WorldWideScience

Sample records for neural mechanisms evolution

  1. Neural mechanisms for voice recognition

    NARCIS (Netherlands)

    Andics, A.V.; McQueen, J.M.; Petersson, K.M.; Gal, V.; Rudas, G.; Vidnyanszky, Z.

    2010-01-01

    We investigated neural mechanisms that support voice recognition in a training paradigm with fMRI. The same listeners were trained on different weeks to categorize the mid-regions of voice-morph continua as an individual's voice. Stimuli implicitly defined a voice-acoustics space, and training

  2. Mechanisms of oxygen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Radmer, R; Cheniae, G

    1976-08-01

    The production of O/sub 2/ from water requires the collaboration of four oxidizing equivalents. When dark-adapted O/sub 2/ evolving photosynthetic material is illuminated by a sequence of short (less than 2 ..mu..sec) saturating flashes, the amount of O/sub 2/ evolved per flash oscillates with a period of four. This indicates that a charge-collector, operating with its own reaction center, successively collects and stores four oxidizing equivalents, which are used in a concerted oxidation of two water molecules. Luminescence, fluorescence, and pH changes also reflect this cycle of four. The O/sub 2/ precursor states are quite stable; under some conditions they can have a lifetime of several minutes. The O/sub 2/-yielding reactions and reactions associated with trap recovery are fast relative to the rate-limiting step of photosynthesis. The molecular identity of the charge-collector is unknown, but correlative evidence suggests that a manganese containing catalyst (approximately 4 Mn/charge collector) participates, possibly directly. Formation of the active Mn-containing catalyst occurs via a multi-quantum process occurring within the System II reaction center. The photoactivated catalyst, located on the inner face of the thylakoid membrane, remains permanently active and essentially inaccessible to chemicals other than analogs of H/sub 2/O (e.g., NH/sub 3/, NH/sub 2/OH). This O/sub 2/ evolving catalyst can be deactivated by a variety of treatments that do not alter the system II reaction center. Anions such as chloride seem to participate rather directly in the O/sub 2/ evolution process via unknown mechanism(s).

  3. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  4. Convergent evolution of neural systems in ctenophores.

    Science.gov (United States)

    Moroz, Leonid L

    2015-02-15

    Neurons are defined as polarized secretory cells specializing in directional propagation of electrical signals leading to the release of extracellular messengers - features that enable them to transmit information, primarily chemical in nature, beyond their immediate neighbors without affecting all intervening cells en route. Multiple origins of neurons and synapses from different classes of ancestral secretory cells might have occurred more than once during ~600 million years of animal evolution with independent events of nervous system centralization from a common bilaterian/cnidarian ancestor without the bona fide central nervous system. Ctenophores, or comb jellies, represent an example of extensive parallel evolution in neural systems. First, recent genome analyses place ctenophores as a sister group to other animals. Second, ctenophores have a smaller complement of pan-animal genes controlling canonical neurogenic, synaptic, muscle and immune systems, and developmental pathways than most other metazoans. However, comb jellies are carnivorous marine animals with a complex neuromuscular organization and sophisticated patterns of behavior. To sustain these functions, they have evolved a number of unique molecular innovations supporting the hypothesis of massive homoplasies in the organization of integrative and locomotory systems. Third, many bilaterian/cnidarian neuron-specific genes and 'classical' neurotransmitter pathways are either absent or, if present, not expressed in ctenophore neurons (e.g. the bilaterian/cnidarian neurotransmitter, γ-amino butyric acid or GABA, is localized in muscles and presumed bilaterian neuron-specific RNA-binding protein Elav is found in non-neuronal cells). Finally, metabolomic and pharmacological data failed to detect either the presence or any physiological action of serotonin, dopamine, noradrenaline, adrenaline, octopamine, acetylcholine or histamine - consistent with the hypothesis that ctenophore neural systems evolved

  5. Neural Mechanisms of Conceptual Relations

    Science.gov (United States)

    Lewis, Gwyneth A.

    2017-01-01

    An over-arching goal in neurolinguistic research is to characterize the neural bases of semantic representation. A particularly relevant goal concerns whether we represent features and events (a) together in a generalized semantic hub or (b) separately in distinct but complementary systems. While the left anterior temporal lobe (ATL) is strongly…

  6. Neural mechanisms of social dominance

    Directory of Open Access Journals (Sweden)

    Noriya eWatanabe

    2015-06-01

    Full Text Available In a group setting, individuals’ perceptions of their own level of dominance or of the dominance level of others, and the ability to adequately control their behavior based on these perceptions are crucial for living within a social environment. Recent advances in neural imaging and molecular technology have enabled researchers to investigate the neural substrates that support the perception of social dominance and the formation of a social hierarchy in humans. At the systems’ level, recent studies showed that dominance perception is represented in broad brain regions which include the amygdala, hippocampus, striatum, and various cortical networks such as the prefrontal, and parietal cortices. Additionally, neurotransmitter systems such as the dopaminergic and serotonergic systems, modulate and are modulated by the formation of the social hierarchy in a group. While these monoamine systems have a wide distribution and multiple functions, it was recently found that the Neuropeptide B/W contributes to the perception of dominance and is present in neurons that have a limited projection primarily to the amygdala. The present review discusses the specific roles of these neural regions and neurotransmitter systems in the perception of dominance and in hierarchy formation.

  7. Evolution and physiology of neural oxygen sensing

    Directory of Open Access Journals (Sweden)

    Kauê Machado Costa

    2014-08-01

    Full Text Available Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation to the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context.

  8. Evolution and physiology of neural oxygen sensing

    Science.gov (United States)

    Costa, Kauê M.; Accorsi-Mendonça, Daniela; Moraes, Davi J. A.; Machado, Benedito H.

    2014-01-01

    Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context. PMID:25161625

  9. Language and Cognition Interaction Neural Mechanisms

    Science.gov (United States)

    2011-06-01

    2007. [72] L. I. Perlovsky, “Symbols: integrated cognition and language ,” in Semiotics and Intelligent Systems Development, R. Gudwin and J. Queiroz...Article Language and Cognition Interaction Neural Mechanisms Leonid Perlovsky Harvard University and Air Force Research Laboratory, Harvard University...Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. How language

  10. Neural mechanisms of hypnosis and meditation.

    Science.gov (United States)

    De Benedittis, Giuseppe

    2015-12-01

    Hypnosis has been an elusive concept for science for a long time. However, the explosive advances in neuroscience in the last few decades have provided a "bridge of understanding" between classical neurophysiological studies and psychophysiological studies. These studies have shed new light on the neural basis of the hypnotic experience. Furthermore, an ambitious new area of research is focusing on mapping the core processes of psychotherapy and the neurobiology/underlying them. Hypnosis research offers powerful techniques to isolate psychological processes in ways that allow their neural bases to be mapped. The Hypnotic Brain can serve as a way to tap neurocognitive questions and our cognitive assays can in turn shed new light on the neural bases of hypnosis. This cross-talk should enhance research and clinical applications. An increasing body of evidence provides insight in the neural mechanisms of the Meditative Brain. Discrete meditative styles are likely to target different neurodynamic patterns. Recent findings emphasize increased attentional resources activating the attentional and salience networks with coherent perception. Cognitive and emotional equanimity gives rise to an eudaimonic state, made of calm, resilience and stability, readiness to express compassion and empathy, a main goal of Buddhist practices. Structural changes in gray matter of key areas of the brain involved in learning processes suggest that these skills can be learned through practice. Hypnosis and Meditation represent two important, historical and influential landmarks of Western and Eastern civilization and culture respectively. Neuroscience has beginning to provide a better understanding of the mechanisms of both Hypnotic and Meditative Brain, outlining similarities but also differences between the two states and processes. It is important not to view either the Eastern or the Western system as superior to the other. Cross-fertilization of the ancient Eastern meditation techniques

  11. Evolution and physiology of neural oxygen sensing

    OpenAIRE

    Kauê Machado Costa; Daniela eAccorsi-Mendonça; Moraes, Davi J. A.; Machado, Benedito H.

    2014-01-01

    Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correl...

  12. Evolution of Tonal Organization in Music Optimizes Neural Mechanisms in Symbolic Encoding of Perceptual Reality. Part-2: Ancient to Seventeenth Century.

    Science.gov (United States)

    Nikolsky, Aleksey

    2016-01-01

    This paper reveals the way in which musical pitch works as a peculiar form of cognition that reflects upon the organization of the surrounding world as perceived by majority of music users within a socio-cultural formation. Part-1 of this paper described the origin of tonal organization from verbal speech, its progress from indefinite to definite pitch, and the emergence of two main harmonic orders: heptatonic and pentatonic, each characterized by its own method of handling tension at both domains, of tonal and social organization. Part-2, here, completes the line of historic development from Antiquity to seventeenth century. Vast archeological data is used to identify the perception of music structures that tells apart the temple/palace music of urban civilizations and the folk music of village cultures. The "mega-pitch-set" (MPS) organization is found to constitute the principal contribution of a math-based music theory to a new diatonic order. All ramifications for psychology of music are discussed in detail. "Non-octave hypermode" is identified as a peculiar homogenous type of MPS, typical for plainchant. The origin of chromaticism is thoroughly examined as an earmark of "art-music" that opposes earlier forms of folk music. The role of aesthetic emotions in formation of chromatic alteration is defined. The development of chromatic system is traced throughout history, highlighting its modern implementation in "hemiolic modes." The connection between tonal organization in music and spatial organization in pictorial art is established in the Baroque culture, and then tracked back to prehistoric times. Both are shown to present a form of abstraction of environmental topographic schemes, and music is proposed as the primary medium for its cultivation through the concept of pitch. The comparison of stages of tonal organization and typologies of musical texture is used to define the overall course of tonal evolution. Tonal organization of pitch reflects the culture of

  13. Neural circuit mechanisms of posttraumatic epilepsy

    Directory of Open Access Journals (Sweden)

    Robert F Hunt

    2013-06-01

    Full Text Available Traumatic brain injury (TBI greatly increases the risk for a number of mental health problems and is one of the most common causes of medically intractable epilepsy in humans. Several models of TBI have been developed to investigate the relationship between trauma, seizures, and epilepsy-related changes in neural circuit function. These studies have shown that the brain initiates immediate neuronal and glial responses following an injury, usually leading to significant cell loss in areas of the injured brain. Over time, long-term changes in the organization of neural circuits, particularly in neocortex and hippocampus, lead to an imbalance between excitatory and inhibitory neurotransmission and increased risk for spontaneous seizures. These include alterations to inhibitory interneurons and formation of new, excessive recurrent excitatory synaptic connectivity. Here, we review in vivo models of TBI as well as key cellular mechanisms of synaptic reorganization associated with posttraumatic epilepsy. The potential role of inflammation and increased blood brain barrier permeability in the pathophysiology of posttraumatic epilepsy is also discussed. A better understanding of mechanisms that promote the generation of epileptic activity versus those that promote compensatory brain repair and functional recovery should aid development of successful new therapies for posttraumatic epilepsy.

  14. Language evolution: neural homologies and neuroinformatics.

    Science.gov (United States)

    Arbib, Michael; Bota, Mihail

    2003-11-01

    This paper contributes to neurolinguistics by grounding an evolutionary account of the readiness of the human brain for language in the search for homologies between different cortical areas in macaque and human. We consider two hypotheses for this grounding, that of Aboitiz and Garci;a [Brain Res. Rev. 25 (1997) 381] and the Mirror System Hypothesis of Rizzolatti and Arbib [Trends Neurosci. 21 (1998) 188] and note the promise of computational modeling of neural circuitry of the macaque and its linkage to analysis of human brain imaging data. In addition to the functional differences between the two hypotheses, problems arise because they are grounded in different cortical maps of the macaque brain. In order to address these divergences, we have developed several neuroinformatics tools included in an on-line knowledge management system, the NeuroHomology Database, which is equipped with inference engines both to relate and translate information across equivalent cortical maps and to evaluate degrees of homology for brain regions of interest in different species.

  15. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    Science.gov (United States)

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  16. Neural mechanisms of sequence generation in songbirds

    Science.gov (United States)

    Langford, Bruce

    Animal models in research are useful for studying more complex behavior. For example, motor sequence generation of actions requiring good muscle coordination such as writing with a pen, playing an instrument, or speaking, may involve the interaction of many areas in the brain, each a complex system in itself; thus it can be difficult to determine causal relationships between neural behavior and the behavior being studied. Birdsong, however, provides an excellent model behavior for motor sequence learning, memory, and generation. The song consists of learned sequences of notes that are spectrographically stereotyped over multiple renditions of the song, similar to syllables in human speech. The main areas of the songbird brain involve in singing are known, however, the mechanisms by which these systems store and produce song are not well understood. We used a custom built, head-mounted, miniature motorized microdrive to chronically record the neural firing patterns of identified neurons in HVC, a pre-motor cortical nucleus which has been shown to be important in song timing. These were done in Bengalese finch which generate a song made up of stereotyped notes but variable note sequences. We observed song related bursting in neurons projecting to Area X, a homologue to basal ganglia, and tonic firing in HVC interneurons. Interneuron had firing rate patterns that were consistent over multiple renditions of the same note sequence. We also designed and built a light-weight, low-powered wireless programmable neural stimulator using Bluetooth Low Energy Protocol. It was able to generate perturbations in the song when current pulses were administered to RA, which projects to the brainstem nucleus responsible for syringeal muscle control.

  17. Remodeling myelination: implications for mechanisms of neural plasticity.

    Science.gov (United States)

    Chang, Kae-Jiun; Redmond, Stephanie A; Chan, Jonah R

    2016-02-01

    One of the most significant paradigm shifts in membrane remodeling is the emerging view that membrane transformation is not exclusively controlled by cytoskeletal rearrangement, but also by biophysical constraints, adhesive forces, membrane curvature and compaction. One of the most exquisite examples of membrane remodeling is myelination. The advent of myelin was instrumental in advancing the nervous system during vertebrate evolution. With more rapid and efficient communication between neurons, faster and more complex computations could be performed in a given time and space. Our knowledge of how myelin-forming oligodendrocytes select and wrap axons has been limited by insufficient spatial and temporal resolution. By virtue of recent technological advances, progress has clarified longstanding controversies in the field. Here we review insights into myelination, from target selection to axon wrapping and membrane compaction, and discuss how understanding these processes has unexpectedly opened new avenues of insight into myelination-centered mechanisms of neural plasticity.

  18. The importance of mechanisms for the evolution of cooperation.

    Science.gov (United States)

    van den Berg, Pieter; Weissing, Franz J

    2015-08-22

    Studies aimed at explaining the evolution of phenotypic traits have often solely focused on fitness considerations, ignoring underlying mechanisms. In recent years, there has been an increasing call for integrating mechanistic perspectives in evolutionary considerations, but it is not clear whether and how mechanisms affect the course and outcome of evolution. To study this, we compare four mechanistic implementations of two well-studied models for the evolution of cooperation, the Iterated Prisoner's Dilemma (IPD) game and the Iterated Snowdrift (ISD) game. Behavioural strategies are either implemented by a 1 : 1 genotype-phenotype mapping or by a simple neural network. Moreover, we consider two different scenarios for the effect of mutations. The same set of strategies is feasible in all four implementations, but the probability that a given strategy arises owing to mutation is largely dependent on the behavioural and genetic architecture. Our individual-based simulations show that this has major implications for the evolutionary outcome. In the ISD, different evolutionarily stable strategies are predominant in the four implementations, while in the IPD each implementation creates a characteristic dynamical pattern. As a consequence, the evolved average level of cooperation is also strongly dependent on the underlying mechanism. We argue that our findings are of general relevance for the evolution of social behaviour, pleading for the integration of a mechanistic perspective in models of social evolution. © 2015 The Author(s).

  19. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  20. [Mechanism of neural plasticity of acupuncture on chronic migraine].

    Science.gov (United States)

    Xu, Xiaobai; Liu, Lu; Zhao, Luopeng; Qu, Zhengyang; Zhu, Yupu; Zhang, Yajie; Wang, Linpeng

    2017-10-12

    Chronic migraine is one of neurological disorders with high rate of disability, but sufficient attention has not been paid in this field. A large number of clinical studies have shown traditional Chinese acupuncture is a kind of effective treatment with less side effects. Through the analysis of literature regarding acupuncture and migraine published from 1981 to 2017 in CNKI and PubMed databases, the mechanism of neural plasticity of acupuncture on chronic migraine was explored. It was believed the progress of chronic migraine involved the changes of neural plasticity in neural structure and function, and the neural plasticity related with neural sensitization during the process of chronic migraine was discussed from three aspects of electrophysiology, molecular chemistry and radiography. Acupuncture could treat and prevent chronic migraine via the mechanism of neural plasticity, but there was no related literature, hindering the further spreading and development of acupuncture for chronic migraine.

  1. THE POTENTIAL NEURAL MECHANISMS OF ACUTE INDIRECT VIBRATION

    Directory of Open Access Journals (Sweden)

    Darryl J. Cochrane

    2011-03-01

    Full Text Available There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception suggesting neural enhancement. Nevertheless, the neural mechanism(s of vibration and its potentiating effect have received little attention. One proposal suggests that spinal reflexes enhance muscle contraction through a reflex activity known as tonic vibration stretch reflex (TVR, which increases muscle activation. However, TVR is based on direct, brief, and high frequency vibration (>100 Hz which differs to indirect vibration, which is applied to the whole body or body parts at lower vibration frequency (5-45 Hz. Likewise, muscle tuning and neuromuscular aspects are other candidate mechanisms used to explain the vibration phenomenon. But there is much debate in terms of identifying which neural mechanism(s are responsible for acute vibration; due to a number of studies using various vibration testing protocols. These protocols include: different methods of application, vibration variables, training duration, exercise types and a range of population groups. Therefore, the neural mechanism of acute vibration remain equivocal, but spinal reflexes, muscle tuning and neuromuscular aspects are all viable factors that may contribute in different ways to increasing muscular performance. Additional research is encouraged to determine which neural mechanism(s and their contributions are responsible for acute vibration. Testing variables and vibration applications need to be standardised before reaching a consensus on which neural mechanism(s occur during and post-vibration

  2. Measuring multiple evolution mechanisms of complex networks.

    Science.gov (United States)

    Zhang, Qian-Ming; Xu, Xiao-Ke; Zhu, Yu-Xiao; Zhou, Tao

    2015-06-11

    Numerous concise models such as preferential attachment have been put forward to reveal the evolution mechanisms of real-world networks, which show that real-world networks are usually jointly driven by a hybrid mechanism of multiplex features instead of a single pure mechanism. To get an accurate simulation for real networks, some researchers proposed a few hybrid models by mixing multiple evolution mechanisms. Nevertheless, how a hybrid mechanism of multiplex features jointly influence the network evolution is not very clear. In this study, we introduce two methods (link prediction and likelihood analysis) to measure multiple evolution mechanisms of complex networks. Through tremendous experiments on artificial networks, which can be controlled to follow multiple mechanisms with different weights, we find the method based on likelihood analysis performs much better and gives very accurate estimations. At last, we apply this method to some real-world networks which are from different domains (including technology networks and social networks) and different countries (e.g., USA and China), to see how popularity and clustering co-evolve. We find most of them are affected by both popularity and clustering, but with quite different weights.

  3. Language and cognition interaction neural mechanisms.

    Science.gov (United States)

    Perlovsky, Leonid

    2011-01-01

    How language and cognition interact in thinking? Is language just used for communication of completed thoughts, or is it fundamental for thinking? Existing approaches have not led to a computational theory. We develop a hypothesis that language and cognition are two separate but closely interacting mechanisms. Language accumulates cultural wisdom; cognition develops mental representations modeling surrounding world and adapts cultural knowledge to concrete circumstances of life. Language is acquired from surrounding language "ready-made" and therefore can be acquired early in life. This early acquisition of language in childhood encompasses the entire hierarchy from sounds to words, to phrases, and to highest concepts existing in culture. Cognition is developed from experience. Yet cognition cannot be acquired from experience alone; language is a necessary intermediary, a "teacher." A mathematical model is developed; it overcomes previous difficulties and leads to a computational theory. This model is consistent with Arbib's "language prewired brain" built on top of mirror neuron system. It models recent neuroimaging data about cognition, remaining unnoticed by other theories. A number of properties of language and cognition are explained, which previously seemed mysterious, including influence of language grammar on cultural evolution, which may explain specifics of English and Arabic cultures.

  4. Language and Cognition Interaction Neural Mechanisms

    Directory of Open Access Journals (Sweden)

    Leonid Perlovsky

    2011-01-01

    Full Text Available How language and cognition interact in thinking? Is language just used for communication of completed thoughts, or is it fundamental for thinking? Existing approaches have not led to a computational theory. We develop a hypothesis that language and cognition are two separate but closely interacting mechanisms. Language accumulates cultural wisdom; cognition develops mental representations modeling surrounding world and adapts cultural knowledge to concrete circumstances of life. Language is acquired from surrounding language “ready-made” and therefore can be acquired early in life. This early acquisition of language in childhood encompasses the entire hierarchy from sounds to words, to phrases, and to highest concepts existing in culture. Cognition is developed from experience. Yet cognition cannot be acquired from experience alone; language is a necessary intermediary, a “teacher.” A mathematical model is developed; it overcomes previous difficulties and leads to a computational theory. This model is consistent with Arbib's “language prewired brain” built on top of mirror neuron system. It models recent neuroimaging data about cognition, remaining unnoticed by other theories. A number of properties of language and cognition are explained, which previously seemed mysterious, including influence of language grammar on cultural evolution, which may explain specifics of English and Arabic cultures.

  5. Neural Mechanisms Underlying Compensatory and Noncompensatory Strategies in Risky Choice

    NARCIS (Netherlands)

    van Duijvenvoorde, A.C.K.; Figner, B.; Weeda, W.D.; van der Molen, M.W.; Jansen, B.R.J.; Huizenga, H.M.

    Individuals may differ systematically in their applied decision strategies, which has critical implications for decision neuroscience but is yet scarcely studied. Our study's main focus was therefore to investigate the neural mechanisms underlying compensatory versus noncompensatory strategies in

  6. Neural mechanisms underlying compensatory and noncompensatory strategies in risky choice

    NARCIS (Netherlands)

    Duijvenvoorde, A.C.K. van; Figner, B.; Weeda, W.D.; Molen, M.W. van der; Jansen, B.R.J.; Huizenga, H.M.

    2016-01-01

    Individuals may differ systematically in their applied decision strategies, which has critical implications for decision neuroscience but is yet scarcely studied. Our study's main focus was therefore to investigate the neural mechanisms underlying compensatory versus noncompensatory strategies in

  7. Music listening after stroke: beneficial effects and potential neural mechanisms

    National Research Council Canada - National Science Library

    Särkämö, Teppo; Soto, David

    2012-01-01

    .... Then we will present findings about the short‐ and long‐term effects of music listening on the recovery of cognitive function in stroke patients and the underlying neural mechanisms of these music effects...

  8. On the neural mechanisms subserving consciousness and attention

    Directory of Open Access Journals (Sweden)

    Catherine eTallon-Baudry

    2012-01-01

    Full Text Available Consciousness, as described in the experimental literature, is a multi-faceted phenomenon, that impinges on other well-studied concepts such as attention and control. Do consciousness and attention refer to different aspects of the same core phenomenon, or do they correspond to distinct functions? One possibility to address this question is to examine the neural mechanisms underlying consciousness and attention. If consciousness and attention pertain to the same concept, they should rely on shared neural mechanisms. Conversely, if their underlying mechanisms are distinct, then consciousness and attention should be considered as distinct entities. This paper therefore reviews neurophysiological facts arguing in favor or against a tight relationship between consciousness and attention. Three neural mechanisms that have been associated with both attention and consciousness are examined (neural amplification, involvement of the fronto-parietal network, and oscillatory synchrony, to conclude that the commonalities between attention and consciousness at the neural level may have been overestimated. Last but not least, experiments in which both attention and consciousness were probed at the neural level point toward a dissociation between the two concepts. It therefore appears from this review that consciousness and attention rely on distinct neural properties, although they can interact at the behavioral level. It is proposed that a "cumulative influence model", in which attention and consciousness correspond to distinct neural mechanisms feeding a single decisional process leading to behavior, fits best with available neural and behavioral data. In this view, consciousness should not be considered as a top-level executive function but should rather be defined by its experiential properties.

  9. PREDICTION THE EVOLUTION OF TEMPERATURE AND VIBRATIONS ON SPINDLE USING ARTIFICIAL NEURAL NETWORKS AND FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Daniel Petru GHENCEA

    2016-05-01

    Full Text Available Simulation spindle behavior in terms of temperature and vibration at higher speeds is more economical and more secure (avoid undesirable mechanical events than testing practice. Testing practice has an important role in finalizing the product but throughout the course of prototype testing is more advantageous economic development simulation parameters based on data sets collected to dangerous speeds. In this paper we present an analysis mode hybrid (artificial neural networks - fuzzy logic on prediction the evolution of temperatures and vibrations at higher speeds for which no measurements were made. The main advantage of the method is the simultaneous prediction of the dynamics of temperature and vibration levels.

  10. Neural tube closure: cellular, molecular and biomechanical mechanisms.

    Science.gov (United States)

    Nikolopoulou, Evanthia; Galea, Gabriel L; Rolo, Ana; Greene, Nicholas D E; Copp, Andrew J

    2017-02-15

    Neural tube closure has been studied for many decades, across a range of vertebrates, as a paradigm of embryonic morphogenesis. Neurulation is of particular interest in view of the severe congenital malformations - 'neural tube defects' - that result when closure fails. The process of neural tube closure is complex and involves cellular events such as convergent extension, apical constriction and interkinetic nuclear migration, as well as precise molecular control via the non-canonical Wnt/planar cell polarity pathway, Shh/BMP signalling, and the transcription factors Grhl2/3, Pax3, Cdx2 and Zic2. More recently, biomechanical inputs into neural tube morphogenesis have also been identified. Here, we review these cellular, molecular and biomechanical mechanisms involved in neural tube closure, based on studies of various vertebrate species, focusing on the most recent advances in the field. © 2017. Published by The Company of Biologists Ltd.

  11. A canonical neural mechanism for behavioral variability

    Science.gov (United States)

    Darshan, Ran; Wood, William E.; Peters, Susan; Leblois, Arthur; Hansel, David

    2017-05-01

    The ability to generate variable movements is essential for learning and adjusting complex behaviours. This variability has been linked to the temporal irregularity of neuronal activity in the central nervous system. However, how neuronal irregularity actually translates into behavioural variability is unclear. Here we combine modelling, electrophysiological and behavioural studies to address this issue. We demonstrate that a model circuit comprising topographically organized and strongly recurrent neural networks can autonomously generate irregular motor behaviours. Simultaneous recordings of neurons in singing finches reveal that neural correlations increase across the circuit driving song variability, in agreement with the model predictions. Analysing behavioural data, we find remarkable similarities in the babbling statistics of 5-6-month-old human infants and juveniles from three songbird species and show that our model naturally accounts for these `universal' statistics.

  12. A new approach to the automatic identification of organism evolution using neural networks.

    Science.gov (United States)

    Kasperski, Andrzej; Kasperska, Renata

    2016-01-01

    Automatic identification of organism evolution still remains a challenging task, which is especially exiting, when the evolution of human is considered. The main aim of this work is to present a new idea to allow organism evolution analysis using neural networks. Here we show that it is possible to identify evolution of any organisms in a fully automatic way using the designed EvolutionXXI program, which contains implemented neural network. The neural network has been taught using cytochrome b sequences of selected organisms. Then, analyses have been carried out for the various exemplary organisms in order to demonstrate capabilities of the EvolutionXXI program. It is shown that the presented idea allows supporting existing hypotheses, concerning evolutionary relationships between selected organisms, among others, Sirenia and elephants, hippopotami and whales, scorpions and spiders, dolphins and whales. Moreover, primate (including human), tree shrew and yeast evolution has been reconstructed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Can computational efficiency alone drive the evolution of modularity in neural networks?

    Science.gov (United States)

    Tosh, Colin R

    2016-08-30

    Some biologists have abandoned the idea that computational efficiency in processing multipart tasks or input sets alone drives the evolution of modularity in biological networks. A recent study confirmed that small modular (neural) networks are relatively computationally-inefficient but large modular networks are slightly more efficient than non-modular ones. The present study determines whether these efficiency advantages with network size can drive the evolution of modularity in networks whose connective architecture can evolve. The answer is no, but the reason why is interesting. All simulations (run in a wide variety of parameter states) involving gradualistic connective evolution end in non-modular local attractors. Thus while a high performance modular attractor exists, such regions cannot be reached by gradualistic evolution. Non-gradualistic evolutionary simulations in which multi-modularity is obtained through duplication of existing architecture appear viable. Fundamentally, this study indicates that computational efficiency alone does not drive the evolution of modularity, even in large biological networks, but it may still be a viable mechanism when networks evolve by non-gradualistic means.

  14. Developmental modes and developmental mechanisms can channel brain evolution

    Directory of Open Access Journals (Sweden)

    Christine J Charvet

    2011-02-01

    Full Text Available Anseriform birds (ducks and geese as well as parrots and songbirds have evolved a disproportionately enlarged telencephalon compared with many other birds. However, parrots and songbirds differ from anseriform birds in their mode of development. Whereas ducks and geese are precocial (e.g., hatchlings feed on their own, parrots and songbirds are altricial (e.g., hatchlings are fed by their parents. We here consider how developmental modes may limit and facilitate specific changes in the mechanisms of brain development. We suggest that altriciality facilitates the evolution of telencephalic expansion by delaying telencephalic neurogenesis. We further hypothesize that delays in telencephalic neurogenesis generate delays in telencephalic maturation, which in turn foster neural adaptations that facilitate learning. Specifically, we propose that delaying telencephalic neurogenesis was a prerequisite for the evolution of neural circuits that allow parrots and songbirds to produce learned vocalizations. Overall, we argue that developmental modes have influenced how some lineages of birds increased the size of their telencephalon and that this, in turn, has influenced subsequent changes in brain circuits and behavior.

  15. Neural mechanisms of social influence in adolescence.

    Science.gov (United States)

    Welborn, B Locke; Lieberman, Matthew D; Goldenberg, Diane; Fuligni, Andrew J; Galván, Adriana; Telzer, Eva H

    2016-01-01

    During the transformative period of adolescence, social influence plays a prominent role in shaping young people's emerging social identities, and can impact their propensity to engage in prosocial or risky behaviors. In this study, we examine the neural correlates of social influence from both parents and peers, two important sources of influence. Nineteen adolescents (age 16-18 years) completed a social influence task during a functional magnetic resonance imaging (fMRI) scan. Social influence from both sources evoked activity in brain regions implicated in mentalizing (medial prefrontal cortex, left temporoparietal junction, right temporoparietal junction), reward (ventromedial prefrontal cortex), and self-control (right ventrolateral prefrontal cortex). These results suggest that mental state reasoning, social reward and self-control processes may help adolescents to evaluate others' perspectives and overcome the prepotent force of their own antecedent attitudes to shift their attitudes toward those of others. Findings suggest common neural networks involved in social influence from both parents and peers. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  17. Stereopsis in animals: evolution, function and mechanisms

    Science.gov (United States)

    Read, Jenny C. A.

    2017-01-01

    ABSTRACT Stereopsis is the computation of depth information from views acquired simultaneously from different points in space. For many years, stereopsis was thought to be confined to primates and other mammals with front-facing eyes. However, stereopsis has now been demonstrated in many other animals, including lateral-eyed prey mammals, birds, amphibians and invertebrates. The diversity of animals known to have stereo vision allows us to begin to investigate ideas about its evolution and the underlying selective pressures in different animals. It also further prompts the question of whether all animals have evolved essentially the same algorithms to implement stereopsis. If so, this must be the best way to do stereo vision, and should be implemented by engineers in machine stereopsis. Conversely, if animals have evolved a range of stereo algorithms in response to different pressures, that could inspire novel forms of machine stereopsis appropriate for distinct environments, tasks or constraints. As a first step towards addressing these ideas, we here review our current knowledge of stereo vision in animals, with a view towards outlining common principles about the evolution, function and mechanisms of stereo vision across the animal kingdom. We conclude by outlining avenues for future work, including research into possible new mechanisms of stereo vision, with implications for machine vision and the role of stereopsis in the evolution of camouflage. PMID:28724702

  18. Reject mechanisms for massively parallel neural network character recognition systems

    Science.gov (United States)

    Garris, Michael D.; Wilson, Charles L.

    1992-12-01

    Two reject mechanisms are compared using a massively parallel character recognition system implemented at NIST. The recognition system was designed to study the feasibility of automatically recognizing hand-printed text in a loosely constrained environment. The first method is a simple scalar threshold on the output activation of the winning neurode from the character classifier network. The second method uses an additional neural network trained on all outputs from the character classifier network to accept or reject assigned classifications. The neural network rejection method was expected to perform with greater accuracy than the scalar threshold method, but this was not supported by the test results presented. The scalar threshold method, even though arbitrary, is shown to be a viable reject mechanism for use with neural network character classifiers. Upon studying the performance of the neural network rejection method, analyses show that the two neural networks, the character classifier network and the rejection network, perform very similarly. This can be explained by the strong non-linear function of the character classifier network which effectively removes most of the correlation between character accuracy and all activations other than the winning activation. This suggests that any effective rejection network must receive information from the system which has not been filtered through the non-linear classifier.

  19. Distinct neural mechanisms for body form and body motion discriminations

    NARCIS (Netherlands)

    Vangeneugden, Joris; Peelen, Marius V; Tadin, Duje; Battelli, Lorella

    2014-01-01

    Actions can be understood based on form cues (e.g., static body posture) as well as motion cues (e.g., gait patterns). A fundamental debate centers on the question of whether the functional and neural mechanisms processing these two types of cues are dissociable. Here, using fMRI, psychophysics, and

  20. Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales

    Science.gov (United States)

    McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.

    2008-01-01

    Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…

  1. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    Science.gov (United States)

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  2. Neural and cognitive mechanisms of creativity

    NARCIS (Netherlands)

    Akbari Chermahini, Soghra

    2011-01-01

    The studies of this thesis provide empirical evidence that creativity is not a homogeneous concept; rather it reflects the interplay of separate, dissociable processes such as convergent and divergent thinking (e.g., Guilford, 1967). The cognitive mechanism of these two processes is different, but

  3. Homeostasis as the Mechanism of Evolution

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2015-09-01

    Full Text Available Homeostasis is conventionally thought of merely as a synchronic (same time servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.

  4. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Ziaul Huque

    2007-08-31

    This is the final technical report for the project titled 'Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks'. The aim of the project was to develop an efficient chemistry model for combustion simulations. The reduced chemistry model was developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) was used via a new network topology known as Non-linear Principal Components Analysis (NPCA). A commonly used Multilayer Perceptron Neural Network (MLP-NN) was modified to implement NPCA-NN. The training rate of NPCA-NN was improved with the GEneralized Regression Neural Network (GRNN) based on kernel smoothing techniques. Kernel smoothing provides a simple way of finding structure in data set without the imposition of a parametric model. The trajectory data of the reaction mechanism was generated based on the optimization techniques of genetic algorithm (GA). The NPCA-NN algorithm was then used for the reduction of Dimethyl Ether (DME) mechanism. DME is a recently discovered fuel made from natural gas, (and other feedstock such as coal, biomass, and urban wastes) which can be used in compression ignition engines as a substitute for diesel. An in-house two-dimensional Computational Fluid Dynamics (CFD) code was developed based on Meshfree technique and time marching solution algorithm. The project also provided valuable research experience to two graduate students.

  5. Distinct neural and neuromuscular strategies underlie independent evolution of simplified advertisement calls.

    Science.gov (United States)

    Leininger, Elizabeth C; Kelley, Darcy B

    2013-04-07

    Independent or convergent evolution can underlie phenotypic similarity of derived behavioural characters. Determining the underlying neural and neuromuscular mechanisms sheds light on how these characters arose. One example of evolutionarily derived characters is a temporally simple advertisement call of male African clawed frogs (Xenopus) that arose at least twice independently from a more complex ancestral pattern. How did simplification occur in the vocal circuit? To distinguish shared from divergent mechanisms, we examined activity from the calling brain and vocal organ (larynx) in two species that independently evolved simplified calls. We find that each species uses distinct neural and neuromuscular strategies to produce the simplified calls. Isolated Xenopus borealis brains produce fictive vocal patterns that match temporal patterns of actual male calls; the larynx converts nerve activity faithfully into muscle contractions and single clicks. In contrast, fictive patterns from isolated Xenopus boumbaensis brains are short bursts of nerve activity; the isolated larynx requires stimulus bursts to produce a single click of sound. Thus, unlike X. borealis, the output of the X. boumbaensis hindbrain vocal pattern generator is an ancestral burst-type pattern, transformed by the larynx into single clicks. Temporally simple advertisement calls in genetically distant species of Xenopus have thus arisen independently via reconfigurations of central and peripheral vocal neuroeffectors.

  6. Development of neural mechanisms for machine learning.

    Science.gov (United States)

    Arsenio, Artur M

    2005-01-01

    The goal of this work is to develop a humanoid robot's perceptual mechanisms through the use of learning aids. We describe methods to enable learning on a humanoid robot using learning aids such as books, drawing materials, boards, educational videos or other children toys. Visual properties of objects are learned and inserted into a recognition scheme, which is then applied to acquire new object representations - we propose learning through developmental stages. Inspired in infant development, we will also boost the robot's perceptual capabilities by having a human caregiver performing educational and play activities with the robot (such as drawing, painting or playing with a toy train on a railway). We describe original algorithms to extract meaningful percepts from such learning experiments. Experimental evaluation of the algorithms corroborates the theoretical framework.

  7. Potential Mechanisms and Functions of Intermittent Neural Synchronization

    Directory of Open Access Journals (Sweden)

    Sungwoo Ahn

    2017-05-01

    Full Text Available Neural synchronization is believed to play an important role in different brain functions. Synchrony in cortical and subcortical circuits is frequently variable in time and not perfect. Few long intervals of desynchronized dynamics may be functionally different from many short desynchronized intervals although the average synchrony may be the same. Recent analysis of imperfect synchrony in different neural systems reported one common feature: neural oscillations may go out of synchrony frequently, but primarily for a short time interval. This study explores potential mechanisms and functional advantages of this short desynchronizations dynamics using computational neuroscience techniques. We show that short desynchronizations are exhibited in coupled neurons if their delayed rectifier potassium current has relatively large values of the voltage-dependent activation time-constant. The delayed activation of potassium current is associated with generation of quickly-rising action potential. This “spikiness” is a very general property of neurons. This may explain why very different neural systems exhibit short desynchronization dynamics. We also show how the distribution of desynchronization durations may be independent of the synchronization strength. Finally, we show that short desynchronization dynamics requires weaker synaptic input to reach a pre-set synchrony level. Thus, this dynamics allows for efficient regulation of synchrony and may promote efficient formation of synchronous neural assemblies.

  8. Species diversity and the evolution of behavioral controlling mechanisms.

    Science.gov (United States)

    Crews, D

    1997-01-15

    One of the first things that we are impressed by is the great variety of animals, particularly their behaviors and their physiologies. With so many differences, are there any generalities? With the establishment of evolutionary theory, evidence of "unity in diversity" comes with discoveries of common anatomical features, the cell cycle, conservation of intermediary metabolism, and the genetic code, to name but a few. In vertebrates there appears to be a conservation of the neural circuits underlying sexual behavior, but it is still too early to state the extent to which this concept can be extended to the hormonal mechanisms underlying behavior. Much of our conceptual understanding of behavioral neuroendocrinology stems from extensive studies on relatively few species. When an evolutionary perspective is applied to behavioral neuroscience, the breadth and validity of our assumptions about the mechanisms that control species-typical behaviors are challenged. This is not the same thing as saying that there are few unitary explanations that apply to all mammals, amniotes, or even vertebrates. Considerable information has been gathered about the neuroendocrine bases of behavior in a few species, but to uncover truly broad generalizations, we must look with equal intensity and rigor at other organisms. The pattern of evolution is best illustrated in the diversity of organisms, and the ecological and evolutionary perspective illuminates the utility of various "experiments of nature." By studying (1) closely related species that live in different habitats, we can see if the adaptational responses are similar, and (2) distantly related species that live in the same habitat, we can see if the solutions are analogous. The unique qualities of each species also give us a deeper understanding of the constraints in fundamental processes. When basic conflicts exist, control mechanisms adapt or the species goes extinct. Interestingly, although the neural circuits themselves do not

  9. Multiple neural mechanisms for coloring words in synesthesia.

    Science.gov (United States)

    Yokoyama, Takemasa; Noguchi, Yasuki; Koga, Hiroki; Tachibana, Ryosuke; Saiki, Jun; Kakigi, Ryusuke; Kita, Shinichi

    2014-07-01

    Grapheme-color synesthesia is a phenomenon in which achromatic letters/digits automatically induce particular colors. When multiple letters are integrated into a word, some synesthetes perceive that all those letters are changed into the same color, reporting lexical color to that word. Previous psychological studies found several "rules" that determine those lexical colors. The colors to most words are determined by the first letters of the words, while some words in ordinal sequences have their specific colors. Recent studies further reported the third case where lexical colors might be influenced by semantic information of words. Although neural mechanisms determining those lexical colors remained unknown, here we identified three separate neural systems in the synesthete's brain underlying three rules for illusory coloring of words. In addition to the occipito-temporal and parietal regions previously found to be associated with the grapheme-color synesthesia, neural systems for lexical coloring extended to linguistic areas in the left inferior frontal and anterior temporal regions that were engaged in semantic analyses of words. Those results indicate an involvement of wider and higher neural networks than previously assumed in a production of synesthetic colors to visual stimuli and further showed a multiplicity of synesthetic mechanisms represented in the single brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Music listening after stroke: beneficial effects and potential neural mechanisms.

    Science.gov (United States)

    Särkämö, Teppo; Soto, David

    2012-04-01

    Music is an enjoyable leisure activity that also engages many emotional, cognitive, and motor processes in the brain. Here, we will first review previous literature on the emotional and cognitive effects of music listening in healthy persons and various clinical groups. Then we will present findings about the short- and long-term effects of music listening on the recovery of cognitive function in stroke patients and the underlying neural mechanisms of these music effects. First, our results indicate that listening to pleasant music can have a short-term facilitating effect on visual awareness in patients with visual neglect, which is associated with functional coupling between emotional and attentional brain regions. Second, daily music listening can improve auditory and verbal memory, focused attention, and mood as well as induce structural gray matter changes in the early poststroke stage. The psychological and neural mechanisms potentially underlying the rehabilitating effect of music after stroke are discussed. © 2012 New York Academy of Sciences.

  11. Neural mechanisms of contextual influences during social perceptual decisions

    OpenAIRE

    El Zein, Marwa

    2015-01-01

    Everyday social decisions require the combination of multiple sources of information and therefore build upon abundant contextual elements such as the social cues of emitters (e.g., gaze direction, emotion, gesture), the attentional focus of observers, their mood and their past experience. The work conducted during this Ph.D. (including three main studies in healthy human subjects) aimed at characterizing the cognitive and neural mechanisms of contextual influences in social settings. The fir...

  12. Statistical Mechanics and Thermodynamics of Viral Evolution.

    Directory of Open Access Journals (Sweden)

    Barbara A Jones

    Full Text Available This paper uses methods drawn from physics to study the life cycle of viruses. The paper analyzes a model of viral infection and evolution using the "grand canonical ensemble" and formalisms from statistical mechanics and thermodynamics. Using this approach we enumerate all possible genetic states of a model virus and host as a function of two independent pressures-immune response and system temperature. We prove the system has a real thermodynamic temperature, and discover a new phase transition between a positive temperature regime of normal replication and a negative temperature "disordered" phase of the virus. We distinguish this from previous observations of a phase transition that arises as a function of mutation rate. From an evolutionary biology point of view, at steady state the viruses naturally evolve to distinct quasispecies. This paper also reveals a universal relationship that relates the order parameter (as a measure of mutational robustness to evolvability in agreement with recent experimental and theoretical work. Given that real viruses have finite length RNA segments that encode proteins which determine virus fitness, the approach used here could be refined to apply to real biological systems, perhaps providing insight into immune escape, the emergence of novel pathogens and other results of viral evolution.

  13. Neocortical arealization: evolution, mechanisms, and open questions.

    Science.gov (United States)

    Alfano, Christian; Studer, Michèle

    2013-06-01

    The mammalian neocortex is a structure with no equals in the vertebrates and is the seat of the highest cerebral functions, such as thoughts and consciousness. It is radially organized into six layers and tangentially subdivided into functional areas deputed to the elaboration of sensory information, association between different stimuli, and selection and triggering of voluntary movements. The process subdividing the neocortical field into several functional areas is called "arealization". Each area has its own cytoarchitecture, connectivity, and peculiar functions. In the last century, several neuroscientists have investigated areal structure and the mechanisms that have led during evolution to the rising of the neocortex and its organization. The extreme conservation in the positioning and wiring of neocortical areas among different mammalian families suggests a conserved genetic program orchestrating neocortical patterning. However, the impressive plasticity of the neocortex, which is able to rewire and reorganize areal structures and connectivity after impairments of sensory pathways, argues for a more complex scenario. Indeed, even if genetics and molecular biology helped in identifying several genes involved in the arealization process, the logic underlying the neocortical bauplan is still beyond our comprehension. In this review, we will introduce the present knowledge and hypotheses on the ontogenesis and evolution of neocortical areas. Then, we will focus our attention on some open issues, which are still unresolved, and discuss some recent studies that might open new directions to be explored in the next few years. Copyright © 2012 Wiley Periodicals, Inc.

  14. Evolution of Neural Dynamics in an Ecological Model

    Directory of Open Access Journals (Sweden)

    Steven Williams

    2017-07-01

    Full Text Available What is the optimal level of chaos in a computational system? If a system is too chaotic, it cannot reliably store information. If it is too ordered, it cannot transmit information. A variety of computational systems exhibit dynamics at the “edge of chaos”, the transition between the ordered and chaotic regimes. In this work, we examine the evolved neural networks of Polyworld, an artificial life model consisting of a simulated ecology populated with biologically inspired agents. As these agents adapt to their environment, their initially simple neural networks become increasingly capable of exhibiting rich dynamics. Dynamical systems analysis reveals that natural selection drives these networks toward the edge of chaos until the agent population is able to sustain itself. After this point, the evolutionary trend stabilizes, with neural dynamics remaining on average significantly far from the transition to chaos.

  15. Conceptual evolution of Newtonian and relativistic mechanics

    CERN Document Server

    Ghosh, Amitabha

    2018-01-01

    This book provides an introduction to Newtonian and relativistic mechanics. Unlike other books on the topic, which generally take a 'top-down' approach, it follows a novel system to show how the concepts of the 'science of motion' evolved through a veritable jungle of intermediate ideas and concepts. Starting with Aristotelian philosophy, the text gradually unravels how the human mind slowly progressed towards the fundamental ideas of inertia physics. The concepts that now appear so obvious to even a high school student took great intellectuals more than a millennium to clarify. The book explores the evolution of these concepts through the history of science. After a comprehensive overview of the discovery of dynamics, it explores fundamental issues of the properties of space and time and their relation with the laws of motion. It also explores the concepts of spatio-temporal locality and fields, and offers a philosophical discussion of relative motion versus absolute motion, as well as the concept of an abso...

  16. Neural mechanisms of discourse comprehension: a human lesion study.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2014-01-01

    Discourse comprehension is a hallmark of human social behaviour and refers to the act of interpreting a written or spoken message by constructing mental representations that integrate incoming language with prior knowledge and experience. Here, we report a human lesion study (n = 145) that investigates the neural mechanisms underlying discourse comprehension (measured by the Discourse Comprehension Test) and systematically examine its relation to a broad range of psychological factors, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores obtained from these factors were submitted to voxel-based lesion-symptom mapping to elucidate their neural substrates. Stepwise regression analyses revealed that working memory and extraversion reliably predict individual differences in discourse comprehension: higher working memory scores and lower extraversion levels predict better discourse comprehension performance. Lesion mapping results indicated that these convergent variables depend on a shared network of frontal and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The observed findings motivate an integrative framework for understanding the neural foundations of discourse comprehension, suggesting that core elements of discourse processing emerge from a distributed network of brain regions that support specific competencies for executive and social function.

  17. Neural Mechanisms and Information Processing in Recognition Systems

    Directory of Open Access Journals (Sweden)

    Mamiko Ozaki

    2014-10-01

    Full Text Available Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.

  18. Neural mechanisms of order information processing in working memory

    Directory of Open Access Journals (Sweden)

    Barbara Dolenc

    2013-11-01

    Full Text Available The ability to encode and maintain the exact order of short sequences of stimuli or events is often crucial to our ability for effective high-order planning. However, it is not yet clear which neural mechanisms underpin this process. Several studies suggest that in comparison with item recognition temporal order coding activates prefrontal and parietal brain regions. Results of various studies tend to favour the hypothesis that the order of the stimuli is represented and encoded on several stages, from primacy and recency estimates to the exact position of the item in a sequence. Different brain regions play a different role in this process. Dorsolateral prefrontal cortex has a more general role in attention, while the premotor cortex is more involved in the process of information grouping. Parietal lobe and hippocampus also play a significant role in order processing as they enable the representation of distance. Moreover, order maintenance is associated with the existence of neural oscillators that operate at different frequencies. Electrophysiological studies revealed that theta and alpha oscillations play an important role in the maintenance of temporal order information. Those EEG oscillations are differentially associated with processes that support the maintenance of order information and item recognition. Various studies suggest a link between prefrontal areas and memory for temporal order, implying that EEG neural oscillations in the prefrontal cortex may play a role in the maintenance of information on temporal order.

  19. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Nelson Butuk

    2005-12-01

    This is an annual technical report for the work done over the last year (period ending 9/30/2005) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the development of a novel procedure to speed up the training of NPCA. The same procedure termed L{sub 2}Boost can be used to increase the order of approximation of the Generalized Regression Neural Network (GRNN). It is pointed out that GRNN is a basic procedure for the emerging mesh free CFD. Also reported is an efficient simple approach of computing the derivatives of GRNN function approximation using complex variables or the Complex Step Method (CSM). The results presented demonstrate the significance of the methods developed and will be useful in many areas of applied science and engineering.

  20. Large Scale Evolution of Convolutional Neural Networks Using Volunteer Computing

    OpenAIRE

    Desell, Travis

    2017-01-01

    This work presents a new algorithm called evolutionary exploration of augmenting convolutional topologies (EXACT), which is capable of evolving the structure of convolutional neural networks (CNNs). EXACT is in part modeled after the neuroevolution of augmenting topologies (NEAT) algorithm, with notable exceptions to allow it to scale to large scale distributed computing environments and evolve networks with convolutional filters. In addition to multithreaded and MPI versions, EXACT has been ...

  1. Neural mechanisms of decision making in hoarding disorder.

    Science.gov (United States)

    Tolin, David F; Stevens, Michael C; Villavicencio, Anna L; Norberg, Melissa M; Calhoun, Vince D; Frost, Randy O; Steketee, Gail; Rauch, Scott L; Pearlson, Godfrey D

    2012-08-01

    Hoarding disorder (HD), previously considered a subtype of obsessive-compulsive disorder (OCD), has been proposed as a unique diagnostic entity in DSM-5. Current models of HD emphasize problems of decision-making, attachment to possessions, and poor insight, whereas previous neuroimaging studies have suggested abnormalities in frontal brain regions. To examine the neural mechanisms of impaired decision making in HD in patients with well-defined primary HD compared with patients with OCD and healthy control subjects (HCs). We compared neural activity among patients with HD, patients with OCD, and HCs during decisions to keep or discard personal possessions and control possessions from November 9, 2006, to August 13, 2010. Private, not-for-profit hospital. A total of 107 adults (43 with HD, 31 with OCD, and 33 HCs). Neural activity as measured by functional magnetic resonance imaging in which actual real-time and binding decisions had to be made about whether to keep or discard possessions. Compared with participants with OCD and HC, participants with HD exhibited abnormal activity in the anterior cingulate cortex and insula that was stimulus dependent. Specifically, when deciding about items that did not belong to them, patients with HD showed relatively lower activity in these brain regions. However, when deciding about items that belonged to them, these regions showed excessive functional magnetic resonance imaging signals compared with the other 2 groups. These differences in neural function correlated significantly with hoarding severity and self-ratings of indecisiveness and "not just right" feelings among patients with HD and were unattributable to OCD or depressive symptoms. Findings suggest a biphasic abnormality in anterior cingulate cortex and insula function in patients with HD related to problems in identifying the emotional significance of a stimulus, generating appropriate emotional response, or regulating affective state during decision making.

  2. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    model, etc.) might be too complex to study. In this paper, we use a comparatively simple mechanical system, the nonholonomic vehicle referred to as the Roller-Racer, as a means towards testing different learning strategies for an Recurrent Neural Network-based (RNN) controller/guidance system. After...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....

  3. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance

  4. Neural mechanisms of smooth pursuit eye movements in schizotypy.

    Science.gov (United States)

    Meyhöfer, Inga; Steffens, Maria; Kasparbauer, Anna; Grant, Phillip; Weber, Bernd; Ettinger, Ulrich

    2015-01-01

    Patients with schizophrenia as well as individuals with high levels of schizotypy are known to have deficits in smooth pursuit eye movements (SPEM). Here, we investigated, for the first time, the neural mechanisms underlying SPEM performance in high schizotypy. Thirty-one healthy participants [N = 19 low schizotypes, N = 12 high schizotypes (HS)] underwent functional magnetic resonance imaging at 3T with concurrent oculographic recording while performing a SPEM task with sinusoidal stimuli at two velocities (0.2 and 0.4 Hz). Behaviorally, a significant interaction between schizotypy group and velocity was found for frequency of saccades during SPEM, indicating impairments in HS in the slow but not the fast condition. On the neural level, HS demonstrated lower brain activation in different regions of the occipital lobe known to be associated with early sensory and attentional processing and motion perception (V3A, middle occipital gyrus, and fusiform gyrus). This group difference in neural activation was independent of target velocity. Together, these findings replicate the observation of altered pursuit performance in highly schizotypal individuals and, for the first time, identify brain activation patterns accompanying these performance changes. These posterior activation differences are compatible with evidence of motion processing deficits from the schizophrenia literature and, therefore, suggest overlap between schizotypy and schizophrenia both on cognitive-perceptual and neurophysiological levels. However, deficits in frontal motor areas observed during pursuit in schizophrenia were not seen here, suggesting the operation of additional genetic and/or illness-related influences in the clinical disorder. © 2014 Wiley Periodicals, Inc.

  5. Development and Evolution of Neural Networks in an Artificial Chemistry

    CERN Document Server

    Astor, J C; Astor, Jens C.; Adami, Christoph

    1998-01-01

    We present a model of decentralized growth for Artificial Neural Networks (ANNs) inspired by the development and the physiology of real nervous systems. In this model, each individual artificial neuron is an autonomous unit whose behavior is determined only by the genetic information it harbors and local concentrations of substrates modeled by a simple artificial chemistry. Gene expression is manifested as axon and dendrite growth, cell division and differentiation, substrate production and cell stimulation. We demonstrate the model's power with a hand-written genome that leads to the growth of a simple network which performs classical conditioning. To evolve more complex structures, we implemented a platform-independent, asynchronous, distributed Genetic Algorithm (GA) that allows users to participate in evolutionary experiments via the World Wide Web.

  6. Noise and the evolution of neural network modularity.

    Science.gov (United States)

    Høverstad, Boye Annfelt

    2011-01-01

    We study the selective advantage of modularity in artificially evolved networks. Modularity abounds in complex systems in the real world. However, experimental evidence for the selective advantage of network modularity has been elusive unless it has been supported or mandated by the genetic representation. The evolutionary origin of modularity is thus still debated: whether networks are modular because of the process that created them, or the process has evolved to produce modular networks. It is commonly argued that network modularity is beneficial under noisy conditions, but experimental support for this is still very limited. In this article, we evolve nonlinear artificial neural network classifiers for a binary classification task with a modular structure. When noise is added to the edge weights of the networks, modular network topologies evolve, even without representational support.

  7. Evolution of Neural Computations: Mantis Shrimp and Human Color Decoding

    Directory of Open Access Journals (Sweden)

    Qasim Zaidi

    2014-10-01

    Full Text Available Mantis shrimp and primates both possess good color vision, but the neural implementation in the two species is very different, a reflection of the largely unrelated evolutionary lineages of these creatures. Mantis shrimp have scanning compound eyes with 12 classes of photoreceptors, and have evolved a system to decode color information at the front-end of the sensory stream. Primates have image-focusing eyes with three classes of cones, and decode color further along the visual-processing hierarchy. Despite these differences, we report a fascinating parallel between the computational strategies at the color-decoding stage in the brains of stomatopods and primates. Both species appear to use narrowly tuned cells that support interval decoding color identification.

  8. Spatial evolution of quantum mechanical states

    Science.gov (United States)

    Christensen, N. D.; Unger, J. E.; Pinto, S.; Su, Q.; Grobe, R.

    2018-02-01

    The time-dependent Schrödinger equation is solved traditionally as an initial-time value problem, where its solution is obtained by the action of the unitary time-evolution propagator on the quantum state that is known at all spatial locations but only at t = 0. We generalize this approach by examining the spatial evolution from a state that is, by contrast, known at all times t, but only at one specific location. The corresponding spatial-evolution propagator turns out to be pseudo-unitary. In contrast to the real energies that govern the usual (unitary) time evolution, the spatial evolution can therefore require complex phases associated with dynamically relevant solutions that grow exponentially. By introducing a generalized scalar product, for which the spatial generator is Hermitian, one can show that the temporal integral over the probability current density is spatially conserved, in full analogy to the usual norm of the state, which is temporally conserved. As an application of the spatial propagation formalism, we introduce a spatial backtracking technique that permits us to reconstruct any quantum information about an atom from the ionization data measured at a detector outside the interaction region.

  9. Neural mechanisms underlying social conformity in an ultimatum game

    Directory of Open Access Journals (Sweden)

    Zhenyu eWei

    2013-12-01

    Full Text Available When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as social conformity. In the present study, we used event-related functional magnetic resonance imaging (fMRI to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  10. Neural mechanisms of rhythm perception: current findings and future perspectives.

    Science.gov (United States)

    Grahn, Jessica A

    2012-10-01

    Perception of temporal patterns is fundamental to normal hearing, speech, motor control, and music. Certain types of pattern understanding are unique to humans, such as musical rhythm. Although human responses to musical rhythm are universal, there is much we do not understand about how rhythm is processed in the brain. Here, I consider findings from research into basic timing mechanisms and models through to the neuroscience of rhythm and meter. A network of neural areas, including motor regions, is regularly implicated in basic timing as well as processing of musical rhythm. However, fractionating the specific roles of individual areas in this network has remained a challenge. Distinctions in activity patterns appear between "automatic" and "cognitively controlled" timing processes, but the perception of musical rhythm requires features of both automatic and controlled processes. In addition, many experimental manipulations rely on participants directing their attention toward or away from certain stimulus features, and measuring corresponding differences in neural activity. Many temporal features, however, are implicitly processed whether attended to or not, making it difficult to create controlled baseline conditions for experimental comparisons. The variety of stimuli, paradigms, and definitions can further complicate comparisons across domains or methodologies. Despite these challenges, the high level of interest and multitude of methodological approaches from different cognitive domains (including music, language, and motor learning) have yielded new insights and hold promise for future progress. Copyright © 2012 Cognitive Science Society, Inc.

  11. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    Science.gov (United States)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  12. Neural mechanisms underlying social conformity in an ultimatum game.

    Science.gov (United States)

    Wei, Zhenyu; Zhao, Zhiying; Zheng, Yong

    2013-01-01

    When individuals' actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as "social conformity." In the present study, we used event-related functional magnetic resonance imaging (fMRI) to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  13. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution.

