WorldWideScience

Sample records for neural functional systems

  1. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  2. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  3. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  4. Radial basis function neural network for power system load-flow

    International Nuclear Information System (INIS)

    Karami, A.; Mohammadi, M.S.

    2008-01-01

    This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)

  5. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  6. Neural-net based unstable machine identification using individual energy functions. [Transient disturbances in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Institut Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States)

    1991-10-01

    The identification of the mode of instability plays an essential role in generating principal energy boundary hypersurfaces. We present a new method for unstable machine identification based on the use of supervised learning neural-net technology, and the adaptive pattern recognition concept. It is shown that using individual energy functions as pattern features, appropriately trained neural-nets can retrieve the reliable characterization of the transient process including critical clearing time parameter, mode of instability and energy margins. Generalization capabilities of the neural-net processing allow for these assessments to be made independently of load levels. The results obtained from computer simulations are presented using the New England power system, as an example. (author).

  7. Adaptive Neural Control of Nonaffine Nonlinear Systems without Differential Condition for Nonaffine Function

    Directory of Open Access Journals (Sweden)

    Chaojiao Sun

    2016-01-01

    Full Text Available An adaptive neural control scheme is proposed for nonaffine nonlinear system without using the implicit function theorem or mean value theorem. The differential conditions on nonaffine nonlinear functions are removed. The control-gain function is modeled with the nonaffine function probably being indifferentiable. Furthermore, only a semibounded condition for nonaffine nonlinear function is required in the proposed method, and the basic idea of invariant set theory is then constructively introduced to cope with the difficulty in the control design for nonaffine nonlinear systems. It is rigorously proved that all the closed-loop signals are bounded and the tracking error converges to a small residual set asymptotically. Finally, simulation examples are provided to demonstrate the effectiveness of the designed method.

  8. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  9. Overlap in the functional neural systems involved in semantic and episodic memory retrieval.

    Science.gov (United States)

    Rajah, M N; McIntosh, A R

    2005-03-01

    Neuroimaging and neuropsychological data suggest that episodic and semantic memory may be mediated by distinct neural systems. However, an alternative perspective is that episodic and semantic memory represent different modes of processing within a single declarative memory system. To examine whether the multiple or the unitary system view better represents the data we conducted a network analysis using multivariate partial least squares (PLS ) activation analysis followed by covariance structural equation modeling (SEM) of positron emission tomography data obtained while healthy adults performed episodic and semantic verbal retrieval tasks. It is argued that if performance of episodic and semantic retrieval tasks are mediated by different memory systems, then there should differences in both regional activations and interregional correlations related to each type of retrieval task, respectively. The PLS results identified brain regions that were differentially active during episodic retrieval versus semantic retrieval. Regions that showed maximal differences in regional activity between episodic retrieval tasks were used to construct separate functional models for episodic and semantic retrieval. Omnibus tests of these functional models failed to find a significant difference across tasks for both functional models. The pattern of path coefficients for the episodic retrieval model were not different across tasks, nor were the path coefficients for the semantic retrieval model. The SEM results suggest that the same memory network/system was engaged across tasks, given the similarities in path coefficients. Therefore, activation differences between episodic and semantic retrieval may ref lect variation along a continuum of processing during task performance within the context of a single memory system.

  10. neural control system

    International Nuclear Information System (INIS)

    Elshazly, A.A.E.

    2002-01-01

    Automatic power stabilization control is the desired objective for any reactor operation , especially, nuclear power plants. A major problem in this area is inevitable gap between a real plant ant the theory of conventional analysis and the synthesis of linear time invariant systems. in particular, the trajectory tracking control of a nonlinear plant is a class of problems in which the classical linear transfer function methods break down because no transfer function can represent the system over the entire operating region . there is a considerable amount of research on the model-inverse approach using feedback linearization technique. however, this method requires a prices plant model to implement the exact linearizing feedback, for nuclear reactor systems, this approach is not an easy task because of the uncertainty in the plant parameters and un-measurable state variables . therefore, artificial neural network (ANN) is used either in self-tuning control or in improving the conventional rule-based exper system.the main objective of this thesis is to suggest an ANN, based self-learning controller structure . this method is capable of on-line reinforcement learning and control for a nuclear reactor with a totally unknown dynamics model. previously, researches are based on back- propagation algorithm . back -propagation (BP), fast back -propagation (FBP), and levenberg-marquardt (LM), algorithms are discussed and compared for reinforcement learning. it is found that, LM algorithm is quite superior

  11. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    Science.gov (United States)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  12. Stellar Image Interpretation System using Artificial Neural Networks: Unipolar Function Case

    Directory of Open Access Journals (Sweden)

    F. I. Younis

    2001-01-01

    Full Text Available An artificial neural network based system for interpreting astronomical images has been developed. The system is based on feed-forward Artificial Neural Networks (ANNs with error back-propagation learning. Knowledge about images of stars, cosmic ray events and noise found in images is used to prepare two sets of input patterns to train and test our approach. The system has been developed and implemented to scan astronomical digital images in order to segregate stellar images from other entities. It has been coded in C language for users of personal computers. An astronomical image of a star cluster from other objects is undertaken as a test case. The obtained results are found to be in very good agreement with those derived from the DAOPHOTII package, which is widely used in the astronomical community. It is proved that our system is simpler, much faster and more reliable. Moreover, no prior knowledge, or initial data from the frame to be analysed is required.

  13. Neural modeling of prefrontal executive function

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.S. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    Brain executive function is based in a distributed system whereby prefrontal cortex is interconnected with other cortical. and subcortical loci. Executive function is divided roughly into three interacting parts: affective guidance of responses; linkage among working memory representations; and forming complex behavioral schemata. Neural network models of each of these parts are reviewed and fit into a preliminary theoretical framework.

  14. Nonlinear Control of an Active Magnetic Bearing System Achieved Using a Fuzzy Control with Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Seng-Chi Chen

    2014-01-01

    Full Text Available Studies on active magnetic bearing (AMB systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC. The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC, the parameters of which are adjusted using a radial basis function neural network (RBFNN, is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.

  15. Artificial neural networks contribution to the operational security of embedded systems. Artificial neural networks contribution to fault tolerance of on-board functions in space environment

    International Nuclear Information System (INIS)

    Vintenat, Lionel

    1999-01-01

    A good quality often attributed to artificial neural networks is fault tolerance. In general presentation works, this property is almost always introduced as 'natural', i.e. being obtained without any specific precaution during learning. Besides, space environment is known to be aggressive towards on-board hardware, inducing various abnormal operations. Particularly, digital components suffer from upset phenomenon, i.e. misplaced switches of memory flip-flops. These two observations lead to the question: would neural chips constitute an interesting and robust solution to implement some board functions of spacecrafts? First, the various aspects of the problem are detailed: artificial neural networks and their fault tolerance, neural chips, space environment and resulting failures. Further to this presentation, a particular technique to carry out neural chips is selected because of its simplicity, and especially because it requires few memory flip-flops: random pulse streams. An original method for star recognition inside a field-of-view is then proposed for the board function 'attitude computation'. This method relies on a winner-takes-all competition network, and on a Kohonen self-organized map. An hardware implementation of those two neural models is then proposed using random pulse streams. Thanks to this realization, on one hand difficulties related to that particular implementation technique can be highlighted, and on the other hand a first evaluation of its practical fault tolerance can be carried out. (author) [fr

  16. Interruption of Neural Function.

    Science.gov (United States)

    1987-05-01

    applcbse) University of Colorado I Be. ADDRESS (City. Stele and ZIP Code) 10. SOURCE OF FUNDING NOS. Campus Box B-19 PROGRAM PROJECT TASK WORK UNIT Boulder...rectification, frequency-sensitive phenomena, safety, and some effects on bio - logical systems," invited review, Charles Polk, Ed., CRC Handbook of Biological...experimental test", Mathematical Bio - Sciences, Vol. 29, pp. 235-253, 1978. [131 Kuf1er. S. WV., J. G. Nicholls, and A. R. Martin, "From Nettron to Brain

  17. Neural Control of the Immune System

    Science.gov (United States)

    Sundman, Eva; Olofsson, Peder S.

    2014-01-01

    Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have…

  18. Intelligent neural network diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.

  19. Sustained NMDA receptor hypofunction induces compromised neural systems integration and schizophrenia-like alterations in functional brain networks.

    Science.gov (United States)

    Dawson, Neil; Xiao, Xiaolin; McDonald, Martin; Higham, Desmond J; Morris, Brian J; Pratt, Judith A

    2014-02-01

    Compromised functional integration between cerebral subsystems and dysfunctional brain network organization may underlie the neurocognitive deficits seen in psychiatric disorders. Applying topological measures from network science to brain imaging data allows the quantification of complex brain network connectivity. While this approach has recently been used to further elucidate the nature of brain dysfunction in schizophrenia, the value of applying this approach in preclinical models of psychiatric disease has not been recognized. For the first time, we apply both established and recently derived algorithms from network science (graph theory) to functional brain imaging data from rats treated subchronically with the N-methyl-D-aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). We show that subchronic PCP treatment induces alterations in the global properties of functional brain networks akin to those reported in schizophrenia. Furthermore, we show that subchronic PCP treatment induces compromised functional integration between distributed neural systems, including between the prefrontal cortex and hippocampus, that have established roles in cognition through, in part, the promotion of thalamic dysconnectivity. We also show that subchronic PCP treatment promotes the functional disintegration of discrete cerebral subsystems and also alters the connectivity of neurotransmitter systems strongly implicated in schizophrenia. Therefore, we propose that sustained NMDA receptor hypofunction contributes to the pathophysiology of dysfunctional brain network organization in schizophrenia.

  20. Neural Systems Underlying Emotional and Non-emotional Interference Processing: An ALE Meta-Analysis of Functional Neuroimaging Studies

    OpenAIRE

    Xu, Min; Xu, Guiping; Yang, Yang

    2016-01-01

    Understanding how the nature of interference might influence the recruitments of the neural systems is considered as the key to understanding cognitive control. Although, interference processing in the emotional domain has recently attracted great interest, the question of whether there are separable neural patterns for emotional and non-emotional interference processing remains open. Here, we performed an activation likelihood estimation meta-analysis of 78 neuroimaging experiments, and exam...

  1. System and method for determining stability of a neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2011-01-01

    Disclosed are methods, systems, and computer-readable media for determining stability of a neural system. The method includes tracking a function world line of an N element neural system within at least one behavioral space, determining whether the tracking function world line is approaching a psychological stability surface, and implementing a quantitative solution that corrects instability if the tracked function world line is approaching the psychological stability surface.

  2. Functional link between the hypocretin and serotonin systems in the neural control of breathing and central chemosensitivity.

    Science.gov (United States)

    Corcoran, Andrea E; Richerson, George B; Harris, Michael B

    2015-07-01

    Serotonin (5-HT)-synthesizing neurons of the medullary raphe are putative central chemoreceptors, proposed to be one of potentially multiple brain stem chemosensitive cell types and loci interacting to produce the respiratory chemoreflex. Hypocretin-synthesizing neurons of the lateral hypothalamus are important contributors to arousal state, thermoregulation, and feeding behavior and are also reportedly involved in the hypercapnic ventilatory response. Recently, a functional interaction was found between the hypocretin system and 5-HT neurons of the dorsal raphe. The validity and potential significance of hypocretin modulation of medullary raphe 5-HT neurons, however, is unknown. As such, the purpose of this study was to explore functional interactions between the hypocretin system and 5-HT system of the medullary raphe on baseline respiratory output and central chemosensitivity. To explore such interactions, we used the neonatal in vitro medullary slice preparation derived from wild-type (WT) mice (normal 5-HT function) and a knockout strain lacking all central 5-HT neurons (Lmx1b(f/f/p) mice). We examined effects of acidosis, hypocretin-1, a hypocretin receptor antagonist (SB-408124), and the effect of the antagonist on the response to acidosis. We confirmed the critical role of 5-HT neurons in central chemosensitivity given that the increased hypoglossal burst frequency with acidosis, characteristic of WT mice, was absent in preparations derived from Lmx1b(f/f/p) mice. We also found that hypocretin facilitated baseline neural ventilatory output in part through 5-HT neurons. Although the impact of hypocretin on 5-HT neuronal sensitivity to acidosis is still unclear, hypocretins did appear to mediate the burst duration response to acidosis via serotonergic mechanisms.

  3. Quantitative functional failure analysis of a thermal-hydraulic passive system by means of bootstrapped Artificial Neural Networks

    International Nuclear Information System (INIS)

    Zio, E.; Apostolakis, G.E.; Pedroni, N.

    2010-01-01

    The estimation of the functional failure probability of a thermal-hydraulic (T-H) passive system can be done by Monte Carlo (MC) sampling of the epistemic uncertainties affecting the system model and the numerical values of its parameters, followed by the computation of the system response by a mechanistic T-H code, for each sample. The computational effort associated to this approach can be prohibitive because a large number of lengthy T-H code simulations must be performed (one for each sample) for accurate quantification of the functional failure probability and the related statistics. In this paper, the computational burden is reduced by replacing the long-running, original T-H code by a fast-running, empirical regression model: in particular, an Artificial Neural Network (ANN) model is considered. It is constructed on the basis of a limited-size set of data representing examples of the input/output nonlinear relationships underlying the original T-H code; once the model is built, it is used for performing, in an acceptable computational time, the numerous system response calculations needed for an accurate failure probability estimation, uncertainty propagation and sensitivity analysis. The empirical approximation of the system response provided by the ANN model introduces an additional source of (model) uncertainty, which needs to be evaluated and accounted for. A bootstrapped ensemble of ANN regression models is here built for quantifying, in terms of confidence intervals, the (model) uncertainties associated with the estimates provided by the ANNs. For demonstration purposes, an application to the functional failure analysis of an emergency passive decay heat removal system in a simple steady-state model of a Gas-cooled Fast Reactor (GFR) is presented. The functional failure probability of the system is estimated together with global Sobol sensitivity indices. The bootstrapped ANN regression model built with low computational time on few (e.g., 100) data

  4. Quantitative functional failure analysis of a thermal-hydraulic passive system by means of bootstrapped Artificial Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zio, E., E-mail: enrico.zio@polimi.i [Energy Department, Politecnico di Milano, Via Ponzio 34/3, 20133 Milan (Italy); Apostolakis, G.E., E-mail: apostola@mit.ed [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Pedroni, N. [Energy Department, Politecnico di Milano, Via Ponzio 34/3, 20133 Milan (Italy)

    2010-05-15

    The estimation of the functional failure probability of a thermal-hydraulic (T-H) passive system can be done by Monte Carlo (MC) sampling of the epistemic uncertainties affecting the system model and the numerical values of its parameters, followed by the computation of the system response by a mechanistic T-H code, for each sample. The computational effort associated to this approach can be prohibitive because a large number of lengthy T-H code simulations must be performed (one for each sample) for accurate quantification of the functional failure probability and the related statistics. In this paper, the computational burden is reduced by replacing the long-running, original T-H code by a fast-running, empirical regression model: in particular, an Artificial Neural Network (ANN) model is considered. It is constructed on the basis of a limited-size set of data representing examples of the input/output nonlinear relationships underlying the original T-H code; once the model is built, it is used for performing, in an acceptable computational time, the numerous system response calculations needed for an accurate failure probability estimation, uncertainty propagation and sensitivity analysis. The empirical approximation of the system response provided by the ANN model introduces an additional source of (model) uncertainty, which needs to be evaluated and accounted for. A bootstrapped ensemble of ANN regression models is here built for quantifying, in terms of confidence intervals, the (model) uncertainties associated with the estimates provided by the ANNs. For demonstration purposes, an application to the functional failure analysis of an emergency passive decay heat removal system in a simple steady-state model of a Gas-cooled Fast Reactor (GFR) is presented. The functional failure probability of the system is estimated together with global Sobol sensitivity indices. The bootstrapped ANN regression model built with low computational time on few (e.g., 100) data

  5. Learning in Artificial Neural Systems

    Science.gov (United States)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  6. New Computer Simulations of Macular Neural Functioning

    Science.gov (United States)

    Ross, Muriel D.; Doshay, D.; Linton, S.; Parnas, B.; Montgomery, K.; Chimento, T.

    1994-01-01

    We use high performance graphics workstations and supercomputers to study the functional significance of the three-dimensional (3-D) organization of gravity sensors. These sensors have a prototypic architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scaled-up, 3-D versions run on a Cray Y-MP supercomputer. A semi-automated method of reconstruction of neural tissue from serial sections studied in a transmission electron microscope has been developed to eliminate tedious conventional photography. The reconstructions use a mesh as a step in generating a neural surface for visualization. Two meshes are required to model calyx surfaces. The meshes are connected and the resulting prisms represent the cytoplasm and the bounding membranes. A finite volume analysis method is employed to simulate voltage changes along the calyx in response to synapse activation on the calyx or on calyceal processes. The finite volume method insures that charge is conserved at the calyx-process junction. These and other models indicate that efferent processes act as voltage followers, and that the morphology of some afferent processes affects their functioning. In a final application, morphological information is symbolically represented in three dimensions in a computer. The possible functioning of the connectivities is tested using mathematical interpretations of physiological parameters taken from the literature. Symbolic, 3-D simulations are in progress to probe the functional significance of the connectivities. This research is expected to advance computer-based studies of macular functioning and of synaptic plasticity.

  7. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  8. Neural systems for control

    National Research Council Canada - National Science Library

    Omidvar, Omid; Elliott, David L

    1997-01-01

    ... is reprinted with permission from A. Barto, "Reinforcement Learning," Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.. The MIT Press, Cambridge, MA, pp. 804-809, 1995. Chapter 4, Figures 4-5 and 7-9 and Tables 2-5, are reprinted with permission, from S. Cho, "Map Formation in Proprioceptive Cortex," International Jour...

  9. Smooth function approximation using neural networks.

    Science.gov (United States)

    Ferrari, Silvia; Stengel, Robert F

    2005-01-01

    An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.

  10. Functional and Anatomic Correlates of Neural Aging in Birds.

    Science.gov (United States)

    Ottinger, Mary Ann

    2018-01-01

    Avian species show variation in longevity, habitat, physiologic characteristics, and lifetime endocrine patterns. Lifetime reproductive and metabolic function vary. Much is known about the neurobiology of the song system in many altricial birds. Little is known about aging in neural systems in birds. Captive birds often survive beyond the age they would in the wild, providing an opportunity to gain an understanding of the physiologic and neural changes. This paper reviews the available information with the goal of capturing areas of potential investigation into gaps in our understanding of neural aging as reflected in physiologic, endocrine, and cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Neural control of magnetic suspension systems

    Science.gov (United States)

    Gray, W. Steven

    1993-01-01

    The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.

  12. Perceived Parenting Mediates Serotonin Transporter Gene (5-HTTLPR) and Neural System Function during Facial Recognition: A Pilot Study

    Science.gov (United States)

    Nishikawa, Saori

    2015-01-01

    This study examined changes in prefrontal oxy-Hb levels measured by NIRS (Near-Infrared Spectroscopy) during a facial-emotion recognition task in healthy adults, testing a mediational/moderational model of these variables. Fifty-three healthy adults (male = 35, female = 18) aged between 22 to 37 years old (mean age = 24.05 years old) provided saliva samples, completed a EMBU questionnaire (Swedish acronym for Egna Minnen Beträffande Uppfostran [My memories of upbringing]), and participated in a facial-emotion recognition task during NIRS recording. There was a main effect of maternal rejection on RoxH (right frontal activation during an ambiguous task), and a gene × environment (G×E) interaction on RoxH, suggesting that individuals who carry the SL or LL genotype and who endorse greater perceived maternal rejection show less right frontal activation than SL/LL carriers with lower perceived maternal rejection. Finally, perceived parenting style played a mediating role in right frontal activation via the 5-HTTLPR genotype. Early-perceived parenting might influence neural activity in an uncertain situation i.e. rating ambiguous faces among individuals with certain genotypes. This preliminary study makes a small contribution to the mapping of an influence of gene and behaviour on the neural system. More such attempts should be made in order to clarify the links. PMID:26418317

  13. Perceived Parenting Mediates Serotonin Transporter Gene (5-HTTLPR and Neural System Function during Facial Recognition: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Saori Nishikawa

    Full Text Available This study examined changes in prefrontal oxy-Hb levels measured by NIRS (Near-Infrared Spectroscopy during a facial-emotion recognition task in healthy adults, testing a mediational/moderational model of these variables. Fifty-three healthy adults (male = 35, female = 18 aged between 22 to 37 years old (mean age = 24.05 years old provided saliva samples, completed a EMBU questionnaire (Swedish acronym for Egna Minnen Beträffande Uppfostran [My memories of upbringing], and participated in a facial-emotion recognition task during NIRS recording. There was a main effect of maternal rejection on RoxH (right frontal activation during an ambiguous task, and a gene × environment (G × E interaction on RoxH, suggesting that individuals who carry the SL or LL genotype and who endorse greater perceived maternal rejection show less right frontal activation than SL/LL carriers with lower perceived maternal rejection. Finally, perceived parenting style played a mediating role in right frontal activation via the 5-HTTLPR genotype. Early-perceived parenting might influence neural activity in an uncertain situation i.e. rating ambiguous faces among individuals with certain genotypes. This preliminary study makes a small contribution to the mapping of an influence of gene and behaviour on the neural system. More such attempts should be made in order to clarify the links.

  14. Echoes in correlated neural systems

    International Nuclear Information System (INIS)

    Helias, M; Tetzlaff, T; Diesmann, M

    2013-01-01

    Correlations are employed in modern physics to explain microscopic and macroscopic phenomena, like the fractional quantum Hall effect and the Mott insulator state in high temperature superconductors and ultracold atoms. Simultaneously probed neurons in the intact brain reveal correlations between their activity, an important measure to study information processing in the brain that also influences the macroscopic signals of neural activity, like the electroencephalogram (EEG). Networks of spiking neurons differ from most physical systems: the interaction between elements is directed, time delayed, mediated by short pulses and each neuron receives events from thousands of neurons. Even the stationary state of the network cannot be described by equilibrium statistical mechanics. Here we develop a quantitative theory of pairwise correlations in finite-sized random networks of spiking neurons. We derive explicit analytic expressions for the population-averaged cross correlation functions. Our theory explains why the intuitive mean field description fails, how the echo of single action potentials causes an apparent lag of inhibition with respect to excitation and how the size of the network can be scaled while maintaining its dynamical state. Finally, we derive a new criterion for the emergence of collective oscillations from the spectrum of the time-evolution propagator. (paper)

  15. Polarized DIS Structure Functions from Neural Networks

    International Nuclear Information System (INIS)

    Del Debbio, L.; Guffanti, A.; Piccione, A.

    2007-01-01

    We present a parametrization of polarized Deep-Inelastic-Scattering (DIS) structure functions based on Neural Networks. The parametrization provides a bias-free determination of the probability measure in the space of structure functions, which retains information on experimental errors and correlations. As an example we discuss the application of this method to the study of the structure function g 1 p (x,Q 2 )

  16. Neural System Prediction and Identification Challenge

    Directory of Open Access Journals (Sweden)

    Ioannis eVlachos

    2013-12-01

    Full Text Available Can we infer the function of a biological neural network (BNN if we know the connectivity and activity of all its constituent neurons? This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC. We provide the connectivity and activity of all neurons and invite participants (i to infer the functions implemented (hard-wired in spiking neural networks (SNNs by stimulating and recording the activity of neurons and, (ii to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.

