefore considered a less reliable predictor of protein function. This paper presents EnzyNet, a novel 3D convolutional neural networks classifier that predicts the Enzyme Commission number of enzymes based only on their voxel-based spatial structure. The spatial distribution of biochemical properties was also examined as complementary information. The two-layer architecture was investigated on a large dataset of 63,558 enzymes from the PDB and achieved an accuracy of 78.4% by exploiting only the binary representation of the protein shape. Code and datasets are available at https://github.com/shervinea/enzynet.

  1. Modularity and Sparsity: Evolution of Neural Net Controllers in Physically Embodied Robots

    Directory of Open Access Journals (Sweden)

    Nicholas Livingston

    2016-12-01

    Full Text Available While modularity is thought to be central for the evolution of complexity and evolvability, it remains unclear how systems boot-strap themselves into modularity from random or fully integrated starting conditions. Clune et al. (2013 suggested that a positive correlation between sparsity and modularity is the prime cause of this transition. We sought to test the generality of this modularity-sparsity hypothesis by testing it for the first time in physically embodied robots. A population of ten Tadros — autonomous, surface-swimming robots propelled by a flapping tail — was used. Individuals varied only in the structure of their neural net control, a 2 x 6 x 2 network with recurrence in the hidden layer. Each of the 60 possible connections was coded in the genome, and could achieve one of three states: -1, 0, 1. Inputs were two light-dependent resistors and outputs were two motor control variables to the flapping tail, one for the frequency of the flapping and the other for the turning offset. Each Tadro was tested separately in a circular tank lit by a single overhead light source. Fitness was the amount of light gathered by a vertically oriented sensor that was disconnected from the controller net. Reproduction was asexual, with the top performer cloned and then all individuals entered into a roulette wheel selection process, with genomes mutated to create the offspring. The starting population of networks was randomly generated. Over ten generations, the population’s mean fitness increased two-fold. This evolution occurred in spite of an unintentional integer overflow problem in recurrent nodes in the hidden layer that caused outputs to oscillate. Our investigation of the oscillatory behavior showed that the mutual information of inputs and outputs was sufficient for the reactive behaviors observed. While we had predicted that both modularity and sparsity would follow the same trend as fitness, neither did so. Instead, selection gradients

  2. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network.

    Science.gov (United States)

    Fabijańska, Anna

    2018-04-18

    Diagnostic information regarding the health status of the corneal endothelium may be obtained by analyzing the size and the shape of the endothelial cells in specular microscopy images. Prior to the analysis, the endothelial cells need to be extracted from the image. Up to today, this has been performed manually or semi-automatically. Several approaches to automatic segmentation of endothelial cells exist; however, none of them is perfect. Therefore this paper proposes to perform cell segmentation using a U-Net-based convolutional neural network. Particularly, the network is trained to discriminate pixels located at the borders between cells. The edge probability map outputted by the network is next binarized and skeletonized in order to obtain one-pixel wide edges. The proposed solution was tested on a dataset consisting of 30 corneal endothelial images presenting cells of different sizes, achieving an AUROC level of 0.92. The resulting DICE is on average equal to 0.86, which is a good result, regarding the thickness of the compared edges. The corresponding mean absolute percentage error of cell number is at the level of 4.5% which confirms the high accuracy of the proposed approach. The resulting cell edges are well aligned to the ground truths and require a limited number of manual corrections. This also results in accurate values of the cell morphometric parameters. The corresponding errors range from 5.2% for endothelial cell density, through 6.2% for cell hexagonality to 11.93% for the coefficient of variation of the cell size. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling.

    Science.gov (United States)

    Ameer, Kashif; Bae, Seong-Woo; Jo, Yunhee; Lee, Hyun-Gyu; Ameer, Asif; Kwon, Joong-Ho

    2017-08-15

    Stevia rebaudiana (Bertoni) consists of stevioside and rebaudioside-A (Reb-A). We compared response surface methodology (RSM) and artificial neural network (ANN) modelling for their estimation and predictive capabilities in building effective models with maximum responses. A 5-level 3-factor central composite design was used to optimize microwave-assisted extraction (MAE) to obtain maximum yield of target responses as a function of extraction time (X 1 : 1-5min), ethanol concentration, (X 2 : 0-100%) and microwave power (X 3 : 40-200W). Maximum values of the three output parameters: 7.67% total extract yield, 19.58mg/g stevioside yield, and 15.3mg/g Reb-A yield, were obtained under optimum extraction conditions of 4min X 1 , 75% X 2 , and 160W X 3 . The ANN model demonstrated higher efficiency than did the RSM model. Hence, RSM can demonstrate interaction effects of inherent MAE parameters on target responses, whereas ANN can reliably model the MAE process with better predictive and estimation capabilities. Copyright © 2017. Published by Elsevier Ltd.

  4. The EB factory project. I. A fast, neural-net-based, general purpose light curve classifier optimized for eclipsing binaries

    International Nuclear Information System (INIS)

    Paegert, Martin; Stassun, Keivan G.; Burger, Dan M.

    2014-01-01

    We describe a new neural-net-based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as the Large Synoptic Survey Telescope. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together with a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98% and a false-positive rate of 2% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes, including RR Lyrae, Mira, and delta Scuti. However, the classifier currently has difficulty discriminating between different sub-classes of eclipsing binaries, and suffers a relatively low (∼60%) retrieval rate for multi-mode delta Cepheid stars. We find that it is imperative to train the classifier's neural network with exemplars that include the full range of light curve quality to which the classifier will be expected to perform; the classifier performs well on noisy light curves only when trained with noisy exemplars. The classifier source code, ancillary programs, a trained neural net, and a guide for use, are provided.

  5. Prediction of disease causing non-synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP.

    Directory of Open Access Journals (Sweden)

    Morten Bo Johansen

    Full Text Available We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features assessing sequence conservation and the predicted surface accessibility to produce a single score which can be used to rank nsSNPs based on their potential to cause disease. NetDiseaseSNP classifies successfully disease-causing and neutral mutations. In addition, we show that NetDiseaseSNP discriminates cancer driver and passenger mutations satisfactorily. Our method outperforms other state-of-the-art methods on several disease/neutral datasets as well as on cancer driver/passenger mutation datasets and can thus be used to pinpoint and prioritize plausible disease candidates among nsSNPs for further investigation. NetDiseaseSNP is publicly available as an online tool as well as a web service: http://www.cbs.dtu.dk/services/NetDiseaseSNP.

  6. Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.

    Science.gov (United States)

    Mohseni Salehi, Seyed Sadegh; Erdogmus, Deniz; Gholipour, Ali

    2017-11-01

    Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and the robustness of brain extraction, therefore, are crucial for the accuracy of the entire brain analysis process. The state-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry, and therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent, and registration-free brain extraction tool, in this paper, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2-D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2-D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3-D image information without the need for computationally expensive 3-D convolutions and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue. The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark data sets, namely, LPBA40 and OASIS, in which we obtained the Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily oriented fetal brains in reconstructed fetal brain magnetic

  7. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions

    Science.gov (United States)

    2017-01-01

    Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the geometric and biological complexity. To address this problem we introduce the element-specific persistent homology (ESPH) method. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains important biological information via a multichannel image-like representation. This representation reveals hidden structure-function relationships in biomolecules. We further integrate ESPH and deep convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the deep learning limitations from small and noisy training sets, we propose a multi-task multichannel topological convolutional neural network (MM-TCNN). We demonstrate that TopologyNet outperforms the latest methods in the prediction of protein-ligand binding affinities, mutation induced globular protein folding free energy changes, and mutation induced membrane protein folding free energy changes. Availability: weilab.math.msu.edu/TDL/ PMID:28749969

  8. Generalized Net Model of the Cognitive and Neural Algorithm for Adaptive Resonance Theory 1

    Directory of Open Access Journals (Sweden)

    Todor Petkov

    2013-12-01

    Full Text Available The artificial neural networks are inspired by biological properties of human and animal brains. One of the neural networks type is called ART [4]. The abbreviation of ART stands for Adaptive Resonance Theory that has been invented by Stephen Grossberg in 1976 [5]. ART represents a family of Neural Networks. It is a cognitive and neural theory that describes how the brain autonomously learns to categorize, recognize and predict objects and events in the changing world. In this paper we introduce a GN model that represent ART1 Neural Network learning algorithm [1]. The purpose of this model is to explain when the input vector will be clustered or rejected among all nodes by the network. It can also be used for explanation and optimization of ART1 learning algorithm.

  9. Study on the identifying of meat's visible spectrum based on BP artificial neural network

    Science.gov (United States)

    Li, Xiaotian; Zhang, Tieqiang; Li, Bo; Jiang, Yongheng; Liu, Binghui; Li, Zhaokai

    2006-01-01

    A method to identify different meat by the visible and reflected spectra of meat with BP artificial neural net (BP-ANN) was introduced in this paper. The visible and reflected spectra (from 420 to 535nm) of different meat (beef and pork) were measured with fiber sensor spectrometer. A kind of ANN with a double-hidden layer was created to identify the different meat automatically. Its right ratio reaches 92.71%.

  10. Preliminary Study on Application of Artificial Neural Networks (ANN) for Determining the Peroxide Value of Three Commercial Palm Oil Based FTIR Spectrum)

    International Nuclear Information System (INIS)

    Azwan Mat Lazim; Musa Ahmad; Zuriati Zakaria; Mohd Suzeren Jamil; Suria Ramli; Faiz Zainuddin; Mohd Nasir Taib; Mat Nasir Mat Arip

    2013-01-01

    Peroxide value is one of the measurements that being used to determine the peroxide in oil samples produce from the peroxide compound and hydroperoxide group at the primary level of lipid oxidation. In this study, 3 commercial palm cooking oils were selected and labeled as A, B and C. Two different conditions were applied to the samples. First, the oil sample was exposed to the air for three months (labeled as A) while samples B and C were used for frying for many times. Two inputs from FTIR spectra (3444 cm -1 and 3450 cm -1 ) were chosen for the ANN training. The suitable architecture for this training is 2:20:1. The prediction made by ANN was very accurate and compatible to the result which obtained from the standard method. A low average error (0.48) was obtained when the hidden neuron (20) and the epochs (300) were used. (author)

  11. Competition and Cooperation in Neural Nets : U.S.-Japan Joint Seminar

    CERN Document Server

    Arbib, Michael

    1982-01-01

    The human brain, wi th its hundred billion or more neurons, is both one of the most complex systems known to man and one of the most important. The last decade has seen an explosion of experimental research on the brain, but little theory of neural networks beyond the study of electrical properties of membranes and small neural circuits. Nonetheless, a number of workers in Japan, the United States and elsewhere have begun to contribute to a theory which provides techniques of mathematical analysis and computer simulation to explore properties of neural systems containing immense numbers of neurons. Recently, it has been gradually recognized that rather independent studies of the dynamics of pattern recognition, pattern format::ion, motor control, self-organization, etc. , in neural systems do in fact make use of common methods. We find that a "competition and cooperation" type of interaction plays a fundamental role in parallel information processing in the brain. The present volume brings together 23 papers ...

  12. Pattern recognition neural-net by spatial mapping of biology visual field

    Science.gov (United States)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  13. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO Using an Artificial Neural Network-Genetic Algorithm (ANN-GA

    Directory of Open Access Journals (Sweden)

    Xuedan Shi

    2017-06-01

    Full Text Available Rhodamine B (Rh B is a toxic dye that is harmful to the environment, humans, and animals, and thus the discharge of Rh B wastewater has become a critical concern. In the present study, reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO was used to treat Rh B aqueous solutions. The nZVI/rGO composites were synthesized with the chemical deposition method and were characterized using scanning electron microscopy (SEM, X-ray diffraction (XRD, Raman spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy (XPS analysis. The effects of several important parameters (initial pH, initial concentration, temperature, and contact time on the removal of Rh B by nZVI/rGO were optimized by response surface methodology (RSM and artificial neural network hybridized with genetic algorithm (ANN-GA. The results suggest that the ANN-GA model was more accurate than the RSM model. The predicted optimum value of Rh B removal efficiency (90.0% was determined using the ANN-GA model, which was compatible with the experimental value (86.4%. Moreover, the Langmuir, Freundlich, and Temkin isotherm equations were applied to fit the adsorption equilibrium data, and the Freundlich isotherm was the most suitable model for describing the process for sorption of Rh B onto the nZVI/rGO composites. The maximum adsorption capacity based on the Langmuir isotherm was 87.72 mg/g. The removal process of Rh B could be completed within 20 min, which was well described by the pseudo-second order kinetic model.

  14. Identification of Relevant Phytochemical Constituents for Characterization and Authentication of Tomatoes by General Linear Model Linked to Automatic Interaction Detection (GLM-AID) and Artificial Neural Network Models (ANNs).

    Science.gov (United States)

    Hernández Suárez, Marcos; Astray Dopazo, Gonzalo; Larios López, Dina; Espinosa, Francisco

    2015-01-01

    There are a large number of tomato cultivars with a wide range of morphological, chemical, nutritional and sensorial characteristics. Many factors are known to affect the nutrient content of tomato cultivars. A complete understanding of the effect of these factors would require an exhaustive experimental design, multidisciplinary scientific approach and a suitable statistical method. Some multivariate analytical techniques such as Principal Component Analysis (PCA) or Factor Analysis (FA) have been widely applied in order to search for patterns in the behaviour and reduce the dimensionality of a data set by a new set of uncorrelated latent variables. However, in some cases it is not useful to replace the original variables with these latent variables. In this study, Automatic Interaction Detection (AID) algorithm and Artificial Neural Network (ANN) models were applied as alternative to the PCA, AF and other multivariate analytical techniques in order to identify the relevant phytochemical constituents for characterization and authentication of tomatoes. To prove the feasibility of AID algorithm and ANN models to achieve the purpose of this study, both methods were applied on a data set with twenty five chemical parameters analysed on 167 tomato samples from Tenerife (Spain). Each tomato sample was defined by three factors: cultivar, agricultural practice and harvest date. General Linear Model linked to AID (GLM-AID) tree-structured was organized into 3 levels according to the number of factors. p-Coumaric acid was the compound the allowed to distinguish the tomato samples according to the day of harvest. More than one chemical parameter was necessary to distinguish among different agricultural practices and among the tomato cultivars. Several ANN models, with 25 and 10 input variables, for the prediction of cultivar, agricultural practice and harvest date, were developed. Finally, the models with 10 input variables were chosen with fit's goodness between 44 and 100

  15. Identification of Relevant Phytochemical Constituents for Characterization and Authentication of Tomatoes by General Linear Model Linked to Automatic Interaction Detection (GLM-AID and Artificial Neural Network Models (ANNs.

    Directory of Open Access Journals (Sweden)

    Marcos Hernández Suárez

    Full Text Available There are a large number of tomato cultivars with a wide range of morphological, chemical, nutritional and sensorial characteristics. Many factors are known to affect the nutrient content of tomato cultivars. A complete understanding of the effect of these factors would require an exhaustive experimental design, multidisciplinary scientific approach and a suitable statistical method. Some multivariate analytical techniques such as Principal Component Analysis (PCA or Factor Analysis (FA have been widely applied in order to search for patterns in the behaviour and reduce the dimensionality of a data set by a new set of uncorrelated latent variables. However, in some cases it is not useful to replace the original variables with these latent variables. In this study, Automatic Interaction Detection (AID algorithm and Artificial Neural Network (ANN models were applied as alternative to the PCA, AF and other multivariate analytical techniques in order to identify the relevant phytochemical constituents for characterization and authentication of tomatoes. To prove the feasibility of AID algorithm and ANN models to achieve the purpose of this study, both methods were applied on a data set with twenty five chemical parameters analysed on 167 tomato samples from Tenerife (Spain. Each tomato sample was defined by three factors: cultivar, agricultural practice and harvest date. General Linear Model linked to AID (GLM-AID tree-structured was organized into 3 levels according to the number of factors. p-Coumaric acid was the compound the allowed to distinguish the tomato samples according to the day of harvest. More than one chemical parameter was necessary to distinguish among different agricultural practices and among the tomato cultivars. Several ANN models, with 25 and 10 input variables, for the prediction of cultivar, agricultural practice and harvest date, were developed. Finally, the models with 10 input variables were chosen with fit's goodness

  16. Ann tuleb Rakverest Võrru

    Index Scriptorium Estoniae

    2009-01-01

    Võru kultuurimajas Kannel etendub 17. aprillil Rakvere teatri noortelavastus "Kuidas elad? ...Ann?!" Aidi Valliku jutustuse põhjal. Lavastaja Sven Heiberg. Mängivad ka Viljandi Kultuuriakadeemia teatritudengid

  17. Development of a partial least squares-artificial neural network (PLS-ANN) hybrid model for the prediction of consumer liking scores of ready-to-drink green tea beverages.

    Science.gov (United States)

    Yu, Peigen; Low, Mei Yin; Zhou, Weibiao

    2018-01-01

    In order to develop products that would be preferred by consumers, the effects of the chemical compositions of ready-to-drink green tea beverages on consumer liking were studied through regression analyses. Green tea model systems were prepared by dosing solutions of 0.1% green tea extract with differing concentrations of eight flavour keys deemed to be important for green tea aroma and taste, based on a D-optimal experimental design, before undergoing commercial sterilisation. Sensory evaluation of the green tea model system was carried out using an untrained consumer panel to obtain hedonic liking scores of the samples. Regression models were subsequently trained to objectively predict the consumer liking scores of the green tea model systems. A linear partial least squares (PLS) regression model was developed to describe the effects of the eight flavour keys on consumer liking, with a coefficient of determination (R 2 ) of 0.733, and a root-mean-square error (RMSE) of 3.53%. The PLS model was further augmented with an artificial neural network (ANN) to establish a PLS-ANN hybrid model. The established hybrid model was found to give a better prediction of consumer liking scores, based on its R 2 (0.875) and RMSE (2.41%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Estimation of the chemical-induced eye injury using a weight-of-evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): part I: irritation potential.

    Science.gov (United States)

    Verma, Rajeshwar P; Matthews, Edwin J

    2015-03-01

    Evaluation of potential chemical-induced eye injury through irritation and corrosion is required to ensure occupational and consumer safety for industrial, household and cosmetic ingredient chemicals. The historical method for evaluating eye irritant and corrosion potential of chemicals is the rabbit Draize test. However, the Draize test is controversial and its use is diminishing - the EU 7th Amendment to the Cosmetic Directive (76/768/EEC) and recast Regulation now bans marketing of new cosmetics having animal testing of their ingredients and requires non-animal alternative tests for safety assessments. Thus, in silico and/or in vitro tests are advocated. QSAR models for eye irritation have been reported for several small (congeneric) data sets; however, large global models have not been described. This report describes FDA/CFSAN's development of 21 ANN c-QSAR models (QSAR-21) to predict eye irritation using the ADMET Predictor program and a diverse training data set of 2928 chemicals. The 21 models had external (20% test set) and internal validation and average training/verification/test set statistics were: 88/88/85(%) sensitivity and 82/82/82(%) specificity, respectively. The new method utilized multiple artificial neural network (ANN) molecular descriptor selection functionalities to maximize the applicability domain of the battery. The eye irritation models will be used to provide information to fill the critical data gaps for the safety assessment of cosmetic ingredient chemicals. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Neural nets with varying topology for high energy particle recognition. Theory and applications

    International Nuclear Information System (INIS)

    Perrone, A.L.; Basti, G.; Messi, R.; Paoluzi, L.; Picozza, P.

    1995-01-01

    In this paper we propose a strategy to solve the problem of parallel compuation based on a dynamic definition of the net topology showing its effectiveness for problems of particle track recognition in high-energy physics. In this way, we can maintain the linear architecture like in the geometric perceptron, but with a partial and dynamic connectivity so to overcome the intrinsic limiations of the geometric perceptron. Namely, the computation is truly parallel because of the partial connectivity but the net topology is always the optimal one because of its dynamic redefinition on the single input pattern. For these properties, we call this new architecture dynamic perceptron

  20. Bootstrapped neural nets versus regression kriging in the digital mapping of pedological attributes: the automatic and time-consuming perspectives

    Science.gov (United States)

    Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; Manna, Piero; Terribile, Fabio

    2013-04-01

    Digital soil mapping procedures are widespread used to build two-dimensional continuous maps about several pedological attributes. Our work addressed a regression kriging (RK) technique and a bootstrapped artificial neural network approach in order to evaluate and compare (i) the accuracy of prediction, (ii) the susceptibility of being included in automatic engines (e.g. to constitute web processing services), and (iii) the time cost needed for calibrating models and for making predictions. Regression kriging is maybe the most widely used geostatistical technique in the digital soil mapping literature. Here we tried to apply the EBLUP regression kriging as it is deemed to be the most statistically sound RK flavor by pedometricians. An unusual multi-parametric and nonlinear machine learning approach was accomplished, called BAGAP (Bootstrap aggregating Artificial neural networks with Genetic Algorithms and Principal component regression). BAGAP combines a selected set of weighted neural nets having specified characteristics to yield an ensemble response. The purpose of applying these two particular models is to ascertain whether and how much a more cumbersome machine learning method could be much promising in making more accurate/precise predictions. Being aware of the difficulty to handle objects based on EBLUP-RK as well as BAGAP when they are embedded in environmental applications, we explore the susceptibility of them in being wrapped within Web Processing Services. Two further kinds of aspects are faced for an exhaustive evaluation and comparison: automaticity and time of calculation with/without high performance computing leverage.

  1. A Fault Diagnosis Model Based on LCD-SVD-ANN-MIV and VPMCD for Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Songrong Luo

    2016-01-01

    Full Text Available The fault diagnosis process is essentially a class discrimination problem. However, traditional class discrimination methods such as SVM and ANN fail to capitalize the interactions among the feature variables. Variable predictive model-based class discrimination (VPMCD can adequately use the interactions. But the feature extraction and selection will greatly affect the accuracy and stability of VPMCD classifier. Aiming at the nonstationary characteristics of vibration signal from rotating machinery with local fault, singular value decomposition (SVD technique based local characteristic-scale decomposition (LCD was developed to extract the feature variables. Subsequently, combining artificial neural net (ANN and mean impact value (MIV, ANN-MIV as a kind of feature selection approach was proposed to select more suitable feature variables as input vector of VPMCD classifier. In the end of this paper, a novel fault diagnosis model based on LCD-SVD-ANN-MIV and VPMCD is proposed and proved by an experimental application for roller bearing fault diagnosis. The results show that the proposed method is effective and noise tolerant. And the comparative results demonstrate that the proposed method is superior to the other methods in diagnosis speed, diagnosis success rate, and diagnosis stability.

  2. A biologically inspired neural net for trajectory formation and obstacle avoidance.

    Science.gov (United States)

    Glasius, R; Komoda, A; Gielen, S C

    1996-06-01

    In this paper we present a biologically inspired two-layered neural network for trajectory formation and obstacle avoidance. The two topographically ordered neural maps consist of analog neurons having continuous dynamics. The first layer, the sensory map, receives sensory information and builds up an activity pattern which contains the optimal solution (i.e. shortest path without collisions) for any given set of current position, target positions and obstacle positions. Targets and obstacles are allowed to move, in which case the activity pattern in the sensory map will change accordingly. The time evolution of the neural activity in the second layer, the motor map, results in a moving cluster of activity, which can be interpreted as a population vector. Through the feedforward connections between the two layers, input of the sensory map directs the movement of the cluster along the optimal path from the current position of the cluster to the target position. The smooth trajectory is the result of the intrinsic dynamics of the network only. No supervisor is required. The output of the motor map can be used for direct control of an autonomous system in a cluttered environment or for control of the actuators of a biological limb or robot manipulator. The system is able to reach a target even in the presence of an external perturbation. Computer simulations of a point robot and a multi-joint manipulator illustrate the theory.

  3. Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images.

    Science.gov (United States)

    Johnson, J L

    1994-09-10

    The linking-field neural network model of Eckhorn et al. [Neural Comput. 2, 293-307 (1990)] was introduced to explain the experimentally observed synchronous activity among neural assemblies in the cat cortex induced by feature-dependent visual activity. The model produces synchronous bursts of pulses from neurons with similar activity, effectively grouping them by phase and pulse frequency. It gives a basic new function: grouping by similarity. The synchronous bursts are obtained in the limit of strong linking strengths. The linking-field model in the limit of moderate-to-weak linking characterized by few if any multiple bursts is investigated. In this limit dynamic, locally periodic traveling waves exist whose time signal encodes the geometrical structure of a two-dimensional input image. The signal can be made insensitive to translation, scale, rotation, distortion, and intensity. The waves transmit information beyond the physical interconnect distance. The model is implemented in an optical hybrid demonstration system. Results of the simulations and the optical system are presented.

  4. iAnn

    DEFF Research Database (Denmark)

    Jimenez, Rafael C; Albar, Juan P; Bhak, Jong

    2013-01-01

    We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add...... submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically...

  5. Neural-net predictor for beta limit disruptions in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.

    2005-01-01

    Prediction of major disruptions occurring at the β -limit for tokamak plasmas with a normal magnetic shear in JT-60U was conducted using neural networks. Since no clear precursors are generally observed a few tens of milliseconds before the β -limit disruption, a sub-neural network is trained to output the value of the β N limit every 2 ms. The target β N limit is artificially set by the operator in the first step to train a network with non-disruptive shots as well as disruptive shots, and then in the second step the target limit is modified using the β N limit output from the trained network. The adjusted target greatly improves the consistency between the input data and the output. This training, the 'self-teaching method', has greatly reduced the false alarm rate triggered for non-disruptive shots. To improve the prediction performance further, the difference between the output β N limit and the measured β N , and 11 parameters, are inputted to the main neural network to calculate the 'stability level'. The occurrence of a major disruption is predicted when the stability level decreases to the 'alarm level'. Major disruptions at the β -limit have been predicted by the main network with a prediction success rate of 80% at 10 ms prior to the disruption while the false alarm rate is lower than 4% for non-disruptive shots. This 80% value is much higher than that obtained for a network trained with a fixed target β N limit set to be the maximum β N observed at the start of a major disruption, lower than 10%. A prediction success rate of 90% with a false alarm rate of 12% at 10 ms prior to the disruption has also been obtained. This 12% value is about half of that obtained for a network trained with a fixed target β N limit

  6. Fast neural-net based fake track rejection in the LHCb reconstruction

    CERN Document Server

    De Cian, Michel; Seyfert, Paul; Stahl, Sascha

    2017-01-01

    A neural-network based algorithm to identify fake tracks in the LHCb pattern recognition is presented. This algorithm, called ghost probability, retains more than 99 % of well reconstructed tracks while reducing the number of fake tracks by 60 %. It is fast enough to fit into the CPU time budget of the software trigger farm and thus reduces the combinatorics of the decay reconstructions, as well as the number of tracks that need to be processed by the particle identification algorithms. As a result, it strongly contributes to the achievement of having the same reconstruction online and offline in the LHCb experiment in Run II of the LHC.

  7. Development of the neural net technique for particle physics. Study of the e+e- → Z0 → γH reaction

    International Nuclear Information System (INIS)

    Guicheney, C.

    1992-01-01

    This study is concerned with the application of pattern recognition methods through neural networks to High Energy physics. Two methods, Hopfield nets and multilayer nets, are analyzed and shown to have high potential for (resp.) clusterization and classification. Hopfield nets are used for the recognition of jets occurring during the fragmentation process of the e + e - reaction. Multilayer nets are used for the whole reaction analysis. Impediments are pointed out. Associated background noise is also examined. Multilayer nets may enhance the signal to noise ratio when looking for an upper limit for the production of a Higgs boson in the expected canal, and allow for the specific study of the γ b anti b

  8. LOGIC WITH EXCEPTION ON THE ALGEBRA OF FOURIER-DUAL OPERATIONS: NEURAL NET MECHANISM OF COGNITIVE DISSONANCE REDUCING

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    2014-01-01

    Full Text Available A mechanism of cognitive dissonance reducing is demonstrated with approach for non-monotonic fuzzy-valued logics by Fourier-holography technique implementation developing. Cognitive dissonance occurs under perceiving of new information that contradicts to the existing subjective pattern of the outside world, represented by double Fourier-transform cascade with a hologram – neural layers interconnections matrix of inner information representation and logical conclusion. The hologram implements monotonic logic according to “General Modus Ponens” rule. New information is represented by a hologram of exclusion that implements interconnections of logical conclusion and exclusion for neural layers. The latter are linked by Fourier transform that determines duality of the algebra forming operations of conjunction and disjunction. Hologram of exclusion forms conclusion that is dual to the “General Modus Ponens” conclusion. It is shown, that trained for the main rule and exclusion system can be represented by two-layered neural network with separate interconnection matrixes for direct and inverse iterations. The network energy function is involved determining the cyclic dynamics character; dissipative factor causing convergence type of the dynamics is analyzed. Both “General Modus Ponens” and exclusion holograms recording conditions on the dynamics and convergence of the system are demonstrated. The system converges to a stable status, in which logical conclusion doesn’t depend on the inner information. Such kind of dynamics, leading to tolerance forming, is typical for ordinary kind of thinking, aimed at inner pattern of outside world stability. For scientific kind of thinking, aimed at adequacy of the inner pattern of the world, a mechanism is needed to stop the net relaxation; the mechanism has to be external relative to the model of logic. Computer simulation results for the learning conditions adequate to real holograms recording are

  9. Built-in self-repair of VLSI memories employing neural nets

    Science.gov (United States)

    Mazumder, Pinaki

    1998-10-01

    The decades of the Eighties and the Nineties have witnessed the spectacular growth of VLSI technology, when the chip size has increased from a few hundred devices to a staggering multi-millon transistors. This trend is expected to continue as the CMOS feature size progresses towards the nanometric dimension of 100 nm and less. SIA roadmap projects that, where as the DRAM chips will integrate over 20 billion devices in the next millennium, the future microprocessors may incorporate over 100 million transistors on a single chip. As the VLSI chip size increase, the limited accessibility of circuit components poses great difficulty for external diagnosis and replacement in the presence of faulty components. For this reason, extensive work has been done in built-in self-test techniques, but little research is known concerning built-in self-repair. Moreover, the extra hardware introduced by conventional fault-tolerance techniques is also likely to become faulty, therefore causing the circuit to be useless. This research demonstrates the feasibility of implementing electronic neural networks as intelligent hardware for memory array repair. Most importantly, we show that the neural network control possesses a robust and degradable computing capability under various fault conditions. Overall, a yield analysis performed on 64K DRAM's shows that the yield can be improved from as low as 20 percent to near 99 percent due to the self-repair design, with overhead no more than 7 percent.

  10. Comparisons of a Quantum Annealing and Classical Computer Neural Net Approach for Inferring Global Annual CO2 Fluxes over Land

    Science.gov (United States)

    Halem, M.; Radov, A.; Singh, D.

    2017-12-01

    Investigations of mid to high latitude atmospheric CO2 show growing amplitudes in seasonal variations over the past several decades. Recent high-resolution satellite measurements of CO2 concentration are now available for three years from the Orbiting Carbon Observatory-2. The Atmospheric Radiation Measurement (ARM) program of DOE has been making long-term CO2-flux measurements (in addition to CO2 concentration and an array of other meteorological quantities) at several towers and mobile sites located around the globe at half-hour frequencies. Recent papers have shown CO2 fluxes inferred by assimilating CO2 observations into ecosystem models are largely inconsistent with station observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. Thus, new approaches for calculating CO2-flux for assimilation into land surface models are necessary for improving the prediction of annual carbon uptake. In this study, we calculate and compare the predicted CO2 fluxes results employing a Feed Forward Backward Propagation Neural Network model on two architectures, (i) an IBM Minsky Computer node and (ii) a hybrid version of the ARC D-Wave quantum annealing computer. We compare the neural net results of predictions of CO2 flux from ARM station data for three different DOE ecosystem sites; an arid plains near Oklahoma City, a northern arctic site at Barrows AL, and a tropical rainforest site in the Amazon. Training times and predictive results for the calculating annual CO2 flux for the two architectures for each of the three sites are presented. Comparative results of predictions as measured by RMSE and MAE are discussed. Plots and correlations of observed vs predicted CO2 flux are also presented for all three sites. We show the estimated training times for quantum and classical calculations when extended to calculating global annual Carbon Uptake over land. We also

  11. Anne-Ly Reimaa : "Suhtlemisel on oluline avatus" / Anne-Ly Reimaa ; interv. Tiia Linnard

    Index Scriptorium Estoniae

    Reimaa, Anne-Ly

    2005-01-01

    Ilmunud ka: Severnoje Poberezhje : Subbota 3. september lk. 5. Intervjueeritav oma tööst Brüsselis, kus esindab Eesti linnade liitu ja Eesti maaomavalitsuste liitu. Arvamust avaldavad Anne Jundas ja Kaia Kaldvee. Lisa: CV

  12. Real-time classification of signals from three-component seismic sensors using neural nets

    Science.gov (United States)

    Bowman, B. C.; Dowla, F.

    1992-05-01

    Adaptive seismic data acquisition systems with capabilities of signal discrimination and event classification are important in treaty monitoring, proliferation, and earthquake early detection systems. Potential applications include monitoring underground chemical explosions, as well as other military, cultural, and natural activities where characteristics of signals change rapidly and without warning. In these applications, the ability to detect and interpret events rapidly without falling behind the influx of the data is critical. We developed a system for real-time data acquisition, analysis, learning, and classification of recorded events employing some of the latest technology in computer hardware, software, and artificial neural networks methods. The system is able to train dynamically, and updates its knowledge based on new data. The software is modular and hardware-independent; i.e., the front-end instrumentation is transparent to the analysis system. The software is designed to take advantage of the multiprocessing environment of the Unix operating system. The Unix System V shared memory and static RAM protocols for data access and the semaphore mechanism for interprocess communications were used. As the three-component sensor detects a seismic signal, it is displayed graphically on a color monitor using X11/Xlib graphics with interactive screening capabilities. For interesting events, the triaxial signal polarization is computed, a fast Fourier Transform (FFT) algorithm is applied, and the normalized power spectrum is transmitted to a backpropagation neural network for event classification. The system is currently capable of handling three data channels with a sampling rate of 500 Hz, which covers the bandwidth of most seismic events. The system has been tested in laboratory setting with artificial events generated in the vicinity of a three-component sensor.