    Science.gov (United States)

    Crawford, Michael A; Broadhurst, C Leigh; Guest, Martin; Nagar, Atulya; Wang, Yiqun; Ghebremeskel, Kebreab; Schmidt, Walter F

    2013-01-01

    Six hundred million years ago, the fossil record displays the sudden appearance of intracellular detail and the 32 phyla. The "Cambrian Explosion" marks the onset of dominant aerobic life. Fossil intracellular structures are so similar to extant organisms that they were likely made with similar membrane lipids and proteins, which together provided for organisation and specialisation. While amino acids could be synthesised over 4 billion years ago, only oxidative metabolism allows for the synthesis of highly unsaturated fatty acids, thus producing novel lipid molecular species for specialised cell membranes. Docosahexaenoic acid (DHA) provided the core for the development of the photoreceptor, and conversion of photons into electricity stimulated the evolution of the nervous system and brain. Since then, DHA has been conserved as the principle acyl component of photoreceptor synaptic and neuronal signalling membranes in the cephalopods, fish, amphibian, reptiles, birds, mammals and humans. This extreme conservation in electrical signalling membranes despite great genomic change suggests it was DHA dictating to DNA rather than the generally accepted other way around. We offer a theoretical explanation based on the quantum mechanical properties of DHA for such extreme conservation. The unique molecular structure of DHA allows for quantum transfer and communication of π-electrons, which explains the precise depolarisation of retinal membranes and the cohesive, organised neural signalling which characterises higher intelligence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  15. Neural circuit mechanisms of short-term memory

    Science.gov (United States)

    Goldman, Mark

    Memory over time scales of seconds to tens of seconds is thought to be maintained by neural activity that is triggered by a memorized stimulus and persists long after the stimulus is turned off. This presents a challenge to current models of memory-storing mechanisms, because the typical time scales associated with cellular and synaptic dynamics are two orders of magnitude smaller than this. While such long time scales can easily be achieved by bistable processes that toggle like a flip-flop between a baseline and elevated-activity state, many neuronal systems have been observed experimentally to be capable of maintaining a continuum of stable states. For example, in neural integrator networks involved in the accumulation of evidence for decision making and in motor control, individual neurons have been recorded whose activity reflects the mathematical integral of their inputs; in the absence of input, these neurons sustain activity at a level proportional to the running total of their inputs. This represents an analog form of memory whose dynamics can be conceptualized through an energy landscape with a continuum of lowest-energy states. Such continuous attractor landscapes are structurally non-robust, in seeming violation of the relative robustness of biological memory systems. In this talk, I will present and compare different biologically motivated circuit motifs for the accumulation and storage of signals in short-term memory. Challenges to generating robust memory maintenance will be highlighted and potential mechanisms for ameliorating the sensitivity of memory networks to perturbations will be discussed. Funding for this work was provided by NIH R01 MH065034, NSF IIS-1208218, Simons Foundation 324260, and a UC Davis Ophthalmology Research to Prevent Blindness Grant.

  16. Developmental phonagnosia: Linking neural mechanisms with the behavioural phenotype.

    Science.gov (United States)

    Roswandowitz, Claudia; Schelinski, Stefanie; von Kriegstein, Katharina

    2017-07-15

    Human voice recognition is critical for many aspects of social communication. Recently, a rare disorder, developmental phonagnosia, which describes the inability to recognise a speaker's voice, has been discovered. The underlying neural mechanisms are unknown. Here, we used two functional magnetic resonance imaging experiments to investigate brain function in two behaviourally well characterised phonagnosia cases, both 32 years old: AS has apperceptive and SP associative phonagnosia. We found distinct malfunctioned brain mechanisms in AS and SP matching their behavioural profiles. In apperceptive phonagnosia, right-hemispheric auditory voice-sensitive regions (i.e., Heschl's gyrus, planum temporale, superior temporal gyrus) showed lower responses than in matched controls (nAS=16) for vocal versus non-vocal sounds and for speaker versus speech recognition. In associative phonagnosia, the connectivity between voice-sensitive (i.e. right posterior middle/inferior temporal gyrus) and supramodal (i.e. amygdala) regions was reduced in comparison to matched controls (nSP=16) during speaker versus speech recognition. Additionally, both cases recruited distinct potential compensatory mechanisms. Our results support a central assumption of current two-system models of voice-identity processing: They provide the first evidence that dysfunction of voice-sensitive regions and impaired connectivity between voice-sensitive and supramodal person recognition regions can selectively contribute to deficits in person recognition by voice. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Single- versus Multiobjective Optimization for Evolution of Neural Controllers in Ms. Pac-Man

    Directory of Open Access Journals (Sweden)

    Tse Guan Tan

    2013-01-01

    Full Text Available The objective of this study is to focus on the automatic generation of game artificial intelligence (AI controllers for Ms. Pac-Man agent by using artificial neural network (ANN and multiobjective artificial evolution. The Pareto Archived Evolution Strategy (PAES is used to generate a Pareto optimal set of ANNs that optimize the conflicting objectives of maximizing Ms. Pac-Man scores (screen-capture mode and minimizing neural network complexity. This proposed algorithm is called Pareto Archived Evolution Strategy Neural Network or PAESNet. Three different architectures of PAESNet were investigated, namely, PAESNet with fixed number of hidden neurons (PAESNet_F, PAESNet with varied number of hidden neurons (PAESNet_V, and the PAESNet with multiobjective techniques (PAESNet_M. A comparison between the single- versus multiobjective optimization is conducted in both training and testing processes. In general, therefore, it seems that PAESNet_F yielded better results in training phase. But the PAESNet_M successfully reduces the runtime operation and complexity of ANN by minimizing the number of hidden neurons needed in hidden layer and also it provides better generalization capability for controlling the game agent in a nondeterministic and dynamic environment.

  18. Neural mechanisms of cognitive reappraisal in remitted major depressive disorder.

    Science.gov (United States)

    Smoski, Moria J; Keng, Shian-Ling; Schiller, Crystal Edler; Minkel, Jared; Dichter, Gabriel S

    2013-10-01

    Down-regulation of negative emotions by cognitive strategies relies on prefrontal cortical modulation of limbic brain regions, and impaired frontolimbic functioning during cognitive reappraisal has been observed in affective disorders. However, no study to date has examined cognitive reappraisal in unmedicated euthymic individuals with a history of major depressive disorder relative to symptom-matched controls. Given that a history of depression is a critical risk factor for future depressive episodes, investigating the neural mechanisms of emotion regulation in remitted major depressive disorder (rMDD) may yield novel insights into depression risk. We assessed 37 individuals (18 rMDD, 19 controls) with functional magnetic resonance imaging (fMRI) during a task requiring cognitive reappraisal of sad images. Both groups demonstrated decreased self-reported negative affect after cognitive reappraisal and no group differences in the effects of cognitive reappraisal on mood were evident. Functional MRI results indicated greater paracingulate gyrus (rostral anterior cingulate cortex, Brodmann area 32) activation and decreased right midfrontal gyrus (Brodmann area 6) activation during the reappraisal of sad images. Trial-by-trial ratings of pre-regulation affect were not collected, limiting the interpretation of post-regulation negative affect scores. Results suggest that activation of rostral anterior cingulate cortex, a region linked to the prediction of antidepressant treatment response, and of the right midfrontal gyrus, a region involved in cognitive control in the context of cognitive reappraisal, may represent endophenotypic markers of future depression risk. Future prospective studies will be needed to validate the predictive utility of these neural markers. © 2013 Elsevier B.V. All rights reserved.

  19. Neural mechanism of facilitation system during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available An enhanced facilitation system caused by motivational input plays an important role in supporting performance during physical fatigue. We tried to clarify the neural mechanisms of the facilitation system during physical fatigue using magnetoencephalography (MEG and a classical conditioning technique. Twelve right-handed volunteers participated in this study. Participants underwent MEG recording during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The metronome sounds were used as conditioned stimuli and maximum handgrip trials as unconditioned stimuli. The next day, they were randomly assigned to two groups in a single-blinded, two-crossover fashion to undergo two types of MEG recordings, that is, for the control and motivation sessions, during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. The alpha-band event-related desynchronizations (ERDs of the motivation session relative to the control session within the time windows of 500 to 700 and 800 to 900 ms after the onset of handgrip cue sounds were identified in the sensorimotor areas. In addition, the alpha-band ERD within the time window of 400 to 500 ms was identified in the right dorsolateral prefrontal cortex (Brodmann's area 46. The ERD level in the right dorsolateral prefrontal cortex was positively associated with that in the sensorimotor areas within the time window of 500 to 700 ms. These results suggest that the right dorsolateral prefrontal cortex is involved in the neural substrates of the facilitation system and activates the sensorimotor areas during physical fatigue.

  20. Central chemoreceptors and neural mechanisms of cardiorespiratory control

    Directory of Open Access Journals (Sweden)

    T.S. Moreira

    2011-09-01

    Full Text Available The arterial partial pressure (P CO2 of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.

  1. Neural mechanism for binaural pitch perception via ghost stochastic resonance

    Science.gov (United States)

    Balenzuela, Pablo; García-Ojalvo, Jordi

    2005-06-01

    We present a physiologically plausible binaural mechanism for the perception of the pitch of complex sounds via ghost stochastic resonance. In this scheme, two neurons are driven by noise and a different periodic signal each (with frequencies f1=kf0 and f2=(k+1)f0, where k >1), and their outputs (plus noise) are applied synaptically to a third neuron. Our numerical results, using the Morris-Lecar neuron model with chemical synapses explicitly considered, show that intermediate noise levels enhance the response of the third neuron at frequencies close to f0, as in the cases previously described of ghost resonance. For the case of an inharmonic combination of inputs (f1=kf0+Δf and f2=(k+1)f0+Δf) noise is also seen to enhance the rates of most probable spiking for the third neuron at a frequency fr=f0+[Δf/(k+1/2)]. In addition, we show that similar resonances can be observed as a function of the synaptic time constant. The suggested ghost-resonance-based stochastic mechanism can thus arise either at the peripheral level or at a higher level of neural processing in the perception of pitch.

  2. Neural mechanisms of attentional control in mindfulness meditation

    Directory of Open Access Journals (Sweden)

    Peter eMalinowski

    2013-02-01

    Full Text Available The scientific interest in meditation and mindfulness practice has recently seen an unprecedented surge. After an initial phase of presenting beneficial effects of mindfulness practice in various domains, research is now seeking to unravel the underlying psychological and neurophysiological mechanisms. Advances in understanding these processes are required for improving and fine-tuning mindfulness-based interventions that target specific conditions such as eating disorders or attention deficit hyperactivity disorders. This review presents a theoretical framework that emphasizes the central role of attentional control mechanisms in the development of mindfulness skills. It discusses the phenomenological level of experience during meditation, the different attentional functions that are involved, and relates these to the brain networks that subserve these functions. On the basis of currently available empirical evidence specific processes as to how attention exerts its positive influence are considered and it is concluded that meditation practice appears to positively impact attentional functions by improving resource allocation processes. As a result, attentional resources are allocated more fully during early processing phases which subsequently enhance further processing. Neural changes resulting from a pure form of mindfulness practice that is central to most mindfulness programs are considered from the perspective that they constitute a useful reference point for future research. Furthermore, possible interrelations between the improvement of attentional control and emotion regulation skills are discussed.

  3. Mechanisms of Long Non-Coding RNAs in the Assembly and Plasticity of Neural Circuitry.

    Science.gov (United States)

    Wang, Andi; Wang, Junbao; Liu, Ying; Zhou, Yan

    2017-01-01

    The mechanisms underlying development processes and functional dynamics of neural circuits are far from understood. Long non-coding RNAs (lncRNAs) have emerged as essential players in defining identities of neural cells, and in modulating neural activities. In this review, we summarized latest advances concerning roles and mechanisms of lncRNAs in assembly, maintenance and plasticity of neural circuitry, as well as lncRNAs' implications in neurological disorders. We also discussed technical advances and challenges in studying functions and mechanisms of lncRNAs in neural circuitry. Finally, we proposed that lncRNA studies would advance our understanding on how neural circuits develop and function in physiology and disease conditions.

  4. [Neural mechanism underlying autistic savant and acquired savant syndrome].

    Science.gov (United States)

    Takahata, Keisuke; Kato, Motoichiro

    2008-07-01

    It is well known that the cases with savant syndrome, demonstrate outstanding mental capability despite coexisting severe mental disabilities. In many cases, savant skills are characterized by its domain-specificity, enhanced memory capability, and excessive focus on low-level perceptual processing. In addition, impaired integrative cognitive processing such as social cognition or executive function, restricted interest, and compulsive repetition of the same act are observed in savant individuals. All these are significantly relevant to the behavioral characteristics observed in individuals with autistic spectrum disorders (ASD). A neurocognitive model of savant syndrome should explain these cognitive features and the juxtaposition of outstanding talents with cognitive disabilities. In recent neuropsychological studies, Miller (1998) reported clinical cases of "acquired savant," i.e., patients who improved or newly acquired an artistic savant-like skill in the early stage of frontotemporal dementia (FTD). Although the relationship between an autistic savant and acquired savant remains to be elucidated, the advent of neuroimaging study of ASD and the clarification of FTD patients with savant-like skills may clarify the shared neural mechanisms of both types of talent. In this review, we classified current cognitive models of savant syndrome into the following 3 categories. (1) A hypermnesic model that suggests that savant skills develop from existing or dormant cognitive functions such as memory. However, recent findings obtained through neuropsychological examinations imply that savant individuals solve problems using a strategy that is fairly different from a non-autistic one. (2) A paradoxical functional facilitation model (Kapur, 1996) that offers possible explanations about how pathological states in the brain lead to development of prodigious skills. This model emphasizes the role of reciprocal inhibitory interaction among adjacent or distant cortical regions

  5. Neural mechanisms of timing control in a coincident timing task.

    Science.gov (United States)

    Masaki, Hiroaki; Sommer, Werner; Takasawa, Noriyoshi; Yamazaki, Katuo

    2012-04-01

    Many ball sports such as tennis or baseball require precise temporal anticipation of both sensory input and motor output (i.e., receptor anticipation and effector anticipation, respectively) and close performance monitoring. We investigated the neural mechanisms underlying timing control and performance monitoring in a coincident timing task involving both types of anticipations. Peak force for two time-to-peak force (TTP) conditions-recorded with a force-sensitive key-was required to coincide with a specific position of a stimulus rotating either slow or fast on a clock face while the contingent negative variation (CNV) and the motor-elicited negativity were recorded. Absolute timing error was generally smaller for short TTP (high velocity) conditions. CNV amplitudes increased with both faster stimulus velocity and longer TTPs possibly reflecting increased motor programming efforts. In addition, the motor-elicited negativity was largest in the slow stimulus/short TTP condition, probably representing some forms of performance monitoring as well as shorter response duration. Our findings indicate that the coincident timing task is a good model for real-life situations of tool use.

  6. A neural mechanism for recognizing speech spoken by different speakers.

    Science.gov (United States)

    Kreitewolf, Jens; Gaudrain, Etienne; von Kriegstein, Katharina

    2014-05-01

    Understanding speech from different speakers is a sophisticated process, particularly because the same acoustic parameters convey important information about both the speech message and the person speaking. How the human brain accomplishes speech recognition under such conditions is unknown. One view is that speaker information is discarded at early processing stages and not used for understanding the speech message. An alternative view is that speaker information is exploited to improve speech recognition. Consistent with the latter view, previous research identified functional interactions between the left- and the right-hemispheric superior temporal sulcus/gyrus, which process speech- and speaker-specific vocal tract parameters, respectively. Vocal tract parameters are one of the two major acoustic features that determine both speaker identity and speech message (phonemes). Here, using functional magnetic resonance imaging (fMRI), we show that a similar interaction exists for glottal fold parameters between the left and right Heschl's gyri. Glottal fold parameters are the other main acoustic feature that determines speaker identity and speech message (linguistic prosody). The findings suggest that interactions between left- and right-hemispheric areas are specific to the processing of different acoustic features of speech and speaker, and that they represent a general neural mechanism when understanding speech from different speakers. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Neural Mechanisms of Positive Mood Induced Modulation of Reality Monitoring

    Science.gov (United States)

    Subramaniam, Karuna; Gill, Jeevit; Slattery, Patrick; Shastri, Aditi; Mathalon, Daniel H.; Nagarajan, Srikantan; Vinogradov, Sophia

    2016-01-01

    This study investigates the neural mechanisms of mood induced modulation of cognition, specifically, on reality monitoring abilities. Reality monitoring is the ability to accurately distinguish the source of self-generated information from externally-presented contextual information. When participants were in a positive mood, compared to a neutral mood, they significantly improved their source memory identification abilities, particularly for self-generated information. However, being in a negative mood had no effect on reality monitoring abilities. Additionally, when participants were in a positive mood state, they showed activation in several regions that predisposed them to perform better at reality monitoring. Specifically, positive mood induced activity within the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) was associated with improvements in subsequent identification of self-generated information, and positive mood induced activation within the striatum (putamen) facilitated better identification of externally-presented information. These findings indicate that regions within mPFC, PCC and striatum are sensitive to positive mood-cognition enhancing effects that enable participants to be better prepared for subsequent reality monitoring decision-making. PMID:27895571

  8. Common neural mechanisms underlying reversal learning by reward and punishment.

    Science.gov (United States)

    Xue, Gui; Xue, Feng; Droutman, Vita; Lu, Zhong-Lin; Bechara, Antoine; Read, Stephen

    2013-01-01

    Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations.

  9. Quantum information and the problem of mechanisms of biological evolution.

    Science.gov (United States)

    Melkikh, Alexey V

    2014-01-01

    One of the most important conditions for replication in early evolution is the de facto elimination of the conformational degrees of freedom of the replicators, the mechanisms of which remain unclear. In addition, realistic evolutionary timescales can be established based only on partially directed evolution, further complicating this issue. A division of the various evolutionary theories into two classes has been proposed based on the presence or absence of a priori information about the evolving system. A priori information plays a key role in solving problems in evolution. Here, a model of partially directed evolution, based on the learning automata theory, which includes a priori information about the fitness space, is proposed. A potential repository of such prior information is the states of biologically important molecules. Thus, the need for extended evolutionary synthesis is discussed. Experiments to test the hypothesis of partially directed evolution are proposed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.

    Science.gov (United States)

    Inoue, Yasuhiro; Suzuki, Makoto; Watanabe, Tadashi; Yasue, Naoko; Tateo, Itsuki; Adachi, Taiji; Ueno, Naoto

    2016-12-01

    Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  11. Cognition in Contests: Mechanisms, Ecology, and Evolution.

    Science.gov (United States)

    Reichert, Michael S; Quinn, John L

    2017-10-01

    Animal contests govern access to key resources and are a fundamental determinant of fitness within populations. Little is known about the mechanisms generating individual variation in strategic contest behavior or what this variation means for population level processes. Cognition governs the expression of behaviors during contests, most notably by linking experience gained with decision making, but its role in driving the evolutionary ecological dynamics of contests is only beginning to emerge. We review the kinds of cognitive mechanisms that underlie contest behavior, emphasize the importance of feedback loops and socio-ecological context, and suggest that contest behavior provides an ideal focus for integrative studies of phenotypic variation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Quantum mechanical evolution towards thermal equilibrium

    OpenAIRE

    Linden, Noah; Popescu, Sandu; Short, Anthony J.; Winter, Andreas

    2008-01-01

    The circumstances under which a system reaches thermal equilibrium, and how to derive this from basic dynamical laws, has been a major question from the very beginning of thermodynamics and statistical mechanics. Despite considerable progress, it remains an open problem. Motivated by this issue, we address the more general question of equilibration. We prove, with virtually full generality, that reaching equilibrium is a universal property of quantum systems: Almost any subsystem in interacti...

  13. Classification of Life by the Mechanism of Genome Size Evolution

    Science.gov (United States)

    Li, Dirson Jian; Zhang, Shengli

    We find that the global relationships among species should be of circular phylogeny, which is quite different from common sense based on phylogenetic trees. A domain can be defined by a distinct phylogenetic circle, which is a global and stable characteristic of the living system. The mechanism in genome size evolution has been clarified; hence the main component questions on C-value enigma can be explained. We find the intrinsic relationship between genome size evolution and protein length evolution; that is the genome size and non-coding DNA ratio can be calculated based on protein length distributions.

  14. Dynamic Evolution Equations for Isolated Smoke Vortexes in Rational Mechanics

    CERN Document Server

    Jianhua, Xiao

    2011-01-01

    Smoke circle vortexes are a typical dynamic phenomenon in nature. The similar circle vortexes phenomenon appears in hurricane, turbulence, and many others. A semi-empirical method is constructed to get some intrinsic understanding about such circle vortex structures. Firstly, the geometrical motion equations for smoke circle is formulated based on empirical observations. Based on them, the mechanic dynamic motion equations are established. Finally, the general dynamic evolution equations for smoke vortex are formulated. They are dynamic evolution equations for exact stress field and dynamic evolution equations for average stress field. For industrial application and experimental data processing, their corresponding approximation equations for viscous fluid are given. Some simple discussions are made.

  15. Mechanisms of genome evolution of Streptococcus.

    Science.gov (United States)

    Andam, Cheryl P; Hanage, William P

    2015-07-01

    The genus Streptococcus contains 104 recognized species, many of which are associated with human or animal hosts. A globally prevalent human pathogen in this group is Streptococcus pneumoniae (the pneumococcus). While being a common resident of the upper respiratory tract, it is also a major cause of otitis media, pneumonia, bacteremia and meningitis, accounting for a high burden of morbidity and mortality worldwide. Recent findings demonstrate the importance of recombination and selection in driving the population dynamics and evolution of different pneumococcal lineages, allowing them to successfully evade the impacts of selective pressures such as vaccination and antibiotic treatment. We highlight the ability of pneumococci to respond to these pressures through processes including serotype replacement, capsular switching and horizontal gene transfer (HGT) of antibiotic resistance genes. The challenge in controlling this pathogen also lies in the exceptional genetic and phenotypic variation among different pneumococcal lineages, particularly in terms of their pathogenicity and resistance to current therapeutic strategies. The widespread use of pneumococcal conjugate vaccines, which target only a small subset of the more than 90 pneumococcal serotypes, provides us with a unique opportunity to elucidate how the processes of selection and recombination interact to generate a remarkable level of plasticity and heterogeneity in the pneumococcal genome. These processes also play an important role in the emergence and spread of multi-resistant strains, which continues to pose a challenge in disease control and/or eradication. The application of population of genomic approaches at different spatial and temporal scales will help improve strategies to control this global pathogen, and potentially other pathogenic streptococci. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. The Future Vocation of Neural Stem Cells: Lineage Commitment in Brain Development and Evolution.

    Science.gov (United States)

    Nomura, Tadashi; Gotoh, Hitoshi; Ono, Katsuhiko

    2017-08-24

    Understanding the fate commitment of neural stem cells is critical to identify the regulatory mechanisms in developing brains. Genetic lineage-tracing has provided a powerful strategy to unveil the heterogeneous nature of stem cells and their descendants. However, recent studies have reported controversial data regarding the heterogeneity of neural stem cells in the developing mouse neocortex, which prevents a decisive conclusion on this issue. Here, we review the progress that has been made using lineage-tracing analyses of the developing neocortex and discuss stem cell heterogeneity from the viewpoint of comparative and evolutionary biology.

  17. Mechanical basis of morphogenesis and convergent evolution of spiny seashells

    KAUST Repository

    Chirat, R.

    2013-03-25

    Convergent evolution is a phenomenon whereby similar traits evolved independently in not closely related species, and is often interpreted in functional terms. Spines in mollusk seashells are classically interpreted as having repeatedly evolved as a defense in response to shell-crushing predators. Here we consider the morphogenetic process that shapes these structures and underlies their repeated emergence. We develop a mathematical model for spine morphogenesis based on the mechanical interaction between the secreting mantle edge and the calcified shell edge to which the mantle adheres during shell growth. It is demonstrated that a large diversity of spine structures can be accounted for through small variations in control parameters of this natural mechanical process. This physical mechanism suggests that convergent evolution of spines can be understood through a generic morphogenetic process, and provides unique perspectives in understanding the phenotypic evolution of this second largest phylum in the animal kingdom.

  18. Quantum mechanical evolution towards thermal equilibrium.

    Science.gov (United States)

    Linden, Noah; Popescu, Sandu; Short, Anthony J; Winter, Andreas

    2009-06-01

    The circumstances under which a system reaches thermal equilibrium, and how to derive this from basic dynamical laws, has been a major question from the very beginning of thermodynamics and statistical mechanics. Despite considerable progress, it remains an open problem. Motivated by this issue, we address the more general question of equilibration. We prove, with virtually full generality, that reaching equilibrium is a universal property of quantum systems: almost any subsystem in interaction with a large enough bath will reach an equilibrium state and remain close to it for almost all times. We also prove several general results about other aspects of thermalization besides equilibration, for example, that the equilibrium state does not depend on the detailed microstate of the bath.

  19. The Application of Radial Basis Function (RBF) Neural Network for Mechanical Fault Diagnosis of Gearbox

    Science.gov (United States)

    Wang, Pengbo

    2017-11-01

    In this paper, the radial basis function (RBF) neural network is used for the mechanical fault diagnosis of a gearbox. We introduce the basic principles of the RBF neural network which is used for pattern classification and features a fast learning pace and strong nonlinear mapping capability; thus, it can be employed for fault diagnosis. The gearbox is a widely-used piece of equipment in engineering, and diagnosing mechanical faults is of great significance for engineers. A numerical example is presented to demonstrate the capability of the proposed method. The results indicate that the mechanical faults of a gearbox can be correctly diagnosed with a trained RBF neural network.

  20. On the nature and evolution of the neural bases of human language

    Science.gov (United States)

    Lieberman, Philip

    2002-01-01

    The traditional theory equating the brain bases of language with Broca's and Wernicke's neocortical areas is wrong. Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, and comprehending the meaning of sentences. When we hear or read a word, neural structures involved in the perception or real-world associations of the word are activated as well as posterior cortical regions adjacent to Wernicke's area. Many areas of the neocortex and subcortical structures support the cortical-striatal-cortical circuits that confer complex syntactic ability, speech production, and a large vocabulary. However, many of these structures also form part of the neural circuits regulating other aspects of behavior. For example, the basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human linguistic ability and abstract reasoning. The cerebellum, traditionally associated with motor control, is active in motor learning. The basal ganglia are also key elements in reward-based learning. Data from studies of Broca's aphasia, Parkinson's disease, hypoxia, focal brain damage, and a genetically transmitted brain anomaly (the putative "language gene," family KE), and from comparative studies of the brains and behavior of other species, demonstrate that the basal ganglia sequence the discrete elements that constitute a complete motor act, syntactic process, or thought process. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. As Dobzansky put it, "Nothing in biology makes sense except in the light of evolution" (cited in Mayr, 1982). That applies with as much force to the human brain and the neural bases of language as it does to the human foot or jaw. The converse follows: the mark of evolution on

  1. Biomolecular MRI reporters: Evolution of new mechanisms.

    Science.gov (United States)

    Mukherjee, Arnab; Davis, Hunter C; Ramesh, Pradeep; Lu, George J; Shapiro, Mikhail G

    2017-11-01

    Magnetic resonance imaging (MRI) is a powerful technique for observing the function of specific cells and molecules inside living organisms. However, compared to optical microscopy, in which fluorescent protein reporters are available to visualize hundreds of cellular functions ranging from gene expression and chemical signaling to biomechanics, to date relatively few such reporters are available for MRI. Efforts to develop MRI-detectable biomolecules have mainly focused on proteins transporting paramagnetic metals for T1 and T2 relaxation enhancement or containing large numbers of exchangeable protons for chemical exchange saturation transfer. While these pioneering developments established several key uses of biomolecular MRI, such as imaging of gene expression and functional biosensing, they also revealed that low molecular sensitivity poses a major challenge for broader adoption in biology and medicine. Recently, new classes of biomolecular reporters have been developed based on alternative contrast mechanisms, including enhancement of spin diffusivity, interactions with hyperpolarized nuclei, and modulation of blood flow. These novel reporters promise to improve sensitivity and enable new forms of multiplexed and functional imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation

    Science.gov (United States)

    Sameiro-Barbosa, Catia M.; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306

  3. Neural representations and mechanisms for the performance of simple speech sequences.

    Science.gov (United States)

    Bohland, Jason W; Bullock, Daniel; Guenther, Frank H

    2010-07-01

    Speakers plan the phonological content of their utterances before their release as speech motor acts. Using a finite alphabet of learned phonemes and a relatively small number of syllable structures, speakers are able to rapidly plan and produce arbitrary syllable sequences that fall within the rules of their language. The class of computational models of sequence planning and performance termed competitive queuing models have followed K. S. Lashley [The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior (pp. 112-136). New York: Wiley, 1951] in assuming that inherently parallel neural representations underlie serial action, and this idea is increasingly supported by experimental evidence. In this article, we developed a neural model that extends the existing DIVA model of speech production in two complementary ways. The new model includes paired structure and content subsystems [cf. MacNeilage, P. F. The frame/content theory of evolution of speech production. Behavioral and Brain Sciences, 21, 499-511, 1998 ] that provide parallel representations of a forthcoming speech plan as well as mechanisms for interfacing these phonological planning representations with learned sensorimotor programs to enable stepping through multisyllabic speech plans. On the basis of previous reports, the model's components are hypothesized to be localized to specific cortical and subcortical structures, including the left inferior frontal sulcus, the medial premotor cortex, the basal ganglia, and the thalamus. The new model, called gradient order DIVA, thus fills a void in current speech research by providing formal mechanistic hypotheses about both phonological and phonetic processes that are grounded by neuroanatomy and physiology. This framework also generates predictions that can be tested in future neuroimaging and clinical case studies.

  4. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification

    Directory of Open Access Journals (Sweden)

    Simmons David K

    2012-01-01

    Full Text Available Abstract Background Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx, which have highly conserved functions in neural specification in bilaterian animals. Results Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8, and LMO of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx, and Islet. Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells. Conclusion This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more

  5. Neural mechanisms supporting the extraction of general knowledge across episodic memories

    NARCIS (Netherlands)

    Sweegers, C.C.; Takashima, A.; Fernandez, G.S.E.; Talamini, L.M.

    2014-01-01

    General knowledge acquisition entails the extraction of statistical regularities from the environment. At high levels of complexity, this may involve the extraction, and consolidation, of associative regularities across event memories. The underlying neural mechanisms would likely involve a

  6. Statistical mechanics and the evolution of polygenic quantitative traits

    NARCIS (Netherlands)

    Barton, N.H.; De Vladar, H.P.

    The evolution of quantitative characters depends on the frequencies of the alleles involved, yet these frequencies cannot usually be measured. Previous groups have proposed an approximation to the dynamics of quantitative traits, based on an analogy with statistical mechanics. We present a modified

  7. Neural mechanisms of resistance to peer influence in early adolescence.

    Science.gov (United States)

    Grosbras, Marie-Helène; Jansen, Marije; Leonard, Gabriel; McIntosh, Anthony; Osswald, Katja; Poulsen, Catherine; Steinberg, Laurence; Toro, Roberto; Paus, Tomas

    2007-07-25

    During the shift from a parent-dependent child to a fully autonomous adult, peers take on a significant role in shaping the adolescent's behavior. Peer-derived influences are not always positive, however. Here, we explore neural correlates of interindividual differences in the probability of resisting peer influence in early adolescence. Using functional magnetic resonance imaging, we found striking differences between 10-year-old children with high and low resistance to peer influence in their brain activity during observation of angry hand movements and angry facial expressions: compared with subjects with low resistance to peer influence, individuals with high resistance showed a highly coordinated brain activity in neural systems underlying perception of action and decision making. These findings suggest that the probability of resisting peer influence depends on neural interactions during observation of emotion-laden actions.

  8. Predictive Acoustic Tracking with an Adaptive Neural Mechanism

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    model of the lizard peripheral auditory system to extract information regarding sound direction. This information is utilised by a neural machinery to learn the acoustic signal’s velocity through fast and unsupervised correlation-based learning adapted from differential Hebbian learning. This approach...... has previously been validated in simulation and via robotic trials to track a continuous pure tone acoustic signal with a semi-circular motion trajectory and a constant but unknown angular velocity. The neural machinery has been shown to be able to learn different target angular velocities...

  9. The Effect of Inhibitory Neuron on the Evolution Model of Higher-Order Coupling Neural Oscillator Population

    Science.gov (United States)

    Qi, Yi; Wang, Rubin; Jiao, Xianfa; Du, Ying

    2014-01-01

    We proposed a higher-order coupling neural network model including the inhibitory neurons and examined the dynamical evolution of average number density and phase-neural coding under the spontaneous activity and external stimulating condition. The results indicated that increase of inhibitory coupling strength will cause decrease of average number density, whereas increase of excitatory coupling strength will cause increase of stable amplitude of average number density. Whether the neural oscillator population is able to enter the new synchronous oscillation or not is determined by excitatory and inhibitory coupling strength. In the presence of external stimulation, the evolution of the average number density is dependent upon the external stimulation and the coupling term in which the dominator will determine the final evolution. PMID:24516505

  10. The Effect of Inhibitory Neuron on the Evolution Model of Higher-Order Coupling Neural Oscillator Population

    Directory of Open Access Journals (Sweden)

    Yi Qi

    2014-01-01

    Full Text Available We proposed a higher-order coupling neural network model including the inhibitory neurons and examined the dynamical evolution of average number density and phase-neural coding under the spontaneous activity and external stimulating condition. The results indicated that increase of inhibitory coupling strength will cause decrease of average number density, whereas increase of excitatory coupling strength will cause increase of stable amplitude of average number density. Whether the neural oscillator population is able to enter the new synchronous oscillation or not is determined by excitatory and inhibitory coupling strength. In the presence of external stimulation, the evolution of the average number density is dependent upon the external stimulation and the coupling term in which the dominator will determine the final evolution.

  11. Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube.

    Science.gov (United States)

    Vijayraghavan, Deepthi S; Davidson, Lance A

    2017-01-30

    Neural tube defects arise from mechanical failures in the process of neurulation. At the most fundamental level, formation of the neural tube relies on coordinated, complex tissue movements that mechanically transform the flat neural epithelium into a lumenized epithelial tube (Davidson, 2012). The nature of this mechanical transformation has mystified embryologists, geneticists, and clinicians for more than 100 years. Early embryologists pondered the physical mechanisms that guide this transformation. Detailed observations of cell and tissue movements as well as experimental embryological manipulations allowed researchers to generate and test elementary hypotheses of the intrinsic and extrinsic forces acting on the neural tissue. Current research has turned toward understanding the molecular mechanisms underlying neurulation. Genetic and molecular perturbation have identified a multitude of subcellular components that correlate with cell behaviors and tissue movements during neural tube formation. In this review, we focus on methods and conceptual frameworks that have been applied to the study of amphibian neurulation that can be used to determine how molecular and physical mechanisms are integrated and responsible for neurulation. We will describe how qualitative descriptions and quantitative measurements of strain, force generation, and tissue material properties as well as simulations can be used to understand how embryos use morphogenetic programs to drive neurulation. Birth Defects Research 109:153-168, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Neural Mechanisms of Emotion Regulation in Autism Spectrum Disorder

    Science.gov (United States)

    Richey, J. Anthony; Damiano, Cara R.; Sabatino, Antoinette; Rittenberg, Alison; Petty, Chris; Bizzell, Josh; Voyvodic, James; Heller, Aaron S.; Coffman, Marika C.; Smoski, Moria; Davidson, Richard J.; Dichter, Gabriel S.

    2015-01-01

    Autism spectrum disorder (ASD) is characterized by high rates of comorbid internalizing and externalizing disorders. One mechanistic account of these comorbidities is that ASD is characterized by impaired emotion regulation (ER) that results in deficits modulating emotional responses. We assessed neural activation during cognitive reappraisal of…

  13. Neural mechanisms of context-driven conscious visual perception

    NARCIS (Netherlands)

    Klink, P.C.

    2011-01-01

    There is an extensive neural puzzle to be solved between the moment that patterns of light first excite the photoreceptors in our retinas and the moment that we become aware of a visual scene. The effortlessness with which the brain usually solves this puzzle indicates that there must be an

  14. Neural mechanisms of song memory formation in juvenile zebra finches

    NARCIS (Netherlands)

    Moorman, S.

    2015-01-01

    There are many parallels between the acquisition of spoken language in human infants and song learning in songbirds, at the behavioural, neural, genetic and cognitive levels. Both human infants and juvenile songbirds are able to imitate sounds from adults of the same species (often their parents),

  15. Neural networks for predictive control of the mechanism of ...

    African Journals Online (AJOL)

    In this paper, we are interested in the study of the control of orientation of a wind turbine like means of optimization of his output/input ratio (efficiency). The approach suggested is based on the neural predictive control which is justified by the randomness of the wind on the one hand, and on the other hand by the capacity of ...

  16. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    Science.gov (United States)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  17. Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans.

    Science.gov (United States)

    Izquierdo, Eduardo J; Lockery, Shawn R

    2010-09-29

    Chemotaxis during sinusoidal locomotion in nematodes captures in simplified form the general problem of how dynamical interactions between the nervous system, body, and environment are exploited in the generation of adaptive behavior. We used an evolutionary algorithm to generate neural networks that exhibit klinotaxis, a common form of chemotaxis in which the direction of locomotion in a chemical gradient closely follows the line of steepest ascent. Sensory inputs and motor outputs of the model networks were constrained to match the inputs and outputs of the Caenorhabditis elegans klinotaxis network. We found that a minimalistic neural network, comprised of an ON-OFF pair of chemosensory neurons and a pair of neck muscle motor neurons, is sufficient to generate realistic klinotaxis behavior. Importantly, emergent properties of model networks reproduced two key experimental observations that they were not designed to fit, suggesting that the model may be operating according to principles similar to those of the biological network. A dynamical systems analysis of 77 evolved networks revealed a novel neural mechanism for spatial orientation behavior. This mechanism provides a testable hypothesis that is likely to accelerate the discovery and analysis of the biological circuitry for chemotaxis in C. elegans.

  18. Elastic Multi-scale Mechanisms: Computation and Biological Evolution.

    Science.gov (United States)

    Diaz Ochoa, Juan G

    2018-01-01

    Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.

  19. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Al-Saeedi M

    2017-10-01

    Full Text Available Mashael Al-Saeedi, Sahal Al-Hajoj Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Abstract: Despite the efficacy of antibiotics to protect humankind against many deadly pathogens, such as Mycobacterium tuberculosis, nothing can prevent the emergence of drug-resistant strains. Several mechanisms facilitate drug resistance in M. tuberculosis including compensatory evolution, epistasis, clonal interference, cell wall integrity, efflux pumps, and target mimicry. In this study, we present recent findings relevant to these mechanisms, which can enable the discovery of new drug targets and subsequent development of novel drugs for treatment of drug-resistant M. tuberculosis. Keywords: Mycobacterium tuberculosis, antibiotic resistance, compensatory evolution, epistasis, efflux pumps, fitness cost

  20. Morphological evolution of spiders predicted by pendulum mechanics.

    Directory of Open Access Journals (Sweden)

    Jordi Moya-Laraño

    Full Text Available BACKGROUND: Animals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities. METHODOLOGY/PRINCIPAL FINDINGS: We tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums. Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders. CONCLUSIONS/SIGNIFICANCE: Several lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since

  1. Downstream evolution of unconfined vortices: mechanical and thermal aspects

    Science.gov (United States)

    Pérez-Saborid, M.; Herrada, M. A.; Gómez-Barea, A.; Barrero, A.

    2002-11-01

    We present a numerical study of the downstream evolution (mechanical and thermal) of vortex-jet cores whose velocity and temperature fields far from the axis match a family of inviscid and non-conducting vortices. The far-velocity field is rotational, except for a particular case which corresponds to the well-known Long's vortex. The evolution of the vortex core depends on both the conditions at a certain upstream station, characterized by the dimensionless value of the velocity at the axis, and a dimensionless swirling parameter L defined as the ratio of the values of the azimuthal and axial velocities outside the vortex core. This numerical study, based on the quasi-cylindrical approximation (QC) of the Navier Stokes equations, determines the conditions under which the vortex evolution proceeds smoothly, eventually reaching an asymptotic self-similar behaviour as described in the literature (Fernández-Feria, Fernández de la Mora & Barrero 1995; Herrada, Pérez-Saborid & Barrero 1999), or breaks in a non-slender solution (vortex breakdown). In particular, the critical value L = Lb(a) beyond which vortex breakdown occurs downstream is a function of a dimensionless parameter a characterizing the axial momentum of the vortex jet at an initial upstream station. It is found numerically that for very large values of a this vortex breakdown criterion tends to an asymptote which is precisely the value L = L* predicted by the self-similar analysis, and beyond which a self-similar structure of the vortex core does not exist. In addition, the computation of the total temperature field provides useful information on the physical mechanisms responsible for the thermal separation phenomenon observed in Ranque Hilsch tubes and other swirling jet devices. In particular, the mechanical work of viscous forces which gives rise to an intense loss of kinetic energy during the initial stages of the evolution has been identified as the physical mechanism responsible for thermal

  2. Molecular Dynamics Simulations with Quantum Mechanics / Molecular Mechanics and Adaptive Neural Networks.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2018-02-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in complex environment but very time consuming. The computational cost on QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive way. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.

  3. Neural Mechanisms of Cognitive Dissonance (Revised): An EEG Study.

    Science.gov (United States)

    Colosio, Marco; Shestakova, Anna; Nikulin, Vadim V; Blagovechtchenski, Evgeny; Klucharev, Vasily

    2017-05-17

    Cognitive dissonance theory suggests that our preferences are modulated by the mere act of choosing. A choice between two similarly valued alternatives creates psychological tension (cognitive dissonance) that is reduced by a postdecisional reevaluation of the alternatives. We measured EEG of human subjects during rest and free-choice paradigm. Our study demonstrates that choices associated with stronger cognitive dissonance trigger a larger negative frontocentral evoked response similar to error-related negativity, which has in turn been implicated in general performance monitoring. Furthermore, the amplitude of the evoked response is correlated with the reevaluation of the alternatives. We also found a link between individual neural dynamics (long-range temporal correlations) of the frontocentral cortices during rest and follow-up neural and behavioral effects of cognitive dissonance. Individuals with stronger resting-state long-range temporal correlations demonstrated a greater postdecisional reevaluation of the alternatives and larger evoked brain responses associated with stronger cognitive dissonance. Thus, our results suggest that cognitive dissonance is reflected in both resting-state and choice-related activity of the prefrontal cortex as part of the general performance-monitoring circuitry. SIGNIFICANCE STATEMENT Contrary to traditional decision theory, behavioral studies repeatedly demonstrate that our preferences are modulated by the mere act of choosing. Difficult choices generate psychological (cognitive) dissonance, which is reduced by the postdecisional devaluation of unchosen options. We found that decisions associated with a higher level of cognitive dissonance elicited a stronger negative frontocentral deflection that peaked ∼60 ms after the response. This activity shares similar spatial and temporal features as error-related negativity, the electrophysiological correlate of performance monitoring. Furthermore, the frontocentral resting

  4. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  5. Psychological and neural mechanisms of experimental extinction: a selective review.

    Science.gov (United States)

    Delamater, Andrew R; Westbrook, R Frederick

    2014-02-01

    The present review examines key psychological concepts in the study of experimental extinction and implications these have for an understanding of the underlying neurobiology of extinction learning. We suggest that many of the signature characteristics of extinction learning (spontaneous recovery, renewal, reinstatement, rapid reacquisition) can be accommodated by the standard associative learning theory assumption that extinction results in partial erasure of the original learning together with new inhibitory learning. Moreover, we consider recent behavioral and neural evidence that supports the partial erasure view of extinction, but also note shortcomings in our understanding of extinction circuits as these relate to the negative prediction error concept. Recent work suggests that common prediction error and stimulus-specific prediction error terms both may be required to explain neural plasticity both in acquisition and extinction learning. In addition, we suggest that many issues in the content of extinction learning have not been fully addressed in current research, but that neurobiological approaches should be especially helpful in addressing such issues. These include questions about the nature of extinction learning (excitatory CS-No US, inhibitory CS-US learning, occasion setting processes), especially as this relates to studies of the micro-circuitry of extinction, as well as its representational content (sensory, motivational, response). An additional understudied problem in extinction research is the role played by attention processes and their underlying neural networks, although some research and theory converge on the idea that extinction is accompanied by attention decrements (i.e., habituation-like processes). Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Multiple mechanisms of consciousness: the neural correlates of emotional awareness.

    Science.gov (United States)

    Amting, Jayna M; Greening, Steven G; Mitchell, Derek G V

    2010-07-28

    Emotional stimuli, including facial expressions, are thought to gain rapid and privileged access to processing resources in the brain. Despite this access, we are conscious of only a fraction of the myriad of emotion-related cues we face everyday. It remains unclear, therefore, what the relationship is between activity in neural regions associated with emotional representation and the phenomenological experience of emotional awareness. We used functional magnetic resonance imaging and binocular rivalry to delineate the neural correlates of awareness of conflicting emotional expressions in humans. Behaviorally, fearful faces were significantly more likely to be perceived than disgusted or neutral faces. Functionally, increased activity was observed in regions associated with facial expression processing, including the amygdala and fusiform gyrus during emotional awareness. In contrast, awareness of neutral faces and suppression of fearful faces were associated with increased activity in dorsolateral prefrontal and inferior parietal cortices. The amygdala showed increased functional connectivity with ventral visual system regions during fear awareness and increased connectivity with perigenual prefrontal cortex (pgPFC; Brodmann's area 32/10) when fear was suppressed. Despite being prioritized for awareness, emotional items were associated with reduced activity in areas considered critical for consciousness. Contributions to consciousness from bottom-up and top-down neural regions may be additive, such that increased activity in specialized regions within the extended ventral visual system may reduce demands on a frontoparietal system important for awareness. The possibility is raised that interactions between pgPFC and the amygdala, previously implicated in extinction, may also influence whether or not an emotional stimulus is accessible to consciousness.

  7. Neural networks and differential evolution algorithm applied for modelling the depollution process of some gaseous streams.

    Science.gov (United States)

    Curteanu, Silvia; Suditu, Gabriel Dan; Buburuzan, Adela Marina; Dragoi, Elena Niculina

    2014-11-01

    The depollution of some gaseous streams containing n-hexane is studied by adsorption in a fixed bed column, under dynamic conditions, using granular activated carbon and two types of non-functionalized hypercross-linked polymeric resins. In order to model the process, a new neuro-evolutionary approach is proposed. It is a combination of a modified differential evolution (DE) with neural networks (NNs) and two local search algorithms, the global and local optimizers, working together to determine the optimal NN model. The main elements that characterize the applied variant of DE consist in using an opposition-based learning initialization, a simple self-adaptive procedure for the control parameters, and a modified mutation principle based on the fitness function as a criterion for reorganization. The results obtained prove that the proposed algorithm is able to determine a good model of the considered process, its performance being better than those of an available phenomenological model.

  8. Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network

    Science.gov (United States)

    Mandal, Sumantra; Sivaprasad, P. V.; Dube, R. K.

    2007-12-01

    An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.

  9. Global dynamic evolution of the cold plasma inferred with neural networks

    Science.gov (United States)

    Zhelavskaya, I. S.; Shprits, Y. Y.; Spasojevic, M.

    2016-12-01

    The electron number density is a fundamental parameter of plasmas and a critical parameter in the wave-particle interactions. However, the distribution of cold plasma and its dynamic dependence on solar wind conditions remains poorly quantified. Existing empirical models provide us with statistical averages based on static geomagnetic parameters, but cannot reflect the dynamics of the highly structured and quickly varying plasmasphere environment, especially during times of high geomagnetic activity. Global imaging provides insights on the dynamics but does not provide quantitative estimates of number density. Accurately calculating the evolving distribution from first principles has also proven elusive due to the sheer number of physical processes involved.In this study, we propose an empirical model for reconstruction of global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. We develop a neural network that is capable of globally reconstructing the dynamics of the cold plasma density distribution for L shells from 2 to 6 and all local times. First, we derive a plasma density database by using the NURD algorithm to identify the upper hybrid resonance band in plasma wave observations from Van Allen Probes [Zhelavskaya et al., 2016]. Then, we utilize the density database in conjunction with solar wind data and geomagnetic indices to train the neural network. To validate and test the model, we choose validation and test sets independently from the density database. We validate and test the neural network by measuring its performance on these sets and also by comparing the model predicted global evolution with global images of the He+ distribution in the Earth's plasmasphere from the IMAGE extreme ultraviolet (EUV) instrument.The present study demonstrates how we can reconstruct the global dynamics from local in-situ observations by using machine learning tools. We describe aspects of the validation process in

  10. Neural Mechanisms of Circadian Regulation of Natural and Drug Reward

    Directory of Open Access Journals (Sweden)

    Lauren M. DePoy

    2017-01-01

    Full Text Available Circadian rhythms are endogenously generated near 24-hour variations of physiological and behavioral functions. In humans, disruptions to the circadian system are associated with negative health outcomes, including metabolic, immune, and psychiatric diseases, such as addiction. Animal models suggest bidirectional relationships between the circadian system and drugs of abuse, whereby desynchrony, misalignment, or disruption may promote vulnerability to drug use and the transition to addiction, while exposure to drugs of abuse may entrain, disrupt, or perturb the circadian timing system. Recent evidence suggests natural (i.e., food and drug rewards may influence overlapping neural circuitry, and the circadian system may modulate the physiological and behavioral responses to these stimuli. Environmental disruptions, such as shifting schedules or shorter/longer days, influence food and drug intake, and certain mutations of circadian genes that control cellular rhythms are associated with altered behavioral reward. We highlight the more recent findings associating circadian rhythms to reward function, linking environmental and genetic evidence to natural and drug reward and related neural circuitry.

  11. Neural Mechanisms of Emotion Regulation in Autism Spectrum Disorder.

    Science.gov (United States)

    Richey, J Anthony; Damiano, Cara R; Sabatino, Antoinette; Rittenberg, Alison; Petty, Chris; Bizzell, Josh; Voyvodic, James; Heller, Aaron S; Coffman, Marika C; Smoski, Moria; Davidson, Richard J; Dichter, Gabriel S

    2015-11-01

    Autism spectrum disorder (ASD) is characterized by high rates of comorbid internalizing and externalizing disorders. One mechanistic account of these comorbidities is that ASD is characterized by impaired emotion regulation (ER) that results in deficits modulating emotional responses. We assessed neural activation during cognitive reappraisal of faces in high functioning adults with ASD. Groups did not differ in looking time, pupilometry, or subjective ratings of faces during reappraisal. However, instructions to increase positive and negative emotional responses resulted in less increase in nucleus accumbens and amygdala activations (respectively) in the ASD group, and both regulation instructions resulted in less change in dorsolateral prefrontal cortex activation in the ASD group. Results suggest a potential mechanistic account of impaired ER in ASD.

  12. A modular attachment mechanism for software network evolution

    Science.gov (United States)

    Li, Hui; Zhao, Hai; Cai, Wei; Xu, Jiu-Qiang; Ai, Jun

    2013-05-01

    A modular attachment mechanism of software network evolution is presented in this paper. Compared with the previous models, our treatment of object-oriented software system as a network of modularity is inherently more realistic. To acquire incoming and outgoing links in directed networks when new nodes attach to the existing network, a new definition of asymmetric probabilities is given. Based on this, modular attachment instead of single node attachment in the previous models is then adopted. The proposed mechanism is demonstrated to be able to generate networks with features of power-law, small-world, and modularity, which represents more realistic properties of actual software networks. This work therefore contributes to a more accurate understanding of the evolutionary mechanism of software systems. What is more, explorations of the effects of various software development principles on the structure of software systems have been carried out, which are expected to be beneficial to the software engineering practices.

  13. Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks

    Science.gov (United States)

    Rai, Man Mohan

    2006-01-01

    Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more

  14. Differential Cloud Particles Evolution Algorithm Based on Data-Driven Mechanism for Applications of ANN

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-01-01

    Full Text Available Computational scientists have designed many useful algorithms by exploring a biological process or imitating natural evolution. These algorithms can be used to solve engineering optimization problems. Inspired by the change of matter state, we proposed a novel optimization algorithm called differential cloud particles evolution algorithm based on data-driven mechanism (CPDD. In the proposed algorithm, the optimization process is divided into two stages, namely, fluid stage and solid stage. The algorithm carries out the strategy of integrating global exploration with local exploitation in fluid stage. Furthermore, local exploitation is carried out mainly in solid stage. The quality of the solution and the efficiency of the search are influenced greatly by the control parameters. Therefore, the data-driven mechanism is designed for obtaining better control parameters to ensure good performance on numerical benchmark problems. In order to verify the effectiveness of CPDD, numerical experiments are carried out on all the CEC2014 contest benchmark functions. Finally, two application problems of artificial neural network are examined. The experimental results show that CPDD is competitive with respect to other eight state-of-the-art intelligent optimization algorithms.

  15. Convergent evolution in mechanical design of lamnid sharks and tunas.

    Science.gov (United States)

    Donley, Jeanine M; Sepulveda, Chugey A; Konstantinidis, Peter; Gemballa, Sven; Shadwick, Robert E

    2004-05-06

    The evolution of 'thunniform' body shapes in several different groups of vertebrates, including whales, ichthyosaurs and several species of large pelagic fishes supports the view that physical and hydromechanical demands provided important selection pressures to optimize body design for locomotion during vertebrate evolution. Recognition of morphological similarities between lamnid sharks (the most well known being the great white and the mako) and tunas has led to a general expectation that they also have converged in their functional design; however, no quantitative data exist on the mechanical performance of the locomotor system in lamnid sharks. Here we examine the swimming kinematics, in vivo muscle dynamics and functional morphology of the force-transmission system in a lamnid shark, and show that the evolutionary convergence in body shape and mechanical design between the distantly related lamnids and tunas is much more than skin deep; it extends to the depths of the myotendinous architecture and the mechanical basis for propulsive movements. We demonstrate that not only have lamnids and tunas converged to a much greater extent than previously known, but they have also developed morphological and functional adaptations in their locomotor systems that are unlike virtually all other fishes.

  16. Structural Evolution and Mechanisms of Fatigue in Polycrystalline Brass

    DEFF Research Database (Denmark)

    Carstensen, Jesper Vejlø

    planar and wavy slip. The mechanical and structural behaviour observed in brass resembles recent observations in 316L austenitic stainless steels, and the present results reveal that Cu-30%Zn and 316L have approximately the same fatigue life curve. This empha-sizes brass as being a convenient model...... further developed to account for the ob-served intergranular damage evolution on Cu-30%Zn. With these modifications the model pre-dicts the fatigue life curve of Cu-30%Zn and 316L....

  17. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  18. Neural Mechanisms of Illusory Motion: Evidence from ERP Study

    Directory of Open Access Journals (Sweden)

    Xu Y. A. N. Yun

    2011-05-01

    Full Text Available ERPs were used to examine the neural correlates of illusory motion, by presenting the Rice Wave illusion (CI, its two variants (WI and NI and a real motion video (RM. Results showed that: Firstly, RM elicited a more negative deflection than CI, NI and WI between 200–350ms. Secondly, between 500–600ms, CI elicited a more positive deflection than NI and WI, and RM elicited a more positive deflection than CI, what's more interesting was the sequential enhancement of brain activity with the corresponding motion strength. We inferred that the former component might reflect the successful encoding of the local motion signals in detectors at the lower stage; while the latter one might be involved in the intensive representations of visual input in real/illusory motion perception, this was the whole motion-signal organization in the later stage of motion perception. Finally, between 1185–1450 ms, a significant positive component was found between illusory/real motion tasks than NI (no motion. Overall, we demonstrated that there was a stronger deflection under the corresponding lager motion strength. These results reflected not only the different temporal patterns between illusory and real motion but also extending to their distinguishing working memory representation and storage.

  19. Peer influence: Neural mechanisms underlying in-group conformity

    National Research Council Canada - National Science Library

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan

    2013-01-01

    .... However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI...

  20. A Neural Path Integration Mechanism for Adaptive Vector Navigation in Autonomous Agents

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Dasgupta, Sakyasingha; Wörgötter, Florentin

    2015-01-01

    Animals show remarkable capabilities in navigating their habitat in a fully autonomous and energy-efficient way. In many species, these capabilities rely on a process called path integration, which enables them to estimate their current location and to find their way back home after long......-distance journeys. Path integration is achieved by integrating compass and odometric cues. Here we introduce a neural path integration mechanism that interacts with a neural locomotion control to simulate homing behavior and path integration-related behaviors observed in animals. The mechanism is applied...... to a simulated sixlegged artificial agent. Input signals from an allothetic compass and odometry are sustained through leaky neural integrator circuits, which are then used to compute the home vector by local excitation-global inhibition interactions. The home vector is computed and represented in circular...

  1. An adaptive neural mechanism for acoustic motion perception with varying sparsity

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    Biological motion-sensitive neural circuits are quite adept in perceiving the relative motion of a relevant stimulus. Motion perception is a fundamental ability in neural sensory processing and crucial in target tracking tasks. Tracking a stimulus entails the ability to perceive its motion, i.......e. extracting information about its direction and velocity. Here we focus on auditory motion perception of sound stimuli, which is poorly understood as compared to its visual counterpart. In earlier work we have developed a bio-inspired neural learning mechanism for acoustic motion perception. The mechanism...... be occluded by artefacts in the environment, such as an escaping prey momentarily disappearing behind a cover of trees. This article extends the earlier work by presenting a comparative investigation of auditory motion perception for unoccluded and occluded tonal sound stimuli with a frequency of 2.2 k...

  2. Damage evolution and failure mechanisms in additively manufactured stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, Holly D., E-mail: carlton4@llnl.gov [Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Haboub, Abdel [Lincoln University, Life and Physical Sciences Department, 820 Chestnut St, Jefferson City, MO 65101 (United States); Gallegos, Gilbert F. [Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Parkinson, Dilworth Y.; MacDowell, Alastair A. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2016-01-10

    In situ tensile tests were performed on additively manufactured austenitic stainless steel to track damage evolution within the material. For these experiments Synchrotron Radiation micro-Tomography was used to measure three-dimensional pore volume, distribution, and morphology in stainless steel at the micrometer length-scale while tensile loading was applied. The results showed that porosity distribution played a larger role in affecting the fracture mechanisms than measured bulk density. Specifically, additively manufactured stainless steel specimens with large inhomogeneous void distributions displayed a flaw-dominated failure where cracks were shown to initiate at pre-existing voids, while annealed additively manufactured stainless steel specimens, which contained low porosity and randomly distributed pores, displayed fracture mechanisms that closely resembled wrought metal.

  3. On Unitary Evolution and Collapse in Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Francesco Giacosa

    2014-11-01

    Full Text Available In the framework of an interference setup in which only two outcomes are possible (such as in the case of a Mach–Zehnder interferometer, we discuss in a simple and pedagogical way the difference between a standard, unitary quantum mechanical evolution and the existence of a real collapse of the wavefunction. This is a central and not-yet resolved question of quantum mechanics and indeed of quantum field theory as well. Moreover, we also present the Elitzur–Vaidman bomb, the delayed choice experiment, and the effect of decoherence. In the end, we propose two simple experiments to visualize decoherence and to test the role of an entangled particle.Quanta 2014; 3: 156–170.

  4. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes.

    Science.gov (United States)

    Ponce de León, Inés; Montesano, Marcos

    2017-01-01

    Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens .

  5. Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder.