  17. Neural system prediction and identification challenge.

    Science.gov (United States)

    Vlachos, Ioannis; Zaytsev, Yury V; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind

    2013-01-01

    Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.

  18. Functional neural networks underlying response inhibition in adolescents and adults.

    Science.gov (United States)

    Stevens, Michael C; Kiehl, Kent A; Pearlson, Godfrey D; Calhoun, Vince D

    2007-07-19

    This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by fronto-striatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development.

  19. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    Science.gov (United States)

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.

  20. Potential Mechanisms and Functions of Intermittent Neural Synchronization

    Directory of Open Access Journals (Sweden)

    Sungwoo Ahn

    2017-05-01

    Full Text Available Neural synchronization is believed to play an important role in different brain functions. Synchrony in cortical and subcortical circuits is frequently variable in time and not perfect. Few long intervals of desynchronized dynamics may be functionally different from many short desynchronized intervals although the average synchrony may be the same. Recent analysis of imperfect synchrony in different neural systems reported one common feature: neural oscillations may go out of synchrony frequently, but primarily for a short time interval. This study explores potential mechanisms and functional advantages of this short desynchronizations dynamics using computational neuroscience techniques. We show that short desynchronizations are exhibited in coupled neurons if their delayed rectifier potassium current has relatively large values of the voltage-dependent activation time-constant. The delayed activation of potassium current is associated with generation of quickly-rising action potential. This “spikiness” is a very general property of neurons. This may explain why very different neural systems exhibit short desynchronization dynamics. We also show how the distribution of desynchronization durations may be independent of the synchronization strength. Finally, we show that short desynchronization dynamics requires weaker synaptic input to reach a pre-set synchrony level. Thus, this dynamics allows for efficient regulation of synchrony and may promote efficient formation of synchronous neural assemblies.

  1. Functional model of biological neural networks.

    Science.gov (United States)

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  2. Using function approximation to determine neural network accuracy

    International Nuclear Information System (INIS)

    Wichman, R.F.; Alexander, J.

    2013-01-01

    Many, if not most, control processes demonstrate nonlinear behavior in some portion of their operating range and the ability of neural networks to model non-linear dynamics makes them very appealing for control. Control of high reliability safety systems, and autonomous control in process or robotic applications, however, require accurate and consistent control and neural networks are only approximators of various functions so their degree of approximation becomes important. In this paper, the factors affecting the ability of a feed-forward back-propagation neural network to accurately approximate a non-linear function are explored. Compared to pattern recognition using a neural network for function approximation provides an easy and accurate method for determining the network's accuracy. In contrast to other techniques, we show that errors arising in function approximation or curve fitting are caused by the neural network itself rather than scatter in the data. A method is proposed that provides improvements in the accuracy achieved during training and resulting ability of the network to generalize after training. Binary input vectors provided a more accurate model than with scalar inputs and retraining using a small number of the outlier x,y pairs improved generalization. (author)

  3. Function approximation of tasks by neural networks

    International Nuclear Information System (INIS)

    Gougam, L.A.; Chikhi, A.; Mekideche-Chafa, F.

    2008-01-01

    For several years now, neural network models have enjoyed wide popularity, being applied to problems of regression, classification and time series analysis. Neural networks have been recently seen as attractive tools for developing efficient solutions for many real world problems in function approximation. The latter is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. In a previous contribution, we have used a well known simplified architecture to show that it provides a reasonably efficient, practical and robust, multi-frequency analysis. We have investigated the universal approximation theory of neural networks whose transfer functions are: sigmoid (because of biological relevance), Gaussian and two specified families of wavelets. The latter have been found to be more appropriate to use. The aim of the present contribution is therefore to use a m exican hat wavelet a s transfer function to approximate different tasks relevant and inherent to various applications in physics. The results complement and provide new insights into previously published results on this problem

  4. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  5. Neural correlates of executive functions in patients with obesity.

    Science.gov (United States)

    Ho, Ming-Chou; Chen, Vincent Chin-Hung; Chao, Seh-Huang; Fang, Ching-Tzu; Liu, Yi-Chun; Weng, Jun-Cheng

    2018-01-01

    Obesity is one of the most challenging problems in human health and is recognized as an important risk factor for many chronic diseases. It remains unclear how the neural systems (e.g., the mesolimbic "reward" and the prefrontal "control" neural systems) are correlated with patients' executive function (EF), conceptualized as the integration of "cool" EF and "hot" EF. "Cool" EF refers to relatively abstract, non-affective operations such as inhibitory control and mental flexibility. "Hot" EF refers to motivationally significant affective operations such as affective decision-making. We tried to find the correlation between structural and functional neuroimaging indices and EF in obese patients. The study population comprised seventeen patients with obesity (seven males and 10 females, BMI = 37.99 ± 5.40, age = 31.82 ± 8.75 year-old) preparing to undergo bariatric surgery. We used noninvasive diffusion tensor imaging, generalized q-sampling imaging, and resting-state functional magnetic resonance imaging to examine the neural correlations between structural and functional neuroimaging indices and EF performances in patients with obesity. We reported that many brain areas are correlated to the patients' EF performances. More interestingly, some correlations may implicate the possible associations of EF and the incentive motivational effects of food. The neural correlation between the left precuneus and middle occipital gyrus and inhibitory control may suggest that patients with a better ability to detect appetitive food may have worse inhibitory control. Also, the neural correlation between the superior frontal blade and affective decision-making may suggest that patients' affective decision-making may be associated with the incentive motivational effects of food. Our results provide evidence suggesting neural correlates of EF in patients with obesity.

  6. Dynamical systems, attractors, and neural circuits.

    Science.gov (United States)

    Miller, Paul

    2016-01-01

    Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  7. Transiently chaotic neural networks with piecewise linear output functions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.-S. [Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan (China); Shih, C.-W. [Department of Applied Mathematics, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan (China)], E-mail: cwshih@math.nctu.edu.tw

    2009-01-30

    Admitting both transient chaotic phase and convergent phase, the transiently chaotic neural network (TCNN) provides superior performance than the classical networks in solving combinatorial optimization problems. We derive concrete parameter conditions for these two essential dynamic phases of the TCNN with piecewise linear output function. The confirmation for chaotic dynamics of the system results from a successful application of the Marotto theorem which was recently clarified. Numerical simulation on applying the TCNN with piecewise linear output function is carried out to find the optimal solution of a travelling salesman problem. It is demonstrated that the performance is even better than the previous TCNN model with logistic output function.

  8. Neural neworks in a management information systems

    Directory of Open Access Journals (Sweden)

    Jana Weinlichová

    2009-01-01

    Full Text Available For having retrospection for all over the data which are used, analyzed, evaluated and for a future incident predictions are used Management Information Systems and Business Intelligence. In case of not to be able to apply standard methods of data processing there can be with benefit applied an Artificial Intelligence. In this article will be referred to proofed abilities of Neural Networks. The Neural Networks is supported by many software products related to provide effective solution of manager issues. Those products are given as primary support for manager issues solving. We were tried to find reciprocally between products using Neural Networks and between Management Information Systems for finding a real possibility of applying Neural Networks as a direct part of Management Information Systems (MIS. In the article are presented possibilities to apply Neural Networks on different types of tasks in MIS.

  9. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  10. Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight.

    Science.gov (United States)

    Heglind, Mikael; Cederberg, Anna; Aquino, Jorge; Lucas, Guilherme; Ernfors, Patrik; Enerbäck, Sven

    2005-07-01

    To gain insight into the expression pattern and functional importance of the forkhead transcription factor Foxs1, we constructed a Foxs1-beta-galactosidase reporter gene "knock-in" (Foxs1beta-gal/beta-gal) mouse, in which the wild-type (wt) Foxs1 allele has been inactivated and replaced by a beta-galactosidase reporter gene. Staining for beta-galactosidase activity reveals an expression pattern encompassing neural crest-derived cells, e.g., cranial and dorsal root ganglia as well as several other cell populations in the central nervous system (CNS), most prominently the internal granule layer of cerebellum. Other sites of expression include the lachrymal gland, outer nuclear layer of retina, enteric ganglion neurons, and a subset of thalamic and hypothalamic nuclei. In the CNS, blood vessel-associated smooth muscle cells and pericytes stain positive for Foxs1. Foxs1beta-gal/beta-gal mice perform significantly better (P fat diet, and we speculate that dorsomedial hypothalamic neurons, expressing Foxs1, could play a role in regulating body weight via regulation of sympathetic outflow. In support of this, we observed increased levels of uncoupling protein 1 mRNA in Foxs1beta-gal/beta-gal mice. This points toward a role for Foxs1 in the integration and processing of neuronal signals of importance for energy turnover and motor function.

  11. Neural systems for tactual memories.

    Science.gov (United States)

    Bonda, E; Petrides, M; Evans, A

    1996-04-01

    1. The aim of this study was to investigate the neural systems involved in the memory processing of experiences through touch. 2. Regional cerebral blood flow was measured with positron emission tomography by means of the water bolus H2(15)O methodology in human subjects as they performed tasks involving different levels of tactual memory. In one of the experimental tasks, the subjects had to palpate nonsense shapes to match each one to a previously learned set, thus requiring constant reference to long-term memory. The other experimental task involved judgements of the recent recurrence of shapes during the scanning period. A set of three control tasks was used to control for the type of exploratory movements and sensory processing inherent in the two experimental tasks. 3. Comparisons of the distribution of activity between the experimental and the control tasks were carried out by means of the subtraction method. In relation to the control conditions, the two experimental tasks requiring memory resulted in significant changes within the posteroventral insula and the central opercular region. In addition, the task requiring recall from long-term memory yielded changes in the perirhinal cortex. 4. The above findings demonstrated that a ventrally directed parietoinsular pathway, leading to the posteroventral insula and the perirhinal cortex, constitutes a system by which long-lasting representations of tactual experiences are formed. It is proposed that the posteroventral insula is involved in tactual feature analysis, by analogy with the similar role of the inferotemporal cortex in vision, whereas the perirhinal cortex is further involved in the integration of these features into long-lasting representations of somatosensory experiences.

  12. Psychedelics Promote Structural and Functional Neural Plasticity

    Directory of Open Access Journals (Sweden)

    Calvin Ly

    2018-06-01

    Full Text Available Summary: Atrophy of neurons in the prefrontal cortex (PFC plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders. : Ly et al. demonstrate that psychedelic compounds such as LSD, DMT, and DOI increase dendritic arbor complexity, promote dendritic spine growth, and stimulate synapse formation. These cellular effects are similar to those produced by the fast-acting antidepressant ketamine and highlight the potential of psychedelics for treating depression and related disorders. Keywords: neural plasticity, psychedelic, spinogenesis, synaptogenesis, depression, LSD, DMT, ketamine, noribogaine, MDMA

  13. How age of bilingual exposure can change the neural systems for language in the developing brain: a functional near infrared spectroscopy investigation of syntactic processing in monolingual and bilingual children.

    Science.gov (United States)

    Jasinska, K K; Petitto, L A

    2013-10-01

    Is the developing bilingual brain fundamentally similar to the monolingual brain (e.g., neural resources supporting language and cognition)? Or, does early-life bilingual language experience change the brain? If so, how does age of first bilingual exposure impact neural activation for language? We compared how typically-developing bilingual and monolingual children (ages 7-10) and adults recruit brain areas during sentence processing using functional Near Infrared Spectroscopy (fNIRS) brain imaging. Bilingual participants included early-exposed (bilingual exposure from birth) and later-exposed individuals (bilingual exposure between ages 4-6). Both bilingual children and adults showed greater neural activation in left-hemisphere classic language areas, and additionally, right-hemisphere homologues (Right Superior Temporal Gyrus, Right Inferior Frontal Gyrus). However, important differences were observed between early-exposed and later-exposed bilinguals in their earliest-exposed language. Early bilingual exposure imparts fundamental changes to classic language areas instead of alterations to brain regions governing higher cognitive executive functions. However, age of first bilingual exposure does matter. Later-exposed bilinguals showed greater recruitment of the prefrontal cortex relative to early-exposed bilinguals and monolinguals. The findings provide fascinating insight into the neural resources that facilitate bilingual language use and are discussed in terms of how early-life language experiences can modify the neural systems underlying human language processing. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Functional Modeling of Neural-Glia Interaction

    DEFF Research Database (Denmark)

    Postnov, D.E.; Brazhe, N.A.; Sosnovtseva, Olga

    2012-01-01

    Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network.......Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network....

  15. Genetic learning in rule-based and neural systems

    Science.gov (United States)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  16. Apraxia: neural mechanisms and functional recovery.

    Science.gov (United States)

    Foundas, Anne L

    2013-01-01

    Apraxia is a cognitive-motor disorder that impacts the performance of learned, skilled movements. Limb apraxia, which is the topic of this chapter, is specific to disordered movements of the upper limb that cannot be explained by weakness, sensory loss, abnormalities of posture/tone/movement, or a lack of understanding/cooperation. Patients with limb apraxia have deficits in the control or programming of the spatial-temporal organization and sequencing of goal-directed movements. People with limb apraxia can have difficulty manipulating and using tools including cutting with scissors or making a cup of coffee. Two praxis systems have been identified including a production system (action plan and production) and a conceptual system (action knowledge). Dysfunction of the former produces ideomotor apraxia (e.g., difficulty using scissors), and dysfunction of the latter induces ideational apraxia (e.g., difficulty making a cup of coffee). Neural mechanisms, including how to evaluate apraxia, will be presented in the context of these two praxis systems. Information about these praxis systems, including the nature of the disordered limb movement, is important for rehabilitation clinicians to understand for several reasons. First, limb apraxia is a common disorder. It is common in patients who have had a stroke, in neurodegenerative disorders like Alzheimer disease, in traumatic brain injury, and in developmental disorders. Second, limb apraxia has real world consequences. Patients with limb apraxia have difficulty managing activities of daily living. This factor impacts healthcare costs and contributes to increased caregiver burden. Unfortunately, very few treatments have been systematically studied in large numbers of patients with limb apraxia. This overview of limb apraxia should help rehabilitation clinicians to educate patients and caregivers about this debilitating problem, and should facilitate the development of better treatments that could benefit many people in

  17. High speed digital interfacing for a neural data acquisition system

    Directory of Open Access Journals (Sweden)

    Bahr Andreas

    2016-09-01

    Full Text Available Diseases like schizophrenia and genetic epilepsy are supposed to be caused by disorders in the early development of the brain. For the further investigation of these relationships a custom designed application specific integrated circuit (ASIC was developed that is optimized for the recording from neonatal mice [Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. 16 Channel Neural Recording Integrated Circuit with SPI Interface and Error Correction Coding. Proc. 9th BIOSTEC 2016. Biodevices: Rome, Italy, 2016; 1: 263; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. Development of a neural recording mixed signal integrated circuit for biomedical signal acquisition. Biomed Eng Biomed Tech Abstracts 2015; 60(S1: 298–299; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider WH. 16 Channel Neural Recording Mixed Signal ASIC. CDNLive EMEA 2015 Conference Proceedings, 2015.]. To enable the live display of the neural signals a multichannel neural data acquisition system with live display functionality is presented. It implements a high speed data transmission from the ASIC to a computer with a live display functionality. The system has been successfully implemented and was used in a neural recording of a head-fixed mouse.

  18. Neural neworks in a management information systems

    OpenAIRE

    Jana Weinlichová; Michael Štencl

    2009-01-01

    For having retrospection for all over the data which are used, analyzed, evaluated and for a future incident predictions are used Management Information Systems and Business Intelligence. In case of not to be able to apply standard methods of data processing there can be with benefit applied an Artificial Intelligence. In this article will be referred to proofed abilities of Neural Networks. The Neural Networks is supported by many software products related to provide effective solution of ma...

  19. Representation of neural networks as Lotka-Volterra systems

    International Nuclear Information System (INIS)

    Moreau, Yves; Vandewalle, Joos; Louies, Stephane; Brenig, Leon

    1999-01-01

    We study changes of coordinates that allow the representation of the ordinary differential equations describing continuous-time recurrent neural networks into differential equations describing predator-prey models--also called Lotka-Volterra systems. We transform the equations for the neural network first into quasi-monomial form, where we express the vector field of the dynamical system as a linear combination of products of powers of the variables. In practice, this transformation is possible only if the activation function is the hyperbolic tangent or the logistic sigmoied. From this quasi-monomial form, we can directly transform the system further into Lotka-Volterra equations. The resulting Lotka-Volterra system is of higher dimension than the original system, but the behavior of its first variables is equivalent to the behavior of the original neural network

  20. Neuronal spike sorting based on radial basis function neural networks

    Directory of Open Access Journals (Sweden)

    Taghavi Kani M

    2011-02-01

    Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.

  1. Radial basis function neural network in fault detection of automotive ...

    African Journals Online (AJOL)

    Radial basis function neural network in fault detection of automotive engines. ... Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults ... Keywords: Automotive engine, independent RBFNN model, RBF neural network, fault detection

  2. Application of neural networks in CRM systems

    Directory of Open Access Journals (Sweden)

    Bojanowska Agnieszka

    2017-01-01

    Full Text Available The central aim of this study is to investigate how to apply artificial neural networks in Customer Relationship Management (CRM. The paper presents several business applications of neural networks in software systems designed to aid CRM, e.g. in deciding on the profitability of building a relationship with a given customer. Furthermore, a framework for a neural-network based CRM software tool is developed. Building beneficial relationships with customers is generating considerable interest among various businesses, and is often mentioned as one of the crucial objectives of enterprises, next to their key aim: to bring satisfactory profit. There is a growing tendency among businesses to invest in CRM systems, which together with an organisational culture of a company aid managing customer relationships. It is the sheer amount of gathered data as well as the need for constant updating and analysis of this breadth of information that may imply the suitability of neural networks for the application in question. Neural networks exhibit considerably higher computational capabilities than sequential calculations because the solution to a problem is obtained without the need for developing a special algorithm. In the majority of presented CRM applications neural networks constitute and are presented as a managerial decision-taking optimisation tool.

  3. A quantitative overview of biophysical forces impinging on neural function

    International Nuclear Information System (INIS)

    Mueller, Jerel K; Tyler, William J

    2014-01-01

    The fundamentals of neuronal membrane excitability are globally described using the Hodgkin-Huxley (HH) model. The HH model, however, does not account for a number of biophysical phenomena associated with action potentials or propagating nerve impulses. Physical mechanisms underlying these processes, such as reversible heat transfer and axonal swelling, have been compartmentalized and separately investigated to reveal neuronal activity is not solely influenced by electrical or biochemical factors. Instead, mechanical forces and thermodynamics also govern neuronal excitability and signaling. To advance our understanding of neuronal function and dysfunction, compartmentalized analyses of electrical, chemical, and mechanical processes need to be revaluated and integrated into more comprehensive theories. The present perspective is intended to provide a broad overview of biophysical forces that can influence neural function, but which have been traditionally underappreciated in neuroscience. Further, several examples where mechanical forces have been shown to exert their actions on nervous system development, signaling, and plasticity are highlighted to underscore their importance in sculpting neural function. By considering the collective actions of biophysical forces influencing neuronal activity, our working models can be expanded and new paradigms can be applied to the investigation and characterization of brain function and dysfunction. (topical review)

  4. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  5. Theory of Neural Information Processing Systems

    International Nuclear Information System (INIS)

    Galla, Tobias

    2006-01-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 10 11 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kuehn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  6. AKT signaling displays multifaceted functions in neural crest development.

    Science.gov (United States)

    Sittewelle, Méghane; Monsoro-Burq, Anne H

    2018-05-31

    AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  8. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  9. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  10. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets.

    Science.gov (United States)

    Sengupta, Abhronil; Shim, Yong; Roy, Kaushik

    2016-12-01

    Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an All-Spin Artificial Neural Network where a single spintronic device acts as the basic building block of the system. The device offers a direct mapping to synapse and neuron functionalities in the brain while inter-layer network communication is accomplished via CMOS transistors. To the best of our knowledge, this is the first demonstration of a neural architecture where a single nanoelectronic device is able to mimic both neurons and synapses. The ultra-low voltage operation of low resistance magneto-metallic neurons enables the low-voltage operation of the array of spintronic synapses, thereby leading to ultra-low power neural architectures. Device-level simulations, calibrated to experimental results, was used to drive the circuit and system level simulations of the neural network for a standard pattern recognition problem. Simulation studies indicate energy savings by  ∼  100× in comparison to a corresponding digital/analog CMOS neuron implementation.

  12. Evaluating neural networks and artificial intelligence systems

    Science.gov (United States)

    Alberts, David S.

    1994-02-01

    Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.

  13. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  14. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    Science.gov (United States)

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance

  15. Dopamine system: Manager of neural pathways

    Directory of Open Access Journals (Sweden)

    Simon eHong

    2013-12-01

    Full Text Available There are a growing number of roles that midbrain dopamine (DA neurons assume, such as, reward, aversion, alerting and vigor. Here I propose a theory that may be able to explain why the suggested functions of DA came about. It has been suggested that largely parallel cortico-basal ganglia-thalamo-cortico loops exist to control different aspects of behavior. I propose that (1 the midbrain DA system is organized in a similar manner, with different groups of DA neurons corresponding to these parallel neural pathways (NPs. The DA system can be viewed as the manager of these parallel NPs in that it recruits and activates only the task-relevant NPs when they are needed. It is likely that the functions of those NPs that have been consistently activated by the corresponding DA groups are facilitated. I also propose that (2 there are two levels of DA roles: the How and What roles. The How role is encoded in tonic and phasic DA neuron firing patterns and gives a directive to its target NP: how vigorously its function needs to be carried out. The tonic DA firing is to maintain a certain level of DA in the target NPs to support their expected behavioral and mental functions; it is only when a sudden unexpected boost or suppression of activity is required by the relevant target NP that DA neurons in the corresponding NP act in a phasic manner. The What role is the implementational aspect of the role of DA in the target NP, such as binding to D1 receptors to boost working memory. This What aspect of DA explains why DA seems to assume different functions depending on the region of the brain in which it is involved. In terms of the role of the lateral habenula (LHb, the LHb is expected to suppress maladaptive behaviors and mental processes by controlling the DA system. The demand-based smart management by the DA system may have given animals an edge in evolution with adaptive behaviors and a better survival rate in resource-scarce situations.

  16. Matrix regulators in neural stem cell functions.

    Science.gov (United States)

    Wade, Anna; McKinney, Andrew; Phillips, Joanna J

    2014-08-01

    Neural stem/progenitor cells (NSPCs) reside within a complex and dynamic extracellular microenvironment, or niche. This niche regulates fundamental aspects of their behavior during normal neural development and repair. Precise yet dynamic regulation of NSPC self-renewal, migration, and differentiation is critical and must persist over the life of an organism. In this review, we summarize some of the major components of the NSPC niche and provide examples of how cues from the extracellular matrix regulate NSPC behaviors. We use proteoglycans to illustrate the many diverse roles of the niche in providing temporal and spatial regulation of cellular behavior. The NSPC niche is comprised of multiple components that include; soluble ligands, such as growth factors, morphogens, chemokines, and neurotransmitters, the extracellular matrix, and cellular components. As illustrated by proteoglycans, a major component of the extracellular matrix, the NSPC, niche provides temporal and spatial regulation of NSPC behaviors. The factors that control NSPC behavior are vital to understand as we attempt to modulate normal neural development and repair. Furthermore, an improved understanding of how these factors regulate cell proliferation, migration, and differentiation, crucial for malignancy, may reveal novel anti-tumor strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Adaptive Neural Control for a Class of Outputs Time-Delay Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Ruliang Wang

    2012-01-01

    Full Text Available This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.