  13. Control of 12-Cylinder Camless Engine with Neural Networks

    OpenAIRE

    Ashhab Moh’d Sami

    2017-01-01

    The 12-cyliner camless engine breathing process is modeled with artificial neural networks (ANN’s). The inputs to the net are the intake valve lift (IVL) and intake valve closing timing (IVC) whereas the output of the net is the cylinder air charge (CAC). The ANN is trained with data collected from an engine simulation model which is based on thermodynamics principles and calibrated against real engine data. A method for adapting single-output feed-forward neural networks is proposed and appl...

  14. Invariant visual object and face recognition: neural and computational bases, and a model, VisNet

    Directory of Open Access Journals (Sweden)

    Edmund T eRolls

    2012-06-01

    Full Text Available Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy modelin which invariant representations can be built by self-organizing learning based on the temporal and spatialstatistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associativesynaptic learning rule with a short term memory trace, and/or it can use spatialcontinuity in Continuous Spatial Transformation learning which does not require a temporal trace. The model of visual processing in theventral cortical stream can build representations of objects that are invariant withrespect to translation, view, size, and also lighting. The modelhas been extended to provide an account of invariant representations in the dorsal visualsystem of the global motion produced by objects such as looming, rotation, and objectbased movement. The model has been extended to incorporate top-down feedback connectionsto model the control of attention by biased competition in for example spatial and objectsearch tasks. The model has also been extended to account for how the visual system canselect single objects in complex visual scenes, and how multiple objects can berepresented in a scene. The model has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  15. Recognition of malignant processes with neural nets from ESR spectra of serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P. [Inst. of Medical Physics and Biophysics, Univ. Leipzig (Germany); Gurachevsky, A.; Muravsky, V.; Schnurr, K.; Seibt, G. [Medinnovation GmbH, Wildau (Germany); Matthes, G. [Inst. of Transfusion Medicine, Univ. Hospital Leipzig (Germany)

    2005-07-01

    Cancer diseases are the focus of intense research due to their frequent occurrence. It is known from the literature that serum proteins are changed in the case of malignant processes. Changes of albumin conformation, transport efficiency, and binding characteristics can be determined by electron spin resonance spectroscopy (ESR). The present study analysed the binding/dissociation function of albumin with an ESR method using 16-doxyl stearate spin probe as reporter molecule and ethanol as modifier of hydrophobic interactions. Native and frozen plasma of healthy donors (608 samples), patients with malignant diseases (423 samples), and patients with benign conditions (221 samples) were analysed. The global specificity was 91% and the sensitivity 96%. In look-back samples of 27 donors, a malignant process could be detected up to 30 months before clinical diagnosis. To recognise different entities of malignant diseases from the ESR spectra, Artificial neural networks were implemented. For 48 female donors with breast cancer, the recognition specificity was 85%. Other carcinoma entities (22 colon, 18 prostate, 12 stomach) were recognised with specificities between 75% and 84%. Should these specificity values be reproduced in larger studies, the described method could be used as a new specific tumour marker for the early detection of malignant processes. Since transmission of cancer via blood transfusion cannot be excluded as yet, the described ESR method could also be used as a quality test for plasma products. (orig.)

  16. Data Normalization to Accelerate Training for Linear Neural Net to Predict Tropical Cyclone Tracks

    Directory of Open Access Journals (Sweden)

    Jian Jin

    2015-01-01

    Full Text Available When pure linear neural network (PLNN is used to predict tropical cyclone tracks (TCTs in South China Sea, whether the data is normalized or not greatly affects the training process. In this paper, min.-max. method and normal distribution method, instead of standard normal distribution, are applied to TCT data before modeling. We propose the experimental schemes in which, with min.-max. method, the min.-max. value pair of each variable is mapped to (−1, 1 and (0, 1; with normal distribution method, each variable’s mean and standard deviation pair is set to (0, 1 and (100, 1. We present the following results: (1 data scaled to the similar intervals have similar effects, no matter the use of min.-max. or normal distribution method; (2 mapping data to around 0 gains much faster training speed than mapping them to the intervals far away from 0 or using unnormalized raw data, although all of them can approach the same lower level after certain steps from their training error curves. This could be useful to decide data normalization method when PLNN is used individually.

  17. HAWC Analysis of the Crab Nebula Using Neural-Net Energy Reconstruction

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2017-01-01

    The HAWC (High-Altitude Water-Cherenkov) experiment is a TeV γ-ray observatory located 4100 m above sea level on the Sierra Negra mountain in Puebla, Mexico. The detector consists of 300 water-filled tanks, each instrumented with 4 photomuliplier tubes that utilize the water-Cherenkov technique to detect atmospheric air showers produced by cosmic γ rays. Construction of HAWC was completed in March, 2015. The experiment's wide field of view (2 sr) and high duty cycle (> 95 %) make it a powerful survey instrument sensitive to pulsar wind nebulae, supernova remnants, active galactic nuclei, and other γ-ray sources. The mechanisms of particle acceleration at these sources can be studied by analyzing their energy spectra. To this end, we have developed an event-by-event energy-reconstruction algorithm employing an artificial neural network to estimate energies of primary γ rays. The Crab Nebula, the brightest source of TeV photons, makes an excellent calibration source for this technique. We will present preliminary results from an analysis of the Crab energy spectrum using this new energy-reconstruction method. This work was supported by the National Science Foundation.

  18. Recognition of malignant processes with neural nets from ESR spectra of serum albumin

    International Nuclear Information System (INIS)

    Seidel, P.; Gurachevsky, A.; Muravsky, V.; Schnurr, K.; Seibt, G.; Matthes, G.

    2005-01-01

    Cancer diseases are the focus of intense research due to their frequent occurrence. It is known from the literature that serum proteins are changed in the case of malignant processes. Changes of albumin conformation, transport efficiency, and binding characteristics can be determined by electron spin resonance spectroscopy (ESR). The present study analysed the binding/dissociation function of albumin with an ESR method using 16-doxyl stearate spin probe as reporter molecule and ethanol as modifier of hydrophobic interactions. Native and frozen plasma of healthy donors (608 samples), patients with malignant diseases (423 samples), and patients with benign conditions (221 samples) were analysed. The global specificity was 91% and the sensitivity 96%. In look-back samples of 27 donors, a malignant process could be detected up to 30 months before clinical diagnosis. To recognise different entities of malignant diseases from the ESR spectra, Artificial neural networks were implemented. For 48 female donors with breast cancer, the recognition specificity was 85%. Other carcinoma entities (22 colon, 18 prostate, 12 stomach) were recognised with specificities between 75% and 84%. Should these specificity values be reproduced in larger studies, the described method could be used as a new specific tumour marker for the early detection of malignant processes. Since transmission of cancer via blood transfusion cannot be excluded as yet, the described ESR method could also be used as a quality test for plasma products. (orig.)

  19. Biogas engine performance estimation using ANN

    Directory of Open Access Journals (Sweden)

    Yusuf Kurtgoz

    2017-12-01

    Full Text Available Artificial neural network (ANN method was used to estimate the thermal efficiency (TE, brake specific fuel consumption (BSFC and volumetric efficiency (VE values of a biogas engine with spark ignition at different methane (CH4 ratios and engine load values. For this purpose, the biogas used in the biogas engine was produced by the anaerobic fermentation method from bovine manure and different CH4 contents (51%, 57%, 87% were obtained by purification of CO2 and H2S. The data used in the ANN models were obtained experimentally from a 4-stroke four-cylinder, spark ignition engine, at constant speed for different load and CH4 ratios. Using some of the obtained experimental data, ANN models were developed, and the rest was used to test the developed models. In the ANN models, the CH4 ratio of the fuel, engine load, inlet air temperature (Tin, air fuel ratio and the maximum cylinder pressure are chosen as the input parameters. TE, BSFC and VE are used as the output parameters. Root mean square error (RMSE, mean absolute percentage error (MAPE and correlation coefficient (R performance indicators are used to compare measured and predicted values. It has been shown that ANN models give good results in spark ignition biogas engines with high correlation and low error rates for TE, BSFC and VE values.

  20. Feature Selection and ANN Solar Power Prediction

    Directory of Open Access Journals (Sweden)

    Daniel O’Leary

    2017-01-01

    Full Text Available A novel method of solar power forecasting for individuals and small businesses is developed in this paper based on machine learning, image processing, and acoustic classification techniques. Increases in the production of solar power at the consumer level require automated forecasting systems to minimize loss, cost, and environmental impact for homes and businesses that produce and consume power (prosumers. These new participants in the energy market, prosumers, require new artificial neural network (ANN performance tuning techniques to create accurate ANN forecasts. Input masking, an ANN tuning technique developed for acoustic signal classification and image edge detection, is applied to prosumer solar data to improve prosumer forecast accuracy over traditional macrogrid ANN performance tuning techniques. ANN inputs tailor time-of-day masking based on error clustering in the time domain. Results show an improvement in prediction to target correlation, the R2 value, lowering inaccuracy of sample predictions by 14.4%, with corresponding drops in mean average error of 5.37% and root mean squared error of 6.83%.

  1. An ANN application for water quality forecasting.

    Science.gov (United States)

    Palani, Sundarambal; Liong, Shie-Yui; Tkalich, Pavel

    2008-09-01

    Rapid urban and coastal developments often witness deterioration of regional seawater quality. As part of the management process, it is important to assess the baseline characteristics of the marine environment so that sustainable development can be pursued. In this study, artificial neural networks (ANNs) were used to predict and forecast quantitative characteristics of water bodies. The true power and advantage of this method lie in its ability to (1) represent both linear and non-linear relationships and (2) learn these relationships directly from the data being modeled. The study focuses on Singapore coastal waters. The ANN model is built for quick assessment and forecasting of selected water quality variables at any location in the domain of interest. Respective variables measured at other locations serve as the input parameters. The variables of interest are salinity, temperature, dissolved oxygen, and chlorophyll-alpha. A time lag up to 2Delta(t) appeared to suffice to yield good simulation results. To validate the performance of the trained ANN, it was applied to an unseen data set from a station in the region. The results show the ANN's great potential to simulate water quality variables. Simulation accuracy, measured in the Nash-Sutcliffe coefficient of efficiency (R(2)), ranged from 0.8 to 0.9 for the training and overfitting test data. Thus, a trained ANN model may potentially provide simulated values for desired locations at which measured data are unavailable yet required for water quality models.

  2. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.

    Science.gov (United States)

    Rolls, Edmund T

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  3. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, J.; Schutz, J.; Chirayath, V.; Li, A.

    2017-12-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Net's convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign.Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users' input against pre-classified coral imagery to gauge their accuracy and utilizes in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  4. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, Jarrett; Schutz, Joey; Li, Alan; Chirayath, Ved

    2017-01-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Nets convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign. Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users input against pre-classified coral imagery to gauge their accuracy and utilize in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  5. Optimising training data for ANNs with Genetic Algorithms

    OpenAIRE

    Kamp , R. G.; Savenije , H. H. G.

    2006-01-01

    International audience; Artificial Neural Networks (ANNs) have proved to be good modelling tools in hydrology for rainfall-runoff modelling and hydraulic flow modelling. Representative datasets are necessary for the training phase in which the ANN learns the model's input-output relations. Good and representative training data is not always available. In this publication Genetic Algorithms (GA) are used to optimise training datasets. The approach is tested with an existing hydraulic model in ...

  6. Optimising training data for ANNs with Genetic Algorithms

    OpenAIRE

    R. G. Kamp; R. G. Kamp; H. H. G. Savenije

    2006-01-01

    Artificial Neural Networks (ANNs) have proved to be good modelling tools in hydrology for rainfall-runoff modelling and hydraulic flow modelling. Representative datasets are necessary for the training phase in which the ANN learns the model's input-output relations. Good and representative training data is not always available. In this publication Genetic Algorithms (GA) are used to optimise training datasets. The approach is tested with an existing hydraulic model in The Netherlands. An...

  7. NeMO-Net - The Neural Multi-Modal Observation & Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    Li, A. S. X.; Chirayath, V.; Segal-Rosenhaimer, M.; Das, K.

    2017-12-01

    In the past decade, coral reefs worldwide have experienced unprecedented stresses due to climate change, ocean acidification, and anthropomorphic pressures, instigating massive bleaching and die-off of these fragile and diverse ecosystems. Furthermore, remote sensing of these shallow marine habitats is hindered by ocean wave distortion, refraction and optical attenuation, leading invariably to data products that are often of low resolution and signal-to-noise (SNR) ratio. However, recent advances in UAV and Fluid Lensing technology have allowed us to capture multispectral 3D imagery of these systems at sub-cm scales from above the water surface, giving us an unprecedented view of their growth and decay. Exploiting the fine-scaled features of these datasets, machine learning methods such as MAP, PCA, and SVM can not only accurately classify the living cover and morphology of these reef systems (below 8% error), but are also able to map the spectral space between airborne and satellite imagery, augmenting and improving the classification accuracy of previously low-resolution datasets.We are currently implementing NeMO-Net, the first open-source deep convolutional neural network (CNN) and interactive active learning and training software to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology. NeMO-Net will be built upon the QGIS platform to ingest UAV, airborne and satellite datasets from various sources and sensor capabilities, and through data-fusion determine the coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. To achieve this, we will exploit virtual data augmentation, the use of semi-supervised learning, and active learning through a tablet platform allowing for users to manually train uncertain or difficult to classify datasets. The project will make use of Python's extensive libraries for machine learning, as well as extending integration to GPU

  8. Ann Tenno salapaigad / Margit Tõnson

    Index Scriptorium Estoniae

    Tõnson, Margit, 1978-

    2011-01-01

    Fotograaf Ann Tenno aiandushuvist, pildistamisest maailma erinevates paikades. Uutest suundadest (fototöötlus, fractal art, soojuskaameraga pildistamine) tema loomingus. Katkendeid Ann Tenno 2010. aastal ilmunud proosaraamatust "Üle unepiiri"

  9. Kõnelused Tartus / Anne Untera

    Index Scriptorium Estoniae

    Untera, Anne, 1951-

    2007-01-01

    8.-10. V Tartus toimunud eesti, läti ja saksa kunstiteadlaste ühisseminarist. Alexander Knorre rääkis Karl August Senffi, Ilona Audere Friedrich Ludwig von Maydelli, Mai Levin Karl Alexander von Winkleri, Kristiana Abele Johann Walter-Kurau (1869-1932), Anne Untera Konstantin ja Sally von Kügelgeni, Epp Preem Julie Hagen-Schwartzi, Friedrich Gross Eduard von Gebhardti ja Katharina Hadding Ida Kerkoviuse (1879-1970) loomingust

  10. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  11. Efficient computation in adaptive artificial spiking neural networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); R.B.P. Nusselder (Roeland); H.S. Scholte; S.M. Bohte (Sander)

    2017-01-01

    textabstractArtificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of

  12. A Sensitive ANN Based Differential Relay for Transformer Protection with Security against CT Saturation and Tap Changer Operation

    OpenAIRE

    KHORASHADI-ZADEH, Hassan; LI, Zuyi

    2014-01-01

    This paper presents an artificial neural network (ANN) based scheme for fault identification in power transformer protection. The proposed scheme is featured by the application of ANN to identifying system patterns, the unique choice of harmonics of positive sequence differential currents as ANN inputs, the effective handling of current transformer (CT) saturation with an ANN based approach, and the consideration of tap changer position for correcting secondary CT current. Performanc...

  13. Development of an artificial neural network to predict critical heat flux based on the look up tables

    Energy Technology Data Exchange (ETDEWEB)

    Terng, Nilton; Carajilescov, Pedro, E-mail: Nil.terng@gmail.com, E-mail: pedro.carajilescov@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais

    2015-07-01

    The critical heat flux (CHF) is one of the principal thermal hydraulic limits of PWR type nuclear reactors. The present work consists in the development of an artificial neural network (ANN) to estimate the CHF, based on Look Up Table CHF data, published by Groeneveld (2006). Three parameters were considered in the development of the ANN: the pressure in the range of 1 to 21 MPa, the mass flux in the range of 50 to 8000 kg m{sup -2} s{sup -1} and the thermodynamic quality in the range of - 0.5 to 0.9. The ANN model considered was a multi feed forward net, which have two feedforward ANN. The first one, called main neural network, is used to calculate the result of CHF, and the second, denominated spacenet, is responsible to modify the main neural network according to the input. Comparing the ANN predictions with the data of the Look Up Table, it was observed an average of the ratio of 0.993 and a root mean square error of 13.3%. With the developed ANN, a parametric study of CHF was performed to observe the influence of each parameter in the CHF. It was possible to note that the CHF decreases with the increase of pressure and thermodynamic quality, while CHF increases with the mass flow rate, as expected. However, some erratic trends were also observed which can be attributed to either unknown aspect of the CHF phenomenon or uncertainties in the data. (author)

  14. Estimação do volume de árvores utilizando redes neurais artificiais Estimate of tree volume using artificial neural nets

    Directory of Open Access Journals (Sweden)

    Eric Bastos Gorgens

    2009-12-01

    Full Text Available Rede neural artificial consiste em um conjunto de unidades que contêm funções matemáticas, unidas por pesos. As redes são capazes de aprender, mediante modificação dos pesos sinápticos, e generalizar o aprendizado para outros arquivos desconhecidos. O projeto de redes neurais é composto por três etapas: pré-processamento, processamento e, por fim, pós-processamento dos dados. Um dos problemas clássicos que podem ser abordados por redes é a aproximação de funções. Nesse grupo, pode-se incluir a estimação do volume de árvores. Foram utilizados quatro arquiteturas diferentes, cinco pré-processamentos e duas funções de ativação. As redes que se apresentaram estatisticamente iguais aos dados observados também foram analisadas quanto ao resíduo e à distribuição dos volumes e comparadas com a estimação de volume pelo modelo de Schumacher e Hall. As redes neurais formadas por neurônios, cuja função de ativação era exponencial, apresentaram estimativas estatisticamente iguais aos dados observados. As redes treinadas com os dados normalizados pelo método da interpolação linear e equalizados tiveram melhor desempenho na estimação.The artificial neural network consists of a set of units containing mathematical functions connected by weights. Such nets are capable of learning by means of synaptic weight modification, generalizing learning for other unknown archives. The neural network project comprises three stages: pre-processing, processing and post-processing of data. One of the classical problems approached by networks is function approximation. Tree volume estimate can be included in this group. Four different architectures, five pre-processings and two activation functions were used. The nets which were statistically similar to the observed data were also analyzed in relation to residue and volume and compared to the volume estimate provided by the Schumacher and Hall equation. The neural nets formed by

  15. Neural nets for the plausibility check of measured values in the integrated measurement and information system for the surveillance of environmental radioactivity (IMIS)

    International Nuclear Information System (INIS)

    Haase, G.

    2003-01-01

    Neural nets to the plausibility check of measured values in the ''integrated measurement and information system for the surveillance of environmental radioactivity, IMIS'' is a research project supported by the Federal Minister for the Environment, Nature Conservation and Nuclear Safety. A goal of this project was the automatic recognition of implausible measured values in the data base ORACLE, which measured values from surveillance of environmental radioactivity of most diverse environmental media contained. The conversion of this project [ 1 ] was realized by institut of logic, complexity and deduction systems of the university Karlsruhe under the direction of Professor Dr. Menzel, Dr. Martin Riedmueller and Martin Lauer. (orig.)

  16. Multispectral confocal microscopy images and artificial neural nets to monitor the photosensitizer uptake and degradation in Candida albicans cells

    Science.gov (United States)

    Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Guimarães, Francisco E. G.

    2017-07-01

    This study clearly demonstrates that multispectral confocal microscopy images analyzed by artificial neural networks provides a powerful tool to real-time monitoring photosensitizer uptake, as well as photochemical transformations occurred.

  17. Flow forecast by SWAT model and ANN in Pracana basin, Portugal

    NARCIS (Netherlands)

    Demirel, M.C.; Venancio, Anabela; Kahya, Ercan

    2009-01-01

    This study provides a unique opportunity to analyze the issue of flow forecast based on the soil and water assessment tool (SWAT) and artificial neural network (ANN) models. In last two decades, the ANNs have been extensively applied to various water resources system problems. In this study, the

  18. NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features

    DEFF Research Database (Denmark)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-01-01

    is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino......β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method...... NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which...

  19. Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; SubbaRao; Harish, N.; Lokesha

    Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models...

  20. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  1. NetTurnP--neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features.

    Directory of Open Access Journals (Sweden)

    Bent Petersen

    Full Text Available UNLABELLED: β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. CONCLUSION: The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.

  2. NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features

    Science.gov (United States)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-01-01

    β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC  = 0.50, Qtotal = 82.1%, sensitivity  = 75.6%, PPV  = 68.8% and AUC  = 0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17 – 0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. Conclusion The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences. PMID:21152409

  3. NetTurnP--neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features.

    Science.gov (United States)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-11-30

    β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.

  4. Application of neural networks to seismic active control

    International Nuclear Information System (INIS)

    Tang, Yu.

    1995-01-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads

  5. Artificial neural networks as a tool in urban storm drainage

    DEFF Research Database (Denmark)

    Loke, E.; Warnaars, E.A.; Jacobsen, P.

    1997-01-01

    The introduction of Artificial Neural Networks (ANNs) as a tool in the field of urban storm drainage is discussed. Besides some basic theory on the mechanics of ANNs and a general classification of the different types of ANNs, two ANN application examples are presented: The prediction of runoff...

  6. NeMO-Net & Fluid Lensing: The Neural Multi-Modal Observation & Training Network for Global Coral Reef Assessment Using Fluid Lensing Augmentation of NASA EOS Data

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low-resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with

  7. LFC based adaptive PID controller using ANN and ANFIS techniques

    Directory of Open Access Journals (Sweden)

    Mohamed I. Mosaad

    2014-12-01

    Full Text Available This paper presents an adaptive PID Load Frequency Control (LFC for power systems using Neuro-Fuzzy Inference Systems (ANFIS and Artificial Neural Networks (ANN oriented by Genetic Algorithm (GA. PID controller parameters are tuned off-line by using GA to minimize integral error square over a wide-range of load variations. The values of PID controller parameters obtained from GA are used to train both ANFIS and ANN. Therefore, the two proposed techniques could, online, tune the PID controller parameters for optimal response at any other load point within the operating range. Testing of the developed techniques shows that the adaptive PID-LFC could preserve optimal performance over the whole loading range. Results signify superiority of ANFIS over ANN in terms of performance measures.

  8. Playing tag with ANN: boosted top identification with pattern recognition

    International Nuclear Information System (INIS)

    Almeida, Leandro G.; Backović, Mihailo; Cliche, Mathieu; Lee, Seung J.; Perelstein, Maxim

    2015-01-01

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image" of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p T in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  9. Playing tag with ANN: boosted top identification with pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Leandro G. [Institut de Biologie de l’École Normale Supérieure (IBENS), Inserm 1024- CNRS 8197,46 rue d’Ulm, 75005 Paris (France); Backović, Mihailo [Center for Cosmology, Particle Physics and Phenomenology - CP3,Universite Catholique de Louvain,Louvain-la-neuve (Belgium); Cliche, Mathieu [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States); Lee, Seung J. [Department of Physics, Korea Advanced Institute of Science and Technology,335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Perelstein, Maxim [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States)

    2015-07-17

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image' of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p{sub T} in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  10. Neural Network Based Load Frequency Control for Restructuring ...

    African Journals Online (AJOL)

    Neural Network Based Load Frequency Control for Restructuring Power Industry. ... an artificial neural network (ANN) application of load frequency control (LFC) of a Multi-Area power system by using a neural network controller is presented.

  11. Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2007-01-01

    The most important theme in this study is to obtain equations based on economic indicators (gross national product-GNP and gross domestic product-GDP) and population increase to predict the net energy consumption of Turkey using artificial neural networks (ANNs) in order to determine future level of the energy consumption and make correct investments in Turkey. In this study, three different models were used in order to train the ANN. In one of them (Model 1), energy indicators such as installed capacity, generation, energy import and energy export, in second (Model 2), GNP was used and in the third (Model 3), GDP was used as the input layer of the network. The net energy consumption (NEC) is in the output layer for all models. In order to train the neural network, economic and energy data for last 37 years (1968-2005) are used in network for all models. The aim of used different models is to demonstrate the effect of economic indicators on the estimation of NEC. The maximum mean absolute percentage error (MAPE) was found to be 2.322732, 1.110525 and 1.122048 for Models 1, 2 and 3, respectively. R 2 values were obtained as 0.999444, 0.999903 and 0.999903 for training data of Models 1, 2 and 3, respectively. The ANN approach shows greater accuracy for evaluating NEC based on economic indicators. Based on the outputs of the study, the ANN model can be used to estimate the NEC from the country's population and economic indicators with high confidence for planing future projections

  12. Arabic Handwriting Recognition Using Neural Network Classifier

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... an OCR using Neural Network classifier preceded by a set of preprocessing .... Artificial Neural Networks (ANNs), which we adopt in this research, consist of ... advantage and disadvantages of each technique. In [9],. Khemiri ...

  13. Estimation of the chemical-induced eye injury using a Weight-of-Evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): part II: corrosion potential.

    Science.gov (United States)

    Verma, Rajeshwar P; Matthews, Edwin J

    2015-03-01

    This is part II of an in silico investigation of chemical-induced eye injury that was conducted at FDA's CFSAN. Serious eye damage caused by chemical (eye corrosion) is assessed using the rabbit Draize test, and this endpoint is an essential part of hazard identification and labeling of industrial and consumer products to ensure occupational and consumer safety. There is an urgent need to develop an alternative to the Draize test because EU's 7th amendment to the Cosmetic Directive (EC, 2003; 76/768/EEC) and recast Regulation now bans animal testing on all cosmetic product ingredients and EU's REACH Program limits animal testing for chemicals in commerce. Although in silico methods have been reported for eye irritation (reversible damage), QSARs specific for eye corrosion (irreversible damage) have not been published. This report describes the development of 21 ANN c-QSAR models (QSAR-21) for assessing eye corrosion potential of chemicals using a large and diverse CFSAN data set of 504 chemicals, ADMET Predictor's three sensitivity analyses and ANNE classification functionalities with 20% test set selection from seven different methods. QSAR-21 models were internally and externally validated and exhibited high predictive performance: average statistics for the training, verification, and external test sets of these models were 96/96/94% sensitivity and 91/91/90% specificity. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Ado Vabbe preemia Anne Parmastole

    Index Scriptorium Estoniae

    2003-01-01

    Tartu Kunstimajas Tartu kunsti aastalõpunäitus. Kujundaja Mari Nõmmela. Anne Parmastole A. Vabbe, Silja Salmistule E-Kunstisalongi, Lii Jürgensonile EDA, Jüri Marranile Wilde kohviku, Sami Makkonenile AS Vunder ja Tartu Õlletehase A. Le Coq ning Eda Lõhmusele AS Merko Tartu preemia

  15. ANN based optimization of a solar assisted hybrid cooling system in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozgur, Arif; Yetik, Ozge; Arslan, Oguz [Mechanical Eng. Dept., Engineering Faculty, Dumlupinar University (Turkey)], email: maozgur@dpu.edu.tr, email: ozgeyetik@dpu.edu.tr, email: oarslan@dpu.edu.tr

    2011-07-01

    This study achieved optimization of a solar assisted hybrid cooling system with refrigerants such as R717, R141b, R134a and R123 using an artificial neural network (ANN) model based on average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and fluid types. ANN is a new tool; it works rapidly and can thus be a solution for design and optimization of complex power cycles. A unique flexible ANN algorithm was introduced to evaluate the solar ejector cooling systems because of the nonlinearity of neural networks. The conclusion was that the best COPs value obtained with the ANN is 1.35 and COPc is 3.03 when the average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and algorithm are respectively 674.72 W/m2, 17.9, 80, 15 and 13 degree celsius and LM with 14 neurons in single hidden layer, for R717.

  16. FE-ANN based modeling of 3D Simple Reinforced Concrete Girders for Objective Structural Health Evaluation : Tech Transfer Summary

    Science.gov (United States)

    2017-06-01

    The objective of this study was to develop an objective, quantitative method for evaluating damage to bridge girders by using artificial neural networks (ANNs). This evaluation method, which is a supplement to visual inspection, requires only the res...

  17. DESIGN OF A VISUAL INTERFACE FOR ANN BASED SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ramazan BAYINDIR

    2008-01-01

    Full Text Available Artificial intelligence application methods have been used for control of many systems with parallel of technological development besides conventional control techniques. Increasing of artificial intelligence applications have required to education in this area. In this paper, computer based an artificial neural network (ANN software has been presented to learning and understanding of artificial neural networks. By means of the developed software, the training of the artificial neural network according to the inputs provided and a test action can be performed by changing the components such as iteration number, momentum factor, learning ratio, and efficiency function of the artificial neural networks. As a result of the study a visual education set has been obtained that can easily be adapted to the real time application.

  18. Improved transformer protection using probabilistic neural network ...

    African Journals Online (AJOL)

    user

    secure and dependable protection for power transformers. Owing to its superior learning and generalization capabilities Artificial. Neural Network (ANN) can considerably enhance the scope of WI method. ANN approach is faster, robust and easier to implement than the conventional waveform approach. The use of neural ...

  19. Interpretable neural networks with BP-SOM

    NARCIS (Netherlands)

    Weijters, A.J.M.M.; Bosch, van den A.P.J.; Pobil, del A.P.; Mira, J.; Ali, M.

    1998-01-01

    Artificial Neural Networks (ANNS) are used successfully in industry and commerce. This is not surprising since neural networks are especially competitive for complex tasks for which insufficient domain-specific knowledge is available. However, interpretation of models induced by ANNS is often

  20. Comparison of Conventional and ANN Models for River Flow Forecasting

    Science.gov (United States)

    Jain, A.; Ganti, R.

    2011-12-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  1. Control of 12-Cylinder Camless Engine with Neural Networks

    Directory of Open Access Journals (Sweden)

    Ashhab Moh’d Sami

    2017-01-01

    Full Text Available The 12-cyliner camless engine breathing process is modeled with artificial neural networks (ANN’s. The inputs to the net are the intake valve lift (IVL and intake valve closing timing (IVC whereas the output of the net is the cylinder air charge (CAC. The ANN is trained with data collected from an engine simulation model which is based on thermodynamics principles and calibrated against real engine data. A method for adapting single-output feed-forward neural networks is proposed and applied to the camless engine ANN model. As a consequence the overall 12-cyliner camless engine feedback controller is upgraded and the necessary changes are implemented in order to contain the adaptive neural network with the objective of tracking the cylinder air charge (driver’s torque demand while minimizing the pumping losses (increasing engine efficiency. All the needed measurements are extracted only from the two conventional and inexpensive sensors, namely, the mass air flow through the throttle body (MAF and the intake manifold absolute pressure (MAP sensors. The feedback controller’s capability is demonstrated through computer simulation.

  2. Method for the traveling salesman problem by controlling two parameters of the Hopfield neural network; Parameter seigyogata hop field net ni yoru junkai salesman mondai no kaiho

    Energy Technology Data Exchange (ETDEWEB)

    Setsu, N.; Murakami, K.; Ohori, T.; Watanabe, K. [Hokkaido Institute of Technology, Sapporo (Japan)

    1996-01-20

    For solving the traveling salesman problem (TSP) by using a continuous value outputting neural net (NN), an investigation was given on the accuracy of solution and the possibility on traveling routes by using the penalty coefficient and temperature as the parameters for energy functions. The parameter range to obtain high-quality traveling routes was shown by a numerical experiment. The experimental result revealed that, when the penalty coefficient `r` is large, the traveling route possibility tends to become higher, but the route length increases, and when the `r` is small, the traveling route possibility becomes lower, but the route length decreases, also in the continuous value outputting NN as in the two-value outputting NN. Noticing this fact, and in order to improve the traveling route possibility as well as the solution quality, a method was proposed to expand the penalty control method which was proposed previously by the authors on the two-value outputting NN, into the continuous value outputting NN. In addition, a proposal was also made on a method to derive an optimal temperature efficiently by using the golden section method. It was found that the relative error has been reduced by 48% on the average as compared with that in the conventional method in which the temperature is fixed. 6 refs., 5 figs.

  3. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    International Nuclear Information System (INIS)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    2011-01-01

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.

  4. Anne-Ly Võlli: Iga inimene ja asutus vajab omamoodi lähenemist / Anne-Ly Võlli ; intervjueerinud Jaanika Kressa

    Index Scriptorium Estoniae

    Võlli, Anne-Ly, 1976-

    2009-01-01

    MTÜ Jõgevamaa Omavalitsuste Aktiviseerimiskeskus kinnitas avaliku konkursi tulemusel juhatuse liikmeks Anne-Ly Võlli, kelle ülesandeks on keskuse tegevuse juhtimine ja koostöö arendamine partneromavalitsuste ja teiste koostööpartnerite vahel

  5. Annely Peebo kutsus presidendi kontserdile / Maria Ulfsak

    Index Scriptorium Estoniae

    Ulfsak, Maria, 1981-

    2003-01-01

    Laulja Anneli Peebo kohtus president Arnold Rüütliga, et anda üle kutse Andrea Bocelli ja Annely Peebo ühiskontserdile. Vt. samas: Andrea Bocelli ja Annely Peebo kontsert Tallinna lauluväljakul 23. augustil; Andrea Bocelli

  6. Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy

    Directory of Open Access Journals (Sweden)

    Maytham S. Ahmed

    2016-09-01

    Full Text Available Demand response (DR program can shift peak time load to off-peak time, thereby reducing greenhouse gas emissions and allowing energy conservation. In this study, the home energy management scheduling controller of the residential DR strategy is proposed using the hybrid lightning search algorithm (LSA-based artificial neural network (ANN to predict the optimal ON/OFF status for home appliances. Consequently, the scheduled operation of several appliances is improved in terms of cost savings. In the proposed approach, a set of the most common residential appliances are modeled, and their activation is controlled by the hybrid LSA-ANN based home energy management scheduling controller. Four appliances, namely, air conditioner, water heater, refrigerator, and washing machine (WM, are developed by Matlab/Simulink according to customer preferences and priority of appliances. The ANN controller has to be tuned properly using suitable learning rate value and number of nodes in the hidden layers to schedule the appliances optimally. Given that finding proper ANN tuning parameters is difficult, the LSA optimization is hybridized with ANN to improve the ANN performances by selecting the optimum values of neurons in each hidden layer and learning rate. Therefore, the ON/OFF estimation accuracy by ANN can be improved. Results of the hybrid LSA-ANN are compared with those of hybrid particle swarm optimization (PSO based ANN to validate the developed algorithm. Results show that the hybrid LSA-ANN outperforms the hybrid PSO based ANN. The proposed scheduling algorithm can significantly reduce the peak-hour energy consumption during the DR event by up to 9.7138% considering four appliances per 7-h period.

