WorldWideScience

Sample records for neural fuzzy model

  1. Fuzzy and neural control

    Science.gov (United States)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  2. Fuzzy stochastic neural network model for structural system identification

    Science.gov (United States)

    Jiang, Xiaomo; Mahadevan, Sankaran; Yuan, Yong

    2017-01-01

    This paper presents a dynamic fuzzy stochastic neural network model for nonparametric system identification using ambient vibration data. The model is developed to handle two types of imprecision in the sensed data: fuzzy information and measurement uncertainties. The dimension of the input vector is determined by using the false nearest neighbor approach. A Bayesian information criterion is applied to obtain the optimum number of stochastic neurons in the model. A fuzzy C-means clustering algorithm is employed as a data mining tool to divide the sensed data into clusters with common features. The fuzzy stochastic model is created by combining the fuzzy clusters of input vectors with the radial basis activation functions in the stochastic neural network. A natural gradient method is developed based on the Kullback-Leibler distance criterion for quick convergence of the model training. The model is validated using a power density pseudospectrum approach and a Bayesian hypothesis testing-based metric. The proposed methodology is investigated with numerically simulated data from a Markov Chain model and a two-story planar frame, and experimentally sensed data from ambient vibration data of a benchmark structure.

  3. A new fuzzy regression model based on interval-valued fuzzy neural network and its applications to management

    Directory of Open Access Journals (Sweden)

    Somaye Yeylaghi

    2017-06-01

    Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.

  4. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    Directory of Open Access Journals (Sweden)

    Zhijia Chen

    2015-01-01

    Full Text Available In IaaS (infrastructure as a service cloud environment, users are provisioned with virtual machines (VMs. To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN. We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands.

  5. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    Science.gov (United States)

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  6. A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2016-01-01

    Full Text Available The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN. To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs and intuitionistic fuzzy cross-entropy (IFCE with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.

  7. Neural-Fuzzy model Based Steel Pipeline Multiple Cracks Classification

    Science.gov (United States)

    Elwalwal, Hatem Mostafa; Mahzan, Shahruddin Bin Hj.; Abdalla, Ahmed N.

    2017-10-01

    While pipes are cheaper than other means of transportation, this cost saving comes with a major price: pipes are subject to cracks, corrosion etc., which in turn can cause leakage and environmental damage. In this paper, Neural-Fuzzy model for multiple cracks classification based on Lamb Guide Wave. Simulation results for 42 sample were collected using ANSYS software. The current research object to carry on the numerical simulation and experimental study, aiming at finding an effective way to detection and the localization of cracks and holes defects in the main body of pipeline. Considering the damage form of multiple cracks and holes which may exist in pipeline, to determine the respective position in the steel pipe. In addition, the technique used in this research a guided lamb wave based structural health monitoring method whereas piezoelectric transducers will use as exciting and receiving sensors by Pitch-Catch method. Implementation of simple learning mechanism has been developed specially for the ANN for fuzzy the system represented.

  8. Neural Fuzzy Inference System-Based Weather Prediction Model and Its Precipitation Predicting Experiment

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2014-11-01

    Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.

  9. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    Science.gov (United States)

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    Directory of Open Access Journals (Sweden)

    C. K. Kwong

    2013-01-01

    Full Text Available Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1 the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS failed to run due to a large number of inputs; (2 the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  11. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    Science.gov (United States)

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  12. Model Integrating Fuzzy Argument with Neural Network Enhancing the Performance of Active Queue Management

    Directory of Open Access Journals (Sweden)

    Nguyen Kim Quoc

    2015-08-01

    Full Text Available The bottleneck control by active queue management mechanisms at network nodes is essential. In recent years, some researchers have used fuzzy argument to improve the active queue management mechanisms to enhance the network performance. However, the projects using the fuzzy controller depend heavily on professionals and their parameters cannot be updated according to changes in the network, so the effectiveness of this mechanism is not high. Therefore, we propose a model combining the fuzzy controller with neural network (FNN to overcome the limitations above. Results of the training of the neural networks will find the optimal parameters for the adaptive fuzzy controller well to changes of the network. This improves the operational efficiency of the active queue management mechanisms at network nodes.

  13. Multi-scale modeling of fuzzy spatial objects by means of neural networks

    Science.gov (United States)

    Silván, José L.

    2006-10-01

    The inherently spatial uncertainty of many geographic objects has been the target of several, though still limited number of, studies. Two types of uncertainties, namely fuzziness and randomness, have been formally characterized within the framework of fuzzy set and probability theories, respectively. However, the scale issue has not been explicitly considered in modelling vagueness, whilst it is true that the degree of uncertainty of many objects is in relation to the scale of its representation. Furthermore, though fuzzy data types have been there for some years, a computational framework for handling fuzzy spatial objects is still lacking. In this article a previously introduced neural representation of polygon layers has been generalized to represent not only polygons but also points, lines, and complex combinations of these in the hard (crisp) and fuzzy domains. Two types of neural units, combined with two types of activation function, were identified as the processing core of the model, where the activation function can be either hard or fuzzy. In the hard case, we show how it is possible to differentiate among interior, exterior and boundary of a polygon by using a tri-valued activation function instead of the binary function originally used. The generalization to fuzzy domains can be implemented in computers, allows hierarchical constructions of complex objects from basic ones and allows us to build upon traditional spatial databases (with crisp boundaries). It is shown how the degree of fuzziness may be related to the scale of the representation under the premise that a decrement in the degree of fuzziness may lead to new details becoming apparent in the boundary. Indications on how to perform a complex overlay of fuzzy maps are also provided.

  14. Fuzzy neural network theory and application

    CERN Document Server

    Liu, Puyin

    2004-01-01

    This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he

  15. Prediction of soft soil foundation settlement in Guangxi granite area based on fuzzy neural network model

    Science.gov (United States)

    Luo, Junhui; Wu, Chao; Liu, Xianlin; Mi, Decai; Zeng, Fuquan; Zeng, Yongjun

    2018-01-01

    At present, the prediction of soft foundation settlement mostly use the exponential curve and hyperbola deferred approximation method, and the correlation between the results is poor. However, the application of neural network in this area has some limitations, and none of the models used in the existing cases adopted the TS fuzzy neural network of which calculation combines the characteristics of fuzzy system and neural network to realize the mutual compatibility methods. At the same time, the developed and optimized calculation program is convenient for engineering designers. Taking the prediction and analysis of soft foundation settlement of gully soft soil in granite area of Guangxi Guihe road as an example, the fuzzy neural network model is established and verified to explore the applicability. The TS fuzzy neural network is used to construct the prediction model of settlement and deformation, and the corresponding time response function is established to calculate and analyze the settlement of soft foundation. The results show that the prediction of short-term settlement of the model is accurate and the final settlement prediction result has certain engineering reference value.

  16. A Comparison of Neural Networks and Fuzzy Logic Methods for Process Modeling

    Science.gov (United States)

    Cios, Krzysztof J.; Sala, Dorel M.; Berke, Laszlo

    1996-01-01

    The goal of this work was to analyze the potential of neural networks and fuzzy logic methods to develop approximate response surfaces as process modeling, that is for mapping of input into output. Structural response was chosen as an example. Each of the many methods surveyed are explained and the results are presented. Future research directions are also discussed.

  17. Genetic optimization of neural network and fuzzy logic for oil bubble point pressure modeling

    Energy Technology Data Exchange (ETDEWEB)

    Afshar, Mohammad [Islamic Azad University, Kharg (Iran, Islamic Republic of); Gholami, Amin [Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Asoodeh, Mojtaba [Islamic Azad University, Birjand (Iran, Islamic Republic of)

    2014-03-15

    Bubble point pressure is a critical pressure-volume-temperature (PVT) property of reservoir fluid, which plays an important role in almost all tasks involved in reservoir and production engineering. We developed two sophisticated models to estimate bubble point pressure from gas specific gravity, oil gravity, solution gas oil ratio, and reservoir temperature. Neural network and adaptive neuro-fuzzy inference system are powerful tools for extracting the underlying dependency of a set of input/output data. However, the mentioned tools are in danger of sticking in local minima. The present study went further by optimizing fuzzy logic and neural network models using the genetic algorithm in charge of eliminating the risk of being exposed to local minima. This strategy is capable of significantly improving the accuracy of both neural network and fuzzy logic models. The proposed methodology was successfully applied to a dataset of 153 PVT data points. Results showed that the genetic algorithm can serve the neural network and neuro-fuzzy models from local minima trapping, which might occur through back-propagation algorithm.

  18. Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network

    Directory of Open Access Journals (Sweden)

    ZHANG Yongzhi

    2016-10-01

    Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.

  19. Fuzzy neural network model for the estimation of subpixel land cover composition

    Science.gov (United States)

    Binaghi, Elisabetta; Brivio, Pietro A.; Ghezzi, Pier P.; Rampini, Anna; Vicenzi, Massimo

    1998-12-01

    This paper reports on an experimental study designed for the in-depth investigation of how a supervised neuro-fuzzy classifier evaluates partial membership in land cover classes. The system is based on the Fuzzy Multilayer Perceptron model proposed by Pal and Mitra to which modifications in distance measures adopted for computing gradual membership to fuzzy class are introduced. During the training phase supervised learning is used to assign output class membership to pure training vectors (full membership to one land cover class); the model supports a procedure to automatically compute fuzzy output membership values for mixed training pixels. The classifier has been evaluated by conducting two experiments. The first employed simulated tests images which include pure and mixed pixels of known geometry and radiometry. The second experiment was conducted on a highly complex real scene of the Venice lagoon, Italy) where water and wetland merge into one another, at sub-pixel level. Accuracy of the results produced by the classifier was evaluated and compared using evaluation tools specifically defined and implemented to extend conventional descriptive and analytical statistical estimators to the case of multi-membership in classes. Results obtained demonstrated in the specific context of mixed pixels that the classification benefits from the integration of neural and fuzzy techniques.

  20. A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Metin Demirtas

    2011-07-01

    Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.

  1. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    Science.gov (United States)

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.

  2. Fuzzy Modeling for Uncertainty Nonlinear Systems with Fuzzy Equations

    Directory of Open Access Journals (Sweden)

    Raheleh Jafari

    2017-01-01

    Full Text Available The uncertain nonlinear systems can be modeled with fuzzy equations by incorporating the fuzzy set theory. In this paper, the fuzzy equations are applied as the models for the uncertain nonlinear systems. The nonlinear modeling process is to find the coefficients of the fuzzy equations. We use the neural networks to approximate the coefficients of the fuzzy equations. The approximation theory for crisp models is extended into the fuzzy equation model. The upper bounds of the modeling errors are estimated. Numerical experiments along with comparisons demonstrate the excellent behavior of the proposed method.

  3. A comparison of neural network models, fuzzy logic, and multiple linear regression for prediction of hatchability.

    Science.gov (United States)

    Mehri, M

    2013-04-01

    Application of appropriate models to approximate the performance function warrants more precise prediction and helps to make the best decisions in the poultry industry. This study reevaluated the factors affecting hatchability in laying hens from 29 to 56 wk of age. Twenty-eight data lines representing 4 inputs consisting of egg weight, eggshell thickness, egg sphericity, and yolk/albumin ratio and 1 output, hatchability, were obtained from the literature and used to train an artificial neural network (ANN). The prediction ability of ANN was compared with that of fuzzy logic to evaluate the fitness of these 2 methods. The models were compared using R(2), mean absolute deviation (MAD), mean squared error (MSE), mean absolute percentage error (MAPE), and bias. The developed model was used to assess the relative importance of each variable on the hatchability by calculating the variable sensitivity ratio. The statistical evaluations showed that the ANN-based model predicted hatchability more accurately than fuzzy logic. The ANN-based model had a higher determination of coefficient (R(2) = 0.99) and lower residual distribution (MAD = 0.005; MSE = 0.00004; MAPE = 0.732; bias = 0.0012) than fuzzy logic (R(2) = 0.87; MAD = 0.014; MSE = 0.0004; MAPE = 2.095; bias = 0.0046). The sensitivity analysis revealed that the most important variable in the ANN-based model of hatchability was egg weight (variable sensitivity ratio, VSR = 283.11), followed by yolk/albumin ratio (VSR = 113.16), eggshell thickness (VSR = 16.23), and egg sphericity (VSR = 3.63). The results of this research showed that the universal approximation capability of ANN made it a powerful tool to approximate complex functions such as hatchability in the incubation process.

  4. Fuzzy Logic, Neural Networks, Genetic Algorithms: Views of Three Artificial Intelligence Concepts Used in Modeling Scientific Systems

    Science.gov (United States)

    Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.

    2003-01-01

    Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…

  5. Pulp and paper from vine shoots: neural fuzzy modeling of ethylene glycol pulping.

    Science.gov (United States)

    Jiménez, L; Angulo, V; Rodríguez, A; Sánchez, R; Ferrer, A

    2009-01-01

    The influence of operational variables in the pulping of vine shoots by use of ethylene glycol [viz. temperature (155-185 degrees C), cooking time (30-90 min) and ethylene glycol concentration (50-70% v/v)] on the properties of the resulting pulp (viz. yield, kappa number and viscosity) and paper sheets (breaking length, stretch, burst index, tear index and brightness) was studied. A central composite factorial design was used in conjunction with the software ANFIS Edit Matlab 6.5 to develop fuzzy neural model that reproduced the experimental results of the dependent variables with errors less than 5%. The model is therefore effective with a view to simulating the ethylene glycol pulping process.

  6. Deriving margins in prostate cancer radiotherapy treatment: comparison of neural network and fuzzy logic models.

    Science.gov (United States)

    Mzenda, Bongile; Gegov, Alexander; Brown, David J; Petrov, Nedyalko

    2012-01-01

    This study investigates the feasibility of using Artificial Neural Network (ANN) and fuzzy logic based techniques to select treatment margins for dynamically moving targets in the radiotherapy treatment of prostate cancer. The use of data from 15 patients relating error effects to the Tumour Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) radiobiological indices was contrasted against the use of data based on the prostate volume receiving 99% of the prescribed dose (V99%) and the rectum volume receiving more than 60Gy (V60). For the same input data, the results of the ANN were compared to results obtained using a fuzzy system, a fuzzy network and current clinically used statistical techniques. Compared to fuzzy and statistical methods, the ANN derived margins were found to be up to 2 mm larger at small and high input errors and up to 3.5 mm larger at medium input error magnitudes.

  7. A Network Traffic Prediction Model Based on Quantum-Behaved Particle Swarm Optimization Algorithm and Fuzzy Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2016-01-01

    Full Text Available Due to the fact that the fluctuation of network traffic is affected by various factors, accurate prediction of network traffic is regarded as a challenging task of the time series prediction process. For this purpose, a novel prediction method of network traffic based on QPSO algorithm and fuzzy wavelet neural network is proposed in this paper. Firstly, quantum-behaved particle swarm optimization (QPSO was introduced. Then, the structure and operation algorithms of WFNN are presented. The parameters of fuzzy wavelet neural network were optimized by QPSO algorithm. Finally, the QPSO-FWNN could be used in prediction of network traffic simulation successfully and evaluate the performance of different prediction models such as BP neural network, RBF neural network, fuzzy neural network, and FWNN-GA neural network. Simulation results show that QPSO-FWNN has a better precision and stability in calculation. At the same time, the QPSO-FWNN also has better generalization ability, and it has a broad prospect on application.

  8. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    Science.gov (United States)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2017-08-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  9. A Fuzzy Neural Network Based on Non-Euclidean Distance Clustering for Quality Index Model in Slashing Process

    Directory of Open Access Journals (Sweden)

    Yuxian Zhang

    2015-01-01

    Full Text Available The quality index model in slashing process is difficult to build by reason of the outliers and noise data from original data. To the above problem, a fuzzy neural network based on non-Euclidean distance clustering is proposed in which the input space is partitioned into many local regions by the fuzzy clustering based on non-Euclidean distance so that the computation complexity is decreased, and fuzzy rule number is determined by validity function based on both the separation and the compactness among clusterings. Then, the premise parameters and consequent parameters are trained by hybrid learning algorithm. The parameters identification is realized; meanwhile the convergence condition of consequent parameters is obtained by Lyapunov function. Finally, the proposed method is applied to build the quality index model in slashing process in which the experimental data come from the actual slashing process. The experiment results show that the proposed fuzzy neural network for quality index model has lower computation complexity and faster convergence time, comparing with GP-FNN, BPNN, and RBFNN.

  10. Study on Maritime Logistics Warehousing Center Model and Precision Marketing Strategy Optimization Based on Fuzzy Method and Neural Network Model

    Directory of Open Access Journals (Sweden)

    Xiao Kefeng

    2017-08-01

    Full Text Available The bulk commodity, different with the retail goods, has a uniqueness in the location selection, the chosen of transportation program and the decision objectives. How to make optimal decisions in the facility location, requirement distribution, shipping methods and the route selection and establish an effective distribution system to reduce the cost has become a burning issue for the e-commerce logistics, which is worthy to be deeply and systematically solved. In this paper, Logistics warehousing center model and precision marketing strategy optimization based on fuzzy method and neural network model is proposed to solve this problem. In addition, we have designed principles of the fuzzy method and neural network model to solve the proposed model because of its complexity. Finally, we have solved numerous examples to compare the results of lingo and Matlab, we use Matlab and lingo just to check the result and to illustrate the numerical example, we can find from the result, the multi-objective model increases logistics costs and improves the efficiency of distribution time.

  11. Comparison of polynomial and neural fuzzy models as applied to the ethanolamine pulping of vine shoots.

    Science.gov (United States)

    Jiménez, L; Angulo, V; Caparrós, S; Ariza, J

    2007-12-01

    The influence of operational variables in the pulping of vine shoots by use of ethanolamine [viz. temperature (155-185 degrees C), cooking time (30-90min) and ethanolamine concentration (50-70% v/v)] on the properties of the resulting pulp (viz. yield, kappa index, viscosity and drainability) was studied. A central composite factorial design was used in conjunction with the software BMDP and ANFIS Edit Matlab 6.5 to develop polynomial and fuzzy neural models that reproduced the experimental results of the dependent variables with errors less than 10%. Both types of models are therefore effective with a view to simulating the ethanolamine pulping process. Based on the proposed equations, the best choice is to use values of the operational valuables resulting in near-optimal pulp properties while saving energy and immobilized capital on industrial facilities by using lower temperatures and shorter processing times. One combination leading to near-optimal properties with reduced costs is using a temperature of 180 degrees C and an ethanolamine concentration of 60% for 60min, to obtain pulp with a viscosity of 6.13% lower than the maximum value (932.8ml/g) and a drainability of 5.49% lower than the maximum value (71 (o)SR).

  12. Fuzzy neural networks: theory and applications

    Science.gov (United States)

    Gupta, Madan M.

    1994-10-01

    During recent years, significant advances have been made in two distinct technological areas: fuzzy logic and computational neural networks. The theory of fuzzy logic provides a mathematical framework to capture the uncertainties associated with human cognitive processes, such as thinking and reasoning. It also provides a mathematical morphology to emulate certain perceptual and linguistic attributes associated with human cognition. On the other hand, the computational neural network paradigms have evolved in the process of understanding the incredible learning and adaptive features of neuronal mechanisms inherent in certain biological species. Computational neural networks replicate, on a small scale, some of the computational operations observed in biological learning and adaptation. The integration of these two fields, fuzzy logic and neural networks, have given birth to an emerging technological field -- fuzzy neural networks. Fuzzy neural networks, have the potential to capture the benefits of these two fascinating fields, fuzzy logic and neural networks, into a single framework. The intent of this tutorial paper is to describe the basic notions of biological and computational neuronal morphologies, and to describe the principles and architectures of fuzzy neural networks. Towards this goal, we develop a fuzzy neural architecture based upon the notion of T-norm and T-conorm connectives. An error-based learning scheme is described for this neural structure.

  13. A Fuzzy Neural Tree for Possibilistic Reliability

    NARCIS (Netherlands)

    Ciftcioglu, O.

    2008-01-01

    An innovative neural fuzzy system is considered for possibilistic reliability using a neural tree structure with nodes of neuronal type. The total tree structure works effectively as a fuzzy logic system where the possibility theory plays important role with Gaussian possibility distribution at the

  14. Neural-network-based fuzzy logic decision systems

    Science.gov (United States)

    Kulkarni, Arun D.; Giridhar, G. B.; Coca, Praveen

    1994-10-01

    During the last few years there has been a large and energetic upswing in research efforts aimed at synthesizing fuzzy logic with neural networks. This combination of neural networks and fuzzy logic seems natural because the two approaches generally attack the design of `intelligent' system from quite different angles. Neural networks provide algorithms for learning, classification, and optimization whereas fuzzy logic often deals with issues such as reasoning in a high (semantic or linguistic) level. Consequently the two technologies complement each other. In this paper, we combine neural networks with fuzzy logic techniques. We propose an artificial neural network (ANN) model for a fuzzy logic decision system. The model consists of six layers. The first three layers map the input variables to fuzzy set membership functions. The last three layers implement the decision rules. The model learns the decision rules using a supervised gradient descent procedure. As an illustration we considered two examples. The first example deals with pixel classification in multispectral satellite images. In our second example we used the fuzzy decision system to analyze data from magnetic resonance imaging (MRI) scans for tissue classification.

  15. Applying the Back-Propagation Neural Network model and fuzzy classification to evaluate the trophic status of a reservoir system.

    Science.gov (United States)

    Chang, C L; Liu, H C

    2015-09-01

    The trophic state index, and in particular, the Carlson Trophic State Index (CTSI), is critical for evaluating reservoir water quality. Despite its common use in evaluating static water quality, the reliability of the CTSI may decrease when water turbidity is high. Therefore, this study examines the reliability of the CTSI and uses the Back-Propagation Neural Network (BPNN) model to create a new trophic state index. Fuzzy theory, rather than binary logic, is implemented to classify the trophic status into its three grades. The results show that compared to the CTSI with traditional classification, the new index with fuzzy classification can improve trophic status evaluation with high water turbidity. A reliable trophic state index can correctly describe reservoir water quality and allow relevant agencies to address proper water quality management strategies for a reservoir system.

  16. Synchronization of fractional fuzzy cellular neural networks with interactions

    Science.gov (United States)

    Ma, Weiyuan; Li, Changpin; Wu, Yujiang; Wu, Yongqing

    2017-10-01

    In this paper, we introduce fuzzy theory into the fractional cellular neural networks to dynamically enhance the coupling strength and propose a fractional fuzzy neural network model with interactions. Using the Lyapunov principle of fractional differential equations, we design the adaptive control schemes to realize the synchronization and obtain the synchronization criteria. Finally, we provide some numerical examples to show the effectiveness of our obtained results.

  17. Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India.

    Science.gov (United States)

    Senthil Kumar, A R; Goyal, Manish Kumar; Ojha, C S P; Singh, R D; Swamee, P K

    2013-01-01

    The prediction of streamflow is required in many activities associated with the planning and operation of the components of a water resources system. Soft computing techniques have proven to be an efficient alternative to traditional methods for modelling qualitative and quantitative water resource variables such as streamflow, etc. The focus of this paper is to present the development of models using multiple linear regression (MLR), artificial neural network (ANN), fuzzy logic and decision tree algorithms such as M5 and REPTree for predicting the streamflow at Kasol located at the upstream of Bhakra reservoir in Sutlej basin in northern India. The input vector to the various models using different algorithms was derived considering statistical properties such as auto-correlation function, partial auto-correlation and cross-correlation function of the time series. It was found that REPtree model performed well compared to other soft computing techniques such as MLR, ANN, fuzzy logic, and M5P investigated in this study and the results of the REPTree model indicate that the entire range of streamflow values were simulated fairly well. The performance of the naïve persistence model was compared with other models and the requirement of the development of the naïve persistence model was also analysed by persistence index.

  18. Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy

    Science.gov (United States)

    Kurtulus, Bedri; Razack, Moumtaz

    2010-02-01

    SummaryThis paper compares two methods for modeling karst aquifers, which are heterogeneous, highly non-linear, and hierarchical systems. There is a clear need to model these systems given the crucial role they play in water supply in many countries. In recent years, the main components of soft computing (fuzzy logic (FL), and Artificial Neural Networks, (ANNs)) have come to prevail in the modeling of complex non-linear systems in different scientific and technologic disciplines. In this study, Artificial Neural Networks and Adaptive Neuro-Fuzzy Interface System (ANFIS) methods were used for the prediction of daily discharge of karstic aquifers and their capability was compared. The approach was applied to 7 years of daily data of La Rochefoucauld karst system in south-western France. In order to predict the karst daily discharges, single-input (rainfall, piezometric level) vs. multiple-input (rainfall and piezometric level) series were used. In addition to these inputs, all models used measured or simulated discharges from the previous days with a specified delay. The models were designed in a Matlab™ environment. An automatic procedure was used to select the best calibrated models. Daily discharge predictions were then performed using the calibrated models. Comparing predicted and observed hydrographs indicates that both models (ANN and ANFIS) provide close predictions of the karst daily discharges. The summary statistics of both series (observed and predicted daily discharges) are comparable. The performance of both models is improved when the number of inputs is increased from one to two. The root mean square error between the observed and predicted series reaches a minimum for two-input models. However, the ANFIS model demonstrates a better performance than the ANN model to predict peak flow. The ANFIS approach demonstrates a better generalization capability and slightly higher performance than the ANN, especially for peak discharges.

  19. Fuzzy neural approach for colon cancer prediction | Obi | Scientia ...

    African Journals Online (AJOL)

    fuzzy inference procedure. The proposed system which is self-learning and adaptive is able to handle the uncertainties often associated with the diagnosis and analysis of colon cancer. Keywords: Neural Network, Fuzzy logic, Neuro Fuzzy System, ...

  20. Fuzzy logic and neural network technologies

    Science.gov (United States)

    Villarreal, James A.; Lea, Robert N.; Savely, Robert T.

    1992-01-01

    Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.

  1. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    Science.gov (United States)

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  2. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS

    Science.gov (United States)

    Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi

    2016-09-01

    This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.

  3. Fuzzy logic and neural networks basic concepts & application

    CERN Document Server

    Alavala, Chennakesava R

    2008-01-01

    About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank

  4. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff

    Science.gov (United States)

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-04-01

    SummaryModeling of rainfall-runoff dynamics is one of the most studied topics in hydrology due to its essential application to water resources management. Recently, artificial intelligence has gained much popularity for calibrating the nonlinear relationships inherent in the rainfall-runoff process. In this study, the advantages of artificial neural networks and neuro-fuzzy system in continuous modeling of the daily and hourly behaviour of runoff were examined. Three different adaptive techniques were constructed and examined namely, Levenberg-Marquardt feed forward neural network, Bayesian regularization feed forward neural network, and neuro-fuzzy. In addition, the effects of data transformation on model performance were also investigated. This was done by examining the performance of the three network architectures and training algorithms using both raw and transformed data. Through inspection of the results it was found that although the model built on transformed data outperforms the model built on raw data, no significant differences were found between the forecast accuracies of the three examined models. A detailed comparison of the overall performance indicated that the neuro-fuzzy model performed better than both the Levenberg-Marquardt-FFNN and the Bayesian regularization-FFNN. In order to enable users to process the data easily, a graphic user interface (GUI) was developed. This program allows users to process the rainfall-runoff data, to train/test the model using various input options and to visualize results.

  5. An architecture for designing fuzzy logic controllers using neural networks

    Science.gov (United States)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  6. Internal model control of inductive magnetic suspension spherical active joints based on fuzzy neural network inverse system

    Directory of Open Access Journals (Sweden)

    Li Zeng

    2015-11-01

    Full Text Available This article puts forward inductive magnetic suspension spherical active joints and has researched on its mechanism. The expression of motor’s electromagnetic torque is derived from the point of power balance of three-dimensional electromagnetic model, and on the basis of the air gap magnetic flux density distribution, we establish the joint’s mathematical model of electromagnetic levitation force. The relationship between the two of displacement, angle, and current and the transfer function expression of motor system are derived by the state equation and the inverse system theory We established the inverse system of joint’s original system using fuzzy neural network theory and simplified coupling relationship of the motor’s complex multivariable to establish ANFIS model of joint’s inverse system. An internal model controller with high robustness and stability was designed, and an internal model control joint pseudo linear system was built. According to the simulation analysis and experimental verification of the joint control system, the conclusion indicates that the rotor has quick dynamic response and high robustness.

  7. A Network Traffic Prediction Model Based on Quantum-Behaved Particle Swarm Optimization Algorithm and Fuzzy Wavelet Neural Network

    OpenAIRE

    Kun Zhang; Zhao Hu; Xiao-Ting Gan; Jian-Bo Fang

    2016-01-01

    Due to the fact that the fluctuation of network traffic is affected by various factors, accurate prediction of network traffic is regarded as a challenging task of the time series prediction process. For this purpose, a novel prediction method of network traffic based on QPSO algorithm and fuzzy wavelet neural network is proposed in this paper. Firstly, quantum-behaved particle swarm optimization (QPSO) was introduced. Then, the structure and operation algorithms of WFNN are presented. The pa...

  8. Integration of Adaptive Neuro-Fuzzy Inference System, Neural Networks and Geostatistical Methods for Fracture Density Modeling

    Directory of Open Access Journals (Sweden)

    Ja’fari A.

    2014-01-01

    Full Text Available Image logs provide useful information for fracture study in naturally fractured reservoir. Fracture dip, azimuth, aperture and fracture density can be obtained from image logs and have great importance in naturally fractured reservoir characterization. Imaging all fractured parts of hydrocarbon reservoirs and interpreting the results is expensive and time consuming. In this study, an improved method to make a quantitative correlation between fracture densities obtained from image logs and conventional well log data by integration of different artificial intelligence systems was proposed. The proposed method combines the results of Adaptive Neuro-Fuzzy Inference System (ANFIS and Neural Networks (NN algorithms for overall estimation of fracture density from conventional well log data. A simple averaging method was used to obtain a better result by combining results of ANFIS and NN. The algorithm applied on other wells of the field to obtain fracture density. In order to model the fracture density in the reservoir, we used variography and sequential simulation algorithms like Sequential Indicator Simulation (SIS and Truncated Gaussian Simulation (TGS. The overall algorithm applied to Asmari reservoir one of the SW Iranian oil fields. Histogram analysis applied to control the quality of the obtained models. Results of this study show that for higher number of fracture facies the TGS algorithm works better than SIS but in small number of fracture facies both algorithms provide approximately same results.

  9. Fuzzy Control Teaching Models

    Directory of Open Access Journals (Sweden)

    Klaus-Dietrich Kramer

    2016-05-01

    Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.

  10. Pulse image recognition using fuzzy neural network.

    Science.gov (United States)

    Xu, L S; Meng, Max Q -H; Wang, K Q

    2007-01-01

    The automatic recognition of pulse images is the key in the research of computerized pulse diagnosis. In order to automatically differentiate the pulse patterns by using small samples, a fuzzy neural network to classify pulse images based on the knowledge of experts in traditional Chinese pulse diagnosis was designed. The designed classifier can make hard decision and soft decision for identifying 18 patterns of pulse images at the accuracy of 91%, which is better than the results that achieved by back-propagation neural network.

  11. Diagnosis Of Aphasia Using Neural And Fuzzy Techniques

    DEFF Research Database (Denmark)

    Jantzen, Jan; Axer, Hubertus; Keyserlingk, Diedrich Graf von

    2002-01-01

    The language disability aphasia has several sub-diagnoses such as Amnestic, Broca, Global, and Wernicke. Data concerning 265 patients is available in the form of test scores and diagnoses, made by physicians according to the Aachen Aphasia Test. A neural network model has been built, which...... is available for consultation on the World Wide Web. The neural network model is in this paper compared with a fuzzy model. Rather than concluding which method provides the best approximation, the paper acts as an example solution useful for other benchmark studies....

  12. Fuzzy object modeling

    Science.gov (United States)

    Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.

    2011-03-01

    To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.

  13. Type-2 Fuzzy Curve Model

    Science.gov (United States)

    Adesah, R. S.; Zakaria, R.; Wahab, A. F.; Talibe, A.

    2017-09-01

    The paper discusses about the formulation of type-2 fuzzy curve model. The generalization is carried out due to the existence of complex uncertainty which cannot be represented with classical type-1 fuzzy set. Hence, type-2 fuzzy set is proposed to define this type of complex uncertainty. Based on the complex uncertainty of data, fuzzy set theory type-2 with fuzzy number type-2 concept is used to represent the data with complex uncertainty. This process re-defines the data as type-2 fuzzy data which is also the result obtained by generalizing type-1 fuzzy data. Therefore, B-spline function is chosen to show the development of type-2 B-spline curve model via generalization. It is then followed by a number of processes, i.e. fuzzification, reduction and defuzzification are defined to model type-2 fuzzy B-spline curve to obtain a crisp type-2 fuzzy curve.

  14. Experiments on neural network architectures for fuzzy logic

    Science.gov (United States)

    Keller, James M.

    1991-01-01

    The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.

  15. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  16. Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition

    CERN Document Server

    Melin, Patricia

    2012-01-01

    This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural ne...

  17. A New Prediction Model for Transformer Winding Hotspot Temperature Fluctuation Based on Fuzzy Information Granulation and an Optimized Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-12-01

    Full Text Available Winding hotspot temperature is the key factor affecting the load capacity and service life of transformers. For the early detection of transformer winding hotspot temperature anomalies, a new prediction model for the hotspot temperature fluctuation range based on fuzzy information granulation (FIG and the chaotic particle swarm optimized wavelet neural network (CPSO-WNN is proposed in this paper. The raw data are firstly processed by FIG to extract useful information from each time window. The extracted information is then used to construct a wavelet neural network (WNN prediction model. Furthermore, the structural parameters of WNN are optimized by chaotic particle swarm optimization (CPSO before it is used to predict the fluctuation range of the hotspot temperature. By analyzing the experimental data with four different prediction models, we find that the proposed method is more effective and is of guiding significance for the operation and maintenance of transformers.

  18. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  19. Robust adaptive fuzzy neural tracking control for a class of unknown ...

    Indian Academy of Sciences (India)

    In this paper, an adaptive fuzzy neural controller (AFNC) for a class of unknown chaotic systems is proposed. The proposed AFNC is comprised of a fuzzy neural controller and a robust controller. The fuzzy neural controller including a fuzzy neural network identifier (FNNI) is the principal controller. The FNNI is used for ...

  20. Diagnosis of aphasia using neural and fuzzy techniques

    DEFF Research Database (Denmark)

    Jantzen, Jan; Axer, H.; Keyserlingk, D. Graf von

    2000-01-01

    The language disability Aphasia has several sub-diagnoses such as Amnestic, Broca, Global, and Wernicke. Data concerning 265 patients is available in the form of test scores and diagnoses, made by physicians according to the Aachen Aphasia Test. A neural network model has been built, which is ava...... is available for consultation on the World Wide Web. The neural network model is in this paper compared with a fuzzy model. Rather than concluding which method provides the best approximation, the paper acts as an example solution useful for other benchmark studies.......The language disability Aphasia has several sub-diagnoses such as Amnestic, Broca, Global, and Wernicke. Data concerning 265 patients is available in the form of test scores and diagnoses, made by physicians according to the Aachen Aphasia Test. A neural network model has been built, which...

  1. Abrasive slurry jet cutting model based on fuzzy relations

    Science.gov (United States)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  2. Fuzzy logic, neural networks, and soft computing

    Science.gov (United States)

    Zadeh, Lofti A.

    1994-01-01

    The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial

  3. A Laboratory Study on Stress Dependency of Joint Transmissivity and its Modeling with Neural Networks, Fuzzy Method and Regression Analysis

    Directory of Open Access Journals (Sweden)

    Amin Moori Roozali

    2014-08-01

    Full Text Available Correct estimation of water inflow into underground excavations can decrease safety risks and associated costs. Researchers have proposed different methods to asses this value. It has been proved that water transmissivity of a rock joint is a function of factors, such as normal stress, joint roughness and its size and water pressure therefore, a laboratory setup was proposed to quantitatively measure the flow as a function of mentioned parameters. Among these, normal stress has proved to be the most influential parameter. With increasing joint roughness and rock sample size, water flow has decreased while increasing water pressure has a direct increasing effect on the flow. To simulate the complex interaction of these parameters, neural networks and Fuzzy method together with regression analysis have been utilized. Correlation factors between laboratory results and obtained numerical ones show good agreement which proves usefulness of these methods for assessment of water inflow.

  4. Development of Fuzzy Logic and Neural Network Control and Advanced Emissions Modeling for Parallel Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, A.; Washington, G.; Rizzoni, G.; Guezennec, Y.

    2003-12-01

    This report describes the development of new control strategies and models for Hybrid Electric Vehicles (HEV) by the Ohio State University. The report indicates results from models created in NREL's ADvanced VehIcle SimulatOR (ADVISOR 3.2), and results of a scalable IC Engine model, called in Willan's Line technique, implemented in ADVISOR 3.2.

  5. An Efficient Approach in Analysis of DNA Base Calling Using Neural Fuzzy Model.

    Science.gov (United States)

    Hameed, Safa A; Hamed, Raed I

    2017-01-01

    This paper presented the issues of true representation and a reliable measure for analyzing the DNA base calling is provided. The method implemented dealt with the data set quality in analyzing DNA sequencing, it is investigating solution of the problem of using Neurofuzzy techniques for predicting the confidence value for each base in DNA base calling regarding collecting the data for each base in DNA, and the simulation model of designing the ANFIS contains three subsystems and main system; obtain the three features from the subsystems and in the main system and use the three features to predict the confidence value for each base. This is achieving effective results with high performance in employment.

  6. Fuzzy logic and neural networks in artificial intelligence and pattern recognition

    Science.gov (United States)

    Sanchez, Elie

    1991-10-01

    With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.

  7. Logistics Distribution Center Location Evaluation Based on Genetic Algorithm and Fuzzy Neural Network

    Science.gov (United States)

    Shao, Yuxiang; Chen, Qing; Wei, Zhenhua

    Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.

  8. Assessing Wheat Frost Risk with the Support of GIS: An Approach Coupling a Growing Season Meteorological Index and a Hybrid Fuzzy Neural Network Model

    Directory of Open Access Journals (Sweden)

    Yaojie Yue

    2016-12-01

    Full Text Available Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment model of wheat frost, based on meteorological data and a hybrid fuzzy neural network model, taking China as an example. With the support of a geographic information system (GIS, a comprehensive method was put forward. Firstly, threshold temperatures of wheat frost at three growth stages were proposed, referring to phenology in different wheat growing areas and the meteorological standard of Degree of Crop Frost Damage (QX/T 88-2008. Secondly, a vulnerability curve illustrating the relationship between frost hazard intensity and wheat yield loss was worked out using hybrid fuzzy neural network model. Finally, the wheat frost risk was assessed in China. Results show that our proposed threshold temperatures are more suitable than using 0 °C in revealing the spatial pattern of frost occurrence, and hybrid fuzzy neural network model can further improve the accuracy of the vulnerability curve of wheat subject to frost with limited historical hazard records. Both these advantages ensure the precision of wheat frost risk assessment. In China, frost widely distributes in 85.00% of the total winter wheat planting area, but mainly to the north of 35°N; the southern boundary of wheat frost has moved northward, potentially because of the warming climate. There is a significant trend that suggests high risk areas will enlarge and gradually expand to the south, with the risk levels increasing from a return period of 2 years to 20 years. Among all wheat frost risk levels, the regions with loss rate ranges from 35.00% to 45.00% account for the largest area proportion, ranging from 58.60% to 63.27%. We argue that for wheat and other frost-affected crops, it is

  9. Type-2 fuzzy neural networks and their applications

    CERN Document Server

    Aliev, Rafik Aziz

    2014-01-01

    This book deals with the theory, design principles, and application of hybrid intelligent systems using type-2 fuzzy sets in combination with other paradigms of Soft Computing technology such as Neuro-Computing and Evolutionary Computing. It provides a self-contained exposition of the foundation of type-2 fuzzy neural networks and presents a vast compendium of its applications to control, forecasting, decision making, system identification and other real problems. Type-2 Fuzzy Neural Networks and Their Applications is helpful for teachers and students of universities and colleges, for scientis

  10. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin.

    Science.gov (United States)

    Larkin, Andrew; Siddens, Lisbeth K; Krueger, Sharon K; Tilton, Susan C; Waters, Katrina M; Williams, David E; Baird, William M

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log(2) fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Estimation of Minimum DNBR Using Cascaded Fuzzy Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2015-05-15

    This phenomenon of boiling crisis is called a departure from nucleate boiling (DNB). The DNB phenomena can influence the fuel cladding and fuel pellets. The DNB ratio (DNBR) is defined as the ratio of the expected DNB heat flux to the actual fuel rod heat flux. Since it is very important to monitor and predict the minimum DNBR in a reactor core to prevent the boiling crisis and clad melting, a number of researches have been conducted to predict DNBR values. The aim of this study is to estimate the minimum DNBR in a reactor core using the measured signals of the reactor coolant system (RCS) by applying cascaded fuzzy neural networks (CFNN) according to operating conditions. Reactor core monitoring and protection systems require minimum DNBR prediction. The CFNN can be used to optimize the minimum DNBR value through the process of adding fuzzy neural networks (FNN) repeatedly. The proposed algorithm is trained by using the data set prepared for training (development data) and verified by using another data set different (independent) from the development data. The developed CFNN models were applied to the first fuel cycle of OPR1000. The RMS errors are 0.23% and 0.12% for the positive and negative ASI, respectively.