    Science.gov (United States)

    Rothkirch, Marcus; Tonn, Jonas; Köhler, Stephan; Sterzer, Philipp

    2017-04-01

    According to current concepts, major depressive disorder is strongly related to dysfunctional neural processing of motivational information, entailing impairments in reinforcement learning. While computational modelling can reveal the precise nature of neural learning signals, it has not been used to study learning-related neural dysfunctions in unmedicated patients with major depressive disorder so far. We thus aimed at comparing the neural coding of reward and punishment prediction errors, representing indicators of neural learning-related processes, between unmedicated patients with major depressive disorder and healthy participants. To this end, a group of unmedicated patients with major depressive disorder (n = 28) and a group of age- and sex-matched healthy control participants (n = 30) completed an instrumental learning task involving monetary gains and losses during functional magnetic resonance imaging. The two groups did not differ in their learning performance. Patients and control participants showed the same level of prediction error-related activity in the ventral striatum and the anterior insula. In contrast, neural coding of reward prediction errors in the medial orbitofrontal cortex was reduced in patients. Moreover, neural reward prediction error signals in the medial orbitofrontal cortex and ventral striatum showed negative correlations with anhedonia severity. Using a standard instrumental learning paradigm we found no evidence for an overall impairment of reinforcement learning in medication-free patients with major depressive disorder. Importantly, however, the attenuated neural coding of reward in the medial orbitofrontal cortex and the relation between anhedonia and reduced reward prediction error-signalling in the medial orbitofrontal cortex and ventral striatum likely reflect an impairment in experiencing pleasure from rewarding events as a key mechanism of anhedonia in major depressive disorder. © The Author (2017). Published by Oxford

  6. Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts

    Science.gov (United States)

    Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-01-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…

  7. Different genetic algorithms and the evolution of specialization: a study with groups of simulated neural robots.

    Science.gov (United States)

    Ferrauto, Tomassino; Parisi, Domenico; Di Stefano, Gabriele; Baldassarre, Gianluca

    2013-01-01

    Organisms that live in groups, from microbial symbionts to social insects and schooling fish, exhibit a number of highly efficient cooperative behaviors, often based on role taking and specialization. These behaviors are relevant not only for the biologist but also for the engineer interested in decentralized collective robotics. We address these phenomena by carrying out experiments with groups of two simulated robots controlled by neural networks whose connection weights are evolved by using genetic algorithms. These algorithms and controllers are well suited to autonomously find solutions for decentralized collective robotic tasks based on principles of self-organization. The article first presents a taxonomy of role-taking and specialization mechanisms related to evolved neural network controllers. Then it introduces two cooperation tasks, which can be accomplished by either role taking or specialization, and uses these tasks to compare four different genetic algorithms to evaluate their capacity to evolve a suitable behavioral strategy, which depends on the task demands. Interestingly, only one of the four algorithms, which appears to have more biological plausibility, is capable of evolving role taking or specialization when they are needed. The results are relevant for both collective robotics and biology, as they can provide useful hints on the different processes that can lead to the emergence of specialization in robots and organisms.

  8. Neural affective mechanisms predict market-level microlending

    NARCIS (Netherlands)

    A. Genevsky (Alex); B. Knutson (Brian)

    2015-01-01

    textabstractHumans sometimes share with others whom they may never meet or know, in violation of the dictates of pure self-interest. Research has not established which neuropsychological mechanisms support lending decisions, nor whether their influence extends to markets involving significant

  9. Peer influence: neural mechanisms underlying in-group conformity

    NARCIS (Netherlands)

    Stallen, M.; Smidts, A.; Sanfey, A.G.

    2013-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed

  10. Peer influence: Neural mechanisms underlying in-group conformity

    NARCIS (Netherlands)

    M. Stallen (Mirre); A. Smidts (Ale); A.G. Sanfey (Alan)

    2013-01-01

    textabstractPeople often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI).

  11. Differential evolution and simulated annealing algorithms for mechanical systems design

    Directory of Open Access Journals (Sweden)

    H. Saruhan

    2014-09-01

    Full Text Available In this study, nature inspired algorithms – the Differential Evolution (DE and the Simulated Annealing (SA – are utilized to seek a global optimum solution for ball bearings link system assembly weight with constraints and mixed design variables. The Genetic Algorithm (GA and the Evolution Strategy (ES will be a reference for the examination and validation of the DE and the SA. The main purpose is to minimize the weight of an assembly system composed of a shaft and two ball bearings. Ball bearings link system is used extensively in many machinery applications. Among mechanical systems, designers pay great attention to the ball bearings link system because of its significant industrial importance. The problem is complex and a time consuming process due to mixed design variables and inequality constraints imposed on the objective function. The results showed that the DE and the SA performed and obtained convergence reliability on the global optimum solution. So the contribution of the DE and the SA application to the mechanical system design can be very useful in many real-world mechanical system design problems. Beside, the comparison confirms the effectiveness and the superiority of the DE over the others algorithms – the SA, the GA, and the ES – in terms of solution quality. The ball bearings link system assembly weight of 634,099 gr was obtained using the DE while 671,616 gr, 728213.8 gr, and 729445.5 gr were obtained using the SA, the ES, and the GA respectively.

  12. Peer influence: Neural mechanisms underlying in-group conformity

    Directory of Open Access Journals (Sweden)

    Mirre eStallen

    2013-03-01

    Full Text Available People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI. Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  13. Peer influence: neural mechanisms underlying in-group conformity.

    Science.gov (United States)

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan G

    2013-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  14. Neural and Cellular Mechanisms of Fear and Extinction Memory Formation

    Science.gov (United States)

    Orsini, Caitlin A.; Maren, Stephen

    2012-01-01

    Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last thirty years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes. PMID:22230704

  15. An Adaptive Neural Mechanism with a Lizard Ear Model for Binaural Acoustic Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2016-01-01

    Acoustic tracking of a moving sound source is relevant in many domains including robotic phonotaxis and human-robot interaction. Typical approaches rely on processing time-difference-of-arrival cues obtained via multi-microphone arrays with Kalman or particle filters, or other computationally...... expensive algorithms. We present a novel bioinspired solution to acoustic tracking that uses only two microphones. The system is based on a neural mechanism coupled with a model of the peripheral auditory system of lizards. The peripheral auditory model provides sound direction information which the neural...

  16. Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks.

    Science.gov (United States)

    Schrum, Jacob; Miikkulainen, Risto

    2016-03-12

    Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games.

  17. Neural Acupuncture Unit: A New Concept for Interpreting Effects and Mechanisms of Acupuncture

    Science.gov (United States)

    Zhang, Zhang-Jin; Wang, Xiao-Min; McAlonan, Grainne M.

    2012-01-01

    When an acupuncture needle is inserted into a designated point on the body and mechanical or electrical stimulation is delivered, various neural and neuroactive components are activated. The collection of the activated neural and neuroactive components distributed in the skin, muscle, and connective tissues surrounding the inserted needle is defined as a neural acupuncture unit (NAU). The traditionally defined acupoints represent an anatomical landmark system that indicates local sites where NAUs may contain relatively dense and concentrated neural and neuroactive components, upon which acupuncture stimulation would elicit a more efficient therapeutic response. The NAU-based local mechanisms of biochemical and biophysical reactions play an important role in acupuncture-induced analgesia. Different properties of NAUs are associated with different components of needling sensation. There exist several central pathways to convey NAU-induced acupuncture signals, Electroacupuncture (EA) frequency-specific neurochemical effects are related to different peripheral and central pathways transmitting afferent signals from different frequency of NAU stimulation. More widespread and intense neuroimaging responses of brain regions to acupuncture may be a consequence of more efficient NAU stimulation modes. The introduction of the conception of NAU provides a new theoretical approach to interpreting effects and mechanisms of acupuncture in modern biomedical knowledge framework. PMID:22474503

  18. Believing versus interacting: Behavioural and neural mechanisms underlying interpersonal coordination

    DEFF Research Database (Denmark)

    Konvalinka, Ivana; Bauer, Markus; Kilner, James

    When two people engage in a bidirectional interaction with each other, they use both bottom-up sensorimotor mechanisms such as monitoring and adapting to the behaviour of the other, as well as top-down cognitive processes, modulating their beliefs and allowing them to make decisions. Most research...... was measured from one co-actor, with the other co-actor seated outside the scanner. Our findings show frontal alpha suppression during anticipation of the task with a person vs. a computer, and frontal-sensorimotor suppression during task execution with the person vs. computer. This provides insight...

  19. Peer influence: neural mechanisms underlying in-group conformity

    OpenAIRE

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan G.

    2013-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is ...

  20. Modularity and Sparsity: Evolution of Neural Net Controllers in Physically Embodied Robots

    Directory of Open Access Journals (Sweden)

    Nicholas Livingston

    2016-12-01

    Full Text Available While modularity is thought to be central for the evolution of complexity and evolvability, it remains unclear how systems boot-strap themselves into modularity from random or fully integrated starting conditions. Clune et al. (2013 suggested that a positive correlation between sparsity and modularity is the prime cause of this transition. We sought to test the generality of this modularity-sparsity hypothesis by testing it for the first time in physically embodied robots. A population of ten Tadros — autonomous, surface-swimming robots propelled by a flapping tail — was used. Individuals varied only in the structure of their neural net control, a 2 x 6 x 2 network with recurrence in the hidden layer. Each of the 60 possible connections was coded in the genome, and could achieve one of three states: -1, 0, 1. Inputs were two light-dependent resistors and outputs were two motor control variables to the flapping tail, one for the frequency of the flapping and the other for the turning offset. Each Tadro was tested separately in a circular tank lit by a single overhead light source. Fitness was the amount of light gathered by a vertically oriented sensor that was disconnected from the controller net. Reproduction was asexual, with the top performer cloned and then all individuals entered into a roulette wheel selection process, with genomes mutated to create the offspring. The starting population of networks was randomly generated. Over ten generations, the population’s mean fitness increased two-fold. This evolution occurred in spite of an unintentional integer overflow problem in recurrent nodes in the hidden layer that caused outputs to oscillate. Our investigation of the oscillatory behavior showed that the mutual information of inputs and outputs was sufficient for the reactive behaviors observed. While we had predicted that both modularity and sparsity would follow the same trend as fitness, neither did so. Instead, selection gradients

  1. Mammalian life histories: their evolution and molecular-genetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, G.A.

    1978-01-01

    Survival curves for various species of mammals are discussed and a table is presented to show recorded maximum life spans of about 30 species of mammals. The range of longevities is from one year for shrews and moles up to more than 80 years for the fin whale. The constitutional correlates of longevity are discussed with regard to body size, brain weight,metabolic rates, and body temperature. It is concluded that longevity evolved as a positive trait, associated with the evolution of large body size and brain size. Life table data for man, the thorough-bred horse, beagle dogs, and the laboratory rodents, Mus musculus and Peromyscus leucopus are discussed. The data show a pattern of exponential increase of death rate with age. A laboratory model using Mus musculus and Peromyscus leucopus for the study of the longevity-assurance mechanisms is described. (HLW)

  2. Motivation and cognitive control: from behavior to neural mechanism.

    Science.gov (United States)

    Botvinick, Matthew; Braver, Todd

    2015-01-03

    Research on cognitive control and executive function has long recognized the relevance of motivational factors. Recently, however, the topic has come increasingly to center stage, with a surge of new studies examining the interface of motivation and cognitive control. In the present article we survey research situated at this interface, considering work from cognitive and social psychology and behavioral economics, but with a particular focus on neuroscience research. We organize existing findings into three core areas, considering them in the light of currently vying theoretical perspectives. Based on the accumulated evidence, we advocate for a view of control function that treats it as a domain of reward-based decision making. More broadly, we argue that neuroscientific evidence plays a critical role in understanding the mechanisms by which motivation and cognitive control interact. Opportunities for further cross-fertilization between behavioral and neuroscientific research are highlighted.

  3. Studies of Neuronal Gene Regulation Controlling the Molecular Mechanisms Underlying Neural Plasticity.

    Science.gov (United States)

    Fukuchi, Mamoru

    2017-01-01

    The regulation of the development and function of the nervous system is not preprogramed but responds to environmental stimuli to change neural development and function flexibly. This neural plasticity is a characteristic property of the nervous system. For example, strong synaptic activation evoked by environmental stimuli leads to changes in synaptic functions (known as synaptic plasticity). Long-lasting synaptic plasticity is one of the molecular mechanisms underlying long-term learning and memory. Since discovering the role of the transcription factor cAMP-response element-binding protein in learning and memory, it has been widely accepted that gene regulation in neurons contributes to long-lasting changes in neural functions. However, it remains unclear how synaptic activation is converted into gene regulation that results in long-lasting neural functions like long-term memory. We continue to address this question. This review introduces our recent findings on the gene regulation of brain-derived neurotrophic factor and discusses how regulation of the gene participates in long-lasting changes in neural functions.

  4. Using Neural Networks in Decision Making for a Reconfigurable Electro Mechanical Actuator (EMA)

    Science.gov (United States)

    Latino, Carl D.

    2001-01-01

    The objectives of this project were to demonstrate applicability and advantages of a neural network approach for evaluating the performance of an electro-mechanical actuator (EMA). The EMA in question was intended for the X-37 Advanced Technology Vehicle. It will have redundant components for safety and reliability. The neural networks for this application are to monitor the operation of the redundant electronics that control the actuator in real time and decide on the operating configuration. The system we proposed consists of the actuator, sensors, control circuitry and dedicated (embedded) processors. The main purpose of the study was to develop suitable hardware and neural network capable of allowing real time reconfiguration decisions to be made. This approach was to be compared to other methods such as fuzzy logic and knowledge based systems considered for the same application. Over the course of the project a more general objective was the identification of the other neural network applications and the education of interested NASA personnel on the topic of Neural Networks.

  5. Developmental differences in the neural mechanisms of facial emotion labeling

    Science.gov (United States)

    Adleman, Nancy E.; Kim, Pilyoung; Oakes, Allison H.; Hsu, Derek; Reynolds, Richard C.; Chen, Gang; Pine, Daniel S.; Brotman, Melissa A.; Leibenluft, Ellen

    2016-01-01

    Adolescence is a time of increased risk for the onset of psychological disorders associated with deficits in face emotion labeling. We used functional magnetic resonance imaging (fMRI) to examine age-related differences in brain activation while adolescents and adults labeled the emotion on fearful, happy and angry faces of varying intensities [0% (i.e. neutral), 50%, 75%, 100%]. Adolescents and adults did not differ on accuracy to label emotions. In the superior temporal sulcus, ventrolateral prefrontal cortex and middle temporal gyrus, adults show an inverted-U-shaped response to increasing intensities of fearful faces and a U-shaped response to increasing intensities of happy faces, whereas adolescents show the opposite patterns. In addition, adults, but not adolescents, show greater inferior occipital gyrus activation to negative (angry, fearful) vs positive (happy) emotions. In sum, when subjects classify subtly varying facial emotions, developmental differences manifest in several ‘ventral stream’ brain regions. Charting the typical developmental course of the brain mechanisms of socioemotional processes, such as facial emotion labeling, is an important focus for developmental psychopathology research. PMID:26245836

  6. Distinctive neural mechanisms supporting visual object individuation and identification.

    Science.gov (United States)

    Xu, Yaoda

    2009-03-01

    Many everyday activities, such as driving on a busy street, require the encoding of distinctive visual objects from crowded scenes. Given resource limitations of our visual system, one solution to this difficult and challenging task is to first select individual objects from a crowded scene (object individuation) and then encode their details (object identification). Using functional magnetic resonance imaging, two distinctive brain mechanisms were recently identified that support these two stages of visual object processing. While the inferior intraparietal sulcus (IPS) selects a fixed number of about four objects via their spatial locations, the superior IPS and the lateral occipital complex (LOC) encode the features of a subset of the selected objects in great detail (object shapes in this case). Thus, the inferior IPS individuates visual objects from a crowded display and the superior IPS and higher visual areas participate in subsequent object identification. Consistent with the prediction of this theory, even when only object shape identity but not its location is task relevant, this study shows that object individuation in the inferior IPS treats four identical objects similarly as four objects that are all different, whereas object shape identification in the superior IPS and the LOC treat four identical objects as a single unique object. These results provide independent confirmation supporting the dissociation between visual object individuation and identification in the brain.

  7. History of mechanical ventilation may affect respiratory mechanics evolution in acute respiratory distress syndrome.

    Science.gov (United States)

    Koutsoukou, Antonia; Perraki, Helen; Orfanos, Stylianos E; Koulouris, Nikolaos G; Tromaropoulos, Andreas; Sotiropoulou, Christina; Roussos, Charis

    2009-12-01

    The aim of this study was to investigate the effect of mechanical ventilation (MV) before acute respiratory distress syndrome (ARDS) on subsequent evolution of respiratory mechanics and blood gases in protectively ventilated patients with ARDS. Nineteen patients with ARDS were stratified into 2 groups according to ARDS onset relative to the onset of MV: In group A (n = 11), MV was applied at the onset of ARDS; in group B (n = 8), MV had been initiated before ARDS. Respiratory mechanics and arterial blood gas were assessed in early (ventilated patients with ARDS, late alteration of respiratory mechanics occurs more commonly in patients who have been ventilated before ARDS onset, suggesting that the history of MV affects the subsequent progress of ARDS even when using protective ventilation.

  8. Neural mechanisms of childhood-onset bipolar illness.

    Science.gov (United States)

    Post, R M; Leverich, G S; Speer, A M; Xing, G; Weiss, S R

    2000-09-01

    Substantial evidence exists for a cohort effect (earlier onset and increased prevalence) for both unipolar and bipolar affective disorder in every generation born since World War II. This effect could be related to inherited mechanisms (e.g., bi-Hneal pedigrees or genetic anticipation) or to environmental/experiential effects on gene expression (e.g., stressor effects on the induction of transcription and growth factors, enzymes, hormones and their receptors, and signal transduction molecules) as documented in preclinical models of neonatal maternal separation. This laboratory evidence is summarized and new clinical data on the impact of severe stressors on the unfolding course of bipolar illness are noted. The reported occurrence of childhood or adolescent physical or sexual abuse, compared to those who report their absence, is associated with: earlier bipolar illness onset; faster cycling (including ultradian) patterns; increased Axis I and II comorbidities; and increased time ill in a prospective year of follow-up. Selectively, physical abuse was associated with a reported pattern of increasingly severe mania and sexual abuse with increased numbers of serious suicide attempts. In a retrospective survey of parents of children with an approximate average age of 13 who were diagnosed with bipolar illness (compared to those with other diagnoses and those with no diagnosis), a cluster of symptoms related to irritability and dyscontrol differentiated the bipolar children earliest. These symptoms included: temper tantrums, irritability, inattention, hyperactivity, impulsivity, poor frustration tolerance, and increased aggression. Given the growing evidence that episodes of affective dysfunction can not only convey morbidity and mortality, but may also sensitize to further recurrence and thus change the course of illness, opportunities abound for early recognition and intervention in childhood onset bipolar illness. Such a successful endeavor would both allow a more

  9. Phonological dyslexia and dysgraphia: cognitive mechanisms and neural substrates.

    Science.gov (United States)

    Rapcsak, Steven Z; Beeson, Pélagie M; Henry, Maya L; Leyden, Anne; Kim, Esther; Rising, Kindle; Andersen, Sarah; Cho, Hyesuk

    2009-05-01

    To examine the validity of different theoretical assumptions about the neuropsychological mechanisms and lesion correlates of phonological dyslexia and dysgraphia, we studied written and spoken language performance in a large cohort of patients with focal damage to perisylvian cortical regions implicated in phonological processing. Despite considerable variation in accuracy for both words and non-words, the majority of participants demonstrated the increased lexicality effects in reading and spelling that are considered the hallmark features of phonological dyslexia and dysgraphia. Increased lexicality effects were also documented in spoken language tasks such as oral repetition, and patients performed poorly on a battery of phonological tests that did not involve an orthographic component. Furthermore, a composite measure of general phonological ability was strongly predictive of both reading and spelling accuracy, and we obtained evidence that the continuum of severity that characterized the written language disorder of our patients was attributable to an underlying continuum of phonological impairment. Although patients demonstrated qualitatively similar deficits across measures of written and spoken language processing, there were quantitative differences in levels of performance reflecting task difficulty effects. Spelling was more severely affected than reading by the reduction in phonological capacity and this differential vulnerability accounted for occasional disparities between patterns of impairment on the two written language tasks. Our findings suggest that phonological dyslexia and dysgraphia in patients with perisylvian lesions are manifestations of a central or modality-independent phonological deficit rather than the result of damage to cognitive components dedicated to reading or spelling. Our results also provide empirical support for shared-components models of written language processing, according to which the same central cognitive systems

  10. An auditory neural correlate suggests a mechanism underlying holistic pitch perception.

    Directory of Open Access Journals (Sweden)

    Daryl Wile

    Full Text Available Current theories of auditory pitch perception propose that cochlear place (spectral and activity timing pattern (temporal information are somehow combined within the brain to produce holistic pitch percepts, yet the neural mechanisms for integrating these two kinds of information remain obscure. To examine this process in more detail, stimuli made up of three pure tones whose components are individually resolved by the peripheral auditory system, but that nonetheless elicit a holistic, "missing fundamental" pitch percept, were played to human listeners. A technique was used to separate neural timing activity related to individual components of the tone complexes from timing activity related to an emergent feature of the complex (the envelope, and the region of the tonotopic map where information could originate from was simultaneously restricted by masking noise. Pitch percepts were mirrored to a very high degree by a simple combination of component-related and envelope-related neural responses with similar timing that originate within higher-frequency regions of the tonotopic map where stimulus components interact. These results suggest a coding scheme for holistic pitches whereby limited regions of the tonotopic map (spectral places carrying envelope- and component-related activity with similar timing patterns selectively provide a key source of neural pitch information. A similar mechanism of integration between local and emergent object properties may contribute to holistic percepts in a variety of sensory systems.

  11. Dissociable neural mechanisms underlying the modulation of pain and anxiety? An FMRI pilot study.

    Directory of Open Access Journals (Sweden)

    Katja Wiech

    Full Text Available The down-regulation of pain through beliefs is commonly discussed as a form of emotion regulation. In line with this interpretation, the analgesic effect has been shown to co-occur with reduced anxiety and increased activity in the ventrolateral prefrontal cortex (VLPFC, which is a key region of emotion regulation. This link between pain and anxiety modulation raises the question whether the two effects are rooted in the same neural mechanism. In this pilot fMRI study, we compared the neural basis of the analgesic and anxiolytic effect of two types of threat modulation: a "behavioral control" paradigm, which involves the ability to terminate a noxious stimulus, and a "safety signaling" paradigm, which involves visual cues that signal the threat (or absence of threat that a subsequent noxious stimulus might be of unusually high intensity. Analgesia was paralleled by VLPFC activity during behavioral control. Safety signaling engaged elements of the descending pain control system, including the rostral anterior cingulate cortex that showed increased functional connectivity with the periaqueductal gray and VLPFC. Anxiety reduction, in contrast, scaled with dorsolateral prefrontal cortex activation during behavioral control but had no distinct neural signature during safety signaling. Our pilot data therefore suggest that analgesic and anxiolytic effects are instantiated in distinguishable neural mechanisms and differ between distinct stress- and pain-modulatory approaches, supporting the recent notion of multiple pathways subserving top-down modulation of the pain experience. Additional studies in larger cohorts are needed to follow up on these preliminary findings.

  12. Theory of mind in schizophrenia: exploring neural mechanisms of belief attribution.

    Science.gov (United States)

    Lee, Junghee; Quintana, Javier; Nori, Poorang; Green, Michael F

    2011-01-01

    Although previous behavioral studies have shown that schizophrenia patients have impaired theory of mind (ToM), the neural mechanisms associated with this impairment are poorly understood. This study aimed to identify the neural mechanisms of ToM in schizophrenia, using functional magnetic resonance imaging (fMRI) with a belief attribution task. In the scanner, 12 schizophrenia patients and 13 healthy control subjects performed the belief attribution task with three conditions: a false belief condition, a false photograph condition, and a simple reading condition. For the false belief versus simple reading conditions, schizophrenia patients showed reduced neural activation in areas including the temporoparietal junction (TPJ) and medial prefrontal cortex (MPFC) compared with controls. Further, during the false belief versus false photograph conditions, we observed increased activations in the TPJ and the MPFC in healthy controls, but not in schizophrenia patients. For the false photograph versus simple reading condition, both groups showed comparable neural activations. Schizophrenia patients showed reduced task-related activation in the TPJ and the MPFC during the false belief condition compared with controls, but not for the false photograph condition. This pattern suggests that reduced activation in these regions is associated with, and specific to, impaired ToM in schizophrenia.

  13. The influence of personality on neural mechanisms of observational fear and reward learning.

    Science.gov (United States)

    Hooker, Christine I; Verosky, Sara C; Miyakawa, Asako; Knight, Robert T; D'Esposito, Mark

    2008-09-01

    Fear and reward learning can occur through direct experience or observation. Both channels can enhance survival or create maladaptive behavior. We used fMRI to isolate neural mechanisms of observational fear and reward learning and investigate whether neural response varied according to individual differences in neuroticism and extraversion. Participants learned object-emotion associations by observing a woman respond with fearful (or neutral) and happy (or neutral) facial expressions to novel objects. The amygdala-hippocampal complex was active when learning the object-fear association, and the hippocampus was active when learning the object-happy association. After learning, objects were presented alone; amygdala activity was greater for the fear (vs. neutral) and happy (vs. neutral) associated object. Importantly, greater amygdala-hippocampal activity during fear (vs. neutral) learning predicted better recognition of learned objects on a subsequent memory test. Furthermore, personality modulated neural mechanisms of learning. Neuroticism positively correlated with neural activity in the amygdala and hippocampus during fear (vs. neutral) learning. Low extraversion/high introversion was related to faster behavioral predictions of the fearful and neutral expressions during fear learning. In addition, low extraversion/high introversion was related to greater amygdala activity during happy (vs. neutral) learning, happy (vs. neutral) object recognition, and faster reaction times for predicting happy and neutral expressions during reward learning. These findings suggest that neuroticism is associated with an increased sensitivity in the neural mechanism for fear learning which leads to enhanced encoding of fear associations, and that low extraversion/high introversion is related to enhanced conditionability for both fear and reward learning.

  14. Evolution of CAM and C4 carbon-concentrating mechanisms

    Science.gov (United States)

    Keeley, Jon E.; Rundel, Philip W.

    2003-01-01

    Mechanisms for concentrating carbon around the Rubisco enzyme, which drives the carbon-reducing steps in photosynthesis, are widespread in plants; in vascular plants they are known as crassulacean acid metabolism (CAM) and C4 photosynthesis. CAM is common in desert succulents, tropical epiphytes, and aquatic plants and is characterized by nighttime fixation of CO2. The proximal selective factor driving the evolution of this CO2-concentrating pathway is low daytime CO2, which results from the unusual reverse stomatal behavior of terrestrial CAM species or from patterns of ambient CO2 availability for aquatic CAM species. In terrestrials the ultimate selective factor is water stress that has selected for increased water use efficiency. In aquatics the ultimate selective factor is diel fluctuations in CO2 availability for palustrine species and extreme oligotrophic conditions for lacustrine species. C4 photosynthesis is based on similar biochemistry but carboxylation steps are spatially separated in the leaf rather than temporally as in CAM. This biochemical pathway is most commonly associated with a specialized leaf anatomy known as Kranz anatomy; however, there are exceptions. The ultimate selective factor driving the evolution of this pathway is excessively high photorespiration that inhibits normal C3 photosynthesis under high light and high temperature in both terrestrial and aquatic habitats. CAM is an ancient pathway that likely has been present since the Paleozoic era in aquatic species from shallow-water palustrine habitats. While atmospheric CO2 levels have undoubtedly affected the evolution of terrestrial plant carbon-concentrating mechanisms, there is reason to believe that past atmospheric changes have not played as important a selective role in the aquatic milieu since palustrine habitats today are not generally carbon sinks, and the selective factors driving aquatic CAM are autogenic. Terrestrial CAM, in contrast, is of increasing selective value under

  15. The octopus genome and the evolution of cephalopod neural and morphological novelties.

    Science.gov (United States)

    Albertin, Caroline B; Simakov, Oleg; Mitros, Therese; Wang, Z Yan; Pungor, Judit R; Edsinger-Gonzales, Eric; Brenner, Sydney; Ragsdale, Clifton W; Rokhsar, Daniel S

    2015-08-13

    Coleoid cephalopods (octopus, squid and cuttlefish) are active, resourceful predators with a rich behavioural repertoire. They have the largest nervous systems among the invertebrates and present other striking morphological innovations including camera-like eyes, prehensile arms, a highly derived early embryogenesis and a remarkably sophisticated adaptive colouration system. To investigate the molecular bases of cephalopod brain and body innovations, we sequenced the genome and multiple transcriptomes of the California two-spot octopus, Octopus bimaculoides. We found no evidence for hypothesized whole-genome duplications in the octopus lineage. The core developmental and neuronal gene repertoire of the octopus is broadly similar to that found across invertebrate bilaterians, except for massive expansions in two gene families previously thought to be uniquely enlarged in vertebrates: the protocadherins, which regulate neuronal development, and the C2H2 superfamily of zinc-finger transcription factors. Extensive messenger RNA editing generates transcript and protein diversity in genes involved in neural excitability, as previously described, as well as in genes participating in a broad range of other cellular functions. We identified hundreds of cephalopod-specific genes, many of which showed elevated expression levels in such specialized structures as the skin, the suckers and the nervous system. Finally, we found evidence for large-scale genomic rearrangements that are closely associated with transposable element expansions. Our analysis suggests that substantial expansion of a handful of gene families, along with extensive remodelling of genome linkage and repetitive content, played a critical role in the evolution of cephalopod morphological innovations, including their large and complex nervous systems.

  16. Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems.

    Science.gov (United States)

    Adams, Alyssa; Zenil, Hector; Davies, Paul C W; Walker, Sara Imari

    2017-04-20

    Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.

  17. Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters

    Science.gov (United States)

    Weems, Peyton W.; Goodman, Robert L.; Lehman, Michael N.

    2015-01-01

    Seasonal reproduction is a common adaptive strategy among mammals that allows for breeding to occur at times of the year when it is most advantageous for the subsequent survival and growth of offspring. A major mechanism responsible for seasonal reproduction is a striking increase in the responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the negative feedback effects of estradiol. The neural and neuroendocrine circuitry responsible for mammalian seasonal reproduction has been primarily studied in three animal models: the sheep, and two species of hamsters. In this review, we first describe the afferent signals, neural circuitry and transmitters/peptides responsible for seasonal reproductive transitions in sheep, and then compare these mechanisms with those derived from studies in hamsters. The results suggest common principles as well as differences in the role of specific brain nuclei and neuropeptides, including that of kisspeptin cells of the hypothalamic arcuate nucleus, in regulating seasonal reproduction among mammals. PMID:25582913

  18. Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network

    Directory of Open Access Journals (Sweden)

    ZHANG Yongzhi

    2016-10-01

    Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.

  19. Neural mechanisms underlying the integration of situational information into attribution outcomes

    OpenAIRE

    Brosch, Tobias; Schiller, Daniela; Mojdehbakhsh, Rachel; Uleman, James S.; Phelps, Elizabeth A.

    2013-01-01

    When forming impressions and trying to figure out why other people behave the way they do, we should take into account not only dispositional factors (i.e. personality traits) but also situational constraints as potential causes for a behavior. However, in their attributions, people often ignore the importance of situational factors. To investigate the neural mechanisms underlying the integration of situational information into attributions, we decomposed the attribution process by separately...

  20. An Integrative Model for the Neural Mechanism of Eye Movement Desensitization and Reprocessing (EMDR)

    OpenAIRE

    Coubard, Olivier A.

    2016-01-01

    Since the seminal report by Shapiro that bilateral stimulation induces cognitive and emotional changes, twenty-six years of basic and clinical research have examined the effects of Eye Movement Desensitization and Reprocessing (EMDR) in anxiety disorders, particularly in Post-Traumatic Stress Disorder (PTSD). The present article aims at better understanding EMDR neural mechanism. I first review procedural aspects of EMDR protocol and theoretical hypothesis about EMDR effects, and develop the ...

  1. Neural mechanisms underlying cognitive control of men with lifelong antisocial behavior.

    Science.gov (United States)

    Schiffer, Boris; Pawliczek, Christina; Mu Ller, Bernhard; Forsting, Michael; Gizewski, Elke; Leygraf, Norbert; Hodgins, Sheilagh

    2014-04-30

    Results of meta-analyses suggested subtle deficits in cognitive control among antisocial individuals. Because almost all studies focused on children with conduct problems or adult psychopaths, however, little is known about cognitive control mechanisms among the majority of persistent violent offenders who present an antisocial personality disorder (ASPD). The present study aimed to determine whether offenders with ASPD, relative to non-offenders, display dysfunction in the neural mechanisms underlying cognitive control and to assess the extent to which these dysfunctions are associated with psychopathic traits and trait impulsivity. Participants comprised 21 violent offenders and 23 non-offenders who underwent event-related functional magnetic resonance imaging while performing a non-verbal Stroop task. The offenders, relative to the non-offenders, exhibited reduced response time interference and a different pattern of conflict- and error-related activity in brain areas involved in cognitive control, attention, language, and emotion processing, that is, the anterior cingulate, dorsolateral prefrontal, superior temporal and postcentral cortices, putamen, thalamus, and amygdala. Moreover, between-group differences in behavioural and neural responses revealed associations with core features of psychopathy and attentional impulsivity. Thus, the results of the present study confirmed the hypothesis that offenders with ASPD display alterations in the neural mechanisms underlying cognitive control and that those alterations relate, at least in part, to personality characteristics. Copyright © 2014. Published by Elsevier Ireland Ltd.

  2. Neural mechanisms underlying transcranial direct current stimulation in aphasia: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Lena eUlm

    2015-10-01

    Full Text Available Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI. We employed a single subject, cross-over, sham-tDCS controlled design and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus (IFG and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioural stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS-effects on brain functions in aphasia.

  3. Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism

    Science.gov (United States)

    Marković, Dimitrije; Gläscher, Jan; Bossaerts, Peter; O’Doherty, John; Kiebel, Stefan J.

    2015-01-01

    For making decisions in everyday life we often have first to infer the set of environmental features that are relevant for the current task. Here we investigated the computational mechanisms underlying the evolution of beliefs about the relevance of environmental features in a dynamical and noisy environment. For this purpose we designed a probabilistic Wisconsin card sorting task (WCST) with belief solicitation, in which subjects were presented with stimuli composed of multiple visual features. At each moment in time a particular feature was relevant for obtaining reward, and participants had to infer which feature was relevant and report their beliefs accordingly. To test the hypothesis that attentional focus modulates the belief update process, we derived and fitted several probabilistic and non-probabilistic behavioral models, which either incorporate a dynamical model of attentional focus, in the form of a hierarchical winner-take-all neuronal network, or a diffusive model, without attention-like features. We used Bayesian model selection to identify the most likely generative model of subjects’ behavior and found that attention-like features in the behavioral model are essential for explaining subjects’ responses. Furthermore, we demonstrate a method for integrating both connectionist and Bayesian models of decision making within a single framework that allowed us to infer hidden belief processes of human subjects. PMID:26495984

  4. The possible evolution and future of CO2-concentrating mechanisms.

    Science.gov (United States)

    Raven, John A; Beardall, John; Sánchez-Baracaldo, Patricia

    2017-06-01

    CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Reaction mechanism of azoreductases suggests convergent evolution with quinone oxidoreductases.

    Science.gov (United States)

    Ryan, Ali; Wang, Chan-Ju; Laurieri, Nicola; Westwood, Isaac; Sim, Edith

    2010-08-01

    Azoreductases are involved in the bioremediation by bacteria of azo dyes found in waste water. In the gut flora, they activate azo pro-drugs, which are used for treatment of inflammatory bowel disease, releasing the active component 5-aminosalycilic acid. The bacterium P. aeruginosa has three azoreductase genes, paAzoR1, paAzoR2 and paAzoR3, which as recombinant enzymes have been shown to have different substrate specificities. The mechanism of azoreduction relies upon tautomerisation of the substrate to the hydrazone form. We report here the characterization of the P. aeruginosa azoreductase enzymes, including determining their thermostability, cofactor preference and kinetic constants against a range of their favoured substrates. The expression levels of these enzymes during growth of P. aeruginosa are altered by the presence of azo substrates. It is shown that enzymes that were originally described as azoreductases, are likely to act as NADH quinone oxidoreductases. The low sequence identities observed among NAD(P)H quinone oxidoreductase and azoreductase enzymes suggests convergent evolution.

  6. Robot manipulator identification based on adaptive multiple-input and multiple-output neural model optimized by advanced differential evolution algorithm

    Directory of Open Access Journals (Sweden)

    Nguyen Ngoc Son

    2016-12-01

    Full Text Available This article proposes a novel advanced differential evolution method which combines the differential evolution with the modified back-propagation algorithm. This new proposed approach is applied to train an adaptive enhanced neural model for approximating the inverse model of the industrial robot arm. Experimental results demonstrate that the proposed modeling procedure using the new identification approach obtains better convergence and more precision than the traditional back-propagation method or the lonely differential evolution approach. Furthermore, the inverse model of the industrial robot arm using the adaptive enhanced neural model performs outstanding results.

  7. Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials.

    Science.gov (United States)

    Asteris, Panagiotis G; Roussis, Panayiotis C; Douvika, Maria G

    2017-06-09

    This work presents a soft-sensor approach for estimating critical mechanical properties of sandcrete materials. Feed-forward (FF) artificial neural network (ANN) models are employed for building soft-sensors able to predict the 28-day compressive strength and the modulus of elasticity of sandcrete materials. To this end, a new normalization technique for the pre-processing of data is proposed. The comparison of the derived results with the available experimental data demonstrates the capability of FF ANNs to predict with pinpoint accuracy the mechanical properties of sandcrete materials. Furthermore, the proposed normalization technique has been proven effective and robust compared to other normalization techniques available in the literature.

  8. Mechanisms and evolution of iridescent feather colors in birds

    Science.gov (United States)

    Eliason, Chad M.

    A longstanding question in biology is why phenotypic diversity is unevenly distributed across the tree of life. Such differences can be caused by both extrinsic (e.g., natural selection) and intrinsic factors (e.g., how a trait functions). Despite numerous examples of diversification in form and function of complex biomechanical traits, we know relatively little about these processes in ornamental traits. Diverse ornamental feather colors in birds can be produced either by absorption (pigment-based colors) or scattering of light by feather nanostructures (structural colors). Because structural colors are deterministically related to the nanostructures that produce them, they are excellent systems to study form-function relationships and diversity of ornamental traits. In my dissertation I combine methods from physics and evolutionary biology to understand how proximate mechanisms explaining color (coherent light scattering) explain patterns of color diversity using iridescent feathers as a model system. Specifically, I ask two fundamental questions, one proximate and one ultimate, about iridescent colors: i) How are iridescent colors produced? and ii) What are the implications of how iridescent traits function for how they evolve? To tackle these questions, I sampled a nanostructurally diverse range of species, quantified their nanostructures with TEM and optical microscopy, experimentally tested the roles of different nanostructural traits in producing color by modifying them at the nanometer scale with FIB milling or humidity changes, and linked form and function with optical modeling. I then used simulation-based approaches and large-scale comparative analysis of color diversity to explore evolutionary consequences of functionally modular nanostructures in feathers. Together, my results suggest that morphological novelties in birds have, at least in part, allowed birds to achieve their vast morphological and colour diversity, and the way a color is produced has

  9. Distinct regulatory mechanisms act to establish and maintain Pax3 expression in the developing neural tube.

    Directory of Open Access Journals (Sweden)

    Steven Moore

    Full Text Available Pattern formation in developing tissues is driven by the interaction of extrinsic signals with intrinsic transcriptional networks that together establish spatially and temporally restricted profiles of gene expression. How this process is orchestrated at the molecular level by genomic cis-regulatory modules is one of the central questions in developmental biology. Here we have addressed this by analysing the regulation of Pax3 expression in the context of the developing spinal cord. Pax3 is induced early during neural development in progenitors of the dorsal spinal cord and is maintained as pattern is subsequently elaborated, resulting in the segregation of the tissue into dorsal and ventral subdivisions. We used a combination of comparative genomics and transgenic assays to define and dissect several functional cis-regulatory modules associated with the Pax3 locus. We provide evidence that the coordinated activity of two modules establishes and refines Pax3 expression during neural tube development. Mutational analyses of the initiating element revealed that in addition to Wnt signaling, Nkx family homeodomain repressors restrict Pax3 transcription to the presumptive dorsal neural tube. Subsequently, a second module mediates direct positive autoregulation and feedback to maintain Pax3 expression. Together, these data indicate a mechanism by which transient external signals are converted into a sustained expression domain by the activities of distinct regulatory elements. This transcriptional logic differs from the cross-repression that is responsible for the spatiotemporal patterns of gene expression in the ventral neural tube, suggesting that a variety of circuits are deployed within the neural tube regulatory network to establish and elaborate pattern formation.

  10. Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis.

    Science.gov (United States)

    Eriksson, Bo Joakim; Stollewerk, Angelika

    2010-12-28

    One of the controversial debates on euarthropod relationships centers on the question as to whether insects, crustaceans, and myriapods (Mandibulata) share a common ancestor or whether myriapods group with the chelicerates (Myriochelata). The debate was stimulated recently by studies in chelicerates and myriapods that show that neural precursor groups (NPGs) segregate from the neuroectoderm generating the nervous system, whereas in insects and crustaceans the nervous tissue is produced by stem cells. Do the shared neural characters of myriapods and chelicerates represent derived characters that support the Myriochelata grouping? Or do they rather reflect the ancestral pattern? Analyses of neurogenesis in a group closely related to euarthropods, the onychophorans, show that, similar to insects and crustaceans, single neural precursors are formed in the neuroectoderm, potentially supporting the Myriochelata hypothesis. Here we show that the nature and the selection of onychophoran neural precursors are distinct from euarthropods. The onychophoran nervous system is generated by the massive irregular segregation of single neural precursors, contrasting with the limited number and stereotyped arrangement of NPGs/stem cells in euarthropods. Furthermore, neural genes do not show the spatiotemporal pattern that sets up the precise position of neural precursors as in euarthropods. We conclude that neurogenesis in onychophorans largely does not reflect the ancestral pattern of euarthropod neurogenesis, but shows a mixture of derived characters and ancestral characters that have been modified in the euarthropod lineage. Based on these data and additional evidence, we suggest an evolutionary sequence of arthropod neurogenesis that is in line with the Mandibulata hypothesis.

  11. Fast Prediction of HCCI Combustion with an Artificial Neural Network Linked to a Fluid Mechanics Code

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Flowers, D L; Chen, J; Babaimopoulos, A

    2006-08-29

    We have developed an artificial neural network (ANN) based combustion model and have integrated it into a fluid mechanics code (KIVA3V) to produce a new analysis tool (titled KIVA3V-ANN) that can yield accurate HCCI predictions at very low computational cost. The neural network predicts ignition delay as a function of operating parameters (temperature, pressure, equivalence ratio and residual gas fraction). KIVA3V-ANN keeps track of the time history of the ignition delay during the engine cycle to evaluate the ignition integral and predict ignition for each computational cell. After a cell ignites, chemistry becomes active, and a two-step chemical kinetic mechanism predicts composition and heat generation in the ignited cells. KIVA3V-ANN has been validated by comparison with isooctane HCCI experiments in two different engines. The neural network provides reasonable predictions for HCCI combustion and emissions that, although typically not as good as obtained with the more physically representative multi-zone model, are obtained at a much reduced computational cost. KIVA3V-ANN can perform reasonably accurate HCCI calculations while requiring only 10% more computational effort than a motored KIVA3V run. It is therefore considered a valuable tool for evaluation of engine maps or other performance analysis tasks requiring multiple individual runs.

  12. Life-history evolution: understanding the proximate mechanisms

    Indian Academy of Sciences (India)

    history evolution, I was required to write a term paper for a course on 'Advanced evolutionary biol- ogy'. Having worked in the laboratory for about six months and read through numerous papers on life-history evolution,. I was convinced that ...

  13. Pinning cluster synchronization in an array of coupled neural networks under event-based mechanism.

    Science.gov (United States)

    Li, Lulu; Ho, Daniel W C; Cao, Jinde; Lu, Jianquan

    2016-04-01

    Cluster synchronization is a typical collective behavior in coupled dynamical systems, where the synchronization occurs within one group, while there is no synchronization among different groups. In this paper, under event-based mechanism, pinning cluster synchronization in an array of coupled neural networks is studied. A new event-triggered sampled-data transmission strategy, where only local and event-triggering states are utilized to update the broadcasting state of each agent, is proposed to realize cluster synchronization of the coupled neural networks. Furthermore, a self-triggered pinning cluster synchronization algorithm is proposed, and a set of iterative procedures is given to compute the event-triggered time instants. Hence, this will reduce the computational load significantly. Finally, an example is given to demonstrate the effectiveness of the theoretical results. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Separate neural mechanisms underlie choices and strategic preferences in risky decision making.

    Science.gov (United States)

    Venkatraman, Vinod; Payne, John W; Bettman, James R; Luce, Mary Frances; Huettel, Scott A

    2009-05-28

    Adaptive decision making in real-world contexts often relies on strategic simplifications of decision problems. Yet, the neural mechanisms that shape these strategies and their implementation remain largely unknown. Using an economic decision-making task, we dissociate brain regions that predict specific choices from those predicting an individual's preferred strategy. Choices that maximized gains or minimized losses were predicted by functional magnetic resonance imaging activation in ventromedial prefrontal cortex or anterior insula, respectively. However, choices that followed a simplifying strategy (i.e., attending to overall probability of winning) were associated with activation in parietal and lateral prefrontal cortices. Dorsomedial prefrontal cortex, through differential functional connectivity with parietal and insular cortex, predicted individual variability in strategic preferences. Finally, we demonstrate that robust decision strategies follow from neural sensitivity to rewards. We conclude that decision making reflects more than compensatory interaction of choice-related regions; in addition, specific brain systems potentiate choices depending on strategies, traits, and context.

  15. Neural mechanisms of reactivation-induced updating that enhance and distort memory

    Science.gov (United States)

    St. Jacques, Peggy L.; Olm, Christopher; Schacter, Daniel L.

    2013-01-01

    We remember a considerable number of personal experiences because we are frequently reminded of them, a process known as memory reactivation. Although memory reactivation helps to stabilize and update memories, reactivation may also introduce distortions if novel information becomes incorporated with memory. Here we used functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms mediating reactivation-induced updating in memory for events experienced during a museum tour. During scanning, participants were shown target photographs to reactivate memories from the museum tour followed by a novel lure photograph from an alternate tour. Later, participants were presented with target and lure photographs and asked to determine whether the photographs showed a stop they visited during the tour. We used a subsequent memory analysis to examine neural recruitment during reactivation that was associated with later true and false memories. We predicted that the quality of reactivation, as determined by online ratings of subjective recollection, would increase subsequent true memories but also facilitate incorporation of the lure photograph, thereby increasing subsequent false memories. The fMRI results revealed that the quality of reactivation modulated subsequent true and false memories via recruitment of left posterior parahippocampal, bilateral retrosplenial, and bilateral posterior inferior parietal cortices. However, the timing of neural recruitment and the way in which memories were reactivated contributed to differences in whether memory reactivation led to distortions or not. These data reveal the neural mechanisms recruited during memory reactivation that modify how memories will be subsequently retrieved, supporting the flexible and dynamic aspects of memory. PMID:24191059

  16. [Molecular mechanism of brain regeneration and reconstruction of dopaminergic neural network in planarians].

    Science.gov (United States)

    Nishimura, Kaneyasu; Kitamura, Yoshihisa; Agata, Kiyokazu

    2008-04-01

    Recently, planarians have received much attention because of their contributions to research on the basic science of stem cell systems, neural regeneration, and regenerative medicine. Planarians can regenerate complete organs, including a well-organized central nervous system (CNS), within about 7 days. This high regenerative capacity is supported by pluripotent stem cells present in the mesenchymal space throughout the body. Interestingly, planarians can regenerate their brain via a molecular mechanism similar to that of mammalian brain development. The regeneration process of the planarian brain can be divided into five steps: (1) anterior blastema formation, (2) brain rudiment formation, (3) brain pattern formation, (4) neural network formation, and (5) functional recovery, with several kinds of genes and molecular cascades acting at each step. Recently, we have identified a planarian tyrosine hydroxylase (TH) gene, a rate-limiting enzyme for dopamine (DA) biosynthesis, and produced TH-knockdown planarians by the RNA interference technique. Studies of TH-knockdown planarians showed that DA has an important role of the modification in behavioral movement in planarians. Using monoclonal anti-planarian TH antibody, we also found that dopaminergic neurons are mainly localized in the planarian brain. When the planarian body was amputated, newly generated TH-immunopositive neurons were detected in the anterior region at day 3 of regeneration (i.e., the period of neural network formation), and the TH-immunopositive axonal and dendritic neural network in the CNS was reconstructed during day 5-7 of regeneration. In this article, recent advances in elucidating the molecular mechanism of planarian brain regeneration and dopaminergic neurons are reviewed, and its future prospects for contribution of this system to basic science and medical science research are described.

  17. Physiological mechanisms of sex differences in exertional dyspnoea: role of neural respiratory motor drive.

    Science.gov (United States)

    Schaeffer, Michele R; Mendonca, Cassandra T; Levangie, Marc C; Andersen, Ross E; Taivassalo, Tanja; Jensen, Dennis

    2014-02-01

    What is the central question of this study? Does the combination of a higher neural respiratory drive and greater dynamic mechanical ventilatory constraints during exercise in healthy women versus men form the mechanistic basis of sex differences in activity-related dyspnoea? What is the main finding and its importance? Sex differences in activity-related dyspnoea in health primarily reflected the awareness of a higher neural respiratory drive needed to achieve any given ventilation during exercise in the setting of relatively greater dynamic mechanical ventilatory constraints in women. These findings may have implications for our understanding of the mechanisms of sex differences in exertional dyspnoea in variants of health (e.g. the elderly) and in patients with cardiorespiratory disease. The purpose of this study was to elucidate the physiological mechanisms of sex differences in exertional dyspnoea. We compared detailed measures of neural respiratory motor drive [diaphragmatic EMG (EMGdi) expressed as a percentage of maximal EMGdi (EMGdi%max)], breathing pattern, operating lung volumes, dynamic respiratory mechanics [tidal oesophageal (P(oes,tida)l%peak) and transdiaphragmatic pressure swings (P(di,tidal)%peak) expressed as a percentage of their respective peak values] and sensory intensity and unpleasantness ratings of dyspnoea during symptom-limited incremental cycle exercise in healthy young women (n = 25) and men (n = 25). The tidal volume to forced vital capacity ratio (V(T)%FVC), breathing frequency, EMGdi%max, P(oes,tidal)%peak, P(di,tidal)%peak and sensory intensity and unpleasantness ratings of dyspnoea were higher, while dynamic inspiratory capacity and inspiratory reserve volume were lower at a standardized absolute ventilation of 55 l min(-1) during submaximal exercise in women versus men (all P sex had no demonstrable effect on the inter-relationships between exercise-induced increases in V(T)%FVC, EMGdi%max and sensory intensity and unpleasantness

  18. The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms.

    Science.gov (United States)

    Hochner, Binyamin; Shomrat, Tal; Fiorito, Graziano

    2006-06-01

    Comparative analysis of brain function in invertebrates with sophisticated behaviors, such as the octopus, may advance our understanding of the evolution of the neural processes that mediate complex behaviors. Until the last few years, this approach was infeasible due to the lack of neurophysiological tools for testing the neural circuits mediating learning and memory in the brains of octopus and other cephalopods. Now, for the first time, the adaptation of modern neurophysiological methods to the study of the central nervous system of the octopus allows this avenue of research. The emerging results suggest that a convergent evolutionary process has led to the selection of vertebrate-like neural organization and activity-dependent long-term synaptic plasticity. As octopuses and vertebrates are very remote phylogenetically, this convergence suggests the importance of the shared properties for the mediation of learning and memory.

  19. Phase nucleation and evolution mechanisms in heterogeneous solids

    Science.gov (United States)

    Udupa, Anirudh

    Phase nucleation and evolution is a problem of critical importance in many applications. As the length scales are reduced, it becomes increasingly important to consider interfacial and micro-structural effects that can be safely ignored at larger length scales owing to randomness. The theory of phase nucleation has been addressed usually by the classical nucleation theory, which was originally derived for single component fluid systems, after making an assumption of equilibrium. The criterion has not been rigorously derived for solids, which are far from equilibrium due to dissipation by multiple physical drivers. In this thesis, a thermodynamically sound nucleation criterion is derived for systems with multiple interacting physical phenomena and multiple dissipating mechanisms. This is done, using the tools of continuum mechanics, by determining the change in free energy upon the introduction of a new nucleus into the system. The developed theory is demonstrated to be a generalization of the classical nucleation theory (CNT). The developed theory is then applied to the problem of electromigration driven void nucleation, a serious reliability concern for the microelectronics industry. The void grows and eventually severs the line making the chip nonfunctional. There are two classes of theories at present in the electromigration literature to address the problem of void nucleation, the vacancy supersaturation theory and the entropic dissipation theory, both of which are empirical and based on intuition developed from experimental observations. When the developed theory was applied to the problem of electromigration, it was found to be consistent with the vacancy supersaturation theory, but provided the correct energetic quantity, the chemical potential, which has contribution from both the vacancy concentration as well as the hydrostatic stress. An experiment, consisting of electromigration tests on serpentine lines, was developed to validate the developed

  20. A mechanism for the inhibition of neural progenitor cell proliferation by cocaine.

    Directory of Open Access Journals (Sweden)

    Chun-Ting Lee

    2008-06-01

    Full Text Available BACKGROUND: Prenatal exposure of the developing brain to cocaine causes morphological and behavioral abnormalities. Recent studies indicate that cocaine-induced proliferation inhibition and/or apoptosis in neural progenitor cells may play a pivotal role in causing these abnormalities. To understand the molecular mechanism through which cocaine inhibits cell proliferation in neural progenitors, we sought to identify the molecules that are responsible for mediating the effect of cocaine on cell cycle regulation. METHODS AND FINDINGS: Microarray analysis followed by quantitative real-time reverse transcription PCR was used to screen cocaine-responsive and cell cycle-related genes in a neural progenitor cell line where cocaine exposure caused a robust anti-proliferative effect by interfering with the G1-to-S transition. Cyclin A2, among genes related to the G1-to-S cell cycle transition, was most strongly down-regulated by cocaine. Down-regulation of cyclin A was also found in cocaine-treated human primary neural and A2B5+ progenitor cells, as well as in rat fetal brains exposed to cocaine in utero. Reversing cyclin A down-regulation by gene transfer counteracted the proliferation inhibition caused by cocaine. Further, we found that cocaine-induced accumulation of reactive oxygen species, which involves N-oxidation of cocaine via cytochrome P450, promotes cyclin A down-regulation by causing an endoplasmic reticulum (ER stress response, as indicated by increased phosphorylation of eIF2alpha and expression of ATF4. In the developing rat brain, the P450 inhibitor cimetidine counteracted cocaine-induced inhibition of neural progenitor cell proliferation as well as down-regulation of cyclin A. CONCLUSIONS: Our results demonstrate that down-regulation of cyclin A underlies cocaine-induced proliferation inhibition in neural progenitors. The down-regulation of cyclin A is initiated by N-oxidative metabolism of cocaine and consequent ER stress. Inhibition of

  1. Neural mechanisms linking social status and inflammatory responses to social stress

    Science.gov (United States)

    Dedovic, Katarina; Slavich, George M.; Jarcho, Michael R.; Breen, Elizabeth C.; Bower, Julienne E.; Irwin, Michael R.; Eisenberger, Naomi I.

    2016-01-01

    Social stratification has important implications for health and well-being, with individuals lower in standing in a hierarchy experiencing worse outcomes than those higher up the social ladder. Separate lines of past research suggest that alterations in inflammatory processes and neural responses to threat may link lower social status with poorer outcomes. This study was designed to bridge these literatures to investigate the neurocognitive mechanisms linking subjective social status and inflammation. Thirty-one participants reported their subjective social status, and underwent a functional magnetic resonance imaging scan while they were socially evaluated. Participants also provided blood samples before and after the stressor, which were analysed for changes in inflammation. Results showed that lower subjective social status was associated with greater increases in inflammation. Neuroimaging data revealed lower subjective social status was associated with greater neural activity in the dorsomedial prefrontal cortex (DMPFC) in response to negative feedback. Finally, results indicated that activation in the DMPFC in response to negative feedback mediated the relation between social status and increases in inflammatory activity. This study provides the first evidence of a neurocognitive pathway linking subjective social status and inflammation, thus furthering our understanding of how social hierarchies shape neural and physiological responses to social interactions. PMID:26979965

  2. Neural mechanisms linking social status and inflammatory responses to social stress.

    Science.gov (United States)

    Muscatell, Keely A; Dedovic, Katarina; Slavich, George M; Jarcho, Michael R; Breen, Elizabeth C; Bower, Julienne E; Irwin, Michael R; Eisenberger, Naomi I

    2016-06-01

    Social stratification has important implications for health and well-being, with individuals lower in standing in a hierarchy experiencing worse outcomes than those higher up the social ladder. Separate lines of past research suggest that alterations in inflammatory processes and neural responses to threat may link lower social status with poorer outcomes. This study was designed to bridge these literatures to investigate the neurocognitive mechanisms linking subjective social status and inflammation. Thirty-one participants reported their subjective social status, and underwent a functional magnetic resonance imaging scan while they were socially evaluated. Participants also provided blood samples before and after the stressor, which were analysed for changes in inflammation. Results showed that lower subjective social status was associated with greater increases in inflammation. Neuroimaging data revealed lower subjective social status was associated with greater neural activity in the dorsomedial prefrontal cortex (DMPFC) in response to negative feedback. Finally, results indicated that activation in the DMPFC in response to negative feedback mediated the relation between social status and increases in inflammatory activity. This study provides the first evidence of a neurocognitive pathway linking subjective social status and inflammation, thus furthering our understanding of how social hierarchies shape neural and physiological responses to social interactions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    Science.gov (United States)

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells.

    Science.gov (United States)

    Shu, Tao; Wu, Tao; Pang, Mao; Liu, Chang; Wang, Xuan; Wang, Juan; Liu, Bin; Rong, Limin

    2016-06-03

    Melatonin, a lipophilic molecule mainly synthesized in the pineal gland, has properties of antioxidation, anti-inflammation, and antiapoptosis to improve neuroprotective functions. Here, we investigate effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells (iPSCs). iPSCs were induced into neural stem cells (NSCs), then further differentiated into neurons in medium with or without melatonin, melatonin receptor antagonist (Luzindole) or Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). Melatonin significantly promoted the number of neurospheres and cell viability. In addition, Melatonin markedly up-regulated gene and protein expression of Nestin and MAP2. However, Luzindole or LY294002 attenuated these increase. The expression of pAKT/AKT were increased by Melatonin, while Luzindole or LY294002 declined these melatonin-induced increase. These results suggest that melatonin significantly increased neural differentiation of iPSCs via activating PI3K/AKT signaling pathway through melatonin receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Twitter evolution: converging mechanisms in birdsong and human speech.

    Science.gov (United States)

    Bolhuis, Johan J; Okanoya, Kazuo; Scharff, Constance

    2010-11-01

    Vocal imitation in human infants and in some orders of birds relies on auditory-guided motor learning during a sensitive period of development. It proceeds from 'babbling' (in humans) and 'subsong' (in birds) through distinct phases towards the full-fledged communication system. Language development and birdsong learning have parallels at the behavioural, neural and genetic levels. Different orders of birds have evolved networks of brain regions for song learning and production that have a surprisingly similar gross anatomy, with analogies to human cortical regions and basal ganglia. Comparisons between different songbird species and humans point towards both general and species-specific principles of vocal learning and have identified common neural and molecular substrates, including the forkhead box P2 (FOXP2) gene.