  7. Solar radiation modelling using ANNs for different climates in China

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Yang, Liu

    2008-01-01

    Artificial neural networks (ANNs) were used to develop prediction models for daily global solar radiation using measured sunshine duration for 40 cities covering nine major thermal climatic zones and sub-zones in China. Coefficients of determination (R 2 ) for all the 40 cities and nine climatic zones/sub-zones are 0.82 or higher, indicating reasonably strong correlation between daily solar radiation and the corresponding sunshine hours. Mean bias error (MBE) varies from -3.3 MJ/m 2 in Ruoqiang (cold climates) to 2.19 MJ/m 2 in Anyang (cold climates). Root mean square error (RMSE) ranges from 1.4 MJ/m 2 in Altay (severe cold climates) to 4.01 MJ/m 2 in Ruoqiang. The three principal statistics (i.e., R 2 , MBE and RMSE) of the climatic zone/sub-zone ANN models are very close to the corresponding zone/sub-zone averages of the individual city ANN models, suggesting that climatic zone ANN models could be used to estimate global solar radiation for locations within the respective zones/sub-zones where only measured sunshine duration data are available. (author)

  8. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.

    Science.gov (United States)

    McAllister, Patrick; Zheng, Huiru; Bond, Raymond; Moorhead, Anne

    2018-04-01

    Obesity is increasing worldwide and can cause many chronic conditions such as type-2 diabetes, heart disease, sleep apnea, and some cancers. Monitoring dietary intake through food logging is a key method to maintain a healthy lifestyle to prevent and manage obesity. Computer vision methods have been applied to food logging to automate image classification for monitoring dietary intake. In this work we applied pretrained ResNet-152 and GoogleNet convolutional neural networks (CNNs), initially trained using ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset with MatConvNet package, to extract features from food image datasets; Food 5K, Food-11, RawFooT-DB, and Food-101. Deep features were extracted from CNNs and used to train machine learning classifiers including artificial neural network (ANN), support vector machine (SVM), Random Forest, and Naive Bayes. Results show that using ResNet-152 deep features with SVM with RBF kernel can accurately detect food items with 99.4% accuracy using Food-5K validation food image dataset and 98.8% with Food-5K evaluation dataset using ANN, SVM-RBF, and Random Forest classifiers. Trained with ResNet-152 features, ANN can achieve 91.34%, 99.28% when applied to Food-11 and RawFooT-DB food image datasets respectively and SVM with RBF kernel can achieve 64.98% with Food-101 image dataset. From this research it is clear that using deep CNN features can be used efficiently for diverse food item image classification. The work presented in this research shows that pretrained ResNet-152 features provide sufficient generalisation power when applied to a range of food image classification tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    Science.gov (United States)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-09-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  10. Assessment of ANN and SVM models for estimating normal direct irradiation (H_b)

    International Nuclear Information System (INIS)

    Santos, Cícero Manoel dos; Escobedo, João Francisco; Teramoto, Érico Tadao; Modenese Gorla da Silva, Silvia Helena

    2016-01-01

    Highlights: • The performance of SVM and ANN in estimating Normal Direct Irradiation (H_b) was evaluated. • 12 models using different input variables are developed (hourly and daily partitions). • The most relevant input variables for DNI are kt, H_s_c and insolation ratio (r′ = n/N). • Support Vector Machine (SVM) provides accurate estimates and outperforms the Artificial Neural Network (ANN). - Abstract: This study evaluates the estimation of hourly and daily normal direct irradiation (H_b) using machine learning techniques (ML): Artificial Neural Network (ANN) and Support Vector Machine (SVM). Time series of different meteorological variables measured over thirteen years in Botucatu were used for training and validating ANN and SVM. Seven different sets of input variables were tested and evaluated, which were chosen based on statistical models reported in the literature. Relative Mean Bias Error (rMBE), Relative Root Mean Square Error (rRMSE), determination coefficient (R"2) and “d” Willmott index were used to evaluate ANN and SVM models. When compared to statistical models which use the same set of input variables (R"2 between 0.22 and 0.78), ANN and SVM show higher values of R"2 (hourly models between 0.52 and 0.88; daily models between 0.42 and 0.91). Considering the input variables, atmospheric transmissivity of global radiation (kt), integrated solar constant (H_s_c) and insolation ratio (n/N, n is sunshine duration and N is photoperiod) were the most relevant in ANN and SVM models. The rMBE and rRMSE values in the two time partitions of SVM models are lower than those obtained with ANN. Hourly ANN and SVM models have higher rRMSE values than daily models. Optimal performance with hourly models was obtained with ANN4"h (rMBE = 12.24%, rRMSE = 23.99% and “d” = 0.96) and SVM4"h (rMBE = 1.75%, rRMSE = 20.10% and “d” = 0.96). Optimal performance with daily models was obtained with ANN2"d (rMBE = −3.09%, rRMSE = 18.95% and “d” = 0

  11. Aspects of artificial neural networks and experimental noise

    NARCIS (Netherlands)

    Derks, E.P.P.A.

    1997-01-01

    About a decade ago, artificial neural networks (ANN) have been introduced to chemometrics for solving problems in analytical chemistry. ANN are based on the functioning of the brain and can be used for modeling complex relationships within chemical data. An ANN-model can be obtained by earning or

  12. Annäherung Approaching

    Directory of Open Access Journals (Sweden)

    Carola Hilmes

    2007-03-01

    Full Text Available Das von Stefan Moses zusammengestellte „Bilderbuch“ zeigt Fotos von Ilse Aichinger. Sie selbst kommt durch eine Reihe von Geschichten und Gedichten zu Wort. In diesen intimen Dialog werden auch die Leser/-innen einbezogen. Das ermöglicht Annäherung.This “Picture Book”, compiled by Stefan Moses, displays photographs of Ilse Aichinger. She is also given voice through a series of stories and poems. The reader is also drawn into this intimate dialogue, thus making it possible for image, text, and reader to converge.

  13. Seafloor classification using acoustic backscatter echo-waveform - Artificial neural network applications

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mahale, V.; Navelkar, G.S.; Desai, R.G.P.

    In this paper seafloor classifications system based on artificial neural network (ANN) has been designed. The ANN architecture employed here is a combination of Self Organizing Feature Map (SOFM) and Linear Vector Quantization (LVQ1). Currently...

  14. Prediction of Splitting Tensile Strength of Concrete Containing Zeolite and Diatomite by ANN

    Directory of Open Access Journals (Sweden)

    E. Gülbandılar

    2017-01-01

    Full Text Available This study was designed to investigate with two different artificial neural network (ANN prediction model for the behavior of concrete containing zeolite and diatomite. For purpose of constructing this model, 7 different mixes with 63 specimens of the 28, 56 and 90 days splitting tensile strength experimental results of concrete containing zeolite, diatomite, both zeolite and diatomite used in training and testing for ANN systems was gathered from the tests. The data used in the ANN models are arranged in a format of seven input parameters that cover the age of samples, Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer and an output parameter which is splitting tensile strength of concrete. In the model, the training and testing results have shown that two different ANN systems have strong potential as a feasible tool for predicting 28, 56 and 90 days the splitting tensile strength of concrete containing zeolite and diatomite.

  15. [Anne Arold. Kontrastive Analyse...] / Paul Alvre

    Index Scriptorium Estoniae

    Alvre, Paul, 1921-2008

    2001-01-01

    Arvustus: Arold, Anne. Kontrastive analyse der Wortbildungsmuster im Deutschen und im Estnischen (am Beispiel der Aussehensadjektive). Tartu, 2000. (Dissertationes philologiae germanicae Universitatis Tartuensis)

  16. GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework.

    Science.gov (United States)

    Deng, Lei; Jiao, Peng; Pei, Jing; Wu, Zhenzhi; Li, Guoqi

    2018-04-01

    Although deep neural networks (DNNs) are being a revolutionary power to open up the AI era, the notoriously huge hardware overhead has challenged their applications. Recently, several binary and ternary networks, in which the costly multiply-accumulate operations can be replaced by accumulations or even binary logic operations, make the on-chip training of DNNs quite promising. Therefore there is a pressing need to build an architecture that could subsume these networks under a unified framework that achieves both higher performance and less overhead. To this end, two fundamental issues are yet to be addressed. The first one is how to implement the back propagation when neuronal activations are discrete. The second one is how to remove the full-precision hidden weights in the training phase to break the bottlenecks of memory/computation consumption. To address the first issue, we present a multi-step neuronal activation discretization method and a derivative approximation technique that enable the implementing the back propagation algorithm on discrete DNNs. While for the second issue, we propose a discrete state transition (DST) methodology to constrain the weights in a discrete space without saving the hidden weights. Through this way, we build a unified framework that subsumes the binary or ternary networks as its special cases, and under which a heuristic algorithm is provided at the website https://github.com/AcrossV/Gated-XNOR. More particularly, we find that when both the weights and activations become ternary values, the DNNs can be reduced to sparse binary networks, termed as gated XNOR networks (GXNOR-Nets) since only the event of non-zero weight and non-zero activation enables the control gate to start the XNOR logic operations in the original binary networks. This promises the event-driven hardware design for efficient mobile intelligence. We achieve advanced performance compared with state-of-the-art algorithms. Furthermore, the computational sparsity

  17. Analysis of some meteorological parameters using artificial neural ...

    African Journals Online (AJOL)

    Analysis of some meteorological parameters using artificial neural network method for ... The mean daily data for sunshine hours, maximum temperature, cloud cover and ... The study used artificial neural networks (ANN) for the estimation.

  18. Artificial Neural Network Analysis of Xinhui Pericarpium Citri ...

    African Journals Online (AJOL)

    Methods: Artificial neural networks (ANN) models, including general regression neural network (GRNN) and multi-layer ... N-hexane (HPLC grade) was purchased from. Fisher Scientific. ..... Simultaneous Quantification of Seven Flavonoids in.

  19. Intelligent MRTD testing for thermal imaging system using ANN

    Science.gov (United States)

    Sun, Junyue; Ma, Dongmei

    2006-01-01

    The Minimum Resolvable Temperature Difference (MRTD) is the most widely accepted figure for describing the performance of a thermal imaging system. Many models have been proposed to predict it. The MRTD testing is a psychophysical task, for which biases are unavoidable. It requires laboratory conditions such as normal air condition and a constant temperature. It also needs expensive measuring equipments and takes a considerable period of time. Especially when measuring imagers of the same type, the test is time consuming. So an automated and intelligent measurement method should be discussed. This paper adopts the concept of automated MRTD testing using boundary contour system and fuzzy ARTMAP, but uses different methods. It describes an Automated MRTD Testing procedure basing on Back-Propagation Network. Firstly, we use frame grabber to capture the 4-bar target image data. Then according to image gray scale, we segment the image to get 4-bar place and extract feature vector representing the image characteristic and human detection ability. These feature sets, along with known target visibility, are used to train the ANN (Artificial Neural Networks). Actually it is a nonlinear classification (of input dimensions) of the image series using ANN. Our task is to justify if image is resolvable or uncertainty. Then the trained ANN will emulate observer performance in determining MRTD. This method can reduce the uncertainties between observers and long time dependent factors by standardization. This paper will introduce the feature extraction algorithm, demonstrate the feasibility of the whole process and give the accuracy of MRTD measurement.

  20. Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods

    NARCIS (Netherlands)

    Ziari, H.; Sobhani, J.; Ayoubinejad, J.; Hartmann, Timo

    2015-01-01

    Prediction of pavement condition is one of the most important issues in pavement management systems. In this paper, capabilities of artificial neural networks (ANNs) and group method of data handling (GMDH) methods in predicting flexible pavement conditions were analysed in three levels: in 1 year,

  1. A novel neural-net-based nonlinear adaptive control and application to the cross-direction deviations control of a polymer film spread line

    International Nuclear Information System (INIS)

    Chen Zengqiang; Li Xiang; Liu Zhongxin; Yuan Zhuzhi

    2008-01-01

    A novel neural adaptive controller is presented to effectively control multivariable nonlinear systems. The proposed neural controller has been successfully applied to the cross-direction deviation control system of a polymer film spread line, whose good performance has been verified with real-time running results

  2. Comprehensive heat transfer correlation for water/ethylene glycol-based graphene (nitrogen-doped graphene) nanofluids derived by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)

    Science.gov (United States)

    Savari, Maryam; Moghaddam, Amin Hedayati; Amiri, Ahmad; Shanbedi, Mehdi; Ayub, Mohamad Nizam Bin

    2017-10-01

    Herein, artificial neural network and adaptive neuro-fuzzy inference system are employed for modeling the effects of important parameters on heat transfer and fluid flow characteristics of a car radiator and followed by comparing with those of the experimental results for testing data. To this end, two novel nanofluids (water/ethylene glycol-based graphene and nitrogen-doped graphene nanofluids) were experimentally synthesized. Then, Nusselt number was modeled with respect to the variation of inlet temperature, Reynolds number, Prandtl number and concentration, which were defined as the input (design) variables. To reach reliable results, we divided these data into train and test sections to accomplish modeling. Artificial networks were instructed by a major part of experimental data. The other part of primary data which had been considered for testing the appropriateness of the models was entered into artificial network models. Finally, predictad results were compared to the experimental data to evaluate validity. Confronted with high-level of validity confirmed that the proposed modeling procedure by BPNN with one hidden layer and five neurons is efficient and it can be expanded for all water/ethylene glycol-based carbon nanostructures nanofluids. Finally, we expanded our data collection from model and could present a fundamental correlation for calculating Nusselt number of the water/ethylene glycol-based nanofluids including graphene or nitrogen-doped graphene.

  3. Optimization of the Production of Extracellular Polysaccharide from the Shiitake Medicinal Mushroom Lentinus edodes (Agaricomycetes) Using Mutation and a Genetic Algorithm-Coupled Artificial Neural Network (GA-ANN).

    Science.gov (United States)

    Adeeyo, Adeyemi Ojutalayo; Lateef, Agbaje; Gueguim-Kana, Evariste Bosco

    2016-01-01

    Exopolysaccharide (EPS) production by a strain of Lentinus edodes was studied via the effects of treatments with ultraviolet (UV) irradiation and acridine orange. Furthermore, optimization of EPS production was studied using a genetic algorithm coupled with an artificial neural network in submerged fermentation. Exposure to irradiation and acridine orange resulted in improved EPS production (2.783 and 5.548 g/L, respectively) when compared with the wild strain (1.044 g/L), whereas optimization led to improved productivity (23.21 g/L). The EPS produced by various strains also demonstrated good DPPH scavenging activities of 45.40-88.90%, and also inhibited the growth of Escherichia coli and Klebsiella pneumoniae. This study shows that multistep optimization schemes involving physical-chemical mutation and media optimization can be an attractive strategy for improving the yield of bioactives from medicinal mushrooms. To the best of our knowledge, this report presents the first reference of a multistep approach to optimizing EPS production in L. edodes.

  4. Mary Anne Chambers | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A former Member of Provincial Parliament, Mary Anne served as Minister of Training, Colleges and Universities, and Minister of Children and Youth Services in the Government of Ontario. She is also a former senior vice-president of Scotiabank. A graduate of the University of Toronto, Mary Anne has received honorary ...

  5. Comparison of ANN and RKS approaches to model SCC strength

    Science.gov (United States)

    Prakash, Aravind J.; Sathyan, Dhanya; Anand, K. B.; Aravind, N. R.

    2018-02-01

    Self compacting concrete (SCC) is a high performance concrete that has high flowability and can be used in heavily reinforced concrete members with minimal compaction segregation and bleeding. The mix proportioning of SCC is highly complex and large number of trials are required to get the mix with the desired properties resulting in the wastage of materials and time. The research on SCC has been highly empirical and no theoretical relationships have been developed between the mixture proportioning and engineering properties of SCC. In this work effectiveness of artificial neural network (ANN) and random kitchen sink algorithm(RKS) with regularized least square algorithm(RLS) in predicting the split tensile strength of the SCC is analysed. Random kitchen sink algorithm is used for mapping data to higher dimension and classification of this data is done using Regularized least square algorithm. The training and testing data for the algorithm was obtained experimentally using standard test procedures and materials available. Total of 40 trials were done which were used as the training and testing data. Trials were performed by varying the amount of fine aggregate, coarse aggregate, dosage and type of super plasticizer and water. Prediction accuracy of the ANN and RKS model is checked by comparing the RMSE value of both ANN and RKS. Analysis shows that eventhough the RKS model is good for large data set, its prediction accuracy is as good as conventional prediction method like ANN so the split tensile strength model developed by RKS can be used in industries for the proportioning of SCC with tailor made property.

  6. Petri Nets

    Indian Academy of Sciences (India)

    In a computer system, for example, typical discrete events ... This project brought out a series of influential reports on Petri net theory in the mid and late ... Technology became a leading centre for Petri net research and from then on, Petri nets ...

  7. THERMODYNAMIC ANALYSIS AND SIMULATION OF A NEW COMBINED POWER AND REFRIGERATION CYCLE USING ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Hossein Rezvantalab

    2011-01-01

    Full Text Available In this study, a new combined power and refrigeration cycle is proposed, which combines the Rankine and absorption refrigeration cycles. Using a binary ammonia-water mixture as the working fluid, this combined cycle produces both power and refrigeration output simultaneously by employing only one external heat source. In order to achieve the highest possible exergy efficiency, a secondary turbine is inserted to expand the hot weak solution leaving the boiler. Moreover, an artificial neural network (ANN is used to simulate the thermodynamic properties and the relationship between the input thermodynamic variables on the cycle performance. It is shown that turbine inlet pressure, as well as heat source and refrigeration temperatures have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. In addition, the results of ANN are in excellent agreement with the mathematical simulation and cover a wider range for evaluation of cycle performance.

  8. Development and Application of ANN Model for Worker Assignment into Virtual Cells of Large Sized Configurations

    International Nuclear Information System (INIS)

    Murali, R. V.; Fathi, Khalid; Puri, A. B.

    2010-01-01

    This paper presents an extended version of study already undertaken on development of an artificial neural networks (ANNs) model for assigning workforce into virtual cells under virtual cellular manufacturing systems (VCMS) environments. Previously, the same authors have introduced this concept and applied it to virtual cells of two-cell configuration and the results demonstrated that ANNs could be a worth applying tool for carrying out workforce assignments. In this attempt, three-cell configurations problems are considered for worker assignment task. Virtual cells are formed under dual resource constraint (DRC) context in which the number of available workers is less than the total number of machines available. Since worker assignment tasks are quite non-linear and highly dynamic in nature under varying inputs and conditions and, in parallel, ANNs have the ability to model complex relationships between inputs and outputs and find similar patterns effectively, an attempt was earlier made to employ ANNs into the above task. In this paper, the multilayered perceptron with feed forward (MLP-FF) neural network model has been reused for worker assignment tasks of three-cell configurations under DRC context and its performance at different time periods has been analyzed. The previously proposed worker assignment model has been reconfigured and cell formation solutions available for three-cell configuration in the literature are used in combination to generate datasets for training ANNs framework. Finally, results of the study have been presented and discussed.

  9. A novel low-voltage low-power analogue VLSI implementation of neural networks with on-chip back-propagation learning

    Science.gov (United States)

    Carrasco, Manuel; Garde, Andres; Murillo, Pilar; Serrano, Luis

    2005-06-01

    In this paper a novel design and implementation of a VLSI Analogue Neural Net based on Multi-Layer Perceptron (MLP) with on-chip Back Propagation (BP) learning algorithm suitable for the resolution of classification problems is described. In order to implement a general and programmable analogue architecture, the design has been carried out in a hierarchical way. In this way the net has been divided in synapsis-blocks and neuron-blocks providing an easy method for the analysis. These blocks basically consist on simple cells, which are mainly, the activation functions (NAF), derivatives (DNAF), multipliers and weight update circuits. The analogue design is based on current-mode translinear techniques using MOS transistors working in the weak inversion region in order to reduce both the voltage supply and the power consumption. Moreover, with the purpose of minimizing the noise, offset and distortion of even order, the topologies are fully-differential and balanced. The circuit, named ANNE (Analogue Neural NEt), has been prototyped and characterized as a proof of concept on CMOS AMI-0.5A technology occupying a total area of 2.7mm2. The chip includes two versions of neural nets with on-chip BP learning algorithm, which are respectively a 2-1 and a 2-2-1 implementations. The proposed nets have been experimentally tested using supply voltages from 2.5V to 1.8V, which is suitable for single cell lithium-ion battery supply applications. Experimental results of both implementations included in ANNE exhibit a good performance on solving classification problems. These results have been compared with other proposed Analogue VLSI implementations of Neural Nets published in the literature demonstrating that our proposal is very efficient in terms of occupied area and power consumption.

  10. Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting

    Institute of Scientific and Technical Information of China (English)

    Xia Hua; Gang Zhang; Jiawei Yang; Zhengyuan Li

    2015-01-01

    Aiming at the low accuracy problem of power system short⁃term load forecasting by traditional methods, a back⁃propagation artifi⁃cial neural network (BP⁃ANN) based method for short⁃term load forecasting is presented in this paper. The forecast points are re⁃lated to prophase adjacent data as well as the periodical long⁃term historical load data. Then the short⁃term load forecasting model of Shanxi Power Grid (China) based on BP⁃ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP⁃ANN method is simple and with higher precision and practicality.

  11. Artificial Neural Networks and Instructional Technology.

    Science.gov (United States)

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  12. Application of neural networks in experimental physics

    International Nuclear Information System (INIS)

    Kisel', I.V.; Neskromnyj, V.N.; Ososkov, G.A.

    1993-01-01

    The theoretical foundations of numerous models of artificial neural networks (ANN) and their applications to the actual problems of associative memory, optimization and pattern recognition are given. This review contains also numerous using of ANN in the experimental physics both as the hardware realization of fast triggering systems for even selection and for the following software implementation of the trajectory data recognition

  13. ANN-based wavelet analysis for predicting electrical signal from photovoltaic power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A. [Medea Univ., Medea (Algeria). Inst. of Science Engineering, Dept. of Electronics

    2007-07-01

    This study was conducted to predict different electrical signals from a photovoltaic power supply system (PVPS) using an artificial neural networks (ANN) with wavelet analysis. It involved the creation of a database of electrical signals (PV-generator current, voltage, battery current voltage, regulator current and voltage) obtained from an experimental PVPS system installed in the south of Algeria. The potential applications were for sizing and analyzing the performance of PVPS systems; control of maximum power point tracker (MPPT) in order to deliver the maximum energy from the PV-array; prediction of the optimal configuration (PV-array and battery sizing) of PVPS systems; expert configuration of PV-systems; faults diagnosis; supervision; and, control and monitoring. First, based on the wavelet analysis each electrical signal was mapped in several time frequency domains. The PV-system was then divided into 3-subsystems corresponding to ANN-PV generator model, ANN-battery model, and ANN-regulator model. An example of day-by-day prediction for each electrical signal was presented. The results of the proposed approach were in good agreement with experimental results. In addition, the accuracy of the proposed approach was more satisfactory when only ANN was used. It was concluded that this methodology offers the possibility of developing a new expert configuration of PVPS by implementing the soft computing ANN-wavelet program with a digital signal processing (DSP) circuit. 26 refs., 1 tab., 5 figs.

  14. Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD

    Science.gov (United States)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.

    2018-05-01

    In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.

  15. The Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit

    Directory of Open Access Journals (Sweden)

    Seyyed Ali Nezamolhosseini

    2017-01-01

    Full Text Available Geo-statistical methods for reserve estimation are difficult to use when stationary conditions are not satisfied. Artificial Neural Networks (ANNs provide an alternative to geo-statistical techniques while considerably reducing the processing time required for development and application. In this paper the ANNs was applied to the Choghart iron ore deposit in Yazd province of Iran. Initially, an optimum Multi Layer Perceptron (MLP was constructed to estimate the Fe grade within orebody using the whole ore data of the deposit. Sensitivity analysis was applied for a number of hidden layers and neurons, different types of activation functions and learning rules. Optimal architectures for iron grade estimation were 3-20-10-1. In order to improve the network performance, the deposit was divided into four homogenous zones. Subsequently, all sensitivity analyses were carried out on each zone.  Finally, a different optimum network was trained and Fe was estimated separately for each zone. Comparison of correlation coefficient (R and least mean squared error (MSE showed that the ANNs performed on four homogenous zones were far better than the nets applied to the overall ore body. Therefore, these optimized neural networks were used to estimate the distribution of iron grades and the iron resource in Choghart deposit. As a result of applying ANNs, the tonnage of ore for Choghart deposit is approximately estimated at 135.8 million tones with average grade of Fe at 56.14 percent. Results of reserve estimation using ANNs showed a good agreement with the geo-statistical methods applied to this ore body in another work.

  16. Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Gallego D, E.; Lorente F, A.; Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E.

    2011-01-01

    With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)

  17. Ensemble ANNs-PSO-GA Approach for Day-ahead Stock E-exchange Prices Forecasting

    Directory of Open Access Journals (Sweden)

    Yi Xiao

    2013-02-01

    Full Text Available Stock e-exchange prices forecasting is an important financial problem that is receiving increasing attention. This study proposes a novel three-stage nonlinear ensemble model. In the proposed model, three different types of neural-network based models, i.e. Elman network, generalized regression neural network (GRNN and wavelet neural network (WNN are constructed by three non-overlapping training sets and are further optimized by improved particle swarm optimization (IPSO. Finally, a neural-network-based nonlinear meta-model is generated by learning three neural-network based models through support vector machines (SVM neural network. The superiority of the proposed approach lies in its flexibility to account for potentially complex nonlinear relationships. Three daily stock indices time series are used for validating the forecasting model. Empirical results suggest the ensemble ANNs-PSO-GA approach can significantly improve the prediction performance over other individual models and linear combination models listed in this study.

  18. Spatial Interpolation of Rainfall Erosivity Using Artificial Neural Networks for Southern Brazil Conditions

    Directory of Open Access Journals (Sweden)

    Michel Castro Moreira

    Full Text Available ABSTRACT Water erosion is the process of disaggregation and transport of sediments, and rainfall erosivity is a numerical value that expresses the erosive capacity of rain. The scarcity of information on rainfall erosivity makes it difficult or impossible to use to estimate losses occasioned by the erosive process. The objective of this study was to develop Artificial Neural Networks (ANNs for spatial interpolation of the monthly and annual values of rainfall erosivity at any location in the state of Rio Grande do Sul, and a software that enables the use of these networks in a simple and fast manner. This experiment used 103 rainfall stations in Rio Grande do Sul and their surrounding area to generate synthetic rainfall series on the software ClimaBR 2.0. Rainfall erosivity was determined by summing the values of the EI30 and KE >25 indexes, considering two methodologies for obtaining the kinetic energy of rainfall. With these values of rainfall erosivity and latitude, longitude, and altitude of the stations, the ANNs were trained and tested for spatializations of rainfall erosivity. To facilitate the use of the ANNs, a computer program was generated, called netErosividade RS, which makes feasible the use of ANNs to estimate the values of rainfall erosivity for any location in the state of Rio Grande do Sul.

  19. Application of Artificial Neural Network to Predict Colour Change, Shrinkage and Texture of Osmotically Dehydrated Pumpkin

    Science.gov (United States)

    Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.

    2017-06-01

    The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.

  20. Prediction of scour below submerged pipeline crossing a river using ANN.

    Science.gov (United States)

    Azamathulla, H M; Zakaria, Nor Azazi

    2011-01-01

    The process involved in the local scour below pipelines is so complex that it makes it difficult to establish a general empirical model to provide accurate estimation for scour. This paper describes the use of artificial neural networks (ANN) to estimate the pipeline scour depth. The data sets of laboratory measurements were collected from published works and used to train the network or evolve the program. The developed networks were validated by using the observations that were not involved in training. The performance of ANN was found to be more effective when compared with the results of regression equations in predicting the scour depth around pipelines.

  1. Effectiveness of ANN for seismic behaviour prediction considering geometric configuration effect in concrete gravity dams

    Directory of Open Access Journals (Sweden)

    Mohd. Saqib

    2016-09-01

    Full Text Available In this study, an Artificial Neural Networks (ANN model is built and verified for quick estimation of the structural parameter obtained for a concrete gravity dam section due to seismic excitation. The database of numerous inputs and outputs obtained through Abaqus which are further converted into dimensionless forms in the statistical software (MATLAB to build the ANN model. The developed model can be used for accurate estimation of this parameter. The results showed an excellent capability of the model to predict the outputs with high accuracy and reduced computational time.

  2. Artificial Neural Networks For Hadron Hadron Cross-sections

    International Nuclear Information System (INIS)

    ELMashad, M.; ELBakry, M.Y.; Tantawy, M.; Habashy, D.M.

    2011-01-01

    In recent years artificial neural networks (ANN ) have emerged as a mature and viable framework with many applications in various areas. Artificial neural networks theory is sometimes used to refer to a branch of computational science that uses neural networks as models to either simulate or analyze complex phenomena and/or study the principles of operation of neural networks analytically. In this work a model of hadron- hadron collision using the ANN technique is present, the hadron- hadron based ANN model calculates the cross sections of hadron- hadron collision. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness

  3. Prediction of small hydropower plant power production in Himreen Lake dam (HLD using artificial neural network

    Directory of Open Access Journals (Sweden)

    Ali Thaeer Hammid

    2018-03-01

    Full Text Available In developing countries, the power production is properly less than the request of power or load, and sustaining a system stability of power production is a trouble quietly. Sometimes, there is a necessary development to the correct quantity of load demand to retain a system of power production steadily. Thus, Small Hydropower Plant (SHP includes a Kaplan turbine was verified to explore its applicability. This paper concentrates on applying on Artificial Neural Networks (ANNs by approaching of Feed-Forward, Back-Propagation to make performance predictions of the hydropower plant at the Himreen lake dam-Diyala in terms of net turbine head, flow rate of water and power production that data gathered during a research over a 10 year period. The model studies the uncertainties of inputs and output operation and there's a designing to network structure and then trained by means of the entire of 3570 experimental and observed data. Furthermore, ANN offers an analyzing and diagnosing instrument effectively to model performance of the nonlinear plant. The study suggests that the ANN may predict the performance of the plant with a correlation coefficient (R between the variables of predicted and observed output that would be higher than 0.96. Keywords: Himreen Lake Dam, Small Hydropower plants, Artificial Neural Networks, Feed forward-back propagation model, Generation system's prediction

  4. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  5. Modelling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN

    International Nuclear Information System (INIS)

    Bansal, R.C.

    2008-01-01

    This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n q ) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n q . It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC

  6. Quick and reliable estimation of power distribution in a PHWR by ANN

    International Nuclear Information System (INIS)

    Dubey, B.P.; Jagannathan, V.; Kataria, S.K.

    1998-01-01

    Knowledge of the distribution of power in all the channels of a Pressurised Heavy Water Reactor (PHWR) as a result of a perturbation caused by one or more of the regulating devices is very important from the operation and maintenance point of view of the reactor. Theoretical design codes available for this purpose take several minutes to calculate the channel power distribution on modern PCs. Artificial Neural networks (ANNs) have been employed in predicting channel power distribution of Indian PHWRs for any given configuration of regulating devices of the reactor. ANNs produce the result much faster and with good accuracy. This paper describes the methodology of ANN, its reliability, the validation range, and scope for its possible on-line use in the actual reactor

  7. Modelling and automatic reactive power control of isolated wind-diesel hybrid power systems using ANN

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, R.C. [Electrical and Electronics Engineering Division, School of Engineering and Physics, The University of the South Pacific, Suva (Fiji)

    2008-02-15

    This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n{sub q}) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n{sub q}. It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC. (author)

  8. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  9. A gentle introduction to artificial neural networks.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-10-01

    Artificial neural network (ANN) is a flexible and powerful machine learning technique. However, it is under utilized in clinical medicine because of its technical challenges. The article introduces some basic ideas behind ANN and shows how to build ANN using R in a step-by-step framework. In topology and function, ANN is in analogue to the human brain. There are input and output signals transmitting from input to output nodes. Input signals are weighted before reaching output nodes according to their respective importance. Then the combined signal is processed by activation function. I simulated a simple example to illustrate how to build a simple ANN model using nnet() function. This function allows for one hidden layer with varying number of units in that layer. The basic structure of ANN can be visualized with plug-in plot.nnet() function. The plot function is powerful that it allows for varieties of adjustment to the appearance of the neural networks. Prediction with ANN can be performed with predict() function, similar to that of conventional generalized linear models. Finally, the prediction power of ANN is examined using confusion matrix and average accuracy. It appears that ANN is slightly better than conventional linear model.

  10. Analysis of Salinity Intrusion in the San Francisco Bay-Delta Using a GA-Optimized Neural Net, and Application of the Model to Prediction in the Elkhorn Slough Habitat

    Science.gov (United States)

    Thompson, D. E.; Rajkumar, T.

    2002-12-01

    The San Francisco Bay Delta is a large hydrodynamic complex that incorporates the Sacramento and San Joaquin Estuaries, the Suisan Marsh, and the San Francisco Bay proper. Competition exists for the use of this extensive water system both from the fisheries industry, the agricultural industry, and from the marine and estuarine animal species within the Delta. As tidal fluctuations occur, more saline water pushes upstream allowing fish to migrate beyond the Suisan Marsh for breeding and habitat occupation. However, the agriculture industry does not want extensive salinity intrusion to impact water quality for human and plant consumption. The balance is regulated by pumping stations located along the estuaries and reservoirs whereby flushing of fresh water keeps the saline intrusion at bay. The pumping schedule is driven by data collected at various locations within the Bay Delta and by numerical models that predict the salinity intrusion as part of a larger model of the system. The Interagency Ecological Program (IEP) for the San Francisco Bay / Sacramento-San Joaquin Estuary collects, monitors, and archives the data, and the Department of Water Resources provides a numerical model simulation (DSM2) from which predictions are made that drive the pumping schedule. A problem with DSM2 is that the numerical simulation takes roughly 16 hours to complete a prediction. We have created a neural net, optimized with a genetic algorithm, that takes as input the archived data from multiple gauging stations and predicts stage, salinity, and flow at the Carquinez Straits (at the downstream end of the Suisan Marsh). This model seems to be robust in its predictions and operates much faster than the current numerical DSM2 model. Because the Bay-Delta is strongly tidally driven, we used both Principal Component Analysis and Fast Fourier Transforms to discover dominant features within the IEP data. We then filtered out the dominant tidal forcing to discover non-primary tidal effects

  11. Neural networks in signal processing

    International Nuclear Information System (INIS)

    Govil, R.