  12. Estimation of LOCA break size using cascaded Fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geon Pil; Yoo, Kwae Hwan; Back, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2017-04-15

    Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA), which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN) model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.

  13. Estimation of LOCA Break Size Using Cascaded Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Geon Pil Choi

    2017-04-01

    Full Text Available Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA, which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.

  14. Neuro-fuzzy modeling in bankruptcy prediction

    Directory of Open Access Journals (Sweden)

    Vlachos D.

    2003-01-01

    Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.

  15. Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms

    CERN Document Server

    Siddique, Nazmul

    2014-01-01

    Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller.  The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...

  16. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Larkin, Andrew [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Department of Statistics, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Krueger, Sharon K. [Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Tilton, Susan C.; Waters, Katrina M. [Superfund Research Center, Oregon State University (United States); Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Baird, William M. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States)

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  17. Adaptive Sliding Mode Control of Chaos in Permanent Magnet Synchronous Motor via Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Tat-Bao-Thien Nguyen

    2014-01-01

    Full Text Available In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking control in a chaotic permanent magnet synchronous motor (PMSM drive system. The proposed controller consists of two parts. The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation results are provided to verify the validity and superiority of the proposed method.

  18. Modelling and multivariable control in anaesthesia using neural-fuzzy paradigms. Part I. Classification of depth of anaesthesia and development of a patient model.

    Science.gov (United States)

    Nunes, Catarina S; Mahfouf, Mahdi; Linkens, Derek A; Peacock, John E

    2005-11-01

    The first part of this research relates to two strands: classification of depth of anaesthesia (DOA) and the modelling of patient's vital signs. First, a fuzzy relational classifier was developed to classify a set of wavelet-extracted features from the auditory evoked potential (AEP) into different levels of DOA. Second, a hybrid patient model using Takagi-Sugeno Kang fuzzy models was developed. This model relates the heart rate, the systolic arterial pressure and the AEP features with the effect concentrations of the anaesthetic drug propofol and the analgesic drug remifentanil. The surgical stimulus effect was incorporated into the patient model using Mamdani fuzzy models. The result of this study is a comprehensive patient model which predicts the effects of the above two drugs on DOA while monitoring several vital patient's signs. This model will form the basis for the development of a multivariable closed-loop control algorithm which administers "optimally" the above two drugs simultaneously in the operating theatre during surgery.

  19. Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing

    CERN Document Server

    Siddique, Nazmul

    2013-01-01

    Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect

  20. Novel Fuzzy Modeling and Synchronization of Chaotic Systems With Multinonlinear Terms by Advanced Ge-Li Fuzzy Model.

    Science.gov (United States)

    Li, Shih-Yu; Tam, Lap-Mou; Tsai, Shang-En; Ge, Zheng-Ming

    2015-09-11

    Ge and Li proposed an alternative strategy to model and synchronize two totally different nonlinear systems in the end of 2011, which provided a new version for fuzzy modeling and has been applied to several fields to simplify their modeling works and solve the mismatch problems [1]-[17]. However, the proposed model limits the number of nonlinear terms in each equation so that this model could not be used in all kinds of nonlinear dynamic systems. As a result, in this paper, a more efficient and comprehensive advanced-Ge-Li fuzzy model is given to further release the limitation and improve the effectiveness of the original one. The novel fuzzy model can be applied to all kinds of complex nonlinear systems--this is the universal strategy and only m x 2 fuzzy rules as well as two linear subsystems are needed to simulate nonlinear behaviors (m is the number of states in a nonlinear dynamic system), whatever the nonlinear terms are copious or complicated. Further, the fuzzy synchronization of two nonlinear dynamic systems with totally distinct structures can be achieved via only two sets of control gains designed through the novel fuzzy model as well as its corresponding fuzzy synchronization scheme. Two complicated dynamic systems are designed to be the illustrations, Mathieu-Van der pol system with uncertainties and Quantum-cellular neural networks nano system with uncertainties, to show the effectiveness and feasibility of the novel fuzzy model.

  1. Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis.

    Science.gov (United States)

    Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin

    2014-01-01

    Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition

    Science.gov (United States)

    Popko, E. A.; Weinstein, I. A.

    2016-08-01

    Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.

  3. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2

    Science.gov (United States)

    Lea, Robert N. (Editor); Villarreal, James A. (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  4. Reactive Power Control of Single-Stage Three-Phase Photovoltaic System during Grid Faults Using Recurrent Fuzzy Cerebellar Model Articulation Neural Network

    Directory of Open Access Journals (Sweden)

    Faa-Jeng Lin

    2014-01-01

    Full Text Available This study presents a new active and reactive power control scheme for a single-stage three-phase grid-connected photovoltaic (PV system during grid faults. The presented PV system utilizes a single-stage three-phase current-controlled voltage-source inverter to achieve the maximum power point tracking (MPPT control of the PV panel with the function of low voltage ride through (LVRT. Moreover, a formula based on positive sequence voltage for evaluating the percentage of voltage sag is derived to determine the ratio of the injected reactive current to satisfy the LVRT regulations. To reduce the risk of overcurrent during LVRT operation, a current limit is predefined for the injection of reactive current. Furthermore, the control of active and reactive power is designed using a two-dimensional recurrent fuzzy cerebellar model articulation neural network (2D-RFCMANN. In addition, the online learning laws of 2D-RFCMANN are derived according to gradient descent method with varied learning-rate coefficients for network parameters to assure the convergence of the tracking error. Finally, some experimental tests are realized to validate the effectiveness of the proposed control scheme.

  5. Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks

    Directory of Open Access Journals (Sweden)

    M. Bazazzadeh

    2011-01-01

    Full Text Available This paper presents a successful approach in designing a Fuzzy Logic Controller (FLC for a specific Jet Engine. At first, a suitable mathematical model for the jet engine is presented by the aid of SIMULINK. Then by applying different reasonable fuel flow functions via the engine model, some important engine-transient operation parameters (such as thrust, compressor surge margin, turbine inlet temperature, etc. are obtained. These parameters provide a precious database, which train a neural network. At the second step, by designing and training a feedforward multilayer perceptron neural network according to this available database; a number of different reasonable fuel flow functions for various engine acceleration operations are determined. These functions are used to define the desired fuzzy fuel functions. Indeed, the neural networks are used as an effective method to define the optimum fuzzy fuel functions. At the next step, we propose a FLC by using the engine simulation model and the neural network results. The proposed control scheme is proved by computer simulation using the designed engine model. The simulation results of engine model with FLC illustrate that the proposed controller achieves the desired performance and stability.

  6. Performance assessment of electric power generations using an adaptive neural network algorithm and fuzzy DEA

    Energy Technology Data Exchange (ETDEWEB)

    Javaheri, Zahra

    2010-09-15

    Modeling, evaluating and analyzing performance of Iranian thermal power plants is the main goal of this study which is based on multi variant methods analysis. These methods include fuzzy DEA and adaptive neural network algorithm. At first, we determine indicators, then data is collected, next we obtained values of ranking and efficiency by Fuzzy DEA, Case study is thermal power plants In view of the fact that investment to establish on power plant is very high, and maintenance of power plant causes an expensive expenditure, moreover using fossil fuel effected environment hence optimum produce of current power plants is important.

  7. Fuzzy audit risk modeling algorithm

    Directory of Open Access Journals (Sweden)

    Zohreh Hajihaa

    2011-07-01

    Full Text Available Fuzzy logic has created suitable mathematics for making decisions in uncertain environments including professional judgments. One of the situations is to assess auditee risks. During recent years, risk based audit (RBA has been regarded as one of the main tools to fight against fraud. The main issue in RBA is to determine the overall audit risk an auditor accepts, which impact the efficiency of an audit. The primary objective of this research is to redesign the audit risk model (ARM proposed by auditing standards. The proposed model of this paper uses fuzzy inference systems (FIS based on the judgments of audit experts. The implementation of proposed fuzzy technique uses triangular fuzzy numbers to express the inputs and Mamdani method along with center of gravity are incorporated for defuzzification. The proposed model uses three FISs for audit, inherent and control risks, and there are five levels of linguistic variables for outputs. FISs include 25, 25 and 81 rules of if-then respectively and officials of Iranian audit experts confirm all the rules.

  8. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  9. Fundamentals of computational intelligence neural networks, fuzzy systems, and evolutionary computation

    CERN Document Server

    Keller, James M; Fogel, David B

    2016-01-01

    This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...

  10. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    Science.gov (United States)

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  11. Neural fuzzy digital filtering: multivariate identifier filters involving multiple inputs and multiple outputs (MIMO

    Directory of Open Access Journals (Sweden)

    Juan Carlos García Infante

    2011-01-01

    Full Text Available  Multivariate identifier filters (multiple inputs and multiple outputs - MIMO are adaptive digital systems having a loop in accordance with an objective function to adjust matrix parameter convergence to observable reference system dynamics. One way of complying with this condition is to use fuzzy logic inference mechanisms which interpret and select the best matrix parameter from a knowledge base. Such selection mechanisms with neural networks can provide a response from the best operational level for each change in state (Shannon, 1948. This paper considers the MIMO digital filter model using neuro fuzzy digital filtering to find an adaptive  parameter matrix which is integrated into the Kalman filter by the transition matrix. The filter uses the neural network as back-propagation into the fuzzy mechanism to do this, interpreting its variables and its respective levels and selecting the best values for automatically adjusting transition matrix values. The Matlab simulation describes the neural fuzzy digital filter giving an approximation of exponential convergence seen in functional error. 

  12. Fuzzy logic marketing models for sustainable development

    Directory of Open Access Journals (Sweden)

    Ioan Constantin ENACHE

    2015-06-01

    Full Text Available Fuzzy logic offers a different approach to describe economic and marketing phenomena. By providing a replacement for crisp values the fuzzy sets proved to be efficient alternatives for customer behaviour analysis. These advantages can provide a new way to address sustainable development issues. The present paper aims at presenting the main characteristics of fuzzy models and their main advantages. Evidence on how to implement a fuzzy model and what are its strong points are provided based on previous research and published scientific papers. It is concluded that fuzzy logic gives a different view on a wide range of topics

  13. The use of fuzzy backpropagation neural networks for the early diagnosis of hypoxic ischemic encephalopathy in newborns.

    Science.gov (United States)

    Li, Liu; Liqing, Huo; Hongru, Lu; Feng, Zhang; Chongxun, Zheng; Pokhrel, Shami; Jie, Zhang

    2011-01-01

    To establish an early diagnostic system for hypoxic ischemic encephalopathy (HIE) in newborns based on artificial neural networks and to determine its feasibility. Based on published research as well as preliminary studies in our laboratory, multiple noninvasive indicators with high sensitivity and specificity were selected for the early diagnosis of HIE and employed in the present study, which incorporates fuzzy logic with artificial neural networks. The analysis of the diagnostic results from the fuzzy neural network experiments with 140 cases of HIE showed a correct recognition rate of 100% in all training samples and a correct recognition rate of 95% in all the test samples, indicating a misdiagnosis rate of 5%. A preliminary model using fuzzy backpropagation neural networks based on a composite index of clinical indicators was established and its accuracy for the early diagnosis of HIE was validated. Therefore, this method provides a convenient tool for the early clinical diagnosis of HIE.

  14. The Use of Fuzzy BackPropagation Neural Networks for the Early Diagnosis of Hypoxic Ischemic Encephalopathy in Newborns

    Directory of Open Access Journals (Sweden)

    Liu Li

    2011-01-01

    Full Text Available Objective. To establish an early diagnostic system for hypoxic ischemic encephalopathy (HIE in newborns based on artificial neural networks and to determine its feasibility. Methods. Based on published research as well as preliminary studies in our laboratory, multiple noninvasive indicators with high sensitivity and specificity were selected for the early diagnosis of HIE and employed in the present study, which incorporates fuzzy logic with artificial neural networks. Results. The analysis of the diagnostic results from the fuzzy neural network experiments with 140 cases of HIE showed a correct recognition rate of 100% in all training samples and a correct recognition rate of 95% in all the test samples, indicating a misdiagnosis rate of 5%. Conclusion. A preliminary model using fuzzy backpropagation neural networks based on a composite index of clinical indicators was established and its accuracy for the early diagnosis of HIE was validated. Therefore, this method provides a convenient tool for the early clinical diagnosis of HIE.

  15. Reactor vessel water level estimation during severe accidents using cascaded fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yeong; Yoo, Kwae Hwan; Choi, Geon Pil; Back, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2016-06-15

    Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.

  16. Using fuzzy logic to integrate neural networks and knowledge-based systems

    Science.gov (United States)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  17. Fuzzy Stochastic Optimization Theory, Models and Applications

    CERN Document Server

    Wang, Shuming

    2012-01-01

    Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies.   The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...

  18. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    Science.gov (United States)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  19. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  20. Hybrid Generalised Additive Type-2 Fuzzy-Wavelet-Neural Network in Dynamic Data Mining

    Directory of Open Access Journals (Sweden)

    Bodyanskiy Yevgeniy

    2015-12-01

    Full Text Available In the paper, a new hybrid system of computational intelligence is proposed. This system combines the advantages of neuro-fuzzy system of Takagi-Sugeno-Kang, type-2 fuzzy logic, wavelet neural networks and generalised additive models of Hastie-Tibshirani. The proposed system has universal approximation properties and learning capability based on the experimental data sets which pertain to the neural networks and neuro-fuzzy systems; interpretability and transparency of the obtained results due to the soft computing systems and, first of all, due to type-2 fuzzy systems; possibility of effective description of local signal and process features due to the application of systems based on wavelet transform; simplicity and speed of learning process due to generalised additive models. The proposed system can be used for solving a wide class of dynamic data mining tasks, which are connected with non-stationary, nonlinear stochastic and chaotic signals. Such a system is sufficiently simple in numerical implementation and is characterised by a high speed of learning and information processing.

  1. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    Directory of Open Access Journals (Sweden)

    Jinjun Tang

    Full Text Available Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN, two learning processes are proposed: (1 a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2 a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE, root mean square error (RMSE, and mean absolute relative error (MARE are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR, instantaneous model (IM, linear model (LM, neural network (NN, and cumulative plots (CP.

  2. Fuzzy Constrained Probabilistic Inventory Models Depending on Trapezoidal Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Mona F. El-Wakeel

    2016-01-01

    Full Text Available We discussed two different cases of the probabilistic continuous review mixture shortage inventory model with varying and constrained expected order cost, when the lead time demand follows some different continuous distributions. The first case is when the total cost components are considered to be crisp values, and the other case is when the costs are considered as trapezoidal fuzzy number. Also, some special cases are deduced. To investigate the proposed model in the crisp case and the fuzzy case, illustrative numerical example is added. From the numerical results we will conclude that Uniform distribution is the best distribution to get the exact solutions, and the exact solutions for fuzzy models are considered more practical and close to the reality of life and get minimum expected total cost less than the crisp models.

  3. Hierarchical modular granular neural networks with fuzzy aggregation

    CERN Document Server

    Sanchez, Daniela

    2016-01-01

    In this book, a new method for hybrid intelligent systems is proposed. The proposed method is based on a granular computing approach applied in two levels. The techniques used and combined in the proposed method are modular neural networks (MNNs) with a Granular Computing (GrC) approach, thus resulting in a new concept of MNNs; modular granular neural networks (MGNNs). In addition fuzzy logic (FL) and hierarchical genetic algorithms (HGAs) are techniques used in this research work to improve results. These techniques are chosen because in other works have demonstrated to be a good option, and in the case of MNNs and HGAs, these techniques allow to improve the results obtained than with their conventional versions; respectively artificial neural networks and genetic algorithms.

  4. Intelligent control based on fuzzy logic and neural net theory

    Science.gov (United States)

    Lee, Chuen-Chien

    1991-01-01

    In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.

  5. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1

    Science.gov (United States)

    Lea, Robert N. (Editor); Villarreal, James (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  6. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    Science.gov (United States)

    Douglas, Freddie; Bourgeois, Edit Kaminsky

    2005-01-01

    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  7. Forecasting the EMU inflation rate: Linear econometric vs. non-linear computational models using genetic neural fuzzy systems

    DEFF Research Database (Denmark)

    Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric

    2004-01-01

    This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...

  8. Fuzzy stochastic inventory model for deteriorating item

    Directory of Open Access Journals (Sweden)

    Waliv Rahul H.

    2017-01-01

    Full Text Available A multi item profit maximization inventory model is developed in fuzzy stochastic environment. Demand is taken as Stock dependent demand. Available storage space is assumed to be imprecise and vague in nature. Impreciseness has been expressed by linear membership function. Purchasing cost and investment constraint are considered to be random and their randomness is expressed by normal distribution. The model has been formulated as a fuzzy stochastic programming problem and reduced to corresponding equivalent fuzzy linear programming problem. The model has been solved by using fuzzy linear programming technique and illustrated numerically.

  9. Dynamics and genetic fuzzy neural network vibration control design of a smart flexible four-bar linkage mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Rong Bao, E-mail: rongbao_nust@sina.com; Rui Xiaoting [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Tao Ling [Chinese Academy of Sciences (ASIPP), Institute of Plasma Physics (China)

    2012-11-15

    In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.

  10. The Presentation of a New Method for Image Distinction with Robot by Using Rough Fuzzy Sets and Rough Fuzzy Neural Network Classifier

    OpenAIRE

    Maryam Shahabi Lotfabadi

    2011-01-01

    Distinguishing different images by robots and classifying them in distinct groups is an important issue in robot vision. In this paper we want to propose a new method for distinguishing images by robot via using Rough fuzzy sets' decreases method and Rough fuzzy neural network classifier. In this method, the image features like color, texture and shape are excluded and the redundant features are decreased by Rough fuzzy sets method. Then the Rough fuzzy neural network classifier is educated b...

  11. Modeling Research Project Risks with Fuzzy Maps

    Science.gov (United States)

    Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana

    2009-01-01

    The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…

  12. Markowitz portfolio optimization model employing fuzzy measure

    Science.gov (United States)

    Ramli, Suhailywati; Jaaman, Saiful Hafizah

    2017-04-01

    Markowitz in 1952 introduced the mean-variance methodology for the portfolio selection problems. His pioneering research has shaped the portfolio risk-return model and become one of the most important research fields in modern finance. This paper extends the classical Markowitz's mean-variance portfolio selection model applying the fuzzy measure to determine the risk and return. In this paper, we apply the original mean-variance model as a benchmark, fuzzy mean-variance model with fuzzy return and the model with return are modeled by specific types of fuzzy number for comparison. The model with fuzzy approach gives better performance as compared to the mean-variance approach. The numerical examples are included to illustrate these models by employing Malaysian share market data.

  13. CAPP MODEL OF FUZZY SYSTEMS AND FUZZY MANUFACTURABILITY

    Directory of Open Access Journals (Sweden)

    Radivoje Antić

    2013-10-01

    Full Text Available They give the soles of technological design process using fuzzy logic for metal cutting, referring to the determination of all the elements of production process: the dimensions and quality of the workpiece material, the sequence and scope of operations, the order and content of the procedures, the size of the type of machine types and tool types and gauges, regime and time of processing. It further explains manufacturability machine parts for robust design of a new product. He also offers manufacturability for cylindrical, prismatic workpieces and boxes. It explains the mathematical expressions of fuzzy logic which described above manufacturability. In fuzzy logic are used mathematical operations minimization and maximization. They are used to determine the critical solutions and choice of cost effective solutions. Provides an example of using the model to determine of the manufacturability.

  14. Clinical outcome prediction in aneurysmal subarachnoid hemorrhage using Bayesian neural networks with fuzzy logic inferences.

    Science.gov (United States)

    Lo, Benjamin W Y; Macdonald, R Loch; Baker, Andrew; Levine, Mitchell A H

    2013-01-01

    The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.

  15. Clinical Outcome Prediction in Aneurysmal Subarachnoid Hemorrhage Using Bayesian Neural Networks with Fuzzy Logic Inferences

    Directory of Open Access Journals (Sweden)

    Benjamin W. Y. Lo

    2013-01-01

    Full Text Available Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH. Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients. Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs. Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.

  16. Hybrid Fuzzy Wavelet Neural Networks Architecture Based on Polynomial Neural Networks and Fuzzy Set/Relation Inference-Based Wavelet Neurons.

    Science.gov (United States)

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2017-08-11

    This paper presents a hybrid fuzzy wavelet neural network (HFWNN) realized with the aid of polynomial neural networks (PNNs) and fuzzy inference-based wavelet neurons (FIWNs). Two types of FIWNs including fuzzy set inference-based wavelet neurons (FSIWNs) and fuzzy relation inference-based wavelet neurons (FRIWNs) are proposed. In particular, a FIWN without any fuzzy set component (viz., a premise part of fuzzy rule) becomes a wavelet neuron (WN). To alleviate the limitations of the conventional wavelet neural networks or fuzzy wavelet neural networks whose parameters are determined based on a purely random basis, the parameters of wavelet functions standing in FIWNs or WNs are initialized by using the C-Means clustering method. The overall architecture of the HFWNN is similar to the one of the typical PNNs. The main strategies in the design of HFWNN are developed as follows. First, the first layer of the network consists of FIWNs (e.g., FSIWN or FRIWN) that are used to reflect the uncertainty of data, while the second and higher layers consist of WNs, which exhibit a high level of flexibility and realize a linear combination of wavelet functions. Second, the parameters used in the design of the HFWNN are adjusted through genetic optimization. To evaluate the performance of the proposed HFWNN, several publicly available data are considered. Furthermore a thorough comparative analysis is covered.

  17. Four Degree Freedom Robot Arm with Fuzzy Neural Network Control

    Directory of Open Access Journals (Sweden)

    Şinasi Arslan

    2013-01-01

    Full Text Available In this study, the control of four degree freedom robot arm has been realized with the computed torque control method.. It is usually required that the four jointed robot arm has high precision capability and good maneuverability for using in industrial applications. Besides, high speed working and external applied loads have been acting as important roles. For those purposes, the computed torque control method has been developed in a good manner that the robot arm can track the given trajectory, which has been able to enhance the feedback control together with fuzzy neural network control. The simulation results have proved that the computed torque control with the neural network has been so successful in robot control.

  18. The fuzzy WOD model

    DEFF Research Database (Denmark)

    Franco de los Rios, Camilo Andres; Hougaard, Jens Leth; Nielsen, Kurt

    This paper extends the Weighted Overlap Dominance (WOD) model (initially presented in J.L. Hougaard, K. Nielsen. Weighted Overlap Dominance - A procedure for interactive selection on multidimensional interval data. Applied Mathematical Modelling 35, 2011, 3958 - 3969), as an outranking approach...

  19. Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model

    Directory of Open Access Journals (Sweden)

    Bogdan Gliwa

    2011-01-01

    Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.

  20. Fuzzy capital rationing model

    Science.gov (United States)

    Bas, E.; Kahraman, C.

    2009-02-01

    In this paper, we study the fuzzification of Weingartner's pure capital rationing model and its analysis. We develop a primal-dual pair based on t-norm/t-conorm relation for the constraints and objective function for a fully fuzzified pure capital rationing problem except project selection variables. We define the [alpha]-interval under which the weak duality is proved. We perform sensitivity analysis for a change in a budget level or in a cash flow level of a non-basic as well as a basic variable. We analyze the problem based on duality and complementary slackness results. We illustrate the proposed model by computational analysis, and interpret the results.

  1. Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.

    Science.gov (United States)

    Pasquier, M; Quek, C; Toh, M

    2001-10-01

    This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode.

  2. Interference Path Loss Prediction in A319/320 Airplanes Using Modulated Fuzzy Logic and Neural Networks

    Science.gov (United States)

    Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda L.

    2007-01-01

    In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.

  3. Neural - fuzzy approach for system identification

    NARCIS (Netherlands)

    Tien, B.T.

    1997-01-01

    Most real-world processes have nonlinear and complex dynamics. Conventional methods of constructing nonlinear models from first principles are time consuming and require a level of knowledge about the internal functioning of the system that is often not available. Consequently, in such

  4. Modelling and multivariable control in anaesthesia using neural-fuzzy paradigms Part II. Closed-loop control of simultaneous administration of propofol and remifentanil.

    Science.gov (United States)

    Mahfouf, Mahdi; Nunes, Catarina S; Linkens, Derek A; Peacock, John E

    2005-11-01

    Part II of this research study is concerned with the development of a closed-loop simulation linking the patient model as well as the fuzzy relational classifier already introduced in Part I with a control algorithm. The overall architecture is in fact a system advisor, which provides information to the anaesthetist about the adequate infusion-rates of propofol and remifentanil simultaneously. The developed fuzzy multivariable controller includes three rule-bases and takes into account the synergetic interactions between the above drugs and uses such knowledge to achieve rapidly the desired depth of anaesthesia (DOA) level. The result of the study is a closed-loop control scheme, which adjusts efficiently the infusion-rates of two drugs in response to DOA changes. This controller can either be used in an advisory mode or closed-loop feedback mode in the operating theatre during surgery. It is hoped that this control scheme coupled with the patient model presented in Part I of this study will be used routinely in the operating theatre in the very near future.

  5. Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems.

    Science.gov (United States)

    Gao, Qing; Feng, Gang; Dong, Daoyi; Liu, Lu

    2015-05-01

    This paper investigates the problems of universal fuzzy model and universal fuzzy controller for discrete-time nonaffine nonlinear systems (NNSs). It is shown that a kind of generalized T-S fuzzy model is the universal fuzzy model for discrete-time NNSs satisfying a sufficient condition. The results on universal fuzzy controllers are presented for two classes of discrete-time stabilizable NNSs. Constructive procedures are provided to construct the model reference fuzzy controllers. The simulation example of an inverted pendulum is presented to illustrate the effectiveness and advantages of the proposed method. These results significantly extend the approach for potential applications in solving complex engineering problems.

  6. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    Science.gov (United States)

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  7. Robust adaptive fuzzy neural tracking control for a class of unknown ...

    Indian Academy of Sciences (India)

    difficulties encountered in handling chaotic systems have posed a real need for using some intelligent approaches. The application of neural network and fuzzy logic controllers to chaotic systems was proposed [18–23], which appears to be quite promising. Recently,. FNN incorporated the advantages of fuzzy inference and ...

  8. Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs).

    Science.gov (United States)

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2014-12-01

    In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Fuzzy Multiple Criteria Decision Making Model with Fuzzy Time Weight Scheme

    OpenAIRE

    Chin-Yao Low; Sung-Nung Lin

    2013-01-01

    In this study, we purpose a common fuzzy multiple criteria decision making model. A brand new concept - fuzzy time weighted scheme is adopted for considering in the model to establish a fuzzy multiple criteria decision making with time weight (FMCDMTW) model. A real case of fuzzy multiple criteria decision making (FMCDM) problems to be considering in this study. The performance evaluation of auction websites based on all criteria proposed in related literature. Obviously, the problem under in...

  10. Fuzzy GML Modeling Based on Vague Soft Sets

    Directory of Open Access Journals (Sweden)

    Bo Wei

    2017-01-01

    Full Text Available The Open Geospatial Consortium (OGC Geography Markup Language (GML explicitly represents geographical spatial knowledge in text mode. All kinds of fuzzy problems will inevitably be encountered in spatial knowledge expression. Especially for those expressions in text mode, this fuzziness will be broader. Describing and representing fuzziness in GML seems necessary. Three kinds of fuzziness in GML can be found: element fuzziness, chain fuzziness, and attribute fuzziness. Both element fuzziness and chain fuzziness belong to the reflection of the fuzziness between GML elements and, then, the representation of chain fuzziness can be replaced by the representation of element fuzziness in GML. On the basis of vague soft set theory, two kinds of modeling, vague soft set GML Document Type Definition (DTD modeling and vague soft set GML schema modeling, are proposed for fuzzy modeling in GML DTD and GML schema, respectively. Five elements or pairs, associated with vague soft sets, are introduced. Then, the DTDs and the schemas of the five elements are correspondingly designed and presented according to their different chains and different fuzzy data types. While the introduction of the five elements or pairs is the basis of vague soft set GML modeling, the corresponding DTD and schema modifications are key for implementation of modeling. The establishment of vague soft set GML enables GML to represent fuzziness and solves the problem of lack of fuzzy information expression in GML.

  11. A Hybrid Fuzzy Neural Networks for the Detection of Tumors in Medical Images

    OpenAIRE

    N. Benamrane; A. Freville; R. Nekkache

    2005-01-01

    In this study, we propose an approach to detect suspect zones or tumors in medical images. The idea is to define with precision the existence of different kinds of lesions using a hybrid system, which combines Fuzzy Neural Networks and Expert System. After applying a method of image segmentation to extract regions (by region growing algorithm or by mathematical morphology algorithm), the fuzzy neural networks detect the suspect regions, which are validated by an expert system to determine the...

  12. PENGGUNAAN MOVING AVERAGE DENGAN METODE HYBRID ARTIFICIAL NEURAL NETWORK DAN FUZZY INFERENCE SYSTEM UNTUK PREDIKSI CUACA

    Directory of Open Access Journals (Sweden)

    Fahrur Rozi

    2016-12-01

    Full Text Available Kebutuhan akan prediksi sangat diperlukan diberbagai sektor kehidupan, salah satunya adalah mengenai prediksi cuaca. Prediksi mengenai cuaca dapat dilakukan dalam rentang waktu tertentu, sehingga untuk dapat memprediksi keadaan cuaca dalam rentang waktu tertentu penelitian ini akan menggunakan moving average dengan metode hybrid artificial neural network dan fuzzy inference system. Data yang digunakan berasal dari BMKG Karangploso, Malang dengan menggunakan empat buah parameter yang mempengaruhi kondisi cuaca, yaitu suhu, tekanan udara, kelembapan udara, dan kecepatan angin. Performa model menghasilkan tingkat akurasi mencapai 73.91 %.

  13. Type-2 fuzzy granular models

    CERN Document Server

    Sanchez, Mauricio A; Castro, Juan R

    2017-01-01

    In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.

  14. Implementasi Neural Fuzzy Inference System dan Algoritma Pelatihan Levenberg-Marquardt untuk Prediksi Curah Hujan

    Directory of Open Access Journals (Sweden)

    Nola Ritha

    2016-07-01

    Full Text Available Rainfall prediction can be used for various purposes and the accuracy in predicting is important in many ways.  In this research, data of rainfall prediction use daily rainfall data from 2013-2014 years at rainfall station in Putussibau, West Kalimantan. Rainfall prediction using four parameters: mean temperature, average humidity, wind speed and mean sea level pressure. This research to determine how performance Neural Fuzzy Inference System with Levenberg-Marquardt training algorithm for rainfall prediction. Fuzzy logic can be used to resolve the linguistic variables used in rule of rainfall. While neural networks have ability to adapt and learning process, due to recognize patterns of data from input need training to prediction. And Levenberg-Marquardt algorithm is used for training because of effectiveness and convergence acceleration. The results showed five models NFIS-LM developed using a variety of membership functions as input obtained that model NFIS-LM with twelve of membership functions and use four inputs, such as mean temperature, average humidity, wind speed and mean sea level pressure gives best results to predict rainfall with values Mean Square Error (MSE of 0.0262050. When compared with model NN-Backpropagation, NFIS-LM models showed lower accuracy. It is shown from MSE generated where model NN-Backpropagation generate MSE of 0.0167990.

  15. Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2

    Science.gov (United States)

    Culbert, Christopher J. (Editor)

    1993-01-01

    Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.

  16. Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1

    Science.gov (United States)

    Culbert, Christopher J. (Editor)

    1993-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.

  17. On the fusion of tuning parameters of fuzzy rules and neural network

    Science.gov (United States)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.

  18. Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling

    Science.gov (United States)

    Chiu, Stephen

    1996-01-01

    Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.

  19. Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications

    Directory of Open Access Journals (Sweden)

    A.A. Fahmy

    2013-12-01

    Full Text Available This paper presents a new neuro-fuzzy controller for robot manipulators. First, an inductive learning technique is applied to generate the required inverse modeling rules from input/output data recorded in the off-line structure learning phase. Second, a fully differentiable fuzzy neural network is developed to construct the inverse dynamics part of the controller for the online parameter learning phase. Finally, a fuzzy-PID-like incremental controller was employed as Feedback servo controller. The proposed control system was tested using dynamic model of a six-axis industrial robot. The control system showed good results compared to the conventional PID individual joint controller.

  20. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.

    Science.gov (United States)

    Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng

    2016-02-01

    This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.

  1. A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input

    Directory of Open Access Journals (Sweden)

    Mario Collotta

    2014-07-01

    Full Text Available Heating, ventilating and air-conditioning (HVAC systems are typical non-linear time-variable multivariate systems with disturbances and uncertainties. In this paper, an approach based on a combined neuro-fuzzy model for dynamic and automatic regulation of indoor temperature is proposed. The proposed artificial neural network performs indoor temperatures forecasts that are used to feed a fuzzy logic control unit in order to manage the on/off switching of the HVAC system and the regulation of the inlet air speed. Moreover, the used neural network is optimized by the analytical calculation of the embedding parameters, and the goodness of this approach is tested through MATLAB. The fuzzy controller is driven by the indoor temperature forecasted by the neural network module and is able to adjust the membership functions dynamically, since thermal comfort is a very subjective factor and may vary even in the same subject. The paper shows some experimental results, through a real implementation in an embedded prototyping board, of the proposed approach in terms of the evolution of the inlet air speed injected by the fan coils, the indoor air temperature forecasted by the neural network model and the adjusting of the membership functions after receiving user feedback.

  2. Fuzzy clustering, genetic algorithms and neuro-fuzzy methods compared for hybrid fuzzy-first principles modeling

    NARCIS (Netherlands)

    van Lith, Pascal; van Lith, P.F.; Betlem, Bernardus H.L.; Roffel, B.

    2002-01-01

    Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and

  3. Fuzzy Clustering, Genetic Algorithms and Neuro-Fuzzy Methods Compared for Hybrid Fuzzy-First Principles Modeling

    NARCIS (Netherlands)

    Lith, Pascal F. van; Betlem, Ben H.L.; Roffel, Brian

    2002-01-01

    Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and

  4. Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2015-01-01

    This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents div...

  5. New backpropagation algorithm with type-2 fuzzy weights for neural networks

    CERN Document Server

    Gaxiola, Fernando; Valdez, Fevrier

    2016-01-01

    In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights. The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method. The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for ô=17) and Dow-Jones time series, and recognition of person with iris bi...

  6. Application of a two-stage fuzzy neural network to a prostate cancer prognosis system.

    Science.gov (United States)

    Kuo, Ren-Jieh; Huang, Man-Hsin; Cheng, Wei-Che; Lin, Chih-Chieh; Wu, Yung-Hung

    2015-02-01

    This study intends to develop a two-stage fuzzy neural network (FNN) for prognoses of prostate cancer. Due to the difficulty of making prognoses of prostate cancer, this study proposes a two-stage FNN for prediction. The initial membership function parameters of FNN are determined by cluster analysis. Then, an integration of the optimization version of an artificial immune network (Opt-aiNET) and a particle swarm optimization (PSO) algorithm is developed to investigate the relationship between the inputs and outputs. The evaluation results for three benchmark functions show that the proposed two-stage FNN has better performance than the other algorithms. In addition, model evaluation results indicate that the proposed algorithm really can predict prognoses of prostate cancer more accurately. The proposed two-stage FNN is able to learn the relationship between the clinical features and the prognosis of prostate cancer. Once the clinical data are known, the prognosis of prostate cancer patient can be predicted. Furthermore, unlike artificial neural networks, it is much easier to interpret the training results of the proposed network since they are in the form of fuzzy IF-THEN rules. These rules are very important for medical doctors. This can dramatically assist medical doctors to make decisions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  8. Fuzzy Wavelet Neural Network Using a Correntropy Criterion for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Leandro L. S. Linhares

    2015-01-01

    Full Text Available Recent researches have demonstrated that the Fuzzy Wavelet Neural Networks (FWNNs are an efficient tool to identify nonlinear systems. In these structures, features related to fuzzy logic, wavelet functions, and neural networks are combined in an architecture similar to the Adaptive Neurofuzzy Inference Systems (ANFIS. In practical applications, the experimental data set used in the identification task often contains unknown noise and outliers, which decrease the FWNN model reliability. In order to reduce the negative effects of these erroneous measurements, this work proposes the direct use of a similarity measure based on information theory in the FWNN learning procedure. The Mean Squared Error (MSE cost function is replaced by the Maximum Correntropy Criterion (MCC in the traditional error backpropagation (BP algorithm. The input-output maps of a real nonlinear system studied in this work are identified from an experimental data set corrupted by different outliers rates and additive white Gaussian noise. The results demonstrate the advantages of the proposed cost function using the MCC as compared to the MSE. This work also investigates the influence of the kernel size on the performance of the MCC in the BP algorithm, since it is the only free parameter of correntropy.

  9. Fuzzy One-Class Classification Model Using Contamination Neighborhoods

    Directory of Open Access Journals (Sweden)

    Lev V. Utkin

    2012-01-01

    Full Text Available A fuzzy classification model is studied in the paper. It is based on the contaminated (robust model which produces fuzzy expected risk measures characterizing classification errors. Optimal classification parameters of the models are derived by minimizing the fuzzy expected risk. It is shown that an algorithm for computing the classification parameters is reduced to a set of standard support vector machine tasks with weighted data points. Experimental results with synthetic data illustrate the proposed fuzzy model.

  10. Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures.

    Science.gov (United States)

    Nadiri, Ata Allah; Sedghi, Zahra; Khatibi, Rahman; Gharekhani, Maryam

    2017-09-01

    Driven by contamination risks, mapping Vulnerability Indices (VI) of multiple aquifers (both unconfined and confined) is investigated by integrating the basic DRASTIC framework with multiple models overarched by Artificial Neural Networks (ANN). The DRASTIC framework is a proactive tool to assess VI values using the data from the hydrosphere, lithosphere and anthroposphere. However, a research case arises for the application of multiple models on the ground of poor determination coefficients between the VI values and non-point anthropogenic contaminants. The paper formulates SCFL models, which are derived from the multiple model philosophy of Supervised Committee (SC) machines and Fuzzy Logic (FL) and hence SCFL as their integration. The Fuzzy Logic-based (FL) models include: Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic (MFL), Larsen Fuzzy Logic (LFL) models. The basic DRASTIC framework uses prescribed rating and weighting values based on expert judgment but the four FL-based models (SFL, MFL, LFL and SCFL) derive their values as per internal strategy within these models. The paper reports that FL and multiple models improve considerably on the correlation between the modeled vulnerability indices and observed nitrate-N values and as such it provides evidence that the SCFL multiple models can be an alternative to the basic framework even for multiple aquifers. The study area with multiple aquifers is in Varzeqan plain, East Azerbaijan, northwest Iran. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Evaluating software architecture using fuzzy formal models

    Directory of Open Access Journals (Sweden)

    Payman Behbahaninejad

    2012-04-01

    Full Text Available Unified Modeling Language (UML has been recognized as one of the most popular techniques to describe static and dynamic aspects of software systems. One of the primary issues in designing software packages is the existence of uncertainty associated with such models. Fuzzy-UML to describe software architecture has both static and dynamic perspective, simultaneously. The evaluation of software architecture design phase initiates always help us find some additional requirements, which helps reduce cost of design. In this paper, we use a fuzzy data model to describe the static aspects of software architecture and the fuzzy sequence diagram to illustrate the dynamic aspects of software architecture. We also transform these diagrams into Petri Nets and evaluate reliability of the architecture. The web-based hotel reservation system for further explanation has been studied.

  12. Approximate solutions of dual fuzzy polynomials by feed-back neural networks

    Directory of Open Access Journals (Sweden)

    Ahmad Jafarian

    2012-11-01

    Full Text Available Recently, artificial neural networks (ANNs have been extensively studied and used in different areas such as pattern recognition, associative memory, combinatorial optimization, etc. In this paper, we investigate the ability of fuzzy neural networks to approximate solution of a dual fuzzy polynomial of the form $a_{1}x+ ...+a_{n}x^n =b_{1}x+ ...+b_{n}x^n+d,$ where $a_{j},b_{j},d epsilon E^1 (for j=1,...,n.$ Since the operation of fuzzy neural networks is based on Zadeh's extension principle. For this scope we train a fuzzified neural network by back-propagation-type learning algorithm which has five layer where connection weights are crisp numbers. This neural network can get a crisp input signal and then calculates its corresponding fuzzy output. Presented method can give a real approximate solution for given polynomial by using a cost function which is defined for the level sets of fuzzy output and target output. The simulation results are presented to demonstrate the efficiency and effectiveness of the proposed approach.

  13. [Study on diagnostic methods of breathing disorders based on fuzzy logic inference and the neural network].

    Science.gov (United States)

    Chen, Min; Yin, Xuezhi

    2011-07-01

    This paper descries a new non-invasive method for diagnosis of breathing disorders based on adaptive-network-based fuzzy inference system (ANFIS). In this method, PetCO2, SpO2 and HR are chosen as inputs, and the breathing condition is selected as output ofANFIS. The inputs and output are then classified into fuzzy subsets by experts' knowledge. After, the fuzzy IF-THEN rules are built up according to the corresponding membership functions by set up of fuzzy subsets. The neural network was finally established and the membership functions and fuzzy rules were optimized by training. The results of experiment shows that ANFIS is more effective than BP Network regarding the diagnosis of breathing disorders.