  18. A Simple Quantum Neural Net with a Periodic Activation Function

    OpenAIRE

    Daskin, Ammar

    2018-01-01

    In this paper, we propose a simple neural net that requires only $O(nlog_2k)$ number of qubits and $O(nk)$ quantum gates: Here, $n$ is the number of input parameters, and $k$ is the number of weights applied to these parameters in the proposed neural net. We describe the network in terms of a quantum circuit, and then draw its equivalent classical neural net which involves $O(k^n)$ nodes in the hidden layer. Then, we show that the network uses a periodic activation function of cosine values o...

  19. Analysis of complex systems using neural networks

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  20. Collaborative Recurrent Neural Networks forDynamic Recommender Systems

    Science.gov (United States)

    2016-11-22

    JMLR: Workshop and Conference Proceedings 63:366–381, 2016 ACML 2016 Collaborative Recurrent Neural Networks for Dynamic Recommender Systems Young...an unprece- dented scale. Although such activity logs are abundantly available, most approaches to recommender systems are based on the rating...Recurrent Neural Network, Recommender System , Neural Language Model, Collaborative Filtering 1. Introduction As ever larger parts of the population

  1. Effects of sleep deprivation on neural functioning: an integrative review

    NARCIS (Netherlands)

    Boonstra, T.W.; Stins, J.F.; Daffertshofer, A.; Beek, P.J.

    2007-01-01

    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of

  2. IMPLEMENTATION OF NEURAL - CRYPTOGRAPHIC SYSTEM USING FPGA

    Directory of Open Access Journals (Sweden)

    KARAM M. Z. OTHMAN

    2011-08-01

    Full Text Available Modern cryptography techniques are virtually unbreakable. As the Internet and other forms of electronic communication become more prevalent, electronic security is becoming increasingly important. Cryptography is used to protect e-mail messages, credit card information, and corporate data. The design of the cryptography system is a conventional cryptography that uses one key for encryption and decryption process. The chosen cryptography algorithm is stream cipher algorithm that encrypt one bit at a time. The central problem in the stream-cipher cryptography is the difficulty of generating a long unpredictable sequence of binary signals from short and random key. Pseudo random number generators (PRNG have been widely used to construct this key sequence. The pseudo random number generator was designed using the Artificial Neural Networks (ANN. The Artificial Neural Networks (ANN providing the required nonlinearity properties that increases the randomness statistical properties of the pseudo random generator. The learning algorithm of this neural network is backpropagation learning algorithm. The learning process was done by software program in Matlab (software implementation to get the efficient weights. Then, the learned neural network was implemented using field programmable gate array (FPGA.

  3. Chronic stress and neural function: accounting for sex and age.

    Science.gov (United States)

    Luine, V N; Beck, K D; Bowman, R E; Frankfurt, M; Maclusky, N J

    2007-10-01

    Cognitive responses to stress follow the temporally dependent pattern originally established by Selye (1) wherein short-term stressors elicit adaptive responses whereas continued stress (chronic) results in maladaptive changes--deleterious effects on physiological systems and impaired cognition. However, this pattern for cognitive effects appears to apply to only half the population (males) and, more specifically, to young, adult males. Females show different cognitive responses to stress. In contrast to impaired cognition in males after chronic stress, female rodents show enhanced performance on the same memory tasks after the same stress. Not only cognition, but anxiety, shows sex-dependent changes following chronic stress--stress is anxiolytic in males and anxiogenic in females. Moreover, behavioral responses to chronic stress are different in developing as well as aging subjects (both sexes) as compared to adults. In aged rats, chronic stress enhances recognition memory in both sexes, does not alter spatial memory, and anxiety effects are opposite to young adults. When pregnant dams are exposed to chronic stress, at adulthood the offspring display yet different consequences of stress on anxiety and cognition, and, in contrast to adulthood when the behavioral effects of stress are reversible, prenatal stress effects appear enduring. Changing levels of estradiol in the sexes over the lifespan appear to contribute to the differences in response to stress. Thus, theories of stress dependent modulations in CNS function--developed solely in male models, focused on peripheral physiological processes and tested in adults--may require revision when applied to a more diverse population (age- and sex-wise) at least in relation to the neural functions of cognition and anxiety. Moreover, these results suggest that other stressors and neural functions should be investigated to determine whether age, sex and gonadal hormones also have an impact.

  4. Simulating neural systems with Xyce.

    Energy Technology Data Exchange (ETDEWEB)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  5. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    Science.gov (United States)

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  6. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    Science.gov (United States)

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  7. The specialization of function: cognitive and neural perspectives.

    Science.gov (United States)

    Mahon, Bradford Z; Cantlon, Jessica F

    2011-05-01

    A unifying theme that cuts across all research areas and techniques in the cognitive and brain sciences is whether there is specialization of function at levels of processing that are "abstracted away" from sensory inputs and motor outputs. Any theory that articulates claims about specialization of function in the mind/brain confronts the following types of interrelated questions, each of which carries with it certain theoretical commitments. What methods are appropriate for decomposing complex cognitive and neural processes into their constituent parts? How do cognitive processes map onto neural processes, and at what resolution are they related? What types of conclusions can be drawn about the structure of mind from dissociations observed at the neural level, and vice versa? The contributions that form this Special Issue of Cognitive Neuropsychology represent recent reflections on these and other issues from leading researchers in different areas of the cognitive and brain sciences.

  8. Dynamic artificial neural networks with affective systems.

    Directory of Open Access Journals (Sweden)

    Catherine D Schuman

    Full Text Available Artificial neural networks (ANNs are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP and long term depression (LTD, and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.

  9. Neural computing thermal comfort index for HVAC systems

    International Nuclear Information System (INIS)

    Atthajariyakul, S.; Leephakpreeda, T.

    2005-01-01

    The primary purpose of a heating, ventilating and air conditioning (HVAC) system within a building is to make occupants comfortable. Without real time determination of human thermal comfort, it is not feasible for the HVAC system to yield controlled conditions of the air for human comfort all the time. This paper presents a practical approach to determine human thermal comfort quantitatively via neural computing. The neural network model allows real time determination of the thermal comfort index, where it is not practical to compute the conventional predicted mean vote (PMV) index itself in real time. The feed forward neural network model is proposed as an explicit function of the relation of the PMV index to accessible variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity, clothing insulation and human activity. An experiment in an air conditioned office room was done to demonstrate the effectiveness of the proposed methodology. The results show good agreement between the thermal comfort index calculated from the neural network model in real time and those calculated from the conventional PMV model

  10. Kernel Function Tuning for Single-Layer Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Vidnerová, Petra; Neruda, Roman

    -, accepted 28.11. 2017 (2018) ISSN 2278-0149 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : single-layer neural networks * kernel methods * kernel function * optimisation Subject RIV: IN - Informatics, Computer Science http://www.ijmerr.com/

  11. Effects of stress on gastrointestinal function: interactions of neural and endocrine systems in mediating stress-induced intestinal dysfunction in rats

    International Nuclear Information System (INIS)

    Williams, C.L.

    1987-01-01

    The etiology of stress-induced intestinal dysfunction is completely unresolved, and the lack of an appropriate animal model has hindered studies of causality. We compared a number of stressors and their resultant effects on intestinal transit, a measure of the propulsive motor activity of the gut, in the rat. We found that the response of the intestine to stress, and the neural systems activated by stress, were dependent on the type and duration of stress, as well as the animal strain, and gender. We developed a model, acute wrapping restraint stress, to fully characterize the effects of stress on intestinal transit. Wrap restraint stress is a nonulcerogenic model in which rats are subjected to acute restraint by wrapping them in a harness of paper tape to restrict, but not prevent movement of the upper body and forelimbs. Transit was evaluated by the geometric center method, in which a radiomarker ( 51 Cr) is instilled directly into the proximal duodenum and proximal colon via a surgically placed intestinal cannula, in fasted, adult female Sprague Dawley rats

  12. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  13. Density functional and neural network analysis

    DEFF Research Database (Denmark)

    Jalkanen, K. J.; Suhai, S.; Bohr, Henrik

    1997-01-01

    Density functional theory (DFT) calculations have been carried out for hydrated L-alanine, L-alanyl-L-alanine and N-acetyl L-alanine N'-methylamide and examined with respect to the effect of water on the structure, the vibrational frequencies, vibrational absorption (VA) and vibrational circular...

  14. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    Science.gov (United States)

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  15. Functional neural circuits that underlie developmental stuttering.

    Directory of Open Access Journals (Sweden)

    Jianping Qiao

    Full Text Available The aim of this study was to identify differences in functional and effective brain connectivity between persons who stutter (PWS and typically developing (TD fluent speakers, and to assess whether those differences can serve as biomarkers to distinguish PWS from TD controls. We acquired resting-state functional magnetic resonance imaging data in 44 PWS and 50 TD controls. We then used Independent Component Analysis (ICA together with Hierarchical Partner Matching (HPM to identify networks of robust, functionally connected brain regions that were highly reproducible across participants, and we assessed whether connectivity differed significantly across diagnostic groups. We then used Granger Causality (GC to study the causal interactions (effective connectivity between the regions that ICA and HPM identified. Finally, we used a kernel support vector machine to assess how well these measures of functional connectivity and granger causality discriminate PWS from TD controls. Functional connectivity was stronger in PWS compared with TD controls in the supplementary motor area (SMA and primary motor cortices, but weaker in inferior frontal cortex (IFG, Broca's area, caudate, putamen, and thalamus. Additionally, causal influences were significantly weaker in PWS from the IFG to SMA, and from the basal ganglia to IFG through the thalamus, compared to TD controls. ICA and GC indices together yielded an accuracy of 92.7% in classifying PWS from TD controls. Our findings suggest the presence of dysfunctional circuits that support speech planning and timing cues for the initiation and execution of motor sequences in PWS. Our high accuracy of classification further suggests that these aberrant brain features may serve as robust biomarkers for PWS.

  16. Functional neural circuits that underlie developmental stuttering.

    Science.gov (United States)

    Qiao, Jianping; Wang, Zhishun; Zhao, Guihu; Huo, Yuankai; Herder, Carl L; Sikora, Chamonix O; Peterson, Bradley S

    2017-01-01

    The aim of this study was to identify differences in functional and effective brain connectivity between persons who stutter (PWS) and typically developing (TD) fluent speakers, and to assess whether those differences can serve as biomarkers to distinguish PWS from TD controls. We acquired resting-state functional magnetic resonance imaging data in 44 PWS and 50 TD controls. We then used Independent Component Analysis (ICA) together with Hierarchical Partner Matching (HPM) to identify networks of robust, functionally connected brain regions that were highly reproducible across participants, and we assessed whether connectivity differed significantly across diagnostic groups. We then used Granger Causality (GC) to study the causal interactions (effective connectivity) between the regions that ICA and HPM identified. Finally, we used a kernel support vector machine to assess how well these measures of functional connectivity and granger causality discriminate PWS from TD controls. Functional connectivity was stronger in PWS compared with TD controls in the supplementary motor area (SMA) and primary motor cortices, but weaker in inferior frontal cortex (IFG, Broca's area), caudate, putamen, and thalamus. Additionally, causal influences were significantly weaker in PWS from the IFG to SMA, and from the basal ganglia to IFG through the thalamus, compared to TD controls. ICA and GC indices together yielded an accuracy of 92.7% in classifying PWS from TD controls. Our findings suggest the presence of dysfunctional circuits that support speech planning and timing cues for the initiation and execution of motor sequences in PWS. Our high accuracy of classification further suggests that these aberrant brain features may serve as robust biomarkers for PWS.

  17. Functional neural circuits that underlie developmental stuttering

    Science.gov (United States)

    Zhao, Guihu; Huo, Yuankai; Herder, Carl L.; Sikora, Chamonix O.; Peterson, Bradley S.

    2017-01-01

    The aim of this study was to identify differences in functional and effective brain connectivity between persons who stutter (PWS) and typically developing (TD) fluent speakers, and to assess whether those differences can serve as biomarkers to distinguish PWS from TD controls. We acquired resting-state functional magnetic resonance imaging data in 44 PWS and 50 TD controls. We then used Independent Component Analysis (ICA) together with Hierarchical Partner Matching (HPM) to identify networks of robust, functionally connected brain regions that were highly reproducible across participants, and we assessed whether connectivity differed significantly across diagnostic groups. We then used Granger Causality (GC) to study the causal interactions (effective connectivity) between the regions that ICA and HPM identified. Finally, we used a kernel support vector machine to assess how well these measures of functional connectivity and granger causality discriminate PWS from TD controls. Functional connectivity was stronger in PWS compared with TD controls in the supplementary motor area (SMA) and primary motor cortices, but weaker in inferior frontal cortex (IFG, Broca’s area), caudate, putamen, and thalamus. Additionally, causal influences were significantly weaker in PWS from the IFG to SMA, and from the basal ganglia to IFG through the thalamus, compared to TD controls. ICA and GC indices together yielded an accuracy of 92.7% in classifying PWS from TD controls. Our findings suggest the presence of dysfunctional circuits that support speech planning and timing cues for the initiation and execution of motor sequences in PWS. Our high accuracy of classification further suggests that these aberrant brain features may serve as robust biomarkers for PWS. PMID:28759567

  18. Neural Computations in a Dynamical System with Multiple Time Scales.

    Science.gov (United States)

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.

  19. Statistical Physics of Neural Systems with Nonadditive Dendritic Coupling

    Directory of Open Access Journals (Sweden)

    David Breuer

    2014-03-01

    Full Text Available How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such nonadditive dendritic processing on single-neuron responses and the performance of associative-memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality.

  20. Intranasal oxytocin modulates neural functional connectivity during human social interaction.

    Science.gov (United States)

    Rilling, James K; Chen, Xiangchuan; Chen, Xu; Haroon, Ebrahim

    2018-02-10

    Oxytocin (OT) modulates social behavior in primates and many other vertebrate species. Studies in non-primate animals have demonstrated that, in addition to influencing activity within individual brain areas, OT influences functional connectivity across networks of areas involved in social behavior. Previously, we used fMRI to image brain function in human subjects during a dyadic social interaction task following administration of either intranasal oxytocin (INOT) or placebo, and analyzed the data with a standard general linear model. Here, we conduct an extensive re-analysis of these data to explore how OT modulates functional connectivity across a neural network that animal studies implicate in social behavior. OT induced widespread increases in functional connectivity in response to positive social interactions among men and widespread decreases in functional connectivity in response to negative social interactions among women. Nucleus basalis of Meynert, an important regulator of selective attention and motivation with a particularly high density of OT receptors, had the largest number of OT-modulated connections. Regions known to receive mesolimbic dopamine projections such as the nucleus accumbens and lateral septum were also hubs for OT effects on functional connectivity. Our results suggest that the neural mechanism by which OT influences primate social cognition may include changes in patterns of activity across neural networks that regulate social behavior in other animals. © 2018 Wiley Periodicals, Inc.

  1. Neural networks for feedback feedforward nonlinear control systems.

    Science.gov (United States)

    Parisini, T; Zoppoli, R

    1994-01-01

    This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.

  2. Dynamics of a neural system with a multiscale architecture

    Science.gov (United States)

    Breakspear, Michael; Stam, Cornelis J

    2005-01-01

    The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448

  3. Response variance in functional maps: neural darwinism revisited.

    Directory of Open Access Journals (Sweden)

    Hirokazu Takahashi

    Full Text Available The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  4. Response variance in functional maps: neural darwinism revisited.

    Science.gov (United States)

    Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei

    2013-01-01

    The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  5. Psychedelics Promote Structural and Functional Neural Plasticity.

    Science.gov (United States)

    Ly, Calvin; Greb, Alexandra C; Cameron, Lindsay P; Wong, Jonathan M; Barragan, Eden V; Wilson, Paige C; Burbach, Kyle F; Soltanzadeh Zarandi, Sina; Sood, Alexander; Paddy, Michael R; Duim, Whitney C; Dennis, Megan Y; McAllister, A Kimberley; Ori-McKenney, Kassandra M; Gray, John A; Olson, David E

    2018-06-12

    Atrophy of neurons in the prefrontal cortex (PFC) plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Neural substrate expansion for the restoration of brain function

    Directory of Open Access Journals (Sweden)

    Han-Chiao Isaac Chen

    2016-01-01

    Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.

  7. Neural systems for preparatory control of imitation.

    Science.gov (United States)

    Cross, Katy A; Iacoboni, Marco

    2014-01-01

    Humans have an automatic tendency to imitate others. Previous studies on how we control these tendencies have focused on reactive mechanisms, where inhibition of imitation is implemented after seeing an action. This work suggests that reactive control of imitation draws on at least partially specialized mechanisms. Here, we examine preparatory imitation control, where advance information allows control processes to be employed before an action is observed. Drawing on dual route models from the spatial compatibility literature, we compare control processes using biological and non-biological stimuli to determine whether preparatory imitation control recruits specialized neural systems that are similar to those observed in reactive imitation control. Results indicate that preparatory control involves anterior prefrontal, dorsolateral prefrontal, posterior parietal and early visual cortices regardless of whether automatic responses are evoked by biological (imitative) or non-biological stimuli. These results indicate both that preparatory control of imitation uses general mechanisms, and that preparatory control of imitation draws on different neural systems from reactive imitation control. Based on the regions involved, we hypothesize that preparatory control is implemented through top-down attentional biasing of visual processing.

  8. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  9. Monitoring nuclear reactor systems using neural networks and fuzzy logic

    International Nuclear Information System (INIS)

    Ikonomopoulos, A.; Tsoukalas, L.H.; Uhrig, R.E.; Mullens, J.A.

    1991-01-01

    A new approach is presented that demonstrates the potential of trained artificial neural networks (ANNs) as generators of membership functions for the purpose of monitoring nuclear reactor systems. ANN's provide a complex-to-simple mapping of reactor parameters in a process analogous to that of measurement. Through such ''virtual measurements'' the value of parameters with operational significance, e.g., control-valve-disk-position, valve-line-up or performance can be determined. In the methodology presented the output of a virtual measuring device is a set of membership functions which independently represent different states of the system. Utilizing a fuzzy logic representation offers the advantage of describing the state of the system in a condensed form, developed through linguistic descriptions and convenient for application in monitoring, diagnostics and generally control algorithms. The developed methodology is applied to the problem of measuring the disk position of the secondary flow control valve of an experimental reactor using data obtained during a start-up. The enhanced noise tolerance of the methodology is clearly demonstrated as well as a method for selecting the actual output. The results suggest that it is possible to construct virtual measuring devices through artificial neural networks mapping dynamic time series to a set of membership functions and thus enhance the capability of monitoring systems. 8 refs., 11 figs., 1 tab

  10. Monitoring nuclear reactor systems using neural networks and fuzzy logic

    International Nuclear Information System (INIS)

    Ikonomopoulos, A.; Tsoukalas, L.H.; Uhrig, R.E.; Mullens, J.A.

    1992-01-01

    A new approach is presented that demonstrates the potential of trained artificial neural networks (ANNs) as generators of membership functions for the purpose of monitoring nuclear reactor systems. ANN's provide a complex-to-simple mapping of reactor parameters in a process analogous to that of measurement. Through such virtual measurements the value of parameters with operational significance, e.g., control-valve-disk-position, valve-line-up-or performance can be determined. In the methodology presented the output of virtual measuring device is a set of membership functions which independently represent different states of the system. Utilizing a fuzzy logic representation offers the advantage of describing the state of the system in a condensed form, developed through linguistic descriptions and convenient for application in monitoring, diagnostics and generally control algorithms. The developed methodology is applied to the problem of measuring the disk position of the secondary flow control is clearly demonstrated as well as a method for selecting the actual output. The results suggest that it is possible to construct virtual measuring devices through artificial neural networks mapping dynamic time series to a set of membership functions and thus enhance the capability of monitoring systems

  11. Modelling and prediction for chaotic fir laser attractor using rational function neural network.

    Science.gov (United States)

    Cho, S

    2001-02-01

    Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.

  12. Examination of neural systems sub-serving facebook "addiction".

    Science.gov (United States)

    Turel, Ofir; He, Qinghua; Xue, Gui; Xiao, Lin; Bechara, Antoine

    2014-12-01

    Because addictive behaviors typically result from violated homeostasis of the impulsive (amygdala-striatal) and inhibitory (prefrontal cortex) brain systems, this study examined whether these systems sub-serve a specific case of technology-related addiction, namely Facebook "addiction." Using a go/no-go paradigm in functional MRI settings, the study examined how these brain systems in 20 Facebook users (M age = 20.3 yr., SD = 1.3, range = 18-23) who completed a Facebook addiction questionnaire, responded to Facebook and less potent (traffic sign) stimuli. The findings indicated that at least at the examined levels of addiction-like symptoms, technology-related "addictions" share some neural features with substance and gambling addictions, but more importantly they also differ from such addictions in their brain etiology and possibly pathogenesis, as related to abnormal functioning of the inhibitory-control brain system.

  13. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    Science.gov (United States)

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  14. Self-tuning control of a nuclear reactor using a Gaussian function neural network

    International Nuclear Information System (INIS)

    Park, M.G.; Cho, N.Z.

    1995-01-01

    A self-tuning control method is described for a nuclear reactor system that requires only a set of input-output measurements. The use of an artificial neural network in nonlinear model-based adaptive control, both as a plant model and a controller, is investigated. A neural network called a Gaussian function network is used for one-step-ahead predictive control to track the desired plant output. The effectiveness of the controller is demonstrated by the application of the method to the power tracking control of the Korea Multipurpose Research Reactor

  15. Neural Network for Optimization of Existing Control Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1995-01-01

    The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....

  16. Programmed Cell Death and Caspase Functions During Neural Development.

    Science.gov (United States)

    Yamaguchi, Yoshifumi; Miura, Masayuki

    2015-01-01

    Programmed cell death (PCD) is a fundamental component of nervous system development. PCD serves as the mechanism for quantitative matching of the number of projecting neurons and their target cells through direct competition for neurotrophic factors in the vertebrate peripheral nervous system. In addition, PCD plays roles in regulating neural cell numbers, canceling developmental errors or noise, and tissue remodeling processes. These findings are mainly derived from genetic studies that prevent cells from dying by apoptosis, which is a major form of PCD and is executed by activation of evolutionarily conserved cysteine protease caspases. Recent studies suggest that caspase activation can be coordinated in time and space at multiple levels, which might underlie nonapoptotic roles of caspases in neural development in addition to apoptotic roles. © 2015 Elsevier Inc. All rights reserved.

  17. A Sliding Mode Control-based on a RBF Neural Network for Deburring Industry Robotic Systems

    OpenAIRE

    Tao, Yong; Zheng, Jiaqi; Lin, Yuanchang

    2016-01-01

    A sliding mode control method based on radial basis function (RBF) neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC) has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network par...

  18. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  19. A neural network approach to the study of dynamics and structure of molecular systems

    International Nuclear Information System (INIS)

    Getino, C.; Sumpter, B.G.; Noid, D.W.