    2000-01-01

    Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)

  12. artificial neural network (ann) approach to electrical load

    African Journals Online (AJOL)

    2004-08-18

    Aug 18, 2004 ... self organizing feature map; which is back-propagating in nature. ... distribution scheduling. ... electricity demand with lead times that range from ... become increasingly vital since the rise of the ... implemented for advanced control, data and sensor ... inspired methods of computing are thought to be the.

  13. On The Comparison of Artificial Neural Network (ANN) and ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    prediction of student achievement is one way to enhance the quality level and provide better ... model performance measure in solving different real life problems ranging from management sciences, business schools, and others [10], [12],.

  14. Intelligent neural network diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.

  15. Artificial intelligence. Application of the Statistical Neural Networks computer program in nuclear medicine

    International Nuclear Information System (INIS)

    Stefaniak, B.; Cholewinski, W.; Tarkowska, A.

    2005-01-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer application of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. In this paper practical aspects of scientific application of ANN in medicine using the Statistical Neural Networks Computer program, were presented. Several steps of data analysis with the above ANN software package were discussed shortly, from material selection and its dividing into groups to the types of obtained results. The typical problems connected with assessing scintigrams by ANN were also described. (author)

  16. Novel Formulation of Adaptive MPC as EKF Using ANN Model: Multiproduct Semibatch Polymerization Reactor Case Study.

    Science.gov (United States)

    Kamesh, Reddi; Rani, Kalipatnapu Yamuna

    2017-12-01

    In this paper, a novel formulation for nonlinear model predictive control (MPC) has been proposed incorporating the extended Kalman filter (EKF) control concept using a purely data-driven artificial neural network (ANN) model based on measurements for supervisory control. The proposed scheme consists of two modules focusing on online parameter estimation based on past measurements and control estimation over control horizon based on minimizing the deviation of model output predictions from set points along the prediction horizon. An industrial case study for temperature control of a multiproduct semibatch polymerization reactor posed as a challenge problem has been considered as a test bed to apply the proposed ANN-EKFMPC strategy at supervisory level as a cascade control configuration along with proportional integral controller [ANN-EKFMPC with PI (ANN-EKFMPC-PI)]. The proposed approach is formulated incorporating all aspects of MPC including move suppression factor for control effort minimization and constraint-handling capability including terminal constraints. The nominal stability analysis and offset-free tracking capabilities of the proposed controller are proved. Its performance is evaluated by comparison with a standard MPC-based cascade control approach using the same adaptive ANN model. The ANN-EKFMPC-PI control configuration has shown better controller performance in terms of temperature tracking, smoother input profiles, as well as constraint-handling ability compared with the ANN-MPC with PI approach for two products in summer and winter. The proposed scheme is found to be versatile although it is based on a purely data-driven model with online parameter estimation.

  17. Identification of drought in Dhalai river watershed using MCDM and ANN models

    Science.gov (United States)

    Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy

    2017-03-01

    An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.

  18. Using ANN and EPR models to predict carbon monoxide concentrations in urban area of Tabriz

    Directory of Open Access Journals (Sweden)

    Mohammad Shakerkhatibi

    2015-09-01

    Full Text Available Background: Forecasting of air pollutants has become a popular topic of environmental research today. For this purpose, the artificial neural network (AAN technique is widely used as a reliable method for forecasting air pollutants in urban areas. On the other hand, the evolutionary polynomial regression (EPR model has recently been used as a forecasting tool in some environmental issues. In this research, we compared the ability of these models to forecast carbon monoxide (CO concentrations in the urban area of Tabriz city. Methods: The dataset of CO concentrations measured at the fixed stations operated by the East Azerbaijan Environmental Office along with meteorological data obtained from the East Azerbaijan Meteorological Bureau from March 2007 to March 2013, were used as input for the ANN and EPR models. Results: Based on the results, the performance of ANN is more reliable in comparison with EPR. Using the ANN model, the correlation coefficient values at all monitoring stations were calculated above 0.85. Conversely, the R2 values for these stations were obtained <0.41 using the EPR model. Conclusion: The EPR model could not overcome the nonlinearities of input data. However, the ANN model displayed more accurate results compared to the EPR. Hence, the ANN models are robust tools for predicting air pollutant concentrations.

  19. Simulation model of ANN based maximum power point tracking controller for solar PV system

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Anil K.; Singh, Bhupal [Department of Electrical and Electronics Engineering, Ajay Kumar Garg Engineering College, Ghaziabad 201009 (India); Kaushika, N.D.; Agarwal, Niti [School of Research and Development, Bharati Vidyapeeth College of Engineering, A-4 Paschim Vihar, New Delhi 110063 (India)

    2011-02-15

    In this paper the simulation model of an artificial neural network (ANN) based maximum power point tracking controller has been developed. The controller consists of an ANN tracker and the optimal control unit. The ANN tracker estimates the voltages and currents corresponding to a maximum power delivered by solar PV (photovoltaic) array for variable cell temperature and solar radiation. The cell temperature is considered as a function of ambient air temperature, wind speed and solar radiation. The tracker is trained employing a set of 124 patterns using the back propagation algorithm. The mean square error of tracker output and target values is set to be of the order of 10{sup -5} and the successful convergent of learning process takes 1281 epochs. The accuracy of the ANN tracker has been validated by employing different test data sets. The control unit uses the estimates of the ANN tracker to adjust the duty cycle of the chopper to optimum value needed for maximum power transfer to the specified load. (author)

  20. Petri Nets

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE ... In Part 1 of this two-part article, we have seen im- ..... mable logic controller and VLSI arrays, office automation systems, workflow management systems, ... complex discrete event and real-time systems; and Petri nets.

  1. Application of ANN-SCE model on the evaluation of automatic generation control performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang-Chien, L.R.; Lo, C.S.; Lee, K.S. [National Cheng Kung Univ., Tainan, Taiwan (China)

    2005-07-01

    An accurate evaluation of load frequency control (LFC) performance is needed to balance minute-to-minute electricity generation and demand. In this study, an artificial neural network-based system control error (ANN-SCE) model was used to assess the performance of automatic generation controls (AGC). The model was used to identify system dynamics for control references in supplementing AGC logic. The artificial neural network control error model was used to track a single area's LFC dynamics in Taiwan. The model was used to gauge the impacts of regulation control. Results of the training, evaluating, and projecting processes showed that the ANN-SCE model could be algebraically decomposed into components corresponding to different impact factors. The SCE information obtained from testing of various AGC gains provided data for the creation of a new control approach. The ANN-SCE model was used in conjunction with load forecasting and scheduled generation data to create an ANN-SCE identifier. The model successfully simulated SCE dynamics. 13 refs., 10 figs.

  2. THE FEMINISM AND FEMININITY OF ANN VERONICA IN H. G. WELLS' ANN VERONICA

    Directory of Open Access Journals (Sweden)

    Liem Satya Limanta

    2002-01-01

    Full Text Available H.G. Well's Ann Veronica structurally seems to be divided into two parts; the first deals with Ann Veronica's struggle to get equality with men and freedom in most aspects of life, such as in politics, economics, education, and sexuality; the second describes much the other side of her individuality which she cannot deny, namely her femininity, such as her crave for love, marriage, maternity, and beauty. H.G. Wells describes vividly the two elements in Ann Veronica, feminism and femininity. As a feminist, Ann Veronica rebelled against her authoritative Victorian father, who regarded women only as men's property to be protected from the harsh world outside. On the other side, Ann could not deny her being a woman after she fell in love with Capes. Her femininity from the second half of the novel then is explored. Although the novel ends with the depiction of the domestic life of Ann Veronica, it does not mean that the feminism is gone altogether. The key point is that the family life Ann chooses as a `submissive' wife and good mother is her choice. It is very different if it is forced on her to do. Thus, this novel depicts both sides of Ann Veronica, her feminism and her femininity.

  3. MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION

    Directory of Open Access Journals (Sweden)

    Artur Popko

    2013-06-01

    Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.

  4. Stability analysis of rubblemound breakwater using ANN

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Manjunath, Y.R.; Kim, D.H.

    relation is not clear. In more practical terms networks are non-linear modeling tools and they can be used to model complex relationship between input and output system. Earlier applications of neural networks for stability analysis of rubble mound.... WORKING PRINCIPLE OF NEURAL NETWORK The feed forward neural networks have ability to approximate any continuous function or complex phenomena into a simple one. The working of neural network as described below. A feed forward neural network as shown...

  5. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    Science.gov (United States)

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE

    International Nuclear Information System (INIS)

    Correa, R.; Chesta, M.A.; Morales, J.R.; Dinator, M.I.; Requena, I.; Vila, I.

    2006-01-01

    An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses

  7. Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R. [Universidad Tecnologica Metropolitana, Departamento de Fisica, Av. Jose Pedro Alessandri 1242, Nunoa, Santiago (Chile)]. E-mail: rcorrea@utem.cl; Chesta, M.A. [Universidad Nacional de Cordoba, Facultad de Matematica, Astronomia y Fisica, Medina Allende s/n Ciudad Universitaria, 5000 Cordoba (Argentina)]. E-mail: chesta@famaf.unc.edu.ar; Morales, J.R. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: rmorales@uchile.cl; Dinator, M.I. [Universidad de Chile, Facultad de Ciencias, Departamento de Fisica, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: mdinator@uchile.cl; Requena, I. [Universidad de Granada, Departamento de Ciencias de la Computacion e Inteligencia Artificial, Daniel Saucedo Aranda s/n, 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Vila, I. [Universidad de Chile, Facultad de Ciencias, Departamento de Ecologia, Las Palmeras 3425, Nunoa, Santiago (Chile)]. E-mail: limnolog@uchile.cl

    2006-08-15

    An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses.

  8. Prediction of groundwater levels from lake levels and climate data using ANN approach

    OpenAIRE

    Dogan, Ahmet; Demirpence, Husnu; Cobaner, Murat

    2008-01-01

    There are many environmental concerns relating to the quality and quantity of surface and groundwater. It is very important to estimate the quantity of water by using readily available climate data for managing water resources of the natural environment. As a case study an artificial neural network (ANN) methodology is developed for estimating the groundwater levels (upper Floridan aquifer levels) as a function of monthly averaged precipitation, evaporation, and measured levels of Magnolia an...

  9. On-line dynamic monitoring automotive exhausts: using BP-ANN for distinguishing multi-components

    Science.gov (United States)

    Zhao, Yudi; Wei, Ruyi; Liu, Xuebin

    2017-10-01

    Remote sensing-Fourier Transform infrared spectroscopy (RS-FTIR) is one of the most important technologies in atmospheric pollutant monitoring. It is very appropriate for on-line dynamic remote sensing monitoring of air pollutants, especially for the automotive exhausts. However, their absorption spectra are often seriously overlapped in the atmospheric infrared window bands, i.e. MWIR (3 5μm). Artificial Neural Network (ANN) is an algorithm based on the theory of the biological neural network, which simplifies the partial differential equation with complex construction. For its preferable performance in nonlinear mapping and fitting, in this paper we utilize Back Propagation-Artificial Neural Network (BP-ANN) to quantitatively analyze the concentrations of four typical industrial automotive exhausts, including CO, NO, NO2 and SO2. We extracted the original data of these automotive exhausts from the HITRAN database, most of which virtually overlapped, and established a mixed multi-component simulation environment. Based on Beer-Lambert Law, concentrations can be retrieved from the absorbance of spectra. Parameters including learning rate, momentum factor, the number of hidden nodes and iterations were obtained when the BP network was trained with 80 groups of input data. By improving these parameters, the network can be optimized to produce necessarily higher precision for the retrieved concentrations. This BP-ANN method proves to be an effective and promising algorithm on dealing with multi-components analysis of automotive exhausts.

  10. Development of a new software tool, based on ANN technology, in neutron spectrometry and dosimetry research

    International Nuclear Information System (INIS)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R.

    2007-01-01

    Artificial Intelligence is a branch of study which enhances the capability of computers by giving them human-like intelligence. The brain architecture has been extensively studied and attempts have been made to emulate it as in the Artificial Neural Network technology. A large variety of neural network architectures have been developed and they have gained wide-spread popularity over the last few decades. Their application is considered as a substitute for many classical techniques that have been used for many years, as in the case of neutron spectrometry and dosimetry research areas. In previous works, a new approach called Robust Design of Artificial Neural network was applied to build an ANN topology capable to solve the neutron spectrometry and dosimetry problems within the Mat lab programming environment. In this work, the knowledge stored at Mat lab ANN's synaptic weights was extracted in order to develop for first time a customized software application based on ANN technology, which is proposed to be used in the neutron spectrometry and simultaneous dosimetry fields. (Author)

  11. Development of a new software tool, based on ANN technology, in neutron spectrometry and dosimetry research

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R. [Universidad Autonoma de Zacatecas, Av. Ramon Lopez Velarde 801, A.P. 336, 98000 Zacatecas (Mexico)

    2007-07-01

    Artificial Intelligence is a branch of study which enhances the capability of computers by giving them human-like intelligence. The brain architecture has been extensively studied and attempts have been made to emulate it as in the Artificial Neural Network technology. A large variety of neural network architectures have been developed and they have gained wide-spread popularity over the last few decades. Their application is considered as a substitute for many classical techniques that have been used for many years, as in the case of neutron spectrometry and dosimetry research areas. In previous works, a new approach called Robust Design of Artificial Neural network was applied to build an ANN topology capable to solve the neutron spectrometry and dosimetry problems within the Mat lab programming environment. In this work, the knowledge stored at Mat lab ANN's synaptic weights was extracted in order to develop for first time a customized software application based on ANN technology, which is proposed to be used in the neutron spectrometry and simultaneous dosimetry fields. (Author)

  12. Estimating wheat and maize daily evapotranspiration using artificial neural network

    Science.gov (United States)

    Abrishami, Nazanin; Sepaskhah, Ali Reza; Shahrokhnia, Mohammad Hossein

    2018-02-01

    In this research, artificial neural network (ANN) is used for estimating wheat and maize daily standard evapotranspiration. Ten ANN models with different structures were designed for each crop. Daily climatic data [maximum temperature (T max), minimum temperature (T min), average temperature (T ave), maximum relative humidity (RHmax), minimum relative humidity (RHmin), average relative humidity (RHave), wind speed (U 2), sunshine hours (n), net radiation (Rn)], leaf area index (LAI), and plant height (h) were used as inputs. For five structures of ten, the evapotranspiration (ETC) values calculated by ETC = ET0 × K C equation (ET0 from Penman-Monteith equation and K C from FAO-56, ANNC) were used as outputs, and for the other five structures, the ETC values measured by weighing lysimeter (ANNM) were used as outputs. In all structures, a feed forward multiple-layer network with one or two hidden layers and sigmoid transfer function and BR or LM training algorithm was used. Favorite network was selected based on various statistical criteria. The results showed the suitable capability and acceptable accuracy of ANNs, particularly those having two hidden layers in their structure in estimating the daily evapotranspiration. Best model for estimation of maize daily evapotranspiration is «M»ANN1 C (8-4-2-1), with T max, T min, RHmax, RHmin, U 2, n, LAI, and h as input data and LM training rule and its statistical parameters (NRMSE, d, and R2) are 0.178, 0.980, and 0.982, respectively. Best model for estimation of wheat daily evapotranspiration is «W»ANN5 C (5-2-3-1), with T max, T min, Rn, LAI, and h as input data and LM training rule, its statistical parameters (NRMSE, d, and R 2) are 0.108, 0.987, and 0.981 respectively. In addition, if the calculated ETC used as the output of the network for both wheat and maize, higher accurate estimation was obtained. Therefore, ANN is suitable method for estimating evapotranspiration of wheat and maize.

  13. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  14. Improved netting

    International Nuclear Information System (INIS)

    Bramley, A.; Clabburn, R.J.T.

    1976-01-01

    A method is described for producing netting composed of longitudinal and transverse threads of irradiation cross linked thermoplastic material, the threads being joined together at their crossings by moulded masses of cross linked thermoplastic material. The thread may be formed of polyethylene filaments, subjected to a radiation dose of 15 to 25 MR. The moulding can be conducted at 245 0 to 260 0 C or higher. The product is claimed to be an improved quality of netting, with bonds of increased strength between crossing threads. (U.K.)

  15. Artificial neural network detects human uncertainty

    Science.gov (United States)

    Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.

    2018-03-01

    Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.

  16. Using Artificial Neural Networks in Educational Research: Some Comparisons with Linear Statistical Models.

    Science.gov (United States)

    Everson, Howard T.; And Others

    This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…

  17. Application of artificial neural networks in the analysis of multi-particle data

    International Nuclear Information System (INIS)

    Kunze, M.

    1995-01-01

    During the past years artificial neural networks (ANN) have gained increasing interest not only in the regime of financial forecast and data mining, but also in the field of particle physics. Up to now artificial neural networks have mostly been applied in high energy physics trigger studies. The use of ANNs in medium energy physics data analysis is summarized. (author). 21 refs., 9 figs

  18. Obituary: Anne Barbara Underhill, 1920-2003

    Science.gov (United States)

    Roman, Nancy Grace

    2003-12-01

    Anne was born in Vancouver, British Columbia on 12 June 1920. Her parents were Frederic Clare Underhill, a civil engineer and Irene Anna (née Creery) Underhill. She had a twin brother and three younger brothers. As a young girl she was active in Girl Guides and graduated from high school winning the Lieutenant Governor's medal as one of the top students in the Province. She also excelled in high school sports. Her mother died when Anne was 18 and, while undertaking her university studies, Anne assisted in raising her younger brothers. Her twin brother was killed in Italy during World War II (1944), a loss that Anne felt deeply. Possibly because of fighting to get ahead in astronomy, a field overwhelming male when she started, she frequently appeared combative. At the University of British Columbia, Anne obtained a BA (honors) in Chemistry (1942), followed by a MA in 1944. After working for the NRC in Montreal for a year, she studied at the University of Toronto prior to entering the University of Chicago in 1946 to obtain her PhD. Her thesis was the first model computed for a multi-layered stellar atmosphere (1948). During this time she worked with Otto Struve, developing a lifetime interest in hot stars and the analysis of their high dispersion spectra. She received two fellowships from the University Women of Canada. She received a U.S. National Research Fellowship to work at the Copenhagen Observatory, and upon its completion, she returned to British Columbia to work at the Dominion Astrophysical Observatory as a research scientist from 1949--1962. During this period she spent a year at Harvard University as a visiting professor and at Princeton where she used their advanced computer to write the first code for modeling stellar atmospheres. Anne was invited to the University of Utrecht (Netherlands) as a full professor in 1962. She was an excellent teacher, well liked by the students in her classes, and by the many individuals that she guided throughout her

  19. Ann Arbor Session I: Breaking Ground.

    Science.gov (United States)

    Music Educators Journal, 1979

    1979-01-01

    Summarizes the first session of the National Symposium on the Applications of Psychology to the Teaching and Learning of Music held at Ann Arbor from October 30 to November 2, 1978. Sessions concerned auditory perception, motor learning, child development, memory and information processing, and affect and motivation. (SJL)

  20. Ilmus artiklikogumik "Eesti teadlased paguluses" / Anne Valmas

    Index Scriptorium Estoniae

    Valmas, Anne, 1941-2017

    2009-01-01

    TLÜ AR väliseesti kirjanduse keskuse ja TTÜ Raamatukogu koostöös 24.03.2009 toimunud konverentsist "Eesti teadlased paguluses", mis tutvustas väliseesti teadlaste osa maailmateaduses. Ettekannete põhjal valminud artiklikogumikust "Eesti teadlased paguluses", koostajad Vahur Mägi ja Anne Valmas. Tallinn : Tallinna Ülikooli Kirjastus, 2009

  1. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  2. Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach

    DEFF Research Database (Denmark)

    Buus, S.; Lauemoller, S.L.; Worning, Peder

    2003-01-01

    We have generated Artificial Neural Networks (ANN) capable of performing sensitive, quantitative predictions of peptide binding to the MHC class I molecule, HLA-A*0204. We have shown that such quantitative ANN are superior to conventional classification ANN, that have been trained to predict...

  3. Achieving Consistent Near-Optimal Pattern Recognition Accuracy Using Particle Swarm Optimization to Pre-Train Artificial Neural Networks

    Science.gov (United States)

    Nikelshpur, Dmitry O.

    2014-01-01

    Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…

  4. Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach

    DEFF Research Database (Denmark)

    Buus, S.; Lauemoller, S.L.; Worning, Peder

    2003-01-01

    We have generated Artificial Neural Networks (ANN) capable of performing sensitive, quantitative predictions of peptide binding to the MHC class I molecule, HLA-A*0204. We have shown that such quantitative ANN are superior to conventional classification ANN, that have been trained to predict bind...... of an iterative feedback loop whereby advanced, computational bioinformatics optimize experimental strategy, and vice versa....

  5. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52 ... Author Affiliations. Y Narahari1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  6. Net Gain

    International Development Research Centre (IDRC) Digital Library (Canada)

    Describing the effect of tax incentives for import, production, and sale of nets and insecticides; and ..... So far, China is the only country where a system for the routine treatment of ...... 1993), and the trials in Ecuador and Peru (Kroeger et al.

  7. Ann Modeling for Grey Particles Produced from Interactions of Different Projectiles with Emulsion Nuclei at 4.5 AGEV/C

    International Nuclear Information System (INIS)

    El-Bakry, M.N.Y.; Basha, A.M.; Rashed, N.; Mahmoud, M.A.; Radi, A.

    2008-01-01

    Artificial Neural Network (ANN) is one of the important tools in high energy physics. In this paper, we are using ANN for modeling the multiplicity distributions of grey particles produced from interactions of P, 3 He, 4 He, 6 Li, 12 C, 24 Mg, and 32 S with emulsion nuclei, light nuclei (CNO), and heavy nuclei (Ag Br). The equations of these distributions were obtained

  8. Application of neural networks in coastal engineering - An overview

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Patil, S.G.; Manjunatha, Y.R.; Hegde, A.V.

    Artificial Neural Network (ANN) is being applied to solve a wide variety of coastal/ocean engineering problems. In practical terms ANNs are non-linear modeling tools and they can be used to model complex relationship between the input and output...

  9. Incorporating a priori knowledge into initialized weights for neural classifier

    NARCIS (Netherlands)

    Chen, Zhe; Feng, T.J.; Feng, Tian-Jin; Houkes, Z.

    2000-01-01

    Artificial neural networks (ANN), especially, multilayer perceptrons (MLP) have been widely used in pattern recognition and classification. Nevertheless, how to incorporate a priori knowledge in the design of ANNs is still an open problem. The paper tries to give some insight on this topic

  10. Artificial Neural Networks for Thermochemical Conversion of Biomass

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Joan Carles

    2015-01-01

    Artificial neural networks (ANNs), extensively used in different fields, have been applied for modeling biomass gasification processes in fluidized bed reactors. Two ANN models are presented, one for circulating fluidized bed gasifiers and another for bubbling fluidized bed gasifiers. Both models...

  11. Introducing Artificial Neural Networks through a Spreadsheet Model

    Science.gov (United States)

    Rienzo, Thomas F.; Athappilly, Kuriakose K.

    2012-01-01

    Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…

  12. Anne-Mette Langes plan for ADHD kongressen

    DEFF Research Database (Denmark)

    Lange, Anne-Mette

    2017-01-01

    http://medicinsktidsskrift.dk/behandlinger/psykiatri/699-anne-mette-langes-plan-for-adhd-kongressen.html......http://medicinsktidsskrift.dk/behandlinger/psykiatri/699-anne-mette-langes-plan-for-adhd-kongressen.html...

  13. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps......, to location-based social networks and games, such as Foursquare and facebook. Warns of the threats these technologies, such as data surveillance, present to our sense of privacy, while also outlining the opportunities for pro-social developments. Provides a theory of the web in the context of the history...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  14. Unlearning in feed-forward multi-nets

    NARCIS (Netherlands)

    Spaanenburg, L; Kurkova,; Steele, NC; Neruda, R; Karny, M

    2001-01-01

    Multi-nets promise an improved performance over monolithic neural networks by virtue of their distributed implementation. Modular neural networks are multi-nets based on an judicious assembly of functionally different parts. This can be viewed as again a monolithic network, but with more complex

  15. Geochemical characterization of oceanic basalts using artificial neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Das, P.; Iyer, S.D.

    method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) is applied to identify the inherent...

  16. Perbandingan Metode ANN-PSO Dan ANN-GA Dalam Pemodelan Komposisi Pakan Kambing Peranakan Etawa (PE Untuk Optimasi Kandungan Gizi

    Directory of Open Access Journals (Sweden)

    Canny Amerilyse Caesar

    2016-09-01

    Abstract Milk is one of the animal protein sources which it contains all of the substances needed by human body. The main milk producer cattle in Indonesia is dairy cow, however its milk production has not fulfilled the society needs. The alternative is the goat, the Etawa crossbreed (PE. The high quality of milk nutrients content is greatly influenced by some factors one of them, is the food factor. The PE goat livestock division of the UPT Cattle Breeding and the Cattle Food Greenery in Singosari-Malang still faces the problem, it is the low ability in giving the food composition for PE goat. This flaw affects the quality of the produced milk. It needs the artificial science of the milk nutrients contain in order to determine the food composition to produce premium milk with the optimum nutrients contain. The writer uses the method of the Artificial Neural Network (ANN and the Particle Swarm Optimization (PSO to make the modeling of goat food in optimizing the content of goat milk nutrients. In the analysis of the examination that is done with the case of 36 kg goat weight, also the food type used is the 70 % Odot grass and 30% Raja grass can increase the nutrients contain of the protein milk for 0.707% and decrease the fat nutrients contain for 0.879%. If uses the method of Artificial Neural Network (ANN and Genethic Algorithm (GA can increase the nutriens contain of the protein for 0.0852% and decrease the fat nutients contain for 2.3254%.   Key Words : Goat Milk, Optimization, Artificial Neural Network (ANN, Particle Swarm Optimization (PSO, Genetic Algorithm (GA, the food nutrients contain.

  17. Chiral topological phases from artificial neural networks

    Science.gov (United States)

    Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl

    2018-05-01

    Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.

  18. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, Erasmo [Facultad de Ingenieria Mecanica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia No. 403, Centro (Mexico); Rivera, Wilfrido [Centro de Ivestigacion en Energia, Universidad Nacional Autonoma de Mexico, Apartado Postal 34, Temixco 62580, Morelos (Mexico)

    2010-12-15

    In this paper the wind speed forecasting in the Isla de Cedros in Baja California, in the Cerro de la Virgen in Zacatecas and in Holbox in Quintana Roo is presented. The time series utilized are average hourly wind speed data obtained directly from the measurements realized in the different sites during about one month. In order to do wind speed forecasting Hybrid models consisting of Autoregressive Integrated Moving Average (ARIMA) models and Artificial Neural Network (ANN) models were developed. The ARIMA models were first used to do the wind speed forecasting of the time series and then with the obtained errors ANN were built taking into account the nonlinear tendencies that the ARIMA technique could not identify, reducing with this the final errors. Once the Hybrid models were developed 48 data out of sample for each one of the sites were used to do the wind speed forecasting and the results were compared with the ARIMA and the ANN models working separately. Statistical error measures such as the mean error (ME), the mean square error (MSE) and the mean absolute error (MAE) were calculated to compare the three methods. The results showed that the Hybrid models predict the wind velocities with a higher accuracy than the ARIMA and ANN models in the three examined sites. (author)

  19. Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery.

    Science.gov (United States)

    Naderi, Arman; Delavar, Mohammad Amir; Kaboudin, Babak; Askari, Mohammad Sadegh

    2017-05-01

    This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.

  20. Process Control Strategies for Dual-Phase Steel Manufacturing Using ANN and ANFIS

    Science.gov (United States)

    Vafaeenezhad, H.; Ghanei, S.; Seyedein, S. H.; Beygi, H.; Mazinani, M.

    2014-11-01

    In this research, a comprehensive soft computational approach is presented for the analysis of the influencing parameters on manufacturing of dual-phase steels. A set of experimental data have been gathered to obtain the initial database used for the training and testing of both artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The parameters used in the strategy were intercritical annealing temperature, carbon content, and holding time which gives off martensite percentage as an output. A fraction of the data set was chosen to train both ANN and ANFIS, and the rest was put into practice to authenticate the act of the trained networks while seeing unseen data. To compare the obtained results, coefficient of determination and root mean squared error indexes were chosen. Using artificial intelligence methods, it is not necessary to consider and establish a preliminary mathematical model and formulate its affecting parameters on its definition. In conclusion, the martensite percentages corresponding to the manufacturing parameters can be determined prior to a production using these controlling algorithms. Although the results acquired from both ANN and ANFIS are very encouraging, the proposed ANFIS has enhanced performance over the ANN and takes better effect on cost-reduction profit.

  1. Water balance estimation in high Alpine terrain by combining distributed modeling and a neural network approach (Berchtesgaden Alps, Germany

    Directory of Open Access Journals (Sweden)

    G. Kraller

    2012-07-01

    Full Text Available The water balance in high Alpine regions is often characterized by significant variation of meteorological variables in space and time, a complex hydrogeological situation and steep gradients. The system is even more complex when the rock composition is dominated by soluble limestone, because unknown underground flow conditions and flow directions lead to unknown storage quantities. Reliable distributed modeling cannot be implemented by traditional approaches due to unknown storage processes at local and catchment scale. We present an artificial neural network extension of a distributed hydrological model (WaSiM-ETH that allows to account for subsurface water transfer in a karstic environment. The extension was developed for the Alpine catchment of the river "Berchtesgadener Ache" (Berchtesgaden Alps, Germany, which is characterized by extreme topography and calcareous rocks. The model assumes porous conditions and does not account for karstic environments, resulting in systematic mismatch of modeled and measured runoff in discharge curves at the outlet points of neighboring high alpine subbasins. Various precipitation interpolation methods did not allow to explain systematic mismatches, and unknown subsurface hydrological processes were concluded as the underlying reason. We introduce a new method that allows to describe the unknown subsurface boundary fluxes, and account for them in the hydrological model. This is achieved by an artificial neural network approach (ANN, where four input variables are taken to calculate the unknown subsurface storage conditions. This was first developed for the high Alpine subbasin Königsseer Ache to improve the monthly water balance. We explicitly derive the algebraic transfer function of an artificial neural net to calculate the missing boundary fluxes. The result of the ANN is then implemented in the groundwater module of the hydrological model as boundary flux, and considered during the consecutive model

  2. Sacred or Neural?

    DEFF Research Database (Denmark)

    Runehov, Anne Leona Cesarine

    Are religious spiritual experiences merely the product of the human nervous system? Anne L.C. Runehov investigates the potential of contemporary neuroscience to explain religious experiences. Following the footsteps of Michael Persinger, Andrew Newberg and Eugene d'Aquili she defines...... the terminological bounderies of "religious experiences" and explores the relevant criteria for the proper evaluation of scientific research, with a particular focus on the validity of reductionist models. Runehov's theis is that the perspectives looked at do not necessarily exclude each other but can be merged....... The question "sacred or neural?" becomes a statement "sacred and neural". The synergies thus produced provide manifold opportunities for interdisciplinary dialogue and research....

  3. Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin

    Science.gov (United States)

    Buch, A. M.; Narain, A.; Pandey, P. C.

    1994-01-01

    The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.

  4. ANT Advanced Neural Tool

    Energy Technology Data Exchange (ETDEWEB)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-07-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.

  5. ANT Advanced Neural Tool

    International Nuclear Information System (INIS)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-01-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs

  6. Gap-filling eddy-covariance data using a complex system of neural networks

    Science.gov (United States)

    Dúbrava, Matúš; Rebok, Tomáš; Havránková, Kateřina; Pavelka, Marian

    2014-05-01

    The eddy-covariance technique measures the flux of matter and energy between various ecosystems and the atmosphere. The fluxes characterize an interaction of the ecosystems with their surroundings and provide valuable knowledge to Global Climate Change issues. Among the main assets of the method belongs the possible evaluation of the carbon balance, expressed as the Net Ecosystem carbon Exchange (NEE) parameter. However, when unfavorable micro-meteorological conditions (e.g., stable stratification and low turbulent mixing) happen, measured fluxes are inaccurate and need to be corrected and/or gap-filled. Thus, there is a long-term challenge for many research teams from the flux community to develop the most accurate gap-filling method -- many statistical as well as empirical approaches have been proposed so far (e.g., mean replacement, interpolation, extrapolation, regression analysis, methods based on plant physiology depending on meteorological variables, etc.), each of them having its strengths and weaknesses. The artificial neural networks (ANNs) -- purely empirical non-linear regression models generally able to solve any fitness approximation and pattern recognition problem -- were proven as a promising approach and one of the most precise method for gap-filling the eddy-covariance data. However, even though providing encouraging results when considering a prediction error throughout the whole dataset, they considerably fail in fitting inherently present spikes in the NEE values. This drawback results from the nature of ANNs, since their ability to fit spikes is partly in contrast with their ability to reliably approximate previously unseen data -- while the spike fitting can be improved by an increasing number of training epochs, this often leads to ANNs over-fitting and thus losing their generalization ability, resulting in higher overall prediction error. Since the proper generalization ability has greater impact on the precision of the results, current

  7. Design of an artificial neural network, with the topology oriented to the reconstruction of neutron spectra

    International Nuclear Information System (INIS)

    Arteaga A, T.; Ortiz R, J.M.; Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado S, G.A.