  6. Mechanisms and evolution of deceptive pollination in orchids.

    Science.gov (United States)

    Jersáková, Jana; Johnson, Steven D; Kindlmann, Pavel

    2006-05-01

    The orchid family is renowned for its enormous diversity of pollination mechanisms and unusually high occurrence of non-rewarding flowers compared to other plant families. The mechanisms of deception in orchids include generalized food deception, food-deceptive floral mimicry, brood-site imitation, shelter imitation, pseudoantagonism, rendezvous attraction and sexual deception. Generalized food deception is the most common mechanism (reported in 38 genera) followed by sexual deception (18 genera). Floral deception in orchids has been intensively studied since Darwin, but the evolution of non-rewarding flowers still presents a major puzzle for evolutionary biology. The two principal hypotheses as to how deception could increase fitness in plants are (i) reallocation of resources associated with reward production to flowering and seed production, and (ii) higher levels of cross-pollination due to pollinators visiting fewer flowers on non-rewarding plants, resulting in more outcrossed progeny and more efficient pollen export. Biologists have also tried to explain why deception is overrepresented in the orchid family. These explanations include: (i) efficient removal and deposition of pollinaria from orchid flowers in a single pollinator visit, thus obviating the need for rewards to entice multiple visits from pollinators; (ii) efficient transport of orchid pollen, thus requiring less reward-induced pollinator constancy; (iii) low-density populations in many orchids, thus limiting the learning of associations of floral phenotypes and rewards by pollinators; (iv) packaging of pollen in pollinaria with limited carry-over from flower to flower, thus increasing the risks of geitonogamous self-pollination when pollinators visit many flowers on rewarding plants. All of these general and orchid-specific hypotheses are difficult to reconcile with the well-established pattern for rewardlessness to result in low pollinator visitation rates and consequently low levels of fruit

  7. An adaptive neural mechanism for acoustic motion perception with varying sparsity

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    .e. extracting information about its direction and velocity. Here we focus on auditory motion perception of sound stimuli, which is poorly understood as compared to its visual counterpart. In earlier work we have developed a bio-inspired neural learning mechanism for acoustic motion perception. The mechanism...... extracts directional information via a model of the peripheral auditory system of lizards. The mechanism uses only this directional information obtained via specific motor behaviour to learn the angular velocity of unoccluded sound stimuli in motion. In nature however the stimulus being tracked may...... be occluded by artefacts in the environment, such as an escaping prey momentarily disappearing behind a cover of trees. This article extends the earlier work by presenting a comparative investigation of auditory motion perception for unoccluded and occluded tonal sound stimuli with a frequency of 2.2 k...

  8. Neurobiology of pair bonding in fishes; convergence of neural mechanisms across distant vertebrate lineages

    KAUST Repository

    Nowicki, Jessica

    2017-11-14

    Pair bonding has independently evolved numerous times among vertebrates. The governing neural mechanisms of pair bonding have only been studied in depth in the mammalian model species, the prairie vole, Microtus ochrogaster. In this species, oxytocin (OT), arginine vasopressin (AVP), dopamine (DA), and opioid (OP) systems play key roles in signaling in the formation and maintenance of pair bonding by targeting specific social and reward-mediating brain regions. By contrast, the neural basis of pair bonding is poorly studied in other vertebrates, and especially those of early origins, limiting our understanding of the evolutionary history of pair bonding regulatory mechanisms. We compared receptor gene expression between pair bonded and solitary individuals across eight socio-functional brain regions. We found that in females, ITR and V1aR receptor expression varied in the lateral septum-like region (the Vv/Vl), while in both sexes D1R, D2R, and MOR expression varied within the mesolimbic reward system, including a striatum-like region (the Vc); mirroring sites of action in M. ochrogaster. This study provides novel insights into the neurobiology of teleost pair bonding. It also reveals high convergence in the neurochemical mechanisms governing pair bonding across actinopterygians and sarcopterygians, by repeatedly co-opting and similarly assembling deep neurochemical and neuroanatomical homologies that originated in ancestral osteithes.

  9. Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale

    Directory of Open Access Journals (Sweden)

    Thomas eWolbers

    2014-08-01

    Full Text Available Spatial navigation is a fascinating behavior that is essential for our everyday lives. It involves nearly all sensory systems, it requires numerous parallel computations, and it engages multiple memory systems. One of the key problems in this field pertains to the question of reference frames: spatial information such as direction or distance can be coded egocentrically - relative to an observer - or allocentrically - in a reference frame independent of the observer. While many studies have associated striatal and parietal circuits with egocentric coding and entorhinal/hippocampal circuits with allocentric coding, this strict dissociation is not in line with a growing body of experimental data. In this review, we discuss some of the problems that can arise when studying the neural mechanisms that are presumed to support different spatial reference frames. We argue that the scale of space in which a navigation task takes place plays a crucial role in determining the processes that are being recruited. This has important implications, particularly for the inferences that can be made from animal studies in small scale space about the neural mechanisms supporting human spatial navigation in large (environmental spaces. Furthermore, we argue that many of the commonly used tasks to study spatial navigation and the underlying neuronal mechanisms involve different types of reference frames, which can complicate the interpretation of neurophysiological data.

  10. On the Control of Social Approach-Avoidance Behavior: Neural and Endocrine Mechanisms.

    Science.gov (United States)

    Kaldewaij, Reinoud; Koch, Saskia B J; Volman, Inge; Toni, Ivan; Roelofs, Karin

    The ability to control our automatic action tendencies is crucial for adequate social interactions. Emotional events trigger automatic approach and avoidance tendencies. Although these actions may be generally adaptive, the capacity to override these emotional reactions may be key to flexible behavior during social interaction. The present chapter provides a review of the neuroendocrine mechanisms underlying this ability and their relation to social psychopathologies. Aberrant social behavior, such as observed in social anxiety or psychopathy, is marked by abnormalities in approach-avoidance tendencies and the ability to control them. Key neural regions involved in the regulation of approach-avoidance behavior are the amygdala, widely implicated in automatic emotional processing, and the anterior prefrontal cortex, which exerts control over the amygdala. Hormones, especially testosterone and cortisol, have been shown to affect approach-avoidance behavior and the associated neural mechanisms. The present chapter also discusses ways to directly influence social approach and avoidance behavior and will end with a research agenda to further advance this important research field. Control over approach-avoidance tendencies may serve as an exemplar of emotional action regulation and might have a great value in understanding the underlying mechanisms of the development of affective disorders.

  11. An Integrative Model for the Neural Mechanism of Eye Movement Desensitization and Reprocessing (EMDR).

    Science.gov (United States)

    Coubard, Olivier A

    2016-01-01

    Since the seminal report by Shapiro that bilateral stimulation induces cognitive and emotional changes, 26 years of basic and clinical research have examined the effects of Eye Movement Desensitization and Reprocessing (EMDR) in anxiety disorders, particularly in post-traumatic stress disorder (PTSD). The present article aims at better understanding EMDR neural mechanism. I first review procedural aspects of EMDR protocol and theoretical hypothesis about EMDR effects, and develop the reasons why the scientific community is still divided about EMDR. I then slide from psychology to physiology describing eye movements/emotion interaction from the physiological viewpoint, and introduce theoretical and technical tools used in movement research to re-examine EMDR neural mechanism. Using a recent physiological model for the neuropsychological architecture of motor and cognitive control, the Threshold Interval Modulation with Early Release-Rate of rIse Deviation with Early Release (TIMER-RIDER)-model, I explore how attentional control and bilateral stimulation may participate to EMDR effects. These effects may be obtained by two processes acting in parallel: (i) activity level enhancement of attentional control component; and (ii) bilateral stimulation in any sensorimotor modality, both resulting in lower inhibition enabling dysfunctional information to be processed and anxiety to be reduced. The TIMER-RIDER model offers quantitative predictions about EMDR effects for future research about its underlying physiological mechanisms.

  12. An integrative model for the neural mechanism of Eye Movement Desensitization and Reprocessing (EMDR

    Directory of Open Access Journals (Sweden)

    Olivier A. Coubard

    2016-04-01

    Full Text Available Since the seminal report by Shapiro that bilateral stimulation induces cognitive and emotional changes, twenty-six years of basic and clinical research have examined the effects of Eye Movement Desensitization and Reprocessing (EMDR in anxiety disorders, particularly in Post-Traumatic Stress Disorder (PTSD. The present article aims at better understanding EMDR neural mechanism. I first review procedural aspects of EMDR protocol and theoretical hypothesis about EMDR effects, and develop the reasons why the scientific community is still divided about EMDR. I then slide from psychology to physiology describing eye movements/emotion interaction from the physiological viewpoint, and introduce theoretical and technical tools used in movement research to re-examine EMDR neural mechanism. Using a recent physiological model for the neuropsychological architecture of motor and cognitive control, the Threshold Interval Modulation with Early Release-Rate of rIse Deviation with Early Release – TIMER-RIDER – model, I explore how attentional control and bilateral stimulation may participate to EMDR effects. These effects may be obtained by two processes acting in parallel: (i activity level enhancement of attentional control component; and (ii bilateral stimulation in any sensorimotor modality, both resulting in lower inhibition enabling dysfunctional information to be processed and anxiety to be reduced. The TIMER-RIDER model offers quantitative predictions about EMDR effects for future research about its underlying physiological mechanisms.

  13. A Spiking Neural Network Based Cortex-Like Mechanism and Application to Facial Expression Recognition

    Directory of Open Access Journals (Sweden)

    Si-Yao Fu

    2012-01-01

    Full Text Available In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs. By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people’s facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism.

  14. Implicit sequence learning in juvenile anorexia nervosa: neural mechanisms and the impact of starvation.

    Science.gov (United States)

    Firk, Christine; Mainz, Verena; Schulte-Ruether, Martin; Fink, Gereon; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2015-11-01

    Previous studies have reported that cognitive deficits occur in patients with anorexia nervosa (AN) and that these deficits may represent a predisposition towards developing AN or perpetuate the disorder. Specifically, dysfunctional implicit learning may contribute to the development of highly resistant dieting behaviours that are fundamental to the persistence of the disorder. Thus, the aims of this study were (a) to investigate implicit sequence learning in adolescent patients with AN before and after weight recovery and (b) to elucidate the associated neural mechanisms in acute AN relative to healthy controls. In a behavioural study, implicit sequence learning was assessed using a serial reaction time task in 27 adolescents with AN before (T1) and after weight recovery (T2) compared with age-matched healthy controls (HC) who were assessed at similar time intervals. The neural correlates of implicit sequence learning were subsequently investigated in 19 AN patients shortly after they were admitted to the hospital and 20 HC using functional magnetic resonance imaging (fMRI). At T1, AN patients showed reduced sequence learning compared with HC. However, no behavioural differences between HC and AN patients were found at T2. At the neural level, acute AN patients showed reduced thalamic activation during sequence learning compared with HC subjects. Our data suggest that the impaired implicit learning observed in adolescent AN patients before weight gain is a state-related dysfunction that normalises with weight gain. Thus, implicit learning deficits do not appear to represent a predisposition towards developing AN; rather, these deficits should be considered when planning psychotherapeutic interventions for acute AN. Reduced thalamic activation during the acute stage of AN may indicate a starvation-induced dysfunction of the neural circuitry that is involved in behavioural flexibility. © 2015 Association for Child and Adolescent Mental Health.

  15. Neural mechanisms underlying the cost of task switching: an ERP study.

    Directory of Open Access Journals (Sweden)

    Ling Li

    Full Text Available BACKGROUND: When switching from one task to a new one, reaction times are prolonged. This phenomenon is called switch cost (SC. Researchers have recently used several kinds of task-switching paradigms to uncover neural mechanisms underlying the SC. Task-set reconfiguration and passive dissipation of a previously relevant task-set have been reported to contribute to the cost of task switching. METHODOLOGY/PRINCIPAL FINDINGS: An unpredictable cued task-switching paradigm was used, during which subjects were instructed to switch between a color and an orientation discrimination task. Electroencephalography (EEG and behavioral measures were recorded in 14 subjects. Response-stimulus interval (RSI and cue-stimulus interval (CSI were manipulated with short and long intervals, respectively. Switch trials delayed reaction times (RTs and increased error rates compared with repeat trials. The SC of RTs was smaller in the long CSI condition. For cue-locked waveforms, switch trials generated a larger parietal positive event-related potential (ERP, and a larger slow parietal positivity compared with repeat trials in the short and long CSI condition. Neural SC of cue-related ERP positivity was smaller in the long RSI condition. For stimulus-locked waveforms, a larger switch-related central negative ERP component was observed, and the neural SC of the ERP negativity was smaller in the long CSI. Results of standardized low resolution electromagnetic tomography (sLORETA for both ERP positivity and negativity showed that switch trials evoked larger activation than repeat trials in dorsolateral prefrontal cortex (DLPFC and posterior parietal cortex (PPC. CONCLUSIONS/SIGNIFICANCE: The results provide evidence that both RSI and CSI modulate the neural activities in the process of task-switching, but that these have a differential role during task-set reconfiguration and passive dissipation of a previously relevant task-set.

  16. Neural Mechanisms of the Influence of Popularity on Adolescent Ratings of Music

    OpenAIRE

    Berns, Gregory S.; Capra, C. Monica; Moore, Sara; Noussair, Charles

    2009-01-01

    It is well-known that social influences affect consumption decisions. We used functional magnetic resonance imaging (fMRI) to elucidate the neural mechanisms associated with social influence with regard to a common consumer good: music. Our study population was adolescents, age 12–17. Music is a common purchase in this age group, and it is widely believed that adolescent behavior is influenced by perceptions of popularity in their reference group. Using 15-second clips of songs from MySpace.c...

  17. The transition from quantity to quality: a neglected causal mechanism in accounting for social evolution.

    Science.gov (United States)

    Carneiro, R L

    2000-11-07

    Students of social evolution are concerned not only with the general course it has followed, but also with the mechanisms that have brought it about. One such mechanism comes into play when the quantitative increase in some entity, usually population, reaching a certain threshold, gives rise to a qualitative change in the structure of a society. This mechanism, first recognized by Hegel, was seized on by Marx and Engels. However, neither they nor their current followers among anthropologists have made much use of it in attempting to explain social evolution. But as this paper attempts to show, in those few instances when the mechanism has been invoked, it has heightened our understanding of the process of social evolution. And, it is argued, if the mechanism were more widely applied, further understanding of the course of evolution could be expected to result.

  18. Molecular evolution of a peptide GPCR ligand driven by artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Bandholtz

    Full Text Available Peptide ligands of G protein-coupled receptors constitute valuable natural lead structures for the development of highly selective drugs and high-affinity tools to probe ligand-receptor interaction. Currently, pharmacological and metabolic modification of natural peptides involves either an iterative trial-and-error process based on structure-activity relationships or screening of peptide libraries that contain many structural variants of the native molecule. Here, we present a novel neural network architecture for the improvement of metabolic stability without loss of bioactivity. In this approach the peptide sequence determines the topology of the neural network and each cell corresponds one-to-one to a single amino acid of the peptide chain. Using a training set, the learning algorithm calculated weights for each cell. The resulting network calculated the fitness function in a genetic algorithm to explore the virtual space of all possible peptides. The network training was based on gradient descent techniques which rely on the efficient calculation of the gradient by back-propagation. After three consecutive cycles of sequence design by the neural network, peptide synthesis and bioassay this new approach yielded a ligand with 70fold higher metabolic stability compared to the wild type peptide without loss of the subnanomolar activity in the biological assay. Combining specialized neural networks with an exploration of the combinatorial amino acid sequence space by genetic algorithms represents a novel rational strategy for peptide design and optimization.

  19. A Neural Mechanism for Background Information-Gated Learning Based on Axonal-Dendritic Overlaps

    Science.gov (United States)

    Mainetti, Matteo; Ascoli, Giorgio A.

    2015-01-01

    Experiencing certain events triggers the acquisition of new memories. Although necessary, however, actual experience is not sufficient for memory formation. One-trial learning is also gated by knowledge of appropriate background information to make sense of the experienced occurrence. Strong neurobiological evidence suggests that long-term memory storage involves formation of new synapses. On the short time scale, this form of structural plasticity requires that the axon of the pre-synaptic neuron be physically proximal to the dendrite of the post-synaptic neuron. We surmise that such “axonal-dendritic overlap” (ADO) constitutes the neural correlate of background information-gated (BIG) learning. The hypothesis is based on a fundamental neuroanatomical constraint: an axon must pass close to the dendrites that are near other neurons it contacts. The topographic organization of the mammalian cortex ensures that nearby neurons encode related information. Using neural network simulations, we demonstrate that ADO is a suitable mechanism for BIG learning. We model knowledge as associations between terms, concepts or indivisible units of thought via directed graphs. The simplest instantiation encodes each concept by single neurons. Results are then generalized to cell assemblies. The proposed mechanism results in learning real associations better than spurious co-occurrences, providing definitive cognitive advantages. PMID:25767887

  20. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  1. Neural mechanisms of eye contact when listening to another person talking.

    Science.gov (United States)

    Jiang, Jing; Borowiak, Kamila; Tudge, Luke; Otto, Carolin; von Kriegstein, Katharina

    2017-02-01

    Eye contact occurs frequently and voluntarily during face-to-face verbal communication. However, the neural mechanisms underlying eye contact when it is accompanied by spoken language remain unexplored to date. Here we used a novel approach, fixation-based event-related functional magnetic resonance imaging (fMRI), to simulate the listener making eye contact with a speaker during verbal communication. Participants' eye movements and fMRI data were recorded simultaneously while they were freely viewing a pre-recorded speaker talking. The eye tracking data were then used to define events for the fMRI analyses. The results showed that eye contact in contrast to mouth fixation involved visual cortical areas (cuneus, calcarine sulcus), brain regions related to theory of mind/intentionality processing (temporoparietal junction, posterior superior temporal sulcus, medial prefrontal cortex) and the dorsolateral prefrontal cortex. In addition, increased effective connectivity was found between these regions for eye contact in contrast to mouth fixations. The results provide first evidence for neural mechanisms underlying eye contact when watching and listening to another person talking. The network we found might be well suited for processing the intentions of communication partners during eye contact in verbal communication. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters.

    Science.gov (United States)

    Weems, Peyton W; Goodman, Robert L; Lehman, Michael N

    2015-04-01

    Seasonal reproduction is a common adaptive strategy among mammals that allows for breeding to occur at times of the year when it is most advantageous for the subsequent survival and growth of offspring. A major mechanism responsible for seasonal reproduction is a striking increase in the responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the negative feedback effects of estradiol. The neural and neuroendocrine circuitry responsible for mammalian seasonal reproduction has been primarily studied in three animal models: the sheep, and two species of hamsters. In this review, we first describe the afferent signals, neural circuitry and transmitters/peptides responsible for seasonal reproductive transitions in sheep, and then compare these mechanisms with those derived from studies in hamsters. The results suggest common principles as well as differences in the role of specific brain nuclei and neuropeptides, including that of kisspeptin cells of the hypothalamic arcuate nucleus, in regulating seasonal reproduction among mammals. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Fetal Alcohol Spectrum Disorder (FASD Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    James A. Marrs

    2013-06-01

    Full Text Available Fetal alcohol spectrum disorder (FASD, caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  4. Hormonal and neural mechanisms of food reward, eating behaviour and obesity.

    Science.gov (United States)

    Murray, Susan; Tulloch, Alastair; Gold, Mark S; Avena, Nicole M

    2014-09-01

    With rising rates of obesity, research continues to explore the contributions of homeostatic and hedonic mechanisms related to eating behaviour. In this Review, we synthesize the existing information on select biological mechanisms associated with reward-related food intake, dealing primarily with consumption of highly palatable foods. In addition to their established functions in normal feeding, three primary peripheral hormones (leptin, ghrelin and insulin) play important parts in food reward. Studies in laboratory animals and humans also show relationships between hyperphagia or obesity and neural pathways involved in reward. These findings have prompted questions regarding the possibility of addictive-like aspects in food consumption. Further exploration of this topic may help to explain aberrant eating patterns, such as binge eating, and provide insight into the current rates of overweight and obesity.

  5. Neural Mechanisms Involved in Hypersensitive Hearing: Helping Children with ASD Who Are Overly Sensitive to Sounds.

    Science.gov (United States)

    Lucker, Jay R; Doman, Alex

    2015-01-01

    Professionals working with children diagnosed with autism spectrum disorder (ASD) may find that these children are overly sensitive to sounds. These professionals are often concerned as to why children may have auditory hypersensitivities. This review article discusses the neural mechanisms identified underlying hypersensitive hearing in people. The authors focus on brain research to support the idea of the nonclassical auditory pathways being involved in connecting the auditory system with the emotional system of the brain. The authors also discuss brain mechanisms felt to be involved in auditory hypersensitivity. The authors conclude with a discussion of some treatments for hypersensitive hearing. These treatments include desensitization training and the use of listening therapies such as The Listening Program.

  6. Neural Mechanisms Involved in Hypersensitive Hearing: Helping Children with ASD Who Are Overly Sensitive to Sounds

    Directory of Open Access Journals (Sweden)

    Jay R. Lucker

    2015-01-01

    Full Text Available Professionals working with children diagnosed with autism spectrum disorder (ASD may find that these children are overly sensitive to sounds. These professionals are often concerned as to why children may have auditory hypersensitivities. This review article discusses the neural mechanisms identified underlying hypersensitive hearing in people. The authors focus on brain research to support the idea of the nonclassical auditory pathways being involved in connecting the auditory system with the emotional system of the brain. The authors also discuss brain mechanisms felt to be involved in auditory hypersensitivity. The authors conclude with a discussion of some treatments for hypersensitive hearing. These treatments include desensitization training and the use of listening therapies such as The Listening Program.

  7. Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda.

    Science.gov (United States)

    Mayer, Georg; Whitington, Paul M

    2009-11-01

    A fundamental question in biology is how animal segmentation arose during evolution. One particular challenge is to clarify whether segmental ganglia of the nervous system evolved once, twice, or several times within the Bilateria. As close relatives of arthropods, Onychophora play an important role in this debate since their nervous system displays a mixture of both segmental and non-segmental features. We present evidence that the onychophoran "ventral organs," previously interpreted as segmental anlagen of the nervous system, do not contribute to nerve cord formation and therefore cannot be regarded as vestiges of segmental ganglia. The early axonal pathways in the central nervous system arise by an anterior-to-posterior cascade of axonogenesis from neuronal cell bodies, which are distributed irregularly along each presumptive ventral cord. This pattern contrasts with the strictly segmental neuromeres present in arthropod embryos and makes the assumption of a secondary loss of segmentation in the nervous system during the evolution of the Onychophora less plausible. We discuss the implications of these findings for the evolution of neural segmentation in the Panarthropoda (Arthropoda+Onychophora+Tardigrada). Our data best support the hypothesis that the ancestral panarthropod had only a partially segmented nervous system, which evolved progressively into the segmental chain of ganglia seen in extant tardigrades and arthropods.

  8. On the Use of Local Search in the Evolution of Neural Networks for the Diagnosis of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Agam Gupta

    2015-07-01

    Full Text Available With the advancement in the field of Artificial Intelligence, there have been considerable efforts to develop technologies for pattern recognition related to medical diagnosis. Artificial Neural Networks (ANNs, a significant piece of Artificial Intelligence forms the base for most of the marvels in the former field. However, ANNs face the problem of premature convergence at a local minimum and inability to set hyper-parameters (like the number of neurons, learning rate, etc. while using Back Propagation Algorithm (BPA. In this paper, we have used the Genetic Algorithm (GA for the evolution of the ANN, which overcomes the limitations of the BPA. Since GA alone cannot fit for a high-dimensional, complex and multi-modal optimization landscape of the ANN, BPA is used as a local search algorithm to aid the evolution. The contributions of GA and BPA in the resultant approach are adjudged to determine the magnitude of local search necessary for optimization, striking a clear balance between exploration and exploitation in the evolution. The algorithm was applied to deal with the problem of Breast Cancer diagnosis. Results showed that under optimal settings, hybrid algorithm performs better than BPA or GA alone.

  9. Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China

    National Research Council Canada - National Science Library

    Liu, X. G; Li, J; Qu, Y; Han, T; Hou, L; Gu, J; Chen, C; Yang, Y; Liu, X; Yang, T; Zhang, Y; Tian, H; Hu, M

    2013-01-01

      The main objective of this study is to investigate the formation and evolution mechanism of the regional haze in megacity Beijing by analyzing the process of a severe haze that occurred 20-27 September 2011...

  10. Primer and interviews: molecular mechanisms of morphological evolution.

    Science.gov (United States)

    Kiefer, Julie C

    2010-12-01

    The beauty of the developing embryo, and the awe that it inspires, lure many scientists into the field of developmental biology. What compels cells to divide, migrate, and morph into a being with a complex body plan? Evolutionary developmental biologists hold similar fascinations, with dynamics that take place on a grander timescale. How do phenotypic traits diverge over evolutionary time? This primer illustrates how a deep understanding of the basic principles that underlie developmental biology have changed how scientists think about the evolution of body form. The primer culminates in a conversation with David Stern, PhD, and Michael Shapiro, PhD, who discuss current topics in morphological evolution, why the field should be of interest to classic developmental biologists, and what lies ahead. © 2010 Wiley-Liss, Inc.

  11. Mindfulness training applied to addiction therapy: insights into the neural mechanisms of positive behavioral change

    Directory of Open Access Journals (Sweden)

    Garl

    2016-07-01

    Full Text Available Eric L Garland,1,2 Matthew O Howard,3 Sarah E Priddy,1 Patrick A McConnell,4 Michael R Riquino,1 Brett Froeliger4 1College of Social Work, 2Hunstsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; 3School of Social Work, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 4Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA Abstract: Dual-process models from neuroscience suggest that addiction is driven by dysregulated interactions between bottom-up neural processes underpinning reward learning and top-down neural functions subserving executive function. Over time, drug use causes atrophy in prefrontally mediated cognitive control networks and hijacks striatal circuits devoted to processing natural rewards in service of compulsive seeking of drug-related reward. In essence, mindfulness-based interventions (MBIs can be conceptualized as mental training programs for exercising, strengthening, and remediating these functional brain networks. This review describes how MBIs may remediate addiction by regulating frontostriatal circuits, thereby restoring an adaptive balance between these top-down and bottom-up processes. Empirical evidence is presented suggesting that MBIs facilitate cognitive control over drug-related automaticity, attentional bias, and drug cue reactivity, while enhancing responsiveness to natural rewards. Findings from the literature are incorporated into an integrative account of the neural mechanisms of mindfulness-based therapies for effecting positive behavior change in the context of addiction recovery. Implications of our theoretical framework are presented with respect to how these insights can inform the addiction therapy process. Keywords: mindfulness, frontostriatal, savoring, cue reactivity, hedonic dysregulation, reward, addiction

  12. Error awareness and salience processing in the oddball task: Shared neural mechanisms.

    Directory of Open Access Journals (Sweden)

    Helga A Harsay

    2012-08-01

    Full Text Available A body of work suggests that there are similarities in the way we become aware of an error and process motivationally salient events. Yet, evidence for a shared neural mechanism has not been provided. A within-subject investigation of the brain regions involved in error awareness and salience processing has not been reported. While the neural response to motivationally salient events is classically studied during target detection after longer target-to-target intervals in an oddball task and engages a widespread insula-thalamo-cortical brain network, error awareness has recently been linked to, most prominently, anterior insula cortex. Here we explore whether the anterior insula activation for error awareness is related to salience processing, by testing for activation overlap in subjects undergoing two different task settings. Using a within-subjects design, we show activation overlap in six major brain areas during aware errors in an antisaccade task and during target detection (which were associated with longer target-to-target interval conditions in an oddball task: anterior insula, anterior cingulate, supplementary motor area, thalamus, brainstem and parietal lobe. Within subject analyses shows that the insula is engaged in both error awareness and the processing of salience, and that the anterior insula is more involved in both processes than the posterior insula. The results of a fine-grained spatial pattern overlap analysis between active clusters in the same subjects indicated that even if the anterior insula is activated for both error awareness and salience processing, the two types of processes might tend to activate non-identical neural ensembles on a finer-grained spatial level. Together, these outcomes suggest a similar functional phenomenon in the two different task settings. Error awareness and salience processing share a functional anatomy, with a tendency towards subregional dorsal and ventral specialization within the

  13. Error awareness and salience processing in the oddball task: shared neural mechanisms.

    Science.gov (United States)

    Harsay, Helga A; Spaan, Marcus; Wijnen, Jasper G; Ridderinkhof, K Richard

    2012-01-01

    A body of work suggests similarities in the way we become aware of an error and process motivationally salient events. Yet, evidence for a shared neural mechanism has not been provided. A within subject investigation of the brain regions involved in error awareness and salience processing has not been reported. While the neural response to motivationally salient events is classically studied during target detection after longer target-to-target intervals in an oddball task and engages a widespread insula-thalamo-cortical brain network, error awareness has recently been linked to, most prominently, anterior insula cortex. Here we explore whether the anterior insula activation for error awareness is related to salience processing, by testing for activation overlap in subjects undergoing two different task settings. Using a within subjects design, we show activation overlap in six major brain areas during aware errors in an antisaccade task and during target detection after longer target-to-target intervals in an oddball task: anterior insula, anterior cingulate, supplementary motor area, thalamus, brainstem, and parietal lobe. Within subject analyses shows that the insula is engaged in both error awareness and the processing of salience, and that the anterior insula is more involved in both processes than the posterior insula. The results of a fine-grained spatial pattern overlap analysis between active clusters in the same subjects indicates that even if the anterior insula is activated for both error awareness and salience processing, the two types of processes might tend to activate non-identical neural ensembles on a finer-grained spatial level. Together, these outcomes suggest a similar functional phenomenon in the two different task settings. Error awareness and salience processing share a functional anatomy, with a tendency toward subregional dorsal and ventral specialization within the anterior insula.

  14. Dual origins of measured phase-amplitude coupling reveal distinct neural mechanisms underlying episodic memory in the human cortex.

    Science.gov (United States)

    Vaz, Alex P; Yaffe, Robert B; Wittig, John H; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Phase-amplitude coupling (PAC) is hypothesized to coordinate neural activity, but its role in successful memory formation in the human cortex is unknown. Measures of PAC are difficult to interpret, however. Both increases and decreases in PAC have been linked to memory encoding, and PAC may arise due to different neural mechanisms. Here, we use a waveform analysis to examine PAC in the human cortex as participants with intracranial electrodes performed a paired associates memory task. We found that successful memory formation exhibited significant decreases in left temporal lobe and prefrontal cortical PAC, and these two regions exhibited changes in PAC within different frequency bands. Two underlying neural mechanisms, nested oscillations and sharp waveforms, were responsible for the changes in these regions. Our data therefore suggest that decreases in measured cortical PAC during episodic memory reflect two distinct underlying mechanisms that are anatomically segregated in the human brain. Published by Elsevier Inc.

  15. Dynamics and genetic fuzzy neural network vibration control design of a smart flexible four-bar linkage mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Rong Bao, E-mail: rongbao_nust@sina.com; Rui Xiaoting [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Tao Ling [Chinese Academy of Sciences (ASIPP), Institute of Plasma Physics (China)

    2012-11-15

    In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.

  16. A Balanced Accuracy Fitness Function Leads to Robust Analysis using Grammatical Evolution Neural Networks in the Case of Class Imbalance.

    Science.gov (United States)

    Hardison, Nicholas E; Fanelli, Theresa J; Dudek, Scott M; Reif, David M; Ritchie, Marylyn D; Motsinger-Reif, Alison A

    2008-01-01

    Grammatical Evolution Neural Networks (GENN) is a computational method designed to detect gene-gene interactions in genetic epidemiology, but has so far only been evaluated in situations with balanced numbers of cases and controls. Real data, however, rarely has such perfectly balanced classes. In the current study, we test the power of GENN to detect interactions in data with a range of class imbalance using two fitness functions (classification error and balanced error), as well as data re-sampling. We show that when using classification error, class imbalance greatly decreases the power of GENN. Re-sampling methods demonstrated improved power, but using balanced accuracy resulted in the highest power. Based on the results of this study, balanced error has replaced classification error in the GENN algorithm.

  17. Distracted and down: neural mechanisms of affective interference in subclinical depression.

    Science.gov (United States)

    Kaiser, Roselinde H; Andrews-Hanna, Jessica R; Spielberg, Jeffrey M; Warren, Stacie L; Sutton, Bradley P; Miller, Gregory A; Heller, Wendy; Banich, Marie T

    2015-05-01

    Previous studies have shown that depressed individuals have difficulty directing attention away from negative distractors, a phenomenon known as affective interference. However, findings are mixed regarding the neural mechanisms and network dynamics of affective interference. The present study addressed these issues by comparing neural activation during emotion-word and color-word Stroop tasks in participants with varying levels of (primarily subclinical) depression. Depressive symptoms predicted increased activation to negative distractors in areas of dorsal anterior cingulate cortex (dACC) and posterior cingulate cortex (PCC), regions implicated in cognitive control and internally directed attention, respectively. Increased dACC activity was also observed in the group-average response to incongruent distractors, suggesting that dACC activity during affective interference is related to overtaxed cognitive control. In contrast, regions of PCC were deactivated across the group in response to incongruent distractors, suggesting that PCC activity during affective interference represents task-independent processing. A psychophysiological interaction emerged in which higher depression predicted more positively correlated activity between dACC and PCC during affective interference, i.e. greater connectivity between cognitive control and internal-attention systems. These findings suggest that, when individuals high in depression are confronted by negative material, increased attention to internal thoughts and difficulty shifting resources to the external world interfere with goal-directed behavior. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Neural prostheses in clinical applications--trends from precision mechanics towards biomedical microsystems in neurological rehabilitation.

    Science.gov (United States)

    Stieglitz, T; Schuettler, M; Koch, K P

    2004-04-01

    Neural prostheses partially restore body functions by technical nerve excitation after trauma or neurological diseases. External devices and implants have been developed since the early 1960s for many applications. Several systems have reached nowadays clinical practice: Cochlea implants help the deaf to hear, micturition is induced by bladder stimulators in paralyzed persons and deep brain stimulation helps patients with Parkinson's disease to participate in daily life again. So far, clinical neural prostheses are fabricated with means of precision mechanics. Since microsystem technology opens the opportunity to design and develop complex systems with a high number of electrodes to interface with the nervous systems, the opportunity for selective stimulation and complex implant scenarios seems to be feasible in the near future. The potentials and limitations with regard to biomedical microdevices are introduced and discussed in this paper. Target specifications are derived from existing implants and are discussed on selected applications that has been investigated in experimental research: a micromachined implant to interface a nerve stump with a sieve electrode, cuff electrodes with integrated electronics, and an epiretinal vision prosthesis.

  19. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design

    Science.gov (United States)

    Singh, Sagar; Lo, Meng-Chen; Damodaran, Vinod B.; Kaplan, Hilton M.; Kohn, Joachim; Zahn, Jeffrey D.; Shreiber, David I.

    2016-01-01

    Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM) to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (probe length were the most important features in influencing insertion potential. The model also revealed the effects of manufacturing flaws on insertion potential. PMID:26959021

  20. Lexical organization and competition in first and second languages: computational and neural mechanisms.

    Science.gov (United States)

    Li, Ping

    2009-06-01

    How does a child rapidly acquire and develop a structured mental organization for the vast number of words in the first years of life? How does a bilingual individual deal with the even more complicated task of learning and organizing two lexicons? It is only until recently have we started to examine the lexicon as a dynamical system with regard to its acquisition, representation, and organization. In this article, I outline a proposal based on our research that takes the dynamical approach to the lexicon, and I discuss how this proposal can be applied to account for lexical organization, structural representation, and competition within and between languages. In particular, I provide computational evidence based on the DevLex model, a self-organizing neural network model, and neuroimaging evidence based on functional magnetic resonance imaging (fMRI) studies, to illustrate how children and adults learn and represent the lexicon in their first and second languages. In the computational research, our goal has been to identify, through linguistically and developmentally realistic models, detailed cognitive mechanisms underlying the dynamic self-organizing processes in monolingual and bilingual lexical development; in the neuroimaging research, our goal has been to identify the neural substrates that subserve lexical organization and competition in the monolingual and the bilingual brain. In both cases, our findings lead to a better understanding of the interactive dynamics involved in the acquisition and representation of one or multiple languages. Copyright © 2009 Cognitive Science Society, Inc.

  1. Neural Mechanisms for Integrating Prior Knowledge and Likelihood in Value-Based Probabilistic Inference

    Science.gov (United States)

    Ting, Chih-Chung; Yu, Chia-Chen; Maloney, Laurence T.

    2015-01-01

    In Bayesian decision theory, knowledge about the probabilities of possible outcomes is captured by a prior distribution and a likelihood function. The prior reflects past knowledge and the likelihood summarizes current sensory information. The two combined (integrated) form a posterior distribution that allows estimation of the probability of different possible outcomes. In this study, we investigated the neural mechanisms underlying Bayesian integration using a novel lottery decision task in which both prior knowledge and likelihood information about reward probability were systematically manipulated on a trial-by-trial basis. Consistent with Bayesian integration, as sample size increased, subjects tended to weigh likelihood information more compared with prior information. Using fMRI in humans, we found that the medial prefrontal cortex (mPFC) correlated with the mean of the posterior distribution, a statistic that reflects the integration of prior knowledge and likelihood of reward probability. Subsequent analysis revealed that both prior and likelihood information were represented in mPFC and that the neural representations of prior and likelihood in mPFC reflected changes in the behaviorally estimated weights assigned to these different sources of information in response to changes in the environment. Together, these results establish the role of mPFC in prior-likelihood integration and highlight its involvement in representing and integrating these distinct sources of information. PMID:25632152

  2. Effects of multitasking-training on gray matter structure and resting state neural mechanisms.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Hashizume, Hiroshi; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Sassa, Yuko; Kawashima, Ryuta

    2014-08-01

    Multitasking (MT) constitutes engaging in two or more cognitive activities at the same time. MT-training improves performance on untrained MT tasks and alters the functional activity of the brain during MT. However, the effects of MT-training on neural mechanisms beyond MT-related functions are not known. We investigated the effects of 4 weeks of MT-training on regional gray matter volume (rGMV) and functional connectivity during rest (resting-FC) in young human adults. MT-training was associated with increased rGMV in three prefrontal cortical regions (left lateral rostral prefrontal cortex (PFC), dorsolateral PFC (DLPFC), and left inferior frontal junction), the left posterior parietal cortex, and the left temporal and lateral occipital areas as well as decreased resting-FC between the right DLPFC and an anatomical cluster around the ventral anterior cingulate cortex (ACC). Our findings suggest that participation in MT-training is as a whole associated with task-irrelevant plasticity (i.e., neural changes are not limited to certain specific task conditions) in regions and the network that are assumed to play roles in MT as well as diverse higher-order cognitive functions. We could not dissociate the effects of each task component and the diverse cognitive processes involved in MT because of the nature of the study, and these remain to be investigated. © 2013 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  3. Mechanics Evolution Characteristics Analysis of Pressure-arch in Fully-mechanized Mining Field

    Directory of Open Access Journals (Sweden)

    S.R. Wang

    2014-09-01

    Full Text Available Based on a practical engineering, the three-dimension computational model was built using FLAC3D under the fullymechanized mining condition. Considering four variation factors, such as the distance of mining advancing, the strength of the surrounding rock, the speed of mining advancing and the dip angle of the coal seam, the mechanics evolution characteristics of the pressure-arch were analyzed. The result showed that for the horizontal seam, the geometric shape of the pressure-arch varied from flat arch to round arch gradually and the height and thickness of the pressure-arch also increased; the maximum principal stress in the skewback also increased with the working face advancing. With the strength of the surrounding rock from soft to hard, the arch thickness reduced, and the arch loading decreased. To improve the mining speed can do some contributions to the stability of the pressure-arch in the mining field. With the increase of dip angle of the seam, the pressure-arch displayed an asymmetric shape, the vault was tilted and moved to the upward direction. At the same time, the thickness of the pressure-arch increased, and the stress concentration in the skewback tended to be further intensified.

  4. Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori

    Directory of Open Access Journals (Sweden)

    Takeshi eSakurai

    2014-03-01

    Full Text Available Male moths locate their mates using species-specific sex pheromones emitted by conspecific females. One striking feature of sex pheromone recognition in males is the high degree of specificity and sensitivity at all levels, from the primary sensory processes to behavior. The silkmoth Bombyx mori is an excellent model insect in which to decipher the underlying mechanisms of sex pheromone recognition due to its simple sex pheromone communication system, where a single pheromone component, bombykol, elicits the full sexual behavior of male moths. Various technical advancements that cover all levels of analysis from molecular to behavioral also allow the systematic analysis of pheromone recognition mechanisms. Sex pheromone signals are detected by pheromone receptors expressed in olfactory receptor neurons in the pheromone-sensitive sensilla trichodea on male antennae. The signals are transmitted to the first olfactory processing center, the antennal lobe (AL, and then are processed further in the higher centers (mushroom body and lateral protocerebrum to elicit orientation behavior towards females. In recent years, significant progress has been made elucidating the molecular mechanisms underlying the detection of sex pheromones. In addition, extensive studies of the AL and higher centers have provided insights into the neural basis of pheromone processing in the silkmoth brain. This review describes these latest advances, and discusses what these advances have revealed about the mechanisms underlying the specific and sensitive recognition of sex pheromones in the silkmoth.

  5. Selective disinhibition: A unified neural mechanism for predictive and post hoc attentional selection.

    Science.gov (United States)

    Sridharan, Devarajan; Knudsen, Eric I

    2015-11-01

    The natural world presents us with a rich and ever-changing sensory landscape containing diverse stimuli that constantly compete for representation in the brain. When the brain selects a stimulus as the highest priority for attention, it differentially enhances the representation of the selected, "target" stimulus and suppresses the processing of other, distracting stimuli. A stimulus may be selected for attention while it is still present in the visual scene (predictive selection) or after it has vanished (post hoc selection). We present a biologically inspired computational model that accounts for the prioritized processing of information about targets that are selected for attention either predictively or post hoc. Central to the model is the neurobiological mechanism of "selective disinhibition" - the selective suppression of inhibition of the representation of the target stimulus. We demonstrate that this mechanism explains major neurophysiological hallmarks of selective attention, including multiplicative neural gain, increased inter-trial reliability (decreased variability), and reduced noise correlations. The same mechanism also reproduces key behavioral hallmarks associated with target-distracter interactions. Selective disinhibition exhibits several distinguishing and advantageous features over alternative mechanisms for implementing target selection, and is capable of explaining the effects of selective attention over a broad range of real-world conditions, involving both predictive and post hoc biasing of sensory competition and decisions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Carbonitriding reactions of diatomaceous earth: phase evolution and reaction mechanisms

    Directory of Open Access Journals (Sweden)

    BRANKO MATOVIC

    2006-06-01

    Full Text Available The possibility of using diatomaceous earth as Si precursor for low temperature synthesis of non-oxide powders by carbothermal reduction-nitridation was studied. It was found that carbonitriding reactions produce phases of the Si–Al–O–N system. Already at 1300 °C, nanosized, non-oxide powders were obtained. The comparatively low reaction temperatures is attributred to the nano-porous nature of the raw material. The evolution of crystalline phases proceeded via many intermediate stages. The powders were characterized by X-ray and SEM investigations. The results showed that diatomaceous earth can be a very effective source for obtaining non-oxide powders.

  7. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices.

    Science.gov (United States)

    Gabriel, David A; Kamen, Gary; Frost, Gail

    2006-01-01

    It is generally accepted that neural factors play an important role in muscle strength gains. This article reviews the neural adaptations in strength, with the goal of laying the foundations for practical applications in sports medicine and rehabilitation. An increase in muscular strength without noticeable hypertrophy is the first line of evidence for neural involvement in acquisition of muscular strength. The use of surface electromyographic (SEMG) techniques reveal that strength gains in the early phase of a training regimen are associated with an increase in the amplitude of SEMG activity. This has been interpreted as an increase in neural drive, which denotes the magnitude of efferent neural output from the CNS to active muscle fibres. However, SEMG activity is a global measure of muscle activity. Underlying alterations in SEMG activity are changes in motor unit firing patterns as measured by indwelling (wire or needle) electrodes. Some studies have reported a transient increase in motor unit firing rate. Training-related increases in the rate of tension development have also been linked with an increased probability of doublet firing in individual motor units. A doublet is a very short interspike interval in a motor unit train, and usually occurs at the onset of a muscular contraction. Motor unit synchronisation is another possible mechanism for increases in muscle strength, but has yet to be definitely demonstrated. There are several lines of evidence for central control of training-related adaptation to resistive exercise. Mental practice using imagined contractions has been shown to increase the excitability of the cortical areas involved in movement and motion planning. However, training using imagined contractions is unlikely to be as effective as physical training, and it may be more applicable to rehabilitation. Retention of strength gains after dissipation of physiological effects demonstrates a strong practice effect. Bilateral contractions are

  8. A mechanism for Snowball Earth triggering animal evolution

    Science.gov (United States)

    Boyle, R.

    2012-04-01

    It is hypothesized that a demographic and ecological consequence of the Neoproterozoic 'snowball Earth' glaciations was to increase the relative fitness of group-level traits, thus directly trigger the evolution of costly macroscopic form. Extreme and repeated founder effects associated with glaciations increased average genetic relatedness between individuals, making evolutionary dynamics driven by kin selection more important than at any other time during earth history - and permitting the evolution of costly altruistic traits such as terminal cellular differentiation. Macroscopic physiology may also have aided survival via resource storage and accentuating disequilibrium with the physical environment. This lead to group viability selection - whereby demes containing non-cooperative individuals did not survive the extreme conditions, a process made more effective by extreme restrictions on dispersal. Snowball Earth caused these (normally transient and ecological) conditions to apply over millenial and planetary scales in time and space respectively, creating selection for altruism between the cells of ancestral heterotrophic eukaryotes of unprecedented effectiveness. It is noted that the extreme restrictions on cell fate associated with animal terminal differentiation is consistent with the emergence of the ediacara after the final neoproterozoic 'snowball'.

  9. The Evolution of a Malignancy Risk Prediction Model for Thyroid Nodules Using the Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Shahram Paydar

    2016-01-01

    Full Text Available Background: Clinically frank thyroid nodules are common and believed to be present in 4% to 10% of the adult population in the United States. In the current literature, fine needle aspiration biopsies are considered to be the milestone of a model which helps the physician decide whether a certain thyroid nodule needs a surgical approach or not. A considerable fact is that sensitivity and specificity of the fine needle aspiration varies significantly as it remains highly dependent on the operator as well as the cytologist’s skills. Practically, in the above group of patients, thyroid lobectomy/isthmusectomy becomes mandatory for attaining a definitive diagnosis where the majority (70%-80% have a benign surgical pathology. The scattered nature of clinically gathered data and analysis of their relevant variables need a compliant statistical method. The artificial neural network is a branch of artificial intelligence. We have hypothesized that conduction of an artificial neural network applied to certain clinical attributes could develop a malignancy risk assessment tool to help physicians interpret the fine needle aspiration biopsy results of thyroid nodules in a context composed of patient’s clinical variables, known as malignancy related risk factors. Methods: We designed and trained an artificial neural network on a prospectively formed cohort gathered over a four year period (2007-2011. The study population comprised 345 subjects who underwent thyroid resection at Nemazee and Rajaee hospitals, tertiary care centers of Shiraz University of Medical Sciences, and Rajaee Hospital as a level I trauma center in Shiraz, Iran after having undergone thyroid fine needle aspiration. Histopathological results of the fine needle aspirations and surgical specimens were analyzed and compared by experienced, board-certified pathologists who lacked knowledge of the fine needle aspiration results for thyroid malignancy. Results: We compared the preoperative

  10. Outsourcing neural active control to passive composite mechanics: a tissue engineered cyborg ray

    Science.gov (United States)

    Gazzola, Mattia; Park, Sung Jin; Park, Kyung Soo; Park, Shirley; di Santo, Valentina; Deisseroth, Karl; Lauder, George V.; Mahadevan, L.; Parker, Kevin Kit

    2016-11-01

    Translating the blueprint that stingrays and skates provide, we create a cyborg swimming ray capable of orchestrating adaptive maneuvering and phototactic navigation. The impossibility of replicating the neural system of batoids fish is bypassed by outsourcing algorithmic functionalities to the body composite mechanics, hence casting the active control problem into a design, passive one. We present a first step in engineering multilevel "brain-body-flow" systems that couple sensory information to motor coordination and movement, leading to behavior. This work paves the way for the development of autonomous and adaptive artificial creatures able to process multiple sensory inputs and produce complex behaviors in distributed systems and may represent a path toward soft-robotic "embodied cognition".

  11. Understanding the neural mechanisms involved in sensory control of voice production.

    Science.gov (United States)

    Parkinson, Amy L; Flagmeier, Sabina G; Manes, Jordan L; Larson, Charles R; Rogers, Bill; Robin, Donald A

    2012-05-15

    Auditory feedback is important for the control of voice fundamental frequency (F0). In the present study we used neuroimaging to identify regions of the brain responsible for sensory control of the voice. We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. To determine the neural substrates involved in these audio-vocal responses, subjects underwent fMRI scanning while vocalizing with or without pitch-shifted feedback. The comparison of shifted and unshifted vocalization revealed activation bilaterally in the superior temporal gyrus (STG) in response to the pitch shifted feedback. We hypothesize that the STG activity is related to error detection by auditory error cells located in the superior temporal cortex and efference copy mechanisms whereby this region is responsible for the coding of a mismatch between actual and predicted voice F0. Published by Elsevier Inc.

  12. Inclusion mechanical property estimation using tactile images, finite element method, and artificial neural network.

    Science.gov (United States)

    Lee, Jong-Ha; Won, Chang-Hee

    2011-01-01

    In this paper, we developed a methodology for estimating three parameters of tissue inclusion: size, depth, and Young's modulus from the tactile data obtained at the tissue surface with the tactile sensation imaging system. The estimation method consists of the forward algorithm using finite element method, and inversion algorithm using artificial neural network. The forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of the tissue inclusion. This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the tactile image. The proposed method is then validated with custom made tissue phantoms with matching elasticities of typical human breast tissues. The experimental results showed that the proposed estimation method estimates the size, depth, and Young's modulus of tissue inclusions with root mean squared errors of 1.25 mm, 2.09 mm, and 28.65 kPa, respectively.

  13. Stability of Neural Firing in the Trigeminal Nuclei under Mechanical Whisker Stimulation

    Directory of Open Access Journals (Sweden)

    Valeri A. Makarov

    2010-01-01

    Full Text Available Sensory information handling is an essentially nonstationary process even under a periodic stimulation. We show how the time evolution of ridges in the wavelet spectrum of spike trains can be used for quantification of the dynamical stability of the neuronal responses to a stimulus. We employ this method to study neuronal responses in trigeminal nuclei of the rat provoked by tactile whisker stimulation. Neurons from principalis (Pr5 and interpolaris (Sp5i show the maximal stability at the intermediate (50 ms stimulus duration, whereas Sp5o cells “prefer” shorter (10 ms stimulation. We also show that neurons in all three nuclei can perform as stimulus frequency filters. The response stability of about 33% of cells exhibits low-pass frequency dynamics. About 57% of cells have band-pass dynamics with the optimal frequency at 5 Hz for Pr5 and Sp5i, and 4 Hz for Sp5o, and the remaining 10% show no prominent dependence on the stimulus frequency. This suggests that the neural coding scheme in trigeminal nuclei is not fixed, but instead it adapts to the stimulus characteristics.

  14. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes

    OpenAIRE

    Ponce de León, Inés; Montesano, Marcos

    2017-01-01

    Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae t...

  15. Two distinct neural mechanisms in early visual cortex determine subsequent visual processing.

    Science.gov (United States)

    Jacobs, Christianne; de Graaf, Tom A; Sack, Alexander T

    2014-10-01

    Neuroscience research has conventionally focused on how the brain processes sensory information, after the information has been received. Recently, increased interest focuses on how the state of the brain upon receiving inputs determines and biases their subsequent processing and interpretation. Here, we investigated such 'pre-stimulus' brain mechanisms and their relevance for objective and subjective visual processing. Using non-invasive focal brain stimulation [transcranial magnetic stimulation (TMS)] we disrupted spontaneous brain state activity within early visual cortex (EVC) before onset of visual stimulation, at two different pre-stimulus-onset-asynchronies (pSOAs). We found that TMS pulses applied to EVC at either 20 msec or 50 msec before onset of a simple orientation stimulus both prevented this stimulus from reaching visual awareness. Interestingly, only the TMS-induced visual suppression following TMS at a pSOA of ?20 msec was retinotopically specific, while TMS at a pSOA of ?50 msec was not. In a second experiment, we used more complex symbolic arrow stimuli, and found TMS-induced suppression only when disrupting EVC at a pSOA of ? ?60 msec, which, in line with Experiment 1, was not retinotopically specific. Despite this topographic unspecificity of the ?50 msec effect, the additional control measurements as well as tracking and removal of eye blinks, suggested that also this effect was not the result of an unspecific artifact, and thus neural in origin. We therefore obtained evidence of two distinct neural mechanisms taking place in EVC, both determining whether or not subsequent visual inputs are successfully processed by the human visual system.

  16. Neural Correlates of Successful and Unsuccessful Strategical Mechanisms Involved in Uncertain Decision-Making.

    Directory of Open Access Journals (Sweden)

    Julie Giustiniani

    Full Text Available The ability to develop successful long-term strategies in uncertain situations relies on complex neural mechanisms. Although lesion studies have shown some of the mechanisms involved, it is still unknown why some healthy subjects are able to make the right decision whereas others are not. The aim of our study was to investigate neurophysiological differences underlying this ability to develop a successful strategy in a group of healthy subjects playing a monetary card game called the Iowa Gambling Task (IGT. In this task, subjects have to win and earn money by choosing between four decks of cards, two were advantageous in the long term and two disadvantageous. Twenty healthy right-handed subjects performed the IGT while their cerebral activity was recorded by electroencephalography. Based on their behavioral performances, two groups of subjects could clearly be distinguished: one who selected the good decks and thus succeeded in developing a Favorable strategy (9 subjects and one who remained Undecided (11 subjects. No neural difference was found between each group before the selection of a deck, but in both groups a greater negativity was found emerging from the right superior frontal gyrus 600 ms before a disadvantageous selection. During the processing of the feedback, an attenuation of the P200 and P300 waveforms was found for the Undecided group, and a P300 originating from the medial frontal gyrus was found in response to a loss only in the Favorable group. Our results suggest that undecided subjects are hyposensitive to the valence of the cards during gambling, which affects the feedback processing.

  17. Neural Correlates of Successful and Unsuccessful Strategical Mechanisms Involved in Uncertain Decision-Making.

    Science.gov (United States)

    Giustiniani, Julie; Gabriel, Damien; Nicolier, Magali; Monnin, Julie; Haffen, Emmanuel

    2015-01-01

    The ability to develop successful long-term strategies in uncertain situations relies on complex neural mechanisms. Although lesion studies have shown some of the mechanisms involved, it is still unknown why some healthy subjects are able to make the right decision whereas others are not. The aim of our study was to investigate neurophysiological differences underlying this ability to develop a successful strategy in a group of healthy subjects playing a monetary card game called the Iowa Gambling Task (IGT). In this task, subjects have to win and earn money by choosing between four decks of cards, two were advantageous in the long term and two disadvantageous. Twenty healthy right-handed subjects performed the IGT while their cerebral activity was recorded by electroencephalography. Based on their behavioral performances, two groups of subjects could clearly be distinguished: one who selected the good decks and thus succeeded in developing a Favorable strategy (9 subjects) and one who remained Undecided (11 subjects). No neural difference was found between each group before the selection of a deck, but in both groups a greater negativity was found emerging from the right superior frontal gyrus 600 ms before a disadvantageous selection. During the processing of the feedback, an attenuation of the P200 and P300 waveforms was found for the Undecided group, and a P300 originating from the medial frontal gyrus was found in response to a loss only in the Favorable group. Our results suggest that undecided subjects are hyposensitive to the valence of the cards during gambling, which affects the feedback processing.

  18. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect.

    Science.gov (United States)

    Kostarakos, Konstantinos; Römer, Heiner

    2015-07-22

    produces an extremely noisy sound, yet the second species still detects its own song. Using intracellular recording techniques we identified two neural mechanisms underlying the surprising behavioral signal detection at the level of single identified interneurons. These neural mechanisms for signal detection are likely to be important for other sensory modalities as well, where noise in the communication channel creates similar problems. Also, they may be used for the development of algorithms for the filtering of specific signals in technical microphones or hearing aids. Copyright © 2015 Kostarakos and Römer.

  19. Unconventional computing using evolution-in-nanomaterio: neural networks meet nanoparticle networks

    NARCIS (Netherlands)

    Greff, Klaus; van Damme, Rudolf M.J.; Koutnik, Jan; Broersma, Haitze J.; Mikhal, Julia Olegivna; Lawrence, Celestine Preetham; van der Wiel, Wilfred Gerard; Schmidhuber, Jürgen

    2016-01-01

    Recently published experimental work on evolution-in-materio applied to nanoscale materials shows promising results for future reconfigurable devices. These experiments were performed on disordered nano-particle networks that have no predefined design. The material has been treated as a blackbox,

  20. Hybridization and genome evolution II: Mechanisms of species divergence and their effects on evolution in hybrids

    Directory of Open Access Journals (Sweden)

    Richard I. BAILEY, Fabrice EROUKHMANOFF, Glenn-Peter SæTRE

    2013-10-01

    Full Text Available Recent genomic studies have highlighted the importance of hybridization and gene exchange in evolution. We ask what factors cause variation in the impact of hybridization, through adaptation in hybrids and the likelihood of hybrid speciation. During speciation, traits that diverge due to both divergent and stabilizing selection can contribute to the buildup of reproductive isolation. Divergent directional selection in parent taxa should lead to intermediate phenotypes in hybrids, whereas stabilizing selection can also produce extreme, transgressive phenotypes when hybridization occurs. By examining existing theory and empirical data, we discuss how these effects, combined with differences between modes of divergence in the chromosomal distribution of incompatibilities, affect adaptation and speciation in hybrid populations. The result is a clear and testable set of predictions that can be used to examine hybrid adaptation and speciation. Stabilizing selection in parents increases transgression in hybrids, increasing the possibility for novel adaptation. Divergent directional selection causes intermediate hybrid phenotypes and increases their ability to evolve along the direction of parental differentiation. Stabilizing selection biases incompatibilities towards autosomes, leading to reduced sexual correlations in trait values and reduced pleiotropy in hybrids, and hence increased freedom in the direction of evolution. Directional selection causes a bias towards sex-linked incompatibilities, with the opposite consequences. Divergence by directional selection leads to greater dominance effects than stabilizing selection, with major but variable impacts on hybrid evolution [Current Zoology 59 (5: 675-685, 2013].

  1. Obligate versus rich patch opportunism: evolution and endocrine mechanisms.

    Science.gov (United States)

    Cornelius, J M; Watts, H E; Dingle, H; Hahn, T P

    2013-09-01

    Opportunistic breeding has been hypothesized to evolve in response to rare or unpredictable resource pulses. In this traditional view of opportunism, individuals invest heavily in reproduction whenever conditions are permissive for breeding, perhaps at the expense of investment in survival. We term this strategy 'obligate opportunism' (OBO). We also present an additional strategy that could account for the evolution of opportunism. High mobility may allow individuals to move between rich patches of resources that are spatially or temporally unpredictable, reducing exposure to food scarcity and taking advantage of breeding opportunities. This strategy, which we term 'rich patch exploiter' (RPE), predicts that investment in survival-enhancing processes may occur at the expense of reproduction despite high resource availability. We review examples to determine which opportunists better match predictions from the OBO strategy or the RPE strategy and then review endocrine profiles in the context of the two strategies. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Detecting Mechanisms of Karyotype Evolution in Heterotaxis (Orchidaceae).