    1994-01-01

    Neural networks are used to study intramolecular energy flow in molecular systems (tetratomics to macromolecules), developing new techniques for efficient analysis of data obtained from molecular-dynamics and quantum mechanics calculations. Neural networks can map phase space points to intramolecular vibrational energies along a classical trajectory (example of complicated coordinate transformation), producing reasonably accurate values for any region of the multidimensional phase space of a tetratomic molecule. Neural network energy flow predictions are found to significantly enhance the molecular-dynamics method to longer time-scales and extensive averaging of trajectories for macromolecular systems. Pattern recognition abilities of neural networks can be used to discern phase space features. Neural networks can also expand model calculations by interpolation of costly quantum mechanical ab initio data, used to develop semiempirical potential energy functions

  20. Neural Computations in a Dynamical System with Multiple Time Scales

    Directory of Open Access Journals (Sweden)

    Yuanyuan Mi

    2016-09-01

    Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.

  1. Neural network application to aircraft control system design

    Science.gov (United States)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  2. Neural network application to aircraft control system design

    Science.gov (United States)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  3. The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model

    NARCIS (Netherlands)

    Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.

    2010-01-01

    We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity

  4. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  5. Immunomodulation of enteric neural function in irritable bowel syndrome.

    Science.gov (United States)

    O'Malley, Dervla

    2015-06-28

    Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder which is characterised by symptoms such as bloating, altered bowel habit and visceral pain. It's generally accepted that miscommunication between the brain and gut underlies the changes in motility, absorpto-secretory function and pain sensitivity associated with IBS. However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. Anecdotally, IBS patients have noted that periods of stress can result in symptom flares and many patients exhibit co-morbid stress-related mood disorders such as anxiety and depression. However, in addition to psychosocial stressors, infection-related stress has also been linked with the initiation, persistence and severity of symptom flares. Indeed, prior gastrointestinal infection is one of the strongest predictors of developing IBS. Despite a lack of overt morphological inflammation, the importance of immune factors in the pathophysiology of IBS is gaining acceptance. Subtle changes in the numbers of mucosal immune cell infiltrates and elevated levels of circulating pro-inflammatory cytokines have been reproducibly demonstrated in IBS populations. Moreover, these immune mediators directly affect neural signalling. An exciting new area of research is the role of luminal microbiota in the modulation of neuro-immune signalling, resulting in local changes in gastrointestinal function and alterations in central neural functioning. Progress in this area has begun to unravel some of the complexities of neuroimmune and neuroendocrine interactions and how these molecular exchanges contribute to GI dysfunction.

  6. The exploitation of neural networks in automotive engine management systems

    Energy Technology Data Exchange (ETDEWEB)

    Shayler, P.J.; Goodman, M. [University of Nottingham (United Kingdom); Ma, T. [Ford Motor Company, Dagenham (United Kingdom). Research and Engineering Centre

    2000-07-01

    The use of electronic engine control systems on spark ignition engines has enabled a high degree of performance optimisation to be achieved. The range of functions performed by these systems, and the level of performance demanded, is rising and thus so are development times and costs. Neural networks have attracted attention as having the potential to simplify software development and improve the performance of this software. The scope and nature of possible applications is described. In particular, the pattern recognition and classification abilities of networks are applied to crankshaft speed fluctuation data for engine-fault diagnosis, and multidimensional mapping capabilities are investigated as an alternative to large 'lookup' tables and calibration functions. (author)

  7. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  8. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  9. The ctenophore genome and the evolutionary origins of neural systems

    NARCIS (Netherlands)

    Moroz, Leonid L.; Kocot, Kevin M.; Citarella, Mathew R.; Dosung, Sohn; Norekian, Tigran P.; Povolotskaya, Inna S.; Grigorenko, Anastasia P.; Dailey, Christopher; Berezikov, Eugene; Buckley, Katherine M.; Ptitsyn, Andrey; Reshetov, Denis; Mukherjee, Krishanu; Moroz, Tatiana P.; Bobkova, Yelena; Yu, Fahong; Kapitonov, Vladimir V.; Jurka, Jerzy; Bobkov, Yuri V.; Swore, Joshua J.; Girardo, David O.; Fodor, Alexander; Gusev, Fedor; Sanford, Rachel; Bruders, Rebecca; Kittler, Ellen; Mills, Claudia E.; Rast, Jonathan P.; Derelle, Romain; Solovyev, Victor V.; Kondrashov, Fyodor A.; Swalla, Billie J.; Sweedler, Jonathan V.; Rogaev, Evgeny I.; Halanych, Kenneth M.; Kohn, Andrea B.

    2014-01-01

    The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we

  10. Spiking Neural P Systems with Communication on Request.

    Science.gov (United States)

    Pan, Linqiang; Păun, Gheorghe; Zhang, Gexiang; Neri, Ferrante

    2017-12-01

    Spiking Neural [Formula: see text] Systems are Neural System models characterized by the fact that each neuron mimics a biological cell and the communication between neurons is based on spikes. In the Spiking Neural [Formula: see text] systems investigated so far, the application of evolution rules depends on the contents of a neuron (checked by means of a regular expression). In these [Formula: see text] systems, a specified number of spikes are consumed and a specified number of spikes are produced, and then sent to each of the neurons linked by a synapse to the evolving neuron. [Formula: see text]In the present work, a novel communication strategy among neurons of Spiking Neural [Formula: see text] Systems is proposed. In the resulting models, called Spiking Neural [Formula: see text] Systems with Communication on Request, the spikes are requested from neighboring neurons, depending on the contents of the neuron (still checked by means of a regular expression). Unlike the traditional Spiking Neural [Formula: see text] systems, no spikes are consumed or created: the spikes are only moved along synapses and replicated (when two or more neurons request the contents of the same neuron). [Formula: see text]The Spiking Neural [Formula: see text] Systems with Communication on Request are proved to be computationally universal, that is, equivalent with Turing machines as long as two types of spikes are used. Following this work, further research questions are listed to be open problems.

  11. Bifurcation and chaos in neural excitable system

    International Nuclear Information System (INIS)

    Jing Zhujun; Yang Jianping; Feng Wei

    2006-01-01

    In this paper, we investigate the dynamical behaviors of neural excitable system without periodic external current (proposed by Chialvo [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] and with periodic external current as system's parameters vary. The existence and stability of three fixed points, bifurcation of fixed points, the conditions of existences of fold bifurcation, flip bifurcation and Hopf bifurcation are derived by using bifurcation theory and center manifold theorem. The chaotic existence in the sense of Marotto's definition of chaos is proved. We then give the numerical simulated results (using bifurcation diagrams, computations of Maximum Lyapunov exponent and phase portraits), which not only show the consistence with the analytic results but also display new and interesting dynamical behaviors, including the complete period-doubling and inverse period-doubling bifurcation, symmetry period-doubling bifurcations of period-3 orbit, simultaneous occurrence of two different routes (invariant cycle and period-doubling bifurcations) to chaos for a given bifurcation parameter, sudden disappearance of chaos at one critical point, a great abundance of period windows (period 2 to 10, 12, 19, 20 orbits, and so on) in transient chaotic regions with interior crises, strange chaotic attractors and strange non-chaotic attractor. In particular, the parameter k plays a important role in the system, which can leave the chaotic behavior or the quasi-periodic behavior to period-1 orbit as k varies, and it can be considered as an control strategy of chaos by adjusting the parameter k. Combining the existing results in [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] with the new results reported in this paper, a more complete description of the system is now obtained

  12. Identification of Complex Dynamical Systems with Neural Networks (2/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  13. Identification of Complex Dynamical Systems with Neural Networks (1/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  14. Computing single step operators of logic programming in radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  15. Computing single step operators of logic programming in radial basis function neural networks

    Science.gov (United States)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  16. Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures.

    Science.gov (United States)

    Forsberg, David; Thonabulsombat, Charoensri; Jäderstad, Johan; Jäderstad, Linda Maria; Olivius, Petri; Herlenius, Eric

    2017-08-14

    Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Computing single step operators of logic programming in radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-01-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T p :I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks

  18. Could LC-NE-Dependent Adjustment of Neural Gain Drive Functional Brain Network Reorganization?

    Directory of Open Access Journals (Sweden)

    Carole Guedj

    2017-01-01

    Full Text Available The locus coeruleus-norepinephrine (LC-NE system is thought to act at synaptic, cellular, microcircuit, and network levels to facilitate cognitive functions through at least two different processes, not mutually exclusive. Accordingly, as a reset signal, the LC-NE system could trigger brain network reorganizations in response to salient information in the environment and/or adjust the neural gain within its target regions to optimize behavioral responses. Here, we provide evidence of the co-occurrence of these two mechanisms at the whole-brain level, in resting-state conditions following a pharmacological stimulation of the LC-NE system. We propose that these two mechanisms are interdependent such that the LC-NE-dependent adjustment of the neural gain inferred from the clustering coefficient could drive functional brain network reorganizations through coherence in the gamma rhythm. Via the temporal dynamic of gamma-range band-limited power, the release of NE could adjust the neural gain, promoting interactions only within the neuronal populations whose amplitude envelopes are correlated, thus making it possible to reorganize neuronal ensembles, functional networks, and ultimately, behavioral responses. Thus, our proposal offers a unified framework integrating the putative influence of the LC-NE system on both local- and long-range adjustments of brain dynamics underlying behavioral flexibility.

  19. Short-term synaptic plasticity and heterogeneity in neural systems

    Science.gov (United States)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  20. Fundamentals of computational intelligence neural networks, fuzzy systems, and evolutionary computation

    CERN Document Server

    Keller, James M; Fogel, David B

    2016-01-01

    This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...

  1. System identification of an unmanned quadcopter system using MRAN neural

    Science.gov (United States)

    Pairan, M. F.; Shamsudin, S. S.

    2017-12-01

    This project presents the performance analysis of the radial basis function neural network (RBF) trained with Minimal Resource Allocating Network (MRAN) algorithm for real-time identification of quadcopter. MRAN’s performance is compared with the RBF with Constant Trace algorithm for 2500 input-output pair data sampling. MRAN utilizes adding and pruning hidden neuron strategy to obtain optimum RBF structure, increase prediction accuracy and reduce training time. The results indicate that MRAN algorithm produces fast training time and more accurate prediction compared with standard RBF. The model proposed in this paper is capable of identifying and modelling a nonlinear representation of the quadcopter flight dynamics.

  2. Partial information decomposition as a unified approach to the specification of neural goal functions.

    Science.gov (United States)

    Wibral, Michael; Priesemann, Viola; Kay, Jim W; Lizier, Joseph T; Phillips, William A

    2017-03-01

    In many neural systems anatomical motifs are present repeatedly, but despite their structural similarity they can serve very different tasks. A prime example for such a motif is the canonical microcircuit of six-layered neo-cortex, which is repeated across cortical areas, and is involved in a number of different tasks (e.g. sensory, cognitive, or motor tasks). This observation has spawned interest in finding a common underlying principle, a 'goal function', of information processing implemented in this structure. By definition such a goal function, if universal, cannot be cast in processing-domain specific language (e.g. 'edge filtering', 'working memory'). Thus, to formulate such a principle, we have to use a domain-independent framework. Information theory offers such a framework. However, while the classical framework of information theory focuses on the relation between one input and one output (Shannon's mutual information), we argue that neural information processing crucially depends on the combination of multiple inputs to create the output of a processor. To account for this, we use a very recent extension of Shannon Information theory, called partial information decomposition (PID). PID allows to quantify the information that several inputs provide individually (unique information), redundantly (shared information) or only jointly (synergistic information) about the output. First, we review the framework of PID. Then we apply it to reevaluate and analyze several earlier proposals of information theoretic neural goal functions (predictive coding, infomax and coherent infomax, efficient coding). We find that PID allows to compare these goal functions in a common framework, and also provides a versatile approach to design new goal functions from first principles. Building on this, we design and analyze a novel goal function, called 'coding with synergy', which builds on combining external input and prior knowledge in a synergistic manner. We suggest that

  3. PWR system simulation and parameter estimation with neural networks

    International Nuclear Information System (INIS)

    Akkurt, Hatice; Colak, Uener

    2002-01-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within ±0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected

  4. PWR system simulation and parameter estimation with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice; Colak, Uener E-mail: uc@nuke.hacettepe.edu.tr

    2002-11-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within {+-}0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected.

  5. The functional and structural neural basis of individual differences in loss aversion.

    Science.gov (United States)

    Canessa, Nicola; Crespi, Chiara; Motterlini, Matteo; Baud-Bovy, Gabriel; Chierchia, Gabriele; Pantaleo, Giuseppe; Tettamanti, Marco; Cappa, Stefano F

    2013-09-04

    Decision making under risk entails the anticipation of prospective outcomes, typically leading to the greater sensitivity to losses than gains known as loss aversion. Previous studies on the neural bases of choice-outcome anticipation and loss aversion provided inconsistent results, showing either bidirectional mesolimbic responses of activation for gains and deactivation for losses, or a specific amygdala involvement in processing losses. Here we focused on loss aversion with the aim to address interindividual differences in the neural bases of choice-outcome anticipation. Fifty-six healthy human participants accepted or rejected 104 mixed gambles offering equal (50%) chances of gaining or losing different amounts of money while their brain activity was measured with functional magnetic resonance imaging (fMRI). We report both bidirectional and gain/loss-specific responses while evaluating risky gambles, with amygdala and posterior insula specifically tracking the magnitude of potential losses. At the individual level, loss aversion was reflected both in limbic fMRI responses and in gray matter volume in a structural amygdala-thalamus-striatum network, in which the volume of the "output" centromedial amygdala nuclei mediating avoidance behavior was negatively correlated with monetary performance. We conclude that outcome anticipation and ensuing loss aversion involve multiple neural systems, showing functional and structural individual variability directly related to the actual financial outcomes of choices. By supporting the simultaneous involvement of both appetitive and aversive processing in economic decision making, these results contribute to the interpretation of existing inconsistencies on the neural bases of anticipating choice outcomes.

  6. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  7. Diagnostic Neural Network Systems for the Electronic Circuits

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Neural Networks is one of the most important artificial intelligent approaches for solving the diagnostic processes. This research concerns with uses the neural networks for diagnosis of the electronic circuits. Modern electronic systems contain both the analog and digital circuits. But, diagnosis of the analog circuits suffers from great complexity due to their nonlinearity. To overcome this problem, the proposed system introduces a diagnostic system that uses the neural network to diagnose both the digital and analog circuits. So, it can face the new requirements for the modern electronic systems. A fault dictionary method was implemented in the system. Experimental results are presented on three electronic systems. They are: artificial kidney, wireless network and personal computer systems. The proposed system has improved the performance of the diagnostic systems when applied for these practical cases

  8. Vein matching using artificial neural network in vein authentication systems

    Science.gov (United States)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  9. Neural dichotomy of word concreteness: a view from functional neuroimaging.

    Science.gov (United States)

    Kumar, Uttam

    2016-02-01

    Our perception about the representation and processing of concrete and abstract concepts is based on the fact that concrete words are highly imagined and remembered faster than abstract words. In order to explain the processing differences between abstract and concrete concepts, various theories have been proposed, yet there is no unanimous consensus about its neural implication. The present study investigated the processing of concrete and abstract words during an orthography judgment task (implicit semantic processing) using functional magnetic resonance imaging to validate the involvement of the neural regions. Relative to non-words, both abstract and concrete words show activation in the regions of bilateral hemisphere previously associated with semantic processing. The common areas (conjunction analyses) observed for abstract and concrete words are bilateral inferior frontal gyrus (BA 44/45), left superior parietal (BA 7), left fusiform gyrus and bilateral middle occipital. The additional areas for abstract words were noticed in bilateral superior temporal and bilateral middle temporal region, whereas no distinct region was noticed for concrete words. This suggests that words with abstract concepts recruit additional language regions in the brain.

  10. The Neural Basis of Typewriting: A Functional MRI Study.

    Science.gov (United States)

    Higashiyama, Yuichi; Takeda, Katsuhiko; Someya, Yoshiaki; Kuroiwa, Yoshiyuki; Tanaka, Fumiaki

    2015-01-01

    To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI) study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner's area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.

  11. The Neural Basis of Typewriting: A Functional MRI Study.

    Directory of Open Access Journals (Sweden)

    Yuichi Higashiyama

    Full Text Available To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner's area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.

  12. Analysis of neural networks in terms of domain functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, Lambert

    Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more as a

  13. Intelligent neural network and fuzzy logic control of industrial and power systems

    Science.gov (United States)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of

  14. Intraoperative Neural Response Telemetry and Neural Recovery Function: a Comparative Study between Adults and Children

    Directory of Open Access Journals (Sweden)

    Carvalho, Bettina

    2014-04-01

    Full Text Available Introduction Neural response telemetry (NRT is a method of capturing the action potential of the distal portion of the auditory nerve in cochlear implant (CI users, using the CI itself to elicit and record the answers. In addition, it can also measure the recovery function of the auditory nerve (REC, that is, the refractory properties of the nerve. It is not clear in the literature whether the responses from adults are the same as those from children. Objective To compare the results of NRT and REC between adults and children undergoing CI surgery. Methods Cross-sectional, descriptive, and retrospective study of the results of NRT and REC for patients undergoing IC at our service. The NRT is assessed by the level of amplitude (microvolts and REC as a function of three parameters: A (saturation level, in microvolts, t0 (absolute refractory period, in seconds, and tau (curve of the model function, measured in three electrodes (apical, medial, and basal. Results Fifty-two patients were evaluated with intraoperative NRT (26 adults and 26 children, and 24 with REC (12 adults and 12 children. No statistically significant difference was found between intraoperative responses of adults and children for NRT or for REC's three parameters, except for parameter A of the basal electrode. Conclusion The results of intraoperative NRT and REC were not different between adults and children, except for parameter A of the basal electrode.

  15. Use of neural networks in the analysis of complex systems

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms) to some of the problems of complex engineering systems has the potential to enhance the safety reliability and operability of these systems. The work described here deals with complex systems or parts of such systems that can be isolated from the total system. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network. The neural networks are usually simulated on modern high-speed computers that carry out the calculations serially. However, it is possible to implement neural networks using specially designed microchips where the network calculations are truly carried out in parallel, thereby providing virtually instantaneous outputs for each set of inputs. Specific applications described include: Diagnostics: State of the Plant; Hybrid System for Transient Identification; Detection of Change of Mode in Complex Systems; Sensor Validation; Plant-Wide Monitoring; Monitoring of Performance and Efficiency; and Analysis of Vibrations. Although the specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  16. Bio-inspired spiking neural network for nonlinear systems control.

    Science.gov (United States)

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Neural-network hybrid control for antilock braking systems.

    Science.gov (United States)

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  18. Novel stability criteria for uncertain delayed Cohen-Grossberg neural networks using discretized Lyapunov functional

    International Nuclear Information System (INIS)

    Souza, Fernando O.; Palhares, Reinaldo M.; Ekel, Petr Ya.

    2009-01-01

    This paper deals with the stability analysis of delayed uncertain Cohen-Grossberg neural networks (CGNN). The proposed methodology consists in obtaining new robust stability criteria formulated as linear matrix inequalities (LMIs) via the Lyapunov-Krasovskii theory. Particularly one stability criterion is derived from the selection of a parameter-dependent Lyapunov-Krasovskii functional, which allied with the Gu's discretization technique and a simple strategy that decouples the system matrices from the functional matrices, assures a less conservative stability condition. Two computer simulations are presented to support the improved theoretical results.

  19. On-line identification of hybrid systems using an adaptive growing and pruning RBF neural network

    DEFF Research Database (Denmark)

    Alizadeh, Tohid

    2008-01-01

    This paper introduces an adaptive growing and pruning radial basis function (GAP-RBF) neural network for on-line identification of hybrid systems. The main idea is to identify a global nonlinear model that can predict the continuous outputs of hybrid systems. In the proposed approach, GAP......-RBF neural network uses a modified unscented kalman filter (UKF) with forgetting factor scheme as the required on-line learning algorithm. The effectiveness of the resulting identification approach is tested and evaluated on a simulated benchmark hybrid system....

  20. Anomaly detection in an automated safeguards system using neural networks

    International Nuclear Information System (INIS)

    Whiteson, R.; Howell, J.A.

    1992-01-01

    An automated safeguards system must be able to detect an anomalous event, identify the nature of the event, and recommend a corrective action. Neural networks represent a new way of thinking about basic computational mechanisms for intelligent information processing. In this paper, we discuss the issues involved in applying a neural network model to the first step of this process: anomaly detection in materials accounting systems. We extend our previous model to a 3-tank problem and compare different neural network architectures and algorithms. We evaluate the computational difficulties in training neural networks and explore how certain design principles affect the problems. The issues involved in building a neural network architecture include how the information flows, how the network is trained, how the neurons in a network are connected, how the neurons process information, and how the connections between neurons are modified. Our approach is based on the demonstrated ability of neural networks to model complex, nonlinear, real-time processes. By modeling the normal behavior of the processes, we can predict how a system should be behaving and, therefore, detect when an abnormality occurs

  1. Shades of grey; Assessing the contribution of the magno- and parvocellular systems to neural processing of the retinal input in the human visual system from the influence of neural population size and its discharge activity on the VEP.

    Science.gov (United States)

    Marcar, Valentine L; Baselgia, Silvana; Lüthi-Eisenegger, Barbara; Jäncke, Lutz

    2018-03-01

    Retinal input processing in the human visual system involves a phasic and tonic neural response. We investigated the role of the magno- and parvocellular systems by comparing the influence of the active neural population size and its discharge activity on the amplitude and latency of four VEP components. We recorded the scalp electric potential of 20 human volunteers viewing a series of dartboard images presented as a pattern reversing and pattern on-/offset stimulus. These patterns were designed to vary both neural population size coding the temporal- and spatial luminance contrast property and the discharge activity of the population involved in a systematic manner. When the VEP amplitude reflected the size of the neural population coding the temporal luminance contrast property of the image, the influence of luminance contrast followed the contrast response function of the parvocellular system. When the VEP amplitude reflected the size of the neural population responding to the spatial luminance contrast property the image, the influence of luminance contrast followed the contrast response function of the magnocellular system. The latencies of the VEP components examined exhibited the same behavior across our stimulus series. This investigation demonstrates the complex interplay of the magno- and parvocellular systems on the neural response as captured by the VEP. It also demonstrates a linear relationship between stimulus property, neural response, and the VEP and reveals the importance of feedback projections in modulating the ongoing neural response. In doing so, it corroborates the conclusions of our previous study.

  2. Nonlinear dynamical system approaches towards neural prosthesis

    International Nuclear Information System (INIS)

    Torikai, Hiroyuki; Hashimoto, Sho

    2011-01-01

    An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.

  3. Regulation of adult neural progenitor cell functions by purinergic signaling.

    Science.gov (United States)

    Tang, Yong; Illes, Peter

    2017-02-01

    Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca 2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230. © 2016 Wiley Periodicals, Inc.