    2006-01-01

    People that live in high places respect to the sea level, in latitudes far from the equator or that they travel by plane, they are exposed to atmospheres of high radiation generated by the cosmic rays. Another atmosphere with radiation is the medical equipment, particle accelerators and nuclear reactors. The evaluation of the biological risk for neutron radiation requires an appropriate and sure dosimetry. A commonly used system is the Bonner Sphere Spectrometer (EEB) with the purpose of reconstructing the spectrum that is important because the equivalent dose for neutrons depends strongly on its energy. The count rates obtained in each sphere are treated, in most of the cases, for iterative methods, Monte Carlo or Maximum Entropy. Each one of them has difficulties that it motivates to the development of complementary procedures. Recently it has been used Artificial Neural Networks, ANN) and not yet conclusive results have been obtained. In this work it was designed an ANN to obtain the neutron energy spectrum neutrons starting from the counting rate of count of an EEB. The ANN was trained with 129 reference spectra obtained of the IAEA (1990, 2001), 24 were built as defined energy, including isotopic sources of neutrons of reference and operational, of accelerators, reactors, mathematical functions, and of defined energy with several peaks. The spectrum was transformed from lethargy units to energy and were reaccommodated in 31 energies using the Monte Carlo code 4C. The reaccommodated spectra and the response matrix UTA4 were used to calculate the prospective count rates in the EEB. These rates were used as entrance and its respective spectrum was used as output during the net training. The net design is Retropropagation type with 5 layers of 7, 140, 140, 140 and 31 neurons, transfer function logsig, tansig, logsig, logsig, logsig respectively. Training algorithm, traingdx. After the training, the net was proven with a group of training spectra and others that

  8. Use of artificial neural networks on optical track width measurements

    Science.gov (United States)

    Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew

    2007-08-01

    We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.

  9. Predicting pressure drop in venturi scrubbers with artificial neural networks.

    Science.gov (United States)

    Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A

    2007-05-08

    In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.

  10. FPGA implementation of adaptive ANN controller for speed regulation of permanent magnet stepper motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Hasanien, Hany M., E-mail: Hanyhasanien@ieee.or [Dept. of Elec. Power and Machines, Faculty of Eng., Ain Shams Univ., Cairo (Egypt)

    2011-02-15

    This paper presents a novel adaptive artificial neural network (ANN) controller, which applies on permanent magnet stepper motor (PMSM) for regulating its speed. The dynamic response of the PMSM with the proposed controller is studied during the starting process under the full load torque and under load disturbance. The effectiveness of the proposed adaptive ANN controller is then compared with that of the conventional PI controller. The proposed methodology solves the problem of nonlinearities and load changes of PMSM drives. The proposed controller ensures fast and accurate dynamic response with an excellent steady state performance. Matlab/Simulink tool is used for this dynamic simulation study. The main contribution of this work is the implementation of the proposed controller on field programmable gate array (FPGA) hardware to drive the stepper motor. The driver is built on FPGA Spartan-3E Starter from Xilinx. Experimental results are presented to demonstrate the validity and effectiveness of the proposed control scheme.

  11. Development of an ANN optimized mucoadhesive buccal tablet containing flurbiprofen and lidocaine for dental pain.

    Science.gov (United States)

    Hussain, Amjad; Syed, Muhammad Ali; Abbas, Nasir; Hanif, Sana; Arshad, Muhammad Sohail; Bukhari, Nadeem Irfan; Hussain, Khalid; Akhlaq, Muhammad; Ahmad, Zeeshan

    2016-06-01

    A novel mucoadhesive buccal tablet containing flurbiprofen (FLB) and lidocaine HCl (LID) was prepared to relieve dental pain. Tablet formulations (F1-F9) were prepared using variable quantities of mucoadhesive agents, hydroxypropyl methyl cellulose (HPMC) and sodium alginate (SA). The formulations were evaluated for their physicochemical properties, mucoadhesive strength and mucoadhesion time, swellability index and in vitro release of active agents. Release of both drugs depended on the relative ratio of HPMC:SA. However, mucoadhesive strength and mucoadhesion time were better in formulations, containing higher proportions of HPMC compared to SA. An artificial neural network (ANN) approach was applied to optimise formulations based on known effective parameters (i.e., mucoadhesive strength, mucoadhesion time and drug release), which proved valuable. This study indicates that an effective buccal tablet formulation of flurbiprofen and lidocaine can be prepared via an optimized ANN approach.

  12. Development of an ANN optimized mucoadhesive buccal tablet containing flurbiprofen and lidocaine for dental pain

    Directory of Open Access Journals (Sweden)

    Hussain Amjad

    2016-06-01

    Full Text Available A novel mucoadhesive buccal tablet containing flurbiprofen (FLB and lidocaine HCl (LID was prepared to relieve dental pain. Tablet formulations (F1-F9 were prepared using variable quantities of mucoadhesive agents, hydroxypropyl methyl cellulose (HPMC and sodium alginate (SA. The formulations were evaluated for their physicochemical properties, mucoadhesive strength and mucoadhesion time, swellability index and in vitro release of active agents. Release of both drugs depended on the relative ratio of HPMC:SA. However, mucoadhesive strength and mucoadhesion time were better in formulations, containing higher proportions of HPMC compared to SA. An artificial neural network (ANN approach was applied to optimise formulations based on known effective parameters (i.e., mucoadhesive strength, mucoadhesion time and drug release, which proved valuable. This study indicates that an effective buccal tablet formulation of flurbiprofen and lidocaine can be prepared via an optimized ANN approach.

  13. Application of ann-based decision making pattern recognition to fishing operations

    Energy Technology Data Exchange (ETDEWEB)

    Akhlaghinia, M.; Torabi, F.; Wilton, R.R. [University of Regina, Saskatchewan (Canada). Faculty of Engineering. Dept. of Petroleum Engineering], e-mail: Farshid.Torabi@uregina.ca

    2010-10-15

    Decision making is a crucial part of fishing operations. Proper decisions should be made to prevent wasted time and associated costs on unsuccessful operations. This paper presents a novel model to help drilling managers decide when to commence and when to quit a fishing operation. A decision making model based on Artificial Neural Network (ANN) has been developed that utilizes Pattern Recognition based on 181 fishing incidents from one of the most fish-prone fields of the southwest of Iran. All parameters chosen to train the ANN-Based Pattern Recognition Tool are assumed to play a role in the success of the fishing operation and are therefore used to decide whether a fishing operation should be performed or not. If the tool deems the operation suitable for consideration, a cost analysis of the fishing operation can then be performed to justify its overall cost. (author)

  14. ANN based controller for three phase four leg shunt active filter for power quality improvement

    Directory of Open Access Journals (Sweden)

    J. Jayachandran

    2016-03-01

    Full Text Available In this paper, an artificial neural network (ANN based one cycle control (OCC strategy is proposed for the DSTATCOM shunted across the load in three phase four wire distribution system. The proposed control strategy mitigates harmonic/reactive currents, ensures balanced and sinusoidal source current from the supply mains that are nearly in phase with the supply voltage and compensates neutral current under varying source and load conditions. The proposed control strategy is superior over conventional methods as it eliminates, the sensors needed for sensing load current and coupling inductor current, in addition to the multipliers and the calculation of reference currents. ANN controllers are implemented to maintain voltage across the capacitor and as a compensator to compensate neutral current. The DSTATCOM performance is validated for all possible conditions of source and load by simulation using MATLAB software and simulation results prove the efficacy of the proposed control over conventional control strategy.

  15. FPGA implementation of adaptive ANN controller for speed regulation of permanent magnet stepper motor drives

    International Nuclear Information System (INIS)

    Hasanien, Hany M.

    2011-01-01

    This paper presents a novel adaptive artificial neural network (ANN) controller, which applies on permanent magnet stepper motor (PMSM) for regulating its speed. The dynamic response of the PMSM with the proposed controller is studied during the starting process under the full load torque and under load disturbance. The effectiveness of the proposed adaptive ANN controller is then compared with that of the conventional PI controller. The proposed methodology solves the problem of nonlinearities and load changes of PMSM drives. The proposed controller ensures fast and accurate dynamic response with an excellent steady state performance. Matlab/Simulink tool is used for this dynamic simulation study. The main contribution of this work is the implementation of the proposed controller on field programmable gate array (FPGA) hardware to drive the stepper motor. The driver is built on FPGA Spartan-3E Starter from Xilinx. Experimental results are presented to demonstrate the validity and effectiveness of the proposed control scheme.

  16. [Algorithms of artificial neural networks--practical application in medical science].

    Science.gov (United States)

    Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna

    2005-12-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.

  17. Applications of artificial neural networks in medical science.

    Science.gov (United States)

    Patel, Jigneshkumar L; Goyal, Ramesh K

    2007-09-01

    Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.

  18. Artificial earthquake record generation using cascade neural network

    Directory of Open Access Journals (Sweden)

    Bani-Hani Khaldoon A.

    2017-01-01

    Full Text Available This paper presents the results of using artificial neural networks (ANN in an inverse mapping problem for earthquake accelerograms generation. This study comprises of two parts: 1-D site response analysis; performed for Dubai Emirate at UAE, where eight earthquakes records are selected and spectral matching are performed to match Dubai response spectrum using SeismoMatch software. Site classification of Dubai soil is being considered for two classes C and D based on shear wave velocity of soil profiles. Amplifications factors are estimated to quantify Dubai soil effect. Dubai’s design response spectra are developed for site classes C & D according to International Buildings Code (IBC -2012. In the second part, ANN is employed to solve inverse mapping problem to generate time history earthquake record. Thirty earthquakes records and their design response spectrum with 5% damping are used to train two cascade forward backward neural networks (ANN1, ANN2. ANN1 is trained to map the design response spectrum to time history and ANN2 is trained to map time history records to the design response spectrum. Generalized time history earthquake records are generated using ANN1 for Dubai’s site classes C and D, and ANN2 is used to evaluate the performance of ANN1.

  19. NetErosividade MG: erosividade da chuva em Minas Gerais NetErosividade MG: rainfall erosivity for Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Michel Castro Moreira

    2008-06-01

    Full Text Available A erosividade da chuva é um índice numérico que expressa a capacidade das chuvas em provocar erosão hídrica no solo. O presente trabalho teve por objetivo desenvolver um programa computacional para estimar os valores da erosividade da chuva no Estado de Minas Gerais com base em redes neurais artificiais (RNAs. O valor anual da erosividade da chuva é obtido pelo somatório dos valores mensais dos índices de erosividade EI30 ou KE > 25. Foram utilizados para cálculo de cada um desses índices dois métodos de obtenção da energia cinética de precipitação pluvial. Dessa maneira, obtiveram-se quatro valores de erosividade para cada mês, totalizando o desenvolvimento de 48 redes. As RNAs desenvolvidas foram implementadas no ambiente de programação Borland Delphi 7.0. O programa computacional desenvolvido foi denominado NetErosividade MG. O programa fornece, de forma fácil e rápida, os valores mensais e anual da erosividade da chuva para qualquer localidade do Estado de Minas Gerais.Rainfall erosivity represents the potential of rainfall causing soil erosion. This study aimed to develop a software to estimate rainfall erosivity in the state of Minas Gerais based on Artificial Neural Networks (ANNs. The annual value of the rainfall erosivity is given by the sum of the monthly values of the erosivity indexes EI30 or KE > 25. Two methodologies were used to estimate the kinetic energy for each index. Thus, four erosivity values were evaluated for each month, resulting in the development of 48 ANNs. These ANNs were implemented using the software Borland Delphi 7.0. The new software was called NetErosividade MG. The program calculates the monthly and annual values of rainfall erosivity for any location in the state of Minas Gerais in an easy and fast way.

  20. Exploring QSARs of the interaction of flavonoids with GABA (A) receptor using MLR, ANN and SVM techniques.

    Science.gov (United States)

    Deeb, Omar; Shaik, Basheerulla; Agrawal, Vijay K

    2014-10-01

    Quantitative Structure-Activity Relationship (QSAR) models for binding affinity constants (log Ki) of 78 flavonoid ligands towards the benzodiazepine site of GABA (A) receptor complex were calculated using the machine learning methods: artificial neural network (ANN) and support vector machine (SVM) techniques. The models obtained were compared with those obtained using multiple linear regression (MLR) analysis. The descriptor selection and model building were performed with 10-fold cross-validation using the training data set. The SVM and MLR coefficient of determination values are 0.944 and 0.879, respectively, for the training set and are higher than those of ANN models. Though the SVM model shows improvement of training set fitting, the ANN model was superior to SVM and MLR in predicting the test set. Randomization test is employed to check the suitability of the models.

  1. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S. F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  2. WEPP and ANN models for simulating soil loss and runoff in a semi-arid Mediterranean region.

    Science.gov (United States)

    Albaradeyia, Issa; Hani, Azzedine; Shahrour, Isam

    2011-09-01

    This paper presents the use of both the Water Erosion Prediction Project (WEPP) and the artificial neural network (ANN) for the prediction of runoff and soil loss in the central highland mountainous of the Palestinian territories. Analyses show that the soil erosion is highly dependent on both the rainfall depth and the rainfall event duration rather than on the rainfall intensity as mostly mentioned in the literature. The results obtained from the WEPP model for the soil loss and runoff disagree with the field data. The WEPP underestimates both the runoff and soil loss. Analyses conducted with the ANN agree well with the observation. In addition, the global network models developed using the data of all the land use type show a relatively unbiased estimation for both runoff and soil loss. The study showed that the ANN model could be used as a management tool for predicting runoff and soil loss.

  3. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S.F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  4. Implementation of ANN on CCHP system to predict trigeneration performance with consideration of various operative factors

    International Nuclear Information System (INIS)

    Anvari, Simin; Taghavifar, Hadi; Saray, Rahim Khoshbakhti; Khalilarya, Shahram; Jafarmadar, Samad

    2015-01-01

    Highlights: • ANN modeling tool was implemented on the CCHP system. • The best ANN topology was detected 10–8–9 with Levenberg–Marquadt algorithm. • The system is more sensitive of CC outlet temperature and turbine isentropic efficiency. • The lowest RMSE = 3.13e−5 and the best R 2 = 0.999 is related to lambda and second law efficiency terms, respectively. - Abstract: A detailed investigation was aimed based on numerical thermodynamic survey and artificial neural network (ANN) modeling of the trigeneration system. The results are presented in two pivotal frameworks namely the sensitivity analysis and ANN prediction capability of proposed modeling. The underlying operative parameters were chosen as input parameters from different cycles and components, while the exergy efficiency, exergy loss, coefficient of performance, heating load exergy, lambda, gas turbine power, exergy destruction, actual outlet air compressor temperature, and heat recovery gas steam generator (HRSG) outlet temperature were taken as objective output parameters for the modeling purpose. Up to now, no significant step was taken to investigate the compound power plant with thermodynamic analyses and network predictability hybrid in such a detailed oriented approach. It follows that multilayer perceptron neural network with back propagation algorithm deployed with 10–8–9 configuration results in the modeling reliability ranged within R 2 = 0.995–0.999. When dataset treated with trainlm learning algorithm and diversified neurons, the mean square error (MSE) is obtained equal to 0.2175. This denotes a powerful modeling achievement in both scientific and industrial scale to save considerable computational cost on combined cooling, heating, and power system in accomplishment of boosting the energy efficiency and system maintenance

  5. Kui vana on kunstnik? / Anneli Porri

    Index Scriptorium Estoniae

    Porri, Anneli, 1980-

    2003-01-01

    Rahvusvahelise kunstihariduse konverentsi "InSea on Sea" raames Kunstiakadeemia galeriis Karin Laansoo kureeritud Tallinna Kunstikooli õpilaste tööde näitus "MÄRKmed", Draakoni galeriis Mari Sobolevi kureeritud Viljandi Maagümnaasiumi kunstistuudio näitus "Sisseastumiseksam maailma", rahvusraamatukogus Anneli Porri kureeritud näitus "Kokkuvõte" EKA tänavuste lõpetajate töödest ja näitus "Leitud tagahoovist", Kullo galeriis rahvusvaheline näitus "Dialoog erinevuste vahel"

  6. Daily reservoir inflow forecasting combining QPF into ANNs model

    Science.gov (United States)

    Zhang, Jun; Cheng, Chun-Tian; Liao, Sheng-Li; Wu, Xin-Yu; Shen, Jian-Jian

    2009-01-01

    Daily reservoir inflow predictions with lead-times of several days are essential to the operational planning and scheduling of hydroelectric power system. The demand for quantitative precipitation forecasting (QPF) is increasing in hydropower operation with the dramatic advances in the numerical weather prediction (NWP) models. This paper presents a simple and an effective algorithm for daily reservoir inflow predictions which solicits the observed precipitation, forecasted precipitation from QPF as predictors and discharges in following 1 to 6 days as predicted targets for multilayer perceptron artificial neural networks (MLP-ANNs) modeling. An improved error back-propagation algorithm with self-adaptive learning rate and self-adaptive momentum coefficient is used to make the supervised training procedure more efficient in both time saving and search optimization. Several commonly used error measures are employed to evaluate the performance of the proposed model and the results, compared with that of ARIMA model, show that the proposed model is capable of obtaining satisfactory forecasting not only in goodness of fit but also in generalization. Furthermore, the presented algorithm is integrated into a practical software system which has been severed for daily inflow predictions with lead-times varying from 1 to 6 days of more than twenty reservoirs operated by the Fujian Province Grid Company, China.

  7. Performance measurement of plate fin heat exchanger by exploration: ANN, ANFIS, GA, and SA

    Directory of Open Access Journals (Sweden)

    A.K. Gupta

    2017-01-01

    Full Text Available An experimental work is conducted on counter flow plate fin compact heat exchanger using offset strip fin under different mass flow rates. The training, testing, and validation set of data has been collected by conducting experiments. Next, artificial neural network merged with Genetic Algorithm (GA utilized to measure the performance of plate-fin compact heat exchanger. The main aim of present research is to measure the performance of plate-fin compact heat exchanger and to provide full explanations. An artificial neural network predicted simulated data, which verified with experimental data under 10–20% error. Then, the authors examined two well-known global search techniques, simulated annealing and the genetic algorithm. The proposed genetic algorithm and Simulated Annealing (SA results have been summarized. The parameters are impartially important for good results. With the emergence of a new data-driven modeling technique, Neuro-fuzzy based systems are established in academic and practical applications. The neuro-fuzzy interference system (ANFIS has also been examined to undertake the problem related to plate-fin heat exchanger performance measurement under various parameters. Moreover, Parallel with ANFIS model and Artificial Neural Network (ANN model has been created with emphasizing the accuracy of the different techniques. A wide range of statistical indicators used to assess the performance of the models. Based on the comparison, it was revealed that technical ANFIS improve the accuracy of estimates in the small pool and tropical ANN.

  8. Use of artificial neural networks for transport energy demand modeling

    International Nuclear Information System (INIS)

    Murat, Yetis Sazi; Ceylan, Halim

    2006-01-01

    The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem

  9. Anneli Randla kaitses doktorikraadi Cambridge'is / Anneli Randla ; interv. Reet Varblane

    Index Scriptorium Estoniae

    Randla, Anneli, 1970-

    1999-01-01

    5. mail kaitses Cambridge'is esimese eesti kunstiteadlasena doktorikraadi Anneli Randla. Töö teema: kerjusmungaordukloostrite arhitektuur Põhja-Euroopas. Juhendaja dr. Deborah Howard. Doktorikraadile esitatavatest nõudmistest, doktoritöö kaitsmisest, magistrikraadi kaitsnu õppimisvõimalustest Cambridge's.

  10. Toward automatic time-series forecasting using neural networks.

    Science.gov (United States)

    Yan, Weizhong

    2012-07-01

    Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.

  11. An adaptable Boolean net trainable to control a computing robot

    International Nuclear Information System (INIS)

    Lauria, F. E.; Prevete, R.; Milo, M.; Visco, S.

    1999-01-01

    We discuss a method to implement in a Boolean neural network a Hebbian rule so to obtain an adaptable universal control system. We start by presenting both the Boolean neural net and the Hebbian rule we have considered. Then we discuss, first, the problems arising when the latter is naively implemented in a Boolean neural net, second, the method consenting us to overcome them and the ensuing adaptable Boolean neural net paradigm. Next, we present the adaptable Boolean neural net as an intelligent control system, actually controlling a writing robot, and discuss how to train it in the execution of the elementary arithmetic operations on operands represented by numerals with an arbitrary number of digits

  12. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  13. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain

    OpenAIRE

    Patricia Jimeno-Sáez; Javier Senent-Aparicio; Julio Pérez-Sánchez; David Pulido-Velazquez

    2018-01-01

    Streamflow data are of prime importance to water-resources planning and management, and the accuracy of their estimation is very important for decision making. The Soil and Water Assessment Tool (SWAT) and Artificial Neural Network (ANN) models have been evaluated and compared to find a method to improve streamflow estimation. For a more complete evaluation, the accuracy and ability of these streamflow estimation models was also established separately based on their performance during differe...

  14. Evaluation of Effectiveness of Wavelet Based Denoising Schemes Using ANN and SVM for Bearing Condition Classification

    Directory of Open Access Journals (Sweden)

    Vijay G. S.

    2012-01-01

    Full Text Available The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR and reducing the root-mean-square error (RMSE. In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN and the Support Vector Machine (SVM, for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher’s Criterion (FC. Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.

  15. Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles.

    Science.gov (United States)

    Bisgin, Halil; Bera, Tanmay; Ding, Hongjian; Semey, Howard G; Wu, Leihong; Liu, Zhichao; Barnes, Amy E; Langley, Darryl A; Pava-Ripoll, Monica; Vyas, Himansu J; Tong, Weida; Xu, Joshua

    2018-04-25

    Insect pests, such as pantry beetles, are often associated with food contaminations and public health risks. Machine learning has the potential to provide a more accurate and efficient solution in detecting their presence in food products, which is currently done manually. In our previous research, we demonstrated such feasibility where Artificial Neural Network (ANN) based pattern recognition techniques could be implemented for species identification in the context of food safety. In this study, we present a Support Vector Machine (SVM) model which improved the average accuracy up to 85%. Contrary to this, the ANN method yielded ~80% accuracy after extensive parameter optimization. Both methods showed excellent genus level identification, but SVM showed slightly better accuracy  for most species. Highly accurate species level identification remains a challenge, especially in distinguishing between species from the same genus which may require improvements in both imaging and machine learning techniques. In summary, our work does illustrate a new SVM based technique and provides a good comparison with the ANN model in our context. We believe such insights will pave better way forward for the application of machine learning towards species identification and food safety.

  16. Estimation of Costs and Durations of Construction of Urban Roads Using ANN and SVM

    Directory of Open Access Journals (Sweden)

    Igor Peško

    2017-01-01

    Full Text Available Offer preparation has always been a specific part of a building process which has significant impact on company business. Due to the fact that income greatly depends on offer’s precision and the balance between planned costs, both direct and overheads, and wished profit, it is necessary to prepare a precise offer within required time and available resources which are always insufficient. The paper presents a research of precision that can be achieved while using artificial intelligence for estimation of cost and duration in construction projects. Both artificial neural networks (ANNs and support vector machines (SVM are analysed and compared. The best SVM has shown higher precision, when estimating costs, with mean absolute percentage error (MAPE of 7.06% compared to the most precise ANNs which has achieved precision of 25.38%. Estimation of works duration has proved to be more difficult. The best MAPEs were 22.77% and 26.26% for SVM and ANN, respectively.

  17. Measurement and ANN prediction of pH-dependent solubility of nitrogen-heterocyclic compounds.

    Science.gov (United States)

    Sun, Feifei; Yu, Qingni; Zhu, Jingke; Lei, Lecheng; Li, Zhongjian; Zhang, Xingwang

    2015-09-01

    Based on the solubility of 25 nitrogen-heterocyclic compounds (NHCs) measured by saturation shake-flask method, artificial neural network (ANN) was employed to the study of the quantitative relationship between the structure and pH-dependent solubility of NHCs. With genetic algorithm-multivariate linear regression (GA-MLR) approach, five out of the 1497 molecular descriptors computed by Dragon software were selected to describe the molecular structures of NHCs. Using the five selected molecular descriptors as well as pH and the partial charge on the nitrogen atom of NHCs (QN) as inputs of ANN, a quantitative structure-property relationship (QSPR) model without using Henderson-Hasselbalch (HH) equation was successfully developed to predict the aqueous solubility of NHCs in different pH water solutions. The prediction model performed well on the 25 model NHCs with an absolute average relative deviation (AARD) of 5.9%, while HH approach gave an AARD of 36.9% for the same model NHCs. It was found that QN played a very important role in the description of NHCs and, with QN, ANN became a potential tool for the prediction of pH-dependent solubility of NHCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Prediction of Frequency for Simulation of Asphalt Mix Fatigue Tests Using MARS and ANN

    Directory of Open Access Journals (Sweden)

    Ali Reza Ghanizadeh

    2014-01-01

    Full Text Available Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000 four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS and Artificial Neural Network (ANN methods were then employed to predict the effective length (i.e., frequency of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation.

  19. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    Science.gov (United States)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2017-08-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  20. Estimating SPT-N Value Based on Soil Resistivity using Hybrid ANN-PSO Algorithm

    Science.gov (United States)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Standard Penetration Resistance (N value) is used in many empirical geotechnical engineering formulas. Meanwhile, soil resistivity is a measure of soil’s resistance to electrical flow. For a particular site, usually, only a limited N value data are available. In contrast, resistivity data can be obtained extensively. Moreover, previous studies showed evidence of a correlation between N value and resistivity value. Yet, no existing method is able to interpret resistivity data for estimation of N value. Thus, the aim is to develop a method for estimating N-value using resistivity data. This study proposes a hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) method to estimate N value using resistivity data. Five different ANN-PSO models based on five boreholes were developed and analyzed. The performance metrics used were the coefficient of determination, R2 and mean absolute error, MAE. Analysis of result found that this method can estimate N value (R2 best=0.85 and MAEbest=0.54) given that the constraint, Δ {\\bar{l}}ref, is satisfied. The results suggest that ANN-PSO method can be used to estimate N value with good accuracy.

  1. Dynamic artificial neural networks with affective systems.

    Directory of Open Access Journals (Sweden)

    Catherine D Schuman

    Full Text Available Artificial neural networks (ANNs are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP and long term depression (LTD, and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.

  2. Neural network signal understanding for instrumentation

    DEFF Research Database (Denmark)

    Pau, L. F.; Johansen, F. S.

    1990-01-01

    understanding research is surveyed, and the selected implementation and its performance in terms of correct classification rates and robustness to noise are described. Formal results on neural net training time and sensitivity to weights are given. A theory for neural control using functional link nets is given...

  3. Neutron spectrometry and dosimetry with ANNs

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Gallego, E.; Lorente, A.

    2009-10-01

    Artificial neural networks technology has been applied to unfold the neutron spectra and to calculate the effective dose, the ambient equivalent dose, and the personal dose equivalent for 252 Cf and 241 AmBe neutron sources. A Bonner sphere spectrometry with a 6 LiI(Eu) scintillator was utilized to measure the count rates of the spheres that were utilized as input in two artificial neural networks, one for spectrometry and another for dosimetry. Spectra and the ambient dose equivalent were also obtained with BUNKIUT code and the UTA4 response matrix. With both procedures spectra and ambient dose equivalent agrees in less than 10%. (author)

  4. Data-Driven Modeling of Complex Systems by means of a Dynamical ANN

    Science.gov (United States)

    Seleznev, A.; Mukhin, D.; Gavrilov, A.; Loskutov, E.; Feigin, A.

    2017-12-01

    The data-driven methods for modeling and prognosis of complex dynamical systems become more and more popular in various fields due to growth of high-resolution data. We distinguish the two basic steps in such an approach: (i) determining the phase subspace of the system, or embedding, from available time series and (ii) constructing an evolution operator acting in this reduced subspace. In this work we suggest a novel approach combining these two steps by means of construction of an artificial neural network (ANN) with special topology. The proposed ANN-based model, on the one hand, projects the data onto a low-dimensional manifold, and, on the other hand, models a dynamical system on this manifold. Actually, this is a recurrent multilayer ANN which has internal dynamics and capable of generating time series. Very important point of the proposed methodology is the optimization of the model allowing us to avoid overfitting: we use Bayesian criterion to optimize the ANN structure and estimate both the degree of evolution operator nonlinearity and the complexity of nonlinear manifold which the data are projected on. The proposed modeling technique will be applied to the analysis of high-dimensional dynamical systems: Lorenz'96 model of atmospheric turbulence, producing high-dimensional space-time chaos, and quasi-geostrophic three-layer model of the Earth's atmosphere with the natural orography, describing the dynamics of synoptical vortexes as well as mesoscale blocking systems. The possibility of application of the proposed methodology to analyze real measured data is also discussed. The study was supported by the Russian Science Foundation (grant #16-12-10198).

  5. Modelling the spectral irradiance distribution in sunny inland locations using an ANN-based methodology

    International Nuclear Information System (INIS)

    Torres-Ramírez, M.; Elizondo, D.; García-Domingo, B.; Nofuentes, G.; Talavera, D.L.

    2015-01-01

    This work is aimed at verifying that in sunny inland locations artificial intelligence techniques may provide an estimation of the spectral irradiance with adequate accuracy for photovoltaic applications. An ANN (artificial neural network) based method was developed, trained and tested to model the spectral distributions between wavelengths ranging from 350 to 1050 nm. Only commonly available input data such as geographical information regarding location, specific date and time together with horizontal global irradiance and ambient temperature are required. Historical information from a 24-month experimental campaign carried out in Jaén (Spain) provided the necessary data to train and test the ANN tool. A Kohonen self-organized map was used as innovative technique to classify the whole input dataset and build a small and representative training dataset. The shape of the spectral irradiance distribution, the in-plane global irradiance (G T ) and irradiation (H T ) and the APE (average photon energy) values obtained through the ANN method were statistically compared to the experimental ones. In terms of shape distribution fitting, the mean relative deformation error stays below 4.81%. The root mean square percentage error is around 6.89% and 0.45% when estimating G T and APE, respectively. Regarding H T , errors lie below 3.18% in all cases. - Highlights: • ANN-based model to estimate the spectral irradiance distribution in sunny inland locations. • MRDE value stay below 4.81% in spectral irradiance distribution shape fitting. • RMSPE is about 6.89% for the in-plane global irradiance and 0.45% for the average photon energy. • Errors stay below 3.18% for all the months of the year in incident irradiation terms. • Improvement of assessment of the impact of the solar spectrum in the performance of a PV module

  6. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242

    Directory of Open Access Journals (Sweden)

    Ahmed R. J. Almusawi

    2016-01-01

    Full Text Available This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot’s joint angles.

  7. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).

    Science.gov (United States)

    Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.

  8. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  9. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)

    Science.gov (United States)

    Dülger, L. Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129

  10. Implementation of a feed-forward artificial neural network in VHDL on FPGA

    NARCIS (Netherlands)

    Dondon, P.; Carvalho, J.; Gardere, R.; Lahalle, P.; Tsenov, G.; Mladenov, V.M.; Reljin, B.; Stankovic, S.

    2014-01-01

    Describing an Artificial Neural Network (ANN) using VHDL allows a further implementation of such a system on FPGA. Indeed, the principal point of using FPGA for ANNs is flexibility that gives it an advantage toward other systems like ASICS which are entirely dedicated to one unique architecture and

  11. Evaluation of neural networks to identify types of activity using accelerometers

    NARCIS (Netherlands)

    Vries, S.I. de; Garre, F.G.; Engbers, L.H.; Hildebrandt, V.H.; Buuren, S. van

    2011-01-01

    Purpose: To develop and evaluate two artificial neural network (ANN) models based on single-sensor accelerometer data and an ANN model based on the data of two accelerometers for the identification of types of physical activity in adults. Methods: Forty-nine subjects (21 men and 28 women; age range

  12. Statistical Classification for Cognitive Diagnostic Assessment: An Artificial Neural Network Approach

    Science.gov (United States)

    Cui, Ying; Gierl, Mark; Guo, Qi

    2016-01-01

    The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…

  13. Artificial neural networks to forecast biomass of Pacific sardine and its environment

    DEFF Research Database (Denmark)

    Cisneros Mata, M.A.; Brey, T.; Jarre, Astrid

    1996-01-01

    We tested the forecasting performance of artificial neural networks (ANNs) using several time series of environmental and biotic data pertaining to the California Current (CC) neritic ecosystem. ANNs performed well predicting CC monthly 10-m depth temperature up to nine years in advance, using te...

  14. The gamma model : a new neural network for temporal processing

    NARCIS (Netherlands)

    Vries, de B.

    1992-01-01

    In this paper we develop the gamma neural model, a new neural net architecture for processing of temporal patterns. Time varying patterns are normally segmented into a sequence of static patterns that are successively presented to a neural net. In the approach presented here segmentation is avoided.

  15. Scheduling with artificial neural networks

    OpenAIRE

    Gürgün, Burçkaan

    1993-01-01

    Ankara : Department of Industrial Engineering and The Institute of Engineering and Sciences of Bilkent Univ., 1993. Thesis (Master's) -- Bilkent University, 1993. Includes bibliographical references leaves 59-65. Artificial Neural Networks (ANNs) attempt to emulate the massively parallel and distributed processing of the human brain. They are being examined for a variety of problems that have been very difficult to solve. The objective of this thesis is to review the curren...