    Science.gov (United States)

    Moraes, Ana Paula; Olmos Simões, André; Ojeda Alayon, Dario Isidro; de Barros, Fábio; Forni-Martins, Eliana Regina

    2016-01-01

    The karyotype is shaped by different chromosome rearrangements during species evolution. However, determining which rearrangements are responsible for karyotype changes is a challenging task and the combination of a robust phylogeny with refined karyotype characterization, GS measurements and bioinformatic modelling is necessary. Here, this approach was applied in Heterotaxis to determine what chromosome rearrangements were responsible for the dysploidy variation. We used two datasets (nrDNA and cpDNA, both under MP and BI) to infer the phylogenetic relationships among Heterotaxis species and the closely related genera Nitidobulbon and Ornithidium. Such phylogenies were used as framework to infer how karyotype evolution occurred using statistical methods. The nrDNA recovered Ornithidium, Nitidobulbon and Heterotaxis as monophyletic under both MP and BI; while cpDNA could not completely separate the three genera under both methods. Based on the GS, we recovered two groups within Heterotaxis: (1) "small GS", corresponding to the Sessilis grade, composed of plants with smaller genomes and smaller morphological structure, and (2) "large GS", corresponding to the Discolor clade, composed of plants with large genomes and robust morphological structures. The robust karyotype modeling, using both nrDNA phylogenies, allowed us to infer that the ancestral Heterotaxis karyotype presented 2n = 40, probably with a proximal 45S rDNA on a metacentric chromosome pair. The chromosome number variation was caused by ascending dysploidy (chromosome fission involving the proximal 45S rDNA site resulting in two acrocentric chromosome pairs holding a terminal 45S rDNA), with subsequent descending dysploidy (fusion) in two species, H. maleolens and H. sessilis. However, besides dysploidy, our analysis detected another important chromosome rearrangement in the Orchidaceae: chromosome inversion, that promoted 5S rDNA site duplication and relocation.

  3. Time evolution of morphology in mechanically alloyed Fe-Cu.

    Science.gov (United States)

    Wille, Catharina G; Al-Kassab, Tala'at; Kirchheim, Reiner

    2011-05-01

    Being widely accessible as well as already utilised in many applications, Fe-Cu acts as an ideal binary model alloy to elaborate the enforced nonequilibrium enhanced solubility in such a solution system that shows a limited regime of miscibility and characterised by a large positive heat of mixing. In addition to the detailed analysis of ball milled Fe-Cu powders by means of Atom Probe Tomography (APT), site specific structural analysis has been performed in this study using Transmission Electron Microscopy (TEM). In this contribution results on powders with low Cu concentrations (2.5-10 at%) are presented. Combining a ductile element (Cu, fcc) and a brittle one (Fe, bcc), striking differences in morphology were expected and found on all length-scales, depending on the mixing ratio of the two elements. However, not only could the atomic mixing of Fe and Cu be evaluated, but also the distribution of impurities, mostly stemming from the fabrication procedure. The combination of APT and TEM enables a correlation between the structural evolution and the chemical mixing during the milling process. For the first time, a clear distinction can be drawn between the morphological evolution at the surface and in the interior of the powder particles. This became possible owing to the site specific sample preparation of TEM lamellae by Focussed Ion Beam (FIB). Surprisingly, the texture arising from the ball milling process can directly be related to the classical rolling texture of cold rolled Fe. In addition, full homogeneity can be achieved even on the nano-scale for this material as shown by APT, resulting in an extended miscibility region in comparison to the equilibrium phase diagram. Grain sizes were determined by means of XRD and TEM. The strain corrected XRD results are in very good agreement with the values derived by TEM, both confirming a truly nanocrystalline structure. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Time evolution of morphology in mechanically alloyed Fe-Cu

    KAUST Repository

    Wille, Catharina Gabriele

    2011-05-01

    Being widely accessible as well as already utilised in many applications, Fe-Cu acts as an ideal binary model alloy to elaborate the enforced nonequilibrium enhanced solubility in such a solution system that shows a limited regime of miscibility and characterised by a large positive heat of mixing. In addition to the detailed analysis of ball milled Fe-Cu powders by means of Atom Probe Tomography (APT), site specific structural analysis has been performed in this study using Transmission Electron Microscopy (TEM).In this contribution results on powders with low Cu concentrations (2.5-10 at%) are presented. Combining a ductile element (Cu, fcc) and a brittle one (Fe, bcc), striking differences in morphology were expected and found on all length-scales, depending on the mixing ratio of the two elements. However, not only could the atomic mixing of Fe and Cu be evaluated, but also the distribution of impurities, mostly stemming from the fabrication procedure. The combination of APT and TEM enables a correlation between the structural evolution and the chemical mixing during the milling process. For the first time, a clear distinction can be drawn between the morphological evolution at the surface and in the interior of the powder particles. This became possible owing to the site specific sample preparation of TEM lamellae by Focussed Ion Beam (FIB). Surprisingly, the texture arising from the ball milling process can directly be related to the classical rolling texture of cold rolled Fe. In addition, full homogeneity can be achieved even on the nano-scale for this material as shown by APT, resulting in an extended miscibility region in comparison to the equilibrium phase diagram. Grain sizes were determined by means of XRD and TEM. The strain corrected XRD results are in very good agreement with the values derived by TEM, both confirming a truly nanocrystalline structure. © 2011 Elsevier B.V.

  5. Global dynamic evolution of the cold plasma inferred with neural networks

    Science.gov (United States)

    Zhelavskaya, Irina; Shprits, Yuri; Spasojevic, Maria

    2017-04-01

    The electron number density is a fundamental parameter of plasmas and is critical for the wave-particle interactions. Despite its global importance, the distribution of cold plasma and its dynamic dependence on solar wind conditions remains poorly quantified. Existing empirical models present statistical averages based on static geomagnetic parameters, but cannot reflect the dynamics of the highly structured and quickly varying plasmasphere environment, especially during times of high geomagnetic activity. Global imaging provides insights on the dynamics but quantitative inversion to electron number density has been lacking. We propose an empirical model for reconstruction of global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. We develop a neural network that is capable of globally reconstructing the dynamics of the cold plasma density distribution for L shells from 2 to 6 and all local times. We utilize the density database obtained using the NURD algorithm [Zhelavskaya et al., 2016] in conjunction with solar wind data and geomagnetic indices to train the neural network. This study demonstrates how the global dynamics can be reconstructed from local in-situ observations by using machine learning tools. We describe aspects of the validation process in detail and discuss the selected inputs to the model and their physical implication.

  6. Conditioned task-set competition: Neural mechanisms of emotional interference in depression.

    Science.gov (United States)

    Stolicyn, Aleks; Steele, J Douglas; Seriès, Peggy

    2017-04-01

    Depression has been associated with increased response times at the incongruent-, neutral-, and negative-word trials of the classical and emotional Stroop tasks (Epp et al., Clinical Psychology Review, 32, 316-328, 2012). Response-time slowdown effects at incongruent- and negative-word trials of the Stroop tasks were reported to correlate with depressive severity, indicating strong relevance of the effects to the symptomatology. This study proposes a novel integrative computational model of neural mechanisms of both the classical and emotional Stroop effects, drawing on the previous prominent theoretical explanations of performance at the classical Stroop task (Cohen, Dunbar, & McClelland, Psychological Review, 97, 332-361, 1990; Herd, Banich, & O'Reilly, Journal of Cognitive Neuroscience, 18, 22-32, 2006), and in addition suggesting that negative emotional words represent conditioned stimuli for future negative outcomes. The model is shown to explain the classical Stroop effect and the slow (between-trial) emotional Stroop effect with biologically plausible mechanisms, providing an advantage over the previous theoretical accounts (Matthews & Harley, Cognition & Emotion, 10, 561-600, 1996; Wyble, Sharma, & Bowman, Cognition & Emotion, 22, 1019-1051, 2008). Simulation results suggested a candidate mechanism responsible for the pattern of depressive performance at the classical and the emotional Stroop tasks. Hyperactivity of the amygdala, together with increased inhibitory influence of the amygdala over dopaminergic neurotransmission, could be at the origin of the performance deficits.

  7. Neural mechanisms supporting the extraction of general knowledge across episodic memories.

    Science.gov (United States)

    Sweegers, Carly C G; Takashima, Atsuko; Fernández, Guillén; Talamini, Lucia M

    2014-02-15

    General knowledge acquisition entails the extraction of statistical regularities from the environment. At high levels of complexity, this may involve the extraction, and consolidation, of associative regularities across event memories. The underlying neural mechanisms would likely involve a hippocampo-neocortical dialog, as proposed previously for system-level consolidation. To test these hypotheses, we assessed possible differences in consolidation between associative memories containing cross-episodic regularities and unique associative memories. Subjects learned face-location associations, half of which responded to complex regularities regarding the combination of facial features and locations, whereas the other half did not. Importantly, regularities could only be extracted over hippocampus-encoded, associative aspects of the items. Memory was assessed both immediately after encoding and 48 h later, under fMRI acquisition. Our results suggest that processes related to system-level reorganization occur preferentially for regular associations across episodes. Moreover, the build-up of general knowledge regarding regular associations appears to involve the coordinated activity of the hippocampus and mediofrontal regions. The putative cross-talk between these two regions might support a mechanism for regularity extraction. These findings suggest that the consolidation of cross-episodic regularities may be a key mechanism underlying general knowledge acquisition. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Chromothripsis: A New Mechanism for Rapid Karyotype Evolution.

    Science.gov (United States)

    Leibowitz, Mitchell L; Zhang, Cheng-Zhong; Pellman, David

    2015-01-01

    Chromosomal rearrangements are generally thought to accumulate gradually over many generations. However, DNA sequencing of cancer and congenital disorders uncovered a new pattern in which multiple rearrangements arise all at once. The most striking example, chromothripsis, is characterized by tens or hundreds of rearrangements confined to a single chromosome or to local regions over a few chromosomes. Genomic analysis of chromothripsis and the search for its biological mechanism have led to new insights on how chromosome segregation errors can generate mutagenesis and changes to the karyotype. Here, we review the genomic features of chromothripsis and summarize recent progress on understanding its mechanism. This includes reviewing new work indicating that one mechanism to generate chromothripsis is through the physical isolation of chromosomes in abnormal nuclear structures (micronuclei). We also discuss connections revealed by recent genomic analysis of cancers between chromothripsis, chromosome bridges, and ring chromosomes.

  9. Media evolution and ‘epi-technic’ digital media: Media as cultural selection mechanisms

    DEFF Research Database (Denmark)

    Olesen, Mogens

    2016-01-01

    that biological selection mechanisms can provide an inroad into a new kind of historical and structural understanding of the relation between human culture and our technologies. In specific, human history is seen as a cultural evolution in which media technologies are the selection mechanisms....

  10. Neural mechanisms underlying stop-and-restart difficulties: involvement of the motor and perceptual systems.

    Directory of Open Access Journals (Sweden)

    Kentaro Yamanaka

    Full Text Available The ability to suddenly stop a planned movement or a movement being performed and restart it after a short interval is an important mechanism that allows appropriate behavior in response to contextual or environmental changes. However, performing such stop-and-restart movements smoothly is difficult at times. We investigated performance (response time of stop-and-restart movements using a go/stop/re-go task and found consistent stop-and-restart difficulties after short (~100 ms stop-to-restart intervals (SRSI, and an increased probability of difficulties after longer (>200 ms SRSIs, suggesting that two different mechanisms underlie stop-and-restart difficulties. Next, we investigated motor evoked potentials (MEPs in a moving muscle induced by transcranial magnetic stimulation during a go/stop/re-go task. In re-go trials with a short SRSI (100 ms, the MEP amplitude continued to decrease after the re-go-signal onset, indicating that stop-and-restart difficulties with short SRSIs might be associated with a neural mechanism in the human motor system, namely, stop-related suppression of corticomotor (CM excitability. Finally, we recorded electroencephalogram (EEG activity during a go/stop/re-go task and performed a single-trial-based EEG power and phase time-frequency analysis. Alpha-band EEG phase locking to re-go-signal, which was only observed in re-go trials with long SRSI (250 ms, weakened in the delayed re-go response trials. These EEG phase dynamics indicate an association between stop-and-restart difficulties with long SRSIs and a neural mechanism in the human perception system, namely, decreased probability of EEG phase locking to visual stimuli. In contrast, smooth stop-and-restart human movement can be achieved in re-go trials with sufficient SRSI (150-200 ms, because release of stop-related suppression and simultaneous counter-activation of CM excitability may occur as a single task without second re-go-signal perception. These results

  11. Neural mechanisms underlying stop-and-restart difficulties: involvement of the motor and perceptual systems.

    Science.gov (United States)

    Yamanaka, Kentaro; Nozaki, Daichi

    2013-01-01

    The ability to suddenly stop a planned movement or a movement being performed and restart it after a short interval is an important mechanism that allows appropriate behavior in response to contextual or environmental changes. However, performing such stop-and-restart movements smoothly is difficult at times. We investigated performance (response time) of stop-and-restart movements using a go/stop/re-go task and found consistent stop-and-restart difficulties after short (~100 ms) stop-to-restart intervals (SRSI), and an increased probability of difficulties after longer (>200 ms) SRSIs, suggesting that two different mechanisms underlie stop-and-restart difficulties. Next, we investigated motor evoked potentials (MEPs) in a moving muscle induced by transcranial magnetic stimulation during a go/stop/re-go task. In re-go trials with a short SRSI (100 ms), the MEP amplitude continued to decrease after the re-go-signal onset, indicating that stop-and-restart difficulties with short SRSIs might be associated with a neural mechanism in the human motor system, namely, stop-related suppression of corticomotor (CM) excitability. Finally, we recorded electroencephalogram (EEG) activity during a go/stop/re-go task and performed a single-trial-based EEG power and phase time-frequency analysis. Alpha-band EEG phase locking to re-go-signal, which was only observed in re-go trials with long SRSI (250 ms), weakened in the delayed re-go response trials. These EEG phase dynamics indicate an association between stop-and-restart difficulties with long SRSIs and a neural mechanism in the human perception system, namely, decreased probability of EEG phase locking to visual stimuli. In contrast, smooth stop-and-restart human movement can be achieved in re-go trials with sufficient SRSI (150-200 ms), because release of stop-related suppression and simultaneous counter-activation of CM excitability may occur as a single task without second re-go-signal perception. These results suggest that

  12. 3D Spectroscopic Surveys: Exploring Galaxy Evolution Mechanisms

    Science.gov (United States)

    Epinat, Benoît

    2011-12-01

    I review the major surveys of high redshift galaxies observed using integral field spectroscopy techniques in the visible and in the infrared. The comparison of various samples has to be done with care since they have different properties linked to their parent samples, their selection criteria and the methods used to study them. I present the various kinematic types of galaxies that are identified within these samples (rotators, mergers, etc.) and summarize the discussions on the mass assembly processes at various redshifts deduced from these classifications: at intermediate redshift (z ~ 0.6) merger may be the main mass assembly process whereas the role of cold gas accretion along cosmic web filaments may increase with redshift. The baryonic Tully-Fisher relation is also discussed. This relation seems to be already in place 3 Gyr after the Big-Bang and is then evolving until the present day. This evolution is interpreted as an increase of the stellar mass content of dark matter haloes of a given mass. The discovery of positive abundance gradients in MASSIV and LSD/AMAZE samples is highlighted. At z ~ 3 this discovery might be linked to cold gas accretion along cosmic filaments toward the centre whereas at lower redshift (z ~ 1.3), this may be mainly due to accretion of gas from outer reservoirs toward the centre via tidal tails due to interactions.

  13. Neural mechanisms of individual differences in temporal discounting of monetary and primary rewards in adolescents.

    Science.gov (United States)

    de Water, Erik; Mies, Gabry W; Figner, Bernd; Yoncheva, Yuliya; van den Bos, Wouter; Castellanos, F Xavier; Cillessen, Antonius H N; Scheres, Anouk

    2017-06-01

    Adolescents are generally characterized as impulsive. However, impulsivity is a multi-dimensional construct that involves multiple component processes. Which of these components contribute to adolescent impulsivity is currently unclear. This study focused on the neural mechanisms underlying individual differences in distinct components of temporal discounting (TD), i.e., the preference for smaller immediate rewards over larger delayed rewards. Participants were 58 adolescents (12-16 years-old) who performed an fMRI TD task with both monetary and snack rewards. Using mixed-effects modeling, we determined participants' average impatience, and further decomposed TD choices into: 1) amount sensitivity (unique contribution of the magnitude of the immediate reward); and 2) delay sensitivity (unique contribution of delay duration). Adolescents' average impatience was positively correlated with frontoparietal and ventral striatal activity during delayed reward choices, and with ventromedial prefrontal cortex activity during immediate reward choices. Adolescents' amount sensitivity was positively associated with ventral striatal and dorsal anterior cingulate cortex activity during immediate reward choices. Delay sensitivity was positively correlated with inferior parietal cortex activity during delayed reward choices. As expected, snacks were discounted more steeply than money, and TD of both reward types was associated with overlapping activation in the inferior parietal cortex. Exploring whether testosterone or estradiol were associated with TD and its neural correlates revealed no significant associations. These findings indicate that distinct components contribute uniquely to TD choice and that individual differences in amount sensitivity are uniquely associated with activation of reward valuation areas, while individual differences in delay sensitivity are uniquely associated with activation of cognitive control areas. Copyright © 2017 Elsevier Inc. All rights

  14. Mechanism of seasonal Arctic sea ice evolution and Arctic amplification

    Directory of Open Access Journals (Sweden)

    K.-Y. Kim

    2016-09-01

    Full Text Available Sea ice loss is proposed as a primary reason for the Arctic amplification, although the physical mechanism of the Arctic amplification and its connection with sea ice melting is still in debate. In the present study, monthly ERA-Interim reanalysis data are analyzed via cyclostationary empirical orthogonal function analysis to understand the seasonal mechanism of sea ice loss in the Arctic Ocean and the Arctic amplification. While sea ice loss is widespread over much of the perimeter of the Arctic Ocean in summer, sea ice remains thin in winter only in the Barents–Kara seas. Excessive turbulent heat flux through the sea surface exposed to air due to sea ice reduction warms the atmospheric column. Warmer air increases the downward longwave radiation and subsequently surface air temperature, which facilitates sea surface remains to be free of ice. This positive feedback mechanism is not clearly observed in the Laptev, East Siberian, Chukchi, and Beaufort seas, since sea ice refreezes in late fall (November before excessive turbulent heat flux is available for warming the atmospheric column in winter. A detailed seasonal heat budget is presented in order to understand specific differences between the Barents–Kara seas and Laptev, East Siberian, Chukchi, and Beaufort seas.

  15. Attention mechanisms and the mosaic evolution of speech

    Directory of Open Access Journals (Sweden)

    Pedro Tiago Martins

    2014-12-01

    Full Text Available There is still no categorical answer for why humans, and no other species, have speech, or why speech is the way it is. Several purely anatomical arguments have been put forward, but they have been shown to be false, biologically implausible, or of limited scope. This perspective paper supports the idea that evolutionary theories of speech could benefit from a focus on the cognitive mechanisms that make speech possible, for which antecedents in evolutionary history and brain correlates can be found. This type of approach is part of a very recent, but rapidly growing tradition, which has provided crucial insights on the nature of human speech by focusing on the biological bases of vocal learning. Here, we call attention to what might be an important ingredient for speech. We contend that a general mechanism of attention, which manifests itself not only in visual but also auditory (and possibly other modalities, might be one of the key pieces of human speech, in addition to the mechanisms underlying vocal learning, and the pairing of facial gestures with vocalic units.

  16. Attention mechanisms and the mosaic evolution of speech

    Science.gov (United States)

    Martins, Pedro T.; Boeckx, Cedric

    2014-01-01

    There is still no categorical answer as to why humans, and no other species, have speech, or why speech is the way it is. Several purely anatomical arguments have been put forward, but they have been shown to be false, biologically implausible, or of limited scope. This perspective paper supports the idea that evolutionary theories of speech could benefit from a focus on the cognitive mechanisms that make speech possible, for which antecedents in evolutionary history and brain correlates can be found. This type of approach is part of a very recent but rapidly growing trend that has already provided crucial insights on the nature of human speech by focusing on the biological bases of vocal learning. Here we contend that a general mechanism of attention, which manifests itself not only in the visual but also in the auditory modality, might be one of the key ingredients of human speech, in addition to the mechanisms underlying vocal learning, and the pairing of facial gestures with vocalic units. PMID:25566141

  17. A NEW QUANTUM MECHANICAL THEORY OF EVOLUTION OF UNIVERSE AND LIFE

    OpenAIRE

    Nigam, M C

    1990-01-01

    Based upon the principles of ancient science of Life, which admits both consciousness and matter, a new Quantum Mechanical theory of evolution of universe and life is propounded. The theory advocates: Right from the time, the evolution of universe takes place, life also starts evolving energies and ethereal – consciousness (subtler and real) in anti-electrons, as the complimentary partners. The material body acquires electrons for cordoning of atomic nuclei and displaying its manifestation, i...

  18. A novel Fizzy/Cdc20-dependent mechanism suppresses necrosis in neural stem cells

    Science.gov (United States)

    Kuang, Chaoyuan; Golden, Krista L.; Simon, Claudio R.; Damrath, John; Buttitta, Laura; Gamble, Caitlin E.; Lee, Cheng-Yu

    2014-01-01

    Cancer stem cells likely survive chemotherapy or radiotherapy by acquiring mutations that inactivate the endogenous apoptotic machinery or by cycling slowly. Thus, knowledge about the mechanisms linking the activation of an alternative cell death modality and the cell cycle machinery could have a transformative impact on the development of new cancer therapies, but the mechanisms remain completely unknown. We investigated the regulation of alternative cell death in Drosophila larval brain neural stem cells (neuroblasts) in which apoptosis is normally repressed. From a screen, we identified two novel loss-of-function alleles of the Cdc20/fizzy (fzy) gene that lead to premature brain neuroblast loss without perturbing cell proliferation in other diploid cell types. Fzy is an evolutionarily conserved regulator of anaphase promoting complex/cyclosome (APC/C). Neuroblasts carrying the novel fzy allele or exhibiting reduced APC/C function display hallmarks of necrosis. By contrast, neuroblasts overexpressing the non-degradable form of canonical APC/C substrates required for cell cycle progression undergo mitotic catastrophe. These data strongly suggest that Fzy can elicit a novel pro-survival function of APC/C by suppressing necrosis. Neuroblasts experiencing catastrophic cellular stress, or overexpressing p53, lose Fzy expression and undergo necrosis. Co-expression of fzy suppresses the death of these neuroblasts. Consequently, attenuation of the Fzy-dependent survival mechanism functions downstream of catastrophic cellular stress and p53 to eliminate neuroblasts by necrosis. Strategies that target the Fzy-dependent survival mechanism might lead to the discovery of new treatments or complement the pre-existing therapies to eliminate apoptosis-resistant cancer stem cells by necrosis. PMID:24598157

  19. Mechanisms for Interferon-α-Induced Depression and Neural Stem Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Lian-Shun Zheng

    2014-07-01

    Full Text Available New neurons generated by the neural stem cells (NSCs in the adult hippocampus play an important role in emotional regulation and respond to the action of antidepressants. Depression is a common and serious side effect of interferon-α (IFN-α, which limits its use as an antiviral and antitumor drug. However, the mechanism(s underlying IFN-induced depression are largely unknown. Using a comprehensive battery of behavioral tests, we found that mice subjected to IFN-α treatment exhibited a depression-like phenotype. IFN-α directly suppressed NSC proliferation, resulting in the reduced generation of new neurons. Brain-specific mouse knockout of the IFN-α receptor prevented IFN-α-induced depressive behavioral phenotypes and the inhibition of neurogenesis, suggesting that IFN-α suppresses hippocampal neurogenesis and induces depression via its receptor in the brain. These findings provide insight for understanding the neuropathology underlying IFN-α-induced depression and for developing new strategies for the prevention and treatment of IFN-α-induced depressive effects.

  20. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells

    Science.gov (United States)

    Shang, Weihu; Zhang, Xiaoyan; Zhang, Mo; Fan, Zetan; Sun, Ying; Han, Mei; Fan, Louzhen

    2014-05-01

    Cellular imaging after transplantation may provide important information to determine the efficacy of stem cell therapy. We have reported that graphene quantum dots (GQDs) are a type of robust biological labeling agent for stem cells that demonstrate little cytotoxicity. In this study, we examined the interactions of GQDs on human neural stem cells (hNSCs) with the aim to investigate the uptake and biocompatibility of GQDs. We examined the mechanism of GQD uptake by hNSCs and investigated the effects of GQDs on the proliferation, metabolic activity, and differentiation potential of hNSCs. This information is critical to assess the suitability of GQDs for stem cell tracking. Our results indicated that GQDs were taken up into hNSCs in a concentration- and time-dependent manner via the endocytosis mechanism. Furthermore, no significant change was found in the viability, proliferation, metabolic activity, and differentiation potential of hNSCs after treatment with GQDs. Thus, these data open a promising avenue for labeling stem cells with GQDs and also offer a potential opportunity to develop GQDs for biomedical applications.

  1. Staying cool when things get hot: Emotion regulation modulates neural mechanisms of memory encoding

    Directory of Open Access Journals (Sweden)

    Jasmeet P Hayes

    2010-12-01

    Full Text Available During times of emotional stress, individuals often engage in emotion regulation to reduce the experiential and physiological impact of negative emotions. Interestingly, emotion regulation strategies also influence memory encoding of the event. Cognitive reappraisal is associated with enhanced memory while expressive suppression is associated with impaired explicit memory of the emotional event. However, the mechanism by which these emotion regulation strategies affect memory is unclear. We used event-related fMRI to investigate the neural mechanisms that give rise to memory formation during emotion regulation. Twenty-five participants viewed negative pictures while alternately engaging in cognitive reappraisal, expressive suppression, or passive viewing. As part of the subsequent memory design, participants returned to the laboratory two weeks later for a surprise memory test. Behavioral results showed a reduction in negative affect and a retention advantage for reappraised stimuli relative to the other conditions. Imaging results showed that successful encoding during reappraisal was uniquely associated with greater co-activation of the left inferior frontal gyrus, amygdala and hippocampus, suggesting a possible role for elaborative encoding of negative memories. This study provides neurobehavioral evidence that engaging in cognitive reappraisal is advantageous to both affective and mnemonic processes.

  2. Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model

    Directory of Open Access Journals (Sweden)

    Size Bi

    2016-01-01

    Full Text Available Word embedding, a lexical vector representation generated via the neural linguistic model (NLM, is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization.

  3. Mechanisms of pathogenesis and the evolution of parasite virulence.

    Science.gov (United States)

    Frank, S A; Schmid-Hempel, P

    2008-03-01

    When studying how much a parasite harms its host, evolutionary biologists turn to the evolutionary theory of virulence. That theory has been successful in predicting how parasite virulence evolves in response to changes in epidemiological conditions of parasite transmission or to perturbations induced by drug treatments. The evolutionary theory of virulence is, however, nearly silent about the expected differences in virulence between different species of parasite. Why, for example, is anthrax so virulent, whereas closely related bacterial species cause little harm? The evolutionary theory might address such comparisons by analysing differences in tradeoffs between parasite fitness components: transmission as a measure of parasite fecundity, clearance as a measure of parasite lifespan and virulence as another measure that delimits parasite survival within a host. However, even crude quantitative estimates of such tradeoffs remain beyond reach in all but the most controlled of experimental conditions. Here, we argue that the great recent advances in the molecular study of pathogenesis provide a way forward. In light of those mechanistic studies, we analyse the relative sensitivity of tradeoffs between components of parasite fitness. We argue that pathogenic mechanisms that manipulate host immunity or escape from host defences have particularly high sensitivity to parasite fitness and thus dominate as causes of parasite virulence. The high sensitivity of immunomodulation and immune escape arise because those mechanisms affect parasite survival within the host, the most sensitive of fitness components. In our view, relating the sensitivity of pathogenic mechanisms to fitness components will provide a way to build a much richer and more general theory of parasite virulence.

  4. Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution.

    Science.gov (United States)

    Stout, Dietrich; Toth, Nicholas; Schick, Kathy; Chaminade, Thierry

    2008-06-12

    Archaeological and palaeontological evidence from the Early Stone Age (ESA) documents parallel trends of brain expansion and technological elaboration in human evolution over a period of more than 2Myr. However, the relationship between these defining trends remains controversial and poorly understood. Here, we present results from a positron emission tomography study of functional brain activation during experimental ESA (Oldowan and Acheulean) toolmaking by expert subjects. Together with a previous study of Oldowan toolmaking by novices, these results document increased demands for effective visuomotor coordination and hierarchical action organization in more advanced toolmaking. This includes an increased activation of ventral premotor and inferior parietal elements of the parietofrontal praxis circuits in both the hemispheres and of the right hemisphere homologue of Broca's area. The observed patterns of activation and of overlap with language circuits suggest that toolmaking and language share a basis in more general human capacities for complex, goal-directed action. The results are consistent with coevolutionary hypotheses linking the emergence of language, toolmaking, population-level functional lateralization and association cortex expansion in human evolution.

  5. Multiobjective Evolution of Biped Robot Gaits Using Advanced Continuous Ant-Colony Optimized Recurrent Neural Networks.

    Science.gov (United States)

    Juang, Chia-Feng; Yeh, Yen-Ting

    2017-06-30

    This paper proposes the optimization of a fully connected recurrent neural network (FCRNN) using advanced multiobjective continuous ant colony optimization (AMO-CACO) for the multiobjective gait generation of a biped robot (the NAO). The FCRNN functions as a central pattern generator and is optimized to generate angles of the hip roll and pitch, the knee pitch, and the ankle pitch and roll. The performance of the FCRNN-generated gait is evaluated according to the walking speed, trajectory straightness, oscillations of the body in the pitch and yaw directions, and walking posture, subject to the basic constraints that the robot cannot fall down and must walk forward. This paper formulates this gait generation task as a constrained multiobjective optimization problem and solves this problem through an AMO-CACO-based evolutionary learning approach. The AMO-CACO finds Pareto optimal solutions through ant-path selection and sampling operations by introducing an accumulated rank for the solutions in each single-objective function into solution sorting to improve learning performance. Simulations are conducted to verify the AMO-CACO-based FCRNN gait generation performance through comparisons with different multiobjective optimization algorithms. Selected software-designed Pareto optimal FCRNNs are then applied to control the gait of a real NAO robot.

  6. In search for the neural mechanisms of individual development: behavior-driven differential Hebbian learning

    Directory of Open Access Journals (Sweden)

    Ralf eDer

    2016-01-01

    Full Text Available When Donald Hebb published his 1949 book ``The Organization of Behavior'' he opened a new way of thinking in theoretical neuroscience which, in retrospective, is very close to contemporary ideas in self-organization. His metaphor of ``wiring'' together what ``fires together'' matches very closely the commonparadigm that global organization can derive from simple local rules. While ingenious at his time and inspiring the research over decades, the results still fall short of the expectations. For instance,unsupervised as they are, such neural mechanisms should be able to explain and realize the self-organizedacquisition of sensorimotor competencies. This paper proposes a new synaptic law which replaces Hebb's original metaphor by that of ``chaining together'' what ``changes together''. Starting from differential Hebbian learning,the new rule grounds the behavior of the agent directly in the internal synaptic dynamics.Therefore, one may call this a behavior-driven synaptic plasticity.Neurorobotics is an ideal testing ground for this new, unsupervised learning rule. This paper focuses on the close coupling between body, control, and environmentin challenging physical settings. The examples demonstrate how the new synaptic mechanism induces a self-determined ``search and converge'' strategy in behavior space, generating spontaneously a variety of sensorimotor competencies. The emerging behavior patterns are qualified by involving body and environment inan irreducible conjunction with the internal mechanism.The results may not only be of immediate interest for the further development of embodied intelligence.They also offer a new view on the role of self-learning processes in natural evolutionand in the brain.Videos and further details may be found under url{http://robot.informatik.uni-leipzig.de/research/supplementary/NeuroAutonomy/}.

  7. Romantic love: an fMRI study of a neural mechanism for mate choice.

    Science.gov (United States)

    Fisher, Helen; Aron, Arthur; Brown, Lucy L

    2005-12-05

    Scientists have described myriad traits in mammalian and avian species that evolved to attract mates. But the brain mechanisms by which conspecifics become attracted to these traits is largely unknown. Yet mammals and birds express mate preferences and make mate choices, and data suggest that this "attraction system" is associated with the dopaminergic reward system. It has been proposed that intense romantic love, a cross-cultural universal, is a developed form of this attraction system. To determine the neural mechanisms associated with romantic love we used functional magnetic resonance imaging (fMRI) and studied 17 people who were intensely "in love" (Aron et al. [2005] J Neurophysiol 94:327-337). Activation specific to the beloved occurred in the right ventral tegmental area and right caudate nucleus, dopamine-rich areas associated with mammalian reward and motivation. These and other results suggest that dopaminergic reward pathways contribute to the "general arousal" component of romantic love; romantic love is primarily a motivation system, rather than an emotion; this drive is distinct from the sex drive; romantic love changes across time; and romantic love shares biobehavioral similarities with mammalian attraction. We propose that this attraction mechanism evolved to enable individuals to focus their mating energy on specific others, thereby conserving energy and facilitating mate choice-a primary aspect of reproduction. Last, the corticostriate system, with its potential for combining diverse cortical information with reward signals, is an excellent anatomical substrate for the complex factors contributing to romantic love and mate choice. (c) 2005 Wiley-Liss, Inc.

  8. A Cooperative Control Method for Fully Mechanized Mining Machines Based on Fuzzy Logic Theory and Neural Networks

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2015-01-01

    Full Text Available In a fully mechanized mining face, the coordinated control of coal mining machines has a significant promoting effect to perfect the mining environment and improve the efficiency of coal production and has become a research focus all over the world. In this paper, a cooperative control method based on the integration of fuzzy logic theory and neural networks was proposed. The improved Elman neural network (ENN through a threshold strategy was presented to predict the running parameters of coal mining machines. On the basis of coupling analysis of coal mining machines, the expert knowledge base of scraper conveyor was established based on fuzzy logic theory. Furthermore, the probabilistic neural network (PNN was applied to evaluate the running status of scraper conveyor, and the cooperative control flow was designed and analyzed. Finally, a simulation example was provided and the comparison results illustrated that the proposed method was feasible and superior to the manual control.

  9. Evolution of attention mechanisms for early visual processing

    Science.gov (United States)

    Müller, Thomas; Knoll, Alois

    2011-03-01

    Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism

  10. The evolution of a mechanism of cell suicide.

    Science.gov (United States)

    Blackstone, N W; Green, D R

    1999-01-01

    In the vertebrates, programmed cell death or apoptosis frequently involves the relocalization of mitochondrial cytochrome c to the cytoplasm. This prominent role in the regulation of apoptosis is in addition to the primary function of cytochrome c in the mitochondrial electron transport chain. These seemingly divergent roles become plausible when considering the symbiotic origin of the mitochondrion. Symbiosis involves conflicts between levels of selection, in this case between the primitive host cell and the protomitochondria. In an aerobic environment, selection on the protomitochondria may have favored routine manipulations of the host cell's phenotype using products and by-products of oxidative phosphorylation, in particular reactive oxygen species (ROS). Blocking the mitochondrial electron transport chain by removing cytochrome c enhances the production of ROS; thus cytochrome c release by protomitochondria may have altered the host cell's phenotype via enhanced ROS production. Subsequently, this signaling pathway may have been refined by selection so that cytochrome c itself became the trigger for changes in the host's phenotype. A mechanism of apoptosis in metazoans may thus be a vestige of evolutionary conflicts within the eukaryotic cell.

  11. ARTICLE Evolution Mechanism of Calcium Carbonate in Solution

    Science.gov (United States)

    Guo, Ya-ping; Tang, Hai-xiong; Zhou, Yu; Jia, De-chang; Ning, Cong-qin; Guo, Ya-jun

    2010-12-01

    Calcium carbonate was synthesized in a CaCl2/NaCO3 mixed solution by using ethylenediaminetetraacetic acid (EDTA) as an additive. The thermodynamics and kinetics analyses indicate that although the driving force of amorphous calcium carbonate (ACC) precipitation is always less than that of calcite and vaterite precipitation, the nucleation rate of ACC is greater than that of calcite and vaterite at the initial stage of the precipitation reaction. With the increasing incubation time, vaterite and calcite particles nucleate heterogeneously by using the as-formed particles as active sites. Scanning electron microscopy images indicate that the transformation mechanism of ACC and vaterite to calcite is the dissolution-recrystallisation reaction. The presence of EDTA not only improves the stabilities of ACC and vaterite, but also leads to forming enlongated, connected rhombohedral calcite crystals after incubation 7 days in solutions. The ACC and vaterite are stabler in air than in solutions at room temperature, although the dissolution-recrystallisation reaction occurs on the surface.

  12. Evolution in the use of antidumping mechanism after Uruguay round

    Directory of Open Access Journals (Sweden)

    Vinícius de Azevedo Couto Firme

    2015-09-01

    Full Text Available This paper analyzed how the main economies have used the antidumping measures (AD after the Uruguay round, between 1995 and 2012. Therefore, some techniques were employed in order to reveal the main AD users and the trend, of using this instrument, associated to each one of them. We also tested the hypothesis that countries could converge in terms of the number of AD cases and if spatial effects could be involved in this process. Finally, a criterion was established and a model was estimated in order to identify countries that usually favor the most competitive sectors through AD practice. The results revealed that Brazil was the only heavy AD user that was counter to the general downward trend verified on the AD cases. Meanwhile, China was not only the main target of this mechanism but the cases against this country showed a growth trend also. Furthermore, we found that the number of AD cases opened by traditional and nontraditional users is converging. Finally, both the index and the estimated model have indicated that Turkey and the EU seem to be favoring the most competitive industries through the AD practice.

  13. [Protective effects and its mechanism on neural cells after folic acid intervention in preeclampsia rat model].

    Science.gov (United States)

    Wang, Jun; Ge, Jing; Yang, Li-na; Xue, Dan; Li, Ju

    2011-08-01

    To investigate protective effects and mechanism of folic acid on brain neural cells in preeclampsia rat model. Adult pregnant Wistar rats were randomly divided into 4 groups (n = 10 in each group). Rats in model group were injected intraperitoneally with homocysteine (Hcy, 200 mg × kg(-1) × d(-1)) daily and were injected subcutaneously every other day with monosodium glutamate (MSG, 1 g × kg(-1)· 48 h(-1)) from the 10th day of pregnancy to establish the model of preeclampsia. Low-dose folic acid (low dose group 10 mg × kg(-1) × d(-1)) and high-dose folic acid (high dose group 20 mg × kg(-1) × d(-1)) were given intragastric administration with folic acid tablets dissolved in saline daily at the same time of establishing model. Rats in control group were injected or intragastric administration with the same dose of saline as above up to the 20th day of pregnancy. Brain tissue was fixed on the 20th day of pregnancy, so was that plasma folic acid was measured with automatic electro-chemiluminescence. Rats' neural nerve cells apoptosis was observed with tunel. Nuclear factor (NF)-κB activation was observed with immunohistochemical staining. bcl-2 mRNA and protein expression changes were observed by using reverse transcription (RT)-PCR and western blot. (1) Plasma folate concentrations were (39.5 ± 3.4) nmol/L in low dose group and (40.1 ± 5.4) nmol/L in high dose group, which were all significantly higher than (26.9 ± 6.7) nmol/L in model group (P 0.05); (2) Apoptosis cell were 48.2 ± 9.1 in low dose group and 44.7 ± 8.3 in high dose group, which were significantly lower than 75.8 ± 10.1 in model group (P apoptosis cell in low dose and high dose group did not show significant difference (P > 0.05); (3) NF-κB activation were 48 ± 9 in low dose group and 45 ± 8 in high dose group, which were significantly lower 76 ± 10 in model group (P 0.05); (4) bcl-2 mRNA and protein expression were 0.98 ± 0.49 and 0.89 ± 0.52 in low dose group and 0.95 ± 0.38 and

  14. Neural mechanisms of auditory categorization: from across brain areas to within local microcircuits

    Directory of Open Access Journals (Sweden)

    Joji eTsunada

    2014-06-01

    Full Text Available Categorization enables listeners to efficiently encode and respond to auditory stimuli. Behavioral evidence for auditory categorization has been well documented across a broad range of human and non-human animal species. Moreover, neural correlates of auditory categorization have been documented in a variety of different brain regions in the ventral auditory pathway, which is thought to underlie auditory-object processing and auditory perception. Here, we review and discuss how neural representations of auditory categories are transformed across different scales of neural organization in the ventral auditory pathway: from across different brain areas to within local microcircuits. We propose different neural transformations across different scales of neural organization in auditory categorization. Along the ascending auditory system in the ventral pathway, there is a progression in the encoding of categories from simple acoustic categories to categories for abstract information. On the other hand, in local microcircuits, different classes of neurons differentially compute categorical information.

  15. Neural oscillatory mechanisms during novel grammar learning underlying language analytical abilities.

    Science.gov (United States)

    Kepinska, Olga; Pereda, Ernesto; Caspers, Johanneke; Schiller, Niels O

    2017-12-01

    The goal of the present study was to investigate the initial phases of novel grammar learning on a neural level, concentrating on mechanisms responsible for individual variability between learners. Two groups of participants, one with high and one with average language analytical abilities, performed an Artificial Grammar Learning (AGL) task consisting of learning and test phases. During the task, EEG signals from 32 cap-mounted electrodes were recorded and epochs corresponding to the learning phases were analysed. We investigated spectral power modulations over time, and functional connectivity patterns by means of a bivariate, frequency-specific index of phase synchronization termed Phase Locking Value (PLV). Behavioural data showed learning effects in both groups, with a steeper learning curve and higher ultimate attainment for the highly skilled learners. Moreover, we established that cortical connectivity patterns and profiles of spectral power modulations over time differentiated L2 learners with various levels of language analytical abilities. Over the course of the task, the learning process seemed to be driven by whole-brain functional connectivity between neuronal assemblies achieved by means of communication in the beta band frequency. On a shorter time-scale, increasing proficiency on the AGL task appeared to be supported by stronger local synchronisation within the right hemisphere regions. Finally, we observed that the highly skilled learners might have exerted less mental effort, or reduced attention for the task at hand once the learning was achieved, as evidenced by the higher alpha band power. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Neural mechanisms of reward processing associated with depression-related personality traits.

    Science.gov (United States)

    Umemoto, Akina; Holroyd, Clay B

    2017-07-01

    Although impaired reward processing in depression has been well-documented, the exact nature of that deficit remains poorly understood. To investigate the link between depression and the neural mechanisms of reward processing, we examined individual differences in personality. We recorded the electroencephalogram from healthy college students engaged in a probabilistic reinforcement learning task. Participants also completed several personality questionnaires that assessed traits related to reward sensitivity, motivation, and depression. We examined whether behavioral measures of reward learning and event-related potential components related to outcome processing and reward anticipation-namely, the cue and feedback-related reward positivity (RewP) and the stimulus preceding negativity (SPN)-would link these personality traits to depression. Participants who scored high in reward sensitivity produced a relatively larger feedback-RewP. By contrast, participants who scored high in depression learned the contingencies for infrequently rewarded cue-response combinations relatively poorly, exhibited a larger SPN, and produced a smaller feedback-RewP, especially to outcomes following cue-response combinations that were frequently rewarded. These results point to a primary deficit in reward valuation in individuals who score high in depression, with secondary consequences that impact reward learning and anticipation. Despite recent evidence arguing for an anticipatory deficit in depression, impaired reward valuation as a primary deficit should be further examined in clinical samples. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Neural mechanisms of dissonance: an fMRI investigation of choice justification.

    Science.gov (United States)

    Kitayama, Shinobu; Chua, Hannah Faye; Tompson, Steven; Han, Shihui

    2013-04-01

    Cognitive dissonance theory proposes that difficult choice produces negatively arousing cognitive conflict (called dissonance), which motivates the chooser to justify her decision by increasing her preference for the chosen option while decreasing her preference for the rejected option. At present, however, neural mechanisms of dissonance are poorly understood. To address this gap of knowledge, we scanned 24 young Americans as they made 60 choices between pairs of popular music CDs. As predicted, choices between CDs that were close (vs. distant) in attractiveness (referred to as difficult vs. easy choices) resulted in activations of the dorsal anterior cingulate cortex (dACC), a brain region associated with cognitive conflict, and the left anterior insula (left aINS), a region often linked with aversive emotional arousal. Importantly, a separate analysis showed that choice-justifying attitude change was predicted by the in-choice signal intensity of the posterior cingulate cortex (PCC), a region that is linked to self-processing. The three regions identified (dACC, left aINS, and PCC) were correlated, within-subjects, across choices. The results were interpreted to support the hypothesis that cognitive dissonance plays a key role in producing attitudes that justify the choice. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Moral foundations in an interacting neural networks society: A statistical mechanics analysis

    Science.gov (United States)

    Vicente, R.; Susemihl, A.; Jericó, J. P.; Caticha, N.

    2014-04-01

    The moral foundations theory supports that people, across cultures, tend to consider a small number of dimensions when classifying issues on a moral basis. The data also show that the statistics of weights attributed to each moral dimension is related to self-declared political affiliation, which in turn has been connected to cognitive learning styles by the recent literature in neuroscience and psychology. Inspired by these data, we propose a simple statistical mechanics model with interacting neural networks classifying vectors and learning from members of their social neighbourhood about their average opinion on a large set of issues. The purpose of learning is to reduce dissension among agents when disagreeing. We consider a family of learning algorithms parametrized by δ, that represents the importance given to corroborating (same sign) opinions. We define an order parameter that quantifies the diversity of opinions in a group with homogeneous learning style. Using Monte Carlo simulations and a mean field approximation we find the relation between the order parameter and the learning parameter δ at a temperature we associate with the importance of social influence in a given group. In concordance with data, groups that rely more strongly on corroborating evidence sustain less opinion diversity. We discuss predictions of the model and propose possible experimental tests.

  19. Seeing is believing: neural mechanisms of action-perception are biased by team membership.

    Science.gov (United States)

    Molenberghs, Pascal; Halász, Veronika; Mattingley, Jason B; Vanman, Eric J; Cunnington, Ross

    2013-09-01

    Group identification can lead to a biased view of the world in favor of "in-group" members. Studying the brain processes that underlie such in-group biases is important for a wider understanding of the potential influence of social factors on basic perceptual processes. In this study, we used functional magnetic resonance imaging (fMRI) to investigate how people perceive the actions of in-group and out-group members, and how their biased view in favor of own team members manifests itself in the brain. We divided participants into two teams and had them judge the relative speeds of hand actions performed by an in-group and an out-group member in a competitive situation. Participants judged hand actions performed by in-group members as being faster than those of out-group members, even when the two actions were performed at physically identical speeds. In an additional fMRI experiment, we showed that, contrary to common belief, such skewed impressions arise from a subtle bias in perception and associated brain activity rather than decision-making processes, and that this bias develops rapidly and involuntarily as a consequence of group affiliation. Our findings suggest that the neural mechanisms that underlie human perception are shaped by social context. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  20. Modulatory effect of romantic love on value estimation and its neural mechanism.

    Science.gov (United States)

    Wang, Ying; Zhang, Yuting; Chen, Ying; Jing, Fang; Wang, Zhenni; Hao, Yaru; Yang, Lizhuang; Liu, Ying; Zhou, Yifeng; Zhang, Xiaochu

    2016-03-23

    Any decision that is based upon personal preferences utilizes subjective values; however, for objectively equivalent items, whether romantic love modulates subjective value as well as the neural mechanism of this process remains unknown. In this functional MRI study, 30 items with equivalent value were first selected and assigned into three groups, and participants were trained to associate each group of items with their lover, a familiar person, or an unfamiliar person. Thereafter, the participant rated the values of the items during functional MRI scanning, after which they performed a post-test of memory of the associations. Behavioral results demonstrated that, although the items were well remembered, the items that were associated with the lover were rated significantly higher than the other images. Furthermore, we found higher activation related to the items associated with the lover than for those associated with a familiar person or an unfamiliar person in the striatum and the medial prefrontal cortex (related to cognitive control process). Finally, a morphometric analysis demonstrated that gray matter thickness in the striatum was positively associated with gray matter thickness in the medial prefrontal cortex but negatively correlated with the activation that was elicited by the items that were associated with the lover in the same brain area. Our results suggest that the romantic love-related brain region (the striatum) may modulate subjective value through the striatal-prefrontal pathway, further suggesting a potential bottom-up (control impulsivity) process.

  1. Power of grammatical evolution neural networks to detect gene-gene interactions in the presence of error

    Directory of Open Access Journals (Sweden)

    Davis Anna C

    2008-08-01

    Full Text Available Abstract Background With the advent of increasingly efficient means to obtain genetic information, a great insurgence of data has resulted, leading to the need for methods for analyzing this data beyond that of traditional parametric statistical approaches. Recently we introduced Grammatical Evolution Neural Network (GENN, a machine-learning approach to detect gene-gene or gene-environment interactions, also known as epistasis, in high dimensional genetic epidemiological data. GENN has been shown to be highly successful in a range of simulated data, but the impact of error common to real data is unknown. In the current study, we examine the power of GENN to detect interesting interactions in the presence of noise due to genotyping error, missing data, phenocopy, and genetic heterogeneity. Additionally, we compare the performance of GENN to that of another computational method – Multifactor Dimensionality Reduction (MDR. Findings GENN is extremely robust to missing data and genotyping error. Phenocopy in a dataset reduces the power of both GENN and MDR. GENN is reasonably robust to genetic heterogeneity and find that in some cases GENN has substantially higher power than MDR to detect functional loci in the presence of genetic heterogeneity. Conclusion GENN is a promising method to detect gene-gene interaction, even in the presence of common types of error found in real data.

  2. Power of grammatical evolution neural networks to detect gene-gene interactions in the presence of error.

    Science.gov (United States)

    Motsinger-Reif, Alison A; Fanelli, Theresa J; Davis, Anna C; Ritchie, Marylyn D

    2008-08-13

    With the advent of increasingly efficient means to obtain genetic information, a great insurgence of data has resulted, leading to the need for methods for analyzing this data beyond that of traditional parametric statistical approaches. Recently we introduced Grammatical Evolution Neural Network (GENN), a machine-learning approach to detect gene-gene or gene-environment interactions, also known as epistasis, in high dimensional genetic epidemiological data. GENN has been shown to be highly successful in a range of simulated data, but the impact of error common to real data is unknown. In the current study, we examine the power of GENN to detect interesting interactions in the presence of noise due to genotyping error, missing data, phenocopy, and genetic heterogeneity. Additionally, we compare the performance of GENN to that of another computational method - Multifactor Dimensionality Reduction (MDR). GENN is extremely robust to missing data and genotyping error. Phenocopy in a dataset reduces the power of both GENN and MDR. GENN is reasonably robust to genetic heterogeneity and find that in some cases GENN has substantially higher power than MDR to detect functional loci in the presence of genetic heterogeneity. GENN is a promising method to detect gene-gene interaction, even in the presence of common types of error found in real data.

  3. Evolution of posterior fossa and brain morphology after in utero repair of open neural tube defects assessed by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Rethmann, Christin; Scheer, Ianina; Kellenberger, Christian Johannes [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); University of Zurich, The Zurich Center for Fetal Diagnosis and Therapy, Zurich (Switzerland); Children' s Research Center (CRC), Zurich (Switzerland); Meuli, Martin; Mazzone, Luca; Moehrlen, Ueli [University of Zurich, The Zurich Center for Fetal Diagnosis and Therapy, Zurich (Switzerland); Children' s Research Center (CRC), Zurich (Switzerland); University Children' s Hospital Zurich, Department of Pediatric Surgery, Zurich (Switzerland)

    2017-11-15

    To describe characteristics of foetuses undergoing in utero repair of open neural tube defects (ONTD) and assess postoperative evolution of posterior fossa and brain morphology. Analysis of pre- and postoperative foetal as well as neonatal MRI of 27 foetuses who underwent in utero repair of ONTD. Type and level of ONTD, hindbrain configuration, posterior fossa and liquor space dimensions, and detection of associated findings were compared between MRI studies and to age-matched controls. Level of bony spinal defect was defined with exactness of ± one vertebral body. Of surgically confirmed 18 myelomeningoceles (MMC) and 9 myeloschisis (MS), 3 MMC were misdiagnosed as MS due to non-visualisation of a flat membrane on MRI. Hindbrain herniation was more severe in MS than MMC (p < 0.001). After repair, hindbrain herniation resolved in 25/27 cases at 4 weeks and liquor spaces increased. While posterior fossa remained small (p < 0.001), its configuration normalised. Lateral ventricle diameter indexed to cerebral width decreased in 48% and increased in 12% of cases, implying a low rate of progressive obstructive hydrocephalus. Neonatally evident subependymal heterotopias were detected in 33% at preoperative and 50% at postoperative foetal MRI. MRI demonstrates change of Chiari malformation type II (CM-II) features. (orig.)

  4. Neural mechanisms of the influence of popularity on adolescent ratings of music.

    Science.gov (United States)

    Berns, Gregory S; Capra, C Monica; Moore, Sara; Noussair, Charles

    2010-02-01

    It is well-known that social influences affect consumption decisions. We used functional magnetic resonance imaging (fMRI) to elucidate the neural mechanisms associated with social influence with regard to a common consumer good: music. Our study population was adolescents, age 12-17. Music is a common purchase in this age group, and it is widely believed that adolescent behavior is influenced by perceptions of popularity in their reference group. Using 15-s clips of songs from MySpace.com, we obtained behavioral measures of preferences and neurobiological responses to the songs. The data were gathered with, and without, the overall popularity of the song revealed. Song popularity had a significant effect on the participants' likability ratings of the songs. fMRI results showed a strong correlation between the participants' rating and activity in the caudate nucleus, a region previously implicated in reward-driven actions. The tendency to change one's evaluation of a song was positively correlated with activation in the anterior insula and anterior cingulate, two regions that are associated with physiological arousal and negative affective states. Sensitivity to popularity was linked to lower activation levels in the middle temporal gyrus, suggesting a lower depth of musical semantic processing. Our results suggest that a principal mechanism whereby popularity ratings affect consumer choice is through the anxiety generated by the mismatch between one's own preferences and others'. This mismatch anxiety motivates people to switch their choices in the direction of the consensus. Our data suggest that this is a major force behind the conformity observed in music tastes in some teenagers. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  5. Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury.

    Science.gov (United States)

    Cheng, Zhijian; Zhu, Wen; Cao, Kai; Wu, Fei; Li, Jin; Wang, Guoyu; Li, Haopen; Lu, Ming; Ren, Yi; He, Xijing

    2016-08-23

    Neural stem cell (NSC) transplantation has been proposed to promote functional recovery after spinal cord injury. However, a detailed understanding of the mechanisms of how NSCs exert their therapeutic plasticity is lacking. We transplanted mouse NSCs into the injured spinal cord seven days after SCI, and the Basso Mouse Scale (BMS) score was performed to assess locomotor function. The anti-inflammatory effects of NSC transplantation was analyzed by immunofluorescence staining of neutrophil and macrophages and the detection of mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukin-12 (IL-12). Furthermore, bone marrow-derived macrophages (BMDMs) were co-cultured with NSCs and followed by analyzing the mRNA levels of inducible nitric oxide synthase (iNOS), TNF-α, IL-1β, IL-6 and IL-10 with quantitative real-time PCR. The production of TNF-α and IL-1β by BMDMs was examined using the enzyme-linked immunosorbent assay (ELISA). Transplanted NSCs had significantly increased BMS scores (p transplantation significantly reduced the number of neutrophils and iNOS+/Mac-2+ cells at the epicenter of the injured area (p transplantation group were significantly decreased compared to the control group. Furthermore, NSCs inhibited the iNOS expression of BMDMs and the release of inflammatory factors by macrophages in vitro (p transplantation could modulate SCI-induced inflammatory responses and enhance neurological function after SCI via reducing M1 macrophage activation and infiltrating neutrophils. Thus, this study provides a new insight into the mechanisms responsible for the anti-inflammatory effect of NSC transplantation after SCI.

  6. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design

    Directory of Open Access Journals (Sweden)

    Sagar Singh

    2016-03-01

    Full Text Available Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error. The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the “safety factor”, as it indicated the degree to which the coating

  7. The neural development of conditional reasoning in children: Different mechanisms for assessing the logical validity and likelihood of conclusions.

    Science.gov (United States)

    Schwartz, Flora; Epinat-Duclos, Justine; Léone, Jessica; Prado, Jérôme

    2017-09-19

    Scientific and mathematical thinking relies on the ability to evaluate whether conclusions drawn from conditional (if-then) arguments are logically valid. Yet, the neural development of this ability -- termed deductive reasoning -- is largely unknown. Here we aimed to identify the neural mechanisms that underlie the emergence of deductive reasoning with conditional rules in children. We further tested whether these mechanisms have their roots in the neural mechanisms involved in judging the likelihood of conclusions. In a functional Magnetic Resonance Imaging (fMRI) scanner, 8- to 13-year-olds were presented with causal conditional problems such as "If a baby is hungry then he will start crying; The baby is crying; Is the baby hungry?". In Validity trials, children were asked to indicate whether the conclusion followed out of necessity from the premises. In Likelihood trials, they indicated the degree of likelihood of the conclusion. We found that children who made accurate judgments of logical validity (as compared to those who did not) exhibited enhanced activity in left and medial frontal regions. In contrast, differences in likelihood ratings between children were related to differences of activity in right frontal and bilateral parietal regions. There was no overlap between the brain regions underlying validity and likelihood judgments. Therefore, our results suggest that the ability to evaluate the logical validity of conditional arguments emerges from brain mechanisms that qualitatively differ from those involved in evaluating the likelihood of these arguments in children. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Evolution of a sensory novelty: tympanic ears and the associated neural processing

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob; Carr, Catherine E

    2008-01-01

    frequencies (2-4kHz). In ancestral atympanate tetrapods, we hypothesize that low-frequency sound may have been processed by non-tympanic mechanisms like those in extant amphibians. The subsequent emergence of tympanic hearing would have led to changes in the central auditory processing of both high......-frequency sound and directional hearing. These changes should reflect the independent origin of the tympanic ears in the major tetrapod groups. The processing of low-frequency sound, however, may have been more conserved, since the acoustical coupling of the ancestral tympanate ear probably produced little...

  9. Neural Operant Conditioning as a Core Mechanism of Brain-Machine Interface Control

    Directory of Open Access Journals (Sweden)

    Yoshio Sakurai

    2016-08-01

    Full Text Available The process of changing the neuronal activity of the brain to acquire rewards in a broad sense is essential for utilizing brain-machine interfaces (BMIs, which is essentially operant conditioning of neuronal activity. Currently, this is also known as neural biofeedback, and it is often referred to as neurofeedback when human brain activity is targeted. In this review, we first illustrate biofeedback and operant conditioning, which are methodological background elements in neural operant conditioning. Then, we introduce research models of neural operant conditioning in animal experiments and demonstrate that it is possible to change the firing frequency and synchronous firing of local neuronal populations in a short time period. We also debate the possibility of the application of neural operant conditioning and its contribution to BMIs.

  10. Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole

    2011-01-01

    It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is ab...... to perform accurate response prediction much faster than the corresponding finite element model. Initial result indicate a reduction in cpu time by two orders of magnitude.......It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is able...

  11. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    Directory of Open Access Journals (Sweden)

    Turner Stephen D

    2010-09-01

    Full Text Available Abstract Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA

  12. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci.

    Science.gov (United States)

    Turner, Stephen D; Dudek, Scott M; Ritchie, Marylyn D

    2010-09-27

    Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that

  13. Dissociated neural mechanisms for face detection and configural encoding: evidence from N170 and induced gamma-band oscillation effects.

    Science.gov (United States)

    Zion-Golumbic, Elana; Bentin, Shlomo

    2007-08-01

    Despite ample research, the structure and the functional characteristics of neural systems involved in human face processing are still a matter of active debate. Here we dissociated between a neural mechanism manifested by the face-sensitive N170 event-related potential effect and a mechanism manifested by induced electroencephalographic oscillations in the gamma band, which have been previously associated with the integration of individually coded features and activation of corresponding neural representations. The amplitude of the N170 was larger in the absence of the face contour but not affected by the configuration of inner components (ICs). Its latency was delayed by scrambling the configuration of the components as well as by the absence of the face contour. Unlike the N170, the amplitude of the induced gamma activity was sensitive to the configuration of ICs but insensitive to their presence within or outside a face contour. This pattern suggests a dual mechanism for early face processing, each utilizing different visual cues, which might indicate their respective roles in face processing. The N170 seems to be associated primarily with the detection and categorization of faces, whereas the gamma oscillations may be involved in the activation of their mental representation.