  4. Neurogenic and non neurogenic functions of endogenous neural stem cells.

    Directory of Open Access Journals (Sweden)

    Erica eButti

    2014-04-01

    Full Text Available Adult neurogenesis is a lifelong process that occurs in two main neurogenic niches of the brain, namely in the subventricular zone (SVZ of the lateral ventricles and in the subgranular zone (SGZ of the dentate gyrus (DG in the hippocampus. In the 1960s, studies on adult neurogenesis have been hampered by the lack of established phenotypic markers. The precise tracing of neural stem/progenitor cells (NPCs was therefore, not properly feasible. After the (partial identification of those markers, it was the lack of specific tools that hindered a proper experimental elimination and tracing of those cells to demonstrate their terminal fate and commitment. Nowadays, irradia-tion, cytotoxic drugs as well as genetic tracing/ablation procedures have moved the field forward and increased our understanding of neurogenesis processes in both physiological and pathological conditions. Newly formed NPC progeny from the SVZ can replace granule cells in the olfactory bulbs of rodents, thus contributing to orchestrate sophisticated odour behaviour. SGZ-derived new granule cells, instead, integrate within the DG where they play an essential role in memory functions. Furthermore, converging evidence claim that endogenous NPCs not only exert neurogenic functions, but might also have non-neurogenic homeostatic functions by the release of different types of neuroprotective molecules. Remarkably, these non-neurogenic homeostatic functions seem to be necessary, both in healthy and diseased conditions, for example for preventing or limiting tissue damage. In this review, we will discuss the neurogenic and the non-neurogenic functions of adult NPCs both in physiological and pathological conditions.

  5. System Identification, Prediction, Simulation and Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: 1) Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. 2) Amongst numerous training algorithms, only the Recursive Prediction Error Method using...

  6. Neural network training by Kalman filtering in process system monitoring

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-03-01

    Kalman filtering approach for neural network training is described. Its extended form is used as an adaptive filter in a nonlinear environment of the form a feedforward neural network. Kalman filtering approach generally provides fast training as well as avoiding excessive learning which results in enhanced generalization capability. The network is used in a process monitoring application where the inputs are measurement signals. Since the measurement errors are also modelled in Kalman filter the approach yields accurate training with the implication of accurate neural network model representing the input and output relationships in the application. As the process of concern is a dynamic system, the input source of information to neural network is time dependent so that the training algorithm presents an adaptive form for real-time operation for the monitoring task. (orig.)

  7. ISC feedforward control of gasoline engine. Adaptive system using neural network; Jidoshayo gasoline engine no ISC feedforward seigyo. Neural network wo mochiita tekioka

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, N; Morita, S; Takiyama, T [Osaka City University, Osaka (Japan)

    1997-10-01

    For fuel economy and a good driver`s feeling, it is necessary for idle-speed to keep at a constant low speed. But keeping low speed has danger of engine stall when the engine torque is disturbed by the alternator, and so on. In this paper, adaptive feedforward idle-speed control system against electrical loads was investigated. This system was based on the reversed tansfer functions of the object system, and a neural network was used to adapt this system for aging. Then, this neural network was also used for creating feedforward table map. Good experimental results were obtained. 2 refs., 11 figs.

  8. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  9. Neural origins of psychosocial functioning impairments in major depression.

    Science.gov (United States)

    Pulcu, Erdem; Elliott, Rebecca

    2015-09-01

    Major depressive disorder, a complex neuropsychiatric condition, is associated with psychosocial functioning impairments that could become chronic even after symptoms remit. Social functioning impairments in patients could also pose coping difficulties to individuals around them. In this Personal View, we trace the potential neurobiological origins of these impairments down to three candidate domains-namely, social perception and emotion processing, motivation and reward value processing, and social decision making. We argue that the neural basis of abnormalities in these domains could be detectable at different temporal stages during social interactions (eg, before and after decision stages), particularly within frontomesolimbic networks (ie, frontostriatal and amygdala-striatal circuitries). We review some of the experimental designs used to probe these circuits and suggest novel, integrative approaches. We propose that an understanding of the interactions between these domains could provide valuable insights for the clinical stratification of major depressive disorder subtypes and might inform future developments of novel treatment options in return. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Functional Specificity and Sex Differences in the Neural Circuits Supporting the Inhibition of Automatic Imitation.

    Science.gov (United States)

    Darda, Kohinoor M; Butler, Emily E; Ramsey, Richard

    2018-06-01

    Humans show an involuntary tendency to copy other people's actions. Although automatic imitation builds rapport and affiliation between individuals, we do not copy actions indiscriminately. Instead, copying behaviors are guided by a selection mechanism, which inhibits some actions and prioritizes others. To date, the neural underpinnings of the inhibition of automatic imitation and differences between the sexes in imitation control are not well understood. Previous studies involved small sample sizes and low statistical power, which produced mixed findings regarding the involvement of domain-general and domain-specific neural architectures. Here, we used data from Experiment 1 ( N = 28) to perform a power analysis to determine the sample size required for Experiment 2 ( N = 50; 80% power). Using independent functional localizers and an analysis pipeline that bolsters sensitivity, during imitation control we show clear engagement of the multiple-demand network (domain-general), but no sensitivity in the theory-of-mind network (domain-specific). Weaker effects were observed with regard to sex differences, suggesting that there are more similarities than differences between the sexes in terms of the neural systems engaged during imitation control. In summary, neurocognitive models of imitation require revision to reflect that the inhibition of imitation relies to a greater extent on a domain-general selection system rather than a domain-specific system that supports social cognition.

  11. Function of FEZF1 during early neural differentiation of human embryonic stem cells.

    Science.gov (United States)

    Liu, Xin; Su, Pei; Lu, Lisha; Feng, Zicen; Wang, Hongtao; Zhou, Jiaxi

    2018-01-01

    The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study, using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover, loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs, suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.

  12. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode.

    Science.gov (United States)

    Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Kim, Hyungmin; Youn, Inchan

    2017-12-21

    Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  13. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode

    Directory of Open Access Journals (Sweden)

    Ahnsei Shon

    2017-12-01

    Full Text Available Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC-compliant power transmission circuit, a medical implant communication service (MICS-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  14. ProLanGO: Protein Function Prediction Using Neural Machine Translation Based on a Recurrent Neural Network.

    Science.gov (United States)

    Cao, Renzhi; Freitas, Colton; Chan, Leong; Sun, Miao; Jiang, Haiqing; Chen, Zhangxin

    2017-10-17

    With the development of next generation sequencing techniques, it is fast and cheap to determine protein sequences but relatively slow and expensive to extract useful information from protein sequences because of limitations of traditional biological experimental techniques. Protein function prediction has been a long standing challenge to fill the gap between the huge amount of protein sequences and the known function. In this paper, we propose a novel method to convert the protein function problem into a language translation problem by the new proposed protein sequence language "ProLan" to the protein function language "GOLan", and build a neural machine translation model based on recurrent neural networks to translate "ProLan" language to "GOLan" language. We blindly tested our method by attending the latest third Critical Assessment of Function Annotation (CAFA 3) in 2016, and also evaluate the performance of our methods on selected proteins whose function was released after CAFA competition. The good performance on the training and testing datasets demonstrates that our new proposed method is a promising direction for protein function prediction. In summary, we first time propose a method which converts the protein function prediction problem to a language translation problem and applies a neural machine translation model for protein function prediction.

  15. BOOK REVIEW: Theory of Neural Information Processing Systems

    Science.gov (United States)

    Galla, Tobias

    2006-04-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 1011 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kühn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  16. Functional System Dynamics

    OpenAIRE

    Ligterink, N.E.

    2007-01-01

    Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The proper input and output of the system are an important part of the relevant variables.

  17. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems

    Science.gov (United States)

    Broccard, Frédéric D.; Joshi, Siddharth; Wang, Jun; Cauwenberghs, Gert

    2017-08-01

    Objective. Computation in nervous systems operates with different computational primitives, and on different hardware, than traditional digital computation and is thus subjected to different constraints from its digital counterpart regarding the use of physical resources such as time, space and energy. In an effort to better understand neural computation on a physical medium with similar spatiotemporal and energetic constraints, the field of neuromorphic engineering aims to design and implement electronic systems that emulate in very large-scale integration (VLSI) hardware the organization and functions of neural systems at multiple levels of biological organization, from individual neurons up to large circuits and networks. Mixed analog/digital neuromorphic VLSI systems are compact, consume little power and operate in real time independently of the size and complexity of the model. Approach. This article highlights the current efforts to interface neuromorphic systems with neural systems at multiple levels of biological organization, from the synaptic to the system level, and discusses the prospects for future biohybrid systems with neuromorphic circuits of greater complexity. Main results. Single silicon neurons have been interfaced successfully with invertebrate and vertebrate neural networks. This approach allowed the investigation of neural properties that are inaccessible with traditional techniques while providing a realistic biological context not achievable with traditional numerical modeling methods. At the network level, populations of neurons are envisioned to communicate bidirectionally with neuromorphic processors of hundreds or thousands of silicon neurons. Recent work on brain-machine interfaces suggests that this is feasible with current neuromorphic technology. Significance. Biohybrid interfaces between biological neurons and VLSI neuromorphic systems of varying complexity have started to emerge in the literature. Primarily intended as a

  18. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    Science.gov (United States)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  19. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jorgensen, L.S.; Christiansen, P.; Raundahl, U.

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...... and serum cortisol did not increase at all in any of the groups. As a measure of parasympathetic neural activity, independent of sympathetic neural activity, the beat-to-beat variation of the heart rate was calculated. The functional patients had a significantly higher beat-to-beat variation expressed...... as the mean square successive differences of the R-R intervals (MSSD), indicating a higher basal parasympathetic neural activity (mean MSSD +/- SEM = 64 +/- 6 msec in the functional group, 46 +/- 6 msec in the healthy group, and 49 +/- 6 msec in the organic group; P = 0.03). A reduced sympathetic neural...

  20. Sympathetic neural modulation of the immune system

    International Nuclear Information System (INIS)

    Madden, K.S.

    1989-01-01

    One route by which the central nervous system communicates with lymphoid organs in the periphery is through the sympathetic nervous system (SNS). To study SNS regulation of immune activity in vivo, selective removal of peripheral noradrenergic nerve fibers was achieved by administration of the neurotoxic drug, 6-hydroxydopamine (6-OHDA), to adult mice. To assess SNS influence on lymphocyte proliferation in vitro, uptake of 125 iododeoxyuridine ( 125 IUdR), a DNA precursor, was measured following 6-OHDA treatment. Sympathectomy prior to epicutaneous immunization with TNCB did not alter draining lymph nodes (LN) cell proliferation, whereas 6-OHDA treatment before footpad immunization with KLH reduced DNA synthesis in popliteal LN by 50%. In mice which were not deliberately immunized, sympathectomy stimulated 125 IUdR uptake inguinal and axillary LN, spleen, and bone marrow. In vitro, these LN and spleen cells exhibited decreased proliferation responses to the T cell mitogen, concanavalin A (Con A), whereas lipopolysaccharide (LPS)-stimulated IgG secretion was enhanced. Studies examining 51 Cr-labeled lymphocyte trafficking to LN suggested that altered cell migration may play a part in sympathectomy-induced changes in LN cell function

  1. Invertebrate diversity classification using self-organizing map neural network: with some special topological functions

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-06-01

    Full Text Available In present study we used self-organizing map (SOM neural network to conduct the non-supervisory clustering of invertebrate orders in rice field. Four topological functions, i.e., cossintopf, sincostopf, acossintopf, and expsintopf, established on the template in toolbox of Matlab, were used in SOM neural network learning. Results showed that clusters were different when using different topological functions because different topological functions will generate different spatial structure of neurons in neural network. We may chose these functions and results based on comparison with the practical situation.

  2. Adaptive Synchronization of Memristor-based Chaotic Neural Systems

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu

    2014-11-01

    Full Text Available Chaotic neural networks consisting of a great number of chaotic neurons are able to reproduce the rich dynamics observed in biological nervous systems. In recent years, the memristor has attracted much interest in the efficient implementation of artificial synapses and neurons. This work addresses adaptive synchronization of a class of memristor-based neural chaotic systems using a novel adaptive backstepping approach. A systematic design procedure is presented. Simulation results have demonstrated the effectiveness of the proposed adaptive synchronization method and its potential in practical application of memristive chaotic oscillators in secure communication.

  3. Algebraic and adaptive learning in neural control systems

    Science.gov (United States)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  4. Integrated evolutionary computation neural network quality controller for automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  5. Radial basis function neural networks with sequential learning MRAN and its applications

    CERN Document Server

    Sundararajan, N; Wei Lu Ying

    1999-01-01

    This book presents in detail the newly developed sequential learning algorithm for radial basis function neural networks, which realizes a minimal network. This algorithm, created by the authors, is referred to as Minimal Resource Allocation Networks (MRAN). The book describes the application of MRAN in different areas, including pattern recognition, time series prediction, system identification, control, communication and signal processing. Benchmark problems from these areas have been studied, and MRAN is compared with other algorithms. In order to make the book self-contained, a review of t

  6. Functional System Dynamics

    NARCIS (Netherlands)

    Ligterink, N.E.

    2007-01-01

    Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The

  7. High-Dimensional Function Approximation With Neural Networks for Large Volumes of Data.

    Science.gov (United States)

    Andras, Peter

    2018-02-01

    Approximation of high-dimensional functions is a challenge for neural networks due to the curse of dimensionality. Often the data for which the approximated function is defined resides on a low-dimensional manifold and in principle the approximation of the function over this manifold should improve the approximation performance. It has been show that projecting the data manifold into a lower dimensional space, followed by the neural network approximation of the function over this space, provides a more precise approximation of the function than the approximation of the function with neural networks in the original data space. However, if the data volume is very large, the projection into the low-dimensional space has to be based on a limited sample of the data. Here, we investigate the nature of the approximation error of neural networks trained over the projection space. We show that such neural networks should have better approximation performance than neural networks trained on high-dimensional data even if the projection is based on a relatively sparse sample of the data manifold. We also find that it is preferable to use a uniformly distributed sparse sample of the data for the purpose of the generation of the low-dimensional projection. We illustrate these results considering the practical neural network approximation of a set of functions defined on high-dimensional data including real world data as well.

  8. Temporal neural networks and transient analysis of complex engineering systems

    Science.gov (United States)

    Uluyol, Onder

    A theory is introduced for a multi-layered Local Output Gamma Feedback (LOGF) neural network within the paradigm of Locally-Recurrent Globally-Feedforward neural networks. It is developed for the identification, prediction, and control tasks of spatio-temporal systems and allows for the presentation of different time scales through incorporation of a gamma memory. It is initially applied to the tasks of sunspot and Mackey-Glass series prediction as benchmarks, then it is extended to the task of power level control of a nuclear reactor at different fuel cycle conditions. The developed LOGF neuron model can also be viewed as a Transformed Input and State (TIS) Gamma memory for neural network architectures for temporal processing. The novel LOGF neuron model extends the static neuron model by incorporating into it a short-term memory structure in the form of a digital gamma filter. A feedforward neural network made up of LOGF neurons can thus be used to model dynamic systems. A learning algorithm based upon the Backpropagation-Through-Time (BTT) approach is derived. It is applicable for training a general L-layer LOGF neural network. The spatial and temporal weights and parameters of the network are iteratively optimized for a given problem using the derived learning algorithm.

  9. Exponential stability of Cohen-Grossberg neural networks with a general class of activation functions

    International Nuclear Information System (INIS)

    Wan Anhua; Wang Miansen; Peng Jigen; Qiao Hong

    2006-01-01

    In this Letter, the dynamics of Cohen-Grossberg neural networks model are investigated. The activation functions are only assumed to be Lipschitz continuous, which provide a much wider application domain for neural networks than the previous results. By means of the extended nonlinear measure approach, new and relaxed sufficient conditions for the existence, uniqueness and global exponential stability of equilibrium of the neural networks are obtained. Moreover, an estimate for the exponential convergence rate of the neural networks is precisely characterized. Our results improve those existing ones

  10. Diagnosis of mechanical pumping system using neural networks and system parameters analysis

    International Nuclear Information System (INIS)

    Tsai, Tai Ming; Wang, Wei Hui

    2009-01-01

    Normally, a mechanical pumping system is equipped to monitor some of the important input and output signals which are set to the prescribed values. This paper addressed dealing with these signals to establish the database of input- output relation by using a number of neural network models through learning algorithms. These signals encompass normal and abnormal running conditions. The abnormal running conditions were artificially generated. Meanwhile, for the purpose of setting up an on-line diagnosis network, the learning speed and accuracy of three kinds of networks, viz., the backpropagation (BPN), radial basis function (RBF) and adaptive linear (ADALINE) neural networks have been compared and assessed. The assessment criteria of the networks are compared with the correlation result matrix in terms of the neuron vectors. Both BPN and RBF are judged by the maximum vector based on the post-regression analysis, and the ADALINE is judged by the minimum vector based on the least mean square error analysis. By ignoring the neural network training time, it has been shown that if the mechanical diagnosis system is tackled off-line, the RBF method is suggested. However, for on-line diagnosis, the BPN method is recommended

  11. Diagnosis of mechanical pumping system using neural networks and system parameters analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Tai Ming; Wang, Wei Hui [National Taiwan Ocean University, Keelung (China)

    2009-01-15

    Normally, a mechanical pumping system is equipped to monitor some of the important input and output signals which are set to the prescribed values. This paper addressed dealing with these signals to establish the database of input- output relation by using a number of neural network models through learning algorithms. These signals encompass normal and abnormal running conditions. The abnormal running conditions were artificially generated. Meanwhile, for the purpose of setting up an on-line diagnosis network, the learning speed and accuracy of three kinds of networks, viz., the backpropagation (BPN), radial basis function (RBF) and adaptive linear (ADALINE) neural networks have been compared and assessed. The assessment criteria of the networks are compared with the correlation result matrix in terms of the neuron vectors. Both BPN and RBF are judged by the maximum vector based on the post-regression analysis, and the ADALINE is judged by the minimum vector based on the least mean square error analysis. By ignoring the neural network training time, it has been shown that if the mechanical diagnosis system is tackled off-line, the RBF method is suggested. However, for on-line diagnosis, the BPN method is recommended

  12. A potential neural substrate for processing functional classes of complex acoustic signals.

    Directory of Open Access Journals (Sweden)

    Isabelle George

    Full Text Available Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial nidopallium, or NCM has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear and distinct classes of songs with different functions and social values, and for a possible correspondence between these responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech.

  13. Individual Identification Using Functional Brain Fingerprint Detected by Recurrent Neural Network.

    Science.gov (United States)

    Chen, Shiyang; Hu, Xiaoping P

    2018-03-20

    Individual identification based on brain function has gained traction in literature. Investigating individual differences in brain function can provide additional insights into the brain. In this work, we introduce a recurrent neural network based model for identifying individuals based on only a short segment of resting state functional MRI data. In addition, we demonstrate how the global signal and differences in atlases affect the individual identifiability. Furthermore, we investigate neural network features that exhibit the uniqueness of each individual. The results indicate that our model is able to identify individuals based on neural features and provides additional information regarding brain dynamics.

  14. Differences between otolith- and semicircular canal-activated neural circuitry in the vestibular system.

    Science.gov (United States)

    Uchino, Yoshio; Kushiro, Keisuke

    2011-12-01

    In the last two decades, we have focused on establishing a reliable technique for focal stimulation of vestibular receptors to evaluate neural connectivity. Here, we summarize the vestibular-related neuronal circuits for the vestibulo-ocular reflex, vestibulocollic reflex, and vestibulospinal reflex arcs. The focal stimulating technique also uncovered some hidden neural mechanisms. In the otolith system, we identified two hidden neural mechanisms that enhance otolith receptor sensitivity. The first is commissural inhibition, which boosts sensitivity by incorporating inputs from bilateral otolith receptors, the existence of which was in contradiction to the classical understanding of the otolith system but was observed in the utricular system. The second mechanism, cross-striolar inhibition, intensifies the sensitivity of inputs from both sides of receptive cells across the striola in a single otolith sensor. This was an entirely novel finding and is typically observed in the saccular system. We discuss the possible functional meaning of commissural and cross-striolar inhibition. Finally, our focal stimulating technique was applied to elucidate the different constructions of axonal projections from each vestibular receptor to the spinal cord. We also discuss the possible function of the unique neural connectivity observed in each vestibular receptor system. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  15. An alternative respiratory sounds classification system utilizing artificial neural networks

    Directory of Open Access Journals (Sweden)

    Rami J Oweis

    2015-04-01

    Full Text Available Background: Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. Methods: This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs and adaptive neuro-fuzzy inference systems (ANFIS toolboxes. The methods have been applied to 10 different respiratory sounds for classification. Results: The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. Conclusions: The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  16. multi scale analysis of a function by neural networks elementary derivatives functions

    International Nuclear Information System (INIS)

    Chikhi, A.; Gougam, A.; Chafa, F.

    2006-01-01

    Recently, the wavelet network has been introduced as a special neural network supported by the wavelet theory . Such networks constitute a tool for function approximation problems as it has been already proved in reference . Our present work deals with this model, treating a multi scale analysis of a function. We have then used a linear expansion of a given function in wavelets, neglecting the usual translation parameters. We investigate two training operations. The first one consists on an optimization of the output synaptic layer, the second one, optimizing the output function with respect to scale parameters. We notice a temporary merging of the scale parameters leading to some interesting results : new elementary derivatives units emerge, representing a new elementary task, which is the derivative of the output task

  17. Modeling of the height control system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    A. R Tahavvor

    2016-09-01

    Full Text Available Introduction Automation of agricultural and machinery construction has generally been enhanced by intelligent control systems due to utility and efficiency rising, ease of use, profitability and upgrading according to market demand. A broad variety of industrial merchandise are now supplied with computerized control systems of earth moving processes to be performed by construction and agriculture field vehicle such as grader, backhoe, tractor and scraper machines. A height control machine which is used in measuring base thickness is consisted of two mechanical and electronic parts. The mechanical part is consisted of conveyor belt, main body, electrical engine and invertors while the electronic part is consisted of ultrasonic, wave transmitter and receiver sensor, electronic board, control set, and microcontroller. The main job of these controlling devices consists of the topographic surveying, cutting and filling of elevated and spotted low area, and these actions fundamentally dependent onthe machine's ability in elevation and thickness measurement and control. In this study, machine was first tested and then some experiments were conducted for data collection. Study of system modeling in artificial neural networks (ANN was done for measuring, controlling the height for bases by input variable input vectors such as sampling time, probe speed, conveyer speed, sound wave speed and speed sensor are finally the maximum and minimum probe output vector on various conditions. The result reveals the capability of this procedure for experimental recognition of sensors' behavior and improvement of field machine control systems. Inspection, calibration and response, diagnosis of the elevation control system in combination with machine function can also be evaluated by some extra development of this system. Materials and Methods Designing and manufacture of the planned apparatus classified in three dissimilar, mechanical and electronic module, courses of

  18. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  19. Neural network based system for script identification in Indian ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The paper describes a neural network-based script identification system which can be used in the machine reading of documents written in English, Hindi and Kannada language scripts. Script identification is a basic requirement in automation of document processing, in multi-script, multi-lingual ...

  20. Development of a hybrid system of artificial neural networks and ...

    African Journals Online (AJOL)

    Development of a hybrid system of artificial neural networks and artificial bee colony algorithm for prediction and modeling of customer choice in the market. ... attempted to present a new method for the modeling and prediction of customer choice in the market using the combination of artificial intelligence and data mining.

  1. The use of neural networks in the D0 data acquisition system

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Sornborger, A.; Astur, R.V.; Johnson, C.R.; Zeller, R.T.

    1989-01-01

    We discuss the possible application of algorithms derived from neural networks to the D0 experiment. The D0 data acquisition system is based on a large farm of MicroVAXes, each independently performing real-time event filtering. A new generation of multiport memories in each MicroVAX node will enable special function processors to have direct access to event data. We describe an exploratory study of back propagation neural networks, such as might be configured in the nodes, for more efficient event filtering. 9 refs., 3 figs., 1 tab

  2. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  3. Neural mechanisms of selective attention in the somatosensory system.