  16. Development of ANN-based models to predict the static response and dynamic response of a heat exchanger in a real MVAC system

    International Nuclear Information System (INIS)

    Hu Qinhua; So, Albert T P; Tse, W L; Ren, Qingchang

    2005-01-01

    This paper presents a systematic approach to develop artificial neural network (ANN) models to predict the performance of a heat exchanger operating in real mechanical ventilation and air-conditioning (MVAC) system. Two approaches were attempted and presented. Every detailed components of the MVAC system have been considered and we attempt to model each of them by one ANN. This study used the neural network technique to obtain a static and a dynamic model for a heat exchanger mounted in an air handler unit (AHU), which is the key component of the MVAC system. It has been verified that almost all of the predicted values of the ANN model were within 95% - 105% of the measured values, with a consistent mean relative error (MRE) smaller than 2.5%. The paper details our experiences in using ANNs, especially those with back-propagation (BP) structures. Also, the weights and biases of our trained-up ANN models are listed out, which serve as good reference for readers to deal with their own situations

  17. Optimum coagulant forecasting by modeling jar test experiments using ANNs

    Science.gov (United States)

    Haghiri, Sadaf; Daghighi, Amin; Moharramzadeh, Sina

    2018-01-01

    Currently, the proper utilization of water treatment plants and optimizing their use is of particular importance. Coagulation and flocculation in water treatment are the common ways through which the use of coagulants leads to instability of particles and the formation of larger and heavier particles, resulting in improvement of sedimentation and filtration processes. Determination of the optimum dose of such a coagulant is of particular significance. A high dose, in addition to adding costs, can cause the sediment to remain in the filtrate, a dangerous condition according to the standards, while a sub-adequate dose of coagulants can result in the reducing the required quality and acceptable performance of the coagulation process. Although jar tests are used for testing coagulants, such experiments face many constraints with respect to evaluating the results produced by sudden changes in input water because of their significant costs, long time requirements, and complex relationships among the many factors (turbidity, temperature, pH, alkalinity, etc.) that can influence the efficiency of coagulant and test results. Modeling can be used to overcome these limitations; in this research study, an artificial neural network (ANN) multi-layer perceptron (MLP) with one hidden layer has been used for modeling the jar test to determine the dosage level of used coagulant in water treatment processes. The data contained in this research have been obtained from the drinking water treatment plant located in Ardabil province in Iran. To evaluate the performance of the model, the mean squared error (MSE) and correlation coefficient (R2) parameters have been used. The obtained values are within an acceptable range that demonstrates the high accuracy of the models with respect to the estimation of water-quality characteristics and the optimal dosages of coagulants; so using these models will allow operators to not only reduce costs and time taken to perform experimental jar tests

  18. DANNP: an efficient artificial neural network pruning tool

    KAUST Repository

    Alshahrani, Mona

    2017-11-06

    Background Artificial neural networks (ANNs) are a robust class of machine learning models and are a frequent choice for solving classification problems. However, determining the structure of the ANNs is not trivial as a large number of weights (connection links) may lead to overfitting the training data. Although several ANN pruning algorithms have been proposed for the simplification of ANNs, these algorithms are not able to efficiently cope with intricate ANN structures required for complex classification problems. Methods We developed DANNP, a web-based tool, that implements parallelized versions of several ANN pruning algorithms. The DANNP tool uses a modified version of the Fast Compressed Neural Network software implemented in C++ to considerably enhance the running time of the ANN pruning algorithms we implemented. In addition to the performance evaluation of the pruned ANNs, we systematically compared the set of features that remained in the pruned ANN with those obtained by different state-of-the-art feature selection (FS) methods. Results Although the ANN pruning algorithms are not entirely parallelizable, DANNP was able to speed up the ANN pruning up to eight times on a 32-core machine, compared to the serial implementations. To assess the impact of the ANN pruning by DANNP tool, we used 16 datasets from different domains. In eight out of the 16 datasets, DANNP significantly reduced the number of weights by 70%–99%, while maintaining a competitive or better model performance compared to the unpruned ANN. Finally, we used a naïve Bayes classifier derived with the features selected as a byproduct of the ANN pruning and demonstrated that its accuracy is comparable to those obtained by the classifiers trained with the features selected by several state-of-the-art FS methods. The FS ranking methodology proposed in this study allows the users to identify the most discriminant features of the problem at hand. To the best of our knowledge, DANNP (publicly

  19. Prediction of pelvic organ prolapse using an artificial neural network.

    Science.gov (United States)

    Robinson, Christopher J; Swift, Steven; Johnson, Donna D; Almeida, Jonas S

    2008-08-01

    The objective of this investigation was to test the ability of a feedforward artificial neural network (ANN) to differentiate patients who have pelvic organ prolapse (POP) from those who retain good pelvic organ support. Following institutional review board approval, patients with POP (n = 87) and controls with good pelvic organ support (n = 368) were identified from the urogynecology research database. Historical and clinical information was extracted from the database. Data analysis included the training of a feedforward ANN, variable selection, and external validation of the model with an independent data set. Twenty variables were used. The median-performing ANN model used a median of 3 (quartile 1:3 to quartile 3:5) variables and achieved an area under the receiver operator curve of 0.90 (external, independent validation set). Ninety percent sensitivity and 83% specificity were obtained in the external validation by ANN classification. Feedforward ANN modeling is applicable to the identification and prediction of POP.

  20. Selection in sugarcane families with artificial neural networks

    Directory of Open Access Journals (Sweden)

    Bruno Portela Brasileiro

    2015-04-01

    Full Text Available The objective of this study was to evaluate Artificial Neural Networks (ANN applied in an selection process within sugarcane families. The best ANN model produced no mistake, but was able to classify all genotypes correctly, i.e., the network made the same selective choice as the breeder during the simulation individual best linear unbiased predictor (BLUPIS, demonstrating the ability of the ANN to learn from the inputs and outputs provided in the training and validation phases. Since the ANN-based selection facilitates the identification of the best plants and the development of a new selection strategy in the best families, to ensure that the best genotypes of the population are evaluated in the following stages of the breeding program, we recommend to rank families by BLUP, followed by selection of the best families and finally, select the seedlings by ANN, from information at the individual level in the best families.

  1. Nuclear power plant status diagnostics using artificial neural networks

    International Nuclear Information System (INIS)

    Bartlett, E.B.; Uhrig, R.E.

    1991-01-01

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results

  2. Alice-Anne Martin (1926 - 2016)

    CERN Multimedia

    2016-01-01

    Alice-Anne Martin, known as “Schu” from her maiden name Schubert, passed away on 8 January 2016.   (Image: Gérard Bertin) Hired the year CERN was founded, 1954, when the construction of the Laboratory had not even begun, Schu first worked at the Villa de Cointrin (a historic building now within the grounds of Geneva airport) as a secretary. In this role, she typed the convention between CERN and the Swiss Confederation, prepared by Stéphanie Tixier, as well as some of the "Yellow Reports" that have marked key points in the Laboratory’s history. For example, using a special typewriter with two keyboards – Latin and Greek – she typed the Yellow Report on the KAM theorem by Rolf Hagedorn. Schu also worked with Felix Bloch, the first Director-General of CERN, and later became the secretary of Herbert Coblenz, the first CERN librarian. She was head of the team that edited the proceedings of the ...

  3. Design of Jetty Piles Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Yongjei Lee

    2014-01-01

    Full Text Available To overcome the complication of jetty pile design process, artificial neural networks (ANN are adopted. To generate the training samples for training ANN, finite element (FE analysis was performed 50 times for 50 different design cases. The trained ANN was verified with another FE analysis case and then used as a structural analyzer. The multilayer neural network (MBPNN with two hidden layers was used for ANN. The framework of MBPNN was defined as the input with the lateral forces on the jetty structure and the type of piles and the output with the stress ratio of the piles. The results from the MBPNN agree well with those from FE analysis. Particularly for more complex modes with hundreds of different design cases, the MBPNN would possibly substitute parametric studies with FE analysis saving design time and cost.

  4. An Experimental Investigation into the Optimal Processing Conditions for the CO2 Laser Cladding of 20 MnCr5 Steel Using Taguchi Method and ANN

    Science.gov (United States)

    Mondal, Subrata; Bandyopadhyay, Asish.; Pal, Pradip Kumar

    2010-10-01

    This paper presents the prediction and evaluation of laser clad profile formed by means of CO2 laser applying Taguchi method and the artificial neural network (ANN). Laser cladding is one of the surface modifying technologies in which the desired surface characteristics of any component can be achieved such as good corrosion resistance, wear resistance and hardness etc. Laser is used as a heat source to melt the anti-corrosive powder of Inconel-625 (Super Alloy) to give a coating on 20 MnCr5 substrate. The parametric study of this technique is also attempted here. The data obtained from experiments have been used to develop the linear regression equation and then to develop the neural network model. Moreover, the data obtained from regression equations have also been used as supporting data to train the neural network. The artificial neural network (ANN) is used to establish the relationship between the input/output parameters of the process. The established ANN model is then indirectly integrated with the optimization technique. It has been seen that the developed neural network model shows a good degree of approximation with experimental data. In order to obtain the combination of process parameters such as laser power, scan speed and powder feed rate for which the output parameters become optimum, the experimental data have been used to develop the response surfaces.

  5. Feature Selection and ANN Solar Power Prediction

    OpenAIRE

    O’Leary, Daniel; Kubby, Joel

    2017-01-01

    A novel method of solar power forecasting for individuals and small businesses is developed in this paper based on machine learning, image processing, and acoustic classification techniques. Increases in the production of solar power at the consumer level require automated forecasting systems to minimize loss, cost, and environmental impact for homes and businesses that produce and consume power (prosumers). These new participants in the energy market, prosumers, require new artificial neural...

  6. ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2018-05-01

    Full Text Available Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth–Pareto optimization of an artificial neural network (ANN is presented in this paper for surface roughness (Ra prediction of one component in computer numerical control (CNC turning over minimal machining time (Tm and at prime machining costs (C. An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP, to predict Ra, Tm, and C, in relation to cutting speed, vc, depth of cut, ap, and feed per revolution, fr. For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values vc, ap, and fr. The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, Tm = 0.358 min/cm3, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed vc = 250 m/min, cutting depth ap = 1.0 mm, and feed per revolution fr = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness.

  7. A computation ANN model for quantifying the global solar radiation: A case study of Al-Aqabah-Jordan

    International Nuclear Information System (INIS)

    Abolgasem, I M; Alghoul, M A; Ruslan, M H; Chan, H Y; Khrit, N G; Sopian, K

    2015-01-01

    In this paper, a computation model is developed to predict the global solar radiation (GSR) in Aqaba city based on the data recorded with association of Artificial Neural Networks (ANN). The data used in this work are global solar radiation (GSR), sunshine duration, maximum and minimum air temperature and relative humidity. These data are available from Jordanian meteorological station over a period of two years. The quality of GSR forecasting is compared by using different Learning Algorithms. The decision of changing the ANN architecture is essentially based on the predicted results to obtain the best ANN model for monthly and seasonal GSR. Different configurations patterns were tested using available observed data. It was found that the model using mainly sunshine duration and air temperature as inputs gives accurate results. The ANN model efficiency and the mean square error values show that the prediction model is accurate. It is found that the effect of the three learning algorithms on the accuracy of the prediction model at the training and testing stages for each time scale is mostly within the same accuracy range. (paper)

  8. ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs.

    Science.gov (United States)

    Abbas, Adel Taha; Pimenov, Danil Yurievich; Erdakov, Ivan Nikolaevich; Taha, Mohamed Adel; Soliman, Mahmoud Sayed; El Rayes, Magdy Mostafa

    2018-05-16

    Magnesium alloys are widely used in aerospace vehicles and modern cars, due to their rapid machinability at high cutting speeds. A novel Edgeworth⁻Pareto optimization of an artificial neural network (ANN) is presented in this paper for surface roughness ( Ra ) prediction of one component in computer numerical control (CNC) turning over minimal machining time ( T m ) and at prime machining costs ( C ). An ANN is built in the Matlab programming environment, based on a 4-12-3 multi-layer perceptron (MLP), to predict Ra , T m , and C , in relation to cutting speed, v c , depth of cut, a p , and feed per revolution, f r . For the first time, a profile of an AZ61 alloy workpiece after finish turning is constructed using an ANN for the range of experimental values v c , a p , and f r . The global minimum length of a three-dimensional estimation vector was defined with the following coordinates: Ra = 0.087 μm, T m = 0.358 min/cm³, C = $8.2973. Likewise, the corresponding finish-turning parameters were also estimated: cutting speed v c = 250 m/min, cutting depth a p = 1.0 mm, and feed per revolution f r = 0.08 mm/rev. The ANN model achieved a reliable prediction accuracy of ±1.35% for surface roughness.

  9. Ann modeling of kerf transfer in Co2 laser cutting and optimization of cutting parameters using monte carlo method

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2015-01-01

    Full Text Available In this paper, an attempt has been made to develop a mathematical model in order to study the relationship between laser cutting parameters such as laser power, cutting speed, assist gas pressure and focus position, and kerf taper angle obtained in CO2 laser cutting of AISI 304 stainless steel. To this aim, a single hidden layer artificial neural network (ANN trained with gradient descent with momentum algorithm was used. To obtain an experimental database for the ANN training, laser cutting experiment was planned as per Taguchi’s L27 orthogonal array with three levels for each of the cutting parameters. Statistically assessed as adequate, ANN model was then used to investigate the effect of the laser cutting parameters on the kerf taper angle by generating 2D and 3D plots. It was observed that the kerf taper angle was highly sensitive to the selected laser cutting parameters, as well as their interactions. In addition to modeling, by applying the Monte Carlo method on the developed kerf taper angle ANN model, the near optimal laser cutting parameter settings, which minimize kerf taper angle, were determined.

  10. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1987-01-01

    The author describes a Petri net model, called coloured Petri nets (CP-nets), by means of which it is possible to describe large systems without having to cope with unnecessary details. The author introduces CP-nets and provide a first impression of their modeling power and the suitability...

  11. Learning Visual Basic NET

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Learning Visual Basic .NET is a complete introduction to VB.NET and object-oriented programming. By using hundreds of examples, this book demonstrates how to develop various kinds of applications--including those that work with databases--and web services. Learning Visual Basic .NET will help you build a solid foundation in .NET.

  12. Final Technical Report, Wind Generator Project (Ann Arbor)

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Nathan [City of Ann Arbor, MI (United States)

    2017-03-20

    A Final Technical Report (57 pages) describing educational exhibits and devices focused on wind energy, and related outreach activities and programs. Project partnership includes the City of Ann Arbor, MI and the Ann Arbor Hands-on Museum, along with additional sub-recipients, and U.S. Department of Energy/Office of Energy Efficiency and Renewable Energy (EERE). Report relays key milestones and sub-tasks as well as numerous graphics and images of five (5) transportable wind energy demonstration devices and five (5) wind energy exhibits designed and constructed between 2014 and 2016 for transport and use by the Ann Arbor Hands-on Museum.

  13. 降雨が流出に影響を及ぼす日数のANN^※を利用した推測

    OpenAIRE

    山田, 幸寿; 四俵, 正俊

    2000-01-01

    Groundwater runoff is originated from the rain of the past. The influential period of rain on groundwater runoff is said to be from one month to one year. The authors carried out long term runoff estimation for Shonai River Basin, Chubu, Japan by means of artificial neural networks (ANN). The period of strong influence of rain on the runoff was sought by comparing the accuracy of estimations with various periods of rain used as inputs of ANN. One month was found probable as the influential pe...

  14. Optimal factor evaluation for the dissolution of alumina from Azaraegbelu clay in acid solution using RSM and ANN comparative analysis

    Directory of Open Access Journals (Sweden)

    P.E. Ohale

    2017-12-01

    Full Text Available Artificial neural network (ANN and Response Surface Methodology based on a 25−1 fractional factorial design were used as tools for simulation and optimisation of the dissolution process for Azaraegbelu clay. A feedforward neural network model with Levenberg–Marquard back propagating training algorithm was adapted to predict the response (alumina yield. The studied input variables were temperature, stirring speed, clay to acid dosage, leaching time and leachant concentration. The raw clay was characterized for structure elucidation via FTIR, SEM and X-ray diffraction spectroscopic techniques and the result indicates that the clay is predominantly kaolinite. Leachant concentration and dosage ratio were found to be the most significant process parameter with p-value of 0.0001. The performance of the ANN and RSM model showed adequate prediction of the response, with AAD of 11.6% and 3.6%, and R2 of 0.9733 and 0.9568, respectively. A non-dominated optimal response of 81.45% yield of alumina at 4.6 M sulphuric acid concentration, 214 min leaching time, 0.085 g/ml dosage and 214 rpm stirring speed was established as a viable route for reduced material and operating cost via RSM. Keywords: Alumina dissolution, ANN modelling, Azaraegbelu, Clay, RSM

  15. Fault Tolerant Neural Network for ECG Signal Classification Systems

    Directory of Open Access Journals (Sweden)

    MERAH, M.

    2011-08-01

    Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.

  16. Discrimination between earthquakes and chemical explosions using artificial neural networks

    International Nuclear Information System (INIS)

    Kundu, Ajit; Bhadauria, Y.S.; Roy, Falguni

    2012-05-01

    An Artificial Neural Network (ANN) for discriminating between earthquakes and chemical explosions located at epicentral distances, Δ <5 deg from Gauribidanur Array (GBA) has been developed using the short period digital seismograms recorded at GBA. For training the ANN spectral amplitude ratios between P and Lg phases computed at 13 different frequencies in the frequency range of 2-8 Hz, corresponding to 20 earthquakes and 23 chemical explosions were used along with other parameters like magnitude, epicentral distance and amplitude ratios Rg/P and Rg/Lg. After training and development, the ANN has correctly identified a set of 21 test events, comprising 6 earthquakes and 15 chemical explosions. (author)

  17. Application of neural networks for the prediction of multidirectional magnetostriction

    CERN Document Server

    Baumgartinger, N; Pfützner, H; Krismanic, G

    2000-01-01

    This paper describes attempts to use artificial neural networks (ANNs) for the prediction of magnetostriction (MS) characteristics of transformer core materials. In this first approach, the ANNs were trained with data from a rotational single-sheet tester to predict MS in rolling direction (r.d.) as a function of material grade, amplitude and shape of multidirectional magnetisation as well as the level of additional mechanical stress. It is shown that ANNs are able to forecast the corresponding relative MS changes in an approximate way.

  18. Adaptive Forming of the Beam Pattern of Microstrip Antenna with the Use of an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Janusz Dudczyk

    2012-01-01

    Full Text Available Microstrip antenna has been recently one of the most innovative fields of antenna techniques. The main advantage of such an antenna is the simplicity of its production, little weight, a narrow profile, and easiness of integration of the radiating elements with the net of generators power systems. As a result of using arrays consisting of microstrip antennas; it is possible to decrease the size and weight and also to reduce the costs of components production as well as whole application systems. This paper presents possibilities of using artificial neural networks (ANNs in the process of forming a beam from radiating complex microstrip antenna. Algorithms which base on artificial neural networks use high parallelism of actions which results in considerable acceleration of the process of forming the antenna pattern. The appropriate selection of learning constants makes it possible to get theoretically a solution which will be close to the real time. This paper presents the training neural network algorithm with the selection of optimal network structure. The analysis above was made in case of following the emission source, setting to zero the pattern of direction of expecting interference, and following emission source compared with two constant interferences. Computer simulation was made in MATLAB environment on the basis of Flex Tool, a programme which creates artificial neural networks.

  19. FIRST Quantum-(1980)-Computing DISCOVERY in Siegel-Rosen-Feynman-...A.-I. Neural-Networks: Artificial(ANN)/Biological(BNN) and Siegel FIRST Semantic-Web and Siegel FIRST ``Page''-``Brin'' ``PageRank'' PRE-Google Search-Engines!!!

    Science.gov (United States)

    Rosen, Charles; Siegel, Edward Carl-Ludwig; Feynman, Richard; Wunderman, Irwin; Smith, Adolph; Marinov, Vesco; Goldman, Jacob; Brine, Sergey; Poge, Larry; Schmidt, Erich; Young, Frederic; Goates-Bulmer, William-Steven; Lewis-Tsurakov-Altshuler, Thomas-Valerie-Genot; Ibm/Exxon Collaboration; Google/Uw Collaboration; Microsoft/Amazon Collaboration; Oracle/Sun Collaboration; Ostp/Dod/Dia/Nsa/W.-F./Boa/Ubs/Ub Collaboration

    2013-03-01

    Belew[Finding Out About, Cambridge(2000)] and separately full-decade pre-Page/Brin/Google FIRST Siegel-Rosen(Machine-Intelligence/Atherton)-Feynman-Smith-Marinov(Guzik Enterprises/Exxon-Enterprises/A.-I./Santa Clara)-Wunderman(H.-P.) [IBM Conf. on Computers and Mathematics, Stanford(1986); APS Mtgs.(1980s): Palo Alto/Santa Clara/San Francisco/...(1980s) MRS Spring-Mtgs.(1980s): Palo Alto/San Jose/San Francisco/...(1980-1992) FIRST quantum-computing via Bose-Einstein quantum-statistics(BEQS) Bose-Einstein CONDENSATION (BEC) in artificial-intelligence(A-I) artificial neural-networks(A-N-N) and biological neural-networks(B-N-N) and Siegel[J. Noncrystalline-Solids 40, 453(1980); Symp. on Fractals..., MRS Fall-Mtg., Boston(1989)-5-papers; Symp. on Scaling..., (1990); Symp. on Transport in Geometric-Constraint (1990)

  20. Resource allocation using ANN in LTE

    Science.gov (United States)

    Yigit, Tuncay; Ersoy, Mevlut

    2017-07-01

    LTE is the 4th generation wireless network technology, which provides flexible bandwidth, higher data speeds and lower delay. Difficulties may be experienced upon an increase in the number of users in LTE. The objective of this study is to ensure a faster solution to any such resource allocation problems which might arise upon an increase in the number of users. A fast and effective solution has been obtained by making use of Artificial Neural Network. As a result, fast working artificial intelligence methods may be used in resource allocation problems during operation.

  1. Neural network and parton two fireball model for pseudo-rapidity distribution in proton-proton collision

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.

    2000-01-01

    Pseudo-Rapidity distribution of created pions from proton-proton (p-p) interaction has been studied in the framework of artificial neural network (ANN) and the parton two fireball model (PTFM). The predicted distributions from the ANN based model and the parton two fireball model is compared with the corresponding experimental results. The ANN model has proved better matching for experimental data specially at high energies where the conventional two fireball model representation deteriorates

  2. Professor Anne Khademian named National Academy of Public Administration Fellow

    OpenAIRE

    Chadwick, Heather Riley

    2009-01-01

    Anne Khademian, professor with Virginia Tech's Center for Public Administration and Policy, School of Public and International Affairs, at the Alexandria, Va., campus has been elected a National Academy of Public Administration (NAPA) Fellow.

  3. Anne-Marie Sargueil: ilu on kasulik / intervjueerinud Emilie Toomela

    Index Scriptorium Estoniae

    Sargueil, Anne-Marie

    2015-01-01

    Prantsuse Disainiinstituudi juht Anne-Marie Sargueil rääkis prantsuse ja skandinaavia disainist, prantslaste disainieelistustest, uutest suundadest disaini valdkonnas, Eesti Tarbekunsti- ja Disainimuuseumis avatud näitusest "20 prantsuse disainiikooni"

  4. The Royal Summer Palace, Ferdinand I and Anne

    Czech Academy of Sciences Publication Activity Database

    Dobalová, Sylva

    2015-01-01

    Roč. 7, č. 2 (2015), s. 162-175 ISSN 1804-1132 Institutional support: RVO:68378033 Keywords : Anne of Jagiello * Prague Castle * Ferdinand I of Habsburg * olive tree * dynasticism Subject RIV: AL - Art, Architecture, Cultural Heritage

  5. Ehe seep Eesti moodi / Anneli Aasmäe

    Index Scriptorium Estoniae

    Aasmäe, Anneli, 1973-

    2008-01-01

    Produtsent Kristian Taska Kalev Spordis näidatav Venezuela seebiseriaali Eesti oludele mugandatud variant "Kalevi naised" : lavastaja Ingomar Vihman : osades Andrus Vaarik, Anne Reemann, Piret Kalda, Ken Saan jt.

  6. Application of ANN and fuzzy logic algorithms for streamflow ...

    Indian Academy of Sciences (India)

    1Department of Soil and Water Engineering, College of Technology and Engineering, Maharana Pratap. University of ... It was found that, ANN model performance improved with increasing .... algorithm uses supervised learning that provides.

  7. Finger language recognition based on ensemble artificial neural network learning using armband EMG sensors.

    Science.gov (United States)

    Kim, Seongjung; Kim, Jongman; Ahn, Soonjae; Kim, Youngho

    2018-04-18

    Deaf people use sign or finger languages for communication, but these methods of communication are very specialized. For this reason, the deaf can suffer from social inequalities and financial losses due to their communication restrictions. In this study, we developed a finger language recognition algorithm based on an ensemble artificial neural network (E-ANN) using an armband system with 8-channel electromyography (EMG) sensors. The developed algorithm was composed of signal acquisition, filtering, segmentation, feature extraction and an E-ANN based classifier that was evaluated with the Korean finger language (14 consonants, 17 vowels and 7 numbers) in 17 subjects. E-ANN was categorized according to the number of classifiers (1 to 10) and size of training data (50 to 1500). The accuracy of the E-ANN-based classifier was obtained by 5-fold cross validation and compared with an artificial neural network (ANN)-based classifier. As the number of classifiers (1 to 8) and size of training data (50 to 300) increased, the average accuracy of the E-ANN-based classifier increased and the standard deviation decreased. The optimal E-ANN was composed with eight classifiers and 300 size of training data, and the accuracy of the E-ANN was significantly higher than that of the general ANN.

  8. Prototype-Incorporated Emotional Neural Network.

    Science.gov (United States)

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-08-15

    Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.

  9. Prediction of shear and tensile strength of the diffusion bonded AA5083 and AA7075 aluminium alloy using ANN

    International Nuclear Information System (INIS)

    Sagai Francis Britto, A.; Raj, R. Edwin; Mabel, M. Carolin

    2017-01-01

    Diffusion bonding is a pressure welding technique to establish bonds by inter diffusion of atoms. Bonding characteristics were generated by varying the significant process conditions such as the bonding temperature, the pressing load and the duration of pressure while bonding the aluminium alloys AA5083 and AA7075. Deriving analytical correlation with the process variables to weld strength is quite involved due to the non-linear dependency of the process variables with the mechanical strength of the joints. An arbitrary function approximation mechanism, the artificial neural network (ANN) is therefore employed to develop the models for predicting the mechanical properties of the bonded joints. Back propagation technique, which alters the network weights to minimize the mean square error was used to develop the ANN models. The models were tested, validated and found to be satisfactory with good prediction accuracy.

  10. Prediction of shear and tensile strength of the diffusion bonded AA5083 and AA7075 aluminium alloy using ANN

    Energy Technology Data Exchange (ETDEWEB)

    Sagai Francis Britto, A. [Department of Mechanical Engineering, St.Xavier' s Catholic College of Engineering, Nagercoil 629003,Tamil Nadu (India); Raj, R. Edwin, E-mail: redwinraj@gmail.com [Department of Mechanical Engineering, St.Xavier' s Catholic College of Engineering, Nagercoil 629003,Tamil Nadu (India); Mabel, M. Carolin [Department of Electrical and Electronics Engineering, St.Xavier' s Catholic College of Engineering, Nagercoil 629003,Tamil Nadu (India)

    2017-04-24

    Diffusion bonding is a pressure welding technique to establish bonds by inter diffusion of atoms. Bonding characteristics were generated by varying the significant process conditions such as the bonding temperature, the pressing load and the duration of pressure while bonding the aluminium alloys AA5083 and AA7075. Deriving analytical correlation with the process variables to weld strength is quite involved due to the non-linear dependency of the process variables with the mechanical strength of the joints. An arbitrary function approximation mechanism, the artificial neural network (ANN) is therefore employed to develop the models for predicting the mechanical properties of the bonded joints. Back propagation technique, which alters the network weights to minimize the mean square error was used to develop the ANN models. The models were tested, validated and found to be satisfactory with good prediction accuracy.

  11. Neural network versus classical time series forecasting models

    Science.gov (United States)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  12. Artificial neural networks in the nuclear engineering (Part 2)

    International Nuclear Information System (INIS)

    Baptista Filho, Benedito Dias

    2002-01-01

    The field of Artificial Neural Networks (ANN), one of the branches of Artificial Intelligence has been waking up a lot of interest in the Nuclear Engineering (NE). ANN can be used to solve problems of difficult modeling, when the data are fail or incomplete and in high complexity problems of control. The first part of this work began a discussion with feed-forward neural networks in back-propagation. In this part of the work, the Multi-synaptic neural networks is applied to control problems. Also, the self-organized maps is presented in a typical pattern classification problem: transients classification. The main purpose of the work is to show that ANN can be successfully used in NE if a carefully choice of its type is done: the application sets this choice. (author)

  13. Refrigerant flow through electronic expansion valve: Experiment and neural network modeling

    International Nuclear Information System (INIS)

    Cao, Xiang; Li, Ze-Yu; Shao, Liang-Liang; Zhang, Chun-Lu

    2016-01-01

    Highlights: • Experimental data from different sources were used in comparison of EEV models. • Artificial neural network in EEV modeling is superior to literature correlations. • Artificial neural network with 4-4-1 structure and S function is recommended. • Artificial neural network is flexible for EEV mass flow rate and opening prediction. - Abstract: Electronic expansion valve (EEV) plays a crucial role in controlling refrigerant mass flow rate of refrigeration or heat pump systems for energy savings. However, complexities in two-phase throttling process and geometry make accurate modeling of EEV flow characteristics more difficult. This paper developed an artificial neural network (ANN) model using refrigerant inlet and outlet pressures, inlet subcooling, EEV opening as ANN inputs, refrigerant mass flow rate as ANN output. Both linear and nonlinear transfer functions in hidden layer were used and compared to each other. Experimental data from multiple sources including in-house experiments of one EEV with R410A were used for ANN training and test. In addition, literature correlations were compared with ANN as well. Results showed that the ANN model with nonlinear transfer function worked well in all cases and it is much accurate than the literature correlations. In all cases, nonlinear ANN predicted refrigerant mass flow rates within ±0.4% average relative deviation (A.D.) and 2.7% standard deviation (S.D.), meanwhile it predicted the EEV opening at 0.1% A.D. and 2.1% S.D.

  14. Implementing artificial neural networks in nuclear power plants diagnostic systems: issues and challenges

    International Nuclear Information System (INIS)

    Boger, Z.

    1998-01-01

    A recent review of artificial intelligence applications in nuclear power plants (NPP) diagnostics and fault detection finds that mostly expert systems (ES) and artificial neural networks (ANN) techniques were researched and proposed, but the number of actual implementations in NPP diagnostics systems is very small. It lists the perceived obstacles to the ANN-based system acceptance and implementation. This paper analyses this list. Some of ANN limitations relate to 'quantitative' difficulties of designing and training large-scale ANNs. The availability of an efficient large-scale ANN training algorithm may alleviate most of these concerns. Other perceived drawbacks refer to the 'qualitative' aspects of ANN acceptance - how and when can we rely on the quality of the advice given by the ANN model. Several techniques are available that help to brighten the 'black box' image of the ANN. Analysis of the trained ANN can identify the significant inputs. Calculation of the Causal Indices may reveal the magnitude and sign of the influence of each input on each output. Both these techniques increase the confidence of the users when they conform to known knowledge, or point to plausible relationships. Analysis of the behavior of the neurons in the hidden layer can identify false ANN classification when presented with noisy or corrupt data. Auto-associative NN can identify faulty sensors or data. Two examples of the ANN capabilities as possible diagnostic tools are given, using NPP data, one classifying internal reactor disturbances by neutron noise spectra analysis, the other identifying the faults causes of several transients. To use these techniques the ANN developers need large amount of training data of as many transients as possible. Such data is routinely generated in NPP simulators during the periodic qualification of NPP operators. The IAEA can help by encouraging the saving and distributing the transient data to developers of ANN diagnostic system, to serve as

  15. Comparative study on the predictability of statistical models (RSM and ANN) on the behavior of optimized buccoadhesive wafers containing Loratadine and their in vivo assessment.

    Science.gov (United States)

    Chakraborty, Prithviraj; Parcha, Versha; Chakraborty, Debarupa D; Ghosh, Amitava

    2016-01-01

    Buccoadhesive wafer dosage form containing Loratadine is formulated utilizing Formulation by Design (FbD) approach incorporating sodium alginate and lactose monohydrate as independent variable employing solvent casting method. The wafers were statistically optimized using Response Surface Methodology (RSM) and Artificial Neural Network algorithm (ANN) for predicting physicochemical and physico-mechanical properties of the wafers as responses. Morphologically wafers were tested using SEM. Quick disintegration of the samples was examined employing Optical Contact Angle (OCA). The comparison of the predictability of RSM and ANN showed a high prognostic capacity of RSM model over ANN model in forecasting mechanical and physicochemical properties of the wafers. The in vivo assessment of the optimized buccoadhesive wafer exhibits marked increase in bioavailability justifying the administration of Loratadine through buccal route, bypassing hepatic first pass metabolism.

  16. ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Luiz Albino Teixeira Júnior

    2015-04-01

    Full Text Available This paper proposes a method (denoted by WD-ANN that combines the Artificial Neural Networks (ANN and the Wavelet Decomposition (WD to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps: firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1 are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed that the proposed method (WD-ANN improved substantially the performance over the (traditional ANN method.

  17. Application of artificial neural network to predict the optimal start time for heating system in building

    International Nuclear Information System (INIS)

    Yang, In-Ho; Yeo, Myoung-Souk; Kim, Kwang-Woo

    2003-01-01

    The artificial neural network (ANN) approach is a generic technique for mapping non-linear relationships between inputs and outputs without knowing the details of these relationships. This paper presents an application of the ANN in a building control system. The objective of this study is to develop an optimized ANN model to determine the optimal start time for a heating system in a building. For this, programs for predicting the room air temperature and the learning of the ANN model based on back propagation learning were developed, and learning data for various building conditions were collected through program simulation for predicting the room air temperature using systems of experimental design. Then, the optimized ANN model was presented through learning of the ANN, and its performance to determine the optimal start time was evaluated

  18. Spatial Treatment of the Slab-geometry Discrete Ordinates Equations Using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Brantley, P S

    2001-01-01

    An artificial neural network (ANN) method is developed for treating the spatial variable of the one-group slab-geometry discrete ordinates (S N ) equations in a homogeneous medium with linearly anisotropic scattering. This ANN method takes advantage of the function approximation capability of multilayer ANNs. The discrete ordinates angular flux is approximated by a multilayer ANN with a single input representing the spatial variable x and N outputs representing the angular flux in each of the discrete ordinates angular directions. A global objective function is formulated which measures how accurately the output of the ANN approximates the solution of the discrete ordinates equations and boundary conditions at specified spatial points. Minimization of this objective function determines the appropriate values for the parameters of the ANN. Numerical results are presented demonstrating the accuracy of the method for both fixed source and incident angular flux problems

  19. Inverse problems using ANN in long range atmospheric dispersion with signature analysis picked scattered numerical sensors from CFD

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Gera, B.; Ghosh, A.K.; Kushwaha, H.S.