  14. Neural mechanisms for the effect of prior knowledge on audiovisual integration.

    Science.gov (United States)

    Liu, Qiang; Zhang, Ye; Campos, Jennifer L; Zhang, Qinglin; Sun, Hong-Jin

    2011-05-01

    Converging evidence indicates that prior knowledge plays an important role in multisensory integration. However, the neural mechanisms underlying the processes with which prior knowledge is integrated with current sensory information remains unknown. In this study, we measured event-related potentials (ERPs) while manipulating prior knowledge using a novel visual letter recognition task in which auditory information was always presented simultaneously. The color of the letters was assigned to a particular probability of being associated with audiovisual congruency (e.g., green=high probability (HP) and blue=low probability (LP)). Results demonstrate that this prior began affecting reaction times to the congruent audiovisual stimuli at about the 900th trial. Consequently, the ERP data was analyzed in two phases: the "early phase" (trial 900). The effects of prior knowledge were revealed through difference waveforms generated by subtracting the ERPs for the congruent audiovisual stimuli in the LP condition from those in the HP condition. A frontal-central probability effect (90-120 ms) was observed in the early phase. A right parietal-occipital probability effect (40-96 ms) and a frontal-central probability effect (170-200 ms) were observed in the late phase. The results suggest that during the initial acquisition of the knowledge about the probability of congruency, the brain assigned more attention to audiovisual stimuli for the LP condition. Following the acquisition of this prior knowledge, it was then used during early stages of visual processing and modulated the activity of multisensory cortical areas. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Neural mechanisms underlying the conditioned diminution of the unconditioned fear response.

    Science.gov (United States)

    Wood, Kimberly H; Ver Hoef, Lawrence W; Knight, David C

    2012-03-01

    Recognizing cues that predict an aversive event allows one to react more effectively under threatening conditions, and minimizes the reaction to the threat itself. This is demonstrated during Pavlovian fear conditioning when the unconditioned response (UCR) to a predictable unconditioned stimulus (UCS) is diminished compared to the UCR to an unpredictable UCS. The present study investigated the functional magnetic resonance imaging (fMRI) signal response associated with Pavlovian conditioned UCR diminution to better understand the relationship between individual differences in behavior and the neural mechanisms of the threat-related emotional response. Healthy volunteers participated in a fear conditioning study in which trait anxiety, skin conductance response (SCR), UCS expectancy, and the fMRI signal were assessed. During acquisition trials, a tone (CS+) was paired with a white noise UCS and a second tone (CS-) was presented without the UCS. Test trials consisted of the CS+ paired with the UCS, CS- paired with the UCS, and presentations of the UCS alone to assess conditioned UCR diminution. UCR diminution was observed within the dorsolateral PFC, dorsomedial PFC, cingulate cortex, inferior parietal lobule (IPL), anterior insula, and amygdala. The threat-related activity within the dorsolateral PFC, dorsomedial PFC, posterior cingulate cortex, and IPL varied with individual differences in trait anxiety. In addition, anticipatory (i.e. CS elicited) activity within the PFC showed an inverse relationship with threat-related (i.e. UCS elicited) activity within the PFC, IPL, and amygdala. Further, the emotional response (indexed via SCR) elicited by the threat was closely linked to amygdala activity. These findings are consistent with the view that the amygdala and PFC support learning-related processes that influence the emotional response evoked by a threat. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Neural mechanism of pupillary dilation elicited by electro-acupuncture stimulation in anesthetized rats.

    Science.gov (United States)

    Ohsawa, H; Yamaguchi, S; Ishimaru, H; Shimura, M; Sato, Y

    1997-06-06

    The neural mechanisms to reflex dilation elicited by electro-acupuncture stimulation were investigated in anesthetized rats. Two needles, with 160 microns diameter and about 5 mm apart, were inserted into the skin and underlying muscle of a hindpaw. Repetitive 20 Hz, 0.5 ms electrical pulses at various intensities were used for stimulation for 30s. The pupil size was magnified about 44 times via a microscope and was continuously recorded on a videotape. Electro-acupuncture stimulation at more than 0.5 up to 6 mA induced stimulus intensity-dependent pupil dilation. These responses were abolished by the severance of the sciatic and saphenous nerve of the stimulated hindlimb. Compound action potentials were recorded from the distal cut end of the tibial of a saphenous nerve following electro-acupuncture stimulation of the hindpaw. The mean threshold of the compound action potentials of the myelinated fibers in saphenous nerves was 0.18 mA, while that of unmyelinated fibers was 3.0 mA. The mean threshold of the compound action potentials of the myelinated fibers in the tibial nerve was 0.20 mA of unmyelinated fibers was 3.3 mA. Severance of bilateral trunks did not affect the response, while severance of the third cranial nerves abolished the responses. In conclusion, electro-acupuncture stimulation applied to the hindpaws of the anesthetized rats induced excitation of myelinated or of both myelinated and unmyelinated afferent fibers of the tibial and saphenous nerve, and involved a reflex response of pupil dilation through the third cranial parasympathetic efferent nerve.

  17. Building bridges between perceptual and economic decision-making: neural and computational mechanisms

    Directory of Open Access Journals (Sweden)

    Christopher eSummerfield

    2012-05-01

    Full Text Available Investigation into the neural and computational bases of decision-making has proceeded in two parallel but distinct streams. Perceptual decision making (PDM is concerned with how observers detect, discriminate and categorise noisy sensory information. Economic decision making (EDM explores how options are selected on the basis of their reinforcement history. Traditionally, the subfields of PDM and EDM have employed different paradigms, proposed different mechanistic models, explored different brain regions, disagreed about whether decisions approach optimality. Nevertheless, we argue that there is a common framework for understanding decisions made in both domains, under which an agent has to combine sensory information (what is the stimulus with value information (what is it worth. We review computational models of the decision process typically used in PDM, based around the idea that decisions involve a serial integration of evidence, and assess their applicability to decisions between good and gambles. Subsequently, we consider the contribution of three key brain regions – the parietal cortex, the basal ganglia, and the orbitofrontal cortex – to perceptual and economic decision-making, with a focus on the mechanisms by which sensory and reward information are integrated during choice. We find that although the parietal cortex is often implicated in the integration of sensory evidence, there is evidence for its role in encoding the expected value of a decision. Similarly, although much research has emphasised the role of the striatum and orbitofrontal cortex in value-guided choices, they may play an important role in categorisation of perceptual information. In conclusion, we consider how findings from the two fields might be brought together, in order to move towards a general framework for understanding decision-making in humans and other primates.

  18. Media as the mechanism behind structural coupling and the evolution of the mind

    DEFF Research Database (Denmark)

    Tække, Jesper

    of the becoming of the psychic self. After this becoming other media of communication, as mechanisms behind the structural coupling, through the history of evolution has made a continuous increase of complexity, on both sides of the distinction between the psychic and the social, possible. This would be too much...... to elaborate for this paper, why it in its second part focuses on the psychic system. It tries to elaborate how, not only language, but also later media, through the history of evolution, generate the contemporary self. In doing that the paper describes five media revolutions (speech, writing, printing...

  19. A neural model for temporal order judgments and their active recalibration: a common mechanism for space and time?

    Directory of Open Access Journals (Sweden)

    Mingbo eCai

    2012-11-01

    Full Text Available When observers experience a constant delay between their motor actions and sensory feedback, their perception of the temporal order between actions and sensations adapt (Stetson et al., 2006a. We present here a novel neural model that can explain temporal order judgments (TOJs and their recalibration. Our model employs three ubiquitous features of neural systems: 1 information pooling, 2 opponent processing, and 3 synaptic scaling. Specifically, the model proposes that different populations of neurons encode different delays between motor-sensory events, the outputs of these populations feed into rivaling neural populations (encoding before and after, and the activity difference between these populations determines the perceptual judgment. As a consequence of synaptic scaling of input weights, motor acts which are consistently followed by delayed sensory feedback will cause the network to recalibrate its point of subjective simultaneity. The structure of our model raises the possibility that recalibration of TOJs is a temporal analogue to the motion aftereffect. In other words, identical neural mechanisms may be used to make perceptual determinations about both space and time. Our model captures behavioral recalibration results for different numbers of adapting trials and different adapting delays. In line with predictions of the model, we additionally demonstrate that temporal recalibration can last through time, in analogy to storage of the motion aftereffect.

  20. ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network.

    Science.gov (United States)

    Kim, Dokyoon; Li, Ruowang; Dudek, Scott M; Ritchie, Marylyn D

    2013-12-20

    Gene expression profiles have been broadly used in cancer research as a diagnostic or prognostic signature for the clinical outcome prediction such as stage, grade, metastatic status, recurrence, and patient survival, as well as to potentially improve patient management. However, emerging evidence shows that gene expression-based prediction varies between independent data sets. One possible explanation of this effect is that previous studies were focused on identifying genes with large main effects associated with clinical outcomes. Thus, non-linear interactions without large individual main effects would be missed. The other possible explanation is that gene expression as a single level of genomic data is insufficient to explain the clinical outcomes of interest since cancer can be dysregulated by multiple alterations through genome, epigenome, transcriptome, and proteome levels. In order to overcome the variability of diagnostic or prognostic predictors from gene expression alone and to increase its predictive power, we need to integrate multi-levels of genomic data and identify interactions between them associated with clinical outcomes. Here, we proposed an integrative framework for identifying interactions within/between multi-levels of genomic data associated with cancer clinical outcomes using the Grammatical Evolution Neural Networks (GENN). In order to demonstrate the validity of the proposed framework, ovarian cancer data from TCGA was used as a pilot task. We found not only interactions within a single genomic level but also interactions between multi-levels of genomic data associated with survival in ovarian cancer. Notably, the integration model from different levels of genomic data achieved 72.89% balanced accuracy and outperformed the top models with any single level of genomic data. Understanding the underlying tumorigenesis and progression in ovarian cancer through the global view of interactions within/between different levels of genomic data is

  1. Neural mechanism of lmplicit and explicit memory retrieval: functional MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Heoung Keun; Jeong, Gwang Woo; Park, Tae Jin; Seo, Jeong Jin; Kim, Hyung Joong; Eun, Sung Jong; Chung, Tae Woong [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2003-03-01

    To identify, using functional MR imaging, distinct cerebral centers and to evaluate the neural mechanism associated with implicit and explicit retrieval of words during conceptual processing. Seven healthy volunteers aged 21-25 (mean, 22) years underwent BOLD-based fMR imaging using a 1.5T signa horizon echospeed MR system. To activate the cerebral cortices, a series of tasks was performed as follows: the encoding of two-syllable words, and implicit and explicit retrieval of previously learned words during conceptual processing. The activation paradigm consisted of a cycle of alternating periods of 30 seconds of stimulation and 30 seconds of rest. Stimulation was accomplished by encoding eight two-syllable words and the retrieval of previously presented words, while the control condition was a white screen with a small fixed cross. During the tasks we acquired ten slices (6 mm slice thickness, 1 mm gap) parallel to the AC-PC line, and the resulting functional activation maps were reconstructed using a statistical parametric mapping program (SPM99). A comparison of activation ratios (percentages), based on the number of volunteers, showed that activation of Rhs-35, PoCiG-23 and ICiG-26{center_dot}30 was associated with explicit retrieval only; other brain areas were activated during the performance of both implicit and explicit retrieval tasks. Activation ratios were higher for explicit tasks than for implicit; in the cingulate gyrus and temporal lobe they were 30% and 10% greater, respectively. During explicit retrieval, a distinct brain activation index (percentage) was seen in the temporal, parietal, and occipital lobe and cingulate gyrus, and PrCeG-4, Pr/ PoCeG-43 in the frontal lobe. During implicit retrieval, on the other hand, activity was greater in the frontal lobe, including the areas of SCA-25, SFG/MFG-10, IFG-44{center_dot}45, OrbG-11{center_dot}47, SFG-6{center_dot}8 and MFG-9{center_dot}46. Overall, activation was lateralized mainly in the left

  2. Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Zhijian Cheng

    2016-08-01

    Full Text Available Neural stem cell (NSC transplantation has been proposed to promote functional recovery after spinal cord injury. However, a detailed understanding of the mechanisms of how NSCs exert their therapeutic plasticity is lacking. We transplanted mouse NSCs into the injured spinal cord seven days after SCI, and the Basso Mouse Scale (BMS score was performed to assess locomotor function. The anti-inflammatory effects of NSC transplantation was analyzed by immunofluorescence staining of neutrophil and macrophages and the detection of mRNA levels of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6 and interleukin-12 (IL-12. Furthermore, bone marrow-derived macrophages (BMDMs were co-cultured with NSCs and followed by analyzing the mRNA levels of inducible nitric oxide synthase (iNOS, TNF-α, IL-1β, IL-6 and IL-10 with quantitative real-time PCR. The production of TNF-α and IL-1β by BMDMs was examined using the enzyme-linked immunosorbent assay (ELISA. Transplanted NSCs had significantly increased BMS scores (p < 0.05. Histological results showed that the grafted NSCs migrated from the injection site toward the injured area. NSCs transplantation significantly reduced the number of neutrophils and iNOS+/Mac-2+ cells at the epicenter of the injured area (p < 0.05. Meanwhile, mRNA levels of TNF-α, IL-1β, IL-6 and IL-12 in the NSCs transplantation group were significantly decreased compared to the control group. Furthermore, NSCs inhibited the iNOS expression of BMDMs and the release of inflammatory factors by macrophages in vitro (p < 0.05. These results suggest that NSC transplantation could modulate SCI-induced inflammatory responses and enhance neurological function after SCI via reducing M1 macrophage activation and infiltrating neutrophils. Thus, this study provides a new insight into the mechanisms responsible for the anti-inflammatory effect of NSC transplantation after SCI.

  3. Strain wave evolution equation for nonlinear propagation in materials with mesoscopic mechanical elements.

    Science.gov (United States)

    Gusev, Vitalyi; Aleshin, Vladislav

    2002-12-01

    Nonlinear wave propagation in materials, where distribution function of mesoscopic mechanical elements has very different scales of variation along and normally to diagonal of Preisach-Mayergoyz space, is analyzed. An evolution equation for strain wave, which takes into account localization of element distribution near the diagonal and its slow variation along the diagonal, is proposed. The evolution equation provides opportunity to model propagation of elastic waves with strain amplitudes comparable to and even higher than characteristic scale of element localization near Preisach-Mayergoyz space diagonal. Analytical solutions of evolution equation predict nonmonotonous dependence of wave absorption on its amplitude in a particular regime. The regime of self-induced absorption for small-amplitude nonlinear waves is followed by the regime of self-induced transparency for high-amplitude waves. The developed theory might be useful in seismology, in high-pressure nonlinear acoustics, and in nonlinear acoustic diagnostics of damaged and fatigued materials.

  4. [Modern evolutional developmental biology: mechanical and molecular genetic or phenotypic approaches?].

    Science.gov (United States)

    Vorob'eva, É I

    2010-01-01

    Heightened interest in the evolutionary problems of developmental biology in the 1980s was due to the success of molecular genetics and disappointment in the synthetic theory of evolution, where the chapters of embryology and developmental biology seem to have been left out. Modern evo-devo, which turned out to be antipodean to the methodology of the synthetic theory of evolution, propagandized in the development of evolutionary problems only the mechanical and molecular genetic approach to the evolution of ontogenesis, based on cellular and intercellular interactions. The phonotypical approach to the evaluation of evolutionary occurrences in ontogenesis, which aids in the joining of the genetic and epigenetic levels of research, the theory of natural selection, the nomogenetic conception, and the problem of the wholeness of the organism in onto- and phylogenesis may be against this. The phenotypic approach to ontogenesis is methodologically the most perspective for evolutionary developmental biology.

  5. 5-HTTLPR polymorphism is linked to neural mechanisms of selective attention in preschoolers from lower socioeconomic status backgrounds

    Directory of Open Access Journals (Sweden)

    Elif Isbell

    2016-12-01

    Full Text Available While a growing body of research has identified experiential factors associated with differences in selective attention, relatively little is known about the contribution of genetic factors to the skill of sustained selective attention, especially in early childhood. Here, we assessed the association between the serotonin transporter linked polymorphic region (5-HTTLPR genotypes and the neural mechanisms of selective attention in young children from lower socioeconomic status (SES backgrounds. Event-related potentials (ERPs were recorded during a dichotic listening task from 121 children (76 females, aged 40–67 months, who were also genotyped for the short and long allele of 5-HTTLPR. The effect of selective attention was measured as the difference in ERP mean amplitudes elicited by identical probe stimuli embedded in stories when they were attended versus unattended. Compared to children homozygous for the long allele, children who carried at least one copy of the short allele showed larger effects of selective attention on neural processing. These findings link the short allele of the 5-HTTLPR to enhanced neural mechanisms of selective attention and lay the groundwork for future studies of gene-by-environment interactions in the context of key cognitive skills.

  6. Life history evolution and cellular mechanisms associated with increased size in high-altitude Drosophila.

    Science.gov (United States)

    Lack, Justin B; Yassin, Amir; Sprengelmeyer, Quentin D; Johanning, Evan J; David, Jean R; Pool, John E

    2016-08-01

    Understanding the physiological and genetic basis of growth and body size variation has wide-ranging implications, from cancer and metabolic disease to the genetics of complex traits. We examined the evolution of body and wing size in high-altitude Drosophila melanogaster from Ethiopia, flies with larger size than any previously known population. Specifically, we sought to identify life history characteristics and cellular mechanisms that may have facilitated size evolution. We found that the large-bodied Ethiopian flies laid significantly fewer but larger eggs relative to lowland, smaller-bodied Zambian flies. The highland flies were found to achieve larger size in a similar developmental period, potentially aided by a reproductive strategy favoring greater provisioning of fewer offspring. At the cellular level, cell proliferation was a strong contributor to wing size evolution, but both thorax and wing size increases involved important changes in cell size. Nuclear size measurements were consistent with elevated somatic ploidy as an important mechanism of body size evolution. We discuss the significance of these results for the genetic basis of evolutionary changes in body and wing size in Ethiopian D. melanogaster.

  7. Temporal evolution of mechanical properties of skeletal tissue regeneration in rabbits. An experimental study

    CERN Document Server

    Mokoko, Didier; Chabrand, Patrick

    2007-01-01

    Various mathematical models represent the effects of local mechanical environment on the regulation of skeletal regeneration. Their relevance relies on an accurate description of the evolving mechanical properties of the regenerating tissue. The object of this study was to develop an experimental model which made it possible to characterize the temporal evolution of the structural and mechanical properties during unloaded enchondral osteogenesis in the New Zealand rabbit, a standard animal model for studies of osteogenesis and chondrogenesis. A 25mm segment of tibial diaphysis was removed sub-periosteally from rabbits. The defect was repaired by the preserved periosteum. An external fixator was applied to prevent mechanical loading during osteogenesis. The regenerated skeletal tissues were studied by CT scan, histology and mechanical tests. The traction tests between 7 to 21 days post-surgery were done on formaldehyde-fixated tissue allowing to obtain force/displacement curves. The viscoelastic properties of ...

  8. Effect of enzymatic and mechanical methods of dissociation on neural progenitor cells derived from induced pluripotent stem cells.

    Science.gov (United States)

    Jager, Lindsey D; Canda, Claire-Marie A; Hall, Crystal A; Heilingoetter, Cassandra L; Huynh, Joann; Kwok, Susanna S; Kwon, Jin H; Richie, Jacob R; Jensen, Matthew B

    2016-03-01

    To determine the most effective method of dissociating neural stem and progenitor cells into a single-cell suspension. Induced pluripotent stem cells were differentiated toward the neural fate for 4 weeks before clusters were subjected to enzymatic (Accutase, trypsin, TrypLE, dispase, or DNase I) or mechanical (trituration with pipettes of varying size) or combined dissociation. Images of cells were analyzed for cluster size using ImageJ. Cells treated with the enzymes Accutase, TrypLE, or trypsin/EDTA, these enzymes followed by trituration, or a combination one of these enzymes followed by incubation with another enzyme, including DNase I, were more likely to be dissociated into a single-cell suspension. Cells treated with enzymes or combinations of methods were more likely to be dissociated into a single-cell suspension. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. Convergent evolution of mechanically optimal locomotion in aquatic invertebrates and vertebrates.

    Directory of Open Access Journals (Sweden)

    Rahul Bale

    2015-04-01

    Full Text Available Examples of animals evolving similar traits despite the absence of that trait in the last common ancestor, such as the wing and camera-type lens eye in vertebrates and invertebrates, are called cases of convergent evolution. Instances of convergent evolution of locomotory patterns that quantitatively agree with the mechanically optimal solution are very rare. Here, we show that, with respect to a very diverse group of aquatic animals, a mechanically optimal method of swimming with elongated fins has evolved independently at least eight times in both vertebrate and invertebrate swimmers across three different phyla. Specifically, if we take the length of an undulation along an animal's fin during swimming and divide it by the mean amplitude of undulations along the fin length, the result is consistently around twenty. We call this value the optimal specific wavelength (OSW. We show that the OSW maximizes the force generated by the body, which also maximizes swimming speed. We hypothesize a mechanical basis for this optimality and suggest reasons for its repeated emergence through evolution.

  10. Malicious Botnet Survivability Mechanism Evolution Forecasting by Means of a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Nikolaj Goranin

    2012-04-01

    Full Text Available Botnets are considered to be among the most dangerous modern malware types and the biggest current threats to global IT infrastructure. Botnets are rapidly evolving, and therefore forecasting their survivability strategies is important for the development of countermeasure techniques. The article propose the botnet-oriented genetic algorithm based model framework, which aimed at forecasting botnet survivability mechanisms. The model may be used as a framework for forecasting the evolution of other characteristics. The efficiency of different survivability mechanisms is evaluated by applying the proposed fitness function. The model application area also covers scientific botnet research and modelling tasks.

  11. Synthesis of dexterity measure of mechanisms by evolution of dissipative system

    Directory of Open Access Journals (Sweden)

    Grešl M.

    2007-11-01

    Full Text Available The paper deals with the new approach of solving traditional kinematical synthesis of mechanisms. The kinematical synthesis is reformulated as nonlinear dynamical problem. All searched parameters of the mechanism are in this dynamical dissipative system introduced as time-varying during motion of mechanism’s dimension iteration. The synthesis process is realized as the time evolution of such system. One of the most important objectives of the machine synthesis is the dexterity measure. The new approach is applied to optimization of this property.

  12. The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Walter, Eric D.; Xu, Wu; Nasybulin, Eduard N.; Bhattacharya, Priyanka; Bowden, Mark E.; Engelhard, Mark H.; Zhang, Jiguang

    2014-09-01

    The oxygen reduction/evolution reaction (ORR/OER) mechanisms in nonaqueous Li-O2 batteries have been investigated by using electron paramagnetic resonance spectroscopy in this work. We identified the superoxide radical anion (O2•-) as an intermediate in the ORR process using 5,5-dimethyl-pyrroline N-oxide as a spin trap, while no O2•- in OER was detected during the charge process. These findings provide insightful understanding on the fundamental oxygen reaction mechanisms in rechargeable nonaqueous Li-O2 batteries.

  13. Lithium - an update on the mechanisms of action. Part two: neural ...

    African Journals Online (AJOL)

    ... has a complicated multitude of diverse effects in the human nervous system. This new data is helping us understand the neurobiology of bipolar disorder. The focus of this review will be to distil this new knowledge.This, the second of a two part review will focus principally on neural effects and neuroanatomical substrates.

  14. Mechanisms of Developmental Regression in Autism and the Broader Phenotype: A Neural Network Modeling Approach

    Science.gov (United States)

    Thomas, Michael S. C.; Knowland, Victoria C. P.; Karmiloff-Smith, Annette

    2011-01-01

    Loss of previously established behaviors in early childhood constitutes a markedly atypical developmental trajectory. It is found almost uniquely in autism and its cause is currently unknown (Baird et al., 2008). We present an artificial neural network model of developmental regression, exploring the hypothesis that regression is caused by…

  15. Comparable mechanisms for action and language: Neural systems behind intentions, goals and means

    NARCIS (Netherlands)

    Schie, H.T. van; Toni, I.; Bekkering, H.

    2006-01-01

    In this position paper we explore correspondence between neural systems for language and action starting from recent electrophysiological findings on the roles of posterior and frontal areas in goal-directed grasping actions. The paper compares the perceptual and motor organization for action and

  16. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Korshunova, Irina; Berezin, Vladimir

    2006-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been...

  17. Bird brains and songs : Neural mechanisms of auditory memory and perception in zebra finches

    NARCIS (Netherlands)

    Gobes, S.M.H.

    2009-01-01

    Songbirds, such as zebra finches, learn their songs from a ‘tutor’ (usually the father), early in life. There are strong parallels between the behavioural, cognitive and neural processes that underlie vocal learning in humans and songbirds. In both cases there is a sensitive period for auditory

  18. Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development

    NARCIS (Netherlands)

    van Duijvenvoorde, A.C.K.; Zanolie, K.; Rombouts, S.A.R.B.; Raijmakers, M.E.J.; Crone, E.A.

    2008-01-01

    Howchildren learn from positive and negative performance feedback lies at the foundation of successful learning and is therefore of great importance for educational practice. In this study, we used functional magnetic resonance imaging (fMRI) to examine the neural developmental changes related to

  19. Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development

    NARCIS (Netherlands)

    A.C.K. van Duijvenvoorde (Anna C.); K. Zanolie (Kiki); S.A.R.B. Rombouts (Serge); M.E.J. Raijmakers (Maartje E.); E.A. Crone (Eveline)

    2008-01-01

    textabstractHow children learn from positive and negative performance feedback lies at the foundation of successful learning and is therefore of great importance for educational practice. In this study, we used functional magnetic resonance imaging (fMRI) to examine the neural developmental changes

  20. Tympanal mechanics and neural responses in the ears of a noctuid moth.

    Science.gov (United States)

    ter Hofstede, Hannah M; Goerlitz, Holger R; Montealegre-Z, Fernando; Robert, Daniel; Holderied, Marc W

    2011-12-01

    Ears evolved in many groups of moths to detect the echolocation calls of predatory bats. Although the neurophysiology of bat detection has been intensively studied in moths for decades, the relationship between sound-induced movement of the noctuid tympanic membrane and action potentials in the auditory sensory cells (A1 and A2) has received little attention. Using laser Doppler vibrometry, we measured the velocity and displacement of the tympanum in response to pure tone pulses for moths that were intact or prepared for neural recording. When recording from the auditory nerve, the displacement of the tympanum at the neural threshold remained constant across frequencies, whereas velocity varied with frequency. This suggests that the key biophysical parameter for triggering action potentials in the sensory cells of noctuid moths is tympanum displacement, not velocity. The validity of studies on the neurophysiology of moth hearing rests on the assumption that the dissection and recording procedures do not affect the biomechanics of the ear. There were no consistent differences in tympanal velocity or displacement when moths were intact or prepared for neural recordings for sound levels close to neural threshold, indicating that this and other neurophysiological studies provide good estimates of what intact moths hear at threshold.

  1. Which neural mechanisms mediate the effects of a parenting intervention program on parenting behavior: design of a randomized controlled trial.

    Science.gov (United States)

    Kolijn, Laura; Euser, Saskia; van den Bulk, Bianca G; Huffmeijer, Renske; van IJzendoorn, Marinus H; Bakermans-Kranenburg, Marian J

    2017-03-21

    The Video-feedback Intervention to promote Positive Parenting and Sensitive Discipline (VIPP-SD) has proven effective in increasing parental sensitivity. However, the mechanisms involved are largely unknown. In a randomized controlled trial we examine parental neurocognitive factors that may mediate the intervention effects on parenting behavior. Our aims are to (1) examine whether the intervention influences parents' neural processing of children's emotional expressions and the neural precursors of response inhibition and to (2) test whether neural changes mediate intervention effects on parenting behavior. We will test 100 mothers of 4-6 year old same-sex twins. A random half of the mothers will receive the VIPP-SD Twins (i.e. VIPP-SD adapted for twin families), consisting of 5 home visits in a 3-months period; the other half will receive a dummy intervention. Neurocognitive measures are acquired approximately 2 weeks before and 2 weeks after the intervention. Mothers' electroencephalographic (EEG) activity is measured while performing a stop signal task and in response to children's facial expressions. To obtain a complementary behavioral measure, mothers also perform an emotion recognition task. Parenting behavior will be assessed during parent-child interactions at pre and post intervention lab visits. Our results will shed light on the neurocognitive factors underlying changes in parenting behavior after a parenting support program, which may benefit the development of such programs. Dutch Trial Register: NTR5312 ; Date registered: January 3, 2017.

  2. Reassessing Domain Architecture Evolution of Metazoan Proteins: The Contribution of Different Evolutionary Mechanisms

    Directory of Open Access Journals (Sweden)

    Laszlo Patthy

    2011-08-01

    Full Text Available In the accompanying papers we have shown that sequence errors of public databases and confusion of paralogs and epaktologs (proteins that are related only through the independent acquisition of the same domain types significantly distort the picture that emerges from comparison of the domain architecture (DA of multidomain Metazoan proteins since they introduce a strong bias in favor of terminal over internal DA change. The issue of whether terminal or internal DA changes occur with greater probability has very important implications for the DA evolution of multidomain proteins since gene fusion can add domains only at terminal positions, whereas domain-shuffling is capable of inserting domains both at internal and terminal positions. As a corollary, overestimation of terminal DA changes may be misinterpreted as evidence for a dominant role of gene fusion in DA evolution. In this manuscript we show that in several recent studies of DA evolution of Metazoa the authors used databases that are significantly contaminated with incomplete, abnormal and mispredicted sequences (e.g., UniProtKB/TrEMBL, EnsEMBL and/or the authors failed to separate paralogs and epaktologs, explaining why these studies concluded that the major mechanism for gains of new domains in metazoan proteins is gene fusion. In contrast with the latter conclusion, our studies on high quality orthologous and paralogous Swiss-Prot sequences confirm that shuffling of mobile domains had a major role in the evolution of multidomain proteins of Metazoa and especially those formed in early vertebrates.

  3. LOGIC WITH EXCEPTION ON THE ALGEBRA OF FOURIER-DUAL OPERATIONS: NEURAL NET MECHANISM OF COGNITIVE DISSONANCE REDUCING

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    2014-01-01

    Full Text Available A mechanism of cognitive dissonance reducing is demonstrated with approach for non-monotonic fuzzy-valued logics by Fourier-holography technique implementation developing. Cognitive dissonance occurs under perceiving of new information that contradicts to the existing subjective pattern of the outside world, represented by double Fourier-transform cascade with a hologram – neural layers interconnections matrix of inner information representation and logical conclusion. The hologram implements monotonic logic according to “General Modus Ponens” rule. New information is represented by a hologram of exclusion that implements interconnections of logical conclusion and exclusion for neural layers. The latter are linked by Fourier transform that determines duality of the algebra forming operations of conjunction and disjunction. Hologram of exclusion forms conclusion that is dual to the “General Modus Ponens” conclusion. It is shown, that trained for the main rule and exclusion system can be represented by two-layered neural network with separate interconnection matrixes for direct and inverse iterations. The network energy function is involved determining the cyclic dynamics character; dissipative factor causing convergence type of the dynamics is analyzed. Both “General Modus Ponens” and exclusion holograms recording conditions on the dynamics and convergence of the system are demonstrated. The system converges to a stable status, in which logical conclusion doesn’t depend on the inner information. Such kind of dynamics, leading to tolerance forming, is typical for ordinary kind of thinking, aimed at inner pattern of outside world stability. For scientific kind of thinking, aimed at adequacy of the inner pattern of the world, a mechanism is needed to stop the net relaxation; the mechanism has to be external relative to the model of logic. Computer simulation results for the learning conditions adequate to real holograms recording are

  4. Investigating neural mechanisms of change of cognitive behavioural therapy for chronic fatigue syndrome: a randomized controlled trial.

    Science.gov (United States)

    van Der Schaaf, Marieke E; Schmits, Iris C; Roerink, Megan; Geurts, Dirk E M; Toni, Ivan; Roelofs, Karin; De Lange, Floris P; Nater, Urs M; van der Meer, Jos W M; Knoop, Hans

    2015-07-03

    Chronic fatigue syndrome (CFS) is characterized by profound and disabling fatigue with no known somatic explanation. Cognitive behavioral therapy (CBT) has proven to be a successful intervention leading to a reduction in fatigue and disability. Based on previous neuroimaging findings, it has been suggested that central neural mechanisms may underlie CFS symptoms and play a role in the change brought on by CBT. In this randomized controlled trial we aim to further investigate the neural mechanisms that underlie fatigue in CFS and their change by CBT. We will conduct a randomized controlled trial in which we collect anatomical and functional magnetic resonance imaging (MRI) measures from female CFS patients before and after CBT (N = 60) or waiting list (N = 30) and compare these with measures from age and education matched healthy controls (N = 30). By including a large treatment group we will also be able to compare patients that benefit from CBT with those that do not. In addition, to further investigate the role of endocrine and immune biomarkers in CFS, we will determine cortisol and cytokine concentrations in blood, hair and/or saliva. This project creates an unique opportunity to enhance our understanding of CFS symptoms and its change by CBT in terms of neuroanatomical, neurofunctional, endocrinological and immunological mechanisms and can help to further improve future treatments strategies. Dutch Trial Register #15852. Registered 9 December 2013 ( http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4311 ).

  5. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS.

    Science.gov (United States)

    De Geeter, N; Crevecoeur, G; Leemans, A; Dupré, L

    2015-01-21

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron's local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract's position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values.

  6. Plausible mechanisms for brain structural and size changes in human evolution.

    Science.gov (United States)

    Blazek, Vladimir; Brùzek, Jaroslav; Casanova, Manuel F

    2011-09-01

    Encephalization has many contexts and implications. On one hand, it is concerned with the transformation of eating habits, social relationships and communication, cognitive skills and the mind. Along with the increase in brain size on the other hand, encephalization is connected with the creation of more complex brain structures, namely in the cerebral cortex. It is imperative to inquire into the mechanisms which are linked with brain growth and to find out which of these mechanisms allow it and determine it. There exist a number of theories for understanding human brain evolution which originate from neurological sciences. These theories are the concept of radial units, minicolumns, mirror neurons, and neurocognitive networks. Over the course of evolution, it is evident that a whole range of changes have taken place in regards to heredity. These changes include new mutations of genes in the microcephalin complex, gene duplications, gene co-expression, and genomic imprinting. This complex study of the growth and reorganization of the brain and the functioning of hereditary factors and their external influences creates an opportunity to consider the implications of cultural evolution and cognitive faculties.

  7. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    The community succession mechanism of Acidithiobacillus sp. coupling with adaptive evolution of adsorption performance were systematically investigated. Specifically, the μmax of attached and free cells was increased and peak time was moved ahead, indicating both cell growth of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was promoted. In the mixed strains system, the domination courses of A. thiooxidans was dramatically shortened from 22th day to 15th day, although community structure finally approached to the normal system. Compared to A. ferrooxidans, more positive effects of adaptive evolution on cell growth of A. thiooxidans were shown in either single or mixed strains system. Moreover, higher concentrations of sulfate and ferric ions indicated that both sulfur and iron metabolism was enhanced, especially of A. thiooxidans. Consistently, copper ion production was improved from 65.5 to 88.5 mg/L. This new adaptive evolution and community succession mechanism may be useful for guiding similar bioleaching processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Atomic-Scale Mechanism of Efficient Hydrogen Evolution at SiC Nanocrystal Electrodes.

    Science.gov (United States)

    Shen, Xiao; Pantelides, Sokrates T

    2013-01-03

    Efficient electrochemical hydrogen evolution at ultrathin 3C-SiC nanocrystal electrodes in acid solutions was recently reported, but the atomic-scale mechanism of the reaction was not identified. Here we report quantum mechanical calculations of pertinent reactions and show that the reaction happens at pre-existing hydrogenated surface Si-H sites through a mechanism that is related to the Volmer-Heyrovsky mechanism that occurs in metals. Here the Heyrovsky reaction occurs as the first step, where an electron from the substrate reacts with a hydronium adsorbed at a Si-H site, creating an H2 molecule and a Si dangling bond. The Volmer reaction follows and regenerates the Si-H. This ordering of reactions is supported by the fact that the hydrogen coverage on SiC electrodes does not depend on the applied voltage, in contrast to the cases of metal electrodes. Moreover, the Volmer reaction, which is a one-step process on metal surface, is a two-step process here. We then show that the rise of the conduction band due to quantum confinement accounts for the fact that only ultrasmall SiC nanocrystals are electrochemically active. We also show that the ability of a Si-H bond to bind a hydronium is essential for the hydrogen evolution to occur at high rate.

  9. The emerging role of epigenetic mechanisms in the etiology of neural tube defects

    Science.gov (United States)

    Greene, Nicholas DE; Stanier, Philip

    2011-01-01

    The molecular requirements for neural tube closure are complex. This is illustrated by the occurrence of neural tube defects (NTDs) in many genetic mouse mutants, which implicate a variety of genes, pathways and cellular functions. NTDs are also prevalent birth defects in humans, affecting around 1 per 1,000 pregnancies worldwide. In humans the causation is thought to involve the interplay of fetal genes and the effect of environmental factors. Recent studies on the etiology of human NTDs, as well as analysis of mouse models, have raised the question of the possible involvement of epigenetic factors in determining susceptibility. A consideration of potential causative factors in human NTDs must now include both alterations in the regulation of gene expression, through mutation of promoter or regulatory elements and the additional analysis of epigenetic regulation. Alterations in the epigenetic status can be directly modified by various environmental insults or maternal dietary factors. PMID:21613818

  10. FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription.

    Directory of Open Access Journals (Sweden)

    Nishal S Patel

    Full Text Available Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR signalling in Raldh2-/- embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that

  11. Effect of Heterogeneity on Decorrelation Mechanisms in Spiking Neural Networks: A Neuromorphic-Hardware Study

    Directory of Open Access Journals (Sweden)

    Thomas Pfeil

    2016-05-01

    Full Text Available High-level brain function, such as memory, classification, or reasoning, can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy-efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear subthreshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with nonlinear, conductance-based synapses. Emulations of these networks on the analog neuromorphic-hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm that shared-input correlations are actively suppressed by inhibitory feedback also in highly heterogeneous networks exhibiting broad

  12. Music training relates to the development of neural mechanisms of selective auditory attention

    OpenAIRE

    Dana L. Strait; Jessica Slater; Samantha O’Connell; Nina Kraus

    2015-01-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked response...

  13. An "as soon as possible" effect in human intertemporal decision making: behavioral evidence and neural mechanisms.

    Science.gov (United States)

    Kable, Joseph W; Glimcher, Paul W

    2010-05-01

    Many decisions involve a trade-off between the quality of an outcome and the time at which that outcome is received. In psychology and behavioral economics, the most widely studied models hypothesize that the values of future gains decline as a roughly hyperbolic function of delay from the present. Recently, it has been proposed that this hyperbolic-like decline in value arises from the interaction of two separate neural systems: one specialized to value immediate rewards and the other specialized to value delayed rewards. Here we report behavioral and functional magnetic resonance imaging results that are inconsistent with both the standard behavioral models of discounting and the hypothesis that separate neural systems value immediate and delayed rewards. Behaviorally, we find that human subjects do not necessarily make the impulsive preference reversals predicted by hyperbolic-like discounting. We also find that blood oxygenation level dependent activity in ventral striatum, medial prefrontal, and posterior cingulate cortex does not track whether an immediate reward was present, as proposed by the separate neural systems hypothesis. Activity in these regions was correlated with the subjective value of both immediate and delayed rewards. Rather than encoding only the relative value of one reward compared with another, these values are represented on a more absolute scale. These data support an alternative behavioral-neural model (which we call "ASAP"), in which subjective value declines hyperbolically relative to the soonest currently available reward and a small number of valuation areas serve as a final common pathway through which these subjective values guide choice.

  14. Neural Mechanisms of Information Storage in Visual Short-Term Memory

    Science.gov (United States)

    Serences, John T.

    2016-01-01

    The capacity to briefly memorize fleeting sensory information supports visual search and behavioral interactions with relevant stimuli in the environment. Traditionally, studies investigating the neural basis of visual short term memory (STM) have focused on the role of prefrontal cortex (PFC) in exerting executive control over what information is stored and how it is adaptively used to guide behavior. However, the neural substrates that support the actual storage of content-specific information in STM are more controversial, with some attributing this function to PFC and others to the specialized areas of early visual cortex that initially encode incoming sensory stimuli. In contrast to these traditional views, I will review evidence suggesting that content-specific information can be flexibly maintained in areas across the cortical hierarchy ranging from early visual cortex to PFC. While the factors that determine exactly where content-specific information is represented are not yet entirely clear, recognizing the importance of task-demands and better understanding the operation of non-spiking neural codes may help to constrain new theories about how memories are maintained at different resolutions, across different timescales, and in the presence of distracting information. PMID:27668990

  15. A NEW QUANTUM MECHANICAL THEORY OF EVOLUTION OF UNIVERSE AND LIFE

    Science.gov (United States)

    Nigam, M C

    1990-01-01

    Based upon the principles of ancient science of Life, which admits both consciousness and matter, a new Quantum Mechanical theory of evolution of universe and life is propounded. The theory advocates: Right from the time, the evolution of universe takes place, life also starts evolving energies and ethereal – consciousness (subtler and real) in anti-electrons, as the complimentary partners. The material body acquires electrons for cordoning of atomic nuclei and displaying its manifestation, in the three spatial dimensions in scale of time. The ethereal consciousness acquires anti electrons for gaining necessary energy for superimposing itself over any of the manifested bodies of equivalent electronic energy and deriving the bliss of materialization. The theory is based upon the solid foundation of the ancient science (ethereal consciousness) laid down by the ancient seekers of knowledge like Kapila and Caraka who interpret many of the riddles of modern science on the frontiers of various disciplines of knowledge. PMID:22556513

  16. A new quantum mechanical theory of evolution of universe and life.

    Science.gov (United States)

    Nigam, M C

    1990-10-01

    Based upon the principles of ancient science of Life, which admits both consciousness and matter, a new Quantum Mechanical theory of evolution of universe and life is propounded. The theory advocates: Right from the time, the evolution of universe takes place, life also starts evolving energies and ethereal - consciousness (subtler and real) in anti-electrons, as the complimentary partners. The material body acquires electrons for cordoning of atomic nuclei and displaying its manifestation, in the three spatial dimensions in scale of time. The ethereal consciousness acquires anti electrons for gaining necessary energy for superimposing itself over any of the manifested bodies of equivalent electronic energy and deriving the bliss of materialization. The theory is based upon the solid foundation of the ancient science (ethereal consciousness) laid down by the ancient seekers of knowledge like Kapila and Caraka who interpret many of the riddles of modern science on the frontiers of various disciplines of knowledge.

  17. Diverse Cis-Regulatory Mechanisms Contribute to Expression Evolution of Tandem Gene Duplicates.

    Science.gov (United States)

    Baudouin-Gonzalez, Luís; Santos, Marília A; Tempesta, Camille; Sucena, Élio; Roch, Fernando; Tanaka, Kohtaro

    2017-12-01

    Pairs of duplicated genes generally display a combination of conserved expression patterns inherited from their unduplicated ancestor and newly acquired domains. However, how the cis-regulatory architecture of duplicated loci evolves to produce these expression patterns is poorly understood. We have directly examined the gene-regulatory evolution of two tandem duplicates, the Drosophila Ly6 genes CG9336 and CG9338, which arose at the base of the drosophilids between 40 and 60 Ma. Comparing the expression patterns of the two paralogs in four Drosophila species with that of the unduplicated ortholog in the tephritid Ceratitis capitata, we show that they diverged from each other as well as from the unduplicated ortholog. Moreover, the expression divergence appears to have occurred close to the duplication event and also more recently in a lineage-specific manner. The comparison of the tissue-specific cis-regulatory modules (CRMs) controlling the paralog expression in the four Drosophila species indicates that diverse cis-regulatory mechanisms, including the novel tissue-specific enhancers, differential inactivation, and enhancer sharing, contributed to the expression evolution. Our analysis also reveals a surprisingly variable cis-regulatory architecture, in which the CRMs driving conserved expression domains change in number, location, and specificity. Altogether, this study provides a detailed historical account that uncovers a highly dynamic picture of how the paralog expression patterns and their underlying cis-regulatory landscape evolve. We argue that our findings will encourage studying cis-regulatory evolution at the whole-locus level to understand how interactions between enhancers and other regulatory levels shape the evolution of gene expression. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.

    Science.gov (United States)

    Cao, Ruiguo; Walter, Eric D; Xu, Wu; Nasybulin, Eduard N; Bhattacharya, Priyanka; Bowden, Mark E; Engelhard, Mark H; Zhang, Ji-Guang

    2014-09-01

    A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium-oxygen (Li-O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li-O2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5-dimethyl-pyrroline N-oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O2(˙-)) as an intermediate in the ORR during the discharge process, while no O2(˙-) was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment.

    Directory of Open Access Journals (Sweden)

    Assaf Breska

    2017-02-01

    Full Text Available Predicting the timing of upcoming events enables efficient resource allocation and action preparation. Rhythmic streams, such as music, speech, and biological motion, constitute a pervasive source for temporal predictions. Widely accepted entrainment theories postulate that rhythm-based predictions are mediated by synchronizing low-frequency neural oscillations to the rhythm, as indicated by increased phase concentration (PC of low-frequency neural activity for rhythmic compared to random streams. However, we show here that PC enhancement in scalp recordings is not specific to rhythms but is observed to the same extent in less periodic streams if they enable memory-based prediction. This is inconsistent with the predictions of a computational entrainment model of stronger PC for rhythmic streams. Anticipatory change in alpha activity and facilitation of electroencephalogram (EEG manifestations of response selection are also comparable between rhythm- and memory-based predictions. However, rhythmic sequences uniquely result in obligatory depression of preparation-related premotor brain activity when an on-beat event is omitted, even when it is strategically beneficial to maintain preparation, leading to larger behavioral costs for violation of prediction. Thus, while our findings undermine the validity of PC as a sign of rhythmic entrainment, they constitute the first electrophysiological dissociation, to our knowledge, between mechanisms of rhythmic predictions and of memory-based predictions: the former obligatorily lead to resonance-like preparation patterns (that are in line with entrainment, while the latter allow flexible resource allocation in time regardless of periodicity in the input. Taken together, they delineate the neural mechanisms of three distinct modes of preparation: continuous vigilance, interval-timing-based prediction and rhythm-based prediction.

  20. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod.

    Science.gov (United States)

    Hut, R A; Beersma, D G M

    2011-07-27

    Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a 'clock') that is synchronized ('entrained') to the environmental cycle by receptor mechanisms responding to relevant environmental signals ('Zeitgeber', i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or altitudes.

  1. Phase evolution and thermal stability of 2 Mg–Cu alloys processed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, C., E-mail: carola.martinezu@usach.cl [Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 10233, Santiago (Chile); Ordoñez, S., E-mail: stella.ordonez@usach.cl [Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 10233, Santiago (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y CRIDESAT, Av. Copayapu 485, Casilla de Correo 240, Copiapó (Chile); Serafini, D. [Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 307, Santiago (Chile); Iturriza, I. [CEIT, Manuel de Lardizábal 15, 20018 San Sebastián, España (Spain); Bustos, O. [Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 10233, Santiago (Chile)

    2013-12-25

    Highlights: •Study of phase evolution of elemental powders Mg and Cu by mechanical alloying. •The presence of an amorphous precursor which crystallizes to Mg{sub 2}Cu can be observed. •Establishing the sequence of phase transformations leading to the formation of Mg{sub 2}Cu. •The feasibility to obtain Mg{sub 2}Cu by means two possible routes has been established. -- Abstract: Phase evolution during mechanical alloying (MA) of elemental Mg and Cu powders and their subsequent heat treatment is studied. Elemental Mg and Cu powders in a 2:1 atomic ratio were mechanically alloyed in a SPEX 8000D mill using a 10:1 ball-to-powder ratio. X-ray diffraction (XRD) shows that the formation of the intermetallic Mg{sub 2}Cu takes place between 3 and 4 h of milling, although traces of elemental Cu are still present after 10 h of milling. The thermal behavior of different powder mixtures was evaluated by differential scanning calorimetry (DSC). The combination of DSC, heat treatment and XRD has shown a sequence of phase transformations that results in the intermetallic Mg{sub 2}Cu from an amorphous precursor. This amorphous phase is converted into Mg{sub 2}Cu by heating at low temperature (407 K). Short MA times and the formation of the amorphous precursor, together with its subsequent transformation into Mg{sub 2}Cu at low temperatures; represent an advantageous alternative route for its preparation.

  2. Evolution

    Science.gov (United States)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  3. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  4. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  5. Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility.

    Science.gov (United States)

    de Boer, Sietse F; Buwalda, Bauke; Koolhaas, Jaap M

    2017-03-01

    Considerable individual differences exist in trait-like patterns of behavioral and physiological responses to salient environmental challenges. This individual variation in stress coping styles has an important functional role in terms of health and fitness. Hence, understanding the neural embedding of coping style variation is fundamental for biobehavioral neurosciences in probing individual disease susceptibility. This review outlines individual differences in trait-aggressiveness as an adaptive component of the natural sociobiology of rats and mice, and highlights that these reflect the general style of coping that varies from proactive (aggressive) to reactive (docile). We propose that this qualitative coping style can be disentangled into multiple quantitative behavioral domains, e.g., flexibility/impulse control, emotional reactivity and harm avoidance/reward processing, that each are encoded into selective neural circuitries. Since functioning of all these brain circuitries rely on fine-tuned serotonin signaling, autoinhibitory control mechanisms of serotonergic neuron (re)activity are crucial in orchestrating general coping style. Untangling the precise neuromolecular mechanisms of different coping styles will provide a roadmap for developing better therapeutic strategies of stress-related diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Thermo-mechanically induced texture evolution and micro-structural change of aluminum metallization

    DEFF Research Database (Denmark)

    Brincker, Mads; Walter, Thomas; Kristensen, Peter Kjær

    2017-01-01

    of the metallization and the semiconductor underneath that can lead to a severe structural degradation of the layer changing the electrical characteristics of the electronic chips, finally causing a failure. Although this problem is well-known, the underlying physical mechanisms governing this fatigue phenomenon...... are not yet fully understood. In this work, we investigate the microstructural evolution of an Al metallization on high power diode chips subjected to passive thermal cycling between 20 and 100ºC. The texture of the Al film is analyzed ex-situ by a combination of electron backscatter diffraction and X...

  7. Evolution of the Stability Work from Classic Retaining Walls to Mechanically Stabilized Earth Walls

    Directory of Open Access Journals (Sweden)

    Anghel Stanciu

    2008-01-01

    Full Text Available For the consolidation of soil mass and the construction of the stability works for roads infrastructure it was studied the evolution of these kinds of works from classical retaining walls - common concrete retaining walls, to the utilization in our days of the modern and competitive methods - mechanically stabilized earth walls. Like type of execution the variety of the reinforced soil is given by the utilization of different types of reinforcing inclusions (steel strips, geosynthetics, geogrids or facing (precast concrete panels, dry cast modular blocks, metal sheets and plates, gabions, and wrapped sheets of geosynthetics.

  8. Aging effect evolution during ferroelectric-ferroelectric phase transition: A mechanism study

    Directory of Open Access Journals (Sweden)

    Zuyong Feng

    2013-06-01

    Full Text Available Aging can significantly modify the dielectric, piezoelectric, and ferroelectric performance of ferroelectrics. However, little attention has been paid to the aging effect during ferroelectric-ferroelectric phase transitions that is essentially correlated with real applications. In this letter, the authors report the aging effect evolution between two ferroelectric phases in an acceptor-doped piezoceramics. The results show that aging-induced double hysteresis loops were exhibited in different ferroelectric phases, but disappeared during ferroelectric-ferroelectric phase transitions, suggesting the mechanism that the intrinsic restoring force for the reversible switching of domains caused by the alignment of defect dipoles was weakened due to ferroelectric dipole reorientation.

  9. Microstructure Evolution and Mechanical Response of Nanolaminate Composites Irradiated with Helium at Elevated Temperatures

    Science.gov (United States)

    Li, Nan; Demkowicz, Michael J.; Mara, Nathan A.

    2017-11-01

    We summarize recent work on helium (He) interaction with various heterophase boundaries under high temperature irradiation. We categorize the ion-affected material beneath the He-implanted surface into three regions of depth, based on the He/vacancy ratio. The differing defect structures in these three regions lead to the distinct temperature sensitivity of He-induced microstructure evolution. The effect of He bubbles or voids on material mechanical performance is explored. Overall design guidelines for developing materials where He-induced damage can be mitigated in materials are discussed.

  10. Neural mechanisms of feature conjunction learning: enduring changes in occipital cortex after a week of training.

    Science.gov (United States)

    Frank, Sebastian M; Reavis, Eric A; Tse, Peter U; Greenlee, Mark W

    2014-04-01

    Most visual activities, whether reading, driving, or playing video games, require rapid detection and identification of learned patterns defined by arbitrary conjunctions of visual features. Initially, such detection is slow and inefficient, but it can become fast and efficient with training. To determine how the brain learns to process conjunctions of visual features efficiently, we trained participants over eight consecutive days to search for a target defined by an arbitrary conjunction of color and location among distractors with a different conjunction of the same features. During each training session, we measured brain activity with functional magnetic resonance imaging (fMRI). The speed of visual search for feature conjunctions improved dramatically within just a few days. These behavioral improvements were correlated with increased neural responses to the stimuli in visual cortex. This suggests that changes in neural processing in visual cortex contribute to the speeding up of visual feature conjunction search. We find evidence that this effect is driven by an increase in the signal-to-noise ratio (SNR) of the BOLD signal for search targets over distractors. In a control condition where target and distractor identities were exchanged after training, learned search efficiency was abolished, suggesting that the primary improvement was perceptual learning for the search stimuli, not task-learning. Moreover, when participants were retested on the original task after nine months without further training, the acquired changes in behavior and brain activity were still present, showing that this can be an enduring form of learning and neural reorganization. Copyright © 2013 Wiley Periodicals, Inc.

  11. [Neural Mechanism of Major Depressive Disorder and Bipolar Disorder in Voxel-Based Morphometric Studies].

    Science.gov (United States)

    Matsuo, Koji

    2017-05-01

    Major depressive disorder and bipolar disorder both possess the characteristic of abnormal mood regulation. Evidence of voxel-based morphometric (VBM) studies has been accumulated, and patients with both disorders show small gray matter volumes in the anterior cingulate, dorsolateral prefrontal cortex, insula, and regions related to emotion regulation. These small gray matter volumes were also shown to be associated with the family history and severity of the disease. Overall, the neural network relevant to mood regulation is thought to be involved in the pathophysiology of both major depressive disorder and bipolar disorder.

  12. Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications Including Developmental Dyslexia.

    Science.gov (United States)

    Yuskaitis, Christopher J; Parviz, Mahsa; Loui, Psyche; Wan, Catherine Y; Pearl, Phillip L

    2015-08-01

    Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensorimotor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing and behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia.

  13. Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications including Developmental Dyselxia

    Science.gov (United States)

    Yuskaitis, Christopher J.; Parviz, Mahsa; Loui, Psyche; Wan, Catherine Y.; Pearl, Phillip L.

    2017-01-01

    Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensory-motor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing, behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia. PMID:26092314

  14. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training

    Directory of Open Access Journals (Sweden)

    Nosratollah Hedayatpour

    2015-01-01

    Full Text Available Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered.

  15. An insight into the mechanism and evolution of shale reservoir characteristics with over-high maturity

    Directory of Open Access Journals (Sweden)

    Xinjing Li

    2016-10-01

    Full Text Available Over-high maturity is one of the most vital characteristics of marine organic-rich shale reservoirs from the Lower Paleozoic in the south part of China. The organic matter (OM in shale gas reservoirs almost went through the entire thermal evolution. During this wide span, a great amount of hydrocarbon was available and numerous pores were observed within the OM including kerogen and solid bitumen/pyrobitumen. These nanopores in solid bitumen/pyrobitumen can be identified using SEM. The imaging can be dissected and understood better based on the sequence of diagenesis and hydrocarbon charge with the shape of OM and pores. In terms of the maturity process showed by the various typical cases, the main effects of the relationship between the reservoir porosity and organic carbon abundance are interpreted as follows: the change and mechanism of reservoirs properties due to thermal evolution are explored, such as gas carbon isotope from partial to complete rollover zone, wettability alteration from water-wet to oil-wet and then water-wet pore surface again, electrical resistivity reversal from the increasing to decreasing stage, and nonlinearity fluctuation of rock elasticity anisotropy. These indicate a possible evolution pathway for shale gas reservoirs from the Lower Paleozoic in the southern China, as well as the general transformation processes between different shale reservoirs in thermal stages.

  16. Evolution of asexuality via different mechanisms in grass thrips (thysanoptera: Aptinothrips).

    Science.gov (United States)

    van der Kooi, Casper J; Schwander, Tanja

    2014-07-01

    Asexual lineages can derive from sexual ancestors via different mechanisms and at variable rates, which affects the diversity of the asexual population and thereby its ecological success. We investigated the variation and evolution of reproductive systems in Aptinothrips, a genus of grass thrips comprising four species. Extensive population surveys and breeding experiments indicated sexual reproduction in A. elegans, asexuality in A. stylifer and A. karnyi, and both sexual and asexual lineages in A. rufus. Asexuality in A. stylifer and A. rufus coincides with a worldwide distribution, with sexual A. rufus lineages confined to a limited area. Inference of molecular phylogenies and antibiotic treatment revealed different causes of asexuality in different species. Asexuality in A. stylifer and A. karnyi has most likely genetic causes, while it is induced by endosymbionts in A. rufus. Endosymbiont-community characterization revealed presence of Wolbachia, and lack of other bacteria known to manipulate host reproduction. However, only 69% asexual A. rufus females are Wolbachia-infected, indicating that either an undescribed endosymbiont causes asexuality in this species or that Wolbachia was lost in several lineages that remained asexual. These results open new perspectives for studies on the maintenance of mixed sexual and asexual reproduction in natural populations. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  17. Determination of cardiovascular mechanics evolution in the presence of the arteriovenous fistula.

    Science.gov (United States)

    Casagrande, Giustina; Lanzarone, Ettore; Miglietta, Ferruccio; Remuzzi, Andrea; Fumero, Roberto; Costantino, Maria Laura

    2009-01-01

    Uremic patients are prone to heart damage as a consequence of arteriovenous fistula (AVF) presence and hemodialysis treatment. Arteriovenous fistula induces hand ischemic syndrome and cardiac work increase, thus determining cardiac insufficiency in the medium to long term. This work investigates the cardiovascular mechanics evolution induced by the fistula presence. Twenty patients were enrolled; blood pressure, heart rate (HR), cardiac dimensions, and fistula flow were measured at scheduled intervals. A mathematical model of the cardiocirculatory system was implemented to simulate cardiovascular evolution. Input parameters were heart and vessel features; output of the model were cardiac performances indicators, partly reproducing measurable data and partly quantifiable only by using the model. Input and output variability and their long-term variations were analyzed. Blood pressure and peripheral resistance were found to be higher in uremic than in healthy subjects. Fistula tailoring showed increased cardiac fiber contractility and decreased peripheral resistances. Moreover, between 10 days and 3 months, an increased blood flow at the vascular access determined an increment in fiber contractility. In the same period, the 85% of the patients showed an increase in cardiac fiber stiffness. Similar but less pronounced trends were observed between 3 months and 1 year. The developed model reproduces the cardiovascular system in physiologic and pathologic conditions and allows description of the cardiovascular evolution for a uremic patient.