  14. Water level forecasting through fuzzy logic and artificial neural network approaches

    Directory of Open Access Journals (Sweden)

    S. Alvisi

    2006-01-01

    Full Text Available In this study three data-driven water level forecasting models are presented and discussed. One is based on the artificial neural networks approach, while the other two are based on the Mamdani and the Takagi-Sugeno fuzzy logic approaches, respectively. All of them are parameterised with reference to flood events alone, where water levels are higher than a selected threshold. The analysis of the three models is performed by using the same input and output variables. However, in order to evaluate their capability to deal with different levels of information, two different input sets are considered. The former is characterized by significant spatial and time aggregated rainfall information, while the latter considers rainfall information more distributed in space and time. The analysis is made with great attention to the reliability and accuracy of each model, with reference to the Reno river at Casalecchio di Reno (Bologna, Italy. It is shown that the two models based on the fuzzy logic approaches perform better when the physical phenomena considered are synthesised by both a limited number of variables and IF-THEN logic statements, while the ANN approach increases its performance when more detailed information is used. As regards the reliability aspect, it is shown that the models based on the fuzzy logic approaches may fail unexpectedly to forecast the water levels, in the sense that in the testing phase, some input combinations are not recognised by the rule system and thus no forecasting is performed. This problem does not occur in the ANN approach.

  15. Fuzzy Cognitive Map Modelling Educational Software Adoption

    Science.gov (United States)

    Hossain, Sarmin; Brooks, Laurence

    2008-01-01

    Educational software adoption across UK secondary schools is seen as unsatisfactory. Based on stakeholders' perceptions, this paper uses fuzzy cognitive maps (FCMs) to model this adoption context. It discusses the development of the FCM model, using a mixed-methods approach and drawing on participants from three UK secondary schools. The study…

  16. Mixed H-Infinity and Passive Filtering for Discrete Fuzzy Neural Networks With Stochastic Jumps and Time Delays.

    Science.gov (United States)

    Shi, Peng; Zhang, Yingqi; Chadli, Mohammed; Agarwal, Ramesh K

    2016-04-01

    In this brief, the problems of the mixed H-infinity and passivity performance analysis and design are investigated for discrete time-delay neural networks with Markovian jump parameters represented by Takagi-Sugeno fuzzy model. The main purpose of this brief is to design a filter to guarantee that the augmented Markovian jump fuzzy neural networks are stable in mean-square sense and satisfy a prescribed passivity performance index by employing the Lyapunov method and the stochastic analysis technique. Applying the matrix decomposition techniques, sufficient conditions are provided for the solvability of the problems, which can be formulated in terms of linear matrix inequalities. A numerical example is also presented to illustrate the effectiveness of the proposed techniques.

  17. Bonissone CIDU Presentation: Design of Local Fuzzy Models

    Data.gov (United States)

    National Aeronautics and Space Administration — After reviewing key background concepts in fuzzy systems and evolutionary computing, we will focus on the use of local fuzzy models, which are related to both kernel...

  18. Prediction of hydrogen concentration in containment during severe accidents using fuzzy neural network

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yeong; Kim, Ju Hyun; Yoo, Kwae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2015-03-15

    Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.

  19. A spatial neural fuzzy network for estimating pan evaporation at ungauged sites

    Directory of Open Access Journals (Sweden)

    C.-H. Chung

    2012-01-01

    Full Text Available Evaporation is an essential reference to the management of water resources. In this study, a hybrid model that integrates a spatial neural fuzzy network with the kringing method is developed to estimate pan evaporation at ungauged sites. The adaptive network-based fuzzy inference system (ANFIS can extract the nonlinear relationship of observations, while kriging is an excellent geostatistical interpolator. Three-year daily data collected from nineteen meteorological stations covering the whole of Taiwan are used to train and test the constructed model. The pan evaporation (Epan at ungauged sites can be obtained through summing up the outputs of the spatially weighted ANFIS and the residuals adjusted by kriging. Results indicate that the proposed AK model (hybriding ANFIS and kriging can effectively improve the accuracy of Epan estimation as compared with that of empirical formula. This hybrid model demonstrates its reliability in estimating the spatial distribution of Epan and consequently provides precise Epan estimation by taking geographical features into consideration.

  20. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  1. Fuzzy production planning models for an unreliable production system with fuzzy production rate and stochastic/fuzzy demand rate

    Directory of Open Access Journals (Sweden)

    K. A. Halim

    2011-01-01

    Full Text Available In this article, we consider a single-unit unreliable production system which produces a single item. During a production run, the production process may shift from the in-control state to the out-of-control state at any random time when it produces some defective items. The defective item production rate is assumed to be imprecise and is characterized by a trapezoidal fuzzy number. The production rate is proportional to the demand rate where the proportionality constant is taken to be a fuzzy number. Two production planning models are developed on the basis of fuzzy and stochastic demand patterns. The expected cost per unit time in the fuzzy sense is derived in each model and defuzzified by using the graded mean integration representation method. Numerical examples are provided to illustrate the optimal results of the proposed fuzzy models.

  2. Fuzzy Clustering Methods and their Application to Fuzzy Modeling

    DEFF Research Database (Denmark)

    Kroszynski, Uri; Zhou, Jianjun

    1999-01-01

    prediction of outputs. This article presents an overview of some of the most popular clustering methods, namely Fuzzy Cluster-Means (FCM) and its generalizations to Fuzzy C-Lines and Elliptotypes. The algorithms for computing cluster centers and principal directions from a training data-set are described...

  3. Models for cooperative games with fuzzy relations among the agents fuzzy communication, proximity relation and fuzzy permission

    CERN Document Server

    Jiménez-Losada, Andrés

    2017-01-01

    This book offers a comprehensive introduction to cooperative game theory and a practice-oriented reference guide to new models and tools for studying bilateral fuzzy relations among several agents or players. It introduces the reader to several fuzzy models, each of which is first analyzed in the context of classical games (crisp games) and subsequently in the context of fuzzy games. Special emphasis is given to the value of Shapley, which is presented for the first time in the context of fuzzy games. Students and researchers will find here a self-contained reference guide to cooperative fuzzy games, characterized by a wealth of examples, descriptions of a wide range of possible situations, step-by-step explanations of the basic mathematical concepts involved, and easy-to-follow information on axioms and properties.

  4. Calculation of PID controller parameters by using a fuzzy neural network.

    Science.gov (United States)

    Lee, Ching-Hung; Teng, Ching-Cheng

    2003-07-01

    In this paper, we use the fuzzy neural network (FNN) to develop a formula for designing the proportional-integral-derivative (PID) controller. This PID controller satisfies the criteria of minimum integrated absolute error (IAE) and maximum of sensitivity (Ms). The FNN system is used to identify the relationship between plant model and controller parameters based on IAE and Ms. To derive the tuning rule, the dominant pole assignment method is applied to simplify our optimization processes. Therefore, the FNN system is used to automatically tune the PID controller for different system parameters so that neither theoretical methods nor numerical methods need be used. Moreover, the FNN-based formula can modify the controller to meet our specification when the system model changes. A simulation result for applying to the motor position control problem is given to demonstrate the effectiveness of our approach.

  5. A fuzzy neural network to estimate at completion costs of construction projects

    Directory of Open Access Journals (Sweden)

    Morteza Bagherpour

    2012-04-01

    Full Text Available In construction cost management system, normally earned value management (EVM is applied as an efficient control approach in both status detection and estimation at completion (EAC cost forecasting. The traditional approaches in EAC predictions normally extend the current situation of a project to the future by employing pervious performance factor. The proposed approach of this paper considers both qualitative and quantitative factors affecting the EAC prediction. The proposed approach of this research not only estimates the completion of the project, but also it can generate accurate forecast for the entire future periods using a fuzzy neural network model. The model is also implemented for a real-world case study and yields encouraging preliminary results.

  6. Visual evoked potential estimation by adaptive noise cancellation with neural-network-based fuzzy inference system.

    Science.gov (United States)

    Zeng, Y; Zhang, J; Yin, H; Pan, Y

    2007-01-01

    Visual evoked potentials (VEPs) are time-varying signals typically buried in relatively large background noise known as the electroencephalogram (EEG). In this paper, an adaptive noise cancellation with neural network-based fuzzy inference system (NNFIS) was used and the NNFIS was carefully designed to model the VEP signal. It is assumed that VEP responses can be modelled by NNFIS with the centres of its membership functions evenly distributed over time. The weights of NNFIS are adaptively determined by minimizing the variance of the error signal using the least mean squares (LMS) algorithm. As the NNFIS is dynamic to any change of VEP, the non-stationary characteristics of VEP can be tracked. Thus, this method should be able to track the VEP. Four sets of simulated data indicate that the proposed method is appropriate to estimate VEP. A total of 150 trials are processed to demonstrate the superior performance of the proposed method.

  7. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  8. Financial Markets Analysis by Probabilistic Fuzzy Modelling

    NARCIS (Netherlands)

    J.H. van den Berg (Jan); W.-M. van den Bergh (Willem-Max); U. Kaymak (Uzay)

    2003-01-01

    textabstractFor successful trading in financial markets, it is important to develop financial models where one can identify different states of the market for modifying one???s actions. In this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate on Takagi???Sugeno

  9. SOIL QUALITY ASSESSMENT USING FUZZY MODELING

    Science.gov (United States)

    Maintaining soil productivity is essential if agriculture production systems are to be sustainable, thus soil quality is an essential issue. However, there is a paucity of tools for measurement for the purpose of understanding changes in soil quality. Here the possibility of using fuzzy modeling t...

  10. Fuzzy model-based observers for fault detection in CSTR.

    Science.gov (United States)

    Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan

    2015-11-01

    Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Modeling of Kefir Production with Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Hüseyin Nail Akgül

    2014-06-01

    Full Text Available The fermentation is ended with pH 4.6 values in industrial production of kefir. In this study, the incubation temperature, the incubation time and inoculums of culture were chose as variable parameters of kefir. In conventional control systems, the value of pH can be found by trial method. In these systems, if the number of input parameters is greater, the method of trial and error creates a system dependent on the person as well as troublesome. Fuzzy logic can be used in such cases. Modeling studies with this fuzzy logic control are examined in two portions. The first part consists of fuzzy rules and membership functions, while the second part consists of clarify. Kefir incubation temperature between 20 and 25°C, the incubation period between 18 to 22 hours and the inoculum ratio of culture between 1-5% are selected for optimum production conditions. Three separate fuzzy sets (triangular membership function are used to blur the incubation temperature, the incubation time and the inoculum ratio of culture. Because the membership function numbers belonging to the the input parameters are 3 units, 3x3x3=27 line rule is obtained by multiplying these numbers. The table of fuzzy rules was obtained using the method of Mamdani. The membership function values were determined by the method of average weight using three trapezoidal area of membership functions created for clarification. The success of the system will be found, comparing the numerical values obtained with pH values that should be. Eventually, to achieve the desired pH value of 4.6 in the production of kefir, with the using of fuzzy logic, the workload of people will be decreased and the productivity of business can be increased. In this case, it can be provided savings in both cost and time.

  12. A hybrid framework for reservoir characterization using fuzzy ranking and an artificial neural network

    Science.gov (United States)

    Wang, Baijie; Wang, Xin; Chen, Zhangxin

    2013-08-01

    Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.

  13. Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction

    Energy Technology Data Exchange (ETDEWEB)

    Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)

    2008-06-15

    Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)

  14. Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Saleh Shahinfar

    2012-01-01

    Full Text Available Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.

  15. Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems

    Science.gov (United States)

    Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A.

    2012-01-01

    Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production. PMID:22991575

  16. Prediction of breeding values for dairy cattle using artificial neural networks and neuro-fuzzy systems.

    Science.gov (United States)

    Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A

    2012-01-01

    Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.

  17. Fuzzy Petri nets to model vision system decisions within a flexible manufacturing system

    Science.gov (United States)

    Hanna, Moheb M.; Buck, A. A.; Smith, R.

    1994-10-01

    The paper presents a Petri net approach to modelling, monitoring and control of the behavior of an FMS cell. The FMS cell described comprises a pick and place robot, vision system, CNC-milling machine and 3 conveyors. The work illustrates how the block diagrams in a hierarchical structure can be used to describe events at different levels of abstraction. It focuses on Fuzzy Petri nets (Fuzzy logic with Petri nets) including an artificial neural network (Fuzzy Neural Petri nets) to model and control vision system decisions and robot sequences within an FMS cell. This methodology can be used as a graphical modelling tool to monitor and control the imprecise, vague and uncertain situations, and determine the quality of the output product of an FMS cell.

  18. Relationship between isoseismal area and magnitude of historical earthquakes in Greece by a hybrid fuzzy neural network method

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2012-01-01

    Full Text Available In this paper we suggest the use of diffusion-neural-networks, (neural networks with intrinsic fuzzy logic abilities to assess the relationship between isoseismal area and earthquake magnitude for the region of Greece. It is of particular importance to study historical earthquakes for which we often have macroseismic information in the form of isoseisms but it is statistically incomplete to assess magnitudes from an isoseismal area or to train conventional artificial neural networks for magnitude estimation. Fuzzy relationships are developed and used to train a feed forward neural network with a back propagation algorithm to obtain the final relationships. Seismic intensity data from 24 earthquakes in Greece have been used. Special attention is being paid to the incompleteness and contradictory patterns in scanty historical earthquake records. The results show that the proposed processing model is very effective, better than applying classical artificial neural networks since the magnitude macroseismic intensity target function has a strong nonlinearity and in most cases the macroseismic datasets are very small.

  19. Takagi-Sugeno Neuro-Fuzzy Modeling of a Multivariable Nonlinear Antenna System

    Directory of Open Access Journals (Sweden)

    E. A. Al-Gallaf

    2005-12-01

    Full Text Available This article investigates the use of a clustered based neuro-fuzzy system to nonlinear dynamic system modeling. It is focused on the modeling via Takagi-Sugeno (T-S modeling procedure and the employment of fuzzy clustering to generate suitable initial membership functions. The T-S fuzzy modeling has been applied to model a nonlinear antenna dynamic system with two coupled inputs and outputs. Compared to other well-known approximation techniques such as artificial neural networks, the employed neuro-fuzzy system has provided a more transparent representation of the nonlinear antenna system under study, mainly due to the possible linguistic interpretation in the form of rules. Created initial memberships are then employed to construct suitable T-S models. Furthermore, the T-S fuzzy models have been validated and checked through the use of some standard model validation techniques (like the correlation functions. This intelligent modeling scheme is very useful once making complicated systems linguistically transparent in terms of the fuzzy if-then rules.

  20. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    Science.gov (United States)

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  1. Modeling Perception of 3D Forms Using Fuzzy Knowledge Bases

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed, Saeema

    2009-01-01

    the aesthetics of their products are likely to be perceived are of value. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object and the intended perception using fuzzy logic. 3D objects (shapes) created by design engineering students to evoke...... a certain perception were analysed. Three different fuzzy logic models, with different input variables, for evaluating massiveness and lightness in a form are proposed. The uthors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map...... the relationships between the fuzzy sets on each input premise and the output premise. In our case the output premise of the fuzzy logic model is the level of belonging to the design context (perception). An evaluation of how users perceived the shapes was conducted to validate the fuzzy logic models and showed...

  2. Estimation of Leak Flow Rate during Post-LOCA Using Cascaded Fuzzy Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2016-10-15

    In this study, important parameters such as the break position, size, and leak flow rate of loss of coolant accidents (LOCAs), provide operators with essential information for recovering the cooling capability of the nuclear reactor core, for preventing the reactor core from melting down, and for managing severe accidents effectively. Leak flow rate should consist of break size, differential pressure, temperature, and so on (where differential pressure means difference between internal and external reactor vessel pressure). The leak flow rate is strongly dependent on the break size and the differential pressure, but the break size is not measured and the integrity of pressure sensors is not assured in severe circumstances. In this paper, a cascaded fuzzy neural network (CFNN) model is appropriately proposed to estimate the leak flow rate out of break, which has a direct impact on the important times (time approaching the core exit temperature that exceeds 1200 .deg. F, core uncover time, reactor vessel failure time, etc.). The CFNN is a data-based model, it requires data to develop and verify itself. Because few actual severe accident data exist, it is essential to obtain the data required in the proposed model using numerical simulations. In this study, a CFNN model was developed to predict the leak flow rate before proceeding to severe LOCAs. The simulations showed that the developed CFNN model accurately predicted the leak flow rate with less error than 0.5%. The CFNN model is much better than FNN model under the same conditions, such as the same fuzzy rules. At the result of comparison, the RMS errors of the CFNN model were reduced by approximately 82 ~ 97% of those of the FNN model.

  3. Universal Approximation of a Class of Interval Type-2 Fuzzy Neural Networks in Nonlinear Identification

    Directory of Open Access Journals (Sweden)

    Oscar Castillo

    2013-01-01

    Full Text Available Neural networks (NNs, type-1 fuzzy logic systems (T1FLSs, and interval type-2 fuzzy logic systems (IT2FLSs have been shown to be universal approximators, which means that they can approximate any nonlinear continuous function. Recent research shows that embedding an IT2FLS on an NN can be very effective for a wide number of nonlinear complex systems, especially when handling imperfect or incomplete information. In this paper we show, based on the Stone-Weierstrass theorem, that an interval type-2 fuzzy neural network (IT2FNN is a universal approximator, which uses a set of rules and interval type-2 membership functions (IT2MFs for this purpose. Simulation results of nonlinear function identification using the IT2FNN for one and three variables and for the Mackey-Glass chaotic time series prediction are presented to illustrate the concept of universal approximation.

  4. Fuzzy linguistic prediction model for sinoatrial node field potential analysis in acute hyperglycemia environment.

    Science.gov (United States)

    Feng, Yu; Cao, Hui; Wang, Yanxia; Zhang, Yanbin

    2015-01-01

    The objective of this study is to build a fuzzy linguistic prediction model (FLPM) for analyzing the actuation duration of acute hyperglycemia to sinoatrial node field potential. The field potential was recorded using microelectrode arrays (MEA). The experimental data were analyzed using partial least squares (PLS), support vector machine (SVM), back propagation neural network (BPNN) and the proposed method. The experimental results showed that the fuzzy linguistic prediction model could be adopted for predicting the actuation duration of high glucose to the sinoatrial node field potential. Compared with the other aforementioned models, the proposed model had higher prediction accuracy.

  5. Self-growing neural network architecture using crisp and fuzzy entropy

    Science.gov (United States)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID2, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and discussed.

  6. Predicting product life cycle using fuzzy neural network

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi

    2014-09-01

    Full Text Available One of the most important tasks of science in different fields is to find the relationships among various phenomena in order to predict future. Production and service organizations are not exceptions and they should predict future to survive. Predicting the life cycle of the organization's products is one of the most important prediction cases in an organization. Predicting the product life cycle provides an opportunity to identify the product position and help to get a better insight about competitors. This paper deals with the predictability of the product life cycle with Adaptive Network-Based Fuzzy Inference System (ANFIS. The Population of this study was Pegah Fars products and the sample was this company's cheese products. In this regard, this paper attempts to model and predict the product life cycle of cheese products in Pegah Fars Company. In this due, a designed questionnaire was distributed among some experts, distributors and retailers and seven independent variables were selected. In this survey, ANFIS sales forecasting technique was employed and MATLAB software was used for data analysis. The results confirmed ANFIS as a good method to predict the product life cycle.

  7. Boundedness, Mittag-Leffler stability and asymptotical ω-periodicity of fractional-order fuzzy neural networks.

    Science.gov (United States)

    Wu, Ailong; Zeng, Zhigang

    2016-02-01

    We show that the ω-periodic fractional-order fuzzy neural networks cannot generate non-constant ω-periodic signals. In addition, several sufficient conditions are obtained to ascertain the boundedness and global Mittag-Leffler stability of fractional-order fuzzy neural networks. Furthermore, S-asymptotical ω-periodicity and global asymptotical ω-periodicity of fractional-order fuzzy neural networks is also characterized. The obtained criteria improve and extend the existing related results. To illustrate and compare the theoretical criteria, some numerical examples with simulation results are discussed in detail. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. Comparison of MLP neural network and neuro-fuzzy system in transcranial Doppler signals recorded from the cerebral vessels.

    Science.gov (United States)

    Hardalaç, Firat

    2008-04-01

    Transcranial Doppler signals recorded from cerebral vessels of 110 patients were transferred to a personal computer by using a 16 bit sound card. Spectral analyses of Transcranial Doppler signals were performed for determining the Multi Layer Perceptron (MLP) neural network and neuro Ankara-fuzzy system inputs. In order to do a good interpretation and rapid diagnosis, FFT parameters of Transcranial Doppler signals classified using MLP neural network and neuro-fuzzy system. Our findings demonstrated that 92% correct classification rate was obtained from MLP neural network, and 86% correct classification rate was obtained from neuro-fuzzy system.

  9. Modeling Topological Relationships between Fuzzy Spatio-Temporal Objects

    Directory of Open Access Journals (Sweden)

    Haitao Cheng

    2016-12-01

    Full Text Available Topological relationships between spatio-temporal objects are the most fundamental elements in spatio-temporal database systems, GIS, and image database systems. The research issue of modeling topological relationships has increasingly attracted attention, especially for querying of spatio-temporal objects and reasoning of topological relationships. Currently, topological relationship operating on spatio-temporal objects with precisely defined boundaries has been well studied. However, in the real world, spatio-temporal objects are not always crisp but with the nature of fuzziness and imprecision. Therefore, how to model topological relationship between fuzzy spatio-temporal objects is a significant topic and needs more investigations. This paper presents a study on modeling topological relationships between fuzzy spatio-temporal objects. Firstly, we give a model of fuzzy spatio-temporal objects in three-dimensional space and define those objects as moving fuzzy points, moving fuzzy lines, and moving fuzzy regions. On this basis, we propose a model for identifying basic topological relations between fuzzy spatio-temporal objects. Furthermore, in order to describe the evolution of basic topological relations over time, we give a model of complex topological relationships which are the sequences of basic relationships. The benefit of this model is that the complex topological relationships can be used as fuzzy spatio-temporal query operators in query languages. Finally, we provide some query examples to demonstrate fuzzy spatio-temporal queries in spatio-temporal database.

  10. Transient stability analysis of electric energy systems via a fuzzy ART-ARTMAP neural network

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Wagner Peron; Silveira, Maria do Carmo G.; Lotufo, AnnaDiva P.; Minussi, Carlos. R. [Department of Electrical Engineering, Sao Paulo State University (UNESP), P.O. Box 31, 15385-000, Ilha Solteira, SP (Brazil)

    2006-04-15

    This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (author)

  11. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    Science.gov (United States)

    El-Nagar, Ahmad M

    2017-10-31

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. COMPARISON of FUZZY-BASED MODELS in LANDSLIDE HAZARD MAPPING

    Directory of Open Access Journals (Sweden)

    N. Mijani

    2017-09-01

    Full Text Available Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR and Quality Sum (QS. The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.

  13. Comparison of Fuzzy-Based Models in Landslide Hazard Mapping

    Science.gov (United States)

    Mijani, N.; Neysani Samani, N.

    2017-09-01

    Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP), Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR) and Quality Sum (QS). The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P) and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.

  14. Neural-Network-Based Fuzzy Logic Navigation Control for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ahcene Farah

    2002-06-01

    Full Text Available This paper proposes a Neural-Network-Based Fuzzy logic system for navigation control of intelligent vehicles. First, the use of Neural Networks and Fuzzy Logic to provide intelligent vehicles  with more autonomy and intelligence is discussed. Second, the system  for the obstacle avoidance behavior is developed. Fuzzy Logic improves Neural Networks (NN obstacle avoidance approach by handling imprecision and rule-based approximate reasoning. This system must make the vehicle able, after supervised learning, to achieve two tasks: 1- to make one’s way towards its target by a NN, and 2- to avoid static or dynamic obstacles by a Fuzzy NN capturing the behavior of a human expert. Afterwards, two association phases between each task and the appropriate actions are carried out by Trial and Error learning and their coordination allows to decide the appropriate action. Finally, the simulation results display the generalization and adaptation abilities of the system by testing it in new unexplored environments.

  15. The 3-D image recognition based on fuzzy neural network technology

    Science.gov (United States)

    Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei

    1993-01-01

    Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.

  16. System identification and adaptive control theory and applications of the neurofuzzy and fuzzy cognitive network models

    CERN Document Server

    Boutalis, Yiannis; Kottas, Theodore; Christodoulou, Manolis A

    2014-01-01

    Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented.  Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model  stems  from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering s...

  17. Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geon Pil; Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun, E-mail: magyna@chosun.ac.kr

    2016-04-15

    Highlights: • We present a hydrogen-concentration prediction method in an NPP containment. • The cascaded fuzzy neural network (CFNN) is used in this prediction model. • The CFNN model is much better than the existing FNN model. • This prediction can help prevent severe accidents in NPP due to hydrogen explosion. - Abstract: Recently, severe accidents in nuclear power plants (NPPs) have attracted worldwide interest since the Fukushima accident. If the hydrogen concentration in an NPP containment is increased above 4% in atmospheric pressure, hydrogen combustion will likely occur. Therefore, the hydrogen concentration must be kept below 4%. This study presents the prediction of hydrogen concentration using cascaded fuzzy neural network (CFNN). The CFNN model repeatedly applies FNN modules that are serially connected. The CFNN model was developed using data on severe accidents in NPPs. The data were obtained by numerically simulating the accident scenarios using the MAAP4 code for optimized power reactor 1000 (OPR1000) because real severe accident data cannot be obtained from actual NPP accidents. The root-mean-square error level predicted by the CFNN model is below approximately 5%. It was confirmed that the CFNN model could accurately predict the hydrogen concentration in the containment. If NPP operators can predict the hydrogen concentration in the containment using the CFNN model, this prediction can assist them in preventing a hydrogen explosion.

  18. Genetic fuzzy system modeling and simulation of vascular behaviour

    DEFF Research Database (Denmark)

    Tang, Jiaowei; Boonen, Harrie C.M.

    in principle for any physiological system that is characterized by auto-regulatory control and adaptation. Methods: Currently, one modeling approach is being investigated, Genetic Fuzzy System (GFS). In Genetic Fuzzy Systems, the model algorithm mimics the biologic genetic evolutionary process to learn...... and find the optimal parameters in a Fuzzy Control set that can control the fluctuation of physical features in a blood vessel, based on experimental data (training data). Our solution is to create chromosomes or individuals composed of a sequence of parameters in the fuzzy system and find the best...... chromosome or individual to define the fuzzy system. The model is implemented by combining the Matlab Genetic algorithm and Fuzzy system toolboxes, respectively. To test the performance of this method, experimental data sets about calculated pressure change in different blood vessels after several chemical...

  19. A novel methodology improves reservoir characterization models using geologic fuzzy variables

    Energy Technology Data Exchange (ETDEWEB)

    Soto B, Rodolfo [DIGITOIL, Maracaibo (Venezuela); Soto O, David A. [Texas A and M University, College Station, TX (United States)

    2004-07-01

    One of the research projects carried out in Cusiana field to explain its rapid decline during the last years was to get better permeability models. The reservoir of this field has a complex layered system that it is not easy to model using conventional methods. The new technique included the development of porosity and permeability maps from cored wells following the same trend of the sand depositions for each facie or layer according to the sedimentary facie and the depositional system models. Then, we used fuzzy logic to reproduce those maps in three dimensions as geologic fuzzy variables. After multivariate statistical and factor analyses, we found independence and a good correlation coefficient between the geologic fuzzy variables and core permeability and porosity. This means, the geologic fuzzy variable could explain the fabric, the grain size and the pore geometry of the reservoir rock trough the field. Finally, we developed a neural network permeability model using porosity, gamma ray and the geologic fuzzy variable as input variables. This model has a cross-correlation coefficient of 0.873 and average absolute error of 33% compared with the actual model with a correlation coefficient of 0.511 and absolute error greater than 250%. We tested different methodologies, but this new one showed dramatically be a promiser way to get better permeability models. The use of the models have had a high impact in the explanation of well performance and workovers, and reservoir simulation models. (author)

  20. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-07-01

    This article present a comparison of artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) applied for modelling a ground-coupled heat pump system (GCHP). The aim of this study is predicting system performance related to ground and air (condenser inlet and outlet) temperatures by using desired models. Performance forecasting is the precondition for the optimal design and energy-saving operation of air-conditioning systems. So obtained models will help the system designer to realize this precondition. The most suitable algorithm and neuron number in the hidden layer are found as Levenberg-Marquardt (LM) with seven neurons for ANN model whereas the most suitable membership function and number of membership functions are found as Gauss and two, respectively, for ANFIS model. The root-mean squared (RMS) value and the coefficient of variation in percent (cov) value are 0.0047 and 0.1363, respectively. The absolute fraction of variance (R{sup 2}) is 0.9999 which can be considered as very promising. This paper shows the appropriateness of ANFIS for the quantitative modeling of GCHP systems. (author)

  1. a New Model for Fuzzy Personalized Route Planning Using Fuzzy Linguistic Preference Relation

    Science.gov (United States)

    Nadi, S.; Houshyaripour, A. H.

    2017-09-01

    This paper proposes a new model for personalized route planning under uncertain condition. Personalized routing, involves different sources of uncertainty. These uncertainties can be raised from user's ambiguity about their preferences, imprecise criteria values and modelling process. The proposed model uses Fuzzy Linguistic Preference Relation Analytical Hierarchical Process (FLPRAHP) to analyse user's preferences under uncertainty. Routing is a multi-criteria task especially in transportation networks, where the users wish to optimize their routes based on different criteria. However, due to the lake of knowledge about the preferences of different users and uncertainties available in the criteria values, we propose a new personalized fuzzy routing method based on the fuzzy ranking using center of gravity. The model employed FLPRAHP method to aggregate uncertain criteria values regarding uncertain user's preferences while improve consistency with least possible comparisons. An illustrative example presents the effectiveness and capability of the proposed model to calculate best personalize route under fuzziness and uncertainty.

  2. Fuzzy tool for conceptual modeling under uncertainty

    Science.gov (United States)

    Walek, Bogdan; Klimes, Cyril

    2012-01-01

    This paper deals with the design of fuzzy tool for creating conceptual model under uncertainty. The paper identifies a problem in current approach of creating conceptual model of information system and suggests new methodics and tool for creating conceptual model, which can processes uncertain user requirements. The proposed tool uses a general model of the decision support system, that works with the vague input values and IF-THEN fuzzy rules, and creates a list of appropriate and acceptable solutions, and then allows to choose the best solution. In the proposed tool entities, attributes and relations between entitites in the resulting conceptual model are selected via a decision support system. In the paper we present six main parts of proposed tool, that generates suitable entities, attributes and relations between entities, then generates them to XML format and finally visualizes the resulting conceptual model. The created conceptual model illustrates the analysis of information system requirements. The proposed tool is shown on creating conceptual model of the hotel information system.

  3. Prediction of Reactor Vessel Water Level Using Fuzzy Neural Networks in Severe Accidents due to LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soonho; Kim, Jaehawn; Na, Mangyun [Chosun Univ., Gwangju (Korea, Republic of)

    2013-05-15

    When the initial events that may lead to the severe accident such as Loss Of Coolant Accident (LOCA) and Steam Generator Tube Rupture (SGTR) occurs at a nuclear power plant, it is most important to check the status of the plant conditions by observing the safety-related parameters such as neutron flux, pressurizer pressure, steam generator pressure and water level. In this paper, we propose a method of predicting the water level of coolant in the reactor vessel that directly affect the important events such as the exposure of the reactor core and the damage of reactor vessel by using a Fuzzy Neural Network (FNN) method. In addition, the data for verifying a proposed model was obtained by simulating the severe accident scenarios for the OPR1000 nuclear power plant using the MAAP4 code. In this paper, a prediction model was developed for predicting the reactor vessel water level using the FNN method. The proposed FNN model was verified based on the simulation data of OPR1000 by using MAAP4 code. As a result of simulation, we could see that the performance of the proposed FNN model is quite satisfactory but some large errors are observed occasionally. If the proposed FNN model is optimized by using a variety of data, it is possible to predict the reactor vessel water level exactly.

  4. A Model for Optimizing Enterprise's Inventory Costs : a Fuzzy Approach

    Directory of Open Access Journals (Sweden)

    Witold Kosiński

    2013-01-01

    Full Text Available Applicability of a fuzzy approach to a problem originating from administrative accounting, namely to determine an economic order quantity (EOQ in a variable competitive environment with imprecise and vague data, has been presented. For this purpose, the model of ordered fuzzy numbers developed by the first author and his two co-workers is used. The present approach generalizes the one developed within the framework of convex fuzzy numbers and stays outside the probabilistic one. (original abstract

  5. A Fuzzy Knowledge Representation Model for Student Performance Assessment

    DEFF Research Database (Denmark)

    Badie, Farshad

    Knowledge representation models based on Fuzzy Description Logics (DLs) can provide a foundation for reasoning in intelligent learning environments. While basic DLs are suitable for expressing crisp concepts and binary relationships, Fuzzy DLs are capable of processing degrees of truth....../completeness about vague or imprecise information. This paper tackles the issue of representing fuzzy classes using OWL2 in a dataset describing Performance Assessment Results of Students (PARS)....

  6. A fuzzy-based decision model application on strategic management

    OpenAIRE

    Keropyan, Aras; Gil Lafuente, Anna Maria

    2011-01-01

    In this article, the objective is to demonstrate the effects of different decision styles on strategic decisions and likewise, on an organization. The technique that was presented in the study is based on the transformation of linguistic variables to numerical value intervals. In this model, the study benefits from fuzzy logic methodology and fuzzy numbers. This fuzzy methodology approach allows us to examine the relations between decision making styles and strategic management processes when...

  7. Clear and fuzzy fractal models of spreading dangerous environmental phenomena

    Directory of Open Access Journals (Sweden)

    A.E. Guy

    2006-04-01

    Full Text Available  This article is devoted to investigation of possibility of widening models of spreading dangerous environmental phenomena, in particular Grassberger’s models, on the base of notion of fuzzy fractal sets introduced by one of the authors. Basic concepts from the theory of fuzzy fractals are considered.

  8. Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment

    Directory of Open Access Journals (Sweden)

    Ahmad Khan Adnan

    2010-01-01

    Full Text Available Abstract This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs used for reassigning time-frequency representations (TFRs. Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number of clusters and in conjunction with neural network-based processing technique utilizing a hybrid approach can effectively reduce the blur in the spectrograms. In the course of every partitioning problem the number of subsets must be given before the calculation, but it is rarely known apriori, in this case it must be searched also with using validity measures. Experimental results demonstrate the effectiveness of the approach.

  9. The Improvment DSTATCOM to Enhance the Quality of Power Using Fuzzy- Neural Controller

    Directory of Open Access Journals (Sweden)

    Gazanfar Shahgholian

    2011-07-01

    Full Text Available In this article the performance of a DSTATCOM as an efficient parallel compensator, for obtaining the power indexes has been considered, Then, to improve the performance of DSTATVOM, each of its PI controller has been substituted by a nonlinear fuzzy-neural controller, based on trial error and derivation of system error. The cause of detorioration of power quality and the method of their compensation, in a distribution network, has been analysed, using Matlab. The simulation results show that, using the fuzzy-neural controller in place of linear controller in DSTATCOM controller, the ability of compensation in the active and reactive power voltage sag, swell and fliker, and reduction of low current and voltage harmonics has been improved cansiderably.

  10. Multilayer cellular neural network and fuzzy C-mean classifiers: comparison and performance analysis

    Science.gov (United States)

    Trujillo San-Martin, Maite; Hlebarov, Vejen; Sadki, Mustapha

    2004-11-01

    Neural Networks and Fuzzy systems are considered two of the most important artificial intelligent algorithms which provide classification capabilities obtained through different learning schemas which capture knowledge and process it according to particular rule-based algorithms. These methods are especially suited to exploit the tolerance for uncertainty and vagueness in cognitive reasoning. By applying these methods with some relevant knowledge-based rules extracted using different data analysis tools, it is possible to obtain a robust classification performance for a wide range of applications. This paper will focus on non-destructive testing quality control systems, in particular, the study of metallic structures classification according to the corrosion time using a novel cellular neural network architecture, which will be explained in detail. Additionally, we will compare these results with the ones obtained using the Fuzzy C-means clustering algorithm and analyse both classifiers according to its classification capabilities.

  11. An experimental study on nonlinear function computation for neural/fuzzy hardware design.

    Science.gov (United States)

    Basterretxea, Koldo; Tarela, José Manuel; del Campo, Inés; Bosque, Guillermo

    2007-01-01

    An experimental study on the influence of the computation of basic nodal nonlinear functions on the performance of (NFSs) is described in this paper. Systems' architecture size, their approximation capability, and the smoothness of provided mappings are used as performance indexes for this comparative paper. Two widely used kernel functions, the sigmoid-logistic function and the Gaussian function, are analyzed by their computation through an accuracy-controllable approximation algorithm designed for hardware implementation. Two artificial neural network (ANN) paradigms are selected for the analysis: backpropagation neural networks (BPNNs) with one hidden layer and radial basis function (RBF) networks. Extensive simulation of simple benchmark approximation problems is used in order to achieve generalizable conclusions. For the performance analysis of fuzzy systems, a functional equivalence theorem is used to extend obtained results to fuzzy inference systems (FISs). Finally, the adaptive neurofuzzy inference system (ANFIS) paradigm is used to observe the behavior of neurofuzzy systems with learning capabilities.

  12. Hybrid neural network and fuzzy logic approaches for rendezvous and capture in space

    Science.gov (United States)

    Berenji, Hamid R.; Castellano, Timothy

    1991-01-01

    The nonlinear behavior of many practical systems and unavailability of quantitative data regarding the input-output relations makes the analytical modeling of these systems very difficult. On the other hand, approximate reasoning-based controllers which do not require analytical models have demonstrated a number of successful applications such as the subway system in the city of Sendai. These applications have mainly concentrated on emulating the performance of a skilled human operator in the form of linguistic rules. However, the process of learning and tuning the control rules to achieve the desired performance remains a difficult task. Fuzzy Logic Control is based on fuzzy set theory. A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or no membership at all, whereas fuzzy sets allow partial membership. In other words, an element may partially belong to a set.

  13. Genetic Fuzzy Modelling of User Perception of 3D Shapes

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed-Kristensen, Saeema

    2011-01-01

    the emotion/perception with different shapes composed of a set of different geometric features. In this paper, the authors propose an automatic approach to formalize the relationships between geometric information of 3D objects and the intended emotional content using fuzzy logic. In addition......, the automatically generated fuzzy knowledge base was compared to the user’s perceptions and to the manually constructed fuzzy knowledge base. The initial findings indicate that the approach is indeed valid to formalize geometric information with perceptions and validate the author’s manually developed fuzzy models....

  14. Intelligent fuzzy-neural pattern generation and control of a quadrupedal bionic inspection robot

    Science.gov (United States)

    Sayfeddine, D.; Bulgakov, A. G.

    2017-02-01

    This paper represents a case study on ‘single leg single step’ pattern generation and control of quadrupedal bionic robot movement using intelligent fuzzy-neural approaches. The aim is to set up a flip-flop mechanical configuration allowing the robot to move one step forward. The same algorithm can be integrated to develop a full trajectory pattern as an interconnected task of global path planning for autonomous quadrupedal robots.

  15. NEURAL CASCADED WITH FUZZY SCHEME FOR CONTROL OF A HYDROELECTRIC POWER PLANT

    OpenAIRE

    A. Selwin Mich Priyadharson; T. Ramesh Kumar; M. S. Saravanan; C. ThilipKumar; D. Dileepan

    2014-01-01

    A novel design for flow and level control in a hydroelectric power plant using Programmable Logic Controller (PLC)-Human Machine Interface (HMI) and neural cascaded with fuzzy scheme is proposed. This project will focus on design and development of flow and level controller for small scale hydro generating units by implementing gate control based on PLC-HMI with the proposed scheme. The existing control schemes have so many difficulties to manage intrinsic time delay, nonlinearity due to unce...

  16. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  17. Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models.

    Science.gov (United States)

    Nadiri, Ata Allah; Gharekhani, Maryam; Khatibi, Rahman; Moghaddam, Asghar Asghari

    2017-03-01

    Vulnerability indices of an aquifer assessed by different fuzzy logic (FL) models often give rise to differing values with no theoretical or empirical basis to establish a validated baseline or to develop a comparison basis between the modeling results and baselines, if any. Therefore, this research presents a supervised committee fuzzy logic (SCFL) method, which uses artificial neural networks to overarch and combine a selection of FL models. The indices are expressed by the widely used DRASTIC framework, which include geological, hydrological, and hydrogeological parameters often subject to uncertainty. DRASTIC indices represent collectively intrinsic (or natural) vulnerability and give a sense of contaminants, such as nitrate-N, percolating to aquifers from the surface. The study area is an aquifer in Ardabil plain, the province of Ardabil, northwest Iran. Improvements on vulnerability indices are achieved by FL techniques, which comprise Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL). As the correlation between estimated DRASTIC vulnerability index values and nitrate-N values is as low as 0.4, it is improved significantly by FL models (SFL, MFL, and LFL), which perform in similar ways but have differences. Their synergy is exploited by SCFL and uses the FL modeling results "conditioned" by nitrate-N values to raise their correlation to higher than 0.9.