    2010-01-01

    Scalar dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical model. The analyses based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. Both forward and backward calculation methods are being developed for atmospheric dispersion around NPPs at BARC Forward modeling methods, which describe the atmospheric transport from sources to receptors, use forward-running transport and dispersion models or computational fluid dynamics models which are run many times, and the resulting dispersion field is compared to observations from multiple sensors. Backward or inverse modeling methods use only one model run in the reverse direction from the receptors to estimate the upwind sources. Inverse modeling methods include adjoint and tangent linear models, Kalman filters, and variational data assimilation, and neural network. The present paper is aimed at developing a new approach where the identified specific signatures at receptor points form the basis for source estimation or inversions. This approach is expected to reduce the large transient data sets to reduced and meaningful data sets. In fact this reduces the inherently transient data set into a time independent mean data set. Forward computation were carried out with CFD code for various case to generate a large set of data to train the ANN. Specific signature analysis was carried out to find the parameters of interest for ANN training like peak concentration, time to reach peak concentration and time to fall, the ANN was trained with data and source strength and location were predicted from ANN. Inverse problem was performed using ANN approach in long range atmospheric dispersion. An illustration of application of CFD code for atmospheric dispersion studies for a hypothetical case is also included in the paper. (author)

  20. Tomographic image reconstruction using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Paschalis, P.; Giokaris, N.D.; Karabarbounis, A.; Loudos, G.K.; Maintas, D.; Papanicolas, C.N.; Spanoudaki, V.; Tsoumpas, Ch.; Stiliaris, E.

    2004-01-01

    A new image reconstruction technique based on the usage of an Artificial Neural Network (ANN) is presented. The most crucial factor in designing such a reconstruction system is the network architecture and the number of the input projections needed to reconstruct the image. Although the training phase requires a large amount of input samples and a considerable CPU time, the trained network is characterized by simplicity and quick response. The performance of this ANN is tested using several image patterns. It is intended to be used together with a phantom rotating table and the γ-camera of IASA for SPECT image reconstruction

  1. Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems

    Directory of Open Access Journals (Sweden)

    Ashkan Nabavi-Pelesaraei

    2016-01-01

    Full Text Available This study was conducted in order to determine energy consumption, model and analyze the input–output, energy efficiencies and GHG emissions for watermelon production using artificial neural networks (ANNs in the Guilan province of Iran, based on three different farm sizes. For this purpose, the initial data was collected from 120 watermelon producers in Langroud and Chaf region, two small cities in the Guilan province. The results indicated that total average energy input for watermelon production was 40228.98 MJ ha–1. Also, chemical fertilizers (with 76.49% were the highest energy inputs for watermelon production. Moreover, the share of non-renewable energy (with 96.24% was more than renewable energy (with 3.76% in watermelon production. The rate of energy use efficiency, energy productivity and net energy was calculated as 1.29, 0.68 kg MJ−1 and 11733.64 MJ ha−1, respectively. With respect to GHG analysis, the average of total GHG emissions was calculated about 1015 kgCO2eq. ha−1. The results illustrated that share of nitrogen (with 54.23% was the highest in GHG emissions for watermelon production, followed by diesel fuel (with 16.73% and electricity (with 15.45%. In this study, Levenberg–Marquardt learning Algorithm was used for training ANNs based on data collected from watermelon producers. The ANN model with 11–10–2 structure was the best one for predicting the watermelon yield and GHG emissions. In the best topology, the coefficient of determination (R2 was calculated as 0.969 and 0.995 for yield and GHG emissions of watermelon production, respectively. Furthermore, the results of sensitivity analysis revealed that the seed and human labor had the highest sensitivity in modeling of watermelon yield and GHG emissions, respectively.

  2. A neural network approach to burst detection.

    Science.gov (United States)

    Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J

    2002-01-01

    This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.

  3. Application of an artificial neural network in the enumeration of yeasts and bacteria adhering to solid substrata

    NARCIS (Netherlands)

    Wit, P; Busscher, HJ

    Artificial neural networks (ANNs) combined with automated image processing are bring used in a growing number of applications, ranging from car license plate identification to speech recognition. ANN analysis is capable of handling complicated images that cannot be dealt with using conventional

  4. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    Science.gov (United States)

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  5. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks | Center for Cancer Research

    Science.gov (United States)

    The purpose of this study was to develop a method of classifying cancers to specific diagnostic categories based on their gene expression signatures using artificial neural networks (ANNs). We trained the ANNs using the small, round blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct diagnostic categories and often present diagnostic dilemmas in

  6. Planning of nets

    International Nuclear Information System (INIS)

    Carberry, M

    1996-01-01

    The paper is about the planning of nets in areas of low density like it is the case of the rural areas. The author includes economic and technological aspects, planning of nets, demands and management among others

  7. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    Coloured Petri nets (CP-nets) can be used for several fundamentally different purposes like functional analysis, performance analysis, and visualisation. To be able to use the corresponding tool extensions and libraries it is sometimes necessary to include extra auxiliary information in the CP......-net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... of the same basic CP-net. One solution to this problem is that the auxiliary information is not integrated into colour sets and arc inscriptions of a CP-net, but is kept separately. This makes it easy to disable this auxiliary information if a CP-net is to be used for another purpose. This paper proposes...

  8. Use of artificial neural networks as estimators and controllers

    Science.gov (United States)

    Concilio, Antonio; Sorrentino, A.

    1996-04-01

    Active noise control is one among the most promising applications of the so-called Smart Structures, because it ensures, or promises, lower weight, lower cost, more effectiveness and all what is desirable in a vehicle design process, with respect to the current solutions. More and more attention in the research world has been devoting to this argument, pushed by both political, economical and environmental reasons, the one connected to the others. Piezoceramic actuators, integrated into the structure, seem to offer the most fashionable and practical solutions among all the proposed architectures, [1-2]. As sensors, microphones demonstrated to be the most performing, above all because they give the most suitable representation of the field that has to be cancelled, [3-4]. This approach is known as Acousto-Structural Active Control, ASAC, [5]. However, according to Fuller's definition, [6] , an intelligent controller is needed to ensure the development of an "Intelligent Structure" . Its main characteristic should be represented by the capability of learning by examples, of following the structure during its evolution, of being the system "brain" . This peculiarity may be offered by Artificial Neural Networks (ANN's), [7-8]. They present other important features, like the capability, in principle, of treating non-linear as well as linear problems, [9], of identifying dynamic systems, [10], of properly acting as a controller. Then, such a net could integrate in itself the function of "system estimator" or "observer" ,and of interpolator - extrapolator and controller, contemporarily. The authors have been working on such subjects for a long time, proposing for instance ANN's as time-domain structural parameters estimators on a simple 2D element ( a framed plate), [11], as noise and vibration controllers in a FF system, [12-13], as materials damping parameters extractors from experimental data, [14]. All these applications were aimed at noise reduction problems. The

  9. ANN-GA based optimization of a high ash coal-fired supercritical power plant

    International Nuclear Information System (INIS)

    Suresh, M.V.J.J.; Reddy, K.S.; Kolar, Ajit Kumar

    2011-01-01

    Highlights: → Neuro-genetic power plant optimization is found to be an efficient methodology. → Advantage of neuro-genetic algorithm is the possibility of on-line optimization. → Exergy loss in combustor indicates the effect of coal composition on efficiency. -- Abstract: The efficiency of coal-fired power plant depends on various operating parameters such as main steam/reheat steam pressures and temperatures, turbine extraction pressures, and excess air ratio for a given fuel. However, simultaneous optimization of all these operating parameters to achieve the maximum plant efficiency is a challenging task. This study deals with the coupled ANN and GA based (neuro-genetic) optimization of a high ash coal-fired supercritical power plant in Indian climatic condition to determine the maximum possible plant efficiency. The power plant simulation data obtained from a flow-sheet program, 'Cycle-Tempo' is used to train the artificial neural network (ANN) to predict the energy input through fuel (coal). The optimum set of various operating parameters that result in the minimum energy input to the power plant is then determined by coupling the trained ANN model as a fitness function with the genetic algorithm (GA). A unit size of 800 MWe currently under development in India is considered to carry out the thermodynamic analysis based on energy and exergy. Apart from optimizing the design parameters, the developed model can also be used for on-line optimization when quick response is required. Furthermore, the effect of various coals on the thermodynamic performance of the optimized power plant is also determined.

  10. Evolving Neural Turing Machines for Reward-based Learning

    DEFF Research Database (Denmark)

    Greve, Rasmus Boll; Jacobsen, Emil Juul; Risi, Sebastian

    2016-01-01

    An unsolved problem in neuroevolution (NE) is to evolve artificial neural networks (ANN) that can store and use information to change their behavior online. While plastic neural networks have shown promise in this context, they have difficulties retaining information over longer periods of time...... version of the double T-Maze, a complex reinforcement-like learning problem. In the T-Maze learning task the agent uses the memory bank to display adaptive behavior that normally requires a plastic ANN, thereby suggesting a complementary and effective mechanism for adaptive behavior in NE....

  11. Analysis Resilient Algorithm on Artificial Neural Network Backpropagation

    Science.gov (United States)

    Saputra, Widodo; Tulus; Zarlis, Muhammad; Widia Sembiring, Rahmat; Hartama, Dedy

    2017-12-01

    Prediction required by decision makers to anticipate future planning. Artificial Neural Network (ANN) Backpropagation is one of method. This method however still has weakness, for long training time. This is a reason to improve a method to accelerate the training. One of Artificial Neural Network (ANN) Backpropagation method is a resilient method. Resilient method of changing weights and bias network with direct adaptation process of weighting based on local gradient information from every learning iteration. Predicting data result of Istanbul Stock Exchange training getting better. Mean Square Error (MSE) value is getting smaller and increasing accuracy.

  12. An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India.

    Science.gov (United States)

    Deb, Dibyendu; Singh, J P; Deb, Shovik; Datta, Debajit; Ghosh, Arunava; Chaurasia, R S

    2017-10-20

    Determination of above ground biomass (AGB) of any forest is a longstanding scientific endeavor, which helps to estimate net primary productivity, carbon stock and other biophysical parameters of that forest. With advancement of geospatial technology in last few decades, AGB estimation now can be done using space-borne and airborne remotely sensed data. It is a well-established, time saving and cost effective technique with high precision and is frequently applied by the scientific community. It involves development of allometric equations based on correlations of ground-based forest biomass measurements with vegetation indices derived from remotely sensed data. However, selection of the best-fit and explanatory models of biomass estimation often becomes a difficult proposition with respect to the image data resolution (spatial and spectral) as well as the sensor platform position in space. Using Resourcesat-2 satellite data and Normalized Difference Vegetation Index (NDVI), this pilot scale study compared traditional linear and nonlinear models with an artificial intelligence-based non-parametric technique, i.e. artificial neural network (ANN) for formulation of the best-fit model to determine AGB of forest of the Bundelkhand region of India. The results confirmed the superiority of ANN over other models in terms of several statistical significance and reliability assessment measures. Accordingly, this study proposed the use of ANN instead of traditional models for determination of AGB and other bio-physical parameters of any dry deciduous forest of tropical sub-humid or semi-arid area. In addition, large numbers of sampling sites with different quadrant sizes for trees, shrubs, and herbs as well as application of LiDAR data as predictor variable were recommended for very high precision modelling in ANN for a large scale study.

  13. Dynamically stable associative learning: a neurobiologically based ANN and its applications

    Science.gov (United States)

    Vogl, Thomas P.; Blackwell, Kim L.; Barbour, Garth; Alkon, Daniel L.

    1992-07-01

    Most currently popular artificial neural networks (ANN) are based on conceptions of neuronal properties that date back to the 1940s and 50s, i.e., to the ideas of McCullough, Pitts, and Hebb. Dystal is an ANN based on current knowledge of neurobiology at the cellular and subcellular level. Networks based on these neurobiological insights exhibit the following advantageous properties: (1) A theoretical storage capacity of bN non-orthogonal memories, where N is the number of output neurons sharing common inputs and b is the number of distinguishable (gray shade) levels. (2) The ability to learn, store, and recall associations among noisy, arbitrary patterns. (3) A local synaptic learning rule (learning depends neither on the output of the post-synaptic neuron nor on a global error term), some of whose consequences are: (4) Feed-forward, lateral, and feed-back connections (as well as time-sensitive connections) are possible without alteration of the learning algorithm; (5) Storage allocation (patch creation) proceeds dynamically as associations are learned (self- organizing); (6) The number of training set presentations required for learning is small (different expressions and/or corrupted by noise, and on reading hand-written digits (98% accuracy) and hand-printed Japanese Kanji (90% accuracy) is demonstrated.

  14. Estimation of Optimum Dilution in the GMAW Process Using Integrated ANN-GA

    Directory of Open Access Journals (Sweden)

    P. Sreeraj

    2013-01-01

    Full Text Available To improve the corrosion resistant properties of carbon steel, usually cladding process is used. It is a process of depositing a thick layer of corrosion resistant material over carbon steel plate. Most of the engineering applications require high strength and corrosion resistant materials for long-term reliability and performance. By cladding these properties can be achieved with minimum cost. The main problem faced on cladding is the selection of optimum combinations of process parameters for achieving quality clad and hence good clad bead geometry. This paper highlights an experimental study to optimize various input process parameters (welding current, welding speed, gun angle, and contact tip to work distance and pinch to get optimum dilution in stainless steel cladding of low carbon structural steel plates using gas metal arc welding (GMAW. Experiments were conducted based on central composite rotatable design with full replication technique, and mathematical models were developed using multiple regression method. The developed models have been checked for adequacy and significance. In this study, artificial neural network (ANN and genetic algorithm (GA techniques were integrated and labeled as integrated ANN-GA to estimate optimal process parameters in GMAW to get optimum dilution.

  15. EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder Using Wavelet, Entropy, and ANN

    Directory of Open Access Journals (Sweden)

    Ridha Djemal

    2017-01-01

    Full Text Available Autism spectrum disorder (ASD is a type of neurodevelopmental disorder with core impairments in the social relationships, communication, imagination, or flexibility of thought and restricted repertoire of activity and interest. In this work, a new computer aided diagnosis (CAD of autism ‎based on electroencephalography (EEG signal analysis is investigated. The proposed method is based on discrete wavelet transform (DWT, entropy (En, and artificial neural network (ANN. DWT is used to decompose EEG signals into approximation and details coefficients to obtain EEG subbands. The feature vector is constructed by computing Shannon entropy values from each EEG subband. ANN classifies the corresponding EEG signal into normal or autistic based on the extracted features. The experimental results show the effectiveness of the proposed method for assisting autism diagnosis. A receiver operating characteristic (ROC curve metric is used to quantify the performance of the proposed method. The proposed method obtained promising results tested using real dataset provided by King Abdulaziz Hospital, Jeddah, Saudi Arabia.

  16. Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs

    Science.gov (United States)

    Aksoy, A.; Yuzugullu, O.

    2017-12-01

    Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.

  17. Application of artificial neural networks to segmentation and classification of topographic profiles of ridge-flank seafloor

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Lourenco, E.; Kodagali, V.N.; Baracho, J.

    In this paper, we have utilized Artificial Neural Networks (ANN) for seafloor topographic data segmentation and roughness classification using the multibeam- Hydrosweep system (installed onboard ocean research vessel Sagar Kanya) data. Bathymetric...

  18. Detection of land cover change using an Artificial Neural Network on a time-series of MODIS satellite data

    CSIR Research Space (South Africa)

    Olivier, JC

    2007-11-01

    Full Text Available An Artificial Neural Network (ANN) is proposed to detect human-induced land cover change using a sliding window through a time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite surface reflectance pixel values. Training...

  19. Prediction of phenotypic susceptibility to antiretroviral drugs using physiochemical properties of the primary enzymatic structure combined with artificial neural networks

    DEFF Research Database (Denmark)

    Kjaer, J; Høj, L; Fox, Z

    2008-01-01

    OBJECTIVES: Genotypic interpretation systems extrapolate observed associations in datasets to predict viral susceptibility to antiretroviral drugs (ARVs) for given isolates. We aimed to develop and validate an approach using artificial neural networks (ANNs) that employ descriptors...

  20. Application of ann for predicting water quality parameters in the mediterranean sea along gaza-palestine

    International Nuclear Information System (INIS)

    Zaqoot, H.A.; Unar, M.A.

    2008-01-01

    Seawater pollution problems are gaining interest world wide because of their health impacts and other environmental issues. Intense human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. This paper is concerned with the use of ANNs (Artificial Neural Networks) MLP ( Multilayer Perceptron) model for the prediction of pH and EC (Electrical Conductivity) in water quality parameters along Gaza city coast. MLP neural networks are trained and developed with reference to three major oceanographic parameters (water temperature, wind speed and turbidity) to predict the values of pH and EC; these parameters are considered as inputs of the neural network. The data collected comprised of four years and collected from nine locations along Gaza coastline. Results show that the model has high capability and accuracy in predicting both parameters. The network performance has been validated with different data sets and the results show satisfactory performance. Results of the developed model have been compared with multiple regression statistical models and found that MLP predictions are slightly better than the conventional methods. Prediction results prove that the proposed approach is suitable for modeling the water quality in the Mediterranean Sea along Gaza. (author)

  1. Anne Veski : "Ju siis ei ole minu rahvusvaheline kuulsus meie presidendi kõrvu jõudnud" / Anne Veski ; interv. Tiia Linnard

    Index Scriptorium Estoniae

    Veski, Anne, 1956-

    2008-01-01

    Laulja Anne Veski arutlusi kontserttegevusest Venemaal ja elust Eestis. Muuhulgas on juttu ka sellest, et Anne Veskit pole kunagi kutsutud presidendi iseseisvuspäeva vastuvõtule. Ilmunud ka: Severnoje Poberezhje 20. märts 2008, lk. 6

  2. [Study of building quantitative analysis model for chlorophyll in winter wheat with reflective spectrum using MSC-ANN algorithm].

    Science.gov (United States)

    Liang, Xue; Ji, Hai-yan; Wang, Peng-xin; Rao, Zhen-hong; Shen, Bing-hui

    2010-01-01

    Preprocess method of multiplicative scatter correction (MSC) was used to reject noises in the original spectra produced by the environmental physical factor effectively, then the principal components of near-infrared spectroscopy were calculated by nonlinear iterative partial least squares (NIPALS) before building the back propagation artificial neural networks method (BP-ANN), and the numbers of principal components were calculated by the method of cross validation. The calculated principal components were used as the inputs of the artificial neural networks model, and the artificial neural networks model was used to find the relation between chlorophyll in winter wheat and reflective spectrum, which can predict the content of chlorophyll in winter wheat. The correlation coefficient (r) of calibration set was 0.9604, while the standard deviation (SD) and relative standard deviation (RSD) was 0.187 and 5.18% respectively. The correlation coefficient (r) of predicted set was 0.9600, and the standard deviation (SD) and relative standard deviation (RSD) was 0.145 and 4.21% respectively. It means that the MSC-ANN algorithm can reject noises in the original spectra produced by the environmental physical factor effectively and set up an exact model to predict the contents of chlorophyll in living leaves veraciously to replace the classical method and meet the needs of fast analysis of agricultural products.

  3. Transient stability enhancement of wind farms connected to a multi-machine power system by using an adaptive ANN-controlled SMES

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Hasanien, Hany M.; Al-Durra, Ahmed

    2014-01-01

    Highlights: • We present an ANN-controlled SMES in this paper. • The objective is to enhance transient stability of WF connected to power system. • The control strategy depends on a PWM VSC and DC–DC converter. • The effectiveness of proposed controller is compared with PI controller. • The validity of the proposed system is verified by simulation results. - Abstract: This paper presents a novel adaptive artificial neural network (ANN)-controlled superconducting magnetic energy storage (SMES) system to enhance the transient stability of wind farms connected to a multi-machine power system during network disturbances. The control strategy of SMES depends mainly on a sinusoidal pulse width modulation (PWM) voltage source converter (VSC) and an adaptive ANN-controlled DC–DC converter using insulated gate bipolar transistors (IGBTs). The effectiveness of the proposed adaptive ANN-controlled SMES is then compared with that of proportional-integral (PI)-controlled SMES optimized by response surface methodology and genetic algorithm (RSM–GA) considering both of symmetrical and unsymmetrical faults. For realistic responses, real wind speed data and two-mass drive train model of wind turbine generator system is considered in the analyses. The validity of the proposed system is verified by the simulation results which are performed using the laboratory standard dynamic power system simulator PSCAD/EMTDC. Notably, the proposed adaptive ANN-controlled SMES enhances the transient stability of wind farms connected to a multi-machine power system

  4. An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran

    Directory of Open Access Journals (Sweden)

    Mahdi Saadat

    2014-02-01

    Full Text Available Blast-induced ground vibration is one of the inevitable outcomes of blasting in mining projects and may cause substantial damage to rock mass as well as nearby structures and human beings. In this paper, an attempt has been made to present an application of artificial neural network (ANN to predict the blast-induced ground vibration of the Gol-E-Gohar (GEG iron mine, Iran. A four-layer feed-forward back propagation multi-layer perceptron (MLP was used and trained with Levenberg–Marquardt algorithm. To construct ANN models, the maximum charge per delay, distance from blasting face to monitoring point, stemming and hole depth were taken as inputs, whereas peak particle velocity (PPV was considered as an output parameter. A database consisting of 69 data sets recorded at strategic and vulnerable locations of GEG iron mine was used to train and test the generalization capability of ANN models. Coefficient of determination (R2 and mean square error (MSE were chosen as the indicators of the performance of the networks. A network with architecture 4-11-5-1 and R2 of 0.957 and MSE of 0.000722 was found to be optimum. To demonstrate the supremacy of ANN approach, the same 69 data sets were used for the prediction of PPV with four common empirical models as well as multiple linear regression (MLR analysis. The results revealed that the proposed ANN approach performs better than empirical and MLR models.

  5. Prediction of temperature and HAZ in thermal-based processes with Gaussian heat source by a hybrid GA-ANN model

    Science.gov (United States)

    Fazli Shahri, Hamid Reza; Mahdavinejad, Ramezanali

    2018-02-01

    Thermal-based processes with Gaussian heat source often produce excessive temperature which can impose thermally-affected layers in specimens. Therefore, the temperature distribution and Heat Affected Zone (HAZ) of materials are two critical factors which are influenced by different process parameters. Measurement of the HAZ thickness and temperature distribution within the processes are not only difficult but also expensive. This research aims at finding a valuable knowledge on these factors by prediction of the process through a novel combinatory model. In this study, an integrated Artificial Neural Network (ANN) and genetic algorithm (GA) was used to predict the HAZ and temperature distribution of the specimens. To end this, a series of full factorial design of experiments were conducted by applying a Gaussian heat flux on Ti-6Al-4 V at first, then the temperature of the specimen was measured by Infrared thermography. The HAZ width of each sample was investigated through measuring the microhardness. Secondly, the experimental data was used to create a GA-ANN model. The efficiency of GA in design and optimization of the architecture of ANN was investigated. The GA was used to determine the optimal number of neurons in hidden layer, learning rate and momentum coefficient of both output and hidden layers of ANN. Finally, the reliability of models was assessed according to the experimental results and statistical indicators. The results demonstrated that the combinatory model predicted the HAZ and temperature more effective than a trial-and-error ANN model.

  6. Comparison of ANN and SVM for classification of eye movements in EOG signals

    Science.gov (United States)

    Qi, Lim Jia; Alias, Norma

    2018-03-01

    Nowadays, electrooculogram is regarded as one of the most important biomedical signal in measuring and analyzing eye movement patterns. Thus, it is helpful in designing EOG-based Human Computer Interface (HCI). In this research, electrooculography (EOG) data was obtained from five volunteers. The (EOG) data was then preprocessed before feature extraction methods were employed to further reduce the dimensionality of data. Three feature extraction approaches were put forward, namely statistical parameters, autoregressive (AR) coefficients using Burg method, and power spectral density (PSD) using Yule-Walker method. These features would then become input to both artificial neural network (ANN) and support vector machine (SVM). The performance of the combination of different feature extraction methods and classifiers was presented and analyzed. It was found that statistical parameters + SVM achieved the highest classification accuracy of 69.75%.

  7. CUDA-accelerated genetic feedforward-ANN training for data mining

    International Nuclear Information System (INIS)

    Patulea, Catalin; Peace, Robert; Green, James

    2010-01-01

    We present an implementation of genetic algorithm (GA) training of feedforward artificial neural networks (ANNs) targeting commodity graphics cards (GPUs). By carefully mapping the problem onto the unique GPU architecture, we achieve order-of-magnitude speedup over a conventional CPU implementation. Furthermore, we show that the speedup is consistent across a wide range of data set sizes, making this implementation ideal for large data sets. This performance boost enables the genetic algorithm to search a larger subset of the solution space, which results in more accurate pattern classification. Finally, we demonstrate this method in the context of the 2009 UC San Diego Data Mining Contest, achieving a world-class lift on a data set of 94682 e-commerce transactions.

  8. CUDA-accelerated genetic feedforward-ANN training for data mining

    Energy Technology Data Exchange (ETDEWEB)

    Patulea, Catalin; Peace, Robert; Green, James, E-mail: cpatulea@sce.carleton.ca, E-mail: rpeace@sce.carleton.ca, E-mail: jrgreen@sce.carleton.ca [School of Systems and Computer Engineering, Carleton University, Ottawa, K1S 5B6 (Canada)

    2010-11-01

    We present an implementation of genetic algorithm (GA) training of feedforward artificial neural networks (ANNs) targeting commodity graphics cards (GPUs). By carefully mapping the problem onto the unique GPU architecture, we achieve order-of-magnitude speedup over a conventional CPU implementation. Furthermore, we show that the speedup is consistent across a wide range of data set sizes, making this implementation ideal for large data sets. This performance boost enables the genetic algorithm to search a larger subset of the solution space, which results in more accurate pattern classification. Finally, we demonstrate this method in the context of the 2009 UC San Diego Data Mining Contest, achieving a world-class lift on a data set of 94682 e-commerce transactions.

  9. Track filtering by robust neural network

    International Nuclear Information System (INIS)

    Baginyan, S.A.; Kisel', I.V.; Konotopskaya, E.V.; Ososkov, G.A.

    1993-01-01

    In the present paper we study the following problems of track information extraction by the artificial neural network (ANN) rotor model: providing initial ANN configuration by an algorithm general enough to be applicable for any discrete detector in- or out of a magnetic field; robustness to heavy contaminated raw data (up to 100% signal-to-noise ratio); stability to the growing event multiplicity. These problems were carried out by corresponding innovations of our model, namely: by a special one-dimensional histogramming, by multiplying weights by a specially designed robust multiplier, and by replacing the simulated annealing schedule by ANN dynamics with an optimally fixed temperature. Our approach is valid for both circular and straight (non-magnetic) tracks and tested on 2D simulated data contaminated by 100% noise points distributed uniformly. To be closer to some reality in our simulation, we keep parameters of the cylindrical spectrometer ARES. 12 refs.; 9 figs

  10. Forecasting Monsoon Precipitation Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre sponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.

  11. Methodology for automatic process of the fired ceramic tile's internal defect using IR images and artificial neural network

    OpenAIRE

    Andrade, Roberto Márcio de; Eduardo, Alexandre Carlos

    2011-01-01

    In the ceramic industry, rarely testing systems were employed to on-line detect the presence of defects in ceramic tiles. This paper is concerned with the problem of automatic inspection of ceramic tiles using Infrared Images and Artificial Neural Network (ANN). The performance of the technique has been evaluated theoretically and experimentally from laboratory and on line tile samples. It has been performed system for IR image processing and, utilizing an Artificial Neural Network (ANN), det...

  12. Investigation of the effect of cutting speed on the Surface Roughness parameters in CNC End Milling using Artificial Neural Network

    International Nuclear Information System (INIS)

    Al Hazza, Muataz H F; Adesta, Erry Y T

    2013-01-01

    This research presents the effect of high cutting speed on the surface roughness in the end milling process by using the Artificial Neural Network (ANN). An experimental investigation was conducted to measure the surface roughness for end milling. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted. The artificial neural network (ANN) was applied to simulate and study the effect of high cutting speed on the surface roughness

  13. Design of an artificial neural network, with the topology oriented to the reconstruction of neutron spectra; Diseno de una red neuronal artificial, con la topologia orientada a la reconstruccion del espectro de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Arteaga A, T.; Ortiz R, J.M.; Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado S, G.A. [Unidades Academicas de Estudios Nucleares, Ingenieria Electrica y Matematicas, Universidad de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)]. e-mail: tarcicio70@yahoo.co.uk

    2006-07-01

    People that live in high places respect to the sea level, in latitudes far from the equator or that they travel by plane, they are exposed to atmospheres of high radiation generated by the cosmic rays. Another atmosphere with radiation is the medical equipment, particle accelerators and nuclear reactors. The evaluation of the biological risk for neutron radiation requires an appropriate and sure dosimetry. A commonly used system is the Bonner Sphere Spectrometer (EEB) with the purpose of reconstructing the spectrum that is important because the equivalent dose for neutrons depends strongly on its energy. The count rates obtained in each sphere are treated, in most of the cases, for iterative methods, Monte Carlo or Maximum Entropy. Each one of them has difficulties that it motivates to the development of complementary procedures. Recently it has been used Artificial Neural Networks, ANN) and not yet conclusive results have been obtained. In this work it was designed an ANN to obtain the neutron energy spectrum neutrons starting from the counting rate of count of an EEB. The ANN was trained with 129 reference spectra obtained of the IAEA (1990, 2001), 24 were built as defined energy, including isotopic sources of neutrons of reference and operational, of accelerators, reactors, mathematical functions, and of defined energy with several peaks. The spectrum was transformed from lethargy units to energy and were reaccommodated in 31 energies using the Monte Carlo code 4C. The reaccommodated spectra and the response matrix UTA4 were used to calculate the prospective count rates in the EEB. These rates were used as entrance and its respective spectrum was used as output during the net training. The net design is Retropropagation type with 5 layers of 7, 140, 140, 140 and 31 neurons, transfer function logsig, tansig, logsig, logsig, logsig respectively. Training algorithm, traingdx. After the training, the net was proven with a group of training spectra and others that

  14. Emerging trends in neuro engineering and neural computation

    CERN Document Server

    Lee, Kendall; Garmestani, Hamid; Lim, Chee

    2017-01-01

    This book focuses on neuro-engineering and neural computing, a multi-disciplinary field of research attracting considerable attention from engineers, neuroscientists, microbiologists and material scientists. It explores a range of topics concerning the design and development of innovative neural and brain interfacing technologies, as well as novel information acquisition and processing algorithms to make sense of the acquired data. The book also highlights emerging trends and advances regarding the applications of neuro-engineering in real-world scenarios, such as neural prostheses, diagnosis of neural degenerative diseases, deep brain stimulation, biosensors, real neural network-inspired artificial neural networks (ANNs) and the predictive modeling of information flows in neuronal networks. The book is broadly divided into three main sections including: current trends in technological developments, neural computation techniques to make sense of the neural behavioral data, and application of these technologie...

  15. Fuzzy Neuroidal Nets and Recurrent Fuzzy Computations

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    2001-01-01

    Roč. 11, č. 6 (2001), s. 675-686 ISSN 1210-0552. [SOFSEM 2001 Workshop on Soft Computing. Piešťany, 29.11.2001-30.11.2001] R&D Projects: GA ČR GA201/00/1489; GA AV ČR KSK1019101 Institutional research plan: AV0Z1030915 Keywords : fuzzy computing * fuzzy neural nets * fuzzy Turing machines * non-uniform computational complexity Subject RIV: BA - General Mathematics

  16. Implementation of multi-layer feed forward neural network on PIC16F877 microcontroller

    International Nuclear Information System (INIS)

    Nur Aira Abd Rahman

    2005-01-01

    Artificial Neural Network (ANN) is an electronic model based on the neural structure of the brain. Similar to human brain, ANN consists of interconnected simple processing units or neurons that process input to generate output signals. ANN operation is divided into 2 categories; training mode and service mode. This project aims to implement ANN on PIC micro-controller that enable on-chip or stand alone training and service mode. The input can varies from sensors or switches, while the output can be used to control valves, motors, light source and a lot more. As partial development of the project, this paper reports the current status and results of the implemented ANN. The hardware fraction of this project incorporates Microchip PIC16F877A microcontrollers along with uM-FPU math co-processor. uM-FPU is a 32-bit floating point co-processor utilized to execute complex calculation requires by the sigmoid activation function for neuron. ANN algorithm is converted to software program written in assembly language. The implemented ANN structure is three layer with one hidden layer, and five neurons with two hidden neurons. To prove the operability and functionality, the network is trained to solve three common logic gate operations; AND, OR, and XOR. This paper concludes that the ANN had been successfully implemented on PIC16F877a and uM-FPU math co-processor hardware that works accordingly on both training and service mode. (Author)

  17. Stochastic resonance in an ensemble of single-electron neuromorphic devices and its application to competitive neural networks

    International Nuclear Information System (INIS)

    Oya, Takahide; Asai, Tetsuya; Amemiya, Yoshihito

    2007-01-01

    Neuromorphic computing based on single-electron circuit technology is gaining prominence because of its massively increased computational efficiency and the increasing relevance of computer technology and nanotechnology [Likharev K, Mayr A, Muckra I, Tuerel O. CrossNets: High-performance neuromorphic architectures for CMOL circuits. Molec Electron III: Ann NY Acad Sci 1006;2003:146-63; Oya T, Schmid A, Asai T, Leblebici Y, Amemiya Y. On the fault tolerance of a clustered single-electron neural network for differential enhancement. IEICE Electron Expr 2;2005:76-80]. The maximum impact of these technologies will be strongly felt when single-electron circuits based on fault- and noise-tolerant neural structures can operate at room temperature. In this paper, inspired by stochastic resonance (SR) in an ensemble of spiking neurons [Collins JJ, Chow CC, Imhoff TT. Stochastic resonance without tuning. Nature 1995;376:236-8], we propose our design of a basic single-electron neural component and report how we examined its statistical results on a network

  18. The use of output-dependent data scaling with artificial neural networks and multilinear regression for modeling of ciprofloxacin removal from aqueous solution

    Directory of Open Access Journals (Sweden)

    Ulaş Yurtsever

    2017-03-01

    Full Text Available In this study, an experimental system entailing ciprofloxacin hydrochloride (CIP removal from aqueous solution is modeled by using artificial neural networks (ANNs. For modeling of CIP removal from aqueous solution using bentonite and activated carbon, we utilized the combination of output-dependent data scaling (ODDS with ANN, and the combination of ODDS with multivariable linear regression model (MVLR. The ANN model normalized via ODDS performs better in comparison with the ANN model scaled via standard normalization. Four distinct hybrid models, ANN with standard normalization, ANN with ODDS, MVLR with standard normalization, and MVLR with ODDS, were also applied. We observed that ANN and MVLR estimations’ consistency, accuracy ratios and model performances increase as a result of pre-processing with ODDS.