    Science.gov (United States)

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  4. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  5. Fault diagnosis system of electromagnetic valve using neural network filter

    International Nuclear Information System (INIS)

    Hayashi, Shoji; Odaka, Tomohiro; Kuroiwa, Jousuke; Ogura, Hisakazu

    2008-01-01

    This paper is concerned with the gas leakage fault detection of electromagnetic valve using a neural network filter. In modern plants, the ability to detect and identify gas leakage faults is becoming increasingly important. The main difficulty in detecting gas leakage faults by sound signals lies in the fact that the practical plants are usually very noisy. To solve this difficulty, a neural network filter is used to eliminate background noise and raise the signal noise ratio of the sound signal. The background noise is assumed as a dynamic system, and an accurate mathematical model of the dynamic system can be established using a neural network filter. The predicted error between predicted values and practical ones constitutes the output of the filter. If the predicted error is zero, then there is no leakage. If the predicted error is greater than a certain value, then there is a leakage fault. Through application to practical pneumatic systems, it is verified that the neural network filter was effective in gas leakage detection. (author)

  6. Function integrated track system

    OpenAIRE

    Hohnecker, Eberhard

    2010-01-01

    The paper discusses a function integrated track system that focuses on the reduction of acoustic emissions from railway lines. It is shown that the combination of an embedded rail system (ERS), a sound absorbing track surface, and an integrated mini sound barrier has significant acoustic advantages compared to a standard ballast superstructure. The acoustic advantages of an embedded rail system are particularly pronounced in the case of railway bridges. Finally, it is shown that a...

  7. Neural activation and functional connectivity during motor imagery of bimanual everyday actions.

    Directory of Open Access Journals (Sweden)

    André J Szameitat

    Full Text Available Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI of everyday actions using functional magnetic resonance imaging (fMRI. For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI, however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.

  8. Numerical analysis of different neural transfer functions used for best approximation

    International Nuclear Information System (INIS)

    Gougam, L.A.; Chikhi, A.; Biskri, S.; Chafa, F.

    2006-01-01

    It is widely recognised that the choice of transfer functions in neural networks is of en importance to their performance. In this paper, different neural transfer functions usec approximation are discussed. We begin with sigmoi'dal functions used most often by diffi authors . At a second step, we use Gaussian functions as previously suggested in refere Finally, we deal with a specified wavelet family. A comparison between the three cases < above is made exhibiting therefore the advantages of each transfer function. The approa< function improves as the dimension N of the elementary task basis increases

  9. An analog VLSI real time optical character recognition system based on a neural architecture

    International Nuclear Information System (INIS)

    Bo, G.; Caviglia, D.; Valle, M.

    1999-01-01

    In this paper a real time Optical Character Recognition system is presented: it is based on a feature extraction module and a neural network classifier which have been designed and fabricated in analog VLSI technology. Experimental results validate the circuit functionality. The results obtained from a validation based on a mixed approach (i.e., an approach based on both experimental and simulation results) confirm the soundness and reliability of the system

  10. An analog VLSI real time optical character recognition system based on a neural architecture

    Energy Technology Data Exchange (ETDEWEB)

    Bo, G.; Caviglia, D.; Valle, M. [Genoa Univ. (Italy). Dip. of Biophysical and Electronic Engineering

    1999-03-01

    In this paper a real time Optical Character Recognition system is presented: it is based on a feature extraction module and a neural network classifier which have been designed and fabricated in analog VLSI technology. Experimental results validate the circuit functionality. The results obtained from a validation based on a mixed approach (i.e., an approach based on both experimental and simulation results) confirm the soundness and reliability of the system.

  11. Satisfiability of logic programming based on radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong

    2014-01-01

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems

  12. Satisfiability of logic programming based on radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.

  13. A Neural Networks Based Operation Guidance System for Procedure Presentation and Validation

    International Nuclear Information System (INIS)

    Seung, Kun Mo; Lee, Seung Jun; Seong, Poong Hyun

    2006-01-01

    In this paper, a neural network based operator support system is proposed to reduce operator's errors in abnormal situations in nuclear power plants (NPPs). There are many complicated situations, in which regular and suitable operations should be done by operators accordingly. In order to regulate and validate operators' operations, it is necessary to develop an operator support system which includes computer based procedures with the functions for operation validation. Many computerized procedures systems (CPS) have been recently developed. Focusing on the human machine interface (HMI) design and procedures' computerization, most of CPSs used various methodologies to enhance system's convenience, reliability and accessibility. Other than only showing procedures, the proposed system integrates a simple CPS and an operation validation system (OVS) by using artificial neural network (ANN) for operational permission and quantitative evaluation

  14. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  15. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Three neural network based sensor systems for environmental monitoring

    International Nuclear Information System (INIS)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1994-05-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. One of the missions of the Pacific Northwest Laboratory is to examine and develop new technologies for environmental restoration and waste management at the Hanford Site. In this paper, three prototype sensing systems are discussed. These prototypes are composed of sensing elements, data acquisition system, computer, and neural network implemented in software, and are capable of automatically identifying contaminants. The first system employs an array of tin-oxide gas sensors and is used to identify chemical vapors. The second system employs an array of optical sensors and is used to identify the composition of chemical dyes in liquids. The third system contains a portable gamma-ray spectrometer and is used to identify radioactive isotopes. In these systems, the neural network is used to identify the composition of the sensed contaminant. With a neural network, the intense computation takes place during the training process. Once the network is trained, operation consists of propagating the data through the network. Since the computation involved during operation consists of vector-matrix multiplication and application of look-up tables unknown samples can be rapidly identified in the field

  17. New results for global exponential synchronization in neural networks via functional differential inclusions.

    Science.gov (United States)

    Wang, Dongshu; Huang, Lihong; Tang, Longkun

    2015-08-01

    This paper is concerned with the synchronization dynamical behaviors for a class of delayed neural networks with discontinuous neuron activations. Continuous and discontinuous state feedback controller are designed such that the neural networks model can realize exponential complete synchronization in view of functional differential inclusions theory, Lyapunov functional method and inequality technique. The new proposed results here are very easy to verify and also applicable to neural networks with continuous activations. Finally, some numerical examples show the applicability and effectiveness of our main results.

  18. A novel approach to error function minimization for feedforward neural networks

    International Nuclear Information System (INIS)

    Sinkus, R.

    1995-01-01

    Feedforward neural networks with error backpropagation are widely applied to pattern recognition. One general problem encountered with this type of neural networks is the uncertainty, whether the minimization procedure has converged to a global minimum of the cost function. To overcome this problem a novel approach to minimize the error function is presented. It allows to monitor the approach to the global minimum and as an outcome several ambiguities related to the choice of free parameters of the minimization procedure are removed. (orig.)

  19. Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD

    Science.gov (United States)

    2016-10-01

    1 Award Number: W81XWH-11-1-0796 TITLE: Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD PRINCIPAL...30Sept2015 - 29Sept2016 4. TITLE AND SUBTITLE: Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD 5a. CONTRACT... met criteria for TBI during military service, 48.8% of whom reported multiple head injuries. The most common mechanisms of injury included blast

  20. Neural multigrid for gauge theories and other disordered systems

    International Nuclear Information System (INIS)

    Baeker, M.; Kalkreuter, T.; Mack, G.; Speh, M.

    1992-09-01

    We present evidence that multigrid works for wave equations in disordered systems, e.g. in the presence of gauge fields, no matter how strong the disorder, but one needs to introduce a 'neural computations' point of view into large scale simulations: First, the system must learn how to do the simulations efficiently, then do the simulation (fast). The method can also be used to provide smooth interpolation kernels which are needed in multigrid Monte Carlo updates. (orig.)

  1. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions

    Science.gov (United States)

    Guo, Rui; Liu, Jing

    2017-10-01

    With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µm in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1-1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time.

  2. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions

    International Nuclear Information System (INIS)

    Guo, Rui; Liu, Jing

    2017-01-01

    With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µ m in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1–1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time. (paper)

  3. A Sliding Mode Control-Based on a RBF Neural Network for Deburring Industry Robotic Systems

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2016-01-01

    Full Text Available A sliding mode control method based on radial basis function (RBF neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network parameters are derived by a Koski function algorithm to ensure the network convergences and enacts stable control. The simulations and experimental results of the deburring robot system are provided to illustrate the effectiveness of the proposed RBFNN-SMC control method. The advantages of the proposed RBFNN-SMC method are also evaluated by comparing it to existing control schemes.

  4. [Biotechnological functional systems].

    Science.gov (United States)

    Bokser, O Ia

    1999-01-01

    Based on the theory of functional systems and a concept of the quantum system of behavior, studies of the quantumsystems were conducted. Their structure, the interaction of biological and technical sections were analyzed. Mathematical, biophysical, and experimental models were designed. The paper shows that biotechnical quantumsystems are involved in the formation of biological feedback. A system with imperative feedback from the programmed and introduced current results of efforts has been developed and put into practice for the self-regulation of muscle tension. Training by using this biological feedback system causes a stable increase in the perception rate of proprioceptive stimulus in examinees (operates, sportsmen, neurological patients).

  5. Representation of linguistic form and function in recurrent neural networks

    NARCIS (Netherlands)

    Kadar, Akos; Chrupala, Grzegorz; Alishahi, Afra

    2017-01-01

    We present novel methods for analyzing the activation patterns of recurrent neural networks from a linguistic point of view and explore the types of linguistic structure they learn. As a case study, we use a standard standalone language model, and a multi-task gated recurrent network architecture

  6. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  7. Application of Functional Link Artificial Neural Network for Prediction of Machinery Noise in Opencast Mines

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Nanda

    2011-01-01

    Full Text Available Functional link-based neural network models were applied to predict opencast mining machineries noise. The paper analyzes the prediction capabilities of functional link neural network based noise prediction models vis-à-vis existing statistical models. In order to find the actual noise status in opencast mines, some of the popular noise prediction models, for example, ISO-9613-2, CONCAWE, VDI, and ENM, have been applied in mining and allied industries to predict the machineries noise by considering various attenuation factors. Functional link artificial neural network (FLANN, polynomial perceptron network (PPN, and Legendre neural network (LeNN were used to predict the machinery noise in opencast mines. The case study is based on data collected from an opencast coal mine of Orissa, India. From the present investigations, it could be concluded that the FLANN model give better noise prediction than the PPN and LeNN model.

  8. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI.

    Science.gov (United States)

    Bilevicius, Elena; Kolesar, Tiffany A; Kornelsen, Jennifer

    2016-04-19

    To assess the neural activity associated with mindfulness-based alterations of pain perception. The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2), unpleasantness (n = 5), and intensity (n = 5), and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  9. Upset Prediction in Friction Welding Using Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available This paper addresses the upset prediction problem of friction welded joints. Based on finite element simulations of inertia friction welding (IFW, a radial basis function (RBF neural network was developed initially to predict the final upset for a number of welding parameters. The predicted joint upset by the RBF neural network was compared to validated finite element simulations, producing an error of less than 8.16% which is reasonable. Furthermore, the effects of initial rotational speed and axial pressure on the upset were investigated in relation to energy conversion with the RBF neural network. The developed RBF neural network was also applied to linear friction welding (LFW and continuous drive friction welding (CDFW. The correlation coefficients of RBF prediction for LFW and CDFW were 0.963 and 0.998, respectively, which further suggest that an RBF neural network is an effective method for upset prediction of friction welded joints.

  10. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    Science.gov (United States)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  11. Parameter estimation in space systems using recurrent neural networks

    Science.gov (United States)

    Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.

    1991-01-01

    The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.

  12. Analysis of the DWPF glass pouring system using neural networks

    International Nuclear Information System (INIS)

    Calloway, T.B. Jr.; Jantzen, C.M.

    1997-01-01

    Neural networks were used to determine the sensitivity of 39 selected Melter/Melter Off Gas and Melter Feed System process parameters as related to the Defense Waste Processing Facility (DWPF) Melter Pour Spout Pressure during the overall analysis and resolution of the DWPF glass production and pouring issues. Two different commercial neural network software packages were used for this analysis. Models were developed and used to determine the critical parameters which accurately describe the DWPF Pour Spout Pressure. The model created using a low-end software package has a root mean square error of ± 0.35 inwc ( 2 = 0.77) with respect to the plant data used to validate and test the model. The model created using a high-end software package has a R 2 = 0.97 with respect to the plant data used to validate and test the model. The models developed for this application identified the key process parameters which contribute to the control of the DWPF Melter Pour Spout pressure during glass pouring operations. The relative contribution and ranking of the selected parameters was determined using the modeling software. Neural network computing software was determined to be a cost-effective software tool for process engineers performing troubleshooting and system performance monitoring activities. In remote high-level waste processing environments, neural network software is especially useful as a replacement for sensors which have failed and are costly to replace. The software can be used to accurately model critical remotely installed plant instrumentation. When the instrumentation fails, the software can be used to provide a soft sensor to replace the actual sensor, thereby decreasing the overall operating cost. Additionally, neural network software tools require very little training and are especially useful in mining or selecting critical variables from the vast amounts of data collected from process computers

  13. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network.

    Science.gov (United States)

    Lin, Yang-Yin; Chang, Jyh-Yeong; Lin, Chin-Teng

    2013-02-01

    This paper presents a novel recurrent fuzzy neural network, called an interactively recurrent self-evolving fuzzy neural network (IRSFNN), for prediction and identification of dynamic systems. The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by feeding the rule firing strength of each rule to others rules and itself. The consequent part in the IRSFNN is composed of a Takagi-Sugeno-Kang (TSK) or functional-link-based type. The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural network, the FLNN in the consequent part is a nonlinear function of input variables. An IRSFNNs learning starts with an empty rule base and all of the rules are generated and learned online through a simultaneous structure and parameter learning. An on-line clustering algorithm is effective in generating fuzzy rules. The consequent update parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN for the prediction and identification of dynamic plants and compare it to other well-known recurrent FNNs. The proposed model obtains enhanced performance results.

  14. Neural network-based expert system for severe accident management

    International Nuclear Information System (INIS)

    Klopp, G.T.; Silverman, E.B.

    1992-01-01

    This paper presents the results of the second phase of a three-phase Severe Accident Management expert system program underway at Commonwealth Edison Company (CECo). Phase I successfully demonstrated the feasibility of Artificial Neural Networks to support several of the objectives of severe accident management. Simulated accident scenarios were generated by the Modular Accident Analysis Program (MAAP) code currently in use by CECo as part of their Individual Plant Evaluations (IPE)/Accident Management Program. The primary objectives of the second phase were to develop and demonstrate four capabilities of neural networks with respect to nuclear power plant severe accident monitoring and prediction. The results of this work would form the foundation of a demonstration system which included expert system performance features. These capabilities included the ability to: (1) Predict the time available prior to support plate (and reactor vessel) failure; (2) Calculate the time remaining until recovery actions were too late to prevent core damage; (3) Predict future parameter values of each of the MAAP parameter variables; and (4) Detect simulated sensor failure and provide best-value estimates for further processing in the presence of a sensor failure. A variety of accident scenarios for the Zion and Dresden plants were used to train and test the neural network expert system. These included large and small break LOCAs as well as a range of transient events. 3 refs., 1 fig., 1 tab

  15. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  16. Neural Mechanisms and Information Processing in Recognition Systems

    Directory of Open Access Journals (Sweden)

    Mamiko Ozaki

    2014-10-01

    Full Text Available Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.

  17. Global convergence of periodic solution of neural networks with discontinuous activation functions

    International Nuclear Information System (INIS)

    Huang Lihong; Guo Zhenyuan

    2009-01-01

    In this paper, without assuming boundedness and monotonicity of the activation functions, we establish some sufficient conditions ensuring the existence and global asymptotic stability of periodic solution of neural networks with discontinuous activation functions by using the Yoshizawa-like theorem and constructing proper Lyapunov function. The obtained results improve and extend previous works.

  18. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems.

    Science.gov (United States)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K Y Michael; Zhou, Changsong

    2016-01-08

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  19. Statistical mechanics of complex neural systems and high dimensional data

    International Nuclear Information System (INIS)

    Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya

    2013-01-01

    Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks. (paper)

  20. Fault diagnosis and performance evaluation for high current LIA based on radial basis function neural network

    International Nuclear Information System (INIS)

    Yang Xinglin; Wang Huacen; Chen Nan; Dai Wenhua; Li Jin

    2006-01-01

    High current linear induction accelerator (LIA) is a complicated experimental physics device. It is difficult to evaluate and predict its performance. this paper presents a method which combines wavelet packet transform and radial basis function (RBF) neural network to build fault diagnosis and performance evaluation in order to improve reliability of high current LIA. The signal characteristics vectors which are extracted based on energy parameters of wavelet packet transform can well present the temporal and steady features of pulsed power signal, and reduce data dimensions effectively. The fault diagnosis system for accelerating cell and the trend classification system for the beam current based on RBF networks can perform fault diagnosis and evaluation, and provide predictive information for precise maintenance of high current LIA. (authors)

  1. Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions.

    Science.gov (United States)

    Ding, Xiaoshuai; Cao, Jinde; Alsaedi, Ahmed; Alsaadi, Fuad E; Hayat, Tasawar

    2017-06-01

    This paper is concerned with the fixed-time synchronization for a class of complex-valued neural networks in the presence of discontinuous activation functions and parameter uncertainties. Fixed-time synchronization not only claims that the considered master-slave system realizes synchronization within a finite time segment, but also requires a uniform upper bound for such time intervals for all initial synchronization errors. To accomplish the target of fixed-time synchronization, a novel feedback control procedure is designed for the slave neural networks. By means of the Filippov discontinuity theories and Lyapunov stability theories, some sufficient conditions are established for the selection of control parameters to guarantee synchronization within a fixed time, while an upper bound of the settling time is acquired as well, which allows to be modulated to predefined values independently on initial conditions. Additionally, criteria of modified controller for assurance of fixed-time anti-synchronization are also derived for the same system. An example is included to illustrate the proposed methodologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neural net based determination of generator-shedding requirements in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Electrical Engineering Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Y -H [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE Inc., Cleveland, OH (United States)

    1992-09-01

    This paper presents an application of artificial neural networks (ANN) in support of a decision-making process by power system operators directed towards the fast stabilisation of multi-machine systems. The proposed approach considers generator shedding as the most effective discrete supplementary control for improving the dynamic performance of faulted power systems and preventing instabilities. The sensitivity of the transient energy function (TEF) with respect to changes in the amount of dropped generation is used during the training phase of ANNs to assess the critical amount of generator shedding required to prevent the loss of synchronism. The learning capabilities of neural nets are used to establish complex mappings between fault information and the amount of generation to be shed, suggesting it as the control signal to the power system operator. (author)

  3. Adaptive Neural Tracking Control for Discrete-Time Switched Nonlinear Systems with Dead Zone Inputs

    Directory of Open Access Journals (Sweden)

    Jidong Wang

    2017-01-01

    Full Text Available In this paper, the adaptive neural controllers of subsystems are proposed for a class of discrete-time switched nonlinear systems with dead zone inputs under arbitrary switching signals. Due to the complicated framework of the discrete-time switched nonlinear systems and the existence of the dead zone, it brings about difficulties for controlling such a class of systems. In addition, the radial basis function neural networks are employed to approximate the unknown terms of each subsystem. Switched update laws are designed while the parameter estimation is invariable until its corresponding subsystem is active. Then, the closed-loop system is stable and all the signals are bounded. Finally, to illustrate the effectiveness of the proposed method, an example is employed.

  4. Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.

    Science.gov (United States)

    Aftab, Muhammad Saleheen; Shafiq, Muhammad

    2015-11-01

    This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    Science.gov (United States)

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  6. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-11-28

    A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resulting in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.

  7. Integrating Artificial Immune, Neural and Endrocine Systems in Autonomous Sailing Robots

    Science.gov (United States)

    2010-09-24

    system - Development of an adaptive hormone system capable of changing operation and control of the neural network depending on changing enviromental ...and control of the neural network depending on changing enviromental conditions • First basic design of the MOOP and a simple neural-endocrine based

  8. Single-Cell Transcriptomics and Fate Mapping of Ependymal Cells Reveals an Absence of Neural Stem Cell Function.

    Science.gov (United States)

    Shah, Prajay T; Stratton, Jo A; Stykel, Morgan Gail; Abbasi, Sepideh; Sharma, Sandeep; Mayr, Kyle A; Koblinger, Kathrin; Whelan, Patrick J; Biernaskie, Jeff

    2018-05-03

    Ependymal cells are multi-ciliated cells that form the brain's ventricular epithelium and a niche for neural stem cells (NSCs) in the ventricular-subventricular zone (V-SVZ). In addition, ependymal cells are suggested to be latent NSCs with a capacity to acquire neurogenic function. This remains highly controversial due to a lack of prospective in vivo labeling techniques that can effectively distinguish ependymal cells from neighboring V-SVZ NSCs. We describe a transgenic system that allows for targeted labeling of ependymal cells within the V-SVZ. Single-cell RNA-seq revealed that ependymal cells are enriched for cilia-related genes and share several stem-cell-associated genes with neural stem or progenitors. Under in vivo and in vitro neural-stem- or progenitor-stimulating environments, ependymal cells failed to demonstrate any suggestion of latent neural-stem-cell function. These findings suggest remarkable stability of ependymal cell function and provide fundamental insights into the molecular signature of the V-SVZ niche. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The modulation of neural gain facilitates a transition between functional segregation and integration in the brain.

    Science.gov (United States)

    Shine, James M; Aburn, Matthew J; Breakspear, Michael; Poldrack, Russell A

    2018-01-29

    Cognitive function relies on a dynamic, context-sensitive balance between functional integration and segregation in the brain. Previous work has proposed that this balance is mediated by global fluctuations in neural gain by projections from ascending neuromodulatory nuclei. To test this hypothesis in silico, we studied the effects of neural gain on network dynamics in a model of large-scale neuronal dynamics. We found that increases in neural gain directed the network through an abrupt dynamical transition, leading to an integrated network topology that was maximal in frontoparietal 'rich club' regions. This gain-mediated transition was also associated with increased topological complexity, as well as increased variability in time-resolved topological structure, further highlighting the potential computational benefits of the gain-mediated network transition. These results support the hypothesis that neural gain modulation has the computational capacity to mediate the balance between integration and segregation in the brain. © 2018, Shine et al.

  10. Neural Systems Responding to Degrees of Uncertainty in Human Decision-Making

    OpenAIRE

    Hsu, Ming; Bhatt, Meghana; Adolphs, Ralph; Tranel, Daniel; Camerer, Colin F.

    2005-01-01

    Much is known about how people make decisions under varying levels of probability (risk). Less is known about the neural basis of decision-making when probabilities are uncertain because of missing information (ambiguity). In decision theory, ambiguity about probabilities should not affect choices. Using functional brain imaging, we show that the level of ambiguity in choices correlates positively with activation in the amygdala and orbitofrontal cortex, and negatively with a striatal system....

  11. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    Science.gov (United States)

    Niu, Ben; Li, Lu

    2018-06-01

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  12. Fuzzy-Neural Automatic Daylight Control System

    Directory of Open Access Journals (Sweden)

    Grif H. Şt.