  18. Type-2 fuzzy logic uncertain systems’ modeling and control

    CERN Document Server

    Antão, Rómulo

    2017-01-01

    This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.

  19. Neural networks, fuzzy logic and genetic algorithms: applications and possibilities in finance and accounting/ Redes neurais, logica nebulosa e algoritmos geneticos: aplicacoes e possibilidades em financas e contabilidade

    National Research Council Canada - National Science Library

    Wuerges, Artur Filipe Ewald; Borba, Jose Alonso

    2010-01-01

    .... This paper analyzes empirical works published in international journals between 2000 and 2007 that present studies about the application of Neural Networks, Fuzzy Logic and Genetic Algorithms to...

  20. Blood Cell Segmentation Based on Improved Pulse Coupled Neural Network and Fuzzy Entropy

    Directory of Open Access Journals (Sweden)

    Zhanbo Liu

    2016-12-01

    Full Text Available In the field of biomedical image processing, because of the low intensity and brightness of the cell image, and the complex structure of the cell image, the segmentation of cell images is very difficult. A large number of studies have shown that the Pulse Coupled Neural Networks (PCNN is suitable for image segmentation. However, the traditional PCNN must set a large number of parameters in image segmentation, and the optimal number of iterations cannot be automatically determined. In this paper, a new improved PCNN model is proposed. The work of improved PCNN includes the acceptance portion of the PCNN model being simplified and the connection portion of PCNN being improved. In addition, the maximum fuzzy entropy is used as the criterion to determine the optimal number of iterations. Experimental results on blood cell image segmentation show that this proposed method can automatically determine the number of loop iterations and automatically select the best threshold. It also has the characteristics of fast convergence, high accuracy and good segmentation effect in blood cell image segmentation processing.

  1. Learning Control of Fixed-Wing Unmanned Aerial Vehicles Using Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Erdal Kayacan

    2017-01-01

    Full Text Available A learning control strategy is preferred for the control and guidance of a fixed-wing unmanned aerial vehicle to deal with lack of modeling and flight uncertainties. For learning the plant model as well as changing working conditions online, a fuzzy neural network (FNN is used in parallel with a conventional P (proportional controller. Among the learning algorithms in the literature, a derivative-free one, sliding mode control (SMC theory-based learning algorithm, is preferred as it has been proved to be computationally efficient in real-time applications. Its proven robustness and finite time converging nature make the learning algorithm appropriate for controlling an unmanned aerial vehicle as the computational power is always limited in unmanned aerial vehicles (UAVs. The parameter update rules and stability conditions of the learning are derived, and the proof of the stability of the learning algorithm is shown by using a candidate Lyapunov function. Intensive simulations are performed to illustrate the applicability of the proposed controller which includes the tracking of a three-dimensional trajectory by the UAV subject to time-varying wind conditions. The simulation results show the efficiency of the proposed control algorithm, especially in real-time control systems because of its computational efficiency.

  2. Designing of fuzzy expert heuristic models with cost management ...

    Indian Academy of Sciences (India)

    In genuine industrial case, problems are inescapable and pose enormous challenges to incorporate accurate sustainability factors into supplier selection. In this present study, three different primarily based multicriteria decision making fuzzy models have been compared with their deterministic version so as to resolve fuzzy ...

  3. A Novel Approach to Implement Takagi-Sugeno Fuzzy Models.

    Science.gov (United States)

    Chang, Chia-Wen; Tao, Chin-Wang

    2017-09-01

    This paper proposes new algorithms based on the fuzzy c-regressing model algorithm for Takagi-Sugeno (T-S) fuzzy modeling of the complex nonlinear systems. A fuzzy c-regression state model (FCRSM) algorithm is a T-S fuzzy model in which the functional antecedent and the state-space-model-type consequent are considered with the available input-output data. The antecedent and consequent forms of the proposed FCRSM consists mainly of two advantages: one is that the FCRSM has low computation load due to only one input variable is considered in the antecedent part; another is that the unknown system can be modeled to not only the polynomial form but also the state-space form. Moreover, the FCRSM can be extended to FCRSM-ND and FCRSM-Free algorithms. An algorithm FCRSM-ND is presented to find the T-S fuzzy state-space model of the nonlinear system when the input-output data cannot be precollected and an assumed effective controller is available. In the practical applications, the mathematical model of controller may be hard to be obtained. In this case, an online tuning algorithm, FCRSM-FREE, is designed such that the parameters of a T-S fuzzy controller and the T-S fuzzy state model of an unknown system can be online tuned simultaneously. Four numerical simulations are given to demonstrate the effectiveness of the proposed approach.

  4. Model Reduction of Fuzzy Logic Systems

    Directory of Open Access Journals (Sweden)

    Zhandong Yu

    2014-01-01

    Full Text Available This paper deals with the problem of ℒ2-ℒ∞ model reduction for continuous-time nonlinear uncertain systems. The approach of the construction of a reduced-order model is presented for high-order nonlinear uncertain systems described by the T-S fuzzy systems, which not only approximates the original high-order system well with an ℒ2-ℒ∞ error performance level γ but also translates it into a linear lower-dimensional system. Then, the model approximation is converted into a convex optimization problem by using a linearization procedure. Finally, a numerical example is presented to show the effectiveness of the proposed method.

  5. Using Adaptive Neural-Fuzzy Inference Systems (ANFIS for Demand Forecasting and an Application

    Directory of Open Access Journals (Sweden)

    Onur Doğan

    2016-06-01

    Full Text Available Due to the rapid increase in global competition among organizations and companies, rational approaches in decision making have become indispensable for organizations in today’s world. Establishing a safe and robust path through uncertainties and risks depends on the decision units’ ability of using scientific methods as well as technology. Demand forecasting is known to be one of the most critical problems in organizations.  A company which supports its demand forecasting mechanism with scientific methodologies could increase its productivity and efficiency in all other functions. New methods, such as fuzzy logic and artificial neural networks are frequently being used as a decision-making mechanism in organizations and companies recently.  In this study, it is aimed to solve a critical demand forecasting problem with ANFIS. In the first phase of the study, the factors which impact demand forecasting are determined, and then a database of the model is established using these factors. It has been shown that ANFIS could be used for demand forecasting.

  6. Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neural networks and fuzzy logic methods.

    Science.gov (United States)

    Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur

    2017-09-01

    The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A hybrid fuzzy-neural system for computer-aided diagnosis of ultrasound kidney images using prominent features.

    Science.gov (United States)

    Bommanna Raja, K; Madheswaran, M; Thyagarajah, K

    2008-02-01

    The objective of this work is to develop and implement a computer-aided decision support system for an automated diagnosis and classification of ultrasound kidney images. The proposed method distinguishes three kidney categories namely normal, medical renal diseases and cortical cyst. For the each pre-processed ultrasound kidney image, 36 features are extracted. Two types of decision support systems, optimized multi-layer back propagation network and hybrid fuzzy-neural system have been developed with these features for classifying the kidney categories. The performance of the hybrid fuzzy-neural system is compared with the optimized multi-layer back propagation network in terms of classification efficiency, training and testing time. The results obtained show that fuzzy-neural system provides higher classification efficiency with minimum training and testing time. It has also been found that instead of using all 36 features, ranking the features enhance classification efficiency. The outputs of the decision support systems are validated with medical expert to measure the actual efficiency. The overall discriminating capability of the systems is accessed with performance evaluation measure, f-score. It has been observed that the performance of fuzzy-neural system is superior compared to optimized multi-layer back propagation network. Such hybrid fuzzy-neural system with feature extraction algorithms and pre-processing scheme helps in developing computer-aided diagnosis system for ultrasound kidney images and can be used as a secondary observer in clinical decision making.

  8. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    Science.gov (United States)

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Neural-Fuzzy Digital Strategy of Continuous-Time Nonlinear Systems Using Adaptive Prediction and Random-Local-Optimization Design

    Directory of Open Access Journals (Sweden)

    Zhi-Ren Tsai

    2013-01-01

    Full Text Available A tracking problem, time-delay, uncertainty and stability analysis of a predictive control system are considered. The predictive control design is based on the input and output of neural plant model (NPM, and a recursive fuzzy predictive tracker has scaling factors which limit the value zone of measured data and cause the tuned parameters to converge to obtain a robust control performance. To improve the further control performance, the proposed random-local-optimization design (RLO for a model/controller uses offline initialization to obtain a near global optimal model/controller. Other issues are the considerations of modeling error, input-delay, sampling distortion, cost, greater flexibility, and highly reliable digital products of the model-based controller for the continuous-time (CT nonlinear system. They are solved by a recommended two-stage control design with the first-stage (offline RLO and second-stage (online adaptive steps. A theorizing method is then put forward to replace the sensitivity calculation, which reduces the calculation of Jacobin matrices of the back-propagation (BP method. Finally, the feedforward input of reference signals helps the digital fuzzy controller improve the control performance, and the technique works to control the CT systems precisely.

  10. Soft consensus model for the group fuzzy AHP decision making

    Directory of Open Access Journals (Sweden)

    Lidija Zadnik Stirn

    2017-01-01

    Full Text Available The fuzzy analytic hierarchy process (AHP is an extension to the classical AHP that enables dealing with the impreciseness and vagueness of judgments. It has been frequently used for handling complex decision making problems that demand a group rather than a single decision maker. Group decision making aggregates the judgments of individuals into a joint decision. Although consensus is the desired result in group decision making, it is difficult to achieve due to the diversity of opinions, knowledge and experiences of the decision makers. Therefore, the concept of soft consensus can be applied. We propose a new soft consensus based model for fuzzy AHP group decision making. The judgments in the model are presented as triangular fuzzy numbers. The closeness between judgments of two decision makers is measured by the individual fuzzy consensus index which in turn is based on the compatibility index from classical AHP. In each iteration, two decision makers with the most dissimilar opinions are identified and their judgments are adapted. The process is repeated until the desired consensus level is reached. The model can also take into account the weights of importance of individual decision makers. A fuzzy extension of the geometric mean method is employed for deriving fuzzy weights from a group fuzzy pairwise comparison matrix. The application of the model is provided in an example from the literature.

  11. Temporal and Spatial prediction of groundwater levels using Artificial Neural Networks, Fuzzy logic and Kriging interpolation.

    Science.gov (United States)

    Tapoglou, Evdokia; Karatzas, George P.; Trichakis, Ioannis C.; Varouchakis, Emmanouil A.

    2014-05-01

    The purpose of this study is to examine the use of Artificial Neural Networks (ANN) combined with kriging interpolation method, in order to simulate the hydraulic head both spatially and temporally. Initially, ANNs are used for the temporal simulation of the hydraulic head change. The results of the most appropriate ANNs, determined through a fuzzy logic system, are used as an input for the kriging algorithm where the spatial simulation is conducted. The proposed algorithm is tested in an area located across Isar River in Bayern, Germany and covers an area of approximately 7800 km2. The available data extend to a time period from 1/11/2008 to 31/10/2012 (1460 days) and include the hydraulic head at 64 wells, temperature and rainfall at 7 weather stations and surface water elevation at 5 monitoring stations. One feedforward ANN was trained for each of the 64 wells, where hydraulic head data are available, using a backpropagation algorithm. The most appropriate input parameters for each wells' ANN are determined considering their proximity to the measuring station, as well as their statistical characteristics. For the rainfall, the data for two consecutive time lags for best correlated weather station, as well as a third and fourth input from the second best correlated weather station, are used as an input. The surface water monitoring stations with the three best correlations for each well are also used in every case. Finally, the temperature for the best correlated weather station is used. Two different architectures are considered and the one with the best results is used henceforward. The output of the ANNs corresponds to the hydraulic head change per time step. These predictions are used in the kriging interpolation algorithm. However, not all 64 simulated values should be used. The appropriate neighborhood for each prediction point is constructed based not only on the distance between known and prediction points, but also on the training and testing error of

  12. Sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    A. R Abdollahnejad Barough

    2016-04-01

    . Finally, a total amount of the second moment (m2 and matrix vectors of image were selected as features. Features and rules produced from decision tree fed into an Adaptable Neuro-fuzzy Inference System (ANFIS. ANFIS provides a neural network based on Fuzzy Inference System (FIS can produce appropriate output corresponding input patterns. Results and Discussion: The proposed model was trained and tested inside ANFIS Editor of the MATLAB software. 300 images, including closed shell, pithy and empty pistachio were selected for training and testing. This network uses 200 data related to these two features and were trained over 200 courses, the accuracy of the result was 95.8%. 100 image have been used to test network over 40 courses with accuracy 97%. The time for the training and testing steps are 0.73 and 0.31 seconds, respectively, and the time to choose the features and rules was 2.1 seconds. Conclusions: In this study, a model was introduced to sort non- split nuts, blank nuts and filled nuts pistachios. Evaluation of training and testing, shows that the model has the ability to classify different types of nuts with high precision. In the previously proposed methods, merely non-split and split pistachio nuts were sorted and being filled or blank nuts is unrecognizable. Nevertheless, accuracy of the mentioned method is 95.56 percent. As well as, other method sorted non-split and split pistachio nuts with an accuracy of 98% and 85% respectively for training and testing steps. The model proposed in this study is better than the other methods and it is encouraging for the improvement and development of the model.

  13. Hybrid fuzzy logic committee neural networks for recognition of swallow acceleration signals.

    Science.gov (United States)

    Das, A; Reddy, N P; Narayanan, J

    2001-02-01

    Biological signals are complex and often require intelligent systems for recognition of characteristic signals. In order to improve the reliability of the recognition or automated diagnostic systems, hybrid fuzzy logic committee neural networks were developed and the system was used for recognition of swallow acceleration signals from artifacts. Two sets of fuzzy logic-committee networks (FCN) each consisting of seven member networks were developed, trained and evaluated. The FCN-I was used to recognize dysphagic swallow from artifacts, and the second committee FCN-II was used to recognize normal swallow from artifacts. Several networks were trained and the best seven were recruited into each committee. Acceleration signals from the throat were bandpass filtered, and several parameters were extracted and fed to the fuzzy logic block of either FCN-I or FCN-II. The fuzzified membership values were fed to the committee of neural networks which provided the signal classification. A majority opinion of the member networks was used to arrive at the final decision. Evaluation results revealed that FCN correctly identified 16 out of 16 artifacts and 31 out of 33 dysphagic swallows. In two cases, the decision was ambiguous due to the lack of a majority opinion. FCN-II correctly identified 24 out of 24 normal swallows, and 28 out of 29 artifacts. In one case, the decision was ambiguous due to the lack of a majority opinion. The present hybrid intelligent system consisting of fuzzy logic and committee networks provides a reliable tool for recognition and classification of acceleration signals due to swallowing.

  14. AUTOMOTIVE APPLICATIONS OF EVOLVING TAKAGI-SUGENO-KANG FUZZY MODELS

    Directory of Open Access Journals (Sweden)

    Radu-Emil Precup

    2017-08-01

    Full Text Available This paper presents theoretical and application results concerning the development of evolving Takagi-Sugeno-Kang fuzzy models for two dynamic systems, which will be viewed as controlled processes, in the field of automotive applications. The two dynamic systems models are nonlinear dynamics of the longitudinal slip in the Anti-lock Braking Systems (ABS and the vehicle speed in vehicles with the Continuously Variable Transmission (CVT systems. The evolving Takagi-Sugeno-Kang fuzzy models are obtained as discrete-time fuzzy models by incremental online identification algorithms. The fuzzy models are validated against experimental results in the case of the ABS and the first principles simulation results in the case of the vehicle with the CVT.

  15. Interval type-2 fuzzy neural network controller for a multivariable anesthesia system based on a hardware-in-the-loop simulation.

    Science.gov (United States)

    El-Nagar, Ahmad M; El-Bardini, Mohammad

    2014-05-01

    This manuscript describes the use of a hardware-in-the-loop simulation to simulate the control of a multivariable anesthesia system based on an interval type-2 fuzzy neural network (IT2FNN) controller. The IT2FNN controller consists of an interval type-2 fuzzy linguistic process as the antecedent part and an interval neural network as the consequent part. It has been proposed that the IT2FNN controller can be used for the control of a multivariable anesthesia system to minimize the effects of surgical stimulation and to overcome the uncertainty problem introduced by the large inter-individual variability of the patient parameters. The parameters of the IT2FNN controller were trained online using a back-propagation algorithm. Three experimental cases are presented. All of the experimental results show good performance for the proposed controller over a wide range of patient parameters. Additionally, the results show better performance than the type-1 fuzzy neural network (T1FNN) controller under the effect of surgical stimulation. The response of the proposed controller has a smaller settling time and a smaller overshoot compared with the T1FNN controller and the adaptive interval type-2 fuzzy logic controller (AIT2FLC). The values of the performance indices for the proposed controller are lower than those obtained for the T1FNN controller and the AIT2FLC. The IT2FNN controller is superior to the T1FNN controller for the handling of uncertain information due to the structure of type-2 fuzzy logic systems (FLSs), which are able to model and minimize the numerical and linguistic uncertainties associated with the inputs and outputs of the FLSs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Fuzzy modeling and control theory and applications

    CERN Document Server

    Matía, Fernando; Jiménez, Emilio

    2014-01-01

    Much work on fuzzy control, covering research, development and applications, has been developed in Europe since the 90's. Nevertheless, the existing books in the field are compilations of articles without interconnection or logical structure or they express the personal point of view of the author. This book compiles the developments of researchers with demonstrated experience in the field of fuzzy control following a logic structure and a unified the style. The first chapters of the book are dedicated to the introduction of the main fuzzy logic techniques, where the following chapters focus on concrete applications. This book is supported by the EUSFLAT and CEA-IFAC societies, which include a large number of researchers in the field of fuzzy logic and control. The central topic of the book, Fuzzy Control, is one of the main research and development lines covered by these associations.

  17. Type-2 fuzzy model based controller design for neutralization processes.

    Science.gov (United States)

    Kumbasar, Tufan; Eksin, Ibrahim; Guzelkaya, Mujde; Yesil, Engin

    2012-03-01

    In this study, an inverse controller based on a type-2 fuzzy model control design strategy is introduced and this main controller is embedded within an internal model control structure. Then, the overall proposed control structure is implemented in a pH neutralization experimental setup. The inverse fuzzy control signal generation is handled as an optimization problem and solved at each sampling time in an online manner. Although, inverse fuzzy model controllers may produce perfect control in perfect model match case and/or non-existence of disturbances, this open loop control would not be sufficient in the case of modeling mismatches or disturbances. Therefore, an internal model control structure is proposed to compensate these errors in order to overcome this deficiency where the basic controller is an inverse type-2 fuzzy model. This feature improves the closed-loop performance to disturbance rejection as shown through the real-time control of the pH neutralization process. Experimental results demonstrate the superiority of the inverse type-2 fuzzy model controller structure compared to the inverse type-1 fuzzy model controller and conventional control structures. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Prediction of conductivity by adaptive neuro-fuzzy model.

    Science.gov (United States)

    Akbarzadeh, S; Arof, A K; Ramesh, S; Khanmirzaei, M H; Nor, R M

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity.

  19. Prediction of conductivity by adaptive neuro-fuzzy model.

    Directory of Open Access Journals (Sweden)

    S Akbarzadeh

    Full Text Available Electrochemical impedance spectroscopy (EIS is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity.

  20. PREDICTION THE EVOLUTION OF TEMPERATURE AND VIBRATIONS ON SPINDLE USING ARTIFICIAL NEURAL NETWORKS AND FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Daniel Petru GHENCEA

    2016-05-01

    Full Text Available Simulation spindle behavior in terms of temperature and vibration at higher speeds is more economical and more secure (avoid undesirable mechanical events than testing practice. Testing practice has an important role in finalizing the product but throughout the course of prototype testing is more advantageous economic development simulation parameters based on data sets collected to dangerous speeds. In this paper we present an analysis mode hybrid (artificial neural networks - fuzzy logic on prediction the evolution of temperatures and vibrations at higher speeds for which no measurements were made. The main advantage of the method is the simultaneous prediction of the dynamics of temperature and vibration levels.

  1. A fuzzy approach for statistical modeling of operators’ performance

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Madadi

    2017-10-01

    Full Text Available The aim of this paper is to integrate fuzzy approach into statistical process control in order to provide a comprehensive description of an operator’s performance. To this end, all influential factors in quality of a product are simultaneously controlled to assess the performance in each working day. Then a fuzzy x̄ chart is used for statistical modeling process during a month. This paper shows that the fuzzy controller chart can provide a good indication to evaluate a person's work performance.

  2. A Comparative Analysis of Fuzzy Inference Engines in Context of ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    profitability quantification in plastic recycling. [14] designs a neuro-fuzzy linguistic approach in optimizing the flow rate of a plastic extruder process. [15] presents fuzzy rule-base frame work for the management of tropical diseases. [16] proposes a fuzzy-neural network model for effective control of profitability in a paper.

  3. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken [Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Nakamachi (Japan)

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  4. Fuzzy object models for newborn brain MR image segmentation

    Science.gov (United States)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  5. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method

    Science.gov (United States)

    Xia, Dunzhu; Kong, Lun; Hu, Yiwei; Ni, Peizhen

    2015-02-01

    We present a novel silicon microgyroscope (SMG) temperature prediction and control system in a narrow space. As the temperature of SMG is closely related to its drive mode frequency and driving voltage, a temperature prediction model can be established based on the BP neural network. The simulation results demonstrate that the established temperature prediction model can estimate the temperature in the range of -40 to 60 °C with an error of less than ±0.05 °C. Then, a temperature control system based on the combination of fuzzy logic controller and the increment PID control method is proposed. The simulation results prove that the Fuzzy-PID controller has a smaller steady state error, less rise time and better robustness than the PID controller. This is validated by experimental results that show the Fuzzy-PID control method can achieve high precision in keeping the SMG temperature stable at 55 °C with an error of less than 0.2 °C. The scale factor can be stabilized at 8.7 mV/°/s with a temperature coefficient of 33 ppm °C-1. ZRO (zero rate output) instability is decreased from 1.10°/s (9.5 mV) to 0.08°/s (0.7 mV) when the temperature control system is implemented over an ambient temperature range of -40 to 60 °C.

  6. Adaptive complementary fuzzy self-recurrent wavelet neural network controller for the electric load simulator system

    Directory of Open Access Journals (Sweden)

    Wang Chao

    2016-03-01

    Full Text Available Due to the complexities existing in the electric load simulator, this article develops a high-performance nonlinear adaptive controller to improve the torque tracking performance of the electric load simulator, which mainly consists of an adaptive fuzzy self-recurrent wavelet neural network controller with variable structure (VSFSWC and a complementary controller. The VSFSWC is clearly and easily used for real-time systems and greatly improves the convergence rate and control precision. The complementary controller is designed to eliminate the effect of the approximation error between the proposed neural network controller and the ideal feedback controller without chattering phenomena. Moreover, adaptive learning laws are derived to guarantee the system stability in the sense of the Lyapunov theory. Finally, the hardware-in-the-loop simulations are carried out to verify the feasibility and effectiveness of the proposed algorithms in different working styles.

  7. ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster.

    Science.gov (United States)

    Volna, Eva; Kotyrba, Martin; Habiballa, Hashim

    2015-01-01

    The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.

  8. ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster

    Directory of Open Access Journals (Sweden)

    Eva Volna

    2015-01-01

    Full Text Available The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.

  9. NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHMS: APPLICATIONS AND POSSIBILITIES IN FINANCE AND ACCOUNTING

    Directory of Open Access Journals (Sweden)

    José Alonso Borba

    2010-04-01

    Full Text Available There are problems in Finance and Accounting that can not be easily solved by means of traditional techniques (e.g. bankruptcy prediction and strategies for investing in common stock. In these situations, it is possible to use methods of Artificial Intelligence. This paper analyzes empirical works published in international journals between 2000 and 2007 that present studies about the application of Neural Networks, Fuzzy Logic and Genetic Algorithms to problems in Finance and Accounting. The objective is to identify and quantify the relationships established between the available techniques and the problems studied by the researchers. Analyzing 258 papers, it was noticed that the most used technique is the Artificial Neural Network. The most researched applications are from the field of Finance, especially those related to stock exchanges (forecasting of common stock and indices prices.

  10. LOGIKA FUZZY DAN JARINGAN SYARAT TIRUAN UNTUK PENINGKATAN MUTU TEH HITAM [Fuzzy Logic an Artificial Neural Network for Quality Improvement of Black Tea

    Directory of Open Access Journals (Sweden)

    Rohmatulloh 1

    2007-12-01

    Full Text Available This paper discussed quality improvement of black tea using fuzzy approach on quality functions deployment and the development of backpropagation neural the software NWP II plus. The research was conducted at PTPN VIII tea industry, Goalpara plantation. Result of the study showed that, parameter first priority based on customer evaluation was tea flavour. The Important process parameter of black tea based on result of fuzzy relationship matrix was the withering process. Based on the test of “trial and error” of network training process, the best network architecture for withering process monitoring [3-15-1] was obtained, that is 3 neurons in input layer, 15 neurons in hidden layer and 1 neuron in output layer. Three inputs and output consist of time, flow, temperature and moisture content. The result sugges that development of backpropagation neural network can be used for process evaluation of withering processes.

  11. Knowledge-leverage-based TSK Fuzzy System modeling.

    Science.gov (United States)

    Zhaohong Deng; Yizhang Jiang; Kup-Sze Choi; Fu-Lai Chung; Shitong Wang

    2013-08-01

    Classical fuzzy system modeling methods consider only the current scene where the training data are assumed to be fully collectable. However, if the data available from the current scene are insufficient, the fuzzy systems trained by using the incomplete datasets will suffer from weak generalization capability for the prediction in the scene. In order to overcome this problem, a knowledge-leverage-based fuzzy system (KL-FS) is studied in this paper from the perspective of transfer learning. The KL-FS intends to not only make full use of the data from the current scene in the learning procedure, but also effectively leverage the existing knowledge from the reference scenes. Specifically, a knowledge-leverage-based Takagi-Sugeno-Kang-type Fuzzy System (KL-TSK-FS) is proposed by integrating the corresponding knowledge-leverage mechanism. The new fuzzy system modeling technique is evaluated through experiments on synthetic and real-world datasets. The results demonstrate that KL-TSK-FS has better performance and adaptability than the traditional fuzzy modeling methods in scenes with insufficient data.

  12. Robust fuzzy neural network sliding mode control scheme for IPMSM drives

    Science.gov (United States)

    Leu, V. Q.; Mwasilu, F.; Choi, H. H.; Lee, J.; Jung, J. W.

    2014-07-01

    This article proposes a robust fuzzy neural network sliding mode control (FNNSMC) law for interior permanent magnet synchronous motor (IPMSM) drives. The proposed control strategy not only guarantees accurate and fast command speed tracking but also it ensures the robustness to system uncertainties and sudden speed and load changes. The proposed speed controller encompasses three control terms: a decoupling control term which compensates for nonlinear coupling factors using nominal parameters, a fuzzy neural network (FNN) control term which approximates the ideal control components and a sliding mode control (SMC) term which is proposed to compensate for the errors of that approximation. Next, an online FNN training methodology, which is developed using the Lyapunov stability theorem and the gradient descent method, is proposed to enhance the learning capability of the FNN. Moreover, the maximum torque per ampere (MTPA) control is incorporated to maximise the torque generation in the constant torque region and increase the efficiency of the IPMSM drives. To verify the effectiveness of the proposed robust FNNSMC, simulations and experiments are performed by using MATLAB/Simulink platform and a TI TMS320F28335 DSP on a prototype IPMSM drive setup, respectively. Finally, the simulated and experimental results indicate that the proposed design scheme can achieve much better control performances (e.g. more rapid transient response and smaller steady-state error) when compared to the conventional SMC method, especially in the case that there exist system uncertainties.

  13. Efficient Approach for RLS Type Learning in TSK Neural Fuzzy Systems.

    Science.gov (United States)

    Yeh, Jen-Wei; Su, Shun-Feng

    2017-09-01

    This paper presents an efficient approach for the use of recursive least square (RLS) learning algorithm in Takagi-Sugeno-Kang neural fuzzy systems. In the use of RLS, reduced covariance matrix, of which the off-diagonal blocks defining the correlation between rules are set to zeros, may be employed to reduce computational burden. However, as reported in the literature, the performance of such an approach is slightly worse than that of using the full covariance matrix. In this paper, we proposed a so-called enhanced local learning concept in which a threshold is considered to stop learning for those less fired rules. It can be found from our experiments that the proposed approach can have better performances than that of using the full covariance matrix. Enhanced local learning method can be more active on the structure learning phase. Thus, the method not only can stop the update for insufficiently fired rules to reduce disturbances in self-constructing neural fuzzy inference network but also raises the learning speed on structure learning phase by using a large backpropagation learning constant.

  14. Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.

    Science.gov (United States)

    Ko, Chien-Ho

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  15. Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Chien-Ho Ko

    2013-01-01

    Full Text Available Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs, Fuzzy Logic (FL, and Neural Networks (NNs. FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  16. Minimum Constructive Back Propagation Neural Network Based on Fuzzy Logic for Pattern Recognition of Electronic Nose System

    Directory of Open Access Journals (Sweden)

    Radi Radi

    2011-08-01

    Full Text Available Constructive Back Propagation Neural Network (CBPNN is a kind of back propagation neural network trained with constructive algorithm. Training of CBPNN is mainly conducted by developing the network’s architecture which commonly done by adding a number of new neuron units on learning process. Training of the network usually implements fixed method to develop its structure gradually by adding new units constantly. Although this method is simple and able to create an adaptive network for data pattern complexity, but it is wasteful and inefficient for computing. New unit addition affects directly to the computational load of training, speed of convergence, and structure of the final neural network. While increases training load significantly, excessive addition of units also tends to generate a large size of final network. Moreover, addition pattern with small unit number tends to drop off the adaptability of the network and extends time of training. Therefore, there is important to design an adaptive structure development pattern for CBPNN in order to minimize computing load of training. This study proposes Fuzzy Logic (FL algorithm to manage and develop structure of CBPNN. FL method was implemented on two models of CBPNN, i.e. designed with one and two hidden layers, used to recognize aroma patterns on an electronic nose system. The results showed that this method is effective to be applied due to its capability to minimize time of training, to reduce load of computational learning, and generate small size of network.

  17. First course in fuzzy logic

    CERN Document Server

    Nguyen, Hung T

    2005-01-01

    THE CONCEPT OF FUZZINESS Examples Mathematical modeling Some operations on fuzzy sets Fuzziness as uncertainty Exercises SOME ALGEBRA OF FUZZY SETS Boolean algebras and lattices Equivalence relations and partitions Composing mappings Isomorphisms and homomorphisms Alpha-cuts Images of alpha-level sets Exercises FUZZY QUANTITIES Fuzzy quantities Fuzzy numbers Fuzzy intervals Exercises LOGICAL ASPECTS OF FUZZY SETS Classical two-valued logic A three-valued logic Fuzzy logic Fuzzy and Lukasiewi

  18. Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.

    Science.gov (United States)

    Kamesh, Reddi; Rani, K Yamuna

    2016-09-01

    A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    Science.gov (United States)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  20. Perancangan dan Implementasi Sistem Pengaturan Kecepatan Motor BLDC Menggunakan Kontroler PI Berbasiskan Neural-Fuzzy Hibrida Adaptif

    Directory of Open Access Journals (Sweden)

    Agung Setyadi Wicaksono

    2017-01-01

    Full Text Available Mobil listrik menjadi inovasi terbaru dengan tujuan utama untuk melepaskan ketergantungan pada bahan bakar minyak. Penelitian yang telah ada memaparkan bahwa motor listrik yang sesuai untuk menggerakkan mobil listrik adalah motor Brushless Direct Current (BLDC. Beberapa keunggulan motor BLDC antara lain adalah suara halus, ukuran kompak, torsi besar, efisiensi tinggi, memiliki umur pakai yang panjang, dan mudah dikontrol. Performa dan kecepatan motor BLDC dapat terganggu apabila bekerja pada kondisi berbeban. Oleh karena itu, dibutuhkan pengaturan kecepatan menggunakan sebuah kontroler yang dapat menjaga kecepatan motor BLDC sesuai ­set-point meskipun sedang beroperasi pada kondisi berbeban. Kontroler yang digunakan untuk mengatur kecepatan motor BLDC adalah kontroler Proposional Integral (PI berbasiskan Neural-Fuzzy Hibrida Adaptif. Kontroler PI dipilih karena dapat mengeliminasi steady-state error. Sedangkan Neural-Fuzzy Hibrida Adaptif merupakan kombinasi antara Fuzzy dan Neural-Network. Fuzzy digunakan untuk penentuan parameter kontroler PI. Parameter kontroler PI didapatkan dari Neural-Network. Karakteristik respon terhadap hasil implementasi memiliki settling time 20 detik, overshoot sebesar 1,1%, dan time constant 7,7 detik.

  1. Application of ANNs approach for solving fully fuzzy polynomials system

    Directory of Open Access Journals (Sweden)

    R. Novin

    2017-11-01

    Full Text Available In processing indecisive or unclear information, the advantages of fuzzy logic and neurocomputing disciplines should be taken into account and combined by fuzzy neural networks. The current research intends to present a fuzzy modeling method using multi-layer fuzzy neural networks for solving a fully fuzzy polynomials system. To clarify the point, it is necessary to inform that a supervised gradient descent-based learning law is employed. The feasibility of the method is examined using computer simulations on a numerical example. The experimental results obtained from the investigation of the proposed method are valid and delivers very good approximation results.

  2. Color Image Segmentation Using Fuzzy C-Regression Model

    Directory of Open Access Journals (Sweden)

    Min Chen

    2017-01-01

    Full Text Available Image segmentation is one important process in image analysis and computer vision and is a valuable tool that can be applied in fields of image processing, health care, remote sensing, and traffic image detection. Given the lack of prior knowledge of the ground truth, unsupervised learning techniques like clustering have been largely adopted. Fuzzy clustering has been widely studied and successfully applied in image segmentation. In situations such as limited spatial resolution, poor contrast, overlapping intensities, and noise and intensity inhomogeneities, fuzzy clustering can retain much more information than the hard clustering technique. Most fuzzy clustering algorithms have originated from fuzzy c-means (FCM and have been successfully applied in image segmentation. However, the cluster prototype of the FCM method is hyperspherical or hyperellipsoidal. FCM may not provide the accurate partition in situations where data consists of arbitrary shapes. Therefore, a Fuzzy C-Regression Model (FCRM using spatial information has been proposed whose prototype is hyperplaned and can be either linear or nonlinear allowing for better cluster partitioning. Thus, this paper implements FCRM and applies the algorithm to color segmentation using Berkeley’s segmentation database. The results show that FCRM obtains more accurate results compared to other fuzzy clustering algorithms.

  3. Intelligent control aspects of fuzzy logic and neural nets

    CERN Document Server

    Harris, C J; Brown, M

    1993-01-01

    With increasing demands for high precision autonomous control over wide operating envelopes, conventional control engineering approaches are unable to adequately deal with system complexity, nonlinearities, spatial and temporal parameter variations, and with uncertainty. Intelligent Control or self-organising/learning control is a new emerging discipline that is designed to deal with problems. Rather than being model based, it is experiential based. Intelligent Control is the amalgam of the disciplines of Artificial Intelligence, Systems Theory and Operations Research. It uses most recent expe

  4. Fuzzy bilevel programming with multiple non-cooperative followers: model, algorithm and application

    Science.gov (United States)

    Ke, Hua; Huang, Hu; Ralescu, Dan A.; Wang, Lei

    2016-04-01

    In centralized decision problems, it is not complicated for decision-makers to make modelling technique selections under uncertainty. When a decentralized decision problem is considered, however, choosing appropriate models is no longer easy due to the difficulty in estimating the other decision-makers' inconclusive decision criteria. These decision criteria may vary with different decision-makers because of their special risk tolerances and management requirements. Considering the general differences among the decision-makers in decentralized systems, we propose a general framework of fuzzy bilevel programming including hybrid models (integrated with different modelling methods in different levels). Specially, we discuss two of these models which may have wide applications in many fields. Furthermore, we apply the proposed two models to formulate a pricing decision problem in a decentralized supply chain with fuzzy coefficients. In order to solve these models, a hybrid intelligent algorithm integrating fuzzy simulation, neural network and particle swarm optimization based on penalty function approach is designed. Some suggestions on the applications of these models are also presented.

  5. Fuzzy modeling to predict chicken egg hatchability in commercial hatchery.

    Science.gov (United States)

    Peruzzi, N J; Scala, N L; Macari, M; Furlan, R L; Meyer, A D; Fernandez-Alarcon, M F; Kroetz Neto, F L; Souza, F A

    2012-10-01

    Experimental studies have shown that hatching rate depends, among other factors, on the main physical characteristics of the eggs. The physical parameters used in our work were egg weight, eggshell thickness, egg sphericity, and yolk per albumen ratio. The relationships of these parameters in the incubation process were modeled by Fuzzy logic. The rules of the Fuzzy modeling were based on the analysis of the physical characteristics of the hatching eggs and the respective hatching rate using a commercial hatchery by applying a trapezoidal membership function into the modeling process. The implementations were performed in software. Aiming to compare the Fuzzy with a statistical modeling, the same data obtained in the commercial hatchery were analyzed using multiple linear regression. The estimated parameters of multiple linear regressions were based on a backward selection procedure. The results showed that the determination coefficient and the mean square error were higher using the Fuzzy method when compared with the statistical modeling. Furthermore, the predicted hatchability rates by Fuzzy Logic agreed with hatching rates obtained in the commercial hatchery.

  6. Fuzzy multiobjective models for optimal operation of a hydropower system

    Science.gov (United States)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  7. Neural and Neural Gray-Box Modeling for Entry Temperature Prediction in a Hot Strip Mill

    Science.gov (United States)

    Barrios, José Angel; Torres-Alvarado, Miguel; Cavazos, Alberto; Leduc, Luis

    2011-10-01

    In hot strip mills, initial controller set points have to be calculated before the steel bar enters the mill. Calculations rely on the good knowledge of rolling variables. Measurements are available only after the bar has entered the mill, and therefore they have to be estimated. Estimation of process variables, particularly that of temperature, is of crucial importance for the bar front section to fulfill quality requirements, and the same must be performed in the shortest possible time to preserve heat. Currently, temperature estimation is performed by physical modeling; however, it is highly affected by measurement uncertainties, variations in the incoming bar conditions, and final product changes. In order to overcome these problems, artificial intelligence techniques such as artificial neural networks and fuzzy logic have been proposed. In this article, neural network-based systems, including neural-based Gray-Box models, are applied to estimate scale breaker entry temperature, given its importance, and their performance is compared to that of the physical model used in plant. Several neural systems and several neural-based Gray-Box models are designed and tested with real data. Taking advantage of the flexibility of neural networks for input incorporation, several factors which are believed to have influence on the process are also tested. The systems proposed in this study were proven to have better performance indexes and hence better prediction capabilities than the physical models currently used in plant.

  8. Artificial neural network modeling of dissolved oxygen in reservoir.

    Science.gov (United States)

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

  9. Neuro-fuzzy model for evaluating the performance of processes ...

    Indian Academy of Sciences (India)

    In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used to model the periodic performance of some multi-input single-output (MISO) processes, namely: brewery operations (case study 1) and soap production (case study 2) processes. Two ANFIS models were developed to model the performance of the ...

  10. Paired fuzzy sets and other opposite-based models

    DEFF Research Database (Denmark)

    Montero, Javier; Gómez, Daniel; Tinguaro Rodríguez, J.

    2016-01-01

    In this paper we stress the relevance of those fuzzy models that impose a couple of simultaneous views in order to represent concepts. In particular, we point out that the basic model to start with should contain at least two somehow opposite valuations plus a number of neutral concepts...... that are generated from the semantic relationship between those two opposites. Such a basic model should be distinguished from some other similar approaches that can be found in the literature, and that may bring some difficulties in intuition, partially because of their denomination. The general term “paired fuzzy...

  11. Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control

    KAUST Repository

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.

  12. Applying fuzzy analytic network process in quality function deployment model

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Afsharkazemi

    2012-08-01

    Full Text Available In this paper, we propose an empirical study of QFD implementation when fuzzy numbers are used to handle the uncertainty associated with different components of the proposed model. We implement fuzzy analytical network to find the relative importance of various criteria and using fuzzy numbers we calculate the relative importance of these factors. The proposed model of this paper uses fuzzy matrix and house of quality to study the products development in QFD and also the second phase i.e. part deployment. In most researches, the primary objective is only on CRs to implement the quality function deployment and some other criteria such as production costs, manufacturing costs etc were disregarded. The results of using fuzzy analysis network process based on the QFD model in Daroupat packaging company to develop PVDC show that the most important indexes are being waterproof, resistant pill packages, and production cost. In addition, the PVDC coating is the most important index in terms of company experts’ point of view.