  19. Modeling Multi-Event Non-Point Source Pollution in a Data-Scarce Catchment Using ANN and Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-06-01

    Full Text Available Event-based runoff–pollutant relationships have been the key for water quality management, but the scarcity of measured data results in poor model performance, especially for multiple rainfall events. In this study, a new framework was proposed for event-based non-point source (NPS prediction and evaluation. The artificial neural network (ANN was used to extend the runoff–pollutant relationship from complete data events to other data-scarce events. The interpolation method was then used to solve the problem of tail deviation in the simulated pollutographs. In addition, the entropy method was utilized to train the ANN for comprehensive evaluations. A case study was performed in the Three Gorges Reservoir Region, China. Results showed that the ANN performed well in the NPS simulation, especially for light rainfall events, and the phosphorus predictions were always more accurate than the nitrogen predictions under scarce data conditions. In addition, peak pollutant data scarcity had a significant impact on the model performance. Furthermore, these traditional indicators would lead to certain information loss during the model evaluation, but the entropy weighting method could provide a more accurate model evaluation. These results would be valuable for monitoring schemes and the quantitation of event-based NPS pollution, especially in data-poor catchments.

  20. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain

    Directory of Open Access Journals (Sweden)

    Patricia Jimeno-Sáez

    2018-02-01

    Full Text Available Streamflow data are of prime importance to water-resources planning and management, and the accuracy of their estimation is very important for decision making. The Soil and Water Assessment Tool (SWAT and Artificial Neural Network (ANN models have been evaluated and compared to find a method to improve streamflow estimation. For a more complete evaluation, the accuracy and ability of these streamflow estimation models was also established separately based on their performance during different periods of flows using regional flow duration curves (FDCs. Specifically, the FDCs were divided into five sectors: very low, low, medium, high and very high flow. This segmentation of flow allows analysis of the model performance for every important discharge event precisely. In this study, the models were applied in two catchments in Peninsular Spain with contrasting climatic conditions: Atlantic and Mediterranean climates. The results indicate that SWAT and ANNs were generally good tools in daily streamflow modelling. However, SWAT was found to be more successful in relation to better simulation of lower flows, while ANNs were superior at estimating higher flows in all cases.

  1. Rapid Identification of Asteraceae Plants with Improved RBF-ANN Classification Models Based on MOS Sensor E-Nose

    Directory of Open Access Journals (Sweden)

    Hui-Qin Zou

    2014-01-01

    Full Text Available Plants from Asteraceae family are widely used as herbal medicines and food ingredients, especially in Asian area. Therefore, authentication and quality control of these different Asteraceae plants are important for ensuring consumers’ safety and efficacy. In recent decades, electronic nose (E-nose has been studied as an alternative approach. In this paper, we aim to develop a novel discriminative model by improving radial basis function artificial neural network (RBF-ANN classification model. Feature selection algorithms, including principal component analysis (PCA and BestFirst + CfsSubsetEval (BC, were applied in the improvement of RBF-ANN models. Results illustrate that in the improved RBF-ANN models with lower dimension data classification accuracies (100% remained the same as in the original model with higher-dimension data. It is the first time to introduce feature selection methods to get valuable information on how to attribute more relevant MOS sensors; namely, in this case, S1, S3, S4, S6, and S7 show better capability to distinguish these Asteraceae plants. This paper also gives insights to further research in this area, for instance, sensor array optimization and performance improvement of classification model.

  2. A study of using smartphone to detect and identify construction workers' near-miss falls based on ANN

    Science.gov (United States)

    Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng

    2018-03-01

    As an effective fall accident preventive method, insight into near-miss falls provides an efficient solution to find out the causes of fall accidents, classify the type of near-miss falls and control the potential hazards. In this context, the paper proposes a method to detect and identify near-miss falls that occur when a worker walks in a workplace based on artificial neural network (ANN). The energy variation generated by workers who meet with near-miss falls is measured by sensors embedded in smart phone. Two experiments were designed to train the algorithm to identify various types of near-miss falls and test the recognition accuracy, respectively. At last, a test was conducted by workers wearing smart phones as they walked around a simulated construction workplace. The motion data was collected, processed and inputted to the trained ANN to detect and identify near-miss falls. Thresholds were obtained to measure the relationship between near-miss falls and fall accidents in a quantitate way. This approach, which integrates smart phone and ANN, will help detect near-miss fall events, identify hazardous elements and vulnerable workers, providing opportunities to eliminate dangerous conditions in a construction site or to alert possible victims that need to change their behavior before the occurrence of a fall accident.

  3. Development of LC-MS determination method and back-propagation ANN pharmacokinetic model of corynoxeine in rat.

    Science.gov (United States)

    Ma, Jianshe; Cai, Jinzhang; Lin, Guanyang; Chen, Huilin; Wang, Xianqin; Wang, Xianchuan; Hu, Lufeng

    2014-05-15

    Corynoxeine(CX), isolated from the extract of Uncaria rhynchophylla, is a useful and prospective compound in the prevention and treatment for vascular diseases. A simple and selective liquid chromatography mass spectrometry (LC-MS) method was developed to determine the concentration of CX in rat plasma. The chromatographic separation was achieved on a Zorbax SB-C18 (2.1 mm × 150 mm, 5 μm) column with acetonitrile-0.1% formic acid in water as mobile phase. Selective ion monitoring (SIM) mode was used for quantification using target ions m/z 383 for CX and m/z 237 for the carbamazepine (IS). After the LC-MS method was validated, it was applied to a back-propagation artificial neural network (BP-ANN) pharmacokinetic model study of CX in rats. The results showed that after intravenous administration of CX, it was mainly distributed in blood and eliminated quickly, t1/2 was less than 1h. The predicted concentrations generated by BP-ANN model had a high correlation coefficient (R>0.99) with experimental values. The developed BP-ANN pharmacokinetic model can be used to predict the concentration of CX in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Simulation of CO2 Solubility in Polystyrene-b-Polybutadieneb-Polystyrene (SEBS) by artificial intelligence network (ANN) method

    Science.gov (United States)

    Sharudin, R. W.; AbdulBari Ali, S.; Zulkarnain, M.; Shukri, M. A.

    2018-05-01

    This study reports on the integration of Artificial Neural Network (ANNs) with experimental data in predicting the solubility of carbon dioxide (CO2) blowing agent in SEBS by generating highest possible value for Regression coefficient (R2). Basically, foaming of thermoplastic elastomer with CO2 is highly affected by the CO2 solubility. The ability of ANN in predicting interpolated data of CO2 solubility was investigated by comparing training results via different method of network training. Regards to the final prediction result for CO2 solubility by ANN, the prediction trend (output generate) was corroborated with the experimental results. The obtained result of different method of training showed the trend of output generated by Gradient Descent with Momentum & Adaptive LR (traingdx) required longer training time and required more accurate input to produce better output with final Regression Value of 0.88. However, it goes vice versa with Levenberg-Marquardt (trainlm) technique as it produced better output in quick detention time with final Regression Value of 0.91.

  5. Classification of molecular structure images by using ANN, RF, LBP, HOG, and size reduction methods for early stomach cancer detection

    Science.gov (United States)

    Aytaç Korkmaz, Sevcan; Binol, Hamidullah

    2018-03-01

    Patients who die from stomach cancer are still present. Early diagnosis is crucial in reducing the mortality rate of cancer patients. Therefore, computer aided methods have been developed for early detection in this article. Stomach cancer images were obtained from Fırat University Medical Faculty Pathology Department. The Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG) features of these images are calculated. At the same time, Sammon mapping, Stochastic Neighbor Embedding (SNE), Isomap, Classical multidimensional scaling (MDS), Local Linear Embedding (LLE), Linear Discriminant Analysis (LDA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Laplacian Eigenmaps methods are used for dimensional the reduction of the features. The high dimension of these features has been reduced to lower dimensions using dimensional reduction methods. Artificial neural networks (ANN) and Random Forest (RF) classifiers were used to classify stomach cancer images with these new lower feature sizes. New medical systems have developed to measure the effects of these dimensions by obtaining features in different dimensional with dimensional reduction methods. When all the methods developed are compared, it has been found that the best accuracy results are obtained with LBP_MDS_ANN and LBP_LLE_ANN methods.

  6. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  7. A new evolutionary system for evolving artificial neural networks.

    Science.gov (United States)

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  8. Reservoir parameter estimation using a hybrid neural network

    Energy Technology Data Exchange (ETDEWEB)

    Aminzadeh, F. [DGB USA and FACT Inc., Sugarland, TX (United States); Barhen, J.; Glover, C.W. [Oak Ridge National Laboratory (United States). Center for Engineering Systems Advanced Resesarch; Toomarian, N.B. [California Institute of Technology (United States). Jet Propulsion Laboratory

    2000-10-01

    The accuracy of an artificial neural network (ANN) algorithm is a crucial issue in the estimation of an oil field's reservoir properties from the log and seismic data. This paper demonstrates the use of the k-fold cross validation technique to obtain confidence bounds on an ANN's accuracy statistic from a finite sample set. In addition, we also show that an ANN's classification accuracy is dramatically improved by transforming the ANN's input feature space to a dimensionally smaller new input space. The new input space represents a feature space that maximizes the linear separation between classes. Thus, the ANN's convergence time and accuracy are improved because the ANN must merely find nonlinear perturbations to the starting linear decision boundaries. These techniques for estimating ANN accuracy bounds and feature space transformations are demonstrated on the problem of estimating the sand thickness in an oil field reservoir based only on remotely sensed seismic data. (author)

  9. Science of the science, drug discovery and artificial neural networks.

    Science.gov (United States)

    Patel, Jigneshkumar

    2013-03-01

    Drug discovery process many times encounters complex problems, which may be difficult to solve by human intelligence. Artificial Neural Networks (ANNs) are one of the Artificial Intelligence (AI) technologies used for solving such complex problems. ANNs are widely used for primary virtual screening of compounds, quantitative structure activity relationship studies, receptor modeling, formulation development, pharmacokinetics and in all other processes involving complex mathematical modeling. Despite having such advanced technologies and enough understanding of biological systems, drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new successful therapeutic discovery. In this paper, author has discussed the drug discovery science and ANN from very basic angle, which may be helpful to understand the application of ANN for drug discovery to improve efficiency.

  10. GMDH and neural networks applied in temperature sensors monitoring

    International Nuclear Information System (INIS)

    Bueno, Elaine Inacio; Pereira, Iraci Martinez; Silva, Antonio Teixeira e

    2009-01-01

    In this work a monitoring system was developed based on the Group Method of Data Handling (GMDH) and Neural Networks (ANNs) methodologies. This methodology was applied to the IEA-R1 research reactor at IPEN by using a database obtained from a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab GUIDE toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. This methodology was developed by using the GMDH algorithm as input variables to the ANNs. The results obtained using the GMDH and ANNs were better than that obtained using only ANNs. (author)

  11. Forecasting electricity market pricing using artificial neural networks

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien

    2007-01-01

    Electricity price forecasting is extremely important for all market players, in particular for generating companies: in the short term, they must set up bids for the spot market; in the medium term, they have to define contract policies; and in the long term, they must define their expansion plans. For forecasting long-term electricity market pricing, in order to avoid excessive round-off and prediction errors, this paper proposes a new artificial neural network (ANN) with single output node structure by using direct forecasting approach. The potentials of ANNs are investigated by employing a rolling cross validation scheme. Out of sample performance evaluated with three criteria across five forecasting horizons shows that the proposed ANNs are a more robust multi-step ahead forecasting method than autoregressive error models. Moreover, ANN predictions are quite accurate even when the length of the forecast horizon is relatively short or long

  12. A neural network for noise correlation classification

    Science.gov (United States)

    Paitz, Patrick; Gokhberg, Alexey; Fichtner, Andreas

    2018-02-01

    We present an artificial neural network (ANN) for the classification of ambient seismic noise correlations into two categories, suitable and unsuitable for noise tomography. By using only a small manually classified data subset for network training, the ANN allows us to classify large data volumes with low human effort and to encode the valuable subjective experience of data analysts that cannot be captured by a deterministic algorithm. Based on a new feature extraction procedure that exploits the wavelet-like nature of seismic time-series, we efficiently reduce the dimensionality of noise correlation data, still keeping relevant features needed for automated classification. Using global- and regional-scale data sets, we show that classification errors of 20 per cent or less can be achieved when the network training is performed with as little as 3.5 per cent and 16 per cent of the data sets, respectively. Furthermore, the ANN trained on the regional data can be applied to the global data, and vice versa, without a significant increase of the classification error. An experiment where four students manually classified the data, revealed that the classification error they would assign to each other is substantially larger than the classification error of the ANN (>35 per cent). This indicates that reproducibility would be hampered more by human subjectivity than by imperfections of the ANN.

  13. Quantum net dynamics

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1989-01-01

    The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics

  14. Implementing Signature Neural Networks with Spiking Neurons.

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  15. Neural network construction of flow of a viscoelastic fluid of a second order between two eccentric spheres

    International Nuclear Information System (INIS)

    Elbakry, M.Y.; El-Helly, M.; Elbakry, M.Y.

    2010-01-01

    Neural networks are widely for solving many scientific linear and non-linear problems. In this work ,we used the artificial neural network (ANN) to simulate and predict the torque and force acting on the outer stationary sphere due to steady state motion of the second order fluid between two eccentric spheres by a rotating inner sphere with an angular velocity Ω. the (ANN) model has been trained based on the experimental data to produce the torque and force at different eccentricities. The experimental and trained torque and force are compared. The designed ANN shows a good match to the experimental data.

  16. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  17. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  18. Use of neural networks to monitor power plant components

    International Nuclear Information System (INIS)

    Ikonomopoulos, A.; Tsoukalas, L.H.

    1992-01-01

    A new methodology is presented for nondestructive evaluation (NDE) of check valve performance and degradation. Artificial neural network (ANN) technology is utilized for processing frequency domain signatures of check valves operating in a nuclear power plant (NPP). Acoustic signatures obtained from different locations on a check valve are transformed from the time domain to the frequency domain and then used as input to a pretrained neural network. The neural network has been trained with data sets corresponding to normal operation, therefore establishing a basis for check valve satisfactory performance. Results obtained from the proposed methodology demonstrate the ability of neural networks to perform accurate and quick evaluations of check valve performance

  19. neural control system

    International Nuclear Information System (INIS)

    Elshazly, A.A.E.

    2002-01-01

    Automatic power stabilization control is the desired objective for any reactor operation , especially, nuclear power plants. A major problem in this area is inevitable gap between a real plant ant the theory of conventional analysis and the synthesis of linear time invariant systems. in particular, the trajectory tracking control of a nonlinear plant is a class of problems in which the classical linear transfer function methods break down because no transfer function can represent the system over the entire operating region . there is a considerable amount of research on the model-inverse approach using feedback linearization technique. however, this method requires a prices plant model to implement the exact linearizing feedback, for nuclear reactor systems, this approach is not an easy task because of the uncertainty in the plant parameters and un-measurable state variables . therefore, artificial neural network (ANN) is used either in self-tuning control or in improving the conventional rule-based exper system.the main objective of this thesis is to suggest an ANN, based self-learning controller structure . this method is capable of on-line reinforcement learning and control for a nuclear reactor with a totally unknown dynamics model. previously, researches are based on back- propagation algorithm . back -propagation (BP), fast back -propagation (FBP), and levenberg-marquardt (LM), algorithms are discussed and compared for reinforcement learning. it is found that, LM algorithm is quite superior

  20. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2015-01-01

    Full Text Available Artificial neural networks (ANNs have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  1. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  2. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    Science.gov (United States)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  3. ANNE TONER. Ellipsis in English Literature: Signs of Omission

    DEFF Research Database (Denmark)

    Lupton, Tina Jane

    2016-01-01

    As a freshman, I once met a PhD Student writing about the use of the comma in Jane Austen. For years the thesis topic kept me entertained as an example of how narrowly focused literary study could become. Reading Anne Toner's Ellipsis in English Literature commits me to a recantation of that joke...

  4. Eesti NATO ukselävel / Mari-Ann Kelam

    Index Scriptorium Estoniae

    Kelam, Mari-Ann, 1946-

    2002-01-01

    Seda, et NATO liitumisläbirääkimistele kutsutavate seas on ka Eesti, saab veel tänagi pidada üheks meie iseseisva riikluse suursaavutuseks, kui mitte imeks, kirjutab Riigikogu liige Mari-Ann Kelam. Autor: Isamaaliit. Parlamendisaadik

  5. Klaas ja mõis / Maie-Ann Raun

    Index Scriptorium Estoniae

    Raun, Maie-Ann, 1938-

    2007-01-01

    Klaasikunstinäitus "Ringkäik" Albu mõisas, kuraatorid Virve Kiil, Kati Kerstna, Kairi Orgusaar. Eksponeeritakse Tiina Sarapu, Mare Saare, Eeva Käsperi, Kai Kiudsoo-Värvi, Pilvi Ojamaa, Merle Bukoveci, Kalli Seina, Viivi-Ann Keerdo, Liisi Junolaineni, Kristiina Uslari, Ivo Lille töid

  6. 2011 : Qu'elle année !

    CERN Multimedia

    Staff Association

    2012-01-01

    « Quelle année ! Et quelle fin d’année ! La star de l’année a été le LHC, avec ses expériences, qui une fois de plus ont été sous les feux de la rampe. Mais on doit aussi citer toute une troupe d’acteurs importants, dans des domaines aussi différents que l’antimatière et l’expérience CLOUD. » Voilà ce que le Directeur général nous a écrit le 20 décembre dans son message avec ses vœux de fin d’année. Sans oublier, bien sûr, les fameux neutrinos hyperrapides vers Gran Sasso qui ont mis le CERN sur le devant de la scène mondiale. Ces succès qui font la fierté et la force de l’Organisation ont été rendus possibles «&...

  7. Why philosophy and history matter : A conversation with Ann Taves

    NARCIS (Netherlands)

    von Stuckrad, C.K.M.

    2010-01-01

    The article picks up some ideas that Ann Taves presents in her book Religious Experience Reconsidered, and looks at possible conversations that are not fleshed out in detail in Taves' book. In particular, it is argued that the disciplinary confrontation with philosophy and with historiography is of

  8. Ants Orasest ja Anne Lange monograafiast / Jüri Talvet

    Index Scriptorium Estoniae

    Talvet, Jüri, 1945-

    2005-01-01

    Arvustus: Oras, Ants. Luulekool. I, Apoloogia / koostajad Hando Runnel ja Jaak Rähesoo. Tartu : Ilmamaa, 2003 ; Oras, Ants. Luulekool II, Meistriklass. Tartu : Ilmamaa, 2004 ; Lange, Anne. Ants Oras : [kirjandusteadlane, -kriitik ja tõlkija (1900-1982)]. Tartu : Ilmamaa, 2004

  9. Vene ja prantsuse kunsti imetlemisest Londonis / Ann Alari

    Index Scriptorium Estoniae

    Alari, Ann

    2008-01-01

    Näitus "Venemaalt pärit prantsuse ja vene shedöövrid" kuningliku kunstiakadeemia saalides Londonis. Vaatluse all oli ajavahemik 1870 kuni 1925. Tööd olid pärit Moskvas elanud tekstiilitöösturitest suurärimeeste Sergei Shtshukini ja Ivan Morozovi kogudest, mis 1917. a. natsionaliseeriti. Kuraator Ann Dumas

  10. 2016-2017 Travel Expense Reports for Margaret Ann Biggs ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Beata Bialic

    Purpose: Internal IDRC meetings. Date(s):. 2016-07-04 to 2016-07-06. Destination(s):. Ottawa. Airfare: $0.00. Other. Transportation: $39.00. Accommodation: $0.00. Meals and. Incidentals: $25.43. Other: $0.00. Total: $64.43. Comments: 2016-2017 Travel Expense Reports for. Margaret Ann Biggs, Chairperson.

  11. 2016-2017 Travel Expense Reports for Mary Anne Chambers ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Beata Bialic

    Purpose: Board meetings. Date(s):. 2016-11-20 to 2016-11-23. Destination(s):. Ottawa. Airfare: $445.14. Other. Transportation: $29.05. Accommodation: $786.80. Meals and. Incidentals: $76.79. Other: $0.00. Total: $1,337.78. Comments: 2016-2017 Travel Expense Reports for Mary. Anne Chambers, Governor, Chairperson ...

  12. 2017-2018 Travel Expense Reports for Mary Anne Chambers ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Chantal Taylor

    Ottawa. Airfare: $368.41. Other. Transportation: $69.95. Accommodation: $542.79. Meals and. Incidentals: $164.42. Other: $0.00. Total: $1,145.57. Comments: From residence in Thornhill, Ontario. 2017-2018 Travel Expense Reports for Mary. Anne Chambers, Governor, Chairperson of the. Human Resources Committee.

  13. 2016-2017 Travel Expense Reports for Mary Anne Chambers ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Beata Bialic

    Date(s):. 2016-07-06. Destination(s):. Ottawa. Airfare: $482.11. Other. Transportation: $64.30. Accommodation: $0.00. Meals and. Incidentals: $25.28. Other: $0.00. Total: $571.69. Comments: 2016-2017 Travel Expense Reports for Mary. Anne Chambers, Governor, Chairperson of the. Human Resources Committee.

  14. 2016-2017 Travel Expense Reports for Mary Anne Chambers ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Beata Bialic

    Date(s):. 2016-08-14 to 2016-08-23. Destination(s):. Peru/Colombia. Airfare: $3,484.87. Other. Transportation: $0.00. Accommodation: $1,942.21. Meals and. Incidentals: $395.27. Other: $75.50. Total: $5,897.85. Comments: 2016-2017 Travel Expense Reports for Mary. Anne Chambers, Governor, Chairperson of the.

  15. 2017-2018 Travel Expense Reports for Mary Anne Chambers ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Chantal Taylor

    Ottawa. Airfare: $563.72. Other. Transportation: $74.26. Accommodation: $0.00. Meals and. Incidentals: $46.17. Other: $30.00. Total: $714.15. Comments: From residence in Thornhill, Ontario. 2017-2018 Travel Expense Reports for Mary. Anne Chambers, Governor, Chairperson of the. Human Resources Committee.

  16. 2016-2017 Travel Expense Reports for Mary Anne Chambers ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    chantal taylor

    Purpose: Board meetings. Date(s):. 2017-03-19 to 2017-03-22. Destination(s):. Ottawa. Airfare: $121.05. Other. Transportation: $51.92. Accommodation: $926.48. Meals and. Incidentals: $190.40. Other: $0.00. Total: $1,289.85. Comments: 2016-2017 Travel Expense Reports for Mary. Anne Chambers, Governor ...

  17. Q&A: Grace Anne Koppel, Living Well with COPD

    Science.gov (United States)

    ... their own lives back is the most rewarding thing we have ever done. Read More "The Challenge of COPD" Articles Q&A: Grace Anne Koppel, Living Well with COPD / What is COPD? / What Causes COPD? / Getting Tested / Am I at Risk? / COPD Quiz Fall ...

  18. Hiina tervendus / kommenteerivad Anne, Julia, Weihong Song, Fagang Ren

    Index Scriptorium Estoniae

    2013-01-01

    Tallinnas Tulika 19 asuvast Bai Lan Hiina massaažisalongist, kus ravitakse kuputeraapia, gua sha kraapimisplaatide, moksa, nõelravi ja punktmassaaži abil. Tui na massaaži ja hiina loodusteraapia protseduure kommenteerivad spetsialistid ning patsiendid Anne ja Julia

  19. Application of ANN and fuzzy logic algorithms for streamflow ...

    Indian Academy of Sciences (India)

    The present study focusses on development of models using ANN and fuzzy logic (FL) algorithm for predicting the streamflow for catchment of Savitri River Basin. The input vector to these models were daily rainfall, mean daily evaporation, mean daily temperature and lag streamflow used. In the present study, 20 years ...

  20. Identification of input variables for feature based artificial neural networks-saccade detection in EOG recordings.

    Science.gov (United States)

    Tigges, P; Kathmann, N; Engel, R R

    1997-07-01

    Though artificial neural networks (ANN) are excellent tools for pattern recognition problems when signal to noise ratio is low, the identification of decision relevant features for ANN input data is still a crucial issue. The experience of the ANN designer and the existing knowledge and understanding of the problem seem to be the only links for a specific construction. In the present study a backpropagation ANN based on modified raw data inputs showed encouraging results. Investigating the specific influences of prototypical input patterns on a specially designed ANN led to a new sparse and efficient input data presentation. This data coding obtained by a semiautomatic procedure combining existing expert knowledge and the internal representation structures of the raw data based ANN yielded a list of feature vectors, each representing the relevant information for saccade identification. The feature based ANN produced a reduction of the error rate of nearly 40% compared with the raw data ANN. An overall correct classification of 92% of so far unknown data was realized. The proposed method of extracting internal ANN knowledge for the production of a better input data representation is not restricted to EOG recordings, and could be used in various fields of signal analysis.

  1. Nuclear power plant fault-diagnosis using artificial neural networks

    International Nuclear Information System (INIS)

    Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.

    1992-01-01

    Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant's training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses

  2. Numeric treatment of nonlinear second order multi-point boundary value problems using ANN, GAs and sequential quadratic programming technique

    Directory of Open Access Journals (Sweden)

    Zulqurnain Sabir

    2014-06-01

    Full Text Available In this paper, computational intelligence technique are presented for solving multi-point nonlinear boundary value problems based on artificial neural networks, evolutionary computing approach, and active-set technique. The neural network is to provide convenient methods for obtaining useful model based on unsupervised error for the differential equations. The motivation for presenting this work comes actually from the aim of introducing a reliable framework that combines the powerful features of ANN optimized with soft computing frameworks to cope with such challenging system. The applicability and reliability of such methods have been monitored thoroughly for various boundary value problems arises in science, engineering and biotechnology as well. Comprehensive numerical experimentations have been performed to validate the accuracy, convergence, and robustness of the designed scheme. Comparative studies have also been made with available standard solution to analyze the correctness of the proposed scheme.

  3. Multiresolution wavelet-ANN model for significant wave height forecasting.

    Digital Repository Service at National Institute of Oceanography (India)

    Deka, P.C.; Mandal, S.; Prahlada, R.

    Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...

  4. Tutorial on neural network applications in high energy physics: A 1992 perspective

    International Nuclear Information System (INIS)

    Denby, B.

    1992-04-01

    Feed forward and recurrent neural networks are introduced and related to standard data analysis tools. Tips are given on applications of neural nets to various areas of high energy physics. A review of applications within high energy physics and a summary of neural net hardware status are given

  5. Artificial Neural Networks and Gene Expression Programing based age estimation using facial features

    Directory of Open Access Journals (Sweden)

    Baddrud Z. Laskar

    2015-10-01

    Full Text Available This work is about estimating human age automatically through analysis of facial images. It has got a lot of real-world applications. Due to prompt advances in the fields of machine vision, facial image processing, and computer graphics, automatic age estimation via faces in computer is one of the dominant topics these days. This is due to widespread real-world applications, in areas of biometrics, security, surveillance, control, forensic art, entertainment, online customer management and support, along with cosmetology. As it is difficult to estimate the exact age, this system is to estimate a certain range of ages. Four sets of classifications have been used to differentiate a person’s data into one of the different age groups. The uniqueness about this study is the usage of two technologies i.e., Artificial Neural Networks (ANN and Gene Expression Programing (GEP to estimate the age and then compare the results. New methodologies like Gene Expression Programing (GEP have been explored here and significant results were found. The dataset has been developed to provide more efficient results by superior preprocessing methods. This proposed approach has been developed, tested and trained using both the methods. A public data set was used to test the system, FG-NET. The quality of the proposed system for age estimation using facial features is shown by broad experiments on the available database of FG-NET.

  6. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...

  7. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available the national grid. The unfortunate situation with water is that there is no replacement technology for water. Water can be supplied from many different sources. A net zero energy development will move closer to a net zero water development by reducing...

  8. Construction of monophase nets

    International Nuclear Information System (INIS)

    Suarez A, Jose Antonio

    1996-01-01

    The paper refers to the use of monophase loads in commercial residential urbanizations and in small industries, for this reason it is considered unnecessary the construction of three-phase nets. The author makes a historical recount of these nets in Bogota, his capacities, uses and energy savings

  9. Fusion through the NET

    International Nuclear Information System (INIS)

    Spears, B.

    1987-01-01

    The paper concerns the next generation of fusion machines which are intended to demonstrate the technical viability of fusion. In Europe, the device that will follow on from JET is known as NET - the Next European Torus. If the design programme for NET proceeds, Europe could start to build the machine in 1994. The present JET programme hopes to achieve breakeven in the early 1990's. NET hopes to reach ignition in the next century, and so lay the foundation for a demonstration reactor. A description is given of the technical specifications of the components of NET, including: the first wall, the divertors to protect the wall, the array of magnets that provide the fields containing the plasma, the superconducting magnets, and the shield of the machine. NET's research programme is briefly outlined, including the testing programme to optimise conditions in the machine to achieve ignition, and its safety work. (U.K.)

  10. Wavelet transform and ANNs for detection and classification of power signal disturbances

    International Nuclear Information System (INIS)

    Memon, A.P.; Uqaili, M.A.; Memon, Z.A.

    2012-01-01

    This article proposes WT (Wavelet Transform) and an ANN (Artificial Neural Network) based approach for detection and classification of EPQDs (Electrical Power Quality Disturbances). A modified WT known as ST (Stockwell Transform) is suggested for feature extraction and PNN (probabilistic Neural Network) for pattern classification. The ST possesses outstanding time-frequency resolution characteristics and its phase correction techniques determine the phase of the WT to the zero time point The feature vectors for the input of PNN are extracted using ST technique and these obtained features are discrete, logical, and unaffected to noisy data of distorted signals. The data of the models required to develop the distorted EPQ (Electrical Power Quality) signals, is obtained within the ranges specified by IEEE 1159-1995 in its literatures. The features vectors including noisy time varying data during steady state or transient condition and extracted using the ST, are trained through PNN for pattern classification. Their simulation results demonstrate that the proposed methodology is successful and can classify EPQDs even under a noisy environment very efficiently with an average classification accuracy of 96%. (author)

  11. SSVEP and ANN based optimal speller design for Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Irshad Ahmad Ansari

    2015-07-01

    Full Text Available This work put forwards an optimal BCI (Brain Computer Interface speller design based on Steady State Visual Evoked Potentials (SSVEP and Artificial Neural Network (ANN in order to help the people with severe motor impairments. This work is carried out to enhance the accuracy and communication rate of  BCI system. To optimize the BCI system, the work has been divided into two steps: First, designing of an encoding technique to choose characters from the speller interface and the second is the development and implementation of feature extraction algorithm to acquire optimal features, which is used to train the BCI system for classification using neural network. Optimization of speller interface is focused on representation of character matrix and its designing parameters. Then again, a lot of deliberations made in order to optimize selection of features and user’s time window. Optimized system works nearly the same with the new user and gives character per minute (CPM of 13 ± 2 with an average accuracy of 94.5% by choosing first two harmonics of power spectral density as the feature vectors and using the 2 second time window for each selection. Optimized BCI performs better with experienced users with an average accuracy of 95.1%. Such a good accuracy has not been reported before in account of fair enough CPM.DOI: 10.15181/csat.v2i2.1059

  12. Artificial neural networks for prediction of percentage of water ...

    Indian Academy of Sciences (India)

    have high compressive strengths in comparison with con- crete specimens ... presenting suitable model based on artificial neural networks. (ANNs) to ... by experimental ones to evaluate the software power for pre- dicting the ..... Figure 7. Correlation of measured and predicted percentage of water absorption values of.

  13. A neural network based seafloor classification using acoustic backscatter

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    This paper presents a study results of the Artificial Neural Network (ANN) architectures [Self-Organizing Map (SOM) and Multi-Layer Perceptron (MLP)] using single beam echosounding data. The single beam echosounder, operable at 12 kHz, has been used...

  14. Prediction of littoral drift with artificial neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, A.K.; Deo, M.C.; SanilKumar, V.

    of the rate of sand drift has still remained as a problem. The current study addresses this issue through the use of artificial neural networks (ANN). Feed forward networks were developed to predict the sand drift from a variety of causative variables...

  15. Artificial Neural Networks for SCADA Data based Load Reconstruction (poster)

    NARCIS (Netherlands)

    Hofemann, C.; Van Bussel, G.J.W.; Veldkamp, H.

    2011-01-01

    If at least one reference wind turbine is available, which provides sufficient information about the wind turbine loads, the loads acting on the neighbouring wind turbines can be predicted via an artificial neural network (ANN). This research explores the possibilities to apply such a network not

  16. A Neuron- and a Synapse Chip for Artificial Neural Networks

    DEFF Research Database (Denmark)

    Lansner, John; Lehmann, Torsten

    1992-01-01

    A cascadable, analog, CMOS chip set has been developed for hardware implementations of artificial neural networks (ANN's):I) a neuron chip containing an array of neurons with hyperbolic tangent activation functions and adjustable gains, and II) a synapse chip (or a matrix-vector multiplier) where...

  17. Face Recognition using Artificial Neural Network | Endeshaw | Zede ...

    African Journals Online (AJOL)

    Face recognition (FR) is one of the biometric methods to identify the individuals by the features of face. Two Face Recognition Systems (FRS) based on Artificial Neural Network (ANN) have been proposed in this paper based on feature extraction techniques. In the first system, Principal Component Analysis (PCA) has been ...

  18. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    user

    Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total ..... Genetic algorithm-based self-learning fuzzy PI controller for shunt active filter, ... Verification of global optimality of the OFC active power filters by means of ...

  19. Recurrent Artificial Neural Networks and Finite State Natural Language Processing.

    Science.gov (United States)

    Moisl, Hermann

    It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…

  20. Does Artificial Neural Network Support Connectivism's Assumptions?

    Science.gov (United States)

    AlDahdouh, Alaa A.

    2017-01-01

    Connectivism was presented as a learning theory for the digital age and connectivists claim that recent developments in Artificial Intelligence (AI) and, more specifically, Artificial Neural Network (ANN) support their assumptions of knowledge connectivity. Yet, very little has been done to investigate this brave allegation. Does the advancement…