    2011-12-01

    Full Text Available The paper presents the design and the tuning of a CMAC controller (Cerebellar Model Articulation Controller implemented in an automatic daylight control application. After the tuning process of the controller, the authors studied the behavior of the automatic lighting control system (ALCS in the presence of luminance disturbances. The luminance disturbances were produced by the authors in night conditions and day conditions as well. During the night conditions, the luminance disturbances were produced by turning on and off a halogen desk lamp. During the day conditions the luminance disturbances were produced in two ways: by daylight contributions changes achieved by covering and uncovering a part of the office window and by turning on and off a halogen desk lamp. During the day conditions the luminance disturbances, produced by turning on and off the halogen lamp, have a smaller amplitude than those produced during the night conditions. The luminance disturbance during the night conditions was a helpful tool to select the proper values of the learning rate for CMAC controller. The luminance disturbances during the day conditions were a helpful tool to demonstrate the right setting of the CMAC controller.

  13. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2017-07-01

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  14. Reliability analysis of a consecutive r-out-of-n: F system based on neural networks

    International Nuclear Information System (INIS)

    Habib, Aziz; Alsieidi, Ragab; Youssef, Ghada

    2009-01-01

    In this paper, we present a generalized Markov reliability and fault-tolerant model, which includes the effects of permanent fault and intermittent fault for reliability evaluations based on neural network techniques. The reliability of a consecutive r-out-of-n: F system was obtained with a three-layer connected neural network represents a discrete time state reliability Markov model of the system. Such that we fed the neural network with the desired reliability of the system under design. Then we extracted the parameters of the system from the neural weights at the convergence of the neural network to the desired reliability. Finally, we obtain simulation results.

  15. Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems

    Science.gov (United States)

    Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof

    The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.

  16. Artificial Neural Network for Location Estimation in Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Chien-Sheng Chen

    2012-03-01

    Full Text Available In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS. To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA measurements and the angle of arrival (AOA information to locate MS when three base stations (BSs are available. Artificial neural networks (ANN are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line, based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

  17. Artificial neural network for location estimation in wireless communication systems.

    Science.gov (United States)

    Chen, Chien-Sheng

    2012-01-01

    In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

  18. Semi-empirical neural network models of controlled dynamical systems

    Directory of Open Access Journals (Sweden)

    Mihail V. Egorchev

    2017-12-01

    Full Text Available A simulation approach is discussed for maneuverable aircraft motion as nonlinear controlled dynamical system under multiple and diverse uncertainties including knowledge imperfection concerning simulated plant and its environment exposure. The suggested approach is based on a merging of theoretical knowledge for the plant with training tools of artificial neural network field. The efficiency of this approach is demonstrated using the example of motion modeling and the identification of the aerodynamic characteristics of a maneuverable aircraft. A semi-empirical recurrent neural network based model learning algorithm is proposed for multi-step ahead prediction problem. This algorithm sequentially states and solves numerical optimization subproblems of increasing complexity, using each solution as initial guess for subsequent subproblem. We also consider a procedure for representative training set acquisition that utilizes multisine control signals.

  19. Development of an accident diagnosis system using a dynamic neural network for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jong Hyun; Seong, Poong Hyun

    2004-01-01

    In this work, an accident diagnosis system using the dynamic neural network is developed. In order to help the plant operators to quickly identify the problem, perform diagnosis and initiate recovery actions ensuring the safety of the plant, many operator support system and accident diagnosis systems have been developed. Neural networks have been recognized as a good method to implement an accident diagnosis system. However, conventional accident diagnosis systems that used neural networks did not consider a time factor sufficiently. If the neural network could be trained according to time, it is possible to perform more efficient and detailed accidents analysis. Therefore, this work suggests a dynamic neural network which has different features from existing dynamic neural networks. And a simple accident diagnosis system is implemented in order to validate the dynamic neural network. After training of the prototype, several accident diagnoses were performed. The results show that the prototype can detect the accidents correctly with good performances

  20. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Directory of Open Access Journals (Sweden)

    Siebler Mario

    2009-08-01

    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  1. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    Full Text Available We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of

  2. Puzzle Pieces: Neural Structure and Function in Prader-Willi Syndrome

    Directory of Open Access Journals (Sweden)

    Katherine E. Manning

    2015-12-01

    Full Text Available Prader-Willi syndrome (PWS is a neurodevelopmental disorder of genomic imprinting, presenting with a behavioural phenotype encompassing hyperphagia, intellectual disability, social and behavioural difficulties, and propensity to psychiatric illness. Research has tended to focus on the cognitive and behavioural investigation of these features, and, with the exception of eating behaviour, the neural physiology is currently less well understood. A systematic review was undertaken to explore findings relating to neural structure and function in PWS, using search terms designed to encompass all published articles concerning both in vivo and post-mortem studies of neural structure and function in PWS. This supported the general paucity of research in this area, with many articles reporting case studies and qualitative descriptions or focusing solely on the overeating behaviour, although a number of systematic investigations were also identified. Research to date implicates a combination of subcortical and higher order structures in PWS, including those involved in processing reward, motivation, affect and higher order cognitive functions, with both anatomical and functional investigations indicating abnormalities. It appears likely that PWS involves aberrant activity across distributed neural networks. The characterisation of neural structure and function warrants both replication and further systematic study.

  3. Puzzle Pieces: Neural Structure and Function in Prader-Willi Syndrome

    Science.gov (United States)

    Manning, Katherine E.; Holland, Anthony J.

    2015-01-01

    Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a behavioural phenotype encompassing hyperphagia, intellectual disability, social and behavioural difficulties, and propensity to psychiatric illness. Research has tended to focus on the cognitive and behavioural investigation of these features, and, with the exception of eating behaviour, the neural physiology is currently less well understood. A systematic review was undertaken to explore findings relating to neural structure and function in PWS, using search terms designed to encompass all published articles concerning both in vivo and post-mortem studies of neural structure and function in PWS. This supported the general paucity of research in this area, with many articles reporting case studies and qualitative descriptions or focusing solely on the overeating behaviour, although a number of systematic investigations were also identified. Research to date implicates a combination of subcortical and higher order structures in PWS, including those involved in processing reward, motivation, affect and higher order cognitive functions, with both anatomical and functional investigations indicating abnormalities. It appears likely that PWS involves aberrant activity across distributed neural networks. The characterisation of neural structure and function warrants both replication and further systematic study. PMID:28943631

  4. Classification of ion mobility spectra by functional groups using neural networks

    Science.gov (United States)

    Bell, S.; Nazarov, E.; Wang, Y. F.; Eiceman, G. A.

    1999-01-01

    Neural networks were trained using whole ion mobility spectra from a standardized database of 3137 spectra for 204 chemicals at various concentrations. Performance of the network was measured by the success of classification into ten chemical classes. Eleven stages for evaluation of spectra and of spectral pre-processing were employed and minimums established for response thresholds and spectral purity. After optimization of the database, network, and pre-processing routines, the fraction of successful classifications by functional group was 0.91 throughout a range of concentrations. Network classification relied on a combination of features, including drift times, number of peaks, relative intensities, and other factors apparently including peak shape. The network was opportunistic, exploiting different features within different chemical classes. Application of neural networks in a two-tier design where chemicals were first identified by class and then individually eliminated all but one false positive out of 161 test spectra. These findings establish that ion mobility spectra, even with low resolution instrumentation, contain sufficient detail to permit the development of automated identification systems.

  5. Adaptive neural networks control for camera stabilization with active suspension system

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-08-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to unintentional vibrations caused by road roughness. This article presents an adaptive neural network approach mixed with linear quadratic regulator control for a quarter-car active suspension system to stabilize the image captured area of the camera. An active suspension system provides extra force through the actuator which allows it to suppress vertical vibration of sprung mass. First, to deal with the road disturbance and the system uncertainties, radial basis function neural network is proposed to construct the map between the state error and the compensation component, which can correct the optimal state-feedback control law. The weights matrix of radial basis function neural network is adaptively tuned online. Then, the closed-loop stability and asymptotic convergence performance is guaranteed by Lyapunov analysis. Finally, the simulation results demonstrate that the proposed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  6. Identification of complex systems by artificial neural networks. Applications to mechanical frictions

    International Nuclear Information System (INIS)

    Dominguez, Manuel

    1998-01-01

    In the frame of complex systems modelization, we describe in this report the contribution of neural networks to mechanical friction modelization. This thesis is divided in three parts, each one corresponding to every stage of the realized work. The first part takes stock of the properties of neural networks by replacing them in the statistic frame of learning theory (particularly: non-linear and non-parametric regression models) and by showing the existing links with other more 'classic' techniques from automatics. We show then how identification models can be integrated in the neural networks description as a larger nonlinear model class. A methodology of neural networks use have been developed. We focused on validation techniques using correlation functions for non-linear systems, and on the use of regularization methods. The second part deals with the problematic of friction in mechanical systems. Particularly, we present the main current identified physical phenomena, which are integrated in advanced friction modelization. Characterization of these phenomena allows us to state a priori knowledge to be used in the identification stage. We expose some of the most well-known friction models: Dahl's model, Reset Integrator and Canuda's dynamical model, which are then used in simulation studies. The last part links the former one by illustrating a real-world application: an electric jack from SFIM-Industries, used in the Very Large Telescope (VLT) control scheme. This part begins with physical system presentation. The results are compared with more 'classic' methods. We finish using neural networks compensation scheme in closed-loop control. (author) [fr

  7. Forecasting business cycle with chaotic time series based on neural network with weighted fuzzy membership functions

    International Nuclear Information System (INIS)

    Chai, Soo H.; Lim, Joon S.

    2016-01-01

    This study presents a forecasting model of cyclical fluctuations of the economy based on the time delay coordinate embedding method. The model uses a neuro-fuzzy network called neural network with weighted fuzzy membership functions (NEWFM). The preprocessed time series of the leading composite index using the time delay coordinate embedding method are used as input data to the NEWFM to forecast the business cycle. A comparative study is conducted using other methods based on wavelet transform and Principal Component Analysis for the performance comparison. The forecasting results are tested using a linear regression analysis to compare the approximation of the input data against the target class, gross domestic product (GDP). The chaos based model captures nonlinear dynamics and interactions within the system, which other two models ignore. The test results demonstrated that chaos based method significantly improved the prediction capability, thereby demonstrating superior performance to the other methods.

  8. Hysteretic recurrent neural networks: a tool for modeling hysteretic materials and systems

    International Nuclear Information System (INIS)

    Veeramani, Arun S; Crews, John H; Buckner, Gregory D

    2009-01-01

    This paper introduces a novel recurrent neural network, the hysteretic recurrent neural network (HRNN), that is ideally suited to modeling hysteretic materials and systems. This network incorporates a hysteretic neuron consisting of conjoined sigmoid activation functions. Although similar hysteretic neurons have been explored previously, the HRNN is unique in its utilization of simple recurrence to 'self-select' relevant activation functions. Furthermore, training is facilitated by placing the network weights on the output side, allowing standard backpropagation of error training algorithms to be used. We present two- and three-phase versions of the HRNN for modeling hysteretic materials with distinct phases. These models are experimentally validated using data collected from shape memory alloys and ferromagnetic materials. The results demonstrate the HRNN's ability to accurately generalize hysteretic behavior with a relatively small number of neurons. Additional benefits lie in the network's ability to identify statistical information concerning the macroscopic material by analyzing the weights of the individual neurons

  9. Neural systems analysis of decision making during goal-directed navigation.

    Science.gov (United States)

    Penner, Marsha R; Mizumori, Sheri J Y

    2012-01-01

    The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors. Copyright © 2011. Published by Elsevier Ltd.

  10. Effects of topography on the functional development of human neural progenitor cells.

    Science.gov (United States)

    Wu, Ze-Zhi; Kisaalita, William S; Wang, Lina; Zachman, Angela L; Zhao, Yiping; Hasneen, Kowser; Machacek, Dave; Stice, Steven L

    2010-07-01

    We have fabricated a topographical substrate with a packed polystyrene bead array for the development of cell-based assay systems targeting voltage-gated calcium channels (VGCCs). Human neural progenitor cells (H945RB.3) cultured on both flat and topographical substrates were analyzed in terms of morphological spreading, neuronal commitment, resting membrane potential (V(m)) establishment and VGCC function development. We found, by SEM imaging, that arrayed substrates, formed with both sub-micrometer (of 0.51 microm in mean diameter) and micrometer (of 1.98 microm in mean diameter) beads, were capable of promoting the spreading of the progenitor cells as compared with the flat polystyrene surfaces. With the micrometer beads, it was found that arrayed substrates facilitated the neural progenitor cells' maintenance of less negative V(m) values upon differentiation with bFGF starvation, which favored predominant neuronal commitment. Almost all the progenitor cells were responsive to 50 mM K(+) depolarization with an increase in [Ca(2+)](i) either before or upon differentiation, suggesting the expression of functional VGCCs. Compared to the flat polystyrene surfaces, microbead arrayed substrates facilitated the development of higher VGCC responsiveness by the progenitor cells upon differentiation. The enhancement of both VGCC responsiveness and cell spreading by arrays of micrometer beads was most significant on day 14 into differentiation, which was the latest time point of measurement in this study. This study thus rationalized the possibility for future substrate topography engineering to manipulate ion channel function and to meet the challenge of low VGCC responsiveness found in early drug discovery.

  11. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    Science.gov (United States)

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

  12. Similar patterns of neural activity predict memory function during encoding and retrieval.

    Science.gov (United States)

    Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J

    2017-07-15

    Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Robustness of a Neural Network Model for Power Peak Factor Estimation in Protection Systems

    International Nuclear Information System (INIS)

    Souza, Rose Mary G.P.; Moreira, Joao M.L.

    2006-01-01

    This work presents results of robustness verification of artificial neural network correlations that improve the real time prediction of the power peak factor for reactor protection systems. The input variables considered in the correlation are those available in the reactor protection systems, namely, the axial power differences obtained from measured ex-core detectors, and the position of control rods. The correlations, based on radial basis function (RBF) and multilayer perceptron (MLP) neural networks, estimate the power peak factor, without faulty signals, with average errors between 0.13%, 0.19% and 0.15%, and maximum relative error of 2.35%. The robustness verification was performed for three different neural network correlations. The results show that they are robust against signal degradation, producing results with faulty signals with a maximum error of 6.90%. The average error associated to faulty signals for the MLP network is about half of that of the RBF network, and the maximum error is about 1% smaller. These results demonstrate that MLP neural network correlation is more robust than the RBF neural network correlation. The results also show that the input variables present redundant information. The axial power difference signals compensate the faulty signal for the position of a given control rod, and improves the results by about 10%. The results show that the errors in the power peak factor estimation by these neural network correlations, even in faulty conditions, are smaller than the current PWR schemes which may have uncertainties as high as 8%. Considering the maximum relative error of 2.35%, these neural network correlations would allow decreasing the power peak factor safety margin by about 5%. Such a reduction could be used for operating the reactor with a higher power level or with more flexibility. The neural network correlation has to meet requirements of high integrity software that performs safety grade actions. It is shown that the

  14. Neural Network Target Identification System for False Alarm Reduction

    Science.gov (United States)

    Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.

  15. Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications.

    Science.gov (United States)

    Ferrante, Simona; Pedrocchi, Alessandra; Iannò, Marco; De Momi, Elena; Ferrarin, Maurizio; Ferrigno, Giancarlo

    2004-01-01

    This study falls within the ambit of research on functional electrical stimulation for the design of rehabilitation training for spinal cord injured patients. In this context, a crucial issue is the control of the stimulation parameters in order to optimize the patterns of muscle activation and to increase the duration of the exercises. An adaptive control system (NEURADAPT) based on artificial neural networks (ANNs) was developed to control the knee joint in accordance with desired trajectories by stimulating quadriceps muscles. This strategy includes an inverse neural model of the stimulated limb in the feedforward line and a neural network trained on-line in the feedback loop. NEURADAPT was compared with a linear closed-loop proportional integrative derivative (PID) controller and with a model-based neural controller (NEUROPID). Experiments on two subjects (one healthy and one paraplegic) show the good performance of NEURADAPT, which is able to reduce the time lag introduced by the PID controller. In addition, control systems based on ANN techniques do not require complicated calibration procedures at the beginning of each experimental session. After the initial learning phase, the ANN, thanks to its generalization capacity, is able to cope with a certain range of variability of skeletal muscle properties.

  16. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  17. Olfactory systems and neural circuits that modulate predator odor fear

    Science.gov (United States)

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  18. A canonical correlation neural network for multicollinearity and functional data.

    Science.gov (United States)

    Gou, Zhenkun; Fyfe, Colin

    2004-03-01

    We review a recent neural implementation of Canonical Correlation Analysis and show, using ideas suggested by Ridge Regression, how to make the algorithm robust. The network is shown to operate on data sets which exhibit multicollinearity. We develop a second model which not only performs as well on multicollinear data but also on general data sets. This model allows us to vary a single parameter so that the network is capable of performing Partial Least Squares regression (at one extreme) to Canonical Correlation Analysis (at the other)and every intermediate operation between the two. On multicollinear data, the parameter setting is shown to be important but on more general data no particular parameter setting is required. Finally, we develop a second penalty term which acts on such data as a smoother in that the resulting weight vectors are much smoother and more interpretable than the weights without the robustification term. We illustrate our algorithms on both artificial and real data.

  19. A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems

    Directory of Open Access Journals (Sweden)

    Farshid Keynia

    2011-03-01

    Full Text Available Short-term load forecast (STLF is an important operational function in both regulated power systems and deregulated open electricity markets. However, STLF is not easy to handle due to the nonlinear and random-like behaviors of system loads, weather conditions, and social and economic environment variations. Despite the research work performed in the area, more accurate and robust STLF methods are still needed due to the importance and complexity of STLF. In this paper, a new neural network approach for STLF is proposed. The proposed neural network has a novel learning algorithm based on a new modified harmony search technique. This learning algorithm can widely search the solution space in various directions, and it can also avoid the overfitting problem, trapping in local minima and dead bands. Based on this learning algorithm, the suggested neural network can efficiently extract the input/output mapping function of the forecast process leading to high STLF accuracy. The proposed approach is tested on two practical power systems and the results obtained are compared with the results of several other recently published STLF methods. These comparisons confirm the validity of the developed approach.

  20. Coding of level of ambiguity within neural systems mediating choice.

    Science.gov (United States)

    Lopez-Paniagua, Dan; Seger, Carol A

    2013-01-01

    Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common "fronto-parietal-striatal" network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum).

  1. Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning.

    Science.gov (United States)

    Michaels, Jonathan A; Dann, Benjamin; Scherberger, Hansjörg

    2016-11-01

    Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.

  2. A wireless transmission neural interface system for unconstrained non-human primates.

    Science.gov (United States)

    Fernandez-Leon, Jose A; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J; Hansen, Bryan J; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  3. A wireless transmission neural interface system for unconstrained non-human primates

    Science.gov (United States)

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Objective. Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. Main results. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  4. Adaptive Neural Network Control for Nonlinear Hydraulic Servo-System with Time-Varying State Constraints

    Directory of Open Access Journals (Sweden)

    Shu-Min Lu

    2017-01-01

    Full Text Available An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness.

  5. Functional MRI studies of the neural mechanisms of human brain attentional networks

    International Nuclear Information System (INIS)

    Hao Jing; Li Kuncheng; Chen Qi; Wang Yan; Peng Xiaozhe; Zhou Xiaolin

    2005-01-01

    Objective: To identify the neural mechanisms of the anterior attention network (AAN) and posterior attention network (PAN) , investigate the possible interaction between them with event-related functional MRI(ER-fMRI). Methods: Eight right-handed healthy volunteers participated in the experiment designed with inhibition of return in visual orienting and Stroop color-word interference effect. The fMRI data were collected on Siemens 1.5 T Sonata MRI systems and analyzed by AFNI to generate the activation map. Results: The data sets from 6 of 8 subjects were used in the study. The functional localizations of the Stroop and IOR, which manifest the function of the AAN and PAN respectively, were consistent with previous imaging researches. On cued locations, left inferior parietal lobule (IPL), area MT/V5, right dorsolateral prefrontal cortex (DLPFC) and left anterior cingulated cortex (ACC) were significantly activated. On uncued locations, right superior parietal lobule (SPL) and bilateral area MT/V5 were significantly activated. Conclusion: The AAN exerts control over the PAN, while its function can be in turn modulated by the PAN. There are interaction between the AAN and PAN. In addition, it is also proved that ER-fMRI is a feasible method to revise preexisting cognitive model and theory. (authors)

  6. One-way hash function based on hyper-chaotic cellular neural network

    International Nuclear Information System (INIS)

    Yang Qunting; Gao Tiegang

    2008-01-01

    The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos characteristics is proposed. First, the chaos sequence is gotten by iterating cellular neural network with Runge–Kutta algorithm, and then the chaos sequence is iterated with the message. The hash code is obtained through the corresponding transform of the latter chaos sequence. Simulation and analysis demonstrate that the new method has the merit of convenience, high sensitivity to initial values, good hash performance, especially the strong stability. (general)

  7. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  8. A prediction method for the wax deposition rate based on a radial basis function neural network

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2017-06-01

    Full Text Available The radial basis function neural network is a popular supervised learning tool based on machinery learning technology. Its high precision having been proven, the radial basis function neural network has been applied in many areas. The accumulation of deposited materials in the pipeline may lead to the need for increased pumping power, a decreased flow rate or even to the total blockage of the line, with losses of production and capital investment, so research on predicting the wax deposition rate is significant for the safe and economical operation of an oil pipeline. This paper adopts the radial basis function neural network to predict the wax deposition rate by considering four main influencing factors, the pipe wall temperature gradient, pipe wall wax crystal solubility coefficient, pipe wall shear stress and crude oil viscosity, by the gray correlational analysis method. MATLAB software is employed to establish the RBF neural network. Compared with the previous literature, favorable consistency exists between the predicted outcomes and the experimental results, with a relative error of 1.5%. It can be concluded that the prediction method of wax deposition rate based on the RBF neural network is feasible.

  9. Phase transitions in glassy systems via convolutional neural networks

    Science.gov (United States)

    Fang, Chao

    Machine learning is a powerful approach commonplace in industry to tackle large data sets. Most recently, it has found its way into condensed matter physics, allowing for the first time the study of, e.g., topological phase transitions and strongly-correlated electron systems. The study of spin glasses is plagued by finite-size effects due to the long thermalization times needed. Here we use convolutional neural networks in an attempt to detect a phase transition in three-dimensional Ising spin glasses. Our results are compared to traditional approaches.

  10. NEURAL NETWORK SYSTEM FOR DIAGNOSTICS OF AVIATION DESIGNATION PRODUCTS

    Directory of Open Access Journals (Sweden)

    В. Єременко

    2011-02-01

    Full Text Available In the article for solving the classification problem of the technical state of the  object, proposed to use a hybrid neural network with a Kohonen layer and multilayer perceptron. The information-measuring system can be used for standardless diagnostics, cluster analysis and to classify the products which made from composite materials. The advantage of this architecture is flexibility, high performance, ability to use different methods for collecting diagnostic information about unit under test, high reliability of information processing

  11. Fault Tolerant Neural Network for ECG Signal Classification Systems

    Directory of Open Access Journals (Sweden)

    MERAH, M.

    2011-08-01

    Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.

  12. Optimizing Markovian modeling of chaotic systems with recurrent neural networks

    International Nuclear Information System (INIS)

    Cechin, Adelmo L.; Pechmann, Denise R.; Oliveira, Luiz P.L. de

    2008-01-01

    In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included

  13. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  14. Efficient second order Algorithms for Function Approximation with Neural Networks. Application to Sextic Potentials

    International Nuclear Information System (INIS)

    Gougam, L.A.; Taibi, H.; Chikhi, A.; Mekideche-Chafa, F.