  13. Fuzzy Optimization of Option Pricing Model and Its Application in Land Expropriation

    Directory of Open Access Journals (Sweden)

    Aimin Heng

    2014-01-01

    Full Text Available Option pricing is irreversible, fuzzy, and flexible. The fuzzy measure which is used for real option pricing is a useful supplement to the traditional real option pricing method. Based on the review of the concepts of the mean and variance of trapezoidal fuzzy number and the combination with the Carlsson-Fuller model, the trapezoidal fuzzy variable can be used to represent the current price of land expropriation and the sale price of land on the option day. Fuzzy Black-Scholes option pricing model can be constructed under fuzzy environment and problems also can be solved and discussed through numerical examples.

  14. Fuzzy modeling of electrical impedance tomography images of the lungs.

    Science.gov (United States)

    Tanaka, Harki; Ortega, Neli Regina Siqueira; Galizia, Mauricio Stanzione; Borges, João Batista; Amato, Marcelo Britto Passos

    2008-06-01

    Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy model based on electrical impedance tomography's high temporal resolution and on the functional pulmonary signals of perfusion and ventilation. Electrical impedance tomography images carry information about both ventilation and perfusion. However, these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to distinguish the heart from the lungs. Electrical impedance tomography data from an experimental animal model were collected during normal ventilation and apnea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold method, and a ventilation/perfusion map was generated. Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline injection image and a fuzzy modeled pulmonary perfusion image was 0.77. The innovative aspects of our work are the use of temporal information for the delineation of the heart structure and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the imaging of abnormal lung conditions. These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in electrical impedance tomography images.

  15. AN INTEGRATED FUZZY AHP AND TOPSIS MODEL FOR SUPPLIER EVALUATION

    Directory of Open Access Journals (Sweden)

    Željko Stević

    2016-05-01

    Full Text Available In today’s modern supply chains, the adequate suppliers’ choice has strategic meaning for entire companies’ business. The aim of this paper is to evaluate different suppliers using the integrated model that recognizes a combination of fuzzy AHP (Analytical Hierarchy Process and the TOPSIS method. Based on six criteria, the expert team was formed to compare them, so determination of their significance is being done with fuzzy AHP method. Expert team also compares suppliers according to each criteria and on the base of triangular fuzzy numbers. Based on their inputs, TOPSIS method is used to estimate potential solutions. Suggested model accomplishes certain advantages in comparison with previously used traditional models which were used to make decisions about evaluation and choice of supplier.

  16. Type-2 fuzzy graphical models for pattern recognition

    CERN Document Server

    Zeng, Jia

    2015-01-01

    This book discusses how to combine type-2 fuzzy sets and graphical models to solve a range of real-world pattern recognition problems such as speech recognition, handwritten Chinese character recognition, topic modeling as well as human action recognition. It covers these recent developments while also providing a comprehensive introduction to the fields of type-2 fuzzy sets and graphical models. Though primarily intended for graduate students, researchers and practitioners in fuzzy logic and pattern recognition, the book can also serve as a valuable reference work for researchers without any previous knowledge of these fields. Dr. Jia Zeng is a Professor at the School of Computer Science and Technology, Soochow University, China. Dr. Zhi-Qiang Liu is a Professor at the School of Creative Media, City University of Hong Kong, China.

  17. Automatic modeling of the linguistic values for database fuzzy querying

    Directory of Open Access Journals (Sweden)

    Diana STEFANESCU

    2007-12-01

    Full Text Available In order to evaluate vague queries, each linguistic term is considered according to its fuzzy model. Usually, the linguistic terms are defined as fuzzy sets, during a classical knowledge acquisition off-line process. But they can also be automatically extracted from the actual content of the database, by an online process. In at least two situations, automatically modeling the linguistic values would be very useful: first, to simplify the knowledge engineer’s task by extracting the definitions from the database content; and second, where mandatory, to dynamically define the linguistic values in complex criteria queries evaluation. Procedures to automatically extract the fuzzy model of the linguistic values from the existing data are presented in this paper.

  18. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation.

    Science.gov (United States)

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-05-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.

  19. A Cooperative Control Method for Fully Mechanized Mining Machines Based on Fuzzy Logic Theory and Neural Networks

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2015-01-01

    Full Text Available In a fully mechanized mining face, the coordinated control of coal mining machines has a significant promoting effect to perfect the mining environment and improve the efficiency of coal production and has become a research focus all over the world. In this paper, a cooperative control method based on the integration of fuzzy logic theory and neural networks was proposed. The improved Elman neural network (ENN through a threshold strategy was presented to predict the running parameters of coal mining machines. On the basis of coupling analysis of coal mining machines, the expert knowledge base of scraper conveyor was established based on fuzzy logic theory. Furthermore, the probabilistic neural network (PNN was applied to evaluate the running status of scraper conveyor, and the cooperative control flow was designed and analyzed. Finally, a simulation example was provided and the comparison results illustrated that the proposed method was feasible and superior to the manual control.

  20. Application of Fuzzy Clustering in Modeling of a Water Hydraulics System

    DEFF Research Database (Denmark)

    Zhou, Jianjun; Kroszynski, Uri

    2000-01-01

    This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy...

  1. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Vandana Sakhre

    2015-01-01

    Full Text Available Fuzzy Counter Propagation Neural Network (FCPN controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL. FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN and Back Propagation Network (BPN on the basis of Mean Absolute Error (MAE, Mean Square Error (MSE, Best Fit Rate (BFR, and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO and a single input and single output (SISO gas furnace Box-Jenkins time series data.

  2. Navigation Behaviors Based on Fuzzy ArtMap Neural Networks for Intelligent Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Amine Chohra

    2011-01-01

    Full Text Available The use of hybrid intelligent systems (HISs is necessary to bring the behavior of intelligent autonomous vehicles (IAVs near the human one in recognition, learning, adaptation, generalization, decision making, and action. First, the necessity of HIS and some navigation approaches based on fuzzy ArtMap neural networks (FAMNNs are discussed. Indeed, such approaches can provide IAV with more autonomy, intelligence, and real-time processing capabilities. Second, an FAMNN-based navigation approach is suggested. Indeed, this approach must provide vehicles with capability, after supervised fast stable learning: simplified fuzzy ArtMap (SFAM, to recognize both target-location and obstacle-avoidance situations using FAMNN1 and FAMNN2, respectively. Afterwards, the decision making and action consist of two association stages, carried out by reinforcement trial and error learning, and their coordination using NN3. Then, NN3 allows to decide among the five (05 actions to move towards 30∘, 60∘, 90∘, 120∘, and 150∘. Third, simulation results display the ability of the FAMNN-based approach to provide IAV with intelligent behaviors allowing to intelligently navigate in partially structured environments. Finally, a discussion, dealing with the suggested approach and how its robustness would be if implemented on real vehicle, is given.

  3. Automatic Assessing of Tremor Severity Using Nonlinear Dynamics, Artificial Neural Networks and Neuro-Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    GEMAN, O.

    2014-02-01

    Full Text Available Neurological diseases like Alzheimer, epilepsy, Parkinson's disease, multiple sclerosis and other dementias influence the lives of patients, their families and society. Parkinson's disease (PD is a neurodegenerative disease that occurs due to loss of dopamine, a neurotransmitter and slow destruction of neurons. Brain area affected by progressive destruction of neurons is responsible for controlling movements, and patients with PD reveal rigid and uncontrollable gestures, postural instability, small handwriting and tremor. Commercial activity-promoting gaming systems such as the Nintendo Wii and Xbox Kinect can be used as tools for tremor, gait or other biomedical signals acquisitions. They also can aid for rehabilitation in clinical settings. This paper emphasizes the use of intelligent optical sensors or accelerometers in biomedical signal acquisition, and of the specific nonlinear dynamics parameters or fuzzy logic in Parkinson's disease tremor analysis. Nowadays, there is no screening test for early detection of PD. So, we investigated a method to predict PD, based on the image processing of the handwriting belonging to a candidate of PD. For classification and discrimination between healthy people and PD people we used Artificial Neural Networks (Radial Basis Function - RBF and Multilayer Perceptron - MLP and an Adaptive Neuro-Fuzzy Classifier (ANFC. In general, the results may be expressed as a prognostic (risk degree to contact PD.

  4. Fuzzy local linearization and local basis function expansion in nonlinear system modeling.

    Science.gov (United States)

    Gan, Q; Harris, C J

    1999-01-01

    Fuzzy local linearization is compared with local basis function expansion for modeling unknown nonlinear processes. First-order Takagi-Sugeno fuzzy model and the analysis of variance (ANOVA) decomposition are combined for the fuzzy local linearization of nonlinear systems, in which B-splines are used as membership functions of the fuzzy sets for input space partition. A modified algorithm for adaptive spline modeling of observation data (MASMOD) is developed for determining the number of necessary B-splines and their knot positions to achieve parsimonious models. This paper illustrates that fuzzy local linearization models have several advantages over local basis function expansion based models in nonlinear system modeling.

  5. A fuzzy goal programming model for biodiesel production

    Science.gov (United States)

    Lutero, D. S.; Pangue, EMU; Tubay, J. M.; Lubag, S. P.

    2016-02-01

    A fuzzy goal programming (FGP) model for biodiesel production in the Philippines was formulated with Coconut (Cocos nucifera) and Jatropha (Jatropha curcas) as sources of biodiesel. Objectives were maximization of feedstock production and overall revenue and, minimization of energy used in production and working capital for farming subject to biodiesel and non-biodiesel requirements, and availability of land, labor, water and machine time. All these objectives and constraints were assumed to be fuzzy. Model was tested for different sets of weights. Results for all sets of weights showed the same optimal allocation. Coconut alone can satisfy the biodiesel requirement of 2% per volume.

  6. Visual Control of Autonomous Vehicle by Neural Networks Using Fuzzy-Supervised Learning

    Energy Technology Data Exchange (ETDEWEB)

    Ryoo, Young Jae [Kumho Information and Telecommunications Laboratory, Kwangju (Korea, Republic of); Lim, Young Cheol [Cheonnam National University, Kwangju (Korea, Republic of)

    1997-04-01

    This paper describes a control scheme for an autonomous vehicle with visual sensors, which uses visual information to guide itself along roadways. The control system integrates visual data into the steering servo process directly, instead of subdividing the process by geometric reasoning for a vehicle-centered representation of the road from two-dimensional visual image data. A neural network using fuzzy-supervised learning is used for determining the steering angle required to move the vanishing point and vanishing line of the road to the desired position in the camera image. The validity and the effectiveness of the proposed control scheme are confirmed by a computer simulation of the autonomous vehicle`s driving performance. (author). 12 refs., 8 figs., 4 tabs.

  7. Fuzzy economic production quantity model with time dependent demand rate

    Directory of Open Access Journals (Sweden)

    Susanta Kumar Indrajitsingha

    2016-09-01

    Full Text Available Background: In this paper, an economic production quantity model is considered under a fuzzy environment. Both the demand cost and holding cost are considered using fuzzy pentagonal numbers. The Signed Distance Method is used to defuzzify the total cost function. Methods: The results obtained by these methods are compared with the help of a numerical example. Sensitivity analysis is also carried out to explore the effect of changes in the values of some of the system parameters. Results and conclusions: The fuzzy EPQ model with time dependent demand rate was presented together with the possible implementation. The behavior of changes in parameters was analyzed. The possible extension of the implementation of this method was presented.

  8. modelling room cooling capacity with fuzzy logic procedure

    African Journals Online (AJOL)

    user

    The primary aim of this study is to develop a model for estimation of the cooling requirement of residential rooms. Fuzzy logic was employed to model four input variables (window area (m2), roof area (m2), external wall area (m2) and internal load (Watt). The algorithm of the inference engine applied sets of 81 linguistic ...

  9. Fuzzy Optimization of Option Pricing Model and Its Application in Land Expropriation

    National Research Council Canada - National Science Library

    Aimin Heng; Qian Chen; Yingshuang Tan

    2014-01-01

    .... Based on the review of the concepts of the mean and variance of trapezoidal fuzzy number and the combination with the Carlsson-Fuller model, the trapezoidal fuzzy variable can be used to represent...

  10. Optimization of alkali catalyst for transesterification of jatropha curcus using adaptive neuro-fuzzy modeling

    Directory of Open Access Journals (Sweden)

    Vipan K Sohpal

    2014-06-01

    Full Text Available Transesterification of Jatropha curcus for biodiesel production is a kinetic control process, which is complex in nature and controlled by temperature, the molar ratio, mixing intensity and catalyst process parameters. A precise choice of catalyst is required to improve the rate of transesterification and to simulate the kinetic study in a batch reactor. The present paper uses an Adaptive Neuro-Fuzzy Inference System (ANFIS approach to model and simulate the butyl ester production using alkaline catalyst (NaOH. The amounts of catalyst and time for reaction have been used as the model’s input parameters. The model is a combination of fuzzy inference and artificial neural network, including a set of fuzzy rules which have been developed directly from experimental data. The proposed modeling approach has been verified by comparing the expected results with the practical results which were observed and obtained through a batch reactor operation. The application of the ANFIS test shows which amount of catalyst predicted by the proposed model is suitable and in compliance with the experimental values at 0.5% level of significance.

  11. An experimental methodology for a fuzzy set preference model

    Science.gov (United States)

    Turksen, I. B.; Willson, Ian A.

    1992-01-01

    A flexible fuzzy set preference model first requires approximate methodologies for implementation. Fuzzy sets must be defined for each individual consumer using computer software, requiring a minimum of time and expertise on the part of the consumer. The amount of information needed in defining sets must also be established. The model itself must adapt fully to the subject's choice of attributes (vague or precise), attribute levels, and importance weights. The resulting individual-level model should be fully adapted to each consumer. The methodologies needed to develop this model will be equally useful in a new generation of intelligent systems which interact with ordinary consumers, controlling electronic devices through fuzzy expert systems or making recommendations based on a variety of inputs. The power of personal computers and their acceptance by consumers has yet to be fully utilized to create interactive knowledge systems that fully adapt their function to the user. Understanding individual consumer preferences is critical to the design of new products and the estimation of demand (market share) for existing products, which in turn is an input to management systems concerned with production and distribution. The question of what to make, for whom to make it and how much to make requires an understanding of the customer's preferences and the trade-offs that exist between alternatives. Conjoint analysis is a widely used methodology which de-composes an overall preference for an object into a combination of preferences for its constituent parts (attributes such as taste and price), which are combined using an appropriate combination function. Preferences are often expressed using linguistic terms which cannot be represented in conjoint models. Current models are also not implemented an individual level, making it difficult to reach meaningful conclusions about the cause of an individual's behavior from an aggregate model. The combination of complex aggregate

  12. FUZZY DECISION MAKING MODEL FOR BYZANTINE AGREEMENT

    Directory of Open Access Journals (Sweden)

    S. MURUGAN

    2014-04-01

    Full Text Available Byzantine fault tolerance is of high importance in the distributed computing environment where malicious attacks and software errors are common. A Byzantine process sends arbitrary messages to every other process. An effective fuzzy decision making approach is proposed to eliminate the Byzantine behaviour of the services in the distributed environment. It is proposed to derive a fuzzy decision set in which the alternatives are ranked with grade of membership and based on that an appropriate decision can be arrived on the messages sent by the different services. A balanced decision is to be taken from the messages received across the services. To accomplish this, Hurwicz criterion is used to balance the optimistic and pessimistic views of the decision makers on different services. Grades of membership for the services are assessed using the non-functional Quality of Service parameters and have been estimated using fuzzy entropy measure which logically ranks the participant services. This approach for decision making is tested by varying the number of processes, varying the number of faulty services, varying the message values sent to different services and considering the variation in the views of the decision makers about the services. The experimental result shows that the decision reached is an enhanced one and in case of conflict, the proposed approach provides a concrete result, whereas decision taken using the Lamport’s algorithm is an arbitrary one.

  13. Secondary systems modeled as fuzzy sub-structures

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager; Lin, Y.K.

    1998-01-01

    are considered for a rigid one-degree of freedom master structure. Approximate distribution properties of the impedance, the frequency response function and other related functions of the imposed frequency are obtained by use of Winterstein approximation technique. This information can be used to determine...... in the simplest case be modeled by attaching random single degree of freedom oscillators, called fuzzies, to the master structure at randomly distributed points of the structure. Each of these fuzzies are characterized by a random triplet of mass, eigenfrequency, and damping ratio. This characterization can...

  14. Logistics Enterprise Evaluation Model Based On Fuzzy Clustering Analysis

    Science.gov (United States)

    Fu, Pei-hua; Yin, Hong-bo

    In this thesis, we introduced an evaluation model based on fuzzy cluster algorithm of logistics enterprises. First of all,we present the evaluation index system which contains basic information, management level, technical strength, transport capacity,informatization level, market competition and customer service. We decided the index weight according to the grades, and evaluated integrate ability of the logistics enterprises using fuzzy cluster analysis method. In this thesis, we introduced the system evaluation module and cluster analysis module in detail and described how we achieved these two modules. At last, we gave the result of the system.

  15. Prediction of Tensile Strength of Friction Stir Weld Joints with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Neural Network

    Science.gov (United States)

    Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.

    2015-01-01

    Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.

  16. NMR Parameters Determination through ACE Committee Machine with Genetic Implanted Fuzzy Logic and Genetic Implanted Neural Network

    Science.gov (United States)

    Asoodeh, Mojtaba; Bagheripour, Parisa; Gholami, Amin

    2015-06-01

    Free fluid porosity and rock permeability, undoubtedly the most critical parameters of hydrocarbon reservoir, could be obtained by processing of nuclear magnetic resonance (NMR) log. Despite conventional well logs (CWLs), NMR logging is very expensive and time-consuming. Therefore, idea of synthesizing NMR log from CWLs would be of a great appeal among reservoir engineers. For this purpose, three optimization strategies are followed. Firstly, artificial neural network (ANN) is optimized by virtue of hybrid genetic algorithm-pattern search (GA-PS) technique, then fuzzy logic (FL) is optimized by means of GA-PS, and eventually an alternative condition expectation (ACE) model is constructed using the concept of committee machine to combine outputs of optimized and non-optimized FL and ANN models. Results indicated that optimization of traditional ANN and FL model using GA-PS technique significantly enhances their performances. Furthermore, the ACE committee of aforementioned models produces more accurate and reliable results compared with a singular model performing alone.

  17. Prediction of the reactor vessel water level using fuzzy neural networks in severe accident circumstance of NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Ho; Kim, Dae Seop; Kim, Jae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2014-06-15

    Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

  18. Fuzzy modeling of farmers' knowledge for land suitability classification

    NARCIS (Netherlands)

    Sicat, R.S.; Carranza, E.J.M.; Nidumolu, U.B.

    2005-01-01

    In a case study, we demonstrate fuzzy modeling of farmers' knowledge (FK) for agricultural land suitability classification using GIS. Capture of FK was through rapid rural participatory approach. The farmer respondents consider, in order of decreasing importance, cropping season, soil color, soil

  19. A fuzzy approach to the Weighted Overlap Dominance model

    DEFF Research Database (Denmark)

    Franco de los Rios, Camilo Andres; Hougaard, Jens Leth; Nielsen, Kurt

    2013-01-01

    in an interactive way, where input data can take the form of uniquely-graded or interval-valued information. Here we explore the Weighted Overlap Dominance (WOD) model from a fuzzy perspective and its outranking approach to decision support and multidimensional interval analysis. Firstly, imprecision measures...

  20. Implementasi Fuzzy Model Tahani Untuk Perancangan Sistem Pendukung Keputusan Penerimaan Taruna Baru

    Directory of Open Access Journals (Sweden)

    Eko Hidayat Hidayat

    2016-04-01

    Full Text Available In this research, a decision support system design had been done by using   Fuzzy database of Tahani Model, to know the excess of Fuzzy Tahani Model in a support system design of new cadets’ admission decision. The designed system was by the sequence of data input Fuzzy or non Fuzzy, the representation of membership function on each variable input Fuzzy, the process of Fuzzification on each variable into each Fuzzy set, the use of Zadeh basic operator to operate the Fuzzy set until give a recommendation. The result showed that the built system could give recommendation to support the decision of selected cadets based on the input criteria given. The excess of this system was on the flexibility of giving recommendation. The compatability of accepted cadets’ candidate with the recommendation of given system was 66.96%, due to the management strategis interest. Keywords : Fuzzy Database; New Cadet’s Admission; Decision Support Systems

  1. Introduction to n-adaptive fuzzy models to analyze public opinion on AIDS

    CERN Document Server

    Kandasamy, D W B V; Kandasamy, Dr.W.B.Vasantha; Smarandache, Dr.Florentin

    2006-01-01

    There are many fuzzy models like Fuzzy matrices, Fuzzy Cognitive Maps, Fuzzy relational Maps, Fuzzy Associative Memories, Bidirectional Associative memories and so on. But almost all these models can give only one sided solution like hidden pattern or a resultant output vector dependent on the input vector depending in the problem at hand. So for the first time we have defined a n-adaptive fuzzy model which can view or analyze the problem in n ways (n >=2) Though we have defined these n- adaptive fuzzy models theorectically we are not in a position to get a n-adaptive fuzzy model for n > 2 for practical real world problems. The highlight of this model is its capacity to analyze the same problem in different ways thereby arriving at various solutions that mirror multiple perspectives. We have used the 2-adaptive fuzzy model having the two fuzzy models, fuzzy matrices model and BAMs viz. model to analyze the views of public about HIV/ AIDS disease, patient and the awareness program. This book has five chapters ...

  2. Fuzzy Evidence in Identification, Forecasting and Diagnosis

    CERN Document Server

    Rotshtein, Alexander P

    2012-01-01

    The purpose of this book is to present a methodology for designing and tuning fuzzy expert systems in order to identify nonlinear objects; that is, to build input-output models using expert and experimental information. The results of these identifications are used for direct and inverse fuzzy evidence in forecasting and diagnosis problem solving. The book is organised as follows: Chapter 1 presents the basic knowledge about fuzzy sets, genetic algorithms and neural nets necessary for a clear understanding of the rest of this book. Chapter 2 analyzes direct fuzzy inference based on fuzzy if-then rules. Chapter 3 is devoted to the tuning of fuzzy rules for direct inference using genetic algorithms and neural nets. Chapter 4 presents models and algorithms for extracting fuzzy rules from experimental data. Chapter 5 describes a method for solving fuzzy logic equations necessary for the inverse fuzzy inference in diagnostic systems. Chapters 6 and 7 are devoted to inverse fuzzy inference based on fu...

  3. Fuzzy classification of phantom parent groups in an animal model

    Directory of Open Access Journals (Sweden)

    Fikse Freddy

    2009-09-01

    Full Text Available Abstract Background Genetic evaluation models often include genetic groups to account for unequal genetic level of animals with unknown parentage. The definition of phantom parent groups usually includes a time component (e.g. years. Combining several time periods to ensure sufficiently large groups may create problems since all phantom parents in a group are considered contemporaries. Methods To avoid the downside of such distinct classification, a fuzzy logic approach is suggested. A phantom parent can be assigned to several genetic groups, with proportions between zero and one that sum to one. Rules were presented for assigning coefficients to the inverse of the relationship matrix for fuzzy-classified genetic groups. This approach was illustrated with simulated data from ten generations of mass selection. Observations and pedigree records were randomly deleted. Phantom parent groups were defined on the basis of gender and generation number. In one scenario, uncertainty about generation of birth was simulated for some animals with unknown parents. In the distinct classification, one of the two possible generations of birth was randomly chosen to assign phantom parents to genetic groups for animals with simulated uncertainty, whereas the phantom parents were assigned to both possible genetic groups in the fuzzy classification. Results The empirical prediction error variance (PEV was somewhat lower for fuzzy-classified genetic groups. The ranking of animals with unknown parents was more correct and less variable across replicates in comparison with distinct genetic groups. In another scenario, each phantom parent was assigned to three groups, one pertaining to its gender, and two pertaining to the first and last generation, with proportion depending on the (true generation of birth. Due to the lower number of groups, the empirical PEV of breeding values was smaller when genetic groups were fuzzy-classified. Conclusion Fuzzy

  4. A wavelet transform coupled with a fuzzy neural network for prediction of significant st segmental changes in the ecg.

    Science.gov (United States)

    Compe, Victor P

    2008-01-01

    The leading cause of death in the United States for people 65 and over is heart disease. A significant factor contributing to this disease process is the damage caused by an infarction, which can manifest as an abnormality in the ST segment of an Electrocardiogram (ECG). This research will develop a pattern recognition model that will be capable of detecting these critical changes. This model will be developed using a feature extraction scheme based upon Wavelet analysis and a classification scheme based upon a Fuzzy Neural Network design. These schemes will be implemented using software tools available from MatLab. Evaluation of the model will be accomplished by simulation (MatLab) with representative ECG samples obtained from a database (e.g. MIT-BIH) that have been universally accepted for such a purpose. This model could be available for implementation into a device used in the pre-hospital setting that would provide the capability of early detection of critical ST changes. Accurate detection of these abnormalities can provide the means for establishing guidelines to determine a treatment protocol that may save lives.

  5. Generalized hidden-mapping ridge regression, knowledge-leveraged inductive transfer learning for neural networks, fuzzy systems and kernel methods.

    Science.gov (United States)

    Deng, Zhaohong; Choi, Kup-Sze; Jiang, Yizhang; Wang, Shitong

    2014-12-01

    Inductive transfer learning has attracted increasing attention for the training of effective model in the target domain by leveraging the information in the source domain. However, most transfer learning methods are developed for a specific model, such as the commonly used support vector machine, which makes the methods applicable only to the adopted models. In this regard, the generalized hidden-mapping ridge regression (GHRR) method is introduced in order to train various types of classical intelligence models, including neural networks, fuzzy logical systems and kernel methods. Furthermore, the knowledge-leverage based transfer learning mechanism is integrated with GHRR to realize the inductive transfer learning method called transfer GHRR (TGHRR). Since the information from the induced knowledge is much clearer and more concise than that from the data in the source domain, it is more convenient to control and balance the similarity and difference of data distributions between the source and target domains. The proposed GHRR and TGHRR algorithms have been evaluated experimentally by performing regression and classification on synthetic and real world datasets. The results demonstrate that the performance of TGHRR is competitive with or even superior to existing state-of-the-art inductive transfer learning algorithms.

  6. Spike Neural Models Part II: Abstract Neural Models

    OpenAIRE

    Johnson, Melissa G.; Chartier, Sylvain

    2018-01-01

    Neurons are complex cells that require a lot of time and resources to model completely. In spiking neural networks (SNN) though, not all that complexity is required. Therefore simple, abstract models are often used. These models save time, use less computer resources, and are easier to understand. This tutorial presents two such models: Izhikevich's model, which is biologically realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire (LIF) model whic...

  7. Simple vibration modeling of structural fuzzy with continuous boundary by including two-dimensional spatial memory

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2008-01-01

    is considered as one or more fuzzy substructures that are known in some statistical sense only. Experiments have shown that such fuzzy substructures often introduce a damping in the master which is much higher than the structural losses account for. A special method for modeling fuzzy substructures with a one...

  8. Adaptive fuzzy modeling of the hypnotic process in anesthesia.

    Science.gov (United States)

    Marrero, A; Méndez, J A; Reboso, J A; Martín, I; Calvo, J L

    2017-04-01

    This paper addresses the problem of patient model synthesis in anesthesia. Recent advanced drug infusion mechanisms use a patient model to establish the proper drug dose. However, due to the inherent complexity and variability of the patient dynamics, difficulty obtaining a good model is high. In this paper, a method based on fuzzy logic and genetic algorithms is proposed as an alternative to standard compartmental models. The model uses a Mamdani type fuzzy inference system developed in a two-step procedure. First, an offline model is obtained using information from real patients. Then, an adaptive strategy that uses genetic algorithms is implemented. The validation of the modeling technique was done using real data obtained from real patients in the operating room. Results show that the proposed method based on artificial intelligence appears to be an improved alternative to existing compartmental methodologies.

  9. A new approach for automatic control modeling, analysis and design in fully fuzzy environment

    OpenAIRE

    Gabr, Walaa Ibrahim

    2015-01-01

    The paper presents a new approach for the modeling, analysis and design of automatic control systems in fully fuzzy environment based on the normalized fuzzy matrices. The approach is also suitable for determining the propagation of fuzziness in automatic control and dynamical systems where all system coefficients are expressed as fuzzy parameters. A new consolidity chart is suggested based on the recently newly developed system consolidity index for testing the susceptibility of the system t...

  10. Novel Applications of Intuitionistic Fuzzy Digraphs in Decision Support Systems

    Science.gov (United States)

    Sarwar, Mansoor

    2014-01-01

    Many problems of practical interest can be modeled and solved by using graph algorithms. In general, graph theory has a wide range of applications in diverse fields. In this paper, the intuitionistic fuzzy organizational and neural network models, intuitionistic fuzzy neurons in medical diagnosis, intuitionistic fuzzy digraphs in vulnerability assessment of gas pipeline networks, and intuitionistic fuzzy digraphs in travel time are presented as examples of intuitionistic fuzzy digraphs in decision support system. We have also designed and implemented the algorithms for these decision support systems. PMID:25045752

  11. Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Metin Ertunc, H. [Department of Mechatronics Engineering, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey); Hosoz, Murat [Department of Mechanical Education, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey)

    2008-12-15

    This study deals with predicting the performance of an evaporative condenser using both artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques. For this aim, an experimental evaporative condenser consisting of a copper tube condensing coil along with air and water circuit elements was developed and equipped with instruments used for temperature, pressure and flow rate measurements. After the condenser was connected to an R134a vapour-compression refrigeration circuit, it was operated at steady state conditions, while varying both dry and wet bulb temperatures of the air stream entering the condenser, air and water flow rates as well as pressure, temperature and flow rate of the entering refrigerant. Using some of the experimental data for training, ANN and ANFIS models for the evaporative condenser were developed. These models were used for predicting the condenser heat rejection rate, refrigerant temperature leaving the condenser along with dry and wet bulb temperatures of the leaving air stream. Although it was observed that both ANN and ANFIS models yielded a good statistical prediction performance in terms of correlation coefficient, mean relative error, root mean square error and absolute fraction of variance, the accuracies of ANFIS predictions were usually slightly better than those of ANN predictions. This study reveals that, having an extended prediction capability compared to ANN, the ANFIS technique can also be used for predicting the performance of evaporative condensers. (author)

  12. Robust fuzzy output feedback controller for affine nonlinear systems via T-S fuzzy bilinear model: CSTR benchmark.

    Science.gov (United States)

    Hamdy, M; Hamdan, I

    2015-07-01

    In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. DCT-Yager FNN: a novel Yager-based fuzzy neural network with the discrete clustering technique.

    Science.gov (United States)

    Singh, A; Quek, C; Cho, S Y

    2008-04-01

    Earlier clustering techniques such as the modified learning vector quantization (MLVQ) and the fuzzy Kohonen partitioning (FKP) techniques have focused on the derivation of a certain set of parameters so as to define the fuzzy sets in terms of an algebraic function. The fuzzy membership functions thus generated are uniform, normal, and convex. Since any irregular training data is clustered into uniform fuzzy sets (Gaussian, triangular, or trapezoidal), the clustering may not be exact and some amount of information may be lost. In this paper, two clustering techniques using a Kohonen-like self-organizing neural network architecture, namely, the unsupervised discrete clustering technique (UDCT) and the supervised discrete clustering technique (SDCT), are proposed. The UDCT and SDCT algorithms reduce this data loss by introducing nonuniform, normal fuzzy sets that are not necessarily convex. The training data range is divided into discrete points at equal intervals, and the membership value corresponding to each discrete point is generated. Hence, the fuzzy sets obtained contain pairs of values, each pair corresponding to a discrete point and its membership grade. Thus, it can be argued that fuzzy membership functions generated using this kind of a discrete methodology provide a more accurate representation of the actual input data. This fact has been demonstrated by comparing the membership functions generated by the UDCT and SDCT algorithms against those generated by the MLVQ, FKP, and pseudofuzzy Kohonen partitioning (PFKP) algorithms. In addition to these clustering techniques, a novel pattern classifying network called the Yager fuzzy neural network (FNN) is proposed in this paper. This network corresponds completely to the Yager inference rule and exhibits remarkable generalization abilities. A modified version of the pseudo-outer product (POP)-Yager FNN called the modified Yager FNN is introduced that eliminates the drawbacks of the earlier network and yi- elds

  14. REDES NEURAIS, LÓGICA NEBULOSA E ALGORITMOS GENÉTICOS: APLICAÇÕES E POSSIBILIDADES EM FINANÇAS E CONTABILIDADE/NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHMS: APPLICATIONS AND POSSIBILITIES IN FINANCE AND ACCOUNTING

    National Research Council Canada - National Science Library

    Artur Filipe Ewald Wuerges; José Alonso Borba

    2010-01-01

    .... This paper analyzes empirical works published in international journals between 2000 and 2007 that present studies about the application of Neural Networks, Fuzzy Logic and Genetic Algorithms to...

  15. The fuzzy medical group in the centre for computational intelligence.

    Science.gov (United States)

    Innocent, P R; John, R I; Garibaldi, J M

    2001-01-01

    In this paper, five ongoing or completed research projects in medicine using fuzzy sets and logic are summarized. They are, a lightweight fuzzy process for diagnosis using fuzzy symptoms, prediction of pulmonary embolisms from linguistic descriptions of perfusion and ventilation scans, application of the fuzzy ART/MAP and MinMax/MAP neural network models to radiographic image classification, the development of a fuzzy expert system for the analysis of umbilical cord blood, modeling nursing intuition using type 2 fuzzy sets. These projects use a variety of fuzzy methods including clustering, simple set aggregation and type 2 inferencing to achieve their aims. The ongoing research projects reflect an interest in using type 2 fuzzy sets for dealing with vagueness and linguistic knowledge which is commonly found in medical areas where perceptions rather than measurements are the norm.

  16. Supply chain production model with preservation technology under fuzzy environment

    Directory of Open Access Journals (Sweden)

    S.R. Singh

    2014-06-01

    Full Text Available In this paper, an attempt is made to characterize the preservation technology for deteriorating items to reduce the deterioration rate. This model assumes a single producer and single supplier and formulates a production model with a time varying rate of deterioration rate. Here production and demand are treated as a fuzzy variables and total cost is minimized for both the crisp and fuzzy model. Shortage is allowed on the supplier’s part, which is partially backlogged. A solution procedure is presented to determine an optimal replenishment cycle and total cost per unit time, which is a convex function of preservation technology cost. Results have been validated with relevant example. In a way, the proposed model provides a unique theory to reduce the deterioration rate for the production model.

  17. An adaptive neuro fuzzy model for estimating the reliability of component-based software systems

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Although many algorithms and techniques have been developed for estimating the reliability of component-based software systems (CBSSs, much more research is needed. Accurate estimation of the reliability of a CBSS is difficult because it depends on two factors: component reliability and glue code reliability. Moreover, reliability is a real-world phenomenon with many associated real-time problems. Soft computing techniques can help to solve problems whose solutions are uncertain or unpredictable. A number of soft computing approaches for estimating CBSS reliability have been proposed. These techniques learn from the past and capture existing patterns in data. The two basic elements of soft computing are neural networks and fuzzy logic. In this paper, we propose a model for estimating CBSS reliability, known as an adaptive neuro fuzzy inference system (ANFIS, that is based on these two basic elements of soft computing, and we compare its performance with that of a plain FIS (fuzzy inference system for different data sets.

  18. Neural Net Gains Estimation Based on an Equivalent Model

    Directory of Open Access Journals (Sweden)

    Karen Alicia Aguilar Cruz

    2016-01-01

    Full Text Available A model of an Equivalent Artificial Neural Net (EANN describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN. The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB the factors based on the functional error and the reference signal built with the past information of the system.

  19. URC Fuzzy Modeling and Simulation of Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, B A; Fitch, J P

    2001-05-01

    Recent technological advances in high-throughput data collection give biologists the ability to study increasingly complex systems. A new methodology is needed to develop and test biological models based on experimental observations and predict the effect of perturbations of the network (e.g. genetic engineering, pharmaceuticals, gene therapy). Diverse modeling approaches have been proposed, in two general categories: modeling a biological pathway as (a) a logical circuit or (b) a chemical reaction network. Boolean logic models can not represent necessary biological details. Chemical kinetics simulations require large numbers of parameters that are very difficult to accurately measure. Based on the way biologists have traditionally thought about systems, we propose that fuzzy logic is a natural language for modeling biology. The Union Rule Configuration (URC) avoids combinatorial explosion in the fuzzy rule base, allowing complex system models. We demonstrate the fuzzy modeling method on the commonly studied lac operon of E. coli. Our goal is to develop a modeling and simulation approach that can be understood and applied by biologists without the need for experts in other fields or ''black-box'' software.

  20. Intuitionistic fuzzy-based model for failure detection.

    Science.gov (United States)

    Aikhuele, Daniel O; Turan, Faiz B M

    2016-01-01

    In identifying to-be-improved product component(s), the customer/user requirements which are mainly considered, and achieved through customer surveys using the quality function deployment (QFD) tool, often fail to guarantee or cover aspects of the product reliability. Even when they do, there are always many misunderstandings. To improve the product reliability and quality during product redesigning phase and to create that novel product(s) for the customers, the failure information of the existing product, and its component(s) should ordinarily be analyzed and converted to appropriate design knowledge for the design engineer. In this paper, a new intuitionistic fuzzy multi-criteria decision-making method has been proposed. The new approach which is based on an intuitionistic fuzzy TOPSIS model uses an exponential-related function for the computation of the separation measures from the intuitionistic fuzzy positive ideal solution (IFPIS) and intuitionistic fuzzy negative ideal solution (IFNIS) of alternatives. The proposed method has been applied to two practical case studies, and the result from the different cases has been compared with some similar computational approaches in the literature.

  1. Prediction of matching condition for a microstrip subsystem using artificial neural network and adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim

    2016-11-01

    In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.

  2. Lag synchronization of unknown chaotic delayed Yang-Yang-type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification.

    Science.gov (United States)

    Xia, Yonghui; Yang, Zijiang; Han, Maoan

    2009-07-01

    This paper considers the lag synchronization (LS) issue of unknown coupled chaotic delayed Yang-Yang-type fuzzy neural networks (YYFCNN) with noise perturbation. Separate research work has been published on the stability of fuzzy neural network and LS issue of unknown coupled chaotic neural networks, as well as its application in secure communication. However, there have not been any studies that integrate the two. Motivated by the achievements from both fields, we explored the benefits of integrating fuzzy logic theories into the study of LS problems and applied the findings to secure communication. Based on adaptive feedback control techniques and suitable parameter identification, several sufficient conditions are developed to guarantee the LS of coupled chaotic delayed YYFCNN with or without noise perturbation. The problem studied in this paper is more general in many aspects. Various problems studied extensively in the literature can be treated as special cases of the findings of this paper, such as complete synchronization (CS), effect of fuzzy logic, and noise perturbation. This paper presents an illustrative example and uses simulated results of this example to show the feasibility and effectiveness of the proposed adaptive scheme. This research also demonstrates the effectiveness of application of the proposed adaptive feedback scheme in secure communication by comparing chaotic masking with fuzziness with some previous studies. Chaotic signal with fuzziness is more complex, which makes unmasking more difficult due to the added fuzzy logic.

  3. A rule based fuzzy model for the prediction of petrophysical rock parameters

    Energy Technology Data Exchange (ETDEWEB)

    Finol, J.; Jing, X.D. [T.H. Huxley School of Environment, Earth Sciences and Engineering, Imperial College, Prince Consort Road, SW7 2BP London (United Kingdom); Ke Guo, Y. [Fujitsu Parallel Computing Centre, Department of Computing, Imperial College, SW7 2BZ London (United Kingdom)

    2001-04-01

    A new approach for the prediction of petrophysical rock parameters based on a rule-based fuzzy model is presented. The rule-based fuzzy model corresponds to the Takagi-Sugeno-Kang method of fuzzy reasoning proposed by Sugeno and his co-authors. This fuzzy model is defined by a set of fuzzy implications with linear consequent parts, each of which establishes a local linear input-output relationship between the variables of the model. In this approach, a fuzzy clustering algorithm is combined with the least-square approximation method to identify the structure and parameters of the fuzzy model from sets of numerical data. To verify the effectiveness of the proposed fuzzy modeling method, two examples are developed using core and electrical log data from three oil wells in Ceuta Field, Lake Maracaibo Basin. The numerical results of the fuzzy modelling method are compared with the results of a conventional linear regression model. It is shown that the fuzzy modeling approach is not only more accurate than the conventional regression approach but also provides some qualitative information about the underlying complexities of the porous system.

  4. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Directory of Open Access Journals (Sweden)

    Minh Vu Trieu

    2017-03-01

    Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  5. Fuzzy temporal logic based railway passenger flow forecast model.

    Science.gov (United States)

    Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun

    2014-01-01

    Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models.

  6. Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model.