  18. Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms

    Science.gov (United States)

    Wang, Jianrong; Wang, Jianping; Han, Dun

    2017-01-01

    In recent years, wireless communication plays an important role in our lives. Cooperative communication, is used by a mobile station with single antenna to share with each other forming a virtual MIMO antenna system, will become a development with a diversity gain for wireless communication in tendency future. In this paper, a fitness model of evolution network based on complex networks with mixed attachment mechanisms is devised in order to study an actual network-CCFN (cooperative communication fitness network). Firstly, the evolution of CCFN is given by four cases with different probabilities, and the rate equations of nodes degree are presented to analyze the evolution of CCFN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation with the examples of four fitness distributions such as power law, uniform fitness distribution, exponential fitness distribution and Rayleigh fitness distribution. Finally, the robustness of CCFN is studied by numerical simulation with four fitness distributions under random attack and intentional attack to analyze the effects of degree distribution, average path length and average degree. The results of this paper offers insights for building CCFN systems in order to program communication resources.

  19. The ultimate and proximate mechanisms driving the evolution of long tails in forest deer mice.

    Science.gov (United States)

    Kingsley, Evan P; Kozak, Krzysztof M; Pfeifer, Susanne P; Yang, Dou-Shuan; Hoekstra, Hopi E

    2017-02-01

    Understanding both the role of selection in driving phenotypic change and its underlying genetic basis remain major challenges in evolutionary biology. Here, we use modern tools to revisit a classic system of local adaptation in the North American deer mouse, Peromyscus maniculatus, which occupies two main habitat types: prairie and forest. Using historical collections, we find that forest-dwelling mice have longer tails than those from nonforested habitat, even when we account for individual and population relatedness. Using genome-wide SNP data, we show that mice from forested habitats in the eastern and western parts of their range form separate clades, suggesting that increased tail length evolved independently. We find that forest mice in the east and west have both more and longer caudal vertebrae, but not trunk vertebrae, than nearby prairie forms. By intercrossing prairie and forest mice, we show that the number and length of caudal vertebrae are not correlated in this recombinant population, indicating that variation in these traits is controlled by separate genetic loci. Together, these results demonstrate convergent evolution of the long-tailed forest phenotype through two distinct genetic mechanisms, affecting number and length of vertebrae, and suggest that these morphological changes-either independently or together-are adaptive. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  20. Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution

    Energy Technology Data Exchange (ETDEWEB)

    Gadaud, Pascal; Caccuri, Vincenzo; Bertheau, Denis [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France); Carr, James [HMXIF, Materials Science Centre, The University of Manchester, M13 9PL (United Kingdom); Milhet, Xavier, E-mail: xavier.milhet@ensma.fr [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France)

    2016-07-04

    Silver pastes sintering is a potential candidate for die bonding in power electronic modules. The joints, obtained by sintering, exhibit a significant pore fraction thus reducing the density of the material compared to bulk silver. This was shown to alter drastically the mechanical properties (Young's modulus, yield strength and ultimate tensile stress) at room temperature. While careful analysis of the microstructure has been reported for the as-sintered material, little is known about its quantitative evolution (pores and grains) during thermal ageing. To address this issue, sintered bulk specimens and sintered joints were aged either under isothermal conditions (125 °C up to 1500 h) or under thermal cycling (between −40 °C/+125 °C with 30 min dwell time at each temperature for 2400 cycles). Under these conditions, it is shown that the density of the material does not change but the sub-micron porosity evolves towards a broader size distribution, consistent with Oswald ripening. It is also shown that only the step at 125 °C during the non-isothermal ageing is responsible for the microstructure evolution: isothermal ageing at high temperature can be regarded as a useful tool to perform accelerated ageing tests. Tensile properties are investigated as both a function of ageing time and a function of density. It is shown that the elastic properties do not evolve with the ageing time unlike the plastic properties. This is discussed as a function of the material microstructure evolution.

  1. FE Analysis of Rock with Hydraulic-Mechanical Coupling Based on Continuum Damage Evolution

    Directory of Open Access Journals (Sweden)

    Yongliang Wang

    2016-01-01

    Full Text Available A numerical finite element (FE analysis technology is presented for efficient and reliable solutions of rock with hydraulic-mechanical (HM coupling, researching the seepage characteristics and simulating the damage evolution of rock. To be in accord with the actual situation, the rock is naturally viewed as heterogeneous material, in which Young’s modulus, permeability, and strength property obey the typical Weibull distribution function. The classic Biot constitutive relation for rock as porous medium is introduced to establish a set of equations coupling with elastic solid deformation and seepage flow. The rock is subsequently developed into a novel conceptual and practical model considering the damage evolution of Young’s modulus and permeability, in which comprehensive utilization of several other auxiliary technologies, for example, the Drucker-Prager strength criterion, the statistical strength theory, and the continuum damage evolution, yields the damage variable calculating technology. To this end, an effective and reliable numerical FE analysis strategy is established. Numerical examples are given to show that the proposed method can establish heterogeneous rock model and be suitable for different load conditions and furthermore to demonstrate the effectiveness and reliability in the seepage and damage characteristics analysis for rock.

  2. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping.

    Science.gov (United States)

    Robertson, Benjamin D; Sawicki, Gregory S

    2014-07-21

    We present a simplified Hill-type model of the human triceps surae-Achilles tendon complex working on a gravitational-inertial load during cyclic contractions (i.e. vertical hopping). Our goal was to determine the role that neural control plays in governing muscle, or contractile element (CE), and tendon, or series elastic element (SEE), mechanics and energetics within a compliant muscle-tendon unit (MTU). We constructed a 2D parameter space consisting of many combinations of stimulation frequency and magnitude (i.e. neural control strategies). We compared the performance of each control strategy by evaluating peak force and average positive mechanical power output for the system (MTU) and its respective components (CE, SEE), force-length (F-L) and -velocity (F-V) operating point of the CE during active force production, average metabolic rate for the CE, and both MTU and CE apparent efficiency. Our results suggest that frequency of stimulation plays a primary role in governing whole-MTU mechanics. These include the phasing of both activation and peak force relative to minimum MTU length, average positive power, and apparent efficiency. Stimulation amplitude was primarily responsible for governing average metabolic rate and within MTU mechanics, including peak force generation and elastic energy storage and return in the SEE. Frequency and amplitude of stimulation both played integral roles in determining CE F-L operating point, with both higher frequency and amplitude generally corresponding to lower CE strains, reduced injury risk, and elimination of the need for passive force generation in the CE parallel elastic element (PEE). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Neural correlates of informational cascades: brain mechanisms of social influence on belief updating.

    Science.gov (United States)

    Huber, Rafael E; Klucharev, Vasily; Rieskamp, Jörg

    2015-04-01

    Informational cascades can occur when rationally acting individuals decide independently of their private information and follow the decisions of preceding decision-makers. In the process of updating beliefs, differences in the weighting of private and publicly available social information may modulate the probability that a cascade starts in a decisive way. By using functional magnetic resonance imaging, we examined neural activity while participants updated their beliefs based on the decisions of two fictitious stock market traders and their own private information, which led to a final decision of buying one of two stocks. Computational modeling of the behavioral data showed that a majority of participants overweighted private information. Overweighting was negatively correlated with the probability of starting an informational cascade in trials especially prone to conformity. Belief updating by private information was related to activity in the inferior frontal gyrus/anterior insula, the dorsolateral prefrontal cortex and the parietal cortex; the more a participant overweighted private information, the higher the activity in the inferior frontal gyrus/anterior insula and the lower in the parietal-temporal cortex. This study explores the neural correlates of overweighting of private information, which underlies the tendency to start an informational cascade. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms

    Science.gov (United States)

    Gallo, Eduardo F; Posner, Jonathan

    2016-01-01

    Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by developmentally inappropriate levels of inattention and hyperactivity or impulsivity. The heterogeneity of its clinical manifestations and the differential responses to treatment and varied prognoses have long suggested myriad underlying causes. Over the past decade, clinical and basic research efforts have uncovered many behavioural and neurobiological alterations associated with ADHD, from genes to higher order neural networks. Here, we review the neurobiology of ADHD by focusing on neural circuits implicated in the disorder and discuss how abnormalities in circuitry relate to symptom presentation and treatment. We summarise the literature on genetic variants that are potentially related to the development of ADHD, and how these, in turn, might affect circuit function and relevant behaviours. Whether these underlying neurobiological factors are causally related to symptom presentation remains unresolved. Therefore, we assess efforts aimed at disentangling issues of causality, and showcase the shifting research landscape towards endophenotype refinement in clinical and preclinical settings. Furthermore, we review approaches being developed to understand the neurobiological underpinnings of this complex disorder including the use of animal models, neuromodulation, and pharmaco-imaging studies. PMID:27183902

  5. Neural mechanisms underlying contextual dependency of subjective values: converging evidence from monkeys and humans.

    Science.gov (United States)

    Abitbol, Raphaëlle; Lebreton, Maël; Hollard, Guillaume; Richmond, Barry J; Bouret, Sébastien; Pessiglione, Mathias

    2015-02-04

    A major challenge for decision theory is to account for the instability of expressed preferences across time and context. Such variability could arise from specific properties of the brain system used to assign subjective values. Growing evidence has identified the ventromedial prefrontal cortex (VMPFC) as a key node of the human brain valuation system. Here, we first replicate this observation with an fMRI study in humans showing that subjective values of painting pictures, as expressed in explicit pleasantness ratings, are specifically encoded in the VMPFC. We then establish a bridge with monkey electrophysiology, by comparing single-unit activity evoked by visual cues between the VMPFC and the orbitofrontal cortex. At the neural population level, expected reward magnitude was only encoded in the VMPFC, which also reflected subjective cue values, as expressed in Pavlovian appetitive responses. In addition, we demonstrate in both species that the additive effect of prestimulus activity on evoked activity has a significant impact on subjective values. In monkeys, the factor dominating prestimulus VMPFC activity was trial number, which likely indexed variations in internal dispositions related to fatigue or satiety. In humans, prestimulus VMPFC activity was externally manipulated through changes in the musical context, which induced a systematic bias in subjective values. Thus, the apparent stochasticity of preferences might relate to the VMPFC automatically aggregating the values of contextual features, which would bias subsequent valuation because of temporal autocorrelation in neural activity. Copyright © 2015 the authors 0270-6474/15/352308-13$15.00/0.

  6. Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors.

    Science.gov (United States)

    Chapman, Sandra B; Aslan, Sina; Spence, Jeffrey S; Hart, John J; Bartz, Elizabeth K; Didehbani, Nyaz; Keebler, Molly W; Gardner, Claire M; Strain, Jeremy F; DeFina, Laura F; Lu, Hanzhang

    2015-02-01

    Complex mental activity induces improvements in cognition, brain function, and structure in animals and young adults. It is not clear to what extent the aging brain is capable of such plasticity. This study expands previous evidence of generalized cognitive gains after mental training in healthy seniors. Using 3 MRI-based measurements, that is, arterial spin labeling MRI, functional connectivity, and diffusion tensor imaging, we examined brain changes across 3 time points pre, mid, and post training (12 weeks) in a randomized sample (n = 37) who received cognitive training versus a control group. We found significant training-related brain state changes at rest; specifically, 1) increases in global and regional cerebral blood flow (CBF), particularly in the default mode network and the central executive network, 2) greater connectivity in these same networks, and 3) increased white matter integrity in the left uncinate demonstrated by an increase in fractional anisotropy. Improvements in cognition were identified along with significant CBF correlates of the cognitive gains. We propose that cognitive training enhances resting-state neural activity and connectivity, increasing the blood supply to these regions via neurovascular coupling. These convergent results provide preliminary evidence that neural plasticity can be harnessed to mitigate brain losses with cognitive training in seniors. © The Author 2013. Published by Oxford University Press.

  7. Learning to Associate Auditory and Visual Stimuli: Behavioral and Neural Mechanisms

    Science.gov (United States)

    Altieri, Nicholas; Stevenson, Ryan; Wallace, Mark T.; Wenger, Michael J.

    2014-01-01

    The ability to effectively combine sensory inputs across modalities is vital for acquiring a unified percept of events. For example, watching a hammer hit a nail while simultaneously identifying the sound as originating from the event requires the ability to identify spatio-temporal congruencies and statistical regularities. In this study, we applied a reaction time (RT) and hazard function measure known as capacity (e.g., Townsend and Ashby, 1978) to quantify the extent to which observers learn paired associations between simple auditory and visual patterns in a model theoretic manner. As expected, results showed that learning was associated with an increase in accuracy, but more significantly, an increase in capacity. The aim of this study was to associate capacity measures of multisensory learning, with neural based measures, namely mean Global Field Power (GFP). We observed a co-variation between an increase in capacity, and a decrease in GFP amplitude as learning occurred. This suggests that capacity constitutes a reliable behavioral index of efficient energy expenditure in the neural domain. PMID:24276220

  8. Unravelling the evolution and avulsion mechanisms of debris-flow fans

    Science.gov (United States)

    de Haas, Tjalling; Densmore, Alex; Stoffel, Markus; Ballesteros-Cánovas, Juan; Suwa, Hiroshi; Imaizumi, Fumitoshi; Wasklewicz, Thad

    2017-04-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides and spill out onto valley floors and alluvial fans, where they can devastate people and property. Expansion of human population into mountainous regions and the effects of global warming have increased the hazardous effects of debris flows over the last decades. Debris-flow channel avulsions (channel shifts) are critical to debris-flow fan evolution and hazard mitigation, because avulsions distribute debris flows and associated hazards through space and time. However, both the long-term evolution of debris-flow fans and their avulsion process are poorly understood. We aim to unravel the spatio-temporal patterns of debris-flow fan evolution and their avulsion mechanisms and tendency. Here we present a combined analysis of laboratory experiments; field data (repeat topographic analyses and dendrogeomorphological and lichenometrical reconstructions from debris-flow fans in Japan, USA, Switserland and France) and numerical modelling, identifying the main drivers of avulsion on debris-flow fans and their associated spatio-temporal evolution. We show that there are two main processes driving avulsions on debris-flow fans operating at two distinct timescales. (1) Channel plugs locally block channels forcing subsequent flows to avulse and follow alternative flow paths. The frequent but stochastic nature of channel-plug formation leads to a partly unpredictable avulsion and spatial depositional patterns on timescales of a few events. (2) Nevertheless, over timescales of tens of events the average locus of debris-flow deposition is observed to gradually shift towards the topographically lower parts of a fan, highlighting the importance of topographic compensation in the avulsion process on debris-flow fans. We further show that the magnitude-frequency distribution of the debris flows feeding a fan strongly affects the spatio-temporal patterns of deposition. Our results have strong

  9. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies

    Directory of Open Access Journals (Sweden)

    Agnese eLupo

    2012-01-01

    Full Text Available The environment, and especially fresh water, constitutes a reactor where the evolution and the rise of new resistances occur. In rivers or streams, bacteria from different sources such as urban, industrial and agricultural waste, probably selected by intensive antibiotic usage, are collected and mixed with environmental species. This may cause two effects on the development of antibiotic resistances: First, the contamination of water by antibiotics or other pollutants lead to the rise of resistance due to selection processes. For instance, of strains over-expressing broad range defensive mechanisms, such as efflux pumps. Second, since environmental species are provided with intrinsic antibiotic resistance mechanisms, the mixture with allochthonous species is likely to cause genetic exchange. In this context, the role of phages and integrons for the spread of resistance mechanisms appears significant. Allochthonous species could acquire new resistances from environmental donors and introduce the newly acquired resistance mechanisms into the clinics. This is illustrated by clinically relevant resistance mechanisms, such as the fluoroquinolones resistance genes qnr. Freshwater appears to play an important role in the emergence and in the spread of antibiotic resistances, highlighting the necessity for strategies of water quality improvement. Moreover, further knowledge is needed to better understand the role of the environment as reservoir of antibiotic resistances and to assess the risk of spread of antibiotic resistances via water bodies.

  10. Using music to study the evolution of cognitive mechanisms relevant to language.

    Science.gov (United States)

    Patel, Aniruddh D

    2017-02-01

    This article argues that music can be used in cross-species research to study the evolution of cognitive mechanisms relevant to spoken language. This is because music and language share certain cognitive processing mechanisms and because music offers specific advantages for cross-species research. Music has relatively simple building blocks (tones without semantic properties), yet these building blocks are combined into rich hierarchical structures that engage complex cognitive processing. I illustrate this point with regard to the processing of musical harmonic structure. Because the processing of musical harmonic structure has been shown to interact with linguistic syntactic processing in humans, it is of interest to know if other species can acquire implicit knowledge of harmonic structure through extended exposure to music during development (vs. through explicit training). I suggest that domestic dogs would be a good species to study in addressing this question.

  11. Molecular mechanisms for the evolution of bacterial morphologies and growth modes

    Directory of Open Access Journals (Sweden)

    Amelia M Randich

    2015-06-01

    Full Text Available Bacteria exhibit a rich diversity of morphologies. Within this diversity, there is a uniformity of shape for each species that is replicated faithfully each generation, suggesting that bacterial shape is as selectable as any other biochemical adaptation. We describe the spatiotemporal mechanisms that target peptidoglycan synthesis to different subcellular zones to generate the rod-shape of model organisms Escherichia coli and Bacillus subtilis. We then demonstrate, using the related genera Caulobacter and Asticcacaulis as examples, how the modularity of the core components of the peptidoglycan synthesis machinery permits repositioning of the machinery to achieve different growth modes and morphologies. Finally, we highlight cases in which the mechanisms that underlie morphological evolution are beginning to be understood, and how they depend upon the expansion and diversification of the core components of the peptidoglycan synthesis machinery.

  12. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2017-12-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  13. Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China

    Directory of Open Access Journals (Sweden)

    X. G. Liu

    2013-05-01

    Full Text Available The main objective of this study is to investigate the formation and evolution mechanism of the regional haze in megacity Beijing by analyzing the process of a severe haze that occurred 20–27 September 2011. Mass concentration and size distribution of aerosol particles as well as aerosol optical properties were concurrently measured at the Beijing urban atmospheric environment monitoring station. Gaseous pollutants (SO2, NO-NO2-NOx, O3, CO and meteorological parameters (wind speed, wind direction, and relative humidity were simultaneously monitored. Meanwhile, aerosol spatial distribution and the height of planetary boundary layer (PBL were retrieved from the signal of satellite and LIDAR (light detection and ranging. Concentrations of NO, NO2, SO2, O3, and CO observed during 23–27 September had exceeded the national ambient air quality standards for residents. The mass concentration of PM2.5 gradually accumulated during the measurement and reached at 220 μg m−3 on 26 September, and the corresponding atmospheric visibility was only 1.1 km. The daily averaged AOD in Beijing increased from ~ 0.16 at λ = 500 nm on 22 September and reached ~ 3.5 on 26 September. The key factors that affected the formation and evolution of this haze episode were stable anti-cyclone synoptic conditions at the surface, decreasing of the height of PBL, heavy pollution emissions from urban area, number and size evolution of aerosols, and hygroscopic growth for aerosol scattering. This case study may provide valuable information for the public to recognize the formation mechanism of the regional haze event over the megacity, which is also useful for the government to adopt scientific approach to forecast and eliminate the occurrence of regional haze in China.

  14. Evolution and mechanism of the periodical structures formed on Ti plate under femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong, E-mail: ld20501@126.com; Chen, Chuansong, E-mail: chencs@sdnu.edu.cn; Man, Baoyuan, E-mail: byman@sdnu.edu.cn; Meng, Xue; Sun, Yanna, E-mail: sunyuannaa@163.com; Li, Feifei

    2016-08-15

    Highlights: • Investigate the evolution and succession of three types of fs-laser induced periodic surface structures (FLIPSSs). • Achieve the laser processing window of each type of the FLIPSS. • Explain the formation and evolvement of the ripple structure in the respective of surface plasma wave (SPW). • Ascribe the interaction between the transmitted laser and the reflected laser at the two surfaces of the biconvex lens to the formation of ring structure. - Abstract: This work investigates the femtosencond laser (fs-laser) induced periodical surface structures (FLIPSS) on titanium plate including the concentric rings, microgrooves and subwavelength ripples. The evolution of the three types of the structures at different laser fluence and shot number is investigated experimentally in detail. The competition mechanisms exist among the different FLIPSS. A processing window for each resulting FLIPSS is obtained. In order to give an overall understanding of the FLIPSS, the formation mechanisms of each type of FLIPSS are discussed. The formation of the ripples is well explained by the propagating of the surface plasma wave (SPW) on the air/Ti interface. The evolutions of the ripple distribution are well understood according to this model as well. It is concluded that the interaction of the scattered wave of the laser light with the surface wave is concluded to give rise to the microgroove structure. According to our observation, the shape of the concentric rings does not change with the variation of the laser fluence and pulse number. The structure could be originated from the optical interference between the transmitted and reflected laser beams by the two surfaces of the biconvex lens. This investigation could not only make a further understanding of the formations of FLIPSS but also provide the possibility to control the surface morphologies in laser processing.

  15. Mechanism of Surrounding Rock Failure and Crack Evolution Rules in Branched Pillar Recovery

    Directory of Open Access Journals (Sweden)

    Gaojian Hu

    2017-06-01

    Full Text Available To study the mechanism of surface collapse and crack evolution in a roadway chain failure process in the pillar recovery of Hongling lead zinc ore in Inner Mongolia Province, China, microseismic monitoring technology, moment tensor theory, and numerical simulation are used for the inversion of rock mass fracturing, the destruction type classification of crack, and the mechanism of surrounding rock. Research shows the following: (1 the rock mass fracturing is first produced within the +955 m level, before extending through the hanging wall to the ground surface. Then, many shear failures occur in the ground surface of the footwall, extending downwards in an arc-shaped path to the +905 m level. Finally, the surface gradually collapses with large-scale shear failures. (2 The mechanism of surface collapse is as follows: after the recovery of pillars in the +905 m level, tensile cracks generated in the top of orebody #2 extend upwards and obliquely. Analogously, shear cracks are generated in the top of orebody #1, extending upwards. After the recovery of pillars in the +855 m level, the marble interlayer is destroyed and sinks, and many tensile cracks and shear cracks exist and incise in the ground surface, which cause the ground surface to collapse. (3 The mechanism of crack evolution is as follows: after the recovery of 5107 pillars, the footwall haul road in the +905 m level was damaged and collapsed by the cut-through cracks. Those cracks then continue to extend upwards and converge with the slanting shear cracks in the +905 m level, which form a triangular failure in the footwall rock. Finally, the failure causes the tensile and shearing cracks in the haulage way of the +955 m level to extend and connect, which forms the haulage way chain failure.

  16. Neural plasticity in pancreatitis and pancreatic cancer.

    Science.gov (United States)

    Demir, Ihsan Ekin; Friess, Helmut; Ceyhan, Güralp O

    2015-11-01

    Pancreatic nerves undergo prominent alterations during the evolution and progression of human chronic pancreatitis and pancreatic cancer. Intrapancreatic nerves increase in size (neural hypertrophy) and number (increased neural density). The proportion of autonomic and sensory fibres (neural remodelling) is switched, and are infiltrated by perineural inflammatory cells (pancreatic neuritis) or invaded by pancreatic cancer cells (neural invasion). These neuropathic alterations also correlate with neuropathic pain. Instead of being mere histopathological manifestations of disease progression, pancreatic neural plasticity synergizes with the enhanced excitability of sensory neurons, with Schwann cell recruitment toward cancer and with central nervous system alterations. These alterations maintain a bidirectional interaction between nerves and non-neural pancreatic cells, as demonstrated by tissue and neural damage inducing neuropathic pain, and activated neurons releasing mediators that modulate inflammation and cancer growth. Owing to the prognostic effects of pain and neural invasion in pancreatic cancer, dissecting the mechanism of pancreatic neuroplasticity holds major translational relevance. However, current in vivo models of pancreatic cancer and chronic pancreatitis contain many discrepancies from human disease that overshadow their translational value. The present Review discusses novel possibilities for mechanistically uncovering the role of the nervous system in pancreatic disease progression.

  17. On the mechanism of hydrogen evolution catalysis by proteins: A case study with bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Doneux, Th., E-mail: tdoneux@ulb.ac.b [Chimie Analytique et Chimie des Interfaces, Faculte des Sciences, Universite Libre de Bruxelles, Boulevard du Triomphe 2, CP 255, B-1050 Bruxelles (Belgium); Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Ostatna, Veronika [Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Palecek, Emil, E-mail: palecek@ibp.cz [Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic)

    2011-10-30

    Highlights: > Proteins catalyse hydrogen evolution at mercury electrodes. > The adsorbed protein is the mediator and the buffer proton donor is the substrate. > The characteristics of the catalytic peak are connected to the protein properties. - Abstract: The catalysis of the hydrogen evolution reaction (HER) by proteins has been known for decades but was only recently found to be useful for electroanalytical purposes. The mechanism of the catalytic process is investigated at hanging mercury drop electrodes by cyclic voltammetry, with bovine serum albumin as a model system. It is shown that the catalyst is the protein in the adsorbed state. The influence of various parameters such as the accumulation time, scan rate or buffer concentration is studied, and interpreted in the framework of a surface catalytic mechanism. Under the experimental conditions used in the work, a 'total catalysis' phenomenon takes place, the rate of HER being limited by the diffusion of the proton donor. The adequacy of the existing models is discussed, leading to a call for the development of more refined models.

  18. Strain field evolution during creep on ice. Impact of dynamic recrystallization mechanisms.

    Science.gov (United States)

    Chauve, Thomas; Montagnat, Maurine; Barou, Fabrice; Hidas, Karoly; Tommasi, Andréa; Vacher, Pierre

    2015-04-01

    Discontinuous Dynamic Recrystallization (DDRX) occurs in minerals, metals, ice and impacts on texture and microstructure evolution during deformation. It therefore impacts on large scale mechanisms as seismic anisotropy, mechanical properties inside the Earth mantle, material forming and anisotropic flow in polar ice sheet, for instance. In this frame, ice can be considered as a model material due to a strong viscoplastic anisotropy inducing strong deformation heterogeneities, that are precursors of recrystallization. During creep deformation at high temperature in the laboratory, DDRX occurs from 1% strain and involves grain nucleation and grain boundary migration. As DDRX induces an evolution of microstructure and texture, it strongly affects the mechanical behavior (1,2), and it is expected to modify the strain field at the grain and/or the sample scale. Compressive creep test (σ=0.5-0.8 MPa) were performed at high temperature (T/Tf 0,98) on granular polycrystalline ice (grains size 1mm) and columnar polycrystalline ice (microstructure 2D 1/2 in plane grain size 10mm) up to 18 % strain. Columnar ice provides interesting feature as it contains only one grain through the thickness and the columns are parallel. Post-deformation texture analyses with an Automatic Ice Texture Analyzer (AITA) and with EBSD (CrystalProbe MEB of Geoscience Montpellier) were used to investigate DDRX mechanisms at high resolution, and deduce their impact on texture and microstructure, at different scales. During the experiment, local strain field is measured on the surface of the sample by Digital Image Correlation (DIC) (3) with a spatial resolution between 0.2 and 0.5 mm, and a strain resolution between 0.2% to 1%. Grain size being large, we obtain a relatively good intra-granular resolution of the strain field. Thanks to the 2D configuration of the columnar ice samples, we can superimpose the initial microstructure to the strain field measured by DIC. We will present an overview of

  19. Learning from feedback: the neural mechanisms of feedback processing facilitating better performance.

    Science.gov (United States)

    Luft, Caroline Di Bernardi

    2014-03-15

    Different levels of feedback, from sensory signals to verbal advice, are needed not only for learning new skills, but also for monitoring performance. A great deal of research has focused on the electrophysiological correlates of feedback processing and how they relate to good learning. In this paper, studies on the EEG correlates of learning from feedback are reviewed. The main objective is to discuss these findings whilst also considering some key theoretical aspects of learning. The learning processes, its operational definition and the feedback characteristics are discussed and used as reference for integrating the findings in the literature. The EEG correlates of feedback processing for learning using various analytical approaches are discussed, including ERPs, oscillations and inter-site synchronization. How these EEG responses to feedback are related to learning is discussed, highlighting the gaps in the literature and suggesting future directions for understanding the neural underpinnings of learning from feedback. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Neural Mechanisms Underlying Affective Theory of Mind in Violent Antisocial Personality Disorder and/or Schizophrenia.

    Science.gov (United States)

    Schiffer, Boris; Pawliczek, Christina; Müller, Bernhard W; Wiltfang, Jens; Brüne, Martin; Forsting, Michael; Gizewski, Elke R; Leygraf, Norbert; Hodgins, Sheilagh

    2017-10-21

    Among violent offenders with schizophrenia, there are 2 sub-groups, one with and one without, conduct disorder (CD) and antisocial personality disorder (ASPD), who differ as to treatment response and alterations of brain structure. The present study aimed to determine whether the 2 groups also differ in Theory of Mind and neural activations subsuming this task. Five groups of men were compared: 3 groups of violent offenders-schizophrenia plus CD/ASPD, schizophrenia with no history of antisocial behavior prior to illness onset, and CD/ASPD with no severe mental illness-and 2 groups of non-offenders, one with schizophrenia and one without (H). Participants completed diagnostic interviews, the Psychopathy Checklist Screening Version Interview, the Interpersonal Reactivity Index, authorized access to clinical and criminal files, and underwent functional magnetic resonance imaging while completing an adapted version of the Reading-the-Mind-in-the-Eyes Task (RMET). Relative to H, nonviolent and violent men with schizophrenia and not CD/ASPD performed more poorly on the RMET, while violent offenders with CD/ASPD, both those with and without schizophrenia, performed similarly. The 2 groups of violent offenders with CD/ASPD, both those with and without schizophrenia, relative to the other groups, displayed higher levels of activation in a network of prefrontal and temporal-parietal regions and reduced activation in the amygdala. Relative to men without CD/ASPD, both groups of violent offenders with CD/ASPD displayed a distinct pattern of neural responses during emotional/mental state attribution pointing to distinct and comparatively successful processing of social information. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development.

    Science.gov (United States)

    van Duijvenvoorde, Anna C K; Zanolie, Kiki; Rombouts, Serge A R B; Raijmakers, Maartje E J; Crone, Eveline A

    2008-09-17

    How children learn from positive and negative performance feedback lies at the foundation of successful learning and is therefore of great importance for educational practice. In this study, we used functional magnetic resonance imaging (fMRI) to examine the neural developmental changes related to feedback-based learning when performing a rule search and application task. Behavioral results from three age groups (8-9, 11-13, and 18-25 years of age) demonstrated that, compared with adults, 8- to 9-year-old children performed disproportionally more inaccurately after receiving negative feedback relative to positive feedback. Additionally, imaging data pointed toward a qualitative difference in how children and adults use performance feedback. That is, dorsolateral prefrontal cortex and superior parietal cortex were more active after negative feedback for adults, but after positive feedback for children (8-9 years of age). For 11- to 13-year-olds, these regions did not show differential feedback sensitivity, suggesting that the transition occurs around this age. Pre-supplementary motor area/anterior cingulate cortex, in contrast, was more active after negative feedback in both 11- to 13-year-olds and adults, but not 8- to 9-year-olds. Together, the current data show that cognitive control areas are differentially engaged during feedback-based learning across development. Adults engage these regions after signals of response adjustment (i.e., negative feedback). Young children engage these regions after signals of response continuation (i.e., positive feedback). The neural activation patterns found in 11- to 13-year-olds indicate a transition around this age toward an increased influence of negative feedback on performance adjustment. This is the first developmental fMRI study to compare qualitative changes in brain activation during feedback learning across distinct stages of development.

  2. Earth--moon evolution: implications for the mechanism of the biological clock?

    Science.gov (United States)

    Shweiki, D

    2001-04-01

    The geophysical characteristics of the planet Earth dictate the physiological traits of living organisms. Changes in the geophysical conditions over the course of geological time are responsible for major evolutionary changes in life emergence and evolvement. Calendar day length is one of earth's geophysical characteristics which is under a constant, if extremely small, progressive change. This enforces an adjustment of circadian rhythmicity throughout geological time. The calendar day has extended approximately 9 hours in the last 3.5 billion years. Two mechanisms for circadian-rhythm adjustment are suggested: a directional selection mechanism -- an endogenous -- oriented explanation regarding a genetic drift in the population's endogenous oscillation toward a lengthened daily cycle; and an exogenous calibration mechanism - a hypothesis on the existence of a geophysical responsive element which senses a geophysical stimuli and calibrates the inner cellular oscillation in accordance with the length of the calendar day. A distinguishing experiment between the two explanations is suggested and discussed. Circadian rhythm mechanism and the evolution of circadian rhythmicity are tightly connected. Circadian rhythms' evolutionary theories are discussed in light of their contribution to our understanding of the selective pressures being applied throughout geological time and of how, once the clock has been established, it maintains an ongoing adjustment to a continuous change in the length of day.I argue that the exogenous calibration mechanism combines with the endosymbiont coordination theory, together, present an explanation to the path by which the calendar day adjustment was acquired and maintained. This hypothesis suggests a role for gravity cyclic force and for cytoskeleton's components in calendar day adjustment mechanism and circadian rhythm entrainment. Copyright 2001 Harcourt Publishers Ltd.

  3. Exploring the developmental mechanisms underlying Wolf-Hirschhorn Syndrome: Evidence for defects in neural crest cell migration.

    Science.gov (United States)

    Rutherford, Erin L; Lowery, Laura Anne

    2016-12-01

    Wolf-Hirschhorn Syndrome (WHS) is a neurodevelopmental disorder characterized by mental retardation, craniofacial malformation, and defects in skeletal and heart development. The syndrome is associated with irregularities on the short arm of chromosome 4, including deletions of varying sizes and microduplications. Many of these genotypic aberrations in humans have been correlated with the classic WHS phenotype, and animal models have provided a context for mapping these genetic irregularities to specific phenotypes; however, there remains a significant knowledge gap concerning the cell biological mechanisms underlying these phenotypes. This review summarizes literature that has made recent contributions to this topic, drawing from the vast body of knowledge detailing the genetic particularities of the disorder and the more limited pool of information on its cell biology. Finally, we propose a novel characterization for WHS as a pathophysiology owing in part to defects in neural crest cell motility and migration during development. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Neurofeedback of slow cortical potentials: neural mechanisms and feasibility of a placebo-controlled design in healthy adults

    Directory of Open Access Journals (Sweden)

    Holger eGevensleben

    2014-12-01

    Full Text Available To elucidate basic mechanisms underlying neurofeedback we investigated neural mechanisms of training of slow cortical potentials by considering EEG- and fMRI. Additionally, we analyzed the feasibility of a double-blind, placebo-controlled design in NF research based on regulation performance during treatment sessions and self-assessment of the participants. Twenty healthy adults participated in 16 sessions of SCP training: 9 participants received regular SCP training, 11 participants received sham feedback. At three time points (pre, intermediate, post fMRI and EEG/ERP-measurements were conducted during a continuous performance test (CPT. Performance-data during the sessions (regulation performance in the treatment group and the placebo group were analyzed. Analysis of EEG-activity revealed in the SCP group a strong enhancement of the CNV (electrode Cz at the intermediate assessment, followed by a decrease back to baseline at the post-treatment assessment. In contrast, in the placebo group a continuous but smaller increase of the CNV could be obtained from pre to post assessment. The increase of the CNV in the SCP group at intermediate testing was superior to the enhancement in the placebo group. The changes of the CNV were accompanied by a continuous improvement in the test performance of the CPT from pre to intermediate to post assessment comparable in both groups. The change of the CNV in the SCP group is interpreted as an indicator of neural plasticity and efficiency while an increase of the CNV in the placebo group might reflect learning and improved timing due to the frequent task repetition.In the fMRI analysis evidence was obtained for neuronal plasticity. After regular SCP neurofeedback activation in the posterior parietal cortex decreased from the pre- to the intermediate measurement and increased again in the post measurement, inversely following the U-shaped increase and decrease of the tCNV EEG amplitude in the SCP-trained group

  5. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology.

    Science.gov (United States)

    Salamone, John D; Yohn, Samantha E; López-Cruz, Laura; San Miguel, Noemí; Correa, Mercè

    2016-05-01

    Motivation has been defined as the process that allows organisms to regulate their internal and external environment, and control the probability, proximity and availability of stimuli. As such, motivation is a complex process that is critical for survival, which involves multiple behavioural functions mediated by a number of interacting neural circuits. Classical theories of motivation suggest that there are both directional and activational aspects of motivation, and activational aspects (i.e. speed and vigour of both the instigation and persistence of behaviour) are critical for enabling organisms to overcome work-related obstacles or constraints that separate them from significant stimuli. The present review discusses the role of brain dopamine and related circuits in behavioural activation, exertion of effort in instrumental behaviour, and effort-related decision-making, based upon both animal and human studies. Impairments in behavioural activation and effort-related aspects of motivation are associated with psychiatric symptoms such as anergia, fatigue, lassitude and psychomotor retardation, which cross multiple pathologies, including depression, schizophrenia, and Parkinson's disease. Therefore, this review also attempts to provide an interdisciplinary approach that integrates findings from basic behavioural neuroscience, behavioural economics, clinical neuropsychology, psychiatry, and neurology, to provide a coherent framework for future research and theory in this critical field. Although dopamine systems are a critical part of the brain circuitry regulating behavioural activation, exertion of effort, and effort-related decision-making, mesolimbic dopamine is only one part of a distributed circuitry that includes multiple neurotransmitters and brain areas. Overall, there is a striking similarity between the brain areas involved in behavioural activation and effort-related processes in rodents and in humans. Animal models of effort-related decision

  6. Mindfulness Meditation-Based Pain Relief Employs Different Neural Mechanisms Than Placebo and Sham Mindfulness Meditation-Induced Analgesia

    Science.gov (United States)

    Emerson, Nichole M.; Farris, Suzan R.; Ray, Jenna N.; Jung, Youngkyoo; McHaffie, John G.; Coghill, Robert C.

    2015-01-01

    Mindfulness meditation reduces pain in experimental and clinical settings. However, it remains unknown whether mindfulness meditation engages pain-relieving mechanisms other than those associated with the placebo effect (e.g., conditioning, psychosocial context, beliefs). To determine whether the analgesic mechanisms of mindfulness meditation are different from placebo, we randomly assigned 75 healthy, human volunteers to 4 d of the following: (1) mindfulness meditation, (2) placebo conditioning, (3) sham mindfulness meditation, or (4) book-listening control intervention. We assessed intervention efficacy using psychophysical evaluation of experimental pain and functional neuroimaging. Importantly, all cognitive manipulations (i.e., mindfulness meditation, placebo conditioning, sham mindfulness meditation) significantly attenuated pain intensity and unpleasantness ratings when compared to rest and the control condition (p meditation reduced pain intensity (p = 0.032) and pain unpleasantness (p meditation also reduced pain intensity (p = 0.030) and pain unpleasantness (p = 0.043) ratings more than sham mindfulness meditation. Mindfulness-meditation-related pain relief was associated with greater activation in brain regions associated with the cognitive modulation of pain, including the orbitofrontal, subgenual anterior cingulate, and anterior insular cortex. In contrast, placebo analgesia was associated with activation of the dorsolateral prefrontal cortex and deactivation of sensory processing regions (secondary somatosensory cortex). Sham mindfulness meditation-induced analgesia was not correlated with significant neural activity, but rather by greater reductions in respiration rate. This study is the first to demonstrate that mindfulness-related pain relief is mechanistically distinct from placebo analgesia. The elucidation of this distinction confirms the existence of multiple, cognitively driven, supraspinal mechanisms for pain modulation. SIGNIFICANCE

  7. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.

    Science.gov (United States)

    Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-03-21

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Differential adhesion between moving particles as a mechanism for the evolution of social groups.

    Directory of Open Access Journals (Sweden)

    Thomas Garcia

    2014-02-01

    Full Text Available The evolutionary stability of cooperative traits, that are beneficial to other individuals but costly to their carrier, is considered possible only through the establishment of a sufficient degree of assortment between cooperators. Chimeric microbial populations, characterized by simple interactions between unrelated individuals, restrain the applicability of standard mechanisms generating such assortment, in particular when cells disperse between successive reproductive events such as happens in Dicyostelids and Myxobacteria. In this paper, we address the evolutionary dynamics of a costly trait that enhances attachment to others as well as group cohesion. By modeling cells as self-propelled particles moving on a plane according to local interaction forces and undergoing cycles of aggregation, reproduction and dispersal, we show that blind differential adhesion provides a basis for assortment in the process of group formation. When reproductive performance depends on the social context of players, evolution by natural selection can lead to the success of the social trait, and to the concomitant emergence of sizeable groups. We point out the conditions on the microscopic properties of motion and interaction that make such evolutionary outcome possible, stressing that the advent of sociality by differential adhesion is restricted to specific ecological contexts. Moreover, we show that the aggregation process naturally implies the existence of non-aggregated particles, and highlight their crucial evolutionary role despite being largely neglected in theoretical models for the evolution of sociality.

  9. The emergence and evolution of life in a "fatty acid world" based on quantum mechanics.

    Science.gov (United States)

    Tamulis, Arvydas; Grigalavicius, Mantas

    2011-02-01

    Quantum mechanical based electron correlation interactions among molecules are the source of the weak hydrogen and Van der Waals bonds that are critical to the self-assembly of artificial fatty acid micelles. Life on Earth or elsewhere could have emerged in the form of self-reproducing photoactive fatty acid micelles, which gradually evolved into nucleotide-containing micelles due to the enhanced ability of nucleotide-coupled sensitizer molecules to absorb visible light. Comparison of the calculated absorption spectra of micelles with and without nucleotides confirmed this idea and supports the idea of the emergence and evolution of nucleotides in minimal cells of a so-called Fatty Acid World. Furthermore, the nucleotide-caused wavelength shift and broadening of the absorption pattern potentially gives these molecules an additional valuable role, other than a purely genetic one in the early stages of the development of life. From the information theory point of view, the nucleotide sequences in such micelles carry positional information providing better electron transport along the nucleotide-sensitizer chain and, in addition, providing complimentary copies of that information for the next generation. Nucleotide sequences, which in the first period of evolution of fatty acid molecules were useful just for better absorbance of the light in the longer wavelength region, later in the PNA or RNA World, took on the role of genetic information storage.

  10. Differential adhesion between moving particles as a mechanism for the evolution of social groups.

    Science.gov (United States)

    Garcia, Thomas; Brunnet, Leonardo Gregory; De Monte, Silvia

    2014-02-01

    The evolutionary stability of cooperative traits, that are beneficial to other individuals but costly to their carrier, is considered possible only through the establishment of a sufficient degree of assortment between cooperators. Chimeric microbial populations, characterized by simple interactions between unrelated individuals, restrain the applicability of standard mechanisms generating such assortment, in particular when cells disperse between successive reproductive events such as happens in Dicyostelids and Myxobacteria. In this paper, we address the evolutionary dynamics of a costly trait that enhances attachment to others as well as group cohesion. By modeling cells as self-propelled particles moving on a plane according to local interaction forces and undergoing cycles of aggregation, reproduction and dispersal, we show that blind differential adhesion provides a basis for assortment in the process of group formation. When reproductive performance depends on the social context of players, evolution by natural selection can lead to the success of the social trait, and to the concomitant emergence of sizeable groups. We point out the conditions on the microscopic properties of motion and interaction that make such evolutionary outcome possible, stressing that the advent of sociality by differential adhesion is restricted to specific ecological contexts. Moreover, we show that the aggregation process naturally implies the existence of non-aggregated particles, and highlight their crucial evolutionary role despite being largely neglected in theoretical models for the evolution of sociality.

  11. Mechanical and Metallurgical Evolution of Stainless Steel 321 in a Multi-step Forming Process

    Science.gov (United States)

    Anderson, M.; Bridier, F.; Gholipour, J.; Jahazi, M.; Wanjara, P.; Bocher, P.; Savoie, J.

    2016-04-01

    This paper examines the metallurgical evolution of AISI Stainless Steel 321 (SS 321) during multi-step forming, a process that involves cycles of deformation with intermediate heat treatment steps. The multi-step forming process was simulated by implementing interrupted uniaxial tensile testing experiments. Evolution of the mechanical properties as well as the microstructural features, such as twins and textures of the austenite and martensite phases, was studied as a function of the multi-step forming process. The characteristics of the Strain-Induced Martensite (SIM) were also documented for each deformation step and intermediate stress relief heat treatment. The results indicated that the intermediate heat treatments considerably increased the formability of SS 321. Texture analysis showed that the effect of the intermediate heat treatment on the austenite was minor and led to partial recrystallization, while deformation was observed to reinforce the crystallographic texture of austenite. For the SIM, an Olson-Cohen equation type was identified to analytically predict its formation during the multi-step forming process. The generated SIM was textured and weakened with increasing deformation.

  12. Developmental Mechanism of Limb Field Specification along the Anterior–Posterior Axis during Vertebrate Evolution

    Directory of Open Access Journals (Sweden)

    Mikiko Tanaka

    2016-05-01

    Full Text Available In gnathostomes, limb buds arise from the lateral plate mesoderm at discrete positions along the body axis. Specification of these limb-forming fields can be subdivided into several steps. The lateral plate mesoderm is regionalized into the anterior lateral plate mesoderm (ALPM; cardiac mesoderm and the posterior lateral plate mesoderm (PLPM. Subsequently, Hox genes appear in a nested fashion in the PLPM and provide positional information along the body axis. The lateral plate mesoderm then splits into the somatic and splanchnic layers. In the somatic layer of the PLPM, the expression of limb initiation genes appears in the limb-forming region, leading to limb bud initiation. Furthermore, past and current work in limbless amphioxus and lampreys suggests that evolutionary changes in developmental programs occurred during the acquisition of paired fins during vertebrate evolution. This review presents these recent advances and discusses the mechanisms of limb field specification during development and evolution, with a focus on the role of Hox genes in this process.

  13. Neural mechanisms underlying changes in stress-sensitivity across the menstrual cycle.

    Science.gov (United States)

    Ossewaarde, Lindsey; Hermans, Erno J; van Wingen, Guido A; Kooijman, Sabine C; Johansson, Inga-Maj; Bäckström, Torbjörn; Fernández, Guillén

    2010-01-01

    Hormonal fluctuations across the menstrual cycle are thought to play a central role in premenstrual mood symptoms. In agreement, fluctuations in gonadal hormone levels affect brain processes in regions involved in emotion regulation. Recent findings, however, implicate psychological stress as a potential mediating factor and thus, we investigated whether effects of moderate psychological stress on relevant brain regions interact with menstrual cycle phase. Twenty-eight healthy women were tested in a crossover design with menstrual cycle phase (late luteal versus late follicular) and stress (stress induction versus control) as within-subject factors. After stress induction (or control), we probed neural responses to facial expressions using fMRI. During the late luteal phase, negative affect was highest and the stress-induced increase in heart rate was mildly augmented. fMRI data of the control condition replicate previous findings of elevated amygdala and medial prefrontal cortex responses when comparing the late luteal with the late follicular phase. Importantly, stress induction had opposite effects in the two cycle phases, with unexpected lower response magnitudes in the late luteal phase. Moreover, the larger the increase in allopregnanolone concentration across the menstrual cycle was, the smaller the amygdala and medial prefrontal cortex responses were after stress induction in the late luteal phase. Our findings show that moderate psychological stress influences menstrual cycle effects on activity in the emotion regulation circuitry. These results provide potential insights into how fluctuations in allopregnanolone that naturally occur during the menstrual cycle may change stress vulnerability.

  14. Changes in neural mechanisms of cognitive control during the transition from late adolescence to young adulthood.

    Science.gov (United States)

    Veroude, Kim; Jolles, Jelle; Croiset, Gerda; Krabbendam, Lydia

    2013-07-01

    The transition from late adolescence to young adulthood is marked by anatomical maturation of various brain regions. In parallel, defining life changes take place, such as entrance into college. Up till now research has not focused on functional brain differences during this particular developmental stage. The current cross-sectional fMRI study investigates age differences in cognitive control by comparing late adolescents, 18-19 years old, with young adults, 23-25 years old. Seventy-four male and female medical students carried out a combined cognitive and emotional Stroop task. Overall, lateral frontoparietal and medial parietal activation was observed during cognitive interference resolution. Young adults showed stronger activation in the dorsomedial prefrontal cortex, left inferior frontal gyrus, left middle temporal gyrus and middle cingulate, compared to late adolescents. During emotional interference resolution, the left precentral and postcentral gyrus were involved across age and sex. The dorsomedial prefrontal cortex and precuneus were activated more in young adults than in late adolescents. No sex-related differences were found in this homogeneous sample. The results suggest that the neural bases of cognitive control continue to change between late adolescence and young adulthood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Neural Mechanisms of Reading Facial Emotions in Young and Older Adults

    Science.gov (United States)

    Ebner, Natalie C.; Johnson, Marcia K.; Fischer, Håkan

    2012-01-01

    The ability to read and appropriately respond to emotions in others is central for successful social interaction. Young and older adults are better at identifying positive than negative facial expressions and also expressions of young than older faces. Little, however, is known about the neural processes associated with reading different emotions, particularly in faces of different ages, in samples of young and older adults. During fMRI, young and older participants identified expressions in happy, neutral, and angry young and older faces. The results suggest a functional dissociation of ventromedial prefrontal cortex (vmPFC) and dorsomedial prefrontal cortex (dmPFC) in reading facial emotions that is largely comparable in young and older adults: Both age groups showed greater vmPFC activity to happy compared to angry or neutral faces, which was positively correlated with expression identification for happy compared to angry faces. In contrast, both age groups showed greater activity in dmPFC to neutral or angry than happy faces which was negatively correlated with expression identification for neutral compared to happy faces. A similar region of dmPFC showed greater activity for older than young faces, but no brain-behavior correlations. Greater vmPFC activity in the present study may reflect greater affective processing involved in reading happy compared to neutral or angry faces. Greater dmPFC activity may reflect more cognitive control involved in decoding and/or regulating negative emotions associated with neutral or angry than happy, and older than young, faces. PMID:22798953

  16. Mechanisms of neural reorganization in chronic stroke subjects after virtual reality training.

    Science.gov (United States)

    Saleh, S; Bagce, H; Qiu, Q; Fluet, G; Merians, A; Adamovich, S; Tunik, E

    2011-01-01

    This study investigates patterns of brain reorganization in chronic stroke subjects after two weeks of robot-assisted arm and hand training in virtual reality (VR). Four subjects were studied with event-related fMRI while doing simple paretic hand finger movements before (double baseline) and after training. Bilateral hand movements were recorded and used to provide real-time feedback to subjects during scanning to eliminate performance confounds on fMRI results. The kinematic parameters of each movement were also used in the general linear model with the BOLD signal to investigate training-induced changes in neuromotor coupling. Univariate analysis showed an increase in BOLD signal in the ipsilesional hemisphere in two subjects and a decrease in activity in the other two subjects. Seed voxel based functional connectivity analysis revealed an increase in connectivity between ipsilesional motor cortex and bilateral sensorimotor cortex during finger movements in all four subjects. Hemispheric laterality index values showed a tendency to decrease reflecting a reduction in the over-dominance of the contralesional hemisphere. The study is novel in terms of 1) tracking finger movement during a motor task in the scanner, 2) monitoring motor performance during the experiment and 3) giving online visual feedback of subjects' movement. This pilot study introduces a novel approach to study neural plasticity by combining measures of regional intensity, interregional interactions (using functional connectivity analysis and hemispheric laterality index), and modulation in the strength of neuromotor coupling.

  17. Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila.

    Science.gov (United States)

    Cognigni, Paola; Felsenberg, Johannes; Waddell, Scott

    2017-12-16

    When animals learn, plasticity in brain networks that respond to specific cues results in a change in the behavior that these cues elicit. Individual network components in the mushroom bodies of the fruit fly Drosophila melanogaster represent cues, learning signals and behavioral outcomes of learned experience. Recent findings have highlighted the importance of dopamine-driven plasticity and activity in feedback and feedforward connections, between various elements of the mushroom body neural network. These computational motifs have been shown to be crucial for long term olfactory memory consolidation, integration of internal states, re-evaluation and updating of learned information. The often recurrent circuit anatomy and a prolonged requirement for activity in parts of these underlying networks, suggest that self-sustained and precisely timed activity is a fundamental feature of network computations in the insect brain. Together these processes allow flies to continuously adjust the content of their learned knowledge and direct their behavior in a way that best represents learned expectations and serves their most pressing current needs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. COMT val158met genotype affects recruitment of neural mechanisms supporting fluid intelligence.

    Science.gov (United States)

    Bishop, Sonia J; Fossella, John; Croucher, Camilla J; Duncan, John

    2008-09-01

    Fluid intelligence (g(f)) influences performance across many cognitive domains. It is affected by both genetic and environmental factors. Tasks tapping g(f) activate a network of brain regions including the lateral prefrontal cortex (LPFC), the presupplementary motor area/anterior cingulate cortex (pre-SMA/ACC), and the intraparietal sulcus (IPS). In line with the "intermediate phenotype" approach, we assessed effects of a polymorphism (val(158)met) in the catechol-O-methyltransferase (COMT) gene on activity within this network and on actual task performance during spatial and verbal g(f) tasks. COMT regulates catecholaminergic signaling in prefrontal cortex. The val(158) allele is associated with higher COMT activity than the met(158) allele. Twenty-two volunteers genotyped for the COMT val(158)met polymorphism completed high and low g(f) versions of spatial and verbal problem-solving tasks. Our results showed a positive effect of COMT val allele load upon the blood oxygen level-dependent response in LPFC, pre-SMA/ACC, and IPS during high g(f) versus low g(f) task performance in both spatial and verbal domains. These results indicate an influence of the COMT val(158)met polymorphism upon the neural circuitry supporting g(f). The behavioral effects of val allele load differed inside and outside the scanner, consistent with contextual modulation of the relation between COMT val(158)met genotype and g(f) task performance.

  19. Music training relates to the development of neural mechanisms of selective auditory attention

    Directory of Open Access Journals (Sweden)

    Dana L. Strait

    2015-04-01

    Full Text Available Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not.

  20. Music training relates to the development of neural mechanisms of selective auditory attention.

    Science.gov (United States)

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Sex differences in the neural mechanisms mediating addiction: a new synthesis and hypothesis

    Directory of Open Access Journals (Sweden)

    Becker Jill B

    2012-06-01

    Full Text Available Abstract In this review we propose that there are sex differences in how men and women enter onto the path that can lead to addiction. Males are more likely than females to engage in risky behaviors that include experimenting with drugs of abuse, and in susceptible individuals, they are drawn into the spiral that can eventually lead to addiction. Women and girls are more likely to begin taking drugs as self-medication to reduce stress or alleviate depression. For this reason women enter into the downward spiral further along the path to addiction, and so transition to addiction more rapidly. We propose that this sex difference is due, at least in part, to sex differences in the organization of the neural systems responsible for motivation and addiction. Additionally, we suggest that sex differences in these systems and their functioning are accentuated with addiction. In the current review we discuss historical, cultural, social and biological bases for sex differences in addiction with an emphasis on sex differences in the neurotransmitter systems that are implicated.

  2. Genetic mechanism for building evolution reflecting stress histories of residents and environmental factors

    Science.gov (United States)

    Nishikawa, Saya; Mita, Akira

    2014-03-01

    Conventional architectural design has a lot to do with the intuition and experience of designers. And residences are not always suit to its residents and surrounding environment. If we can extract residents' preferences and demands about comfort of each resident from histories of past life and reflect these information in next design, it's possible to make living space more comfortable. This thesis proposes genetic and evolutional system for architectural design information, which is applied evolutionary adaption. Specifically, I applied genetic mechanism which base sequence of DNA plays a role, epigenetic mechanism which chemical modification plays a role and evolutionary mechanism with natural selection. Proposed system firstly accumulates discomfort of residents, shortcoming of living space and usage of equipment as "comfort stress", "safety stress" and "energy saving stress", and modifies performance value of related performance items of building depending on the stress accumulation. Then this system processes selection according to the characteristics of the site for candidates of next generation of architectural design information which are generated via crossing and mutation. The data-set selected in this way is regarded as the performance value of next architectural design, and system suggests architectural specification to the residents.

  3. High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Toward Hydrogen Evolution Reaction.

    Science.gov (United States)

    Coy, Emerson; Yate, Luis; Valencia, Drochss P; Aperador, Willian; Siuzdak, Katarzyna; Torruella, Pau; Azanza, Eduardo; Estrade, Sonia; Iatsunskyi, Igor; Peiro, Francesca; Zhang, Xixiang; Tejada, Javier; Ziolo, Ronald F

    2017-09-13

    Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin-film electrodes of metal carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures neglect long-lasting chemical and structural stability, focusing only on electrochemical efficiency. Herein we report on a new approach to easily deposit and control the micro/nanostructure of thin-film electrodes based on niobium carbide (NbC) and their electrocatalytic response. We will show that, by improving the mechanical properties of the NbC electrodes, microstructure and mechanical resilience can be obtained while maintaining high electrocatalytic response. We also address the influence of other parameters such as conductivity and chemical composition on the overall performance of the thin-film electrodes. Finally, we show that nanocomposite NbC electrodes are promising candidates toward HER and, furthermore, that the methodology presented here is suitable to produce other transition-metal carbides with improved catalytic and mechanical properties.

  4. Microstructural evolution and mechanical properties of Inconel 718 after thermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.S., E-mail: yuzaisong@tpri.com.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049 (China); Xi' an Thermal Power Research Institute Co. Ltd., No. 136, Xingqing Road, Xi’an 710032 (China); Zhang, J.X. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049 (China); Yuan, Y.; Zhou, R.C.; Zhang, H.J.; Wang, H.Z. [Xi' an Thermal Power Research Institute Co. Ltd., No. 136, Xingqing Road, Xi’an 710032 (China)

    2015-05-14

    Inconel 718 was subjected to various heat treatments, i.e., solution heat treatment, standard ageing treatment and standard ageing plus 700 °C thermal exposure. The mechanical properties of the alloys were determined using tensile tests and Charpy pendulum impact tests at 650 °C and room temperature, respectively. The highest yield strength of 988 MPa was attained in the standard aged specimen, whereas a maximum impact toughness of 217 J cm{sup −2} was attained in the solution-treated specimen. After thermal exposure, the mechanical properties of the specimens degrade. Both the yield strength and impact toughness decreased monotonically with increasing thermal exposure time. Subjected to a 10000-h long-term thermal exposure, the yield strength dramatically decreased to 475 MPa (almost 50% of the maximum strength), and the impact toughness reduced to only 18 J cm{sup −2}. The microstructures of the specimens were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Coarsening of γ′ and γ″ and the transformation of γ″ to δ-Ni{sub 3}Nb was observed after thermal exposure. However, a complete transformation from metastable γ″ to δ-Ni{sub 3}Nb was never accomplished, even after the 10000-h long-term thermal exposure. Based on the obtained experimental results, the effects of the microstructural evolution on the mechanical properties are discussed.

  5. About the mechanisms of charging in EPMA, SEM, and ESEM with their time evolution.

    Science.gov (United States)

    Cazaux, Jacques

    2004-12-01

    The physical mechanisms involved in electron irradiation of insulating specimens are investigated by combining some simple considerations of solid-state physics (trapping mechanisms of electrons and secondary electron emission) with basic equations of electrostatics. To facilitate the understanding of the involved mechanisms only widely irradiated samples having a uniform distribution of trapping sites are considered. This starting hypothesis allows development of simple models for the trapped charge distributions in ground-coated specimens as investigated in electron probe microanalysis (EPMA) as well as for the bare specimens investigated in scanning electron microscopy (SEM) and environmental SEM (ESEM). Governed by self-regulation processes, the evolution of the electric parameters during the irradiation are also considered for the first time and practical consequences in EPMA, SEM, and ESEM are deduced. In particular, the widespread idea that the noncharging condition of SEM is obtained at a critical energy E2 (where delta + eta = 1 with delta and eta yields obtained in noncharging experiments) is critically discussed.

  6. High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Towards Hydrogen Evolution Reaction

    KAUST Repository

    Coy, Emerson

    2017-08-22

    Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin film electrodes of metal-carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures to date neglect long lasting chemical and structural stability, focusing only on electrochemical efficiency. Herein we report on a new approach to easily deposit and control the micro/nanostructure of thin film electrodes based on niobium carbide (NbC) and their electrocatalytic response. We will show that, by improving the mechanical properties of the NbC electrodes, microstructure and mechanical resilience can be obtained whilst maintaining high electro catalytic response. We also address the influence of other parameters such as conductivity and chemical composition on the overall performance of the thin film electrodes. Finally, we show that nanocomposite NbC electrodes are promising candidates towards HER , and furthermore, that the methodology presented here is suitable to produce other transition metal carbides (TM-C) with improved catalytic and mechanical properties.