    Directory of Open Access Journals (Sweden)

    Georgina Cosma

    Full Text Available The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA level, the biopsy most common tumor pattern (Primary Gleason pattern and the second most common tumor pattern (Secondary Gleason pattern in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD or Extra-Prostatic Disease (ED using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC, with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812. The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR

  7. Extended Traffic Crash Modelling through Precision and Response Time Using Fuzzy Clustering Algorithms Compared with Multi-layer Perceptron

    Directory of Open Access Journals (Sweden)

    Iman Aghayan

    2012-11-01

    Full Text Available This paper compares two fuzzy clustering algorithms – fuzzy subtractive clustering and fuzzy C-means clustering – to a multi-layer perceptron neural network for their ability to predict the severity of crash injuries and to estimate the response time on the traffic crash data. Four clustering algorithms – hierarchical, K-means, subtractive clustering, and fuzzy C-means clustering – were used to obtain the optimum number of clusters based on the mean silhouette coefficient and R-value before applying the fuzzy clustering algorithms. The best-fit algorithms were selected according to two criteria: precision (root mean square, R-value, mean absolute errors, and sum of square error and response time (t. The highest R-value was obtained for the multi-layer perceptron (0.89, demonstrating that the multi-layer perceptron had a high precision in traffic crash prediction among the prediction models, and that it was stable even in the presence of outliers and overlapping data. Meanwhile, in comparison with other prediction models, fuzzy subtractive clustering provided the lowest value for response time (0.284 second, 9.28 times faster than the time of multi-layer perceptron, meaning that it could lead to developing an on-line system for processing data from detectors and/or a real-time traffic database. The model can be extended through improvements based on additional data through induction procedure.

  8. Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Rahib H. Abiyev

    2016-01-01

    Full Text Available The design of brain-computer interface for the wheelchair for physically disabled people is presented. The design of the proposed system is based on receiving, processing, and classification of the electroencephalographic (EEG signals and then performing the control of the wheelchair. The number of experimental measurements of brain activity has been done using human control commands of the wheelchair. Based on the mental activity of the user and the control commands of the wheelchair, the design of classification system based on fuzzy neural networks (FNN is considered. The design of FNN based algorithm is used for brain-actuated control. The training data is used to design the system and then test data is applied to measure the performance of the control system. The control of the wheelchair is performed under real conditions using direction and speed control commands of the wheelchair. The approach used in the paper allows reducing the probability of misclassification and improving the control accuracy of the wheelchair.

  9. Intelligent Control for USV Based on Improved Elman Neural Network with TSK Fuzzy

    Directory of Open Access Journals (Sweden)

    Shang-Jen Chuang

    2014-01-01

    Full Text Available In recent years, based on the rising of global personal safety demand and human resource cost considerations, development of unmanned vehicles to replace manpower requirement to perform high-risk operations is increasing. In order to acquire useful resources under the marine environment, a large boat as an unmanned surface vehicle (USV was implemented. The USV is equipped with automatic navigation features and a complete substitute artificial manipulation. This USV system for exploring the marine environment has more carrying capacity and that measurement system can also be self-designed through a modular approach in accordance with the needs for various types of environmental conditions. The investigation work becomes more flexible. A catamaran hull is adopted as automatic navigation test with CompactRIO embedded system. Through GPS and direction sensor we not only can know the current location of the boat, but also can calculate the distance with a predetermined position and the angle difference immediately. In this paper, the design of automatic navigation is calculated in accordance with improved Elman neural network (ENN algorithms. Takagi-Sugeno-Kang (TSK fuzzy and improved ENN control are applied to adjust required power and steering, which allows the hull to move straight forward to a predetermined target position. The route will be free from outside influence and realize automatic navigation purpose.

  10. Evaluation-Function-based Model-free Adaptive Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Agus Naba

    2016-12-01

    Full Text Available Designs of adaptive fuzzy controllers (AFC are commonly based on the Lyapunov approach, which requires a known model of the controlled plant. They need to consider a Lyapunov function candidate as an evaluation function to be minimized. In this study these drawbacks were handled by designing a model-free adaptive fuzzy controller (MFAFC using an approximate evaluation function defined in terms of the current state, the next state, and the control action. MFAFC considers the approximate evaluation function as an evaluative control performance measure similar to the state-action value function in reinforcement learning. The simulation results of applying MFAFC to the inverted pendulum benchmark verified the proposed scheme’s efficacy.

  11. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT for Aquaculture

    Directory of Open Access Journals (Sweden)

    Yingyi Chen

    2017-01-01

    Full Text Available In the Internet of Things (IoT equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  12. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture.

    Science.gov (United States)

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-14

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  13. Issues in the use of neural networks in information retrieval

    CERN Document Server

    Iatan, Iuliana F

    2017-01-01

    This book highlights the ability of neural networks (NNs) to be excellent pattern matchers and their importance in information retrieval (IR), which is based on index term matching. The book defines a new NN-based method for learning image similarity and describes how to use fuzzy Gaussian neural networks to predict personality. It introduces the fuzzy Clifford Gaussian network, and two concurrent neural models: (1) concurrent fuzzy nonlinear perceptron modules, and (2) concurrent fuzzy Gaussian neural network modules. Furthermore, it explains the design of a new model of fuzzy nonlinear perceptron based on alpha level sets and describes a recurrent fuzzy neural network model with a learning algorithm based on the improved particle swarm optimization method.

  14. Intuitionistic Fuzzy Cycles and Intuitionistic Fuzzy Trees

    Science.gov (United States)

    Alshehri, N. O.

    2014-01-01

    Connectivity has an important role in neural networks, computer network, and clustering. In the design of a network, it is important to analyze connections by the levels. The structural properties of intuitionistic fuzzy graphs provide a tool that allows for the solution of operations research problems. In this paper, we introduce various types of intuitionistic fuzzy bridges, intuitionistic fuzzy cut vertices, intuitionistic fuzzy cycles, and intuitionistic fuzzy trees in intuitionistic fuzzy graphs and investigate some of their interesting properties. Most of these various types are defined in terms of levels. We also describe comparison of these types. PMID:24701155

  15. Flood risk assessment model using the fuzzy analytic hierarchy process

    Directory of Open Access Journals (Sweden)

    Marija Kerkez

    2017-07-01

    Full Text Available Sustainable development and natural disasters are closely interlinked. The impact of catastrophic events on the environment is still very difficult to determine, and such losses are generally underestimated. Development is never neutral in relation to catastrophes: it creates, enhances or reduces the risk of their occurrence. Selection of appropriate methods and mathematical models for risk assessment in relation to the specific features and characteristics of the considered system and available information and resources, is a key parameter of reliability assessment. Numerous authors applied AHP methods with flood risk assessment, but very limited literature is avaliable on the use of fuzzy multiobjective analysis in flood studies. In the recent years, the fuzzy approach for flood risk assessments has gained greater importance. In this paper, we present the fuzzy analytic hierarchy process (FAHP model for flood risk assessments. Two flood hazard indexes were defined, one based on natural factors and one based on anthropogenic factors. FAHP is applied to data sets to illustrate a model.

  16. Neural model of gene regulatory network: a survey on supportive meta-heuristics.

    Science.gov (United States)

    Biswas, Surama; Acharyya, Sriyankar

    2016-06-01

    Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.

  17. A Fuzzy Spatial Querying Model for Improving Apartment Web Services

    Directory of Open Access Journals (Sweden)

    Huiqing Yang

    2008-02-01

    Full Text Available An apartment web service is a web site intended to provide online services to the residents. With the availability of global positioning systems and the development of new technologies, the access of geo-spatial information has drawn great attention for information retrieves. This research is focused on developing an online service for an apartment to provide geospatial information. In this paper, a fuzzy spatial querying model under uncertainty is used to improve spatial querying. An inexact inferring with the certainty factor is investigated. An online spatial database for an apartment is implemented by utilizing PHP with MySQL database. Demonstration shows that the system can provide visitors with the amount of significant geo-spatial information about the apartment. Moreover, fuzziness and uncertainty are mainly concerned. Querying examples are provided.

  18. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  19. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  20. Proposal for Classifying the Severity of Speech Disorder Using a Fuzzy Model in Accordance with the Implicational Model of Feature Complexity

    Science.gov (United States)

    Brancalioni, Ana Rita; Magnago, Karine Faverzani; Keske-Soares, Marcia

    2012-01-01

    The objective of this study is to create a new proposal for classifying the severity of speech disorders using a fuzzy model in accordance with a linguistic model that represents the speech acquisition of Brazilian Portuguese. The fuzzy linguistic model was run in the MATLAB software fuzzy toolbox from a set of fuzzy rules, and it encompassed…

  1. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  2. Fuzzy Boundary and Fuzzy Semiboundary

    OpenAIRE

    Athar, M.; Ahmad, B.

    2008-01-01

    We present several properties of fuzzy boundary and fuzzy semiboundary which have been supported by examples. Properties of fuzzy semi-interior, fuzzy semiclosure, fuzzy boundary, and fuzzy semiboundary have been obtained in product-related spaces. We give necessary conditions for fuzzy continuous (resp., fuzzy semicontinuous, fuzzy irresolute) functions. Moreover, fuzzy continuous (resp., fuzzy semicontinuous, fuzzy irresolute) functions have been characterized via fuzzy...

  3. A Fuzzy Cognitive Model of aeolian instability across the South Texas Sandsheet

    Science.gov (United States)

    Houser, C.; Bishop, M. P.; Barrineau, C. P.

    2014-12-01

    Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. This paper describes the development and application of analytical reasoning to quantify instability of an aeolian environment using scale-dependent information coupled with conceptual knowledge of process and feedback mechanisms. Specifically, a simple Fuzzy Cognitive Model (FCM) for aeolian landscape instability was developed that represents conceptual knowledge of key biophysical processes and feedbacks. Model inputs include satellite-derived surface biophysical and geomorphometric parameters. FCMs are a knowledge-based Artificial Intelligence (AI) technique that merges fuzzy logic and neural computing in which knowledge or concepts are structured as a web of relationships that is similar to both human reasoning and the human decision-making process. Given simple process-form relationships, the analytical reasoning model is able to map the influence of land management practices and the geomorphology of the inherited surface on aeolian instability within the South Texas Sandsheet. Results suggest that FCMs can be used to formalize process-form relationships and information integration analogous to human cognition with future iterations accounting for the spatial interactions and temporal lags across the sand sheets.

  4. Credit Derivatives Pricing Model for Fuzzy Financial Market

    Directory of Open Access Journals (Sweden)

    Liang Wu

    2015-01-01

    Full Text Available With various categories of fuzziness in the market, the factors that influence credit derivatives pricing include not only the characteristic of randomness but also nonrandom fuzziness. Thus, it is necessary to bring fuzziness into the process of credit derivatives pricing. Based on fuzzy process theory, this paper first brings fuzziness into credit derivatives pricing, discusses some pricing formulas of credit derivatives, and puts forward a One-Factor Fuzzy Copula function which builds a foundation for portfolio credit products pricing. Some numerical calculating samples are presented as well.

  5. NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Dauda Olarotimi Araromi

    2015-11-01

    Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.

  6. Identification of Abnormal System Noise Temperature Patterns in Deep Space Network Antennas Using Neural Network Trained Fuzzy Logic

    Science.gov (United States)

    Lu, Thomas; Pham, Timothy; Liao, Jason

    2011-01-01

    This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.

  7. Filtrado digital neuronal difuso: caso MIMO Neural fuzzy digital filtering: multivariate identifier filters involving multiple inputs and multiple outputs (MIMO

    Directory of Open Access Journals (Sweden)

    Medel Juárez José de J.

    2011-05-01

    convergence to observable reference system dynamics. One way of complying with this condition is to use fuzzy logic inference mechanisms which interpret and select the best matrix parameter from a knowledge base. Such selection mechanisms with neural networks can provide a response from the best operational level for each change in state (Shannon, 1948. This paper considers the MIMO digital filter model using neuro fuzzy digital filtering to find an adaptive  parameter matrix which is integrated into the Kalman filter by the transition matrix. The filter uses the neural network as back-propagation into the fuzzy mechanism to do this, interpreting its variables and its respective levels and selecting the best values for automatically adjusting transition matrix values. The Matlab simulation describes the neural fuzzy digital filter giving an approximation of exponential convergence seen in functional error.

     

  8. Takagi Sugeno fuzzy expert model based soft fault diagnosis for two tank interacting system

    Directory of Open Access Journals (Sweden)

    Manikandan Pandiyan

    2014-09-01

    Full Text Available The inherent characteristics of fuzzy logic theory make it suitable for fault detection and diagnosis (FDI. Fault detection can benefit from nonlinear fuzzy modeling and fault diagnosis can profit from a transparent reasoning system, which can embed operator experience, but also learn from experimental and/or simulation data. Thus, fuzzy logic-based diagnostic is advantageous since it allows the incorporation of a-priori knowledge and lets the user understand the inference of the system. In this paper, the successful use of a fuzzy FDI based system, based on dynamic fuzzy models for fault detection and diagnosis of an industrial two tank system is presented. The plant data is used for the design and validation of the fuzzy FDI system. The validation results show the effectiveness of this approach.

  9. Fuzzy Approximate Model for Distributed Thermal Solar Collectors Control

    KAUST Repository

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the problem of controlling concentrated solar collectors where the objective consists of making the outlet temperature of the collector tracking a desired reference. The performance of the novel approximate model based on fuzzy theory, which has been introduced by the authors in [1], is evaluated comparing to other methods in the literature. The proposed approximation is a low order state representation derived from the physical distributed model. It reproduces the temperature transfer dynamics through the collectors accurately and allows the simplification of the control design. Simulation results show interesting performance of the proposed controller.

  10. Possibilistic Fuzzy Net Present Value Model and Application

    Directory of Open Access Journals (Sweden)

    S. S. Appadoo

    2014-01-01

    Full Text Available The cash flow values and the interest rate in the net present value (NPV model are usually specified by either crisp numbers or random variables. In this paper, we first discuss some of the recent developments in possibility theory and find closed form expressions for fuzzy possibilistic net present value (FNPV. Then, following Carlsson and Fullér (2001, we discuss some of the possibilistic moments related to FNPV model along with an illustrative numerical example. We also give a unified approach to find higher order moments of FNPV by using the moment generating function introduced by Paseka et al. (2011.

  11. Usage of case-based reasoning, neural network and adaptive neuro-fuzzy inference system classification techniques in breast cancer dataset classification diagnosis.

    Science.gov (United States)

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, Wen-Ming; Li, R K; Wang, Tzu-Hao

    2012-04-01

    Breast cancer is a common to females worldwide. Today, technological advancements in cancer treatment innovations have increased the survival rates. Many theoretical and experimental studies have shown that a multiple classifier system is an effective technique for reducing prediction errors. This study compared the particle swarm optimizer (PSO) based artificial neural network (ANN), the adaptive neuro-fuzzy inference system (ANFIS), and a case-based reasoning (CBR) classifier with a logistic regression model and decision tree model. It also applied three classification techniques to the Mammographic Mass Data Set, and measured its improvements in accuracy and classification errors. The experimental results showed that, the best CBR-based classification accuracy is 83.60%, and the classification accuracies of the PSO-based ANN classifier and ANFIS are 91.10% and 92.80%, respectively.

  12. [Study on building index system of risk assessment of post-marketing Chinese patent medicine based on AHP-fuzzy neural network].

    Science.gov (United States)

    Li, Yuanyuan; Xie, Yanming; Fu, Yingkun

    2011-10-01

    Currently massive researches have been launched about the safety, efficiency and economy of post-marketing Chinese patent medicine (CPM) proprietary Chinese medicine, but it was lack of a comprehensive interpretation. Establishing the risk evaluation index system and risk assessment model of CPM is the key to solve drug safety problems and protect people's health. The clinical risk factors of CPM exist similarities with the Western medicine, can draw lessons from foreign experience, but also have itself multi-factor multivariate multi-level complex features. Drug safety risk assessment for the uncertainty and complexity, using analytic hierarchy process (AHP) to empower the index weights, AHP-based fuzzy neural network to build post-marketing CPM risk evaluation index system and risk assessment model and constantly improving the application of traditional Chinese medicine characteristic is accord with the road and feasible beneficial exploration.

  13. Application of fuzzy logic to determine the odour intensity of model gas mixtures using electronic nose

    Science.gov (United States)

    Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek

    2018-01-01

    The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.

  14. A Novel Fuzzy Document Based Information Retrieval Model for Forecasting

    Directory of Open Access Journals (Sweden)

    Partha Roy

    2017-06-01

    Full Text Available Information retrieval systems are generally used to find documents that are most appropriate according to some query that comes dynamically from users. In this paper a novel Fuzzy Document based Information Retrieval Model (FDIRM is proposed for the purpose of Stock Market Index forecasting. The novelty of proposed approach is a modified tf-idf scoring scheme to predict the future trend of the stock market index. The contribution of this paper has two dimensions, 1 In the proposed system the simple time series is converted to an enriched fuzzy linguistic time series with a unique approach of incorporating market sentiment related information along with the price and 2 A unique approach is followed while modeling the information retrieval (IR system which converts a simple IR system into a forecasting system. From the performance comparison of FDIRM with standard benchmark models it can be affirmed that the proposed model has a potential of becoming a good forecasting model. The stock market data provided by Standard & Poor’s CRISIL NSE Index 50 (CNX NIFTY-50 index of National Stock Exchange of India (NSE is used to experiment and validate the proposed model. The authentic data for validation and experimentation is obtained from http://www.nseindia.com which is the official website of NSE. A java program is under construction to implement the model in real-time with graphical users’ interface.

  15. Uncertainty analysis of a combined Artificial Neural Network - Fuzzy logic - Kriging system for spatial and temporal simulation of Hydraulic Head.

    Science.gov (United States)

    Tapoglou, Evdokia; Karatzas, George P.; Trichakis, Ioannis C.; Varouchakis, Emmanouil A.

    2015-04-01

    The purpose of this study is to evaluate the uncertainty, using various methodologies, in a combined Artificial Neural Network (ANN) - Fuzzy logic - Kriging system, which can simulate spatially and temporally the hydraulic head in an aquifer. This system uses ANNs for the temporal prediction of hydraulic head in various locations, one ANN for every location with available data, and Kriging for the spatial interpolation of ANN's results. A fuzzy logic is used for the interconnection of these two methodologies. The full description of the initial system and its functionality can be found in Tapoglou et al. (2014). Two methodologies were used for the calculation of uncertainty for the implementation of the algorithm in a study area. First, the uncertainty of Kriging parameters was examined using a Bayesian bootstrap methodology. In this case the variogram is calculated first using the traditional methodology of Ordinary Kriging. Using the parameters derived and the covariance function of the model, the covariance matrix is constructed. A common method for testing a statistical model is the use of artificial data. Normal random numbers generation is the first step in this procedure and by multiplying them by the decomposed covariance matrix, correlated random numbers (sample set) can be calculated. These random values are then fitted into a variogram and the value in an unknown location is estimated using Kriging. The distribution of the simulated values using the Kriging of different correlated random values can be used in order to derive the prediction intervals of the process. In this study 500 variograms were constructed for every time step and prediction point, using the method described above, and their results are presented as the 95th and 5th percentile of the predictions. The second methodology involved the uncertainty of ANNs training. In this case, for all the data points 300 different trainings were implemented having different training datasets each time

  16. Fuzzy Modelling of Knee Joint with Genetic Optimization

    Directory of Open Access Journals (Sweden)

    B. S. K. K. Ibrahim

    2011-01-01

    Full Text Available Modelling of joint properties of lower limbs in people with spinal cord injury is significantly challenging for researchers due to the complexity of the system. The objective of this study is to develop a knee joint model capable of relating electrical parameters to dynamic joint torque as well as knee angle for functional electrical stimulation application. The joint model consists of a segmental dynamic, time-invariant passive properties and uncertain time-variant active properties. The knee joint model structure comprising optimised equations of motion and fuzzy models to represent the passive viscoelasticity and active muscle properties is formulated. The model thus formulated is optimised using genetic optimization, and validated against experimental data. The developed model can be used for simulation of joint movements as well as for control development. The results show that the model developed gives an accurate dynamic characterisation of the knee joint.

  17. An adaptive fuzzy prediction model for real time tumor tracking in radiotherapy via external surrogates.

    Science.gov (United States)

    Esmaili Torshabi, Ahmad; Riboldi, Marco; Imani Fooladi, Abbas Ali; Modarres Mosalla, Seyed Mehdi; Baroni, Guido

    2013-01-07

    In the radiation treatment of moving targets with external surrogates, information on tumor position in real time can be extracted by using accurate correlation models. A fuzzy environment is proposed here to correlate input surrogate data with tumor motion estimates in real time. In this study, two different data clustering approaches were analyzed due to their substantial effects on the fuzzy modeler performance. Moreover, a comparative investigation was performed on two fuzzy-based and one neuro-fuzzy-based inference systems with respect to state-of-the-art models. Finally, due to the intrinsic interpatient variability in fuzzy models' performance, a model selectivity algorithm was proposed to select an adaptive fuzzy modeler on a case-by-case basis. The performance of multiple and adaptive fuzzy logic models were retrospectively tested in 20 patients treated with CyberKnife real-time tumor tracking. Final results show that activating adequate model selection of our fuzzy-based modeler can significantly reduce tumor tracking errors.

  18. Cloud E-Learning Service Strategies for Improving E-Learning Innovation Performance in a Fuzzy Environment by Using a New Hybrid Fuzzy Multiple Attribute Decision-Making Model

    Science.gov (United States)

    Su, Chiu Hung; Tzeng, Gwo-Hshiung; Hu, Shu-Kung

    2016-01-01

    The purpose of this study was to address this problem by applying a new hybrid fuzzy multiple criteria decision-making model including (a) using the fuzzy decision-making trial and evaluation laboratory (DEMATEL) technique to construct the fuzzy scope influential network relationship map (FSINRM) and determine the fuzzy influential weights of the…

  19. Interval-Valued Model Level Fuzzy Aggregation-Based Background Subtraction.

    Science.gov (United States)

    Chiranjeevi, Pojala; Sengupta, Somnath

    2017-09-01

    In a recent work, the effectiveness of neighborhood supported model level fuzzy aggregation was shown under dynamic background conditions. The multi-feature fuzzy aggregation used in that approach uses real fuzzy similarity values, and is robust for low and medium-scale dynamic background conditions such as swaying vegetation, sprinkling water, etc. The technique, however, exhibited some limitations under heavily dynamic background conditions, as features have high uncertainty under such noisy conditions and these uncertainties were not captured by real fuzzy similarity values. Our proposed algorithm is particularly focused toward improving the detection under heavy dynamic background conditions by modeling uncertainties in the data by interval-valued fuzzy set. In this paper, real-valued fuzzy aggregation has been extended to interval-valued fuzzy aggregation by considering uncertainties over real similarity values. We build up a procedure to calculate the uncertainty that varies for each feature, at each pixel, and at each time instant. We adaptively determine membership values at each pixel by the Gaussian of uncertainty value instead of fixed membership values used in recent fuzzy approaches, thereby, giving importance to a feature based on its uncertainty. Interval-valued Choquet integral is evaluated using interval similarity values and the membership values in order to calculate interval-valued fuzzy similarity between model and current. Adequate qualitative and quantitative studies are carried out to illustrate the effectiveness of the proposed method in mitigating heavily dynamic background situations as compared to state-of-the-art.

  20. Modeling and PDC fuzzy control of planar parallel robot

    Directory of Open Access Journals (Sweden)

    Benyamine Allouche

    2017-02-01

    Full Text Available Many works in the literature have studied the kinematical and dynamical issues of parallel robots. But it is still difficult to extend the vast control strategies to parallel mechanisms due to the complexity of the model-based control. This complexity is mainly caused by the presence of multiple closed kinematic chains, making the system naturally described by a set of differential–algebraic equations. The aim of this work is to control a two-degree-of-freedom parallel manipulator. A mechanical model based on differential–algebraic equations is given. The goal is to use the structural characteristics of the mechanical system to reduce the complexity of the nonlinear model. Therefore, a trajectory tracking control is achieved using the Takagi-Sugeno fuzzy model derived from the differential–algebraic equation forms and its linear matrix inequality constraints formulation. Simulation results show that the proposed approach based on differential–algebraic equations and Takagi-Sugeno fuzzy modeling leads to a better robustness against the structural uncertainties.

  1. Mathematical Modelling for EOQ Inventory System with Advance Payment and Fuzzy Parameters

    Directory of Open Access Journals (Sweden)

    S Priyan

    2014-11-01

    Full Text Available This study considers an EOQ inventory model with advance payment policy in a fuzzy situation by employing two types of fuzzy numbers that are trapezoidal and triangular. Two fuzzy models are developed here. In the first model the cost parameters are fuzzified, but the demand rate is treated as crisp constant. In the second model, the demand rate is fuzzified but the cost parameters are treated as crisp constants. For each fuzzy model, we use signed distance method to defuzzify the fuzzy total cost and obtain an estimate of the total cost in the fuzzy sense. Numerical example is provided to ascertain the sensitiveness in the decision variables about fuzziness in the components. In practical situations, costs may be dependent on some foreign monetary unit. In such a case, due to a change in the exchange rates, the costs are often not known precisely. The first model can be used in this situation. In actual applications, demand is uncertain and must be predicted. Accordingly, the decision maker faces a fuzzy environment rather than a stochastic one in these cases. The second model can be used in this situation. Moreover, the proposed models can be expended for imperfect production process.

  2. Definition of zones with different levels of productivity within an agricultural field using fuzzy modeling

    Science.gov (United States)

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for the definition of zones with different levels of productivity is based on fuzzy indicator model. Fuzzy indicator model for identification of zones with different levels of productivit...

  3. Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters.

    Science.gov (United States)

    Liu, Fei; Heiner, Monika; Yang, Ming

    2016-01-01

    Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information.

  4. Acoustic characterization of seafloor sediment employing a hybrid method of neural network architecture and fuzzy algorithm

    Digital Repository Service at National Institute of Oceanography (India)

    De, C.; Chakraborty, B.

    to select the three most discriminating echo features using a fuzzy algorithm. The comparison of the results with ground truth at two operating frequencies revealed that this hybrid method could be efficiently used for sediment classification, without any a...

  5. Meta Modelling of Submerged-Arc Welding Design based on Fuzzy Algorithm

    Science.gov (United States)

    Song, Chang-Yong; Park, Jonghwan; Goh, Dugab; Park, Woo-Chang; Lee, Chang-Ha; Kim, Mun Yong; Kang, Jinseo

    2017-12-01

    Fuzzy algorithm based meta-model is proposed for approximating submerged-arc weld design factors such as weld speed and weld output. Orthogonal array design based on the submerged-arc weld numerical analysis is applied to the proposed approach. The nonlinear finite element analysis is carried out to simulate the submerged-arc weld numerical analysis using thermo-mechanical and temperature-dependent material properties for general mild steel. The proposed meta-model based on fuzzy algorithm design is generated with triangle membership functions and fuzzy if-then rules using training data obtained from the Taguchi orthogonal array design data. The aim of proposed approach is to develop a fuzzy meta-model to effectively approximate the optimized submerged-arc weld factors. To validate the meta-model, the results obtained from the fuzzy meta-model are compared to the best cases from the Taguchi orthogonal array.

  6. A Novel Method for Optimal Solution of Fuzzy Chance Constraint Single-Period Inventory Model

    Directory of Open Access Journals (Sweden)

    Anuradha Sahoo

    2016-01-01

    Full Text Available A method is proposed for solving single-period inventory fuzzy probabilistic model (SPIFPM with fuzzy demand and fuzzy storage space under a chance constraint. Our objective is to maximize the total profit for both overstock and understock situations, where the demand D~j for each product j in the objective function is considered as a fuzzy random variable (FRV and with the available storage space area W~, which is also a FRV under normal distribution and exponential distribution. Initially we used the weighted sum method to consider both overstock and understock situations. Then the fuzziness of the model is removed by ranking function method and the randomness of the model is removed by chance constrained programming problem, which is a deterministic nonlinear programming problem (NLPP model. Finally this NLPP is solved by using LINGO software. To validate and to demonstrate the results of the proposed model, numerical examples are given.

  7. Modeling urban air pollution with optimized hierarchical fuzzy inference system.

    Science.gov (United States)

    Tashayo, Behnam; Alimohammadi, Abbas

    2016-10-01

    Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.

  8. Simulation of neuro-fuzzy model for optimization of combine header setting

    Directory of Open Access Journals (Sweden)

    S Zareei

    2016-09-01

    Full Text Available Introduction The noticeable proportion of producing wheat losses occur during production and consumption steps and the loss due to harvesting with combine harvester is regarded as one of the main factors. A grain combines harvester consists of different sets of equipment and one of the most important parts is the header which comprises more than 50% of the entire harvesting losses. Some researchers have presented regression equation to estimate grain loss of combine harvester. The results of their study indicated that grain moisture content, reel index, cutter bar speed, service life of cutter bar, tine spacing, tine clearance over cutter bar, stem length were the major parameters affecting the losses. On the other hand, there are several researchswhich have used the variety of artificial intelligence methods in the different aspects of combine harvester. In neuro-fuzzy control systems, membership functions and if-then rules were defined through neural networks. Sugeno- type fuzzy inference model was applied to generate fuzzy rules from a given input-output data set due to its less time-consuming and mathematically tractable defuzzification operation for sample data-based fuzzy modeling. In this study, neuro-fuzzy model was applied to develop forecasting models which can predict the combine header loss for each set of the header parameter adjustments related to site-specific information and therefore can minimize the header loss. Materials and Methods The field experiment was conducted during the harvesting season of 2011 at the research station of the Faulty of Agriculture, Shiraz University, Shiraz, Iran. The wheat field (CV. Shiraz was harvested with a Claas Lexion-510 combine harvester. The factors which were selected as main factors influenced the header performance were three levels of reel index (RI (forward speed of combine harvester divided by peripheral speed of reel (1, 1.2, 1.5, three levels of cutting height (CH(25, 30, 35 cm, three

  9. Managing Software Project Risks (Analysis Phase) with Proposed Fuzzy Regression Analysis Modelling Techniques with Fuzzy Concepts

    OpenAIRE

    Elzamly, Abdelrafe; Hussin, Burairah

    2014-01-01

    The aim of this paper is to propose new mining techniques by which we can study the impact of different risk management techniques and different software risk factors on software analysis development projects. The new mining technique uses the fuzzy multiple regression analysis techniques with fuzzy concepts to manage the software risks in a software project and mitigating risk with software process improvement. Top ten software risk factors in analysis phase and thirty risk management techni...

  10. Systemic Approach for Health Risk Assessment of Ambient Air Concentrations of Benzene in Petrochemical Environments: Integration of Fuzzy Logic, Artificial Neural Network, and IRIS Toxicity Method.

    Science.gov (United States)

    Novin, Vahid; Givehchi, Saeed; Hoveidi, Hassan

    2016-09-01

    Reliable methods are crucial to cope with uncertainties in the risk analysis process. The aim of this study is to develop an integrated approach to assessing risks of benzene in the petrochemical plant that produces benzene. We offer an integrated system to contribute imprecise variables into the health risk calculation. The project was conducted in Asaluyeh, southern Iran during the years from 2013 to 2014. Integrated method includes fuzzy logic and artificial neural networks. Each technique had specific computational properties. Fuzzy logic was used for estimation of absorption rate. Artificial neural networks can decrease the noise of the data so applied for prediction of benzene concentration. First, the actual exposure was calculated then it combined with Integrated Risk Information System (IRIS) toxicity factors to assess real health risks. High correlation between the measured and predicted benzene concentration was achieved (R(2)= 0.941). As for variable distribution, the best estimation of risk in a population implied 33% of workers exposed less than 1×10(-5) and 67% inserted between 1.0×10(-5) to 9.8×10(-5) risk levels. The average estimated risk of exposure to benzene for entire work zones is equal to 2.4×10(-5), ranging from 1.5×10(-6) to 6.9×10(-5). The integrated model is highly flexible as well as the rules possibly will be changed according to the necessities of the user in a different circumstance. The measured exposures can be duplicated well through proposed model and realistic risk assessment data will be produced.

  11. Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables

    Directory of Open Access Journals (Sweden)

    Hideki Katagiri

    2017-10-01

    Full Text Available This paper considers linear programming problems (LPPs where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables. New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments.

  12. Fuzzy Economic Order Quantity (FEOQ Model with Units Lost Due to Deterioration

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2014-08-01

    Full Text Available This model investigates the instantaneous fuzzy economic order quantity model by allocating the percentage of units lost dueto deterioration in an on-hand inventory by framing variable ordering cost. The objective is to maximize the fuzzy net profit so as to determine the order quantity, the cycle length and number of units lost due to deterioration in fuzzy decision space. For any given number of replenishment cycles the existence of aunique optimal replenishment schedule are proved and mathematical model is developed to find some important characteristics for the concavity of the fuzzy net profit function. Numerical examples are provided to illustrate the results of proposed model which benefit the retailer and this policy is important, especially for wasting of deteriorating items. Finally, sensitivity analyses of the fuzzy optimal solution with respect to the major parameters are also studied.

  13. Applying fuzzy logic to comparative distribution modelling: a case study with two sympatric amphibians.

    Science.gov (United States)

    Barbosa, A Márcia; Real, Raimundo

    2012-01-01

    We modelled the distributions of two toads (Bufo bufo and Epidalea calamita) in the Iberian Peninsula using the favourability function, which makes predictions directly comparable for different species and allows fuzzy logic operations to relate different models. The fuzzy intersection between individual models, representing favourability for the presence of both species simultaneously, was compared with another favourability model built on the presences shared by both species. The fuzzy union between individual models, representing favourability for the presence of any of the two species, was compared with another favourability model based on the presences of either or both of them. The fuzzy intersections between favourability for each species and the complementary of favourability for the other (corresponding to the logical operation "A and not B") were compared with models of exclusive presence of one species versus the exclusive presence of the other. The results of modelling combined species data were highly similar to those of fuzzy logic operations between individual models, proving fuzzy logic and the favourability function valuable for comparative distribution modelling. We highlight several advantages of fuzzy logic over other forms of combining distribution models, including the possibility to combine multiple species models for management and conservation planning.

  14. Applying Fuzzy Logic to Comparative Distribution Modelling: A Case Study with Two Sympatric Amphibians

    Directory of Open Access Journals (Sweden)

    A. Márcia Barbosa

    2012-01-01

    Full Text Available We modelled the distributions of two toads (Bufo bufo and Epidalea calamita in the Iberian Peninsula using the favourability function, which makes predictions directly comparable for different species and allows fuzzy logic operations to relate different models. The fuzzy intersection between individual models, representing favourability for the presence of both species simultaneously, was compared with another favourability model built on the presences shared by both species. The fuzzy union between individual models, representing favourability for the presence of any of the two species, was compared with another favourability model based on the presences of either or both of them. The fuzzy intersections between favourability for each species and the complementary of favourability for the other (corresponding to the logical operation “A and not B” were compared with models of exclusive presence of one species versus the exclusive presence of the other. The results of modelling combined species data were highly similar to those of fuzzy logic operations between individual models, proving fuzzy logic and the favourability function valuable for comparative distribution modelling. We highlight several advantages of fuzzy logic over other forms of combining distribution models, including the possibility to combine multiple species models for management and conservation planning.

  15. Applying nonlinear MODM model to supply chain management with quantity discount policy under complex fuzzy environment

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2014-06-01

    Full Text Available Purpose: The aim of this paper is to deal with the supply chain management (SCM with quantity discount policy under the complex fuzzy environment, which is characterized as the bi-fuzzy variables. By taking into account the strategy and the process of decision making, a bi-fuzzy nonlinear multiple objective decision making (MODM model is presented to solve the proposed problem.Design/methodology/approach: The bi-fuzzy variables in the MODM model are transformed into the trapezoidal fuzzy variables by the DMs's degree of optimism ?1 and ?2, which are de-fuzzified by the expected value index subsequently. For solving the complex nonlinear model, a multi-objective adaptive particle swarm optimization algorithm (MO-APSO is designed as the solution method.Findings: The proposed model and algorithm are applied to a typical example of SCM problem to illustrate the effectiveness. Based on the sensitivity analysis of the results, the bi-fuzzy nonlinear MODM SCM model is proved to be sensitive to the possibility level ?1.Practical implications: The study focuses on the SCM under complex fuzzy environment in SCM, which has a great practical significance. Therefore, the bi-fuzzy MODM model and MO-APSO can be further applied in SCM problem with quantity discount policy.Originality/value: The bi-fuzzy variable is employed in the nonlinear MODM model of SCM to characterize the hybrid uncertain environment, and this work is original. In addition, the hybrid crisp approach is proposed to transferred to model to an equivalent crisp one by the DMs's degree of optimism and the expected value index. Since the MODM model consider the bi-fuzzy environment and quantity discount policy, so this paper has a great practical significance.

  16. FUZZY MODELING BY SUCCESSIVE ESTIMATION OF RULES ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 1 (2003) >. Log in or Register to get access to full text downloads.

  17. Neuro-fuzzy model of homocysteine metabolism

    Indian Academy of Sciences (India)

    In view of well-documented association of hyperhomocysteinaemia with a wide spectrum of diseases and higher incidence of vitamin deficiencies in Indians, we proposed a mathematical model to forecast the role of demographic and geneticvariables in influencing homocysteine metabolism and investigated the influence ...

  18. A fuzzy ontology modeling for case base knowledge in diabetes mellitus domain

    Directory of Open Access Journals (Sweden)

    Shaker El-Sappagh

    2017-06-01

    Full Text Available Knowledge-Intensive Case-Based Reasoning Systems (KI-CBR mainly depend on ontologies. Ontology can play the role of case-base knowledge. The combination of ontology and fuzzy logic reasoning is critical in the medical domain. Case-base representation based on fuzzy ontology is expected to enhance the semantic and storage of CBR knowledge-base. This paper provides an advancement to the research of diabetes diagnosis CBR by proposing a novel case-base fuzzy OWL2 ontology (CBRDiabOnto. This ontology can be considered as the first fuzzy case-base ontology in the medical domain. It is based on a case-base fuzzy Extended Entity Relation (EER data model. It contains 63 (fuzzy classes, 54 (fuzzy object properties, 138 (fuzzy datatype properties, and 105 fuzzy datatypes. We populated the ontology with 60 cases and used SPARQL-DL for its query. The evaluation of CBRDiabOnto shows that it is accurate, consistent, and cover terminologies and logic of diabetes mellitus diagnosis.

  19. Fuzzy chance constrained linear programming model for scrap charge optimization in steel production

    DEFF Research Database (Denmark)

    Rong, Aiying; Lahdelma, Risto

    2008-01-01

    , the crisp equivalent of the fuzzy constraints should be less relaxed than that purely based on the concept of soft constraints. Based on the application context we adopt a strengthened version of soft constraints to interpret fuzzy constraints and form a crisp model with consistent and compact constraints...

  20. Structural modeling and fuzzy-logic based diagnosis of a ship propulsion benchmark

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, M.; Katebi, S.D.

    2000-01-01

    An analysis of structural model of a ship propulsion benchmark leads to identifying the subsystems with inherent redundant information. For a nonlinear part of the system, a Fuzzy logic based FD algorithm with adaptive threshold is employed. The results illustrate the applicability of structural...... analysis as well as fuzzy observer...

  1. Structural modeling and fuzzy-logic based diagnosis of a ship propulsion benchmark

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, M.; Katebi, S.D.

    2000-01-01

    An analysis of structural model of a ship propulsion benchmark leads to identifying the subsystems with inherent redundant information. For a nonlinear part of the system, a Fuzzy logic based FD algorithm with adaptive threshold is employed. The results illustrate the applicability of structural...... analysis as well as fuzzy observer....

  2. Model-based fuzzy control solutions for a laboratory Antilock Braking System

    DEFF Research Database (Denmark)

    Precup, Radu-Emil; Spataru, Sergiu; Rǎdac, Mircea-Bogdan

    2010-01-01

    This paper gives two original model-based fuzzy control solutions dedicated to the longitudinal slip control of Antilock Braking System laboratory equipment. The parallel distributed compensation leads to linear matrix inequalities which guarantee the global stability of the fuzzy control systems...

  3. KONTROL TRACKING FUZZY MENGGUNAKAN MODEL FOLLOWING UNTUK SISTEM PENDULUM KERETA

    Directory of Open Access Journals (Sweden)

    Jimmy Hennyta Satya Putra

    2017-01-01

    Full Text Available Sistem pendulum kereta memiliki karakteristik yang tidak stabil dan nonlinear. Pada Tugas Akhir ini membahas tentang kontrol tracking dengan menggunakan struktur kontrol berbasis model following. Permasalahan dalam desain struktur kontrol tracking pada sistem pendulum kereta ini adalah bagaimana membuat posisi kereta dapat mengikuti sinyal referensi dengan tetap mempertahankan batang pendulum pada posisi equilibriumnya yaitu pada sudut nol radian. Model nonlinear dari sistem pendulum kereta direpresentasikan sebagai model fuzzy Takagi-Sugeno. Berdasarkan model tersebut, aturan kontroler disusun menggunakan konsep Parallel Distributed Compensation (PDC berbasis teknik kontrol optimal. Hasil simulasi dan implementasi menunjukkan bahwa posisi kereta dapat mengikuti sinyal referensi tanpa adanya beda fasa antara respon posisi kereta terhadap sinyal referensi. Sinyal referensi sinus memberikan performansi tracking terbaik, dengan Integral Absolute Error (IAE terkecil diantara sinyal referensi lain, yaitu pada simulasi sebesar 0,2622 dan pada implementasi sebesar 0,8477

  4. Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model

    DEFF Research Database (Denmark)

    Khooban, Mohammad-Hassan; Vafamand, Navid; Niknam, Taher

    2017-01-01

    Electric vehicles (EVs) play a significant role in different applications, such as commuter vehicles and short distance transport applications. This study presents a new structure of model-predictive control based on the Takagi-Sugeno fuzzy model, linear matrix inequalities, and a non-quadratic L......Electric vehicles (EVs) play a significant role in different applications, such as commuter vehicles and short distance transport applications. This study presents a new structure of model-predictive control based on the Takagi-Sugeno fuzzy model, linear matrix inequalities, and a non...... is made between the results of the suggested robust strategy and those obtained from some of the most recent studies on the same topic, to assess the efficiency of the suggested controller. Finally, the experimental results based on a TMS320F28335 DSP are performed on a direct current motor. Simulation...

  5. A fuzzy model for exploiting customer requirements

    Directory of Open Access Journals (Sweden)

    Zahra Javadirad

    2016-09-01

    Full Text Available Nowadays, Quality function deployment (QFD is one of the total quality management tools, where customers’ views and requirements are perceived and using various techniques improves the production requirements and operations. The QFD department, after identification and analysis of the competitors, takes customers’ feedbacks to meet the customers’ demands for the products compared with the competitors. In this study, a comprehensive model for assessing the importance of the customer requirements in the products or services for an organization is proposed. The proposed study uses linguistic variables, as a more comprehensive approach, to increase the precision of the expression evaluations. The importance of these requirements specifies the strengths and weaknesses of the organization in meeting the requirements relative to competitors. The results of these experiments show that the proposed method performs better than the other methods.

  6. Adaptive neuro-fuzzy inference system (ANFIS): a new approach to predictive modeling in QSAR applications: a study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists.

    Science.gov (United States)

    Buyukbingol, Erdem; Sisman, Arzu; Akyildiz, Murat; Alparslan, Ferda Nur; Adejare, Adeboye

    2007-06-15

    This paper proposes a new method, Adaptive Neuro-Fuzzy Inference System (ANFIS) to evaluate physicochemical descriptors of certain chemical compounds for their appropriate biological activities in terms of QSAR models with the aid of artificial neural network (ANN) approach combined with the principle of fuzzy logic. The ANFIS was utilized to predict NMDA (N-methyl-d-Aspartate) receptor binding activities of phencyclidine (PCP) derivatives. A data set of 38 drug-like compounds was coded with 1244 calculated molecular structure descriptors (clustered in 20 data sets) which were obtained from several sources, mainly from Dragon software. Prior to the progress to the ANFIS system, descriptors from the best subsets were selected using unsupervised forward selection (UFS) to eliminate redundancy and multicollinearity followed by fuzzy linear regression algorithm (FLR) which was used for variable selection. ANFIS was applied to train the final descriptors (Mor22m, E3s, R3v+, and R1e+) using a hybrid algorithm consisting of back-propagation and least-square estimation while the optimum number and shape of related functions were obtained through the subtractive clustering algorithm. Comparison of the proposed method with traditional methods, that is, multiple linear regression (MLR) and partial least-square (PLS) was also studied and the results indicated that the ANFIS model obtained from data sets achieved satisfactory accuracy.

  7. An Integrated MCDM Model for Conveyor Equipment Evaluation and Selection in an FMC Based on a Fuzzy AHP and Fuzzy ARAS in the Presence of Vagueness.

    Science.gov (United States)

    Nguyen, Huu-Tho; Dawal, Siti Zawiah Md; Nukman, Yusoff; Rifai, Achmad P; Aoyama, Hideki

    2016-01-01

    The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs). The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM) model of a fuzzy AHP (analytic hierarchy process) and fuzzy ARAS (additive ratio assessment) for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts' uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs.

  8. An Integrated MCDM Model for Conveyor Equipment Evaluation and Selection in an FMC Based on a Fuzzy AHP and Fuzzy ARAS in the Presence of Vagueness

    Science.gov (United States)

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; P. Rifai, Achmad; Aoyama, Hideki

    2016-01-01

    The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs). The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM) model of a fuzzy AHP (analytic hierarchy process) and fuzzy ARAS (additive ratio assessment) for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts’ uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs. PMID:27070543

  9. An Integrated MCDM Model for Conveyor Equipment Evaluation and Selection in an FMC Based on a Fuzzy AHP and Fuzzy ARAS in the Presence of Vagueness.

    Directory of Open Access Journals (Sweden)

    Huu-Tho Nguyen

    Full Text Available The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs. The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM model of a fuzzy AHP (analytic hierarchy process and fuzzy ARAS (additive ratio assessment for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts' uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs.

  10. Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models

    Directory of Open Access Journals (Sweden)

    Ming-Shi Wang

    2012-05-01

    Full Text Available A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle’s speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.

  11. Road sign recognition with fuzzy adaptive pre-processing models.

    Science.gov (United States)

    Lin, Chien-Chuan; Wang, Ming-Shi

    2012-01-01

    A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.

  12. A Fuzzy Logic Framework for Integrating Multiple Learned Models

    Energy Technology Data Exchange (ETDEWEB)

    Hartog, Bobi Kai Den [Univ. of Nebraska, Lincoln, NE (United States)

    1999-03-01

    The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.

  13. Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models

    Science.gov (United States)

    Lin, Chien-Chuan; Wang, Ming-Shi

    2012-01-01

    A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance. PMID:22778650

  14. Enhancement of transparency and accuracy of credit scoring models through genetic fuzzy classifier

    Directory of Open Access Journals (Sweden)

    Raja N. Ainon

    2010-04-01

    Full Text Available Credit risk evaluation systems play an important role in the financial decision-making by enabling faster credit decisions, reducing the cost of credit analysis and diminishing possible risks. Credit scoring is the most commonly used technique for evaluating the creditworthiness of the credit applicants. The credit models built with this technique should satisfy two important criteria, namely accuracy, which measures the capability of predicting the behaviour of the customers, and transparency, which reflects the ability of the model to describe the input-output relation in an understandable way. In our paper, two credit scoring models are proposed using two types of fuzzy systems, namely Takagi-Sugeno (TS and Mamdani types. The accuracy and transparency of these two models have been optimised. The TS fuzzy credit scoring model is generated using subtractive clustering method while the Mamdani fuzzy system is extracted using fuzzy C-means clustering algorithm. The accuracy and transparency of the two resulting fuzzy credit scoring models are optimised using two multi-objective evolutionary techniques. The potential of the proposed modelling approaches for enhancing the transparency of the credit scoring models while maintaining the classification accuracy is illustrated using two benchmark real world data sets. The TS fuzzy system is found to be highly accurate and computationally efficient while the Mamdani fuzzy system is highly transparent, intuitive and humanly understandable.

  15. Usage Intention Framework Model: A Fuzzy Logic Interpretation of the Classical Utaut Model

    Science.gov (United States)

    Sandaire, Johnny

    2009-01-01

    A fuzzy conjoint analysis (FCA: Turksen, 1992) model for enhancing management decision in the technology adoption domain was implemented as an extension to the UTAUT model (Venkatesh, Morris, Davis, & Davis, 2003). Additionally, a UTAUT-based Usage Intention Framework Model (UIFM) introduced a closed-loop feedback system. The empirical evidence…

  16. Sequential neural models with stochastic layers

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich

    2016-01-01

    How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural ...... the uncertainty in a latent path, like a state space model, we improve the state of the art results on the Blizzard and TIMIT speech modeling data sets by a large margin, while achieving comparable performances to competing methods on polyphonic music modeling....

  17. Fuzzy-Rough Cognitive Networks.

    Science.gov (United States)

    Nápoles, Gonzalo; Mosquera, Carlos; Falcon, Rafael; Grau, Isel; Bello, Rafael; Vanhoof, Koen

    2018-01-01

    Rough Cognitive Networks (RCNs) are a kind of granular neural network that augments the reasoning rule present in Fuzzy Cognitive Maps with crisp information granules coming from Rough Set Theory. While RCNs have shown promise in solving different classification problems, this model is still very sensitive to the similarity threshold upon which the rough information granules are built. In this paper, we cast the RCN model within the framework of fuzzy rough sets in an attempt to eliminate the need for a user-specified similarity threshold while retaining the model's discriminatory power. As far as we know, this is the first study that brings fuzzy sets into the domain of rough cognitive mapping. Numerical results in the presence of 140 well-known pattern classification problems reveal that our approach, referred to as Fuzzy-Rough Cognitive Networks, is capable of outperforming most traditional classifiers used for benchmarking purposes. Furthermore, we explore the impact of using different heterogeneous distance functions and fuzzy operators over the performance of our granular neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Multitask TSK fuzzy system modeling by mining intertask common hidden structure.

    Science.gov (United States)

    Jiang, Yizhang; Chung, Fu-Lai; Ishibuchi, Hisao; Deng, Zhaohong; Wang, Shitong

    2015-03-01

    The classical fuzzy system modeling methods implicitly assume data generated from a single task, which is essentially not in accordance with many practical scenarios where data can be acquired from the perspective of multiple tasks. Although one can build an individual fuzzy system model for each task, the result indeed tells us that the individual modeling approach will get poor generalization ability due to ignoring the intertask hidden correlation. In order to circumvent this shortcoming, we consider a general framework for preserving the independent information among different tasks and mining hidden correlation information among all tasks in multitask fuzzy modeling. In this framework, a low-dimensional subspace (structure) is assumed to be shared among all tasks and hence be the hidden correlation information among all tasks. Under this framework, a multitask Takagi-Sugeno-Kang (TSK) fuzzy system model called MTCS-TSK-FS (TSK-FS for multiple tasks with common hidden structure), based on the classical L2-norm TSK fuzzy system, is proposed in this paper. The proposed model can not only take advantage of independent sample information from the original space for each task, but also effectively use the intertask common hidden structure among multiple tasks to enhance the generalization performance of the built fuzzy systems. Experiments on synthetic and real-world datasets demonstrate the applicability and distinctive performance of the proposed multitask fuzzy system model in multitask regression learning scenarios.

  19. Development of a noise prediction model based on advanced fuzzy approaches in typical industrial workrooms.

    Science.gov (United States)

    Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir

    2014-01-01

    Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.

  20. Predictive models for PEM-electrolyzer performance using adaptive neuro-fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Steffen [University of Tasmania, Hobart 7001, Tasmania (Australia); Karri, Vishy [Australian College of Kuwait (Kuwait)

    2010-09-15

    Predictive models were built using neural network based Adaptive Neuro-Fuzzy Inference Systems for hydrogen flow rate, electrolyzer system-efficiency and stack-efficiency respectively. A comprehensive experimental database forms the foundation for the predictive models. It is argued that, due to the high costs associated with the hydrogen measuring equipment; these reliable predictive models can be implemented as virtual sensors. These models can also be used on-line for monitoring and safety of hydrogen equipment. The quantitative accuracy of the predictive models is appraised using statistical techniques. These mathematical models are found to be reliable predictive tools with an excellent accuracy of {+-}3% compared with experimental values. The predictive nature of these models did not show any significant bias to either over prediction or under prediction. These predictive models, built on a sound mathematical and quantitative basis, can be seen as a step towards establishing hydrogen performance prediction models as generic virtual sensors for wider safety and monitoring applications. (author)

  1. Fuzzified Data Based Neural Network Modeling for Health Assessment of Multistorey Shear Buildings

    Directory of Open Access Journals (Sweden)

    Deepti Moyi Sahoo

    2013-01-01

    Full Text Available The present study intends to propose identification methodologies for multistorey shear buildings using the powerful technique of Artificial Neural Network (ANN models which can handle fuzzified data. Identification with crisp data is known, and also neural network method has already been used by various researchers for this case. Here, the input and output data may be in fuzzified form. This is because in general we may not get the corresponding input and output values exactly (in crisp form, but we have only the uncertain information of the data. This uncertain data is assumed in terms of fuzzy number, and the corresponding problem of system identification is investigated.

  2. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    Science.gov (United States)

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. HIGH ORDER FUZZY TIME SERIES MODEL AND ITS APLICATION TO IMKB

    Directory of Open Access Journals (Sweden)

    Çağdaş Hakan ALADAĞ

    2010-12-01

    Full Text Available The observations of some real time series such as temperature and stock market can take different values in a day. Instead of representing the observations of these time series by real numbers, employing linguistic values or fuzzy sets can be more appropriate. In recent years, many approaches have been introduced to analyze time series consisting of observations which are fuzzy sets and such time series are called fuzzy time series. In this study, a novel approach is proposed to analyze high order fuzzy time series model. The proposed method is applied to IMKB data and the obtained results are discussed. IMKB data is also analyzed by using some other fuzzy time series methods available in the literature and obtained results are compared to results obtained from the proposed method. As a result of the comparison, it is seen that the proposed method produce accurate forecasts.

  4. Landslide susceptibility assessment by using a neuro-fuzzy model: a case study in the Rupestrian heritage rich area of Matera

    Directory of Open Access Journals (Sweden)

    F. Sdao

    2013-02-01

    Full Text Available The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy (Sassi and area Rupestrian Churches sites. The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM, angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good

  5. Landslide susceptibility assessment by using a neuro-fuzzy model: a case study in the Rupestrian heritage rich area of Matera

    Science.gov (United States)

    Sdao, F.; Lioi, D. S.; Pascale, S.; Caniani, D.; Mancini, I. M.

    2013-02-01

    The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy) (Sassi and area Rupestrian Churches sites). The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM), angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic) analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good performance in the

  6. Fuzzy time series forecasting model with natural partitioning length approach for predicting the unemployment rate under different degree of confidence

    Science.gov (United States)

    Ramli, Nazirah; Mutalib, Siti Musleha Ab; Mohamad, Daud

    2017-08-01

    Fuzzy time series forecasting model has been proposed since 1993 to cater for data in linguistic values. Many improvement and modification have been made to the model such as enhancement on the length of interval and types of fuzzy logical relation. However, most of the improvement models represent the linguistic term in the form of discrete fuzzy sets. In this paper, fuzzy time series model with data in the form of trapezoidal fuzzy numbers and natural partitioning length approach is introduced for predicting the unemployment rate. Two types of fuzzy relations are used in this study which are first order and second order fuzzy relation. This proposed model can produce the forecasted values under different degree of confidence.

  7. Variances handling method of clinical pathways based on T-S fuzzy neural networks with novel hybrid learning algorithm.

    Science.gov (United States)

    Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Ye, Yan; Yao, Yang

    2012-06-01

    Clinical pathways' variances present complex, fuzzy, uncertain and high-risk characteristics. They could cause complicating diseases or even endanger patients' life if not handled effectively. In order to improve the accuracy and efficiency of variances handling by Takagi-Sugeno (T-S) fuzzy neural networks (FNNs), a new variances handling method for clinical pathways (CPs) is proposed in this study, which is based on T-S FNNs with novel hybrid learning algorithm. And the optimal structure and parameters can be achieved simultaneously by integrating the random cooperative decomposing particle swarm optimization algorithm (RCDPSO) and discrete binary version of PSO (DPSO) algorithm. Finally, a case study on liver poisoning of osteosarcoma preoperative chemotherapy CP is used to validate the proposed method. The result demonstrates that T-S FNNs based on the proposed algorithm achieves superior performances in efficiency, precision, and generalization ability to standard T-S FNNs, Mamdani FNNs and T-S FNNs based on other algorithms (CPSO and PSO) for variances handling of CPs.

  8. Semiactive Self-Tuning Fuzzy Logic Control of Full Vehicle Model with MR Damper

    Directory of Open Access Journals (Sweden)

    Mahmut Paksoy

    2014-09-01

    Full Text Available Intelligent controllers are studied for vibration reduction of a vehicle consisting in a semiactive suspension system with a magnetorheological(MR damper. The vehicle is modeled with seven degrees of freedom as a full vehicle model. The semiactive suspension system consists of a linear spring and an MR damper. MR damper is modeled using Bouc-Wen hysteresis phenomenon and applied to a full vehicle model. Fuzzy Logic based controllers are designed to determine the MR damper voltage. Fuzzy Logic and Self-Tuning Fuzzy Logic controllers are applied to the semiactive suspension system. Results of the system are investigated by simulation studies in MATLAB-Simulink environment. The performance of the semiactive suspension system is analyzed with and without control. Simulation results showed that both Fuzzy Logic and Self-Tuning Fuzzy Logic controllers perform better compared to uncontrolled case. Furthermore, Self-Tuning Fuzzy Logic controller displayed a greater improvement in vibration reduction performance compared to Fuzzy Logic controller.

  9. A Stone Resource Assignment Model under the Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    Liming Yao

    2012-01-01

    to tackle a stone resource assignment problem with the aim of decreasing dust and waste water emissions. On the upper level, the local government wants to assign a reasonable exploitation amount to each stone plant so as to minimize total emissions and maximize employment and economic profit. On the lower level, stone plants must reasonably assign stone resources to produce different stone products under the exploitation constraint. To deal with inherent uncertainties, the object functions and constraints are defuzzified using a possibility measure. A fuzzy simulation-based improved simulated annealing algorithm (FS-ISA is designed to search for the Pareto optimal solutions. Finally, a case study is presented to demonstrate the practicality and efficiency of the model. Results and a comparison analysis are presented to highlight the performance of the optimization method, which proves to be very efficient compared with other algorithms.

  10. Handwritten Chinese character recognition based on supervised competitive learning neural network and block-based relative fuzzy feature extraction

    Science.gov (United States)

    Sun, Limin; Wu, Shuanhu

    2005-02-01

    Offline handwritten chinese character recognition is still a difficult problem because of its large stroke changes, writing anomaly, and the difficulty for obtaining its stroke ranking information. Generally, offline handwritten chinese character can be divided into two procedures: feature extraction for capturing handwritten chinese character information and feature classifying for character recognition. In this paper, we proposed a new Chinese character recognition algorithm. In feature extraction part, we adopted elastic mesh dividing method for extracting the block features and its relative fuzzy features that utilized the relativities between different strokes and distribution probability of a stroke in its neighbor sub-blocks. In recognition part, we constructed a classifier based on a supervised competitive learning algorithm to train competitive learning neural network with the extracted features set. Experimental results show that the performance of our algorithm is encouraging and can be comparable to other algorithms.

  11. Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulses.

    Science.gov (United States)

    Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar

    2018-02-01

    This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An Interval-Parameter Fuzzy Linear Programming with Stochastic Vertices Model for Water Resources Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Yan Han

    2013-01-01

    Full Text Available An interval-parameter fuzzy linear programming with stochastic vertices (IFLPSV method is developed for water resources management under uncertainty by coupling interval-parameter fuzzy linear programming (IFLP with stochastic programming (SP. As an extension of existing interval parameter fuzzy linear programming, the developed IFLPSV approach has advantages in dealing with dual uncertainty optimization problems, which uncertainty presents as interval parameter with stochastic vertices in both of the objective functions and constraints. The developed IFLPSV method improves upon the IFLP method by allowing dual uncertainty parameters to be incorporated into the optimization processes. A hybrid intelligent algorithm based on genetic algorithm and artificial neural network is used to solve the developed model. The developed method is then applied to water resources allocation in Beijing city of China in 2020, where water resources shortage is a challenging issue. The results indicate that reasonable solutions have been obtained, which are helpful and useful for decision makers. Although the amount of water supply from Guanting and Miyun reservoirs is declining with rainfall reduction, water supply from the South-to-North Water Transfer project will have important impact on water supply structure of Beijing city, particularly in dry year and extraordinary dry year.

  13. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  14. Study of Problems Faced by Parents of Children with Disability Using Fuzzy Cognitive Maps Model

    OpenAIRE

    S. UDAYAKUMAR; A. GURUMOORTHY

    2015-01-01

    In this paper the stress and social stigma suffered by parents of disabled children are analysed using Fuzzy Cognitive Maps (FCMs) model. Such study is new for researchers have studied only the problems faced by disabled children using mathematical models. However study of the problems faced by those parents using fuzzy models is absent in literature. Here the study is carried out by a pilot survey of 50 odd parents who have been interviewed for this purpose.

  15. On enhancing on-line collaboration using fuzzy logic modeling

    Directory of Open Access Journals (Sweden)

    Leontios J. Hadjileontiadis

    2004-04-01

    Full Text Available Web-based collaboration calls for professional skills and competences to the benefit of the quality of the collaboration and its output. Within this framework, educational virtual environments may provide a means for training upon these skills and in particular the collaborative ones. On the basis of the existing technological means such training may be enhanced even more. Designing considerations towards this direction include the close follow-up of the collaborative activity and provision of support grounded upon a pedagogical background. To this vein, a fuzzy logic-based expert system, namely Collaboration/Reflection-Fuzzy Inference System (C/R-FIS, is presented in this paper. By means of interconnected FISs, the C/R-FIS expert system automatically evaluates the collaborative activity of two peers, during their asynchronous, written, web-based collaboration. This information is used for the provision of adaptive support to peers during their collaboration, towards equilibrium of their collaborative activity. In particular, this enhanced formative feedback aims at diminishing the possible dissonance between the individual collaborative skills by challenging self-adjustment procedures. The proposed model extents the evaluation system of a web-based collaborative tool namely Lin2k, which has served as a test-bed for the C/R-FIS experimental use. Results from its experimental use have proved the potentiality of the proposed model to significantly contribute to the enhancement of the collaborative activity and its transferability to other collaborative learning contexts, such as medicine, environmental engineering, law, and music education.

  16. Comparison of adaptive neuro-fuzzy inference system and artificial neural networks for estimation of oxidation parameters of sunflower oil added with some natural byproduct extracts.

    Science.gov (United States)

    Karaman, Safa; Ozturk, Ismet; Yalcin, Hasan; Kayacier, Ahmed; Sagdic, Osman

    2012-01-15

    Apple pomace, orange peel and potato peel, which have important antioxidative compounds in their structures, are byproducts obtained from fruit or vegetable processing. Use of vegetable extracts is popular and a common technique in the preservation of vegetable oils. Utilization of apple pomace, orange peel and potato peel extracts as natural antioxidant agents in refined sunflower oil during storage in order to reduce or retard oxidation was investigated. All byproduct extracts were added at 3000 ppm to sunflower oil and different nonlinear models were constructed for the estimation of oxidation parameters. Peroxide values of sunflower oil samples containing different natural extracts were found to be lower compared to control sample. Adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANN) were used for the construction of models that could predict the oxidation parameters and were compared to multiple linear regression (MLR) for the determination of the best model with high accuracy. It was shown that the ANFIS model with high coefficient of determination (R(2) = 0.999) performed better compared to ANN (R(2) = 0.899) and MLR (R(2) = 0.636) for the prediction of oxidation parameters Incorporation of different natural byproduct extracts into sunflower oil provided an important retardation in oxidation during storage. Effective predictive models were constructed for the estimation of oxidation parameters using ANFIS and ANN modeling techniques. These models can be used to predict oxidative parameter values. Copyright © 2011 Society of Chemical Industry.

  17. Extracting T-S Fuzzy Models Using the Cuckoo Search Algorithm.

    Science.gov (United States)

    Turki, Mourad; Sakly, Anis

    2017-01-01

    A new method called cuckoo search (CS) is used to extract and learn the Takagi-Sugeno (T-S) fuzzy model. In the proposed method, the particle or cuckoo of CS is formed by the structure of rules in terms of number and selected rules, the antecedent, and consequent parameters of the T-S fuzzy model. These parameters are learned simultaneously. The optimized T-S fuzzy model is validated by using three examples: the first a nonlinear plant modelling problem, the second a Box-Jenkins nonlinear system identification problem, and the third identification of nonlinear system, comparing the obtained results with other existing results of other methods. The proposed CS method gives an optimal T-S fuzzy model with fewer numbers of rules.

  18. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.

    Science.gov (United States)

    Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla

    2014-12-01

    This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.

  19. A Hybrid Fuzzy GJR-GARCH Modeling Approach for Stock Market Volatility Forecasting

    Directory of Open Access Journals (Sweden)

    Leandro Maciel

    2012-09-01

    Full Text Available Forecasting stock market returns volatility is a challenging task that has attracted the attention of market practitioners, regulators and academics in recent years. This paper proposes a Fuzzy GJR-GARCH model to forecast the volatility of S&P 500 and Ibovespa indexes. The model comprises both the concept of fuzzy inference systems and GJR-GARCH modeling approach in order to consider the principles of time-varying volatility, leverage effects and volatility clustering, in which changes are cataloged by similarity. Moreover, a differential evolution (DE algorithm is suggested to solve the problem of Fuzzy GJR-GARCH parameters estimation. The results indicate that the proposed method offers significant improvements in volatility forecasting performance in comparison with GARCH-type models and with a current Fuzzy-GARCH model reported in the literature. Furthermore, the DE-based algorithm aims to achieve an optimal solution with a rapid convergence rate.

  20. Application of a New Hybrid Fuzzy AHP Model to the Location Choice

    Directory of Open Access Journals (Sweden)

    Chien-Chang Chou

    2013-01-01

    Full Text Available The purpose of this paper is to propose a new hybrid fuzzy Analytic Hierarchy Process (AHP algorithm to deal with the decision-making problems in an uncertain and multiple-criteria environment. In this study, the proposed hybrid fuzzy AHP model is applied to the location choices of international distribution centers in international ports from the view of multiple-nation corporations. The results show that the proposed new hybrid fuzzy AHP model is an appropriate tool to solve the decision-making problems in an uncertain and multiple-criteria environment.

  1. An Integrated Model for Optimization Oriented Decision Aiding and Rule Based Decision Making in Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    A. Yousefli

    2014-01-01

    Full Text Available In this paper a fuzzy decision aid system is developed base on new concepts that presented in the field of fuzzy decision making in fuzzy environment (FDMFE. This framework aids decision makers to understand different circumstances of an uncertain problem that may occur in the future. Also, to keep decision maker from the optimization problem complexities, a decision support system, which can be replaced by optimization problem, is presented to make optimum or near optimum decisions without solving optimization problem directly. An application of the developed decision aid model and the decision support system is presented in the field of inventory models.

  2. Hindcasting of storm waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.; Mandal, S.

    of any exogenous input requirement makes the network attractive. A neural network is an information processing system modeled on the structure of the human brain. Its merit is the ability to deal with fuzzy information whose interrelation is ambiguous...

  3. Application of Fuzzy theory to project scheduling with critical path ...

    African Journals Online (AJOL)

    theory. The crisp activity durations are modeled as triangular fuzzy sets. Fuzzy forward pass was carried out to determine fuzzy activity earliest start, fuzzy event earliest time and fuzzy activity earliest finish times. In order to overcome the occurrence of negative fuzzy numbers which occurs in fuzzy backward pass using fuzzy ...

  4. Prediction of effect of natural antioxidant compounds on hazelnut oil oxidation by adaptive neuro-fuzzy inference system and artificial neural network.

    Science.gov (United States)

    Yalcin, Hasan; Ozturk, Ismet; Karaman, Safa; Kisi, Ozgur; Sagdic, Osman; Kayacier, Ahmed

    2011-05-01

    In this study, natural compounds including gallic acid, ellagic acid, quercetin, β-carotene, and retinol were used as antioxidant agents in order to prevent and decrease oxidation in hazelnut oil. Quercetin showed the strongest antioxidative effect among the antioxidative agents, during storage. The accuracy of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) models was studied to estimate the oil samples' peroxide value (PV), free fatty acid (FFA), and iodine values (IV). The root mean square error (RMSE), mean absolute error (MAE), and determination coefficient (R(2)) statistics were used to evaluate the models' accuracy. Comparison of the models showed that the ANFIS model performed better than the ANN and multiple linear regressions (MLR) models for estimating the PV, FFA, and IV. The values of R(2) and RMSE were found to be 0.9966 and 2.51, 0.6269 and 88.55, 0.5120 and 101.8 for the ANFIS, ANN, and MLR models for PV in testing period, respectively. The MLR was found to be insufficient for estimating various properties of the oil samples. © 2011 Institute of Food Technologists®

  5. Adaptive neuro fuzzy inference system modeling to predict damage level of non-reshaped berm breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Harish, N.; Mandal, S.; Rao, S.; Lokesha

    The Adaptive Neuro Fuzzy Inference System (ANFIS) model is constructed using experimental data set to predict the damage level of berm breakwater. Experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory...

  6. MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM

    National Research Council Canada - National Science Library

    Carlos Alberto Araújo Júnior; Liniker Fernandes da Silva; Marcio Lopes da Silva; Helio Garcia Leite; Erlon Barbosa Valdetaro; Danilo Barros Donato; Renato Vinícius Oliveira Castro

    2016-01-01

    Using a monthly time series of charcoal prices in Minas Gerais from January 2000 to September 2014, this study aimed to evaluate the use of neuro-fuzzy system to model the series and forecasting prices...

  7. A brief comparison of fuzzy associative memory models for guiding autonomous problems

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto de Lima Freitas

    2011-09-01

    Full Text Available Fuzzy associative memories (FAMs are models inspired in the human brain ability to store and recall information. These models can be used for the storage of associations of fuzzy sets and, thus, they can be used as inference engines in fuzzy controllers. Several FAM models have been developed in the last years, but we are not aware of a work comparing the performance of novel FAMs in control. In this paper, we briefly investigate the performance of some FAMs in the automatic guidance problems of backing-up a truck (BT and backing-up a truck and trailer (BTT. In particular, we note that the dual implicative fuzzy associative memories (co-IFAMs constitute an interesting alternative to traditional models such as that of Kosko and Mamdani.

  8. A hybrid neural network model for noisy data regression.

    Science.gov (United States)

    Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M

    2004-04-01

    A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.

  9. Analysis and synthesis for interval type-2 fuzzy-model-based systems

    CERN Document Server

    Li, Hongyi; Lam, Hak-Keung; Gao, Yabin

    2016-01-01

    This book develops a set of reference methods capable of modeling uncertainties existing in membership functions, and analyzing and synthesizing the interval type-2 fuzzy systems with desired performances. It also provides numerous simulation results for various examples, which fill certain gaps in this area of research and may serve as benchmark solutions for the readers. Interval type-2 T-S fuzzy models provide a convenient and flexible method for analysis and synthesis of complex nonlinear systems with uncertainties.

  10. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    OpenAIRE

    Liu, Xiangjie; Wang, Mengyue

    2014-01-01

    Reliable power and temperature control in pressurized water reactor (PWR) nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC), by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via pa...

  11. Fuzzy model based adaptive synchronization of uncertain chaotic systems: Robust tracking control approach

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Eun-Ju; Hyun, Chang-Ho; Kim, Euntai [ICS Laboratory (B723), Department of Electrical and Electronic Engineering, Yonsei University, 134, Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Park, Mignon [ICS Laboratory (B723), Department of Electrical and Electronic Engineering, Yonsei University, 134, Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)], E-mail: mignpark@yonsei.ac.kr

    2009-05-11

    This Letter presents fuzzy model-based robust tracking control for the adaptive synchronization of uncertain chaotic systems. Fuzzy model and adaptive algorithm are employed to present the unknown chaotic systems. H{sup {infinity}} and sliding mode control are combined to construct a robust tracking controller. The incorporated H{sup {infinity}} controller can attenuate the external disturbance and approximation error to any prescribed level. The proposed scheme guarantees that all the variables are bounded and the tracking error is compensated.

  12. Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine

    Directory of Open Access Journals (Sweden)

    Klemen Nagode

    2014-02-01

    Full Text Available This paper presents dynamic modelling of a Francis turbine with a surge tank and the control of a hydro power plant (HPP. Non-linear and linear models include technical parameters and show high similarity to measurement data. Turbine power control with an internal model control (IMC is proposed, based on a turbine fuzzy model. Considering appropriate control responses in the entire area of turbine power, the model parameters of the process are determined from a fuzzy model, which are further included in the internal model controller. The results are compared to a proportional-integral (PI controller tuned with an integral absolute error (IAE objective function, and show an improved response of internal model control.

  13. Model for Adjustment of Aggregate Forecasts using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Taracena–Sanz L. F.

    2010-07-01

    Full Text Available This research suggests a contribution in the implementation of forecasting models. The proposed model is developed with the aim to fit the projection of demand to surroundings of firms, and this is based on three considerations that cause that in many cases the forecasts of the demand are different from reality, such as: 1 one of the problems most difficult to model in the forecasts is the uncertainty related to the information available; 2 the methods traditionally used by firms for the projection of demand mainly are based on past behavior of the market (historical demand; and 3 these methods do not consider in their analysis the factors that are influencing so that the observed behaviour occurs. Therefore, the proposed model is based on the implementation of Fuzzy Logic, integrating the main variables that affect the behavior of market demand, and which are not considered in the classical statistical methods. The model was applied to a bottling of carbonated beverages, and with the adjustment of the projection of demand a more reliable forecast was obtained.

  14. Modeling of type-2 fuzzy cubic B-spline surface for flood data problem in Malaysia

    Science.gov (United States)

    Bidin, Mohd Syafiq; Wahab, Abd. Fatah

    2017-08-01

    Malaysia possesses a low and sloping land areas which may cause flood. The flood phenomenon can be analyzed if the surface data of the study area can be modeled by geometric modeling. Type-2 fuzzy data for the flood data is defined using type-2 fuzzy set theory in order to solve the uncertainty of complex data. Then, cubic B-spline surface function is used to produce a smooth surface. Three main processes are carried out to find a solution to crisp type-2 fuzzy data which is fuzzification (α-cut operation), type-reduction and defuzzification. Upon conducting these processes, Type-2 Fuzzy Cubic B-Spline Surface Model is applied to visualize the surface data of the flood areas that are complex uncertainty.

  15. Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method

    Science.gov (United States)

    Mamonova, T.; Syryamkin, V.; Vasilyeva, T.

    2016-04-01

    The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.

  16. A fuzzy Bi-linear management model in reverse logistic chains

    Directory of Open Access Journals (Sweden)

    Tadić Danijela

    2016-01-01

    Full Text Available The management of the electrical and electronic waste (WEEE problem in the uncertain environment has a critical effect on the economy and environmental protection of each region. The considered problem can be stated as a fuzzy non-convex optimization problem with linear objective function and a set of linear and non-linear constraints. The original problem is reformulated by using linear relaxation into a fuzzy linear programming problem. The fuzzy rating of collecting point capacities and fix costs of recycling centers are modeled by triangular fuzzy numbers. The optimal solution of the reformulation model is found by using optimality concept. The proposed model is verified through an illustrative example with real-life data. The obtained results represent an input for future research which should include a good benchmark base for tested reverse logistic chains and their continuous improvement. [Projekat Ministarstva nauke Republike Srbije, br. 035033: Sustainable development technology and equipment for the recycling of motor vehicles

  17. Prediction of calcium carbonate precipitation in oilfields based on a fuzzy solubility model

    Energy Technology Data Exchange (ETDEWEB)

    Khatami, H.R.; Ranjbar, M. [S.B. Kerman Univ. (Iran). Dept. of Mining Engineering; Schaffie, M. [S.B. Kerman Univ. (Iran). Dept. of Chemical Engineering; Emadi, M.A. [National Iranian Oil Company, Tehran (Iran)

    2008-06-15

    The ability of fuzzy logic in treating uncertainty and imprecision is used to simulate the influence of temperature and partial pressure of carbon dioxide on the solubility of calcium carbonate. The scaling tendency for calcium carbonate due to change in physical conditions of four Iranian oilfields is determined by means of the developed fuzzy solubility model. Calculation of saturation index for the fields shows a considerable risk of calcium carbonate deposition. A fuzzy truth value graph is also proposed in order to provide an interpretation for the obtained saturation index values and to recommend suitable action for scale prevention and inhibition. (orig.)

  18. Using fuzzy logic to control active suspension system of one-half-car model

    Directory of Open Access Journals (Sweden)

    Kruczek Aleš

    2003-12-01

    Full Text Available In the paper, fuzzy logic is used to control active suspension of a one-half-car model. Velocity and acceleration of the front and rear wheels and undercarriage velocity above the mentioned wheels are taken as input data of the fuzzy logic controller. Active forces improving vehicle driving, ride comfort and handling properties are considered to be the controller outputs. The controller design is proposed to minimize chassis and wheels deflection when uneven road surfaces, pavement points, etc. are acting on the tires of running cars. In the conclusion, a comparison of active suspension fuzzy control and spring/damper passive suspension is shown using MATLAB simulations.

  19. REMOVAL OF IMPULSIVE NOISE USING WEIGHTED FUZZY MEAN FILTER BASED ON CLOUD MODEL

    Directory of Open Access Journals (Sweden)

    K. Kannan

    2013-08-01

    Full Text Available This paper proposes a weighted fuzzy mean filter based on cloud model and reports its performance in removing the impulsive noise from the digital image. In addition, the performance of the proposed weighted fuzzy mean filter is compared with already existing variants of median and switching filters using root mean square error, peak signal to noise ratio and quality index. Even though the image is corrupted by 90%, this weighted fuzzy mean filter is capable of recovering the original image with good detail preservation.

  20. LMI-Based Fuzzy Optimal Variance Control of Airfoil Model Subject to Input Constraints

    Science.gov (United States)

    Swei, Sean S.M.; Ayoubi, Mohammad A.

    2017-01-01

    This paper presents a study of fuzzy optimal variance control problem for dynamical systems subject to actuator amplitude and rate constraints. Using Takagi-Sugeno fuzzy modeling and dynamic Parallel Distributed Compensation technique, the stability and the constraints can be cast as a multi-objective optimization problem in the form of Linear Matrix Inequalities. By utilizing the formulations and solutions for the input and output variance constraint problems, we develop a fuzzy full-state feedback controller. The stability and performance of the proposed controller is demonstrated through its application to the airfoil flutter suppression.

  1. Fuzzy logic of Aristotelian forms

    Energy Technology Data Exchange (ETDEWEB)

    Perlovsky, L.I. [Nichols Research Corp., Lexington, MA (United States)

    1996-12-31

    Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.

  2. Spiking modular neural networks: A neural network modeling approach for hydrological processes

    National Research Council Canada - National Science Library

    Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey

    2006-01-01

    .... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...

  3. Development of Biological Movement Recognition by Interaction between Active Basis Model and Fuzzy Optical Flow Division

    Directory of Open Access Journals (Sweden)

    Bardia Yousefi

    2014-01-01

    Full Text Available Following the study on computational neuroscience through functional magnetic resonance imaging claimed that human action recognition in the brain of mammalian pursues two separated streams, that is, dorsal and ventral streams. It follows up by two pathways in the bioinspired model, which are specialized for motion and form information analysis (Giese and Poggio 2003. Active basis model is used to form information which is different from orientations and scales of Gabor wavelets to form a dictionary regarding object recognition (human. Also biologically movement optic-flow patterns utilized. As motion information guides share sketch algorithm in form pathway for adjustment plus it helps to prevent wrong recognition. A synergetic neural network is utilized to generate prototype templates, representing general characteristic form of every class. Having predefined templates, classifying performs based on multitemplate matching. As every human action has one action prototype, there are some overlapping and consistency among these templates. Using fuzzy optical flow division scoring can prevent motivation for misrecognition. We successfully apply proposed model on the human action video obtained from KTH human action database. Proposed approach follows the interaction between dorsal and ventral processing streams in the original model of the biological movement recognition. The attained results indicate promising outcome and improvement in robustness using proposed approach.

  4. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  5. Vibration modeling of structural fuzzy with continuous boundary

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2008-01-01

    From experiments it is well known that the vibration response of a main structure with many attached substructures often shows more damping than structural losses in the components can account for. In practice, these substructures, which are not attached in an entirely rigid manner, behave like...... effect of the fuzzy with spatial memory is demonstrated by numerical simulations of a main beam structure with fuzzy attachments. It is shown that the introduction of spatial memory reduces the damping effect of the fuzzy and in certain cases the damping effect may even be eliminated completely....

  6. Geoelectrical Data Inversion by Clustering Techniques of Fuzzy Logic to Estimate the Subsurface Layer Model

    Directory of Open Access Journals (Sweden)

    A. Stanley Raj

    2015-01-01

    Full Text Available Soft computing based geoelectrical data inversion differs from conventional computing in fixing the uncertainty problems. It is tractable, robust, efficient, and inexpensive. In this paper, fuzzy logic clustering methods are used in the inversion of geoelectrical resistivity data. In order to characterize the subsurface features of the earth one should rely on the true field oriented data validation. This paper supports the field data obtained from the published results and also plays a crucial role in making an interdisciplinary approach to solve complex problems. Three clustering algorithms of fuzzy logic, namely, fuzzy C-means clustering, fuzzy K-means clustering, and fuzzy subtractive clustering, were analyzed with the help of fuzzy inference system (FIS training on synthetic data. Here in this approach, graphical user interface (GUI was developed with the integration of three algorithms and the input data (AB/2 and apparent resistivity, while importing will process each algorithm and interpret the layer model parameters (true resistivity and depth. A complete overview on the three above said algorithms is presented in the text. It is understood from the results that fuzzy logic subtractive clustering algorithm gives more reliable results and shows efficacy of soft computing tools in the inversion of geoelectrical resistivity data.

  7. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    Science.gov (United States)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  8. Postoperative vomiting in pediatric oncologic patients: prediction by a fuzzy logic model.