  7. Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort.

    Science.gov (United States)

    Goligher, Ewan C; Fan, Eddy; Herridge, Margaret S; Murray, Alistair; Vorona, Stefannie; Brace, Debbie; Rittayamai, Nuttapol; Lanys, Ashley; Tomlinson, George; Singh, Jeffrey M; Bolz, Steffen-Sebastian; Rubenfeld, Gordon D; Kavanagh, Brian P; Brochard, Laurent J; Ferguson, Niall D

    2015-11-01

    Diaphragm atrophy and dysfunction have been reported in humans during mechanical ventilation, but the prevalence, causes, and functional impact of changes in diaphragm thickness during routine mechanical ventilation for critically ill patients are unknown. To describe the evolution of diaphragm thickness over time during mechanical ventilation, its impact on diaphragm function, and the influence of inspiratory effort on this phenomenon. In three academic intensive care units, 107 patients were enrolled shortly after initiating ventilation along with 10 nonventilated intensive care unit patients (control subjects). Diaphragm thickness and contractile activity (quantified by the inspiratory thickening fraction) were measured daily by ultrasound. Over the first week of ventilation, diaphragm thickness decreased by more than 10% in 47 (44%), was unchanged in 47 (44%), and increased by more than 10% in 13 (12%). Thickness did not vary over time following extubation or in nonventilated patients. Low diaphragm contractile activity was associated with rapid decreases in diaphragm thickness, whereas high contractile activity was associated with increases in diaphragm thickness (P = 0.002). Contractile activity decreased with increasing ventilator driving pressure (P = 0.01) and controlled ventilator modes (P = 0.02). Maximal thickening fraction (a measure of diaphragm function) was lower in patients with decreased or increased diaphragm thickness (n = 10) compared with patients with unchanged thickness (n = 10; P = 0.05 for comparison). Changes in diaphragm thickness are common during mechanical ventilation and may be associated with diaphragmatic weakness. Titrating ventilatory support to maintain normal levels of inspiratory effort may prevent changes in diaphragm configuration associated with mechanical ventilation.

  8. Different mechanisms must be considered to explain the increase in hippocampal neural precursor cell proliferation by physical activity

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    2016-08-01

    Full Text Available The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field.

  9. Horizons and non-local time evolution of quantum mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Roberto [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, Bologna (Italy)

    2015-04-01

    According to general relativity, trapping surfaces and horizons are classical causal structures that arise in systems with sharply defined energy and corresponding gravitational radius. The latter concept can be extended to a quantum mechanical matter state simply by means of the spectral decomposition, which allows one to define an associated ''horizon wave-function''. Since this auxiliary wave-function contains crucial information about the causal structure of space-time, a new proposal is formulated for the time evolution of quantum systems in order to account for the fundamental classical property that outer observers cannot receive signals from inside a horizon. The simple case of a massive free particle at rest is used throughout the paper as a toy model to illustrate the main ideas. (orig.)

  10. Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Hallström, Björn M.; Blicher, Thomas H.

    2014-01-01

    propose that 3HP toxicity is mediated by3-hydroxypropionic aldehyde (reuterin) and that glutathione-dependent reactions are used for reuterin detoxification. The identified molecular response to 3HP and reuterin may well be a general mechanism for handling resistance to organic acid and aldehydes......Biologically produced 3-hydroxypropionic acid (3HP) is a potential source for sustainable acrylates and can also find direct use as monomer in the production of biodegradable polymers. For industrial-scale production there is a need for robust cell factories tolerant to highconcentration of 3HP......, preferably at low pH. Through adaptive laboratory evolution we selected S. cerevisiae strains with improved tolerance to 3HP at pH 3.5.Genome sequencing followed by functional analysis identified the causal mutation in SFA1 gene encoding S-(hydroxymethyl)glutathione dehydrogenase. Based on our findings, we...

  11. [Evolution in muscle strength in critical patients with invasive mechanical ventilation].

    Science.gov (United States)

    Via Clavero, G; Sanjuán Naváis, M; Menéndez Albuixech, M; Corral Ansa, L; Martínez Estalella, G; Díaz-Prieto-Huidobro, A

    2013-01-01

    To assess the evolution of muscle strength in critically ill patients with mechanical ventilation (MV) from withdrawal of sedatives to hospital discharge. A cohort study was conducted in two intensive care units in the Hospital Universitari de Bellvitge from November 2011 to March 2012. Consecutive patients with MV > 72h. Dependent outcome: Muscle strength measured with the Medical Research Council (MRC) scale beginning on the first day the patient was able to answer 3 out of 5 simple orders (day 1), every week, at ICU discharge and at hospital discharge or at day 60 Independent outcomes: factors associated with muscle strength loss, ventilator-free days, ICU length of stay and hospital length of stay. The patients were distributed into two groups (MRC2 (P 2 and costicosteroids. Patients with a MRC < 48 required more days with MV and a longer ICU stay. Copyright © 2013 Elsevier España, S.L. y SEEIUC. All rights reserved.

  12. Neural Mechanisms of Temporomandibular Joint and Masticatory Muscle Pain: A Possible Role for Peripheral Glutamate Receptor Mechanisms

    Directory of Open Access Journals (Sweden)

    David K Lam

    2005-01-01

    Full Text Available The purpose of the present review is to correlate recent knowledge of the role of peripheral ionotropic glutamate receptors in the temporomandibular joint and muscle pain from animal and human experimental pain models with findings in patients. Chronic pain is common, and many people suffer from chronic pain conditions involving deep craniofacial tissues such as temporomandibular disorders or fibromyalgia. Animal and human studies have indicated that the activation of peripheral ionotropic glutamate receptors in deep craniofacial tissues may contribute to muscle and temporomandibular joint pain and that sex differences in the activation of glutamate receptors may be involved in the female predominance in temporomandibular disorders and fibromyalgia. A peripheral mechanism involving autocrine and/or paracrine regulation of nociceptive neuronal excitability via injury or inflammation-induced release of glutamate into peripheral tissues that may contribute to the development of craniofacial pain is proposed.

  13. In search of neural mechanisms of mirror neuron dysfunction in schizophrenia: resting state functional connectivity approach.

    Science.gov (United States)

    Zaytseva, Yuliya; Bendova, Marie; Garakh, Zhanna; Tintera, Jaroslav; Rydlo, Jan; Spaniel, Filip; Horacek, Jiri

    2015-09-01

    It has been repeatedly shown that schizophrenia patients have immense alterations in goal-directed behaviour, social cognition, and social interactions, cognitive abilities that are presumably driven by the mirror neurons system (MNS). However, the neural bases of these deficits still remain unclear. Along with the task-related fMRI and EEG research tapping into the mirror neuron system, the characteristics of the resting state activity in the particular areas that encompass mirror neurons might be of interest as they obviously determine the baseline of the neuronal activity. Using resting state fMRI, we investigated resting state functional connectivity (FC) in four predefined brain structures, ROIs (inferior frontal gyrus, superior parietal lobule, premotor cortex and superior temporal gyrus), known for their mirror neurons activity, in 12 patients with first psychotic episode and 12 matched healthy individuals. As a specific hypothesis, based on the knowledge of the anatomical inputs of thalamus to all preselected ROIs, we have investigated the FC between thalamus and the ROIs. Of all ROIs included, seed-to-voxel connectivity analysis revealed significantly decreased FC only in left posterior superior temporal gyrus (STG) and the areas in visual cortex and cerebellum in patients as compared to controls. Using ROI-to-ROI analysis (thalamus and selected ROIs), we have found an increased FC of STG and bilateral thalamus whereas the FC of these areas was decreased in controls. Our results suggest that: (1) schizophrenia patients exhibit FC of STG which corresponds to the previously reported changes of superior temporal gyrus in schizophrenia and might contribute to the disturbances of specific functions, such as emotional processing or spatial awareness; (2) as the thalamus plays a pivotal role in the sensory gating, providing the filtering of the redundant stimulation, the observed hyperconnectivity between the thalami and the STGs in patients with schizophrenia

  14. Neural mechanisms underlying catastrophic failure in human-machine interaction during aerial navigation

    Science.gov (United States)

    Saproo, Sameer; Shih, Victor; Jangraw, David C.; Sajda, Paul

    2016-12-01

    Objective. We investigated the neural correlates of workload buildup in a fine visuomotor task called the boundary avoidance task (BAT). The BAT has been known to induce naturally occurring failures of human-machine coupling in high performance aircraft that can potentially lead to a crash—these failures are termed pilot induced oscillations (PIOs). Approach. We recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated within a virtual 3D environment. Main results. We find that workload buildup in a BAT can be successfully decoded from oscillatory features in the electroencephalogram (EEG). Information in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful decoding, however gamma band activity with a lateralized somatosensory topography has the highest contribution, while theta band activity with a fronto-central topography has the most robust contribution in terms of real-world usability. We show that the output of the spectral decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of cortical networks such as the locus coeruleus (LC)—anterior cingulate cortex (ACC) circuit. Significance. Our findings may generalize to similar control failures in other cases of tight man-machine coupling where gains and latencies in the control system must be inferred and compensated for by the human operators. A closed-loop intervention using neurophysiological decoding of workload buildup that targets the LC-ACC circuit may positively impact operator performance in such situations.

  15. Neural mechanisms of repetition priming of familiar and globally unfamiliar visual objects.

    Science.gov (United States)

    Soldan, Anja; Habeck, Christian; Gazes, Yunglin; Stern, Yaakov

    2010-07-09

    Functional magnetic resonance imaging (fMRI) studies have shown that repetition priming of visual objects is typically accompanied by a reduction in activity for repeated compared to new stimuli (repetition suppression). However, the spatial distribution and direction (suppression vs. enhancement) of neural repetition effects can depend on the pre-experimental familiarity of stimuli. The first goal of this study was to further probe the link between repetition priming and repetition suppression/enhancement for visual objects and how this link is affected by stimulus familiarity. A second goal was to examine whether priming of familiar and unfamiliar objects following a single stimulus repetition is supported by the same processes as priming following multiple repetitions within the same task. In this endeavor, we examined both between and within-subject correlations between priming and fMRI repetition effects for familiar and globally unfamiliar visual objects during the first and third repetitions of the stimuli. We included reaction time of individual trials as a linear regressor to identify brain regions whose repetition effects varied with response facilitation on a trial-by-trial basis. The results showed that repetition suppression in bilateral fusiform gyrus, was selectively correlated with priming of familiar objects that had been repeated once, likely reflecting facilitated perceptual processing or the sharpening of perceptual representations. Priming during the third repetition was correlated with repetition suppression in prefrontal and parietal areas for both familiar and unfamiliar stimuli, possibly reflecting a shift from top-down controlled to more automatic processing that occurs for both item types. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Evolution of Neural Networks for the Prediction of Hydraulic Conductivity as a Function of Borehole Geophysical Logs: Shobasama Site, Japan

    Science.gov (United States)

    Reeves, P.; McKenna, S. A.; Takeuchi, S.; Saegusa, H.

    2003-12-01

    In situ measurements of hydraulic conductivity in fractured rocks are expensive to acquire. Borehole geophysical measurements are relatively inexpensive to acquire but do not provide direct information on hydraulic conductivity. These geophysical measurements quantify properties of the rock that influence the hydraulic conductivity and it may be possible to employ a non-linear combination of these measurements to estimate hydraulic conductivity. Geophysical measurements collected in fractured granite at the Shobasama site in central Japan were used as the input to a feed-forward neural network. A simple genetic algorithm was used to simultaneously evolve the architecture and parameters of the neural network as well as determine an optimal subset of geophysical measurements for the prediction of hydraulic conductivity. The initial estimation procedure focused on predicting the class of the hydraulic conductivity, high, medium or low, from the geophysical measurements. This estimation was done while using the genetic algorithm to simultaneously determine the most important geophysical logs and optimize the architecture of the neural network. Results show that certain geophysical logs provide more information than others- most notably the short-normal resistivity, micro-resistivity, porosity and sonic logs provided the most information on hydraulic conductivity. The neural network produced excellent training results with accuracy of 90 percent or greater, but was unable to produce accurate predictions of the hydraulic conductivity class In the second phase of calculations, the selection of geophysical measurements is limited to only those that provide significant information. Additionally, this second phase predicts transmissivity instead of hydraulic conductivity in order to account for the differences in the length of the hydraulic test zones. Resulting predictions of transmissivity exhibit conditional bias with maximum prediction errors of three orders of magnitude

  17. Individual Differences in Neural Mechanisms of Selective Auditory Attention in Preschoolers from Lower Socioeconomic Status Backgrounds: An Event-Related Potentials Study

    Science.gov (United States)

    Isbell, Elif; Wray, Amanda Hampton; Neville, Helen J.

    2016-01-01

    Selective attention, the ability to enhance the processing of particular input while suppressing the information from other concurrent sources, has been postulated to be a foundational skill for learning and academic achievement. The neural mechanisms of this foundational ability are both vulnerable and enhanceable in children from lower…

  18. Perceptual Surprise Improves Action Stopping by Nonselectively Suppressing Motor Activity via a Neural Mechanism for Motor Inhibition.

    Science.gov (United States)

    Dutra, Isabella C; Waller, Darcy A; Wessel, Jan R

    2018-02-07

    important in daily life (e.g., stopping to cross the street when a car approaches) and is severely impaired in many neuropsychiatric disorders. Therefore, finding ways to improve action stopping could aid adaptive behaviors in health and disease. Our current study shows that presenting unexpected sounds in stopping situations facilitates successful stopping. This improvement is specifically due to a surprise-related increase in a neural mechanism for motor inhibition, which rapidly suppresses the excitability of the motor system after unexpected events. These findings suggest a tight interaction between the neural systems for surprise processing and motor inhibition and yield a promising avenue for future research. Copyright © 2018 the authors 0270-6474/18/381482-11$15.00/0.

  19. Failing to learn from negative prediction errors: Obesity is associated with alterations in a fundamental neural learning mechanism.

    Science.gov (United States)

    Mathar, David; Neumann, Jane; Villringer, Arno; Horstmann, Annette

    2017-10-01

    Prediction errors (PEs) encode the difference between expected and actual action outcomes in the brain via dopaminergic modulation. Integration of these learning signals ensures efficient behavioral adaptation. Obesity has recently been linked to altered dopaminergic fronto-striatal circuits, thus implying impairments in cognitive domains that rely on its integrity. 28 obese and 30 lean human participants performed an implicit stimulus-response learning paradigm inside an fMRI scanner. Computational modeling and psycho-physiological interaction (PPI) analysis was utilized for assessing PE-related learning and associated functional connectivity. We show that human obesity is associated with insufficient incorporation of negative PEs into behavioral adaptation even in a non-food context, suggesting differences in a fundamental neural learning mechanism. Obese subjects were less efficient in using negative PEs to improve implicit learning performance, despite proper coding of PEs in striatum. We further observed lower functional coupling between ventral striatum and supplementary motor area in obese subjects subsequent to negative PEs. Importantly, strength of functional coupling predicted task performance and negative PE utilization. These findings show that obesity is linked to insufficient behavioral adaptation specifically in response to negative PEs, and to associated alterations in function and connectivity within the fronto-striatal system. Recognition of neural differences as a central characteristic of obesity hopefully paves the way to rethink established intervention strategies: Differential behavioral sensitivity to negative and positive PEs should be considered when designing intervention programs. Measures relying on penalization of unwanted behavior may prove less effective in obese subjects than alternative approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Association of Irritability and Anxiety With the Neural Mechanisms of Implicit Face Emotion Processing in Youths With Psychopathology.

    Science.gov (United States)

    Stoddard, Joel; Tseng, Wan-Ling; Kim, Pilyoung; Chen, Gang; Yi, Jennifer; Donahue, Laura; Brotman, Melissa A; Towbin, Kenneth E; Pine, Daniel S; Leibenluft, Ellen

    2017-01-01

    Psychiatric comorbidity complicates clinical care and confounds efforts to elucidate the pathophysiology of commonly occurring symptoms in youths. To our knowledge, few studies have simultaneously assessed the effect of 2 continuously distributed traits on brain-behavior relationships in children with psychopathology. To determine shared and unique effects of 2 major dimensions of child psychopathology, irritability and anxiety, on neural responses to facial emotions during functional magnetic resonance imaging. Cross-sectional functional magnetic resonance imaging study in a large, well-characterized clinical sample at a research clinic at the National Institute of Mental Health. The referred sample included youths ages 8 to 17 years, 93 youths with anxiety, disruptive mood dysregulation, and/or attention-deficit/hyperactivity disorders and 22 healthy youths. The child's irritability and anxiety were rated by both parent and child on the Affective Reactivity Index and Screen for Child Anxiety Related Disorders, respectively. Using functional magnetic resonance imaging, neural response was measured across the brain during gender labeling of varying intensities of angry, happy, or fearful face emotions. In mixed-effects analyses, the shared and unique effects of irritability and anxiety were tested on amygdala functional connectivity and activation to face emotions. The mean (SD) age of participants was 13.2 (2.6) years; of the 115 included, 64 were male. Irritability and/or anxiety influenced amygdala connectivity to the prefrontal and temporal cortex. Specifically, irritability and anxiety jointly influenced left amygdala to left medial prefrontal cortex connectivity during face emotion viewing (F4,888 = 9.20; P emotions in several areas (F2, 888 ≥ 13.45; all P emotion dysregulation when very anxious and irritable youth process threat-related faces. Activation in the ventral visual circuitry suggests a mechanism through which signals of social approach

  1. On the Role of Neurogenesis and Neural Plasticity in the Evolution of Animal Personalities and Stress Coping Styles.

    Science.gov (United States)

    Øverli, Øyvind; Sørensen, Christina

    2016-08-24

    Individual variation in how animals react to stress and environmental change has become a central topic in a wide range of biological disciplines, from evolutionary ecology to biomedicine. Such variation manifests phenotypically as correlated trait-clusters (referred to as coping styles, behavioral syndromes, shyness-boldness, or personality traits). Thresholds for switching from active coping (fight-flight) to inhibition and passive behavior when exposed to stress depend on experience and genetic factors. Comparative research has revealed a range of neuroendocrine-behavioral associations which are conserved throughout the vertebrate subphylum, including factors affecting perception, learning, and memory of stimuli and events. Here we review conserved aspects of the contribution of neurogenesis and other aspects of neural plasticity to stress coping. In teleost fish, brain cell proliferation and neurogenesis have received recent attention. This work reveals that brain cell proliferation and neurogenesis are associated with heritable variation in stress coping style, and they are also differentially affected by short- and long-term stress in a biphasic manner. Routine-dependent and inflexible behavior in proactive individuals is associated with limited neural plasticity. These evolutionarily conserved relationships hold the potential to illuminate the biological background for stress-related neurobiological disorders. © 2016 S. Karger AG, Basel.

  2. Geochronologic and Isotropic Constraints on Thermal and Mechanical Models of Lunar Evolution

    Science.gov (United States)

    Snyder, Gregory A.; Taylor, Lawrence A.

    1998-01-01

    Both short-lived and long-lived geochronometers are key to our understanding of the thermal and mechanical evolution of planets and satellites. These isotopic studies not only allow us to set time constraints on various processes (core formation, melting, crystallization, impact), but also allow us to determine the chemical and mineralogic characteristics of plausible sources. Thermal and mechanical models derived from remote spectroscopy and geophysical data must be tempered by such studies. We present three case studies where the ground truth afforded by radiogenic isotopic studies and geochronology have drastically changed (or should change) prevailing models determined from remote sensing and geophysics: (1) ferroan anorthosites (FANs) and the magma ocean hypothesis, (2) highlands plutonic-suite rocks and late KREEP formation from a magma ocean, and (3) high-Ti basalt sources and ilmenite-sinking in the lunar mantle In addition, we will mention several other outstanding problems in lunar petrology and geochemistry where remote sensing and geophysics could prove useful in cutting the Gordian knot.

  3. Microstructure evolution of the oxide dispersion strengthened CLAM steel during mechanical alloying process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Liangliang [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230031 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); Mao, Xiaodong [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China)

    2016-11-15

    Highlights: • A nano-sized oxides dispersed ODS-CLAM steel was obtained by MA and HIP. • A minimum saturated grain size of down to 30 nm was achieved by varying the milling time from 0 to 100 h. • Solution of W in the MA powder could be significantly improved by increasing MA rotation speed. - Abstracts: Oxide dispersion strengthened Ferritic/Martensitic steel is considered as one of the most potential structural material for future fusion reactor, owing to its high mechanical properties and good irradiation resistance. The oxide dispersion strengthened China Low Activation Martensitic (ODS-CLAM) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The microstructural evolutions during the process of ball milling and subsequent consolidation were investigated by SEM, XRD and TEM. The results showed that increasing the milling time during the first 36 h milling could effectively decrease the grain size to a value of around 30 nm, over which grain sized remained nearly constant. Increasing the rotation speed promoted the solution of tungsten (W) element obviously and decreased the grain size to a certain degree. Observation on the consolidated and further heat-treated ODS-CLAM steel samples indicated that a martensite microstructure with a high density of nano-particles was achieved.

  4. On the mechanism of flow evolution in shock-tube experiments

    Science.gov (United States)

    Kiverin, Alexey; Yakovenko, Ivan

    2018-02-01

    The paper studies numerically the flow development behind the shock wave propagating inside the tube. The detailed analysis of the flow patterns behind the shock wave allows determination of the gas-dynamical origins of the temperature non-uniformities responsible for the subsequent localized start of chemical reactions in the test mixture. In particular, it is shown that the temperature field structure is determined mainly by the mechanisms of boundary layer instability development. The kinetic energy dissipation related to the flow deceleration inside boundary layer results in local heating of the test gas. At the same time, the heat losses to the tube wall lead to the cooling of the gas. Therefore the temperature stratification takes place on the scales of the boundary layer. As soon as the shock wave reflected from the end-wall of the tube interacts with the developed boundary layer the localized hot regions arise at a certain distance from the end wall. The position of these hot regions is associated with the zones of shock wave interaction with roller vortices at the margin between the boundary layer and the bulk flow. Formulated mechanism of the temperature field evolution can be used to explain the peculiarities of non-steady shock-induced ignition of combustible mixtures with moderate ignition delay times, where the ignition starts inside localized kernels at distance from the end wall.

  5. Manupulation of microstructure, phase evolution and mechanical properties by devitrification of andesite for use as proppant

    Science.gov (United States)

    Koseski, Ryan P.

    Small, roughly spherical ceramic particles, approximately 1mm in size are used for a number of applications including casting sands, catalysts, and cement fillers. The oil and natural gas industry utilizes such materials in tonnage quantities yearly as extraction aids. Particles intended for this application are referred to as proppants. Proppants are composed of materials that differ by density, strength and cost, and are selected on a site by site basis. Recently, competing usage and depletion of reserves of one of the most popular category of proppant materials, sintered aluminosilicates (e.g. kaolinite, bauxite) have driven the need for alternative raw materials for proppant manufacturing. Andesite, a by-product of mining operations in the south-west United States was identified as an abundant, readily available, and low cost alternative proppant material that can be fused and net-shaped into a glass which when crystallized results in microstructures which may offer substantial toughening and fracture characteristics which may serve to their advantage for use as proppants that do not decrease the permeability ("blind") the particle bed. This study addressed the devitrification behavior and its role on the mechanical properties of andesite-based glass-ceramic spheres for use as proppants. Timetemperature- transformation studies were performed to evaluate the devitrification behavior of andesite glass. Crystalline phase evolution and microstructural development were evaluated using quantitative x-ray diffraction, scanning electron microscopy, differential thermal analysis, and spectrophotometry. The andesite glass devitrification commenced with the precipitation of iron oxides (magnetite) which served as seeds for the epitaxial growth of dendritic pyroxenes. Mechanical properties, such as diametral compressive strength, fracture toughness, hardness, and fracture morphology were correlated with crystalline phase evolution. Selected heat treatments resulting in the

  6. A novel mechanism for switching a neural system from one state to another

    Directory of Open Access Journals (Sweden)

    Chethan Pandarinath

    2010-03-01

    Full Text Available An animal’s ability to rapidly adjust to new conditions is essential to its survival. The nervous system, then, must be built with the flexibility to adjust, or shift, its processing capabilities on the fly. To understand how this flexibility comes about, we tracked a well-known behavioral shift, a visual integration shift, down to its underlying circuitry, and found that it is produced by a novel mechanism – a change in gap junction coupling that can turn a cell class on and off. The results showed that the turning on and off of a cell class shifted the circuit’s behavior from one state to another, and, likewise, the animal’s behavior. The widespread presence of similar gap junction-coupled networks in the brain suggests that this mechanism may underlie other behavioral shifts as well.

  7. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Correia, L [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Salvador, R [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Basser, P J [Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD 20892-1428 (United States)

    2007-09-21

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m{sup -1} to 0.333 S m{sup -1}, simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation.

  8. Lifelong bilingualism and neural reserve against Alzheimer's disease: a review of findings and potential mechanisms.

    Science.gov (United States)

    Gold, Brian T

    2015-03-15

    Alzheimer's disease (AD) is a progressive brain disorder that initially affects medial temporal lobe circuitry and memory functions. Current drug treatments have only modest effects on the symptomatic course of the disease. In contrast, a growing body of evidence suggests that lifelong bilingualism may delay the onset of clinical AD symptoms by several years. The purpose of the present review is to summarize evidence for bilingualism as a reserve variable against AD and discuss potential underlying neurocognitive mechanisms. Evidence is reviewed suggesting that bilingualism may delay clinical AD symptoms by protecting frontostriatal and frontoparietal executive control circuitry rather than medial temporal lobe memory circuitry. Cellular and molecular mechanisms that may contribute to bilingual cognitive reserve effects are discussed, including those that may affect neuronal metabolic functions, dynamic neuronal-glial interactions, vascular factors, myelin structure and neurochemical signaling. Future studies that may test some of these potential mechanisms of bilingual CR effects are proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia.

    Science.gov (United States)

    Lu, Yan; Dong, Hailong; Gao, Yandong; Gong, Yuanyuan; Ren, Yingna; Gu, Nan; Zhou, Shudi; Xia, Nan; Sun, Yan-Yan; Ji, Ru-Rong; Xiong, Lize

    2013-09-01

    Neuropathic pain is characterized by mechanical allodynia induced by low-threshold myelinated Aβ-fiber activation. The original gate theory of pain proposes that inhibitory interneurons in the lamina II of the spinal dorsal horn (DH) act as "gate control" units for preventing the interaction between innocuous and nociceptive signals. However, our understanding of the neuronal circuits underlying pain signaling and modulation in the spinal DH is incomplete. Using a rat model, we have shown that the convergence of glycinergic inhibitory and excitatory Aβ-fiber inputs onto PKCγ+ neurons in the superficial DH forms a feed-forward inhibitory circuit that prevents Aβ input from activating the nociceptive pathway. This feed-forward inhibition was suppressed following peripheral nerve injury or glycine blockage, leading to inappropriate induction of action potential outputs in the nociceptive pathway by Aβ-fiber stimulation. Furthermore, spinal blockage of glycinergic synaptic transmission in vivo induced marked mechanical allodynia. Our findings identify a glycinergic feed-forward inhibitory circuit that functions as a gate control to separate the innocuous mechanoreceptive pathway and the nociceptive pathway in the spinal DH. Disruption of this glycinergic inhibitory circuit after peripheral nerve injury has the potential to elicit mechanical allodynia, a cardinal symptom of neuropathic pain.

  10. Splicing reporter mice revealed the evolutionally conserved switching mechanism of tissue-specific alternative exon selection.

    Directory of Open Access Journals (Sweden)

    Akihide Takeuchi

    Full Text Available Since alternative splicing of pre-mRNAs is essential for generating tissue-specific diversity in proteome, elucidating its regulatory mechanism is indispensable to understand developmental process or tissue-specific functions. We have been focusing on tissue-specific regulation of mutually exclusive selection of alternative exons because this implies the typical molecular mechanism of alternative splicing regulation and also can be good examples to elicit general rule of "splice code". So far, mutually exclusive splicing regulation has been explained by the outcome from the balance of multiple regulators that enhance or repress either of alternative exons discretely. However, this "balance" model is open to questions of how to ensure the selection of only one appropriate exon out of several candidates and how to switch them. To answer these questions, we generated an original bichromatic fluorescent splicing reporter system for mammals using fibroblast growth factor-receptor 2 (FGFR2 gene as model. By using this splicing reporter, we demonstrated that FGFR2 gene is regulated by the "switch-like" mechanism, in which key regulators modify the ordered splice-site recognition of two mutually exclusive exons, eventually ensure single exon selection and their distinct switching. Also this finding elucidated the evolutionally conserved "splice code," in which combination of tissue-specific and broadly expressed RNA binding proteins regulate alternative splicing of specific gene in a tissue-specific manner. These findings provide the significant cue to understand how a number of spliced genes are regulated in various tissue-specific manners by a limited number of regulators, eventually to understand developmental process or tissue-specific functions.

  11. Primary Surface Particle Motion as a Mechanism for YORP-Driven Binary Asteroid Evolution

    Science.gov (United States)

    Fahnestock, Eugene G.; Scheeres, D. J.

    2008-09-01

    Within the largest class of binary asteroid systems -- asynchronous binaries typified by 1999 KW4 -- we hypothesize continued YORP spin-up of the rapidly rotating primary leads to recurring episodic lofting motion of primary equator regolith. We theorize this is a mechanism for transporting YORP-injected angular momentum from primary spin into the mutual orbit. This both enables binary primaries to continue to spin at near surface fission rates and produces continued orbit expansion on time scales several times faster than expansion predicted by tidal dissipation alone. This is distinct from the Binary Yorp (BYORP) phenomenon, not studied in this work but to be added to it later. We evaluate our hypotheses using a combination of techniques for an example binary system. First high-fidelity dynamic simulation of surface-originating particles in the full-detail gravity field of the binary components, themselves propagated according to the full two body problem, gives particle final disposition (return impact, transfer impact, escape). Trajectory end states found for regolith lofted at different initial primary spin rates and relative poses are collected into probability matrices, allowing probabilistic propagation of surface particles for long durations at low computational cost. We track changes to mass, inertia dyad, rotation state, and centroid position and velocity for each component in response to this mapped particle motion. This allows tracking of primary, secondary, and mutual orbit angular momenta over time, clearly demonstrating the angular momentum transfer mechanism and validating our hypotheses. We present current orbit expansion rates and estimated orbit size doubling times consistent with this mechanism, for a few binary systems. We also discuss ramifications of this type of rapid binary evolution towards separation, including the frequency with which "divorced binaries" on similar heliocentric orbits are produced, formation of triple systems such as

  12. Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes

    Directory of Open Access Journals (Sweden)

    Hu Gang-Qing

    2011-07-01

    Full Text Available Abstract Background Shine-Dalgarno (SD signal has long been viewed as the dominant translation initiation signal in prokaryotes. Recently, leaderless genes, which lack 5'-untranslated regions (5'-UTR on their mRNAs, have been shown abundant in archaea. However, current large-scale in silico analyses on initiation mechanisms in bacteria are mainly based on the SD-led initiation way, other than the leaderless one. The study of leaderless genes in bacteria remains open, which causes uncertain understanding of translation initiation mechanisms for prokaryotes. Results Here, we study signals in translation initiation regions of all genes over 953 bacterial and 72 archaeal genomes, then make an effort to construct an evolutionary scenario in view of leaderless genes in bacteria. With an algorithm designed to identify multi-signal in upstream regions of genes for a genome, we classify all genes into SD-led, TA-led and atypical genes according to the category of the most probable signal in their upstream sequences. Particularly, occurrence of TA-like signals about 10 bp upstream to translation initiation site (TIS in bacteria most probably means leaderless genes. Conclusions Our analysis reveals that leaderless genes are totally widespread, although not dominant, in a variety of bacteria. Especially for Actinobacteria and Deinococcus-Thermus, more than twenty percent of genes are leaderless. Analyzed in closely related bacterial genomes, our results imply that the change of translation initiation mechanisms, which happens between the genes deriving from a common ancestor, is linearly dependent on the phylogenetic relationship. Analysis on the macroevolution of leaderless genes further shows that the proportion of leaderless genes in bacteria has a decreasing trend in evolution.

  13. Interactive evolution concept for analyzing a rock salt cavern under cyclic thermo-mechanical loading

    Science.gov (United States)

    König, Diethard; Mahmoudi, Elham; Khaledi, Kavan; von Blumenthal, Achim; Schanz, Tom

    2016-04-01

    The excess electricity produced by renewable energy sources available during off-peak periods of consumption can be used e.g. to produce and compress hydrogen or to compress air. Afterwards the pressurized gas is stored in the rock salt cavities. During this process, thermo-mechanical cyclic loading is applied to the rock salt surrounding the cavern. Compared to the operation of conventional storage caverns in rock salt the frequencies of filling and discharging cycles and therefore the thermo-mechanical loading cycles are much higher, e.g. daily or weekly compared to seasonally or yearly. The stress strain behavior of rock salt as well as the deformation behavior and the stability of caverns in rock salt under such loading conditions are unknown. To overcome this, existing experimental studies have to be supplemented by exploring the behavior of rock salt under combined thermo-mechanical cyclic loading. Existing constitutive relations have to be extended to cover degradation of rock salt under thermo-mechanical cyclic loading. At least the complex system of a cavern in rock salt under these loading conditions has to be analyzed by numerical modeling taking into account the uncertainties due to limited access in large depth to investigate material composition and properties. An interactive evolution concept is presented to link the different components of such a study - experimental modeling, constitutive modeling and numerical modeling. A triaxial experimental setup is designed to characterize the cyclic thermo-mechanical behavior of rock salt. The imposed boundary conditions in the experimental setup are assumed to be similar to the stress state obtained from a full-scale numerical simulation. The computational model relies primarily on the governing constitutive model for predicting the behavior of rock salt cavity. Hence, a sophisticated elasto-viscoplastic creep constitutive model is developed to take into account the dilatancy and damage progress, as well as

  14. Neural evolution in the bat-free habitat of Tahiti: partial regression in an anti-predator auditory system.

    Science.gov (United States)

    Fullard, James H; Ratcliffe, John M; ter Hofstede, Hannah

    2007-02-22

    Noctuid moths endemic to the mountains of Tahiti have evolved in an environment without bats and these insects have lost a defensive behaviour against these predators, the acoustic startle response (ASR). The ASR in noctuid moths is presumed to be activated by a single auditory receptor neuron (A2 cell) and we report that while this cell still exists in endemic species and possesses similar sensitivity thresholds compared to the A2 cell of recently introduced species, it exhibits reduced firing activity to ASR-evoking sounds. This partial neural regression suggests that the evolutionary disappearance of the ASR in these insects is incomplete and that sensoribehavioural integration decays gradually following the removal of stabilizing selective forces.

  15. The use of diagnostic ratios, biomarkers and 3-way Kohonen neural networks to monitor the temporal evolution of oil spills.

    Science.gov (United States)

    Fernández-Varela, R; Gómez-Carracedo, M P; Ballabio, D; Andrade, J M

    2015-07-15

    Oil spill identification relies usually on a wealth of chromatographic data which requires advanced data treatment (chemometrics). A simple approach based on Kohonen neural networks to handle three-dimensional arrays is presented. A suite of 28 diagnostic ratios was considered to monitor six oils along four months. It was found that some traditional diagnostic ratios were not stable enough. In particular, alkylated PAHs (e.g. 1-methyldibenzothiophene, 4-methylpyrene, 27bbSTER and the TA21 and TA26 triaromatic steroids) seemed less resistant to medium-weathering than biomarkers. One (or two) ratios were found to differentiate each product: 30O, 28ab (and 25nor30ab), C3-dbt/C3-phe, 27Ts, TA26 and 29Ts characterized Ashtart, Brent, Maya, Sahara, IFO and Prestige oils, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Rules and mechanisms for efficient two-stage learning in neural circuits.

    Science.gov (United States)

    Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay

    2017-04-04

    Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in 'tutor' circuits ( e.g., LMAN) should match plasticity mechanisms in 'student' circuits ( e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning.

  17. Development of neural mechanisms of conflict and error processing during childhood: Implications for self-regulation

    Directory of Open Access Journals (Sweden)

    Purificación eCheca

    2014-04-01

    Full Text Available Regulation of thoughts and behavior requires attention, particularly when there is conflict between alternative responses or when errors are to be prevented or corrected. Conflict monitoring and error processing are functions of the executive attention network, a neurocognitive system that greatly matures during childhood. In this study, we examined the development of brain mechanisms underlying conflict and error processing with event-related potentials (ERPs, and explored the relationship between brain function and individual differences in the ability to self-regulate behavior. Three groups of children aged 4 to 6, 7 to 9, and 10 to 13 years, and a group of adults performed a child-friendly version of the flanker task while ERPs were registered. Marked developmental changes were observed in both conflict processing and brain reactions to errors. After controlling by age, higher self-regulation skills are associated with smaller amplitude of the conflict effect but greater amplitude of the error-related negativity. Additionally, we found that electrophysiological measures of conflict and error monitoring predict individual differences in impulsivity and the capacity to delay gratification. These findings inform of brain mechanisms underlying the development of cognitive control and self-regulation.

  18. Tinnitus Neural Mechanisms and Structural Changes in the Brain: The Contribution of Neuroimaging Research

    Directory of Open Access Journals (Sweden)

    Simonetti, Patricia

    2015-03-01

    Full Text Available Introduction Tinnitus is an abnormal perception of sound in the absence of an external stimulus. Chronic tinnitus usually has a high impact in many aspects of patients' lives, such as emotional stress, sleep disturbance, concentration difficulties, and so on. These strong reactions are usually attributed to central nervous system involvement. Neuroimaging has revealed the implication of brain structures in the auditory system. Objective This systematic review points out neuroimaging studies that contribute to identifying the structures involved in the pathophysiological mechanism of generation and persistence of various forms of tinnitus. Data Synthesis Functional imaging research reveals that tinnitus perception is associated with the involvement of the nonauditory brain areas, including the front parietal area; the limbic system, which consists of the anterior cingulate cortex, anterior insula, and amygdala; and the hippocampal and parahippocampal area. Conclusion The neuroimaging research confirms the involvement of the mechanisms of memory and cognition in the persistence of perception, anxiety, distress, and suffering associated with tinnitus.

  19. An artificial neural network model for the prediction of mechanical and barrier properties of biodegradable films.

    Science.gov (United States)

    Nobrega, Marcelo Medre; Bona, Evandro; Yamashita, Fabio

    2013-10-01

    Nowadays, the production of biodegradable starch-based films is of great interest because of the growing environmental concerns regarding pollution and the need to reduce dependence on the plastics industry. A broad view of the role of different components, added to starch-based films to improve their properties, is required to guide the future development. The self-organizing maps (SOMs) provide comparisons that initially were complicated due to the large volume of the data. Furthermore, the construction of a model capable of predicting the mechanical and barrier properties of these films will accelerate the development of films with improved characteristics. The water vapor permeability (WVP) analysis using the SOM algorithm showed that the presence of glycerol is very important for films with low amounts of poly (butylene adipate co-terephthalate) and confirms the role of the equilibrium relative humidity in the determination of WVP. Considering the mechanical properties, the SOM analysis emphasizes the important role of poly (butylene adipate co-terephthalate) in thermoplastic starch based films. The properties of biodegradable films were predicted and optimized by using a multilayer perceptron coupled with a genetic algorithm, presenting a great correlation between the experimental and theoretical values with a maximum error of 24%. To improve the response of the model and to ensure the compatibility of the components more information will be necessary. © 2013.

  20. Development of neural mechanisms of conflict and error processing during childhood: implications for self-regulation

    Science.gov (United States)

    Checa, Purificación; Castellanos, M. C.; Abundis-Gutiérrez, Alicia; Rosario Rueda, M.

    2014-01-01

    Regulation of thoughts and behavior requires attention, particularly when there is conflict between alternative responses or when errors are to be prevented or corrected. Conflict monitoring and error processing are functions of the executive attention network, a neurocognitive system that greatly matures during childhood. In this study, we examined the development of brain mechanisms underlying conflict and error processing with event-related potentials (ERPs), and explored the relationship between brain function and individual differences in the ability to self-regulate behavior. Three groups of children aged 4–6, 7–9, and 10–13 years, and a group of adults performed a child-friendly version of the flanker task while ERPs were registered. Marked developmental changes were observed in both conflict processing and brain reactions to errors. After controlling by age, higher self-regulation skills are associated with smaller amplitude of the conflict effect but greater amplitude of the error-related negativity. Additionally, we found that electrophysiological measures of conflict and error monitoring predict individual differences in impulsivity and the capacity to delay gratification. These findings inform of brain mechanisms underlying the development of cognitive control and self-regulation. PMID:24795676

  1. THM-issues in repository rock. Thermal, mechanical, thermo-mechanical and hydro-mechanical evolution of the rock at the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hoekmark, Harald; Loennqvist, Margareta; Faelth, Billy (Clay Technology AB, Lund (Sweden))

    2010-05-15

    The present report addresses aspects of the Thermo-Hydro-Mechanical (THM) evolution of the repository host rock that are of potential importance to the SR-Site safety assessment of a KBS-3 type spent nuclear fuel repository. The report covers the evolution of rock temperatures, rock stresses, pore pressures and fracture transmissivities during the excavation and operational phase, the temperate phase and a glacial cycle on different scales. The glacial cycle is assumed to include a period of pre-glacial permafrost with lowered temperatures and with increased pore pressures in the rock beneath the impermeable permafrost layer. The report also addresses the question of the peak temperature reached during the early temperate phase in the bentonite buffer surrounding the spent fuel canisters. The main text is devoted exclusively to the projected THM evolution of the rock at the Forsmark site in central Sweden. The focus is on the potential for stress-induced failures, i.e. spalling, in the walls of the deposition holes and on changes in the transmissivity of fractures and deformation zones. All analyses are conducted by a combination of numerical tools (3DEC) and analytical solutions. All phases are treated separately and independently of each other, although in reality construction will overlap with heat generation because of the step-by-step excavation/deposition approach with some 50 years between deposition of the first and last canisters. It is demonstrated here that the thermal and thermo-mechanical evolution of the near-field will be independent of heat generated by canisters that were deposited in the past, provided that deposition is made in an orderly fashion, deposition area by deposition area. Peak temperatures and near-field stresses can, consequently, be calculated as if all canisters were deposited simultaneously. The canister and tunnel spacing is specified such that the peak buffer temperature will not exceed 100 deg C in any deposition hole, i.e. not

  2. Tempering of martensitic steel for fasteners : Effects of micro-alloying on microstructure and mechanical property evolution

    NARCIS (Netherlands)

    Öhlund, C.E.I.C.

    2015-01-01

    The research presented in this thesis aims to deepen our understanding of the effect of micro-alloying on the microstructure and mechanical property evolution during tempering of martensitic steel for fasteners. The ongoing trend of engine down-sizing has led to the need for stronger and more

  3. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.

    Science.gov (United States)

    McDowell, J J

    2010-05-01

    An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  4. Neurocognitive mechanisms underlying social learning in infancy: infants' neural processing of the effects of others' actions.

    Science.gov (United States)

    Paulus, Markus; Hunnius, Sabine; Bekkering, Harold

    2013-10-01

    Social transmission of knowledge is one of the reasons for human evolutionary success, and it has been suggested that already human infants possess eminent social learning abilities. However, nothing is known about the neurocognitive mechanisms that subserve infants' acquisition of novel action knowledge through the observation of other people's actions and their consequences in the physical world. In an electroencephalogram study on social learning in infancy, we demonstrate that 9-month-old infants represent the environmental effects of others' actions in their own motor system, although they never achieved these effects themselves before. The results provide first insights into the neurocognitive basis of human infants' unique ability for social learning of novel action knowledge.

  5. How social is error observation? The neural mechanisms underlying the observation of human and machine errors.

    Science.gov (United States)

    Desmet, Charlotte; Deschrijver, Eliane; Brass, Marcel

    2014-04-01

    Recently, it has been shown that the medial prefrontal cortex (MPFC) is involved in error execution as well as error observation. Based on this finding, it has been argued that recognizing each other's mistakes might rely on motor simulation. In the current functional magnetic resonance imaging (fMRI) study, we directly tested this hypothesis by investigating whether medial prefrontal activity in error observation is restricted to situations that enable simulation. To this aim, we compared brain activity related to the observation of errors that can be simulated (human errors) with brain activity related to errors that cannot be simulated (machine errors). We show that medial prefrontal activity is not only restricted to the observation of human errors but also occurs when observing errors of a machine. In addition, our data indicate that the MPFC reflects a domain general mechanism of monitoring violations of expectancies.

  6. Water deprivation and the double- depletion hypothesis: common neural mechanisms underlie thirst and salt appetite

    Directory of Open Access Journals (Sweden)

    L.A. Jr De Luca

    2007-05-01

    Full Text Available Water deprivation-induced thirst is explained by the double-depletion hypothesis, which predicts that dehydration of the two major body fluid compartments, the extracellular and intracellular compartments, activates signals that combine centrally to induce water intake. However, sodium appetite is also elicited by water deprivation. In this brief review, we stress the importance of the water-depletion and partial extracellular fluid-repletion protocol which permits the distinction between sodium appetite and thirst. Consistent enhancement or a de novo production of sodium intake induced by deactivation of inhibitory nuclei (e.g., lateral parabrachial nucleus or hormones (oxytocin, atrial natriuretic peptide, in water-deprived, extracellular-dehydrated or, contrary to tradition, intracellular-dehydrated rats, suggests that sodium appetite and thirst share more mechanisms than previously thought. Water deprivation has physiological and health effects in humans that might be related to the salt craving shown by our species.

  7. Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution.

    Science.gov (United States)

    Melkikh, Alexey V; Khrennikov, Andrei

    2017-11-01

    A review of the mechanisms of speciation is performed. The mechanisms of the evolution of species, taking into account the feedback of the state of the environment and mechanisms of the emergence of complexity, are considered. It is shown that these mechanisms, at the molecular level, cannot work steadily in terms of classical mechanics. Quantum mechanisms of changes in the genome, based on the long-range interaction potential between biologically important molecules, are proposed as one of possible explanation. Different variants of interactions of the organism and environment based on molecular recognition and leading to new species origins are considered. Experiments to verify the model are proposed. This bio-physical study is completed by the general operational model of based on quantum information theory. The latter is applied to model of epigenetic evolution. We briefly present the basics of the quantum-like approach to modeling of bio-informational processes. This approach is illustrated by the quantum-like model of epigenetic evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evolution of developmental pattern for vertebrate dentitions: an oro-pharyngeal specific mechanism.

    Science.gov (United States)

    Fraser, Gareth J; Smith, Moya Meredith

    2011-03-15

    Classically the oral dentition with teeth regulated into a successional iterative order was thought to have evolved from the superficial skin denticles migrating into the mouth at the stage when jaws evolved. The canonical view is that the initiation of a pattern order for teeth at the mouth margin required development of a sub-epithelial, permanent dental lamina. This provided regulated tooth production in advance of functional need, as exemplified by the Chondrichthyes. It had been assumed that teeth in the Osteichthyes form in this way as in tetrapods. However, this has been shown not to be true for many osteichthyan fish where a dental lamina of this kind does not form, but teeth are regularly patterned and replaced. We question the evolutionary origin of pattern information for the dentition driven by new morphological data on spatial initiation of skin denticles in the catshark. We review recent gene expression data for spatio-temporal order of tooth initiation for Scyliorhinus canicula, selected teleosts in both oral and pharyngeal dentitions, and Neoceratodus forsteri. Although denticles in the chondrichthyan skin appear not to follow a strict pattern order in space and time, tooth replacement in a functional system occurs with precise timing and spatial order. We suggest that the patterning mechanism observed for the oral and pharyngeal dentition is unique to the vertebrate oro-pharynx and independent of the skin system. Therefore, co-option of a successional iterative pattern occurred in evolution not from the skin but from mechanisms existing in the oro-pharynx of now extinct agnathans. Copyright © 2010 Wiley-Liss, Inc., A Wiley Company.

  9. Expanding the Enzyme Universe: Accessing Non-Natural Reactions by Mechanism-Guided Directed Evolution

    Science.gov (United States)

    Renata, Hans; Wang, Z. Jane

    2015-01-01

    High selectivities and exquisite control over reaction outcomes entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature’s known repertoire. We will use this review to outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progressions have been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been discovered and exploited for chemical synthesis, emphasizing reactions that do not have natural counterparts. The new functions have mechanistic parallels to the native reaction mechanisms that often manifest as catalytic promiscuity and the ability to convert from one function to the other with minimal mutation. We present examples of how non-natural activities have been improved by directed evolution, mimicking the process used by nature to create new catalysts. Examples of new enzyme functions include epoxide opening reactions with non-natural nucleophiles catalyzed by a laboratory-evolved halohydrin dehalogenase, cyclopropanation and other carbene transfer reactions catalyzed by cytochrome P450 variants, and non-natural modes of cyclization by a modified terpene synthase. Lastly, we describe discoveries of non-native catalytic functions that may provide future opportunities for expanding the enzyme universe. PMID:25649694

  10. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  11. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  12. The hybrid GLM-ICA investigation on the neural mechanism of acupoint ST36: an fMRI study.

    Science.gov (United States)

    Liu, Peng; Zhou, Guangyu; Zhang, Yi; Dong, Minghao; Qin, Wei; Yuan, Kai; Sun, Jinbo; Liu, Jixin; Liang, Jimin; von Deneen, Karen M; Liu, Yijun; Tian, Jie

    2010-08-02

    Ample clinical reports and neuroimaging studies have demonstrated that the acupuncture has sustained effects after manipulation. However, most previous fMRI studies of acupuncture have paid little attention to this issue, only investigating on the manipulation effects. In the current study, we attempted to explore both acupuncture effects, which have positive influence to therapeutic efficiency, to reveal the neural mechanism of acupuncture. This paper combined the conventional general linear model (GLM) and independent component analysis (ICA) to study the topography and the temporal feature of brain activity to detect the brain responses to stimulation at ST36 (Zusanli) and a sham acupoint. The results showed that the manipulation-related effects and the sustained acupuncture effects separately induced statistically significant increases/decreases in the cortical-subcortical areas, including the anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (VLPFC), supplementary motor area (SMA) primary/secondary somatosensory cortex (SI/SII), occipital cortices and midbrain. Our findings suggested that the analgesia effects of ST36 integrated sophisticated physiological and psychological procedures. In addition, our results have shed light on methodology in acupuncture research. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Neural mechanisms underlying the effects of face-based affective signals on memory for faces: a tentative model.

    Science.gov (United States)

    Tsukiura, Takashi

    2012-01-01

    In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region.

  14. Risk-taking and social exclusion in adolescence: neural mechanisms underlying peer influences on decision-making.

    Science.gov (United States)

    Peake, Shannon J; Dishion, Thomas J; Stormshak, Elizabeth A; Moore, William E; Pfeifer, Jennifer H

    2013-11-15

    Social exclusion and risk-taking are both common experiences of concern in adolescence, yet little is known about how the two may be related at behavioral or neural levels. In this fMRI study, adolescents (N=27, 14 male, 14-17years-old) completed a series of tasks in the scanner assessing risky decision-making before and after an episode of social exclusion. In this particular context, exclusion was associated with greater behavioral risk-taking among adolescents with low self-reported resistance to peer influence (RPI). When making risky decisions after social exclusion, adolescents who had lower RPI exhibited higher levels of activity in the right temporoparietal junction (rTPJ), and this response in rTPJ was a significant mediator of the relationship between RPI and greater risk-taking after social exclusion. Lower RPI was also associated with lower levels of activity in lPFC during crashes following social exclusion, but unlike rTPJ this response in lPFC was not a significant mediator of the relationship between RPI and greater risk-taking after social exclusion. The results suggest that mentalizing and/or attentional mechanisms have a unique direct effect on adolescents' vulnerability to peer influence on risk-taking. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Multiobjective Optimization Design of Spinal Pedicle Screws Using Neural Networks and Genetic Algorithm: Mathematical Models and Mechanical Validation

    Directory of Open Access Journals (Sweden)

    Yongyut Amaritsakul

    2013-01-01

    Full Text Available Short-segment instrumentation for spine fractures is threatened by relatively high failure rates. Failure of the spinal pedicle screws including breakage and loosening may jeopardize the fixation integrity and lead to treatment failure. Two important design objectives, bending strength and pullout strength, may conflict with each other and warrant a multiobjective optimization study. In the present study using the three-dimensional finite element (FE analytical results based on an L25 orthogonal array, bending and pullout objective functions were developed by an artificial neural network (ANN algorithm, and the trade-off solutions known as Pareto optima were explored by a genetic algorithm (GA. The results showed that the knee solutions of the Pareto fronts with both high bending and pullout strength ranged from 92% to 94% of their maxima, respectively. In mechanical validation, the results of mathematical analyses were closely related to those of experimental tests with a correlation coefficient of −0.91 for bending and 0.93 for pullout (P<0.01 for both. The optimal design had significantly higher fatigue life (P<0.01 and comparable pullout strength as compared with commercial screws. Multiobjective optimization study of spinal pedicle screws using the hybrid of ANN and GA could achieve an ideal with high bending and pullout performances simultaneously.

  16. Neural mechanisms of selective exposure: an EEG study on the processing of decision-consistent and inconsistent information.

    Science.gov (United States)

    Fischer, Peter; Reinweber, Matthias; Vogrincic, Claudia; Schäfer, Axel; Schienle, Anne; Volberg, Gregor

    2013-01-01

    Decision makers tend to prefer decision-consistent information and/or neglect decision-inconsistent information (selective exposure). In the present EEG study the neural mechanisms of the classic selective exposure effect were examined by investigating oscillatory brain responses to consistent vs. inconsistent information. Twenty participants made an economic decision and subsequently were exposed to 45 consistent and 45 inconsistent images concerning their decision. EEG was recorded from 31 electrodes and differences between oscillatory brain responses towards consistent and inconsistent information were examined. The main result was an increase of induced theta power (5-8Hz, 0-0.7s) in the consistent compared to the inconsistent condition at right temporo-parietal electrodes, as well as a corresponding increase of evoked theta power at frontal electrodes. Since theta oscillations are often observed during memory formation, we conclude that decision-consistent information triggers memory formation, whereas decision-inconsistent information seems not to do so. This finding supports the classic motivational perspective of Leon Festinger on the selective exposure effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Mechanisms Underlying the Antiproliferative and Prodifferentiative Effects of Psoralen on Adult Neural Stem Cells via DNA Microarray

    Directory of Open Access Journals (Sweden)

    You Ning

    2013-01-01

    Full Text Available Adult neural stem cells (NSCs persist throughout life to replace mature cells that are lost during turnover, disease, or injury. The investigation of NSC creates novel treatments for central nervous system (CNS injuries and neurodegenerative disorders. The plasticity and reparative potential of NSC are regulated by different factors, which are critical for neurological regenerative medicine research. We investigated the effects of Psoralen, which is the mature fruit of Psoralea corylifolia L., on NSC behaviors and the underlying mechanisms. The self-renewal and proliferation of NSC were examined. We detected neuron- and/or astrocyte-specific markers using immunofluorescence and Western blotting, which could evaluate NSC differentiation. Psoralen treatment significantly inhibited neurosphere formation in a dose-dependent manner. Psoralen treatment increased the expression of the astrocyte-specific marker but decreased neuron-specific marker expression. These results suggested that Psoralen was a differentiation inducer in astrocyte. Differential gene expression following Psoralen treatment was screened using DNA microarray and confirmed by quantitative real-time PCR. Our microarray study demonstrated that Psoralen could effectively regulate the specific gene expression profile of NSC. The genes involved in the classification of cellular differentiation, proliferation, and metabolism, the transcription factors belonging to Ets family, and the hedgehog pathway may be closely related to the regulation.

  18. Multiobjective optimization design of spinal pedicle screws using neural networks and genetic algorithm: mathematical models and mechanical validation.

    Science.gov (United States)

    Amaritsakul, Yongyut; Chao, Ching-Kong; Lin, Jinn

    2013-01-01

    Short-segment instrumentation for spine fractures is threatened by relatively high failure rates. Failure of the spinal pedicle screws including breakage and loosening may jeopardize the fixation integrity and lead to treatment failure. Two important design objectives, bending strength and pullout strength, may conflict with each other and warrant a multiobjective optimization study. In the present study using the three-dimensional finite element (FE) analytical results based on an L25 orthogonal array, bending and pullout objective functions were developed by an artificial neural network (ANN) algorithm, and the trade-off solutions known as Pareto optima were explored by a genetic algorithm (GA). The results showed that the knee solutions of the Pareto fronts with both high bending and pullout strength ranged from 92% to 94% of their maxima, respectively. In mechanical validation, the results of mathematical analyses were closely related to those of experimental tests with a correlation coefficient of -0.91 for bending and 0.93 for pullout (P < 0.01 for both). The optimal design had significantly higher fatigue life (P < 0.01) and comparable pullout strength as compared with commercial screws. Multiobjective optimization study of spinal pedicle screws using the hybrid of ANN and GA could achieve an ideal with high bending and pullout performances simultaneously.

  19. Behavioral differences in aggressive children linked with neural mechanisms of emotion regulation.

    Science.gov (United States)

    Lewis, Marc D; Granic, Isabela; Lamm, Connie

    2006-12-01

    Children with aggressive behavior problems may have difficulties regulating negative emotions, resulting in harmful patterns of interpersonal behavior at home and in the schoolyard. Ventral and dorsal regions of the prefrontal cortex (PFC) have been associated with response inhibition and self-control-key components of emotion regulation. Our research program aims to explore differences among aggressive and normal children in the activation of these cortical regions during emotional episodes, to the extent possible using electrophysiological techniques, to identify diagnostic subtypes, gain insights into their interpersonal difficulties, and help develop effective treatment strategies. This report reviews several recent studies investigating individual and developmental differences in cortical mechanisms of emotion regulation, corresponding with different patterns of interpersonal behavior. Our methods include event-related potentials (ERPs) and cortical source modeling, using dense-array electroencephalography (EEG) technology, as well as videotaped observations of parent-child interactions, with both normal and aggressive children. By relating patterns of brain activation to observed behavioral differences, we find (i) a steady decrease in cortical activation subserving self-regulation across childhood and adolescence, (ii) different cortical activation patterns as well as behavioral constellations distinguishing subtypes of aggressive children, and (iii) robust correlations between the activation of cortical mediators of emotion regulation and flexibility in parent-child emotional communication in children referred for aggressive behavior problems. These findings point toward models of developmental psychopathology based on the interplay among biological, psychological, and social factors.

  20. Do horizontal saccadic eye movements increase interhemispheric coherence? Investigation of a hypothesized neural mechanism underlying EMDR

    Directory of Open Access Journals (Sweden)

    Zoe eSamara

    2011-03-01

    Full Text Available Series of horizontal saccadic eye movements (EMs are known to improve episodic memory retrieval in healthy adults and to facilitate the processing of traumatic memories in eye-movement desensitization and reprocessing (EMDR therapy. Several authors have proposed that EMs achieve these effects by increasing the functional connectivity of the two brain hemispheres, but direct evidence for this proposal is lacking. The aim of this study was to investigate whether memory enhancement following bilateral EMs is associated with increased interhemispheric coherence in the electroencephalogram (EEG. Fourteen healthy young adults were asked to freely recall lists of studied neutral and emotional words after a series of bilateral EMs and a control procedure. Baseline EEG activity was recorded before and after the EM and control procedures. Phase and amplitude coherence between bilaterally homologous brain areas were calculated for six frequency bands and electrode pairs across the entire scalp. Behavioral analyses showed that participants recalled more emotional (but not neutral words following the EM procedure than following the control procedure. However, the EEG analyses indicated no evidence that the EMs altered participants’ interhemispheric coherence or that improvements in recall