    Science.gov (United States)

    Bassanezi, Betina S B; de Oliveira-Filho, Antônio G; Jafelice, Rosana S M; Bustorff-Silva, Joaquim M; Udelsmann, Artur

    2013-01-01

    To report a fuzzy logic mathematical model to predict postoperative vomiting (POV) in pediatric oncologic patients and compare with preexisting scores. Although POV has a high incidence in children and may decrease parental satisfaction after surgeries, there is only one specific score that predicts POV in children: the Eberhart's score. In this study, we report a fuzzy model that intends to predict the probability of POV in pediatric oncologic patients. Fuzzy logic is a mathematical theory that recognizes more than simple true and false values and takes into account levels of continuous variables such as age or duration of the surgery. The fuzzy model tries to account for subjectiveness in the variables. Preoperative potential risk factors for POV in 198 children (0-19 year old) with malignancies were collected and analyzed. Data analysis was performed with the chi-square test and logistic regression to evaluate probable risk factors for POV. A system based on fuzzy logic was developed with the risk factors found in the logistic regression, and a computational interface was created to calculate the probability of POV. The model showed a good performance in predicting POV. After the analysis, the model was compared with Eberhart's score in the same population and showed a better performance. The fuzzy score can predict the chance of POV in children with cancer with good accuracy, allowing better planning for postoperative prophylaxis of vomiting. The computational interface is available for free download at the internet and is very easy to use. © 2012 Blackwell Publishing Ltd.

  9. Evaluating the potential of artificial neural network and neuro-fuzzy techniques for estimating antioxidant activity and anthocyanin content of sweet cherry during ripening by using image processing.

    Science.gov (United States)

    Taghadomi-Saberi, Saeedeh; Omid, Mahmoud; Emam-Djomeh, Zahra; Ahmadi, Hojjat

    2014-01-15

    This paper presents a versatile way for estimating antioxidant activity and anthocyanin content at different ripening stages of sweet cherry by combining image processing and two artificial intelligence (AI) techniques. In comparison with common time-consuming laboratory methods for determining these important attributes, this new way is economical and much faster. The accuracy of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models was studied to estimate the outputs. Sensitivity analysis and principal component analysis were used with ANN and ANFIS respectively to specify the most effective attributes on outputs. Among the designed ANNs, two hidden layer networks with 11-14-9-1 and 11-6-20-1 architectures had the highest correlation coefficients and lowest error values for modeling antioxidant activity (R = 0.93) and anthocyanin content (R = 0.98) respectively. ANFIS models with triangular and two-term Gaussian membership functions gave the best results for antioxidant activity (R = 0.87) and anthocyanin content (R = 0.90) respectively. Comparison of the models showed that ANN outperformed ANFIS for this case. By considering the advantages of the applied system and the accuracy obtained in somewhat similar studies, it can be concluded that both techniques presented here have good potential to be used as estimators of proposed attributes. © 2013 Society of Chemical Industry.

  10. A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data

    Science.gov (United States)

    Ashrafi, Mohammad; Chua, Lloyd Hock Chye; Quek, Chai; Qin, Xiaosheng

    2017-02-01

    Current state-of-the-art online neuro fuzzy models (NFMs) such as DENFIS (Dynamic Evolving Neural-Fuzzy Inference System) have been used for runoff forecasting. Online NFMs adopt a local learning approach and are able to adapt to changes continuously. The DENFIS model however requires upper/lower bound for normalization and also the number of rules increases monotonically. This requirement makes the model unsuitable for use in basins with limited data, since a priori data is required. In order to address this and other drawbacks of current online models, the Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) is adopted in this study for forecast applications in basins with limited data. GSETSK is a fully-online NFM which updates its structure and parameters based on the most recent data. The model does not require the need for historical data and adopts clustering and rule pruning techniques to generate a compact and up-to-date rule-base. GSETSK was used in two forecast applications, rainfall-runoff (a catchment in Sweden) and river routing (Lower Mekong River) forecasts. Each of these two applications was studied under two scenarios: (i) there is no prior data, and (ii) only limited data is available (1 year for the Swedish catchment and 1 season for the Mekong River). For the Swedish Basin, GSETSK model results were compared to available results from a calibrated HBV (Hydrologiska Byråns Vattenbalansavdelning) model. For the Mekong River, GSETSK results were compared against the URBS (Unified River Basin Simulator) model. Both comparisons showed that results from GSETSK are comparable with the physically based models, which were calibrated with historical data. Thus, even though GSETSK was trained with a very limited dataset in comparison with HBV or URBS, similar results were achieved. Similarly, further comparisons between GSETSK with DENFIS and the RBF (Radial Basis Function) models highlighted further advantages of GSETSK as having a rule-base (compared to

  11. Linear programming models and methods of matrix games with payoffs of triangular fuzzy numbers

    CERN Document Server

    Li, Deng-Feng

    2016-01-01

    This book addresses two-person zero-sum finite games in which the payoffs in any situation are expressed with fuzzy numbers. The purpose of this book is to develop a suite of effective and efficient linear programming models and methods for solving matrix games with payoffs in fuzzy numbers. Divided into six chapters, it discusses the concepts of solutions of matrix games with payoffs of intervals, along with their linear programming models and methods. Furthermore, it is directly relevant to the research field of matrix games under uncertain economic management. The book offers a valuable resource for readers involved in theoretical research and practical applications from a range of different fields including game theory, operational research, management science, fuzzy mathematical programming, fuzzy mathematics, industrial engineering, business and social economics. .

  12. Fuzzy XML data management

    CERN Document Server

    Yan, Li; Zhang, Fu

    2014-01-01

    This book presents an exhaustive and timely review of key research work on fuzzy XML data management, and provides readers with a comprehensive resource on the state-of-the art tools and theories in this fast growing area.  Topics covered in the book include: representation of fuzzy XML, query of fuzzy XML, fuzzy database models, extraction of fuzzy XML from fuzzy database models, reengineering of fuzzy XML into fuzzy database models, and reasoning of fuzzy XML. The book is intended as a reference guide for researchers, practitioners and graduate students working and/or studying in the field of Web Intelligence, as well as for data and knowledge engineering professionals seeking new approaches to replace traditional methods, which may be unnecessarily complex or even unproductive.

  13. Application of Statistical, Fuzzy and Perceptron Neural Networks in Drought Forecasting (Case Study: Gonbad-e Kavous Station

    Directory of Open Access Journals (Sweden)

    S.M. Hosseini-Moghari

    2016-10-01

    Full Text Available Introduction: Due to economic, social, and environmental perplexities associated with drought, it is considered as one of the most complex natural hazards. To investigate the beginning along with analyzing the direct impacts of drought; the significance of drought monitoring must be highlighted. Regarding drought management and its consequences alleviation, drought forecasting must be taken into account (11. The current research employed multi-layer perceptron (MLP, adaptive neuro-fuzzy inference system (ANFIS, radial basis function (RBF and general regression neural network (GRNN. It is interesting to note that, there has not been any record of applying GRNN in drought forecasting. Materials and Methods: Throughout this paper, Standard Precipitation Index (SPI was the basis of drought forecasting. To do so, the precipitation data of Gonbad Kavous station during the period of 1972-73 to 2006-07 were used. To provide short-term, mid-term, and long-term drought analysis; SPI for 1, 3, 6, 9, 12, and 24 months was evaluated. SPI evaluation benefited from four statistical distributions, namely, Gamma, Normal, Log-normal, and Weibull along with Kolmogrov-Smirnov (K-S test. Later, to compare the capabilities of four utilized neural networks for drought forecasting; MLP, ANFIS, RBF, and GRNN were applied. MLP as a multi-layer network, which has a sigmoid activation function in hidden layer plus linear function in output layer, can be considered as a powerful regressive tool. ANFIS besides adaptive neuro networks, employed fuzzy logic. RBF, the foundation of radial basis networks, is a three-layer network with Gaussian function in its hidden layer, and a linear function in the output layer. GRNN is another type of RBF which is used for radial basis regressive problems. The performance criteria of the research were as follows: Correlation (R2, Root Mean Square Error (RMSE, Mean Absolute Error (MAE. Results Discussion: According to statistical distribution

  14. Optimization in Fuzzy Economic Order Quantity (FEOQ Model with Deteriorating Inventory and Units Lost

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2014-09-01

    Full Text Available Background: This model presents the effect of deteriorating items in fuzzy optimal instantaneous replenishment for finite planning horizon. Accounting for holding cost per unit per unit time and ordering cost per order have traditionally been the case of modeling inventory systems in fuzzy environment. These imprecise parameters defined on a bounded interval on the axis of real numbers and the physical characteristics of stocked items dictate the nature of inventory policies implemented to manage and control in the production system.   Methods: The modified fuzzy EOQ (FEOQ model is introduced, it assumes that a percentage of the on-hand inventory is wasted due to deterioration and considered as an enhancement to EOQ model to determine the optimal replenishment quantity so that the net profit is maximized. In theoretical analysis, the necessary and sufficient conditions of the existence and uniqueness of the optimal solutions are proved and further the concavity of the fuzzy net profit function is established. Computational algorithm using the software LINGO 13.0 version is developed to find the optimal solution.   Results and conclusions: The results of the numerical analysis enable decision-makers to quantify the effect of units lost due to deterioration on optimizing the fuzzy net profit for the retailer. Finally, sensitivity analyses of the optimal solution with respect the major parameters are also carried out. Furthermore fuzzy decision making is shown to be superior then crisp decision making in terms of profit maximization. 

  15. Fuzzy Computing Model of Activity Recognition on WSN Movement Data for Ubiquitous Healthcare Measurement.

    Science.gov (United States)

    Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun

    2016-12-03

    Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC.

  16. A comparative study of ANN and Neuro-fuzzy for the prediction of ...

    Indian Academy of Sciences (India)

    Fuzzy set theory, Fuzzy logic and Neural Networks techniques seem very well suited for typical geotechnical problems. In conjunction with statistics and conventional mathematical methods, hybrid methods can be developed that may prove to be a step forward in modeling geotechnical problems. Here, we have developed ...

  17. A comparative study of ANN and Neuro-fuzzy for the prediction of ...

    Indian Academy of Sciences (India)

    Fuzzy set theory, Fuzzy logic and. Neural Networks techniques seem very well suited for typical geotechnical problems. In conjunction with statistics and conventional mathematical methods, hybrid methods can be developed that may prove to be a step forward in modeling geotechnical problems. Here, we have developed ...

  18. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  19. A Novel Exercise Thermophysiology Comfort Prediction Model with Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Nan Jia

    2016-01-01

    Full Text Available Participation in a regular exercise program can improve health status and contribute to an increase in life expectancy. However, exercise accidents like dehydration, exertional heatstroke, syncope, and even sudden death exist. If these accidents can be analyzed or predicted before they happen, it will be beneficial to alleviate or avoid uncomfortable or unacceptable human disease. Therefore, an exercise thermophysiology comfort prediction model is needed. In this paper, coupling the thermal interactions among human body, clothing, and environment (HCE as well as the human body physiological properties, a human thermophysiology regulatory model is designed to enhance the human thermophysiology simulation in the HCE system. Some important thermal and physiological performances can be simulated. According to the simulation results, a human exercise thermophysiology comfort prediction method based on fuzzy inference system is proposed. The experiment results show that there is the same prediction trend between the experiment result and simulation result about thermophysiology comfort. At last, a mobile application platform for human exercise comfort prediction is designed and implemented.

  20. Observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems with unknown dead-zone input.

    Science.gov (United States)

    Liu, Yan-Jun; Zhou, Ning

    2010-10-01

    Based on the universal approximation property of the fuzzy-neural networks, an adaptive fuzzy-neural observer design algorithm is studied for a class of nonlinear SISO systems with both a completely unknown function and an unknown dead-zone input. The fuzzy-neural networks are used to approximate the unknown nonlinear function. Because it is assumed that the system states are unmeasured, an observer needs to be designed to estimate those unmeasured states. In the previous works with the observer design based on the universal approximator, when the dead-zone input appears it is ignored and the stability of the closed-loop system will be affected. In this paper, the proposed algorithm overcomes the affections of dead-zone input for the stability of the systems. Moreover, the dead-zone parameters are assumed to be unknown and will be adjusted adaptively as well as the sign function being introduced to compensate the dead-zone. With the aid of the Lyapunov analysis method, the stability of the closed-loop system is proven. A simulation example is provided to illustrate the feasibility of the control algorithm presented in this paper. Copyright © 2010. Published by Elsevier Ltd.

  1. Fuzzy logic in management

    CERN Document Server

    Carlsson, Christer; Fullér, Robert

    2004-01-01

    Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...

  2. A model of traffic signs recognition with convolutional neural network

    Science.gov (United States)

    Hu, Haihe; Li, Yujian; Zhang, Ting; Huo, Yi; Kuang, Wenqing

    2016-10-01

    In real traffic scenes, the quality of captured images are generally low due to some factors such as lighting conditions, and occlusion on. All of these factors are challengeable for automated recognition algorithms of traffic signs. Deep learning has provided a new way to solve this kind of problems recently. The deep network can automatically learn features from a large number of data samples and obtain an excellent recognition performance. We therefore approach this task of recognition of traffic signs as a general vision problem, with few assumptions related to road signs. We propose a model of Convolutional Neural Network (CNN) and apply the model to the task of traffic signs recognition. The proposed model adopts deep CNN as the supervised learning model, directly takes the collected traffic signs image as the input, alternates the convolutional layer and subsampling layer, and automatically extracts the features for the recognition of the traffic signs images. The proposed model includes an input layer, three convolutional layers, three subsampling layers, a fully-connected layer, and an output layer. To validate the proposed model, the experiments are implemented using the public dataset of China competition of fuzzy image processing. Experimental results show that the proposed model produces a recognition accuracy of 99.01 % on the training dataset, and yield a record of 92% on the preliminary contest within the fourth best.

  3. A gradient-descent-based approach for transparent linguistic interface generation in fuzzy models.

    Science.gov (United States)

    Chen, Long; Chen, C L Philip; Pedrycz, Witold

    2010-10-01

    Linguistic interface is a group of linguistic terms or fuzzy descriptions that describe variables in a system utilizing corresponding membership functions. Its transparency completely or partly decides the interpretability of fuzzy models. This paper proposes a GRadiEnt-descEnt-based Transparent lInguistic iNterface Generation (GREETING) approach to overcome the disadvantage of traditional linguistic interface generation methods where the consideration of the interpretability aspects of linguistic interface is limited. In GREETING, the widely used interpretability criteria of linguistic interface are considered and optimized. The numeric experiments on the data sets from University of California, Irvine (UCI) machine learning databases demonstrate the feasibility and superiority of the proposed GREETING method. The GREETING method is also applied to fuzzy decision tree generation. It is shown that GREETING generates better transparent fuzzy decision trees in terms of better classification rates and comparable tree sizes.

  4. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)

    2009-08-15

    The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)

  5. A H-Infinity Control for Path Tracking with Fuzzy Hyperbolic Tangent Model

    Directory of Open Access Journals (Sweden)

    Guangsi Shi

    2016-01-01

    Full Text Available To achieve the goal of driver-less underground mining truck, a fuzzy hyperbolic tangent model is established for path tracking on an underground articulated mining truck. Firstly, the sample data of parameters are collected by the driver controlling articulated vehicle at a speed of 3 m/s, including both the lateral position deviation and the variation of heading angle deviation. Then, according to the improved adaptive BP neural network model and deriving formula of mediation rate of error estimator by the method of Cauchy robust, the weights are identified. Finally, H-infinity control controller is designed to control steering angle. The results of hardware-in-the-loop simulation show that lateral position deviation, heading angle deviation, and steering angle of the vehicle can be controlled, respectively, at 0.024 m, 0.08 rad, and 0.21 rad. All the deviations are asymptotically stable, and error control is in less than 2%. The method is demonstrated to be effective and reliable in path tracking for the underground vehicles.

  6. A new approach for automatic control modeling, analysis and design in fully fuzzy environment

    Directory of Open Access Journals (Sweden)

    Walaa Ibrahim Gabr

    2015-09-01

    Full Text Available The paper presents a new approach for the modeling, analysis and design of automatic control systems in fully fuzzy environment based on the normalized fuzzy matrices. The approach is also suitable for determining the propagation of fuzziness in automatic control and dynamical systems where all system coefficients are expressed as fuzzy parameters. A new consolidity chart is suggested based on the recently newly developed system consolidity index for testing the susceptibility of the system to withstand changes due to any system or input parameters changes effects. Implementation procedures are elaborated for the consolidity analysis of existing control systems and the design of new ones, including systems comparisons based on such implementation consolidity results. Application of the proposed methodology is demonstrated through illustrative examples, covering fuzzy impulse response of systems, fuzzy Routh–Hurwitz stability criteria, fuzzy controllability and observability. Moreover, the use of the consolidity chart for the appropriate design of control system is elaborated through handling the stabilization of inverted pendulum through pole placement technique. It is also shown that the regions comparison in consolidity chart is based on type of consolidity region shape such as elliptical or circular, slope or angle in degrees of the centerline of the geometric shape, the centroid of the geometric shape, area of the geometric shape, length of principal diagonals of the shape, and the diversity ratio of consolidity points for each region. Finally, it is recommended that the proposed consolidity chart approach be extended as a unified theory for modeling, analysis and design of continuous and digital automatic control systems operating in fully fuzzy environment.

  7. Structural Health Monitoring of Transport Aircraft with Fuzzy Logic Modeling

    Directory of Open Access Journals (Sweden)

    Ray C. Chang

    2013-01-01

    Full Text Available A structural health monitoring method based on the concept of static aeroelasticity is presented in this paper. This paper focuses on the estimation of these aeroelastic effects on older transport aircraft, in particular the structural components that are most affected, in severe atmospheric turbulence. Because the structural flexibility properties are mostly unknown to aircraft operators, only the trend, not the magnitude, of these effects is estimated. For this purpose, one useful concept in static aeroelastic effects for conventional aircraft structures is that under aeroelastic deformation the aerodynamic center should move aft. This concept is applied in the present paper by using the fuzzy-logic aerodynamic models. A twin-jet transport aircraft in severe atmospheric turbulence involving plunging motion is examined. It is found that the pitching moment derivatives in cruise with moderate to severe turbulence in transonic flight indicate some degree of abnormality in the stabilizer (i.e., the horizontal tail. Therefore, the horizontal tail is the most severely affected structural component of the aircraft probably caused by vibration under the dynamic loads induced by turbulence.

  8. Optimal Decision Making in Neural Inhibition Models

    Science.gov (United States)

    van Ravenzwaaij, Don; van der Maas, Han L. J.; Wagenmakers, Eric-Jan

    2012-01-01

    In their influential "Psychological Review" article, Bogacz, Brown, Moehlis, Holmes, and Cohen (2006) discussed optimal decision making as accomplished by the drift diffusion model (DDM). The authors showed that neural inhibition models, such as the leaky competing accumulator model (LCA) and the feedforward inhibition model (FFI), can mimic the…

  9. Application of fuzzy goal programming approach to multi-objective linear fractional inventory model

    Science.gov (United States)

    Dutta, D.; Kumar, Pavan

    2015-09-01

    In this paper, we propose a model and solution approach for a multi-item inventory problem without shortages. The proposed model is formulated as a fractional multi-objective optimisation problem along with three constraints: budget constraint, space constraint and budgetary constraint on ordering cost of each item. The proposed inventory model becomes a multiple criteria decision-making (MCDM) problem in fuzzy environment. This model is solved by multi-objective fuzzy goal programming (MOFGP) approach. A numerical example is given to illustrate the proposed model.

  10. Neuro-fuzzy system for prostate cancer diagnosis.

    Science.gov (United States)

    Benecchi, Luigi

    2006-08-01

    To develop a neuro-fuzzy system to predict the presence of prostate cancer. Neuro-fuzzy systems harness the power of two paradigms: fuzzy logic and artificial neural networks. We compared the predictive accuracy of our neuro-fuzzy system with that obtained by total prostate-specific antigen (tPSA) and percent free PSA (%fPSA). The data from 1030 men (both outpatients and hospitalized patients) were used. All men had a tPSA level of less than 20 ng/mL. Of the 1030 men, 195 (18.9%) had prostate cancer. A neuro-fuzzy system was developed using the coactive neuro-fuzzy inference system model. The mean area under the receiver operating characteristic curve for the neuro-fuzzy system output was 0.799 +/- 0.029 (95% confidence interval 0.760 to 0.835), for tPSA, it was 0.724 +/- 0.032 (95% confidence interval 0.681 to 0.765), and for %fPSA, 0.766 +/- 0.024 (95% confidence interval 0.725 to 0.804). Furthermore, pairwise comparison of the area under the curves evidenced differences among %fPSA, tPSA, and neuro-fuzzy system's output (tPSA versus neuro-fuzzy system's output, P = 0.008; %fPSA versus neuro-fuzzy system's output, P = 0.032). The comparison at 95% sensitivity showed that the neuro-fuzzy system had the best specificity (31.9%). This study presented a neuro-fuzzy system based on both serum data (tPSA and %fPSA) and clinical data (age) to enhance the performance of tPSA to discriminate prostate cancer. The predictive accuracy of the neuro-fuzzy system was superior to that of tPSA and %fPSA.

  11. Data and Feature Reduction in Fuzzy Modeling through Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    S. Sakinah S. Ahmad

    2012-01-01

    Full Text Available The study is concerned with data and feature reduction in fuzzy modeling. As these reduction activities are advantageous to fuzzy models in terms of both the effectiveness of their construction and the interpretation of the resulting models, their realization deserves particular attention. The formation of a subset of meaningful features and a subset of essential instances is discussed in the context of fuzzy-rule-based models. In contrast to the existing studies, which are focused predominantly on feature selection (namely, a reduction of the input space, a position advocated here is that a reduction has to involve both data and features to become efficient to the design of fuzzy model. The reduction problem is combinatorial in its nature and, as such, calls for the use of advanced optimization techniques. In this study, we use a technique of particle swarm optimization (PSO as an optimization vehicle of forming a subset of features and data (instances to design a fuzzy model. Given the dimensionality of the problem (as the search space involves both features and instances, we discuss a cooperative version of the PSO along with a clustering mechanism of forming a partition of the overall search space. Finally, a series of numeric experiments using several machine learning data sets is presented.

  12. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    Energy Technology Data Exchange (ETDEWEB)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze [University of Tehran, Karaj (India)

    2010-11-15

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  13. Fuzzy Control Model and Simulation for Nonlinear Supply Chain System with Lead Times

    Directory of Open Access Journals (Sweden)

    Songtao Zhang

    2017-01-01

    Full Text Available A new fuzzy robust control strategy for the nonlinear supply chain system in the presence of lead times is proposed. Based on Takagi-Sugeno fuzzy control system, the fuzzy control model of the nonlinear supply chain system with lead times is constructed. Additionally, we design a fuzzy robust H∞ control strategy taking the definition of maximal overlapped-rules group into consideration to restrain the impacts such as those caused by lead times, switching actions among submodels, and customers’ stochastic demands. This control strategy can not only guarantee that the nonlinear supply chain system is robustly asymptotically stable but also realize soft switching among subsystems of the nonlinear supply chain to make the less fluctuation of the system variables by introducing the membership function of fuzzy system. The comparisons between the proposed fuzzy robust H∞ control strategy and the robust H∞ control strategy are finally illustrated through numerical simulations on a two-stage nonlinear supply chain with lead times.

  14. Neural networks as models of psychopathology.

    Science.gov (United States)

    Aakerlund, L; Hemmingsen, R

    1998-04-01

    Neural network modeling is situated between neurobiology, cognitive science, and neuropsychology. The structural and functional resemblance with biological computation has made artificial neural networks (ANN) useful for exploring the relationship between neurobiology and computational performance, i.e., cognition and behavior. This review provides an introduction to the theory of ANN and how they have linked theories from neurobiology and psychopathology in schizophrenia, affective disorders, and dementia.

  15. Neural network approaches for noisy language modeling.

    Science.gov (United States)

    Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid

    2013-11-01

    Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.

  16. Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic

    Science.gov (United States)

    Brandon, Jay M.; Morelli, Eugene A.

    2012-01-01

    Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.

  17. Modelling and management of subjective information in a fuzzy setting

    Science.gov (United States)

    Bouchon-Meunier, Bernadette; Lesot, Marie-Jeanne; Marsala, Christophe

    2013-01-01

    Subjective information is very natural for human beings. It is an issue at the crossroad of cognition, semiotics, linguistics, and psycho-physiology. Its management requires dedicated methods, among which we point out the usefulness of fuzzy and possibilistic approaches and related methods, such as evidence theory. We distinguish three aspects of subjectivity: the first deals with perception and sensory information, including the elicitation of quality assessment and the establishment of a link between physical and perceived properties; the second is related to emotions, their fuzzy nature, and their identification; and the last aspect stems from natural language and takes into account information quality and reliability of information.

  18. Modelling and Control of the Qball X4 Quadrotor System based on Pid and Fuzzy Logic Structure

    Science.gov (United States)

    Bodrumlu, Tolga; Turan Soylemez, Mehmet; Mutlu, Ilhan

    2017-01-01

    This work focuses on a quadrocopter model, which was developed by QuanserTM and named as Qball X4. First, mathematical model of the Qball X4 is obtained. Then, a conventional PID control technique is presented. This PID control parameters come from Qball user manual. After the presentation of conventional PID control, as an extension of the conventional PID control theory, a different fuzzy controller structure is given. The proposed fuzzy controller structure is based on fuzzy logic and its name is PID type fuzzy controller. All of the simulations are done in MATLABTM environment.

  19. A Review of Fuzzy Logic and Neural Network Based Intelligent Control Design for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2016-01-01

    Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.

  20. Fuzzy modeling and predictive control of superheater steam temperature for power plant.

    Science.gov (United States)

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2015-05-01

    This paper develops a stable fuzzy model predictive controller (SFMPC) to solve the superheater steam temperature (SST) control problem in a power plant. First, a data-driven Takagi-Sugeno (TS) fuzzy model is developed to approximate the behavior of the SST control system using the subspace identification (SID) method. Then, an SFMPC for output regulation is designed based on the TS-fuzzy model to regulate the SST while guaranteeing the input-to-state stability under the input constraints. The effect of modeling mismatches and unknown plant behavior variations are overcome by the use of a disturbance term and steady-state target calculator (SSTC). Simulation results for a 600 MW power plant show that an offset-free tracking of SST can be achieved over a wide range of load variation. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Fuzzy predictive filtering in nonlinear economic model predictive control for demand response

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    The performance of a model predictive controller (MPC) is highly correlated with the model's accuracy. This paper introduces an economic model predictive control (EMPC) scheme based on a nonlinear model, which uses a branch-and-bound tree search for solving the inherent non-convex optimization...... problem. Moreover, to reduce the computation time and improve the controller's performance, a fuzzy predictive filter is introduced. With the purpose of testing the developed EMPC, a simulation controlling the temperature levels of an intelligent office building (PowerFlexHouse), with and without fuzzy...... filtering, is performed. The results show that the controller achieves a good performance while keeping the temperature inside the predefined comfort limits. Fuzzy predictive filtering has shown to be an effective tool which is capable of reducing the computational burden and increasing the performance...

  2. Fuzzy bi-objective optimization model for multi-echelon distribution network

    Directory of Open Access Journals (Sweden)

    Kanika Gandhi

    2014-06-01

    by different sources in order to captivate the real world conditions. The uncertain demand of deteriorating products and its dependent costs develop uncertainties in the environment. On the other hand, suppliers and processing points have restricted capacities for the retail outlets’ order amount happened in each period. A bi-objective non-linear fuzzy mathematical model is developed in which the uncertainties are represented by the fuzzy set theory. The proposed model shows cost minimization and best supplier selection coordination under the conditions of capacity constraints, uncertain parameters and product’s deteriorating nature. The fish and fish products give good examples for the proposed model. To solve, the model is converted into crisp form and solved with the help of fuzzy goal programming.

  3. Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion.

    Science.gov (United States)

    Tseng, Chien-Hao; Chang, Chih-Wen; Jwo, Dah-Jing

    2011-01-01

    In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching) mechanism, the interacting multiple model (IMM), which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS). The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.

  4. A Combined Methodology of H∞ Fuzzy Tracking Control and Virtual Reference Model for a PMSM

    Directory of Open Access Journals (Sweden)

    Djamel Ounnas

    2015-01-01

    Full Text Available The aim of this paper is to present a new fuzzy tracking strategy for a permanent magnet synchronous machine (PMSM by using Takagi-Sugeno models (T-S. A feedback-based fuzzy control with h-infinity tracking performance and a concept of virtual reference model are combined to develop a fuzzy tracking controller capable to track a reference signal and ensure a minimum effect of disturbance on the PMSM system. First, a T-S fuzzy model is used to represent the PMSM nonlinear system with disturbance. Next, an integral fuzzy tracking control based on the concept of virtual desired variables (VDVs is formulated to simplify the design of the virtual reference model and the control law. Finally, based on this concept, a two-stage design procedure is developed: i determine the VDVs from the nonlinear system output equation and generalized kinematics constraints ii calculate the feedback controller gains by solving a set of linear matrix inequalities (LMIs. Simulation results are provided to demonstrate the validity and the effectiveness of the proposed method.

  5. Fuzzy Adaptive Interacting Multiple Model Nonlinear Filter for Integrated Navigation Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Dah-Jing Jwo

    2011-02-01

    Full Text Available In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching mechanism, the interacting multiple model (IMM, which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS. The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.

  6. Solving a fuzzy initial value problem of a harmonic oscillator model

    Science.gov (United States)

    Karim, M. A.; Gunawan, A. Y.; Apri, M.; Sidarto, K. A.

    2017-03-01

    Modeling in systems biology is often faced with challenges in terms of measurement uncertainty. This is possibly either due to limitations of available data, environmental or demographic changes. One of typical behavior that commonly appears in the systems biology is a periodic behavior. Since uncertainties would get involved into the systems, the change of solution behavior of the periodic system should be taken into account. To get insight into this issue, in this work a simple mathematical model describing periodic behavior, i.e. a harmonic oscillator model, is considered by assuming its initial value has uncertainty in terms of fuzzy number. The system is known as Fuzzy Initial Value Problems. Some methods to determine the solutions are discussed. First, solutions are examined using two types of fuzzy differentials, namely Hukuhara Differential (HD) and Generalized Hukuhara Differential (GHD). Application of fuzzy arithmetic leads that each type of HD and GHD are formed into α-cut deterministic systems, and then are solved by the Runge-Kutta method. The HD type produces a solution with increasing uncertainty starting from the initial condition. While, GHD type produces an oscillatory solution but only until a certain time and above it the uncertainty becomes monotonic increasing. Solutions of both types certainly do not provide the accuracy for harmonic oscillator model during its evolution. Therefore, we propose the third method, so called Fuzzy Differential Inclusions (FDI), to attack the problem. Using this method, we obtain oscillatory solutions during its evolution.

  7. Fuzzy delay model based fault simulator for crosstalk delay fault test ...

    Indian Academy of Sciences (India)

    The delays of a logic gates or interconnect are affected by various fabrication process parameters and however accurate the delay models are, it is very difficult to model the process uncertainties. In this paper, the fuzzy delay model is employed for test generation of crosstalk delay faults in asynchronous sequential circuits.

  8. Prediction of oxidation parameters of purified Kilka fish oil including gallic acid and methyl gallate by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network.

    Science.gov (United States)

    Asnaashari, Maryam; Farhoosh, Reza; Farahmandfar, Reza

    2016-10-01

    As a result of concerns regarding possible health hazards of synthetic antioxidants, gallic acid and methyl gallate may be introduced as natural antioxidants to improve oxidative stability of marine oil. Since conventional modelling could not predict the oxidative parameters precisely, artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS) modelling with three inputs, including type of antioxidant (gallic acid and methyl gallate), temperature (35, 45 and 55 °C) and concentration (0, 200, 400, 800 and 1600 mg L(-1) ) and four outputs containing induction period (IP), slope of initial stage of oxidation curve (k1 ) and slope of propagation stage of oxidation curve (k2 ) and peroxide value at the IP (PVIP ) were performed to predict the oxidation parameters of Kilka oil triacylglycerols and were compared to multiple linear regression (MLR). The results showed ANFIS was the best model with high coefficient of determination (R(2)  = 0.99, 0.99, 0.92 and 0.77 for IP, k1 , k2 and PVIP , respectively). So, the RMSE and MAE values for IP were 7.49 and 4.92 in ANFIS model. However, they were to be 15.95 and 10.88 and 34.14 and 3.60 for the best MLP structure and MLR, respectively. So, MLR showed the minimum accuracy among the constructed models. Sensitivity analysis based on the ANFIS model suggested a high sensitivity of oxidation parameters, particularly the induction period on concentrations of gallic acid and methyl gallate due to their high antioxidant activity to retard oil oxidation and enhanced Kilka oil shelf life. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2015-11-01

    Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.

  10. Combinations of specilaized conceptual and neural network rainfall-runoff models: comparison of performance

    Science.gov (United States)

    Kayastha, Nagendra; Solomatine, Dimitri

    2013-04-01

    A single hydrological model (process-based or data driven) might not equally well describe the characteristic of a complex rainfall-runoff relationship. One possibility here is building several specialized (local) models which can be specifically oriented at a particular process in the same model structure and combining them using weighting scheme the result can be called a multi-model, or a committee model. In this approach first we build the individual specialized models which are mainly calibrated on various regimes corresponding to hydrological sub-processes for example, low flow and high flow, and combining their outputs using the ideas of a fuzzy membership with various parameterisations. This experiment explores the several committee models of specialized hydrological models [1, 2] which are employed for rainfall-runoff model prediction. Comparison of three committee models are demonstrated which constructed from specialized models: (1) processes-based conceptual HBV rainfall-runoff model (CRRM) (2) rainfall-runoff model based on artificial neural networks (ANN) and (3) combination of CRRM and ANN. The weights assigned to each specialized model's output are based on fuzzy membership functions which are different at every time step depending on the current value of flow. Comparison results indicated that committee model CRRM-ANN built from the high flow HBV model and low flow ANN model outperformed other models. Bagmati catchment in Nepal and Leaf catchment in USA are considered as case studies. [1] Fenicia, F., Solomatine, D. P., Savenije, H. H. G. and Matgen, P. Soft combination of local models in a multi-objective framework. Hydrol. Earth Syst. Sci., 11, 1797-1809, Special Issue "Data-driven approaches, optimization and model integration: hydrological applications", R. Abrahart, L. See, D. Solomatine, and E. Toth (eds.), 2007. [2] Kayastha N., J. Ye, Fenicia, F., Solomatine, D. P. Fuzzy committees of specialized rainfall-runoff models: further enhancements

  11. Fuzzy model of the computer integrated decision support and management system in mineral processing

    Directory of Open Access Journals (Sweden)

    Miljanović Igor

    2008-01-01

    Full Text Available During the research on the subject of computer integrated systems for decision making and management support in mineral processing based on fuzzy logic, realized at the Department of Applied Computing and System Engineering of the Faculty of Mining and Geology, University of Belgrade, for the needs of doctoral thesis of the first author, and wider demands of the mineral industry, the incompleteness of the developed and contemporary computer integrated systems fuzzy models was noticed. The paper presents an original model with the seven staged hierarchical monitoring-management structure, in which the shortcomings of the models utilized today were eliminated.

  12. 1 RESEARCH ARTICLE Neuro-Fuzzy Model of Homocysteine ...

    Indian Academy of Sciences (India)

    2017-03-10

    Mar 10, 2017 ... homeostasis by SHMT1 C1420T or increased flux of folate towards remethylation due to. TYMS 5'-UTR 28bp tandem repeat or non-vegetarian diet can lower homocysteine levels. Keywords: Homocysteine; Multiple Linear Regression; Neuro-Fuzzy design; diet. Introduction. Homocysteine is a non-dietary ...

  13. Performance Modelling of Steam Turbine Performance using Fuzzy ...

    African Journals Online (AJOL)

    A Fuzzy Inference System for predicting the performance of steam turbine based on Rankine cycle is developed using a 144-rule based in analyzing the generated data for different inlet and outlet conditions. The result of efficiency for different types of membership functions and defuzzification method was obtained.

  14. Fuzzy-based dosage model of aqueous decoction of Adansonia ...

    African Journals Online (AJOL)

    In recent time, fuzzy logic-based systems have been deployed in the area of orthodox medicine; especially in situations where precision is most valuable such as kidney transplant, diagnosis of ailments, drug prescription, etc. However, in the area of traditional medicine, no much attention has been given to its enhancement ...

  15. Zoning of agricultural field using a fuzzy indicators model

    Science.gov (United States)

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for deciding how to subdivide a field into a few relatively homogenous zones is using applications of fuzzy sets theory. Data collected from a precision agriculture study in central Texas...

  16. Fuzzy Control Technique Applied to Modified Mathematical Model ...

    African Journals Online (AJOL)

    The input domains are divided into 3 membership functions resulting in 7 fuzzy rules for each rule base and the output domains are partitioned with 5 membership functions. The Mamdani controllers use a standard max-min inference process and a fast centre of area method to calculate the crisp control signals. Numerical ...

  17. Fuzzy social choice models explaining the government formation process

    CERN Document Server

    C Casey, Peter; A Goodman, Carly; Pook, Kelly Nelson; N Mordeson, John; J Wierman, Mark; D Clark, Terry

    2014-01-01

    This book explores the extent to which fuzzy set logic can overcome some of the shortcomings of public choice theory, particularly its inability to provide adequate predictive power in empirical studies. Especially in the case of social preferences, public choice theory has failed to produce the set of alternatives from which collective choices are made.  The book presents empirical findings achieved by the authors in their efforts to predict the outcome of government formation processes in European parliamentary and semi-presidential systems.  Using data from the Comparative Manifesto Project (CMP), the authors propose a new approach that reinterprets error in the coding of CMP data as ambiguity in the actual political positions of parties on the policy dimensions being coded. The range of this error establishes parties’ fuzzy preferences. The set of possible outcomes in the process of government formation is then calculated on the basis of both the fuzzy Pareto set and the fuzzy maximal set, and the pre...

  18. Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran

    Science.gov (United States)

    Shiroodi, Sadjad Kazem; Ghafoori, Mohammad; Ansari, Hamid Reza; Lashkaripour, Golamreza; Ghanadian, Mostafa

    2017-02-01

    The main purpose of this study is to introduce the geological controlling factors in improving an intelligence-based model to estimate shear wave velocity from seismic attributes. The proposed method includes three main steps in the framework of geological events in a complex sedimentary succession located in the Persian Gulf. First, the best attributes were selected from extracted seismic data. Second, these attributes were transformed into shear wave velocity using fuzzy inference systems (FIS) such as Sugeno's fuzzy inference (SFIS), adaptive neuro-fuzzy inference (ANFIS) and optimized fuzzy inference (OFIS). Finally, a committee fuzzy machine (CFM) based on bat-inspired algorithm (BA) optimization was applied to combine previous predictions into an enhanced solution. In order to show the geological effect on improving the prediction, the main classes of predominate lithofacies in the reservoir of interest including shale, sand, and carbonate were selected and then the proposed algorithm was performed with and without lithofacies constraint. The results showed a good agreement between real and predicted shear wave velocity in the lithofacies-based model compared to the model without lithofacies especially in sand and carbonate.

  19. Fuzzy-DEA model for measuring the efficiency of transport quality

    Directory of Open Access Journals (Sweden)

    Dragan S. Pamučar

    2011-10-01

    Full Text Available Data envelopment analysis (DEA is becoming increasingly important as a tool for evaluating and improving the performance of manufacturing and service operations. It has been extensively applied in performance evaluation and benchmarking of schools, hospitals, bank branches, production plants, etc. DEA enables mathematical programming for implicit evaluation of the ratio between a number of input and output performance parameters. The result is quantification of the efficiency of business opportunities and providing insight into some flaws from the level of top management. Levels of efficiency determined under the same parametres make this analytical process objective and allow for the application of best practices based on the assessment of the overall efficiency. This paper presents a fuzzy-DEA model for evaluating the effectiveness of urban and suburban public transport- USPT. A fuzzy-DEA model provides insight into the current transport quality provided by USPT and proposes for the improvement of inefficient systems up to the level of best standards possible. Such quantification makes long-term stability of USPT possible. Since most of the acquired data is characterized by a high degree of imprecision, subjectivity and uncertainty, fuzzy logic was used for displaying them. Fuzzy linguistic descriptors are given in the output parameters of DEA models. In this way, fuzzy logic enables the exploitation of tolerance that exists in imprecision, uncertainty and partial accuracy of the acquired research results.

  20. Movement Control in Recovering UUV Based on Two-Stage Discrete T-S Fuzzy Model

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2014-01-01

    Full Text Available A two-stage discrete T-S fuzzy model controller, which is formed by a motion controller and a dynamic controller connected in series, is presented to solve UUV (unmanned underwater vehicle movement control problem for recovering. The motion controller is designed based on the uncertain T-S model and the concept of discrete fuzzy vector. The position error between UUV and moving platform as the input of the motion controller is converted into the speed commands of UUV at the next time. The dynamic controller design is based on the theory of fuzzy region model and a relaxed condition for Lyapunov stabilization function is derived in the form of linear matrix inequalities, which generate force and torque required to complete the recovery task. The feasibility and the efficiency of the proposed control scheme are illustrated through the simulations that UUV follows moving platform.