    2009-01-01

    The problem of determining the analytical description for a set of data arises in numerous sciences and applications and can be referred to as data modeling or system identification. Neural networks are a convenient means of representation because they are known to be universal approximates that can learn data. The desired task is usually obtained by a learning procedure which consists in adjusting the s ynaptic weights . For this purpose, many learning algorithms have been proposed to update these weights. The convergence for these learning algorithms is a crucial criterion for neural networks to be useful in different applications. The aim of the present contribution is to use a training algorithm for feed forward wavelet networks used for function approximation. The training is based on the minimization of the least-square cost function. The minimization is performed by iterative second order gradient-based methods. We make use of the Levenberg-Marquardt algorithm to train the architecture of the chosen network and, then, the training procedure starts with a simple gradient method which is followed by a BFGS (Broyden, Fletcher, Glodfarb et Shanno) algorithm. The performances of the two algorithms are then compared. Our method is then applied to determine the energy of the ground state associated to a sextic potential. In fact, the Schrodinger equation does not always admit an exact solution and one has, generally, to solve it numerically. To this end, the sextic potential is, firstly, approximated with the above outlined wavelet network and, secondly, implemented into a numerical scheme. Our results are in good agreement with the ones found in the literature.

  15. Evolving networks and the development of neural systems

    International Nuclear Information System (INIS)

    Johnson, Samuel; Marro, J; Torres, Joaquín J

    2010-01-01

    It is now generally assumed that the heterogeneity of most networks in nature probably arises via preferential attachment of some sort. However, the origin of various other topological features, such as degree–degree correlations and related characteristics, is often not clear, and they may arise from specific functional conditions. We show how it is possible to analyse a very general scenario in which nodes can gain or lose edges according to any (e.g., nonlinear) function of local and/or global degree information. Applying our method to two rather different examples of brain development—synaptic pruning in humans and the neural network of the worm C. Elegans—we find that simple biologically motivated assumptions lead to very good agreement with experimental data. In particular, many nontrivial topological features of the worm's brain arise naturally at a critical point

  16. System Identification Using Multilayer Differential Neural Networks: A New Result

    Directory of Open Access Journals (Sweden)

    J. Humberto Pérez-Cruz

    2012-01-01

    Full Text Available In previous works, a learning law with a dead zone function was developed for multilayer differential neural networks. This scheme requires strictly a priori knowledge of an upper bound for the unmodeled dynamics. In this paper, the learning law is modified in such a way that this condition is relaxed. By this modification, the tuning process is simpler and the dead-zone function is not required anymore. On the basis of this modification and by using a Lyapunov-like analysis, a stronger result is here demonstrated: the exponential convergence of the identification error to a bounded zone. Besides, a value for upper bound of such zone is provided. The workability of this approach is tested by a simulation example.

  17. Neural systems supporting and affecting economically relevant behavior

    Directory of Open Access Journals (Sweden)

    Braeutigam S

    2012-05-01

    Full Text Available Sven BraeutigamOxford Centre for Human Brain Activity, University of Oxford, Oxford, United KingdomAbstract: For about a hundred years, theorists and traders alike have tried to unravel and understand the mechanisms and hidden rules underlying and perhaps determining economically relevant behavior. This review focuses on recent developments in neuroeconomics, where the emphasis is placed on two directions of research: first, research exploiting common experiences of urban inhabitants in industrialized societies to provide experimental paradigms with a broader real-life content; second, research based on behavioral genetics, which provides an additional dimension for experimental control and manipulation. In addition, possible limitations of state-of-the-art neuroeconomics research are addressed. It is argued that observations of neuronal systems involved in economic behavior converge to some extent across the technologies and paradigms used. Conceptually, the data available as of today raise the possibility that neuroeconomic research might provide evidence at the neuronal level for the existence of multiple systems of thought and for the importance of conflict. Methodologically, Bayesian approaches in particular may play an important role in identifying mechanisms and establishing causality between patterns of neural activity and economic behavior.Keywords: neuroeconomics, behavioral genetics, decision-making, consumer behavior, neural system

  18. Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction

    Energy Technology Data Exchange (ETDEWEB)

    Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)

    2008-06-15

    Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)

  19. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering

    Science.gov (United States)

    Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.

    2012-04-01

    Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the

  20. Lyapunov Functions to Caputo Fractional Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Ravi Agarwal

    2018-05-01

    Full Text Available One of the main properties of solutions of nonlinear Caputo fractional neural networks is stability and often the direct Lyapunov method is used to study stability properties (usually these Lyapunov functions do not depend on the time variable. In connection with the Lyapunov fractional method we present a brief overview of the most popular fractional order derivatives of Lyapunov functions among Caputo fractional delay differential equations. These derivatives are applied to various types of neural networks with variable coefficients and time-varying delays. We show that quadratic Lyapunov functions and their Caputo fractional derivatives are not applicable in some cases when one studies stability properties. Some sufficient conditions for stability of equilibrium of nonlinear Caputo fractional neural networks with time dependent transmission delays, time varying self-regulating parameters of all units and time varying functions of the connection between two neurons in the network are obtained. The cases of time varying Lipschitz coefficients as well as nonLipschitz activation functions are studied. We illustrate our theory on particular nonlinear Caputo fractional neural networks.

  1. The neural system of metacognition accompanying decision-making in the prefrontal cortex

    Science.gov (United States)

    Qiu, Lirong; Su, Jie; Ni, Yinmei; Bai, Yang; Zhang, Xuesong; Li, Xiaoli

    2018-01-01

    Decision-making is usually accompanied by metacognition, through which a decision maker monitors uncertainty regarding a decision and may then consequently revise the decision. These metacognitive processes can occur prior to or in the absence of feedback. However, the neural mechanisms of metacognition remain controversial. One theory proposes an independent neural system for metacognition in the prefrontal cortex (PFC); the other, that metacognitive processes coincide and overlap with the systems used for the decision-making process per se. In this study, we devised a novel “decision–redecision” paradigm to investigate the neural metacognitive processes involved in redecision as compared to the initial decision-making process. The participants underwent a perceptual decision-making task and a rule-based decision-making task during functional magnetic resonance imaging (fMRI). We found that the anterior PFC, including the dorsal anterior cingulate cortex (dACC) and lateral frontopolar cortex (lFPC), were more extensively activated after the initial decision. The dACC activity in redecision positively scaled with decision uncertainty and correlated with individual metacognitive uncertainty monitoring abilities—commonly occurring in both tasks—indicating that the dACC was specifically involved in decision uncertainty monitoring. In contrast, the lFPC activity seen in redecision processing was scaled with decision uncertainty reduction and correlated with individual accuracy changes—positively in the rule-based decision-making task and negatively in the perceptual decision-making task. Our results show that the lFPC was specifically involved in metacognitive control of decision adjustment and was subject to different control demands of the tasks. Therefore, our findings support that a separate neural system in the PFC is essentially involved in metacognition and further, that functions of the PFC in metacognition are dissociable. PMID:29684004

  2. Using Pulse Width Modulation for Wireless Transmission of Neural Signals in Multichannel Neural Recording Systems

    Science.gov (United States)

    Yin, Ming; Ghovanloo, Maysam

    2013-01-01

    We have used a well-known technique in wireless communication, pulse width modulation (PWM) of time division multiplexed (TDM) signals, within the architecture of a novel wireless integrated neural recording (WINeR) system. We have evaluated the performance of the PWM-based architecture and indicated its accuracy and potential sources of error through detailed theoretical analysis, simulations, and measurements on a setup consisting of a 15-channel WINeR prototype as the transmitter and two types of receivers; an Agilent 89600 vector signal analyzer and a custom wideband receiver, with 36 and 75 MHz of maximum bandwidth, respectively. Furthermore, we present simulation results from a realistic MATLAB-Simulink model of the entire WINeR system to observe the system behavior in response to changes in various parameters. We have concluded that the 15-ch WINeR prototype, which is fabricated in a 0.5-μm standard CMOS process and consumes 4.5 mW from ±1.5 V supplies, can acquire and wirelessly transmit up to 320 k-samples/s to a 75-MHz receiver with 8.4 bits of resolution, which is equivalent to a wireless data rate of ~ 2.26 Mb/s. PMID:19497823

  3. Neural Activations of Guided Imagery and Music in Negative Emotional Processing: A Functional MRI Study.

    Science.gov (United States)

    Lee, Sang Eun; Han, Yeji; Park, HyunWook

    2016-01-01

    The Bonny Method of Guided Imagery and Music uses music and imagery to access and explore personal emotions associated with episodic memories. Understanding the neural mechanism of guided imagery and music (GIM) as combined stimuli for emotional processing informs clinical application. We performed functional magnetic resonance imaging (fMRI) to demonstrate neural mechanisms of GIM for negative emotional processing when personal episodic memory is recalled and re-experienced through GIM processes. Twenty-four healthy volunteers participated in the study, which used classical music and verbal instruction stimuli to evoke negative emotions. To analyze the neural mechanism, activated regions associated with negative emotional and episodic memory processing were extracted by conducting volume analyses for the contrast between GIM and guided imagery (GI) or music (M). The GIM stimuli showed increased activation over the M-only stimuli in five neural regions associated with negative emotional and episodic memory processing, including the left amygdala, left anterior cingulate gyrus, left insula, bilateral culmen, and left angular gyrus (AG). Compared with GI alone, GIM showed increased activation in three regions associated with episodic memory processing in the emotional context, including the right posterior cingulate gyrus, bilateral parahippocampal gyrus, and AG. No neural regions related to negative emotional and episodic memory processing showed more activation for M and GI than for GIM. As a combined multimodal stimulus, GIM may increase neural activations related to negative emotions and episodic memory processing. Findings suggest a neural basis for GIM with personal episodic memories affecting cortical and subcortical structures and functions. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  5. Short-term plasticity as a neural mechanism supporting memory and attentional functions.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Andermann, Mark L; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2011-11-08

    Based on behavioral studies, several relatively distinct perceptual and cognitive functions have been defined in cognitive psychology such as sensory memory, short-term memory, and selective attention. Here, we review evidence suggesting that some of these functions may be supported by shared underlying neuronal mechanisms. Specifically, we present, based on an integrative review of the literature, a hypothetical model wherein short-term plasticity, in the form of transient center-excitatory and surround-inhibitory modulations, constitutes a generic processing principle that supports sensory memory, short-term memory, involuntary attention, selective attention, and perceptual learning. In our model, the size and complexity of receptive fields/level of abstraction of neural representations, as well as the length of temporal receptive windows, increases as one steps up the cortical hierarchy. Consequently, the type of input (bottom-up vs. top down) and the level of cortical hierarchy that the inputs target, determine whether short-term plasticity supports purely sensory vs. semantic short-term memory or attentional functions. Furthermore, we suggest that rather than discrete memory systems, there are continuums of memory representations from short-lived sensory ones to more abstract longer-duration representations, such as those tapped by behavioral studies of short-term memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Functional neural changes associated with acquired amusia across different stages of recovery after stroke.

    Science.gov (United States)

    Sihvonen, Aleksi J; Särkämö, Teppo; Ripollés, Pablo; Leo, Vera; Saunavaara, Jani; Parkkola, Riitta; Rodríguez-Fornells, Antoni; Soinila, Seppo

    2017-09-12

    Brain damage causing acquired amusia disrupts the functional music processing system, creating a unique opportunity to investigate the critical neural architectures of musical processing in the brain. In this longitudinal fMRI study of stroke patients (N = 41) with a 6-month follow-up, we used natural vocal music (sung with lyrics) and instrumental music stimuli to uncover brain activation and functional network connectivity changes associated with acquired amusia and its recovery. In the acute stage, amusic patients exhibited decreased activation in right superior temporal areas compared to non-amusic patients during instrumental music listening. During the follow-up, the activation deficits expanded to comprise a wide-spread bilateral frontal, temporal, and parietal network. The amusics showed less activation deficits to vocal music, suggesting preserved processing of singing in the amusic brain. Compared to non-recovered amusics, recovered amusics showed increased activation to instrumental music in bilateral frontoparietal areas at 3 months and in right middle and inferior frontal areas at 6 months. Amusia recovery was also associated with increased functional connectivity in right and left frontoparietal attention networks to instrumental music. Overall, our findings reveal the dynamic nature of deficient activation and connectivity patterns in acquired amusia and highlight the role of dorsal networks in amusia recovery.

  7. A Gamma Memory Neural Network for System Identification

    Science.gov (United States)

    Motter, Mark A.; Principe, Jose C.

    1992-01-01

    A gamma neural network topology is investigated for a system identification application. A discrete gamma memory structure is used in the input layer, providing delayed values of both the control inputs and the network output to the input layer. The discrete gamma memory structure implements a tapped dispersive delay line, with the amount of dispersion regulated by a single, adaptable parameter. The network is trained using static back propagation, but captures significant features of the system dynamics. The system dynamics identified with the network are the Mach number dynamics of the 16 Foot Transonic Tunnel at NASA Langley Research Center, Hampton, Virginia. The training data spans an operating range of Mach numbers from 0.4 to 1.3.

  8. Artificial neural network analysis of triple effect absorption refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh Aghdam, A. [Department of Mechanical Engineering, Islamic Azad University (Iran, Islamic Republic of)], email: a.hajizadeh@iaukashan.ac.ir; Nazmara, H.; Farzaneh, B. [Department of Mechanical Engineering, University of Tabriz (Iran, Islamic Republic of)], email: h.nazmara@nioec.org, email: b_farzaneh_ms@yahoo.com

    2011-07-01

    In this study, artificial neural networks are utilized to predict the performance of triple effect series and parallel flow absorption refrigeration systems, with lithium bromide/water as the working fluid. Important parameters such as high generator and evaporator temperatures were varied and their effects on the performance characteristics of the refrigeration unit were observed. Absorption refrigeration systems make energy savings possible because they can use heat energy to produce cooling, in place of the electricity used for conventional vapour compression chillers. In addition, non-conventional sources of energy (such as solar, waste heat, and geothermal) can be utilized as their primary energy input. Moreover, absorption units use environmentally friendly working fluid pairs instead of CFCs and HCFCs, which affect the ozone layer. Triple effect absorption cycles were analysed. Results apply for both series and parallel flow systems. A relative preference for parallel-flow over series-flow is also shown.

  9. Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing

    Science.gov (United States)

    Sengupta, Abhronil; Roy, Kaushik

    2017-12-01

    Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform every day. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this paper attempts to provide a review of the recent developments in the field of spintronic device based neuromorphic computing. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing device structures mimicking neural and synaptic functionalities is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations.

  10. Speaker diarization system using HXLPS and deep neural network

    Directory of Open Access Journals (Sweden)

    V. Subba Ramaiah

    2018-03-01

    Full Text Available In general, speaker diarization is defined as the process of segmenting the input speech signal and grouped the homogenous regions with regard to the speaker identity. The main idea behind this system is that it is able to discriminate the speaker signal by assigning the label of the each speaker signal. Due to rapid growth of broadcasting and meeting, the speaker diarization is burdensome to enhance the readability of the speech transcription. In order to solve this issue, Holoentropy with the eXtended Linear Prediction using autocorrelation Snapshot (HXLPS and deep neural network (DNN is proposed for the speaker diarization system. The HXLPS extraction method is newly developed by incorporating the Holoentropy with the XLPS. Once we attain the features, the speech and non-speech signals are detected by the Voice Activity Detection (VAD method. Then, i-vector representation of every segmented signal is obtained using Universal Background Model (UBM model. Consequently, DNN is utilized to assign the label for the speaker signal which is then clustered according to the speaker label. The performance is analysed using the evaluation metrics, such as tracking distance, false alarm rate and diarization error rate. The outcome of the proposed method ensures the better diarization performance by achieving the lower DER of 1.36% based on lambda value and DER of 2.23% depends on the frame length. Keywords: Speaker diarization, HXLPS feature extraction, Voice activity detection, Deep neural network, Speaker clustering, Diarization Error Rate (DER

  11. Comparing the Selected Transfer Functions and Local Optimization Methods for Neural Network Flood Runoff Forecast

    Directory of Open Access Journals (Sweden)

    Petr Maca

    2014-01-01

    Full Text Available The presented paper aims to analyze the influence of the selection of transfer function and training algorithms on neural network flood runoff forecast. Nine of the most significant flood events, caused by the extreme rainfall, were selected from 10 years of measurement on small headwater catchment in the Czech Republic, and flood runoff forecast was investigated using the extensive set of multilayer perceptrons with one hidden layer of neurons. The analyzed artificial neural network models with 11 different activation functions in hidden layer were trained using 7 local optimization algorithms. The results show that the Levenberg-Marquardt algorithm was superior compared to the remaining tested local optimization methods. When comparing the 11 nonlinear transfer functions, used in hidden layer neurons, the RootSig function was superior compared to the rest of analyzed activation functions.

  12. Distributed neural system for emotional intelligence revealed by lesion mapping.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2014-03-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease.

  13. Distributed neural system for emotional intelligence revealed by lesion mapping

    Science.gov (United States)

    Colom, Roberto; Grafman, Jordan

    2014-01-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease. PMID:23171618

  14. PREDICTING THE EFFECTIVENESS OF WEB INFORMATION SYSTEMS USING NEURAL NETWORKS MODELING: FRAMEWORK & EMPIRICAL TESTING

    Directory of Open Access Journals (Sweden)

    Dr. Kamal Mohammed Alhendawi

    2018-02-01

    Full Text Available The information systems (IS assessment studies have still used the commonly traditional tools such as questionnaires in evaluating the dependent variables and specially effectiveness of systems. Artificial neural networks have been recently accepted as an effective alternative tool for modeling the complicated systems and widely used for forecasting. A very few is known about the employment of Artificial Neural Network (ANN in the prediction IS effectiveness. For this reason, this study is considered as one of the fewest studies to investigate the efficiency and capability of using ANN for forecasting the user perceptions towards IS effectiveness where MATLAB is utilized for building and training the neural network model. A dataset of 175 subjects collected from international organization are utilized for ANN learning where each subject consists of 6 features (5 quality factors as inputs and one Boolean output. A percentage of 75% o subjects are used in the training phase. The results indicate an evidence on the ANN models has a reasonable accuracy in forecasting the IS effectiveness. For prediction, ANN with PURELIN (ANNP and ANN with TANSIG (ANNTS transfer functions are used. It is found that both two models have a reasonable prediction, however, the accuracy of ANNTS model is better than ANNP model (88.6% and 70.4% respectively. As the study proposes a new model for predicting IS dependent variables, it could save the considerably high cost that might be spent in sample data collection in the quantitative studies in the fields science, management, education, arts and others.

  15. Dissecting Repulsive Guidance Molecule/Neogenin function and signaling during neural development

    NARCIS (Netherlands)

    van den Heuvel, D.M.A.

    2013-01-01

    During neural development a series of precisely ordered cellular processes acts to establish a functional brain comprising millions of neurons and many more neuronal connections. Neogenin and its repulsive guidance molecule (RGM) ligands contribute to neuronal network formation by inducing axon

  16. Functional dissociations in top-down control dependent neural repetition priming.

    NARCIS (Netherlands)

    Klaver, P.; Schnaidt, M.; Fell, J.; Ruhlmann, J.; Elger, C.E.; Fernandez, G.S.E.

    2007-01-01

    Little is known about the neural mechanisms underlying top-down control of repetition priming. Here, we use functional brain imaging to investigate these mechanisms. Study and repetition tasks used a natural/man-made forced choice task. In the study phase subjects were required to respond to either

  17. Classifying the molecular functions of Rab GTPases in membrane trafficking using deep convolutional neural networks.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2018-06-13

    Deep learning has been increasingly used to solve a number of problems with state-of-the-art performance in a wide variety of fields. In biology, deep learning can be applied to reduce feature extraction time and achieve high levels of performance. In our present work, we apply deep learning via two-dimensional convolutional neural networks and position-specific scoring matrices to classify Rab protein molecules, which are main regulators in membrane trafficking for transferring proteins and other macromolecules throughout the cell. The functional loss of specific Rab molecular functions has been implicated in a variety of human diseases, e.g., choroideremia, intellectual disabilities, cancer. Therefore, creating a precise model for classifying Rabs is crucial in helping biologists understand the molecular functions of Rabs and design drug targets according to such specific human disease information. We constructed a robust deep neural network for classifying Rabs that achieved an accuracy of 99%, 99.5%, 96.3%, and 97.6% for each of four specific molecular functions. Our approach demonstrates superior performance to traditional artificial neural networks. Therefore, from our proposed study, we provide both an effective tool for classifying Rab proteins and a basis for further research that can improve the performance of biological modeling using deep neural networks. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Immunomodulation of enteric neural function in irritable bowel syndrome

    OpenAIRE

    O’Malley, Dervla

    2015-01-01

    Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder which is characterised by symptoms such as bloating, altered bowel habit and visceral pain. It’s generally accepted that miscommunication between the brain and gut underlies the changes in motility, absorpto-secretory function and pain sensitivity associated with IBS. However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusi...

  19. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    Directory of Open Access Journals (Sweden)

    Xiao-Bing eGao

    2015-10-01

    Full Text Available The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc and long-term behavioral changes (such as reward seeking and addiction, stress response, etc in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation and long-term changes (such as cocaine seeking in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological behavioral, and mental health implications of these findings will be discussed.

  20. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    Science.gov (United States)

    Gao, Xiao-Bing; Hermes, Gretchen

    2015-01-01

    The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc.) and long-term behavioral changes (such as reward seeking and addiction, stress response, etc.) in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation) and long-term changes (such as cocaine seeking) in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological, behavioral, and mental health implications of these findings will be discussed. PMID:26539086

  1. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems.

    Directory of Open Access Journals (Sweden)

    Yuhan Chen

    Full Text Available The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter α, and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of α, resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of α values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real

  2. A training rule which guarantees finite-region stability for a class of closed-loop neural-network control systems.

    Science.gov (United States)

    Kuntanapreeda, S; Fullmer, R R

    1996-01-01

    A training method for a class of neural network controllers is presented which guarantees closed-loop system stability. The controllers are assumed to be nonlinear, feedforward, sampled-data, full-state regulators implemented as single hidden-layer neural networks. The controlled systems must be locally hermitian and observable. Stability of the closed-loop system is demonstrated by determining a Lyapunov function, which can be used to identify a finite stability region about the regulator point.

  3. A lung function information system

    NARCIS (Netherlands)

    A.F.M. Verbraak (Anton); E.J. Hoorn (Ewout); J. de Vries (Julius); J.M. Bogaard (Jan); A. Versprille (Adrian)

    1991-01-01

    markdownabstractAbstract A lung function information system (LFIS) was developed for the data analysis of pulmonary function tests at different locations. This system was connected to the hospital information system (HIS) for the retrieval of patient data and the storage of the lung function

  4. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  5. Hybrid case-neural network (CNN) diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    recently, the mobile health care has a great attention for the researcher and people all over the world. Case based reasoning (CBR) systems have proved their performance as world wide web (WWW) medical diagnostic systems. They were preferred rather than different reasoning approaches due to their high performance and results' explanation. But, their operations require a complex knowledge acquisition and management processes. On the other hand, it is found that, artificial neural network (ANN) has a great acceptance as a classifier methodology using a little amount of knowledge. But, ANN lacks of an explanation capability .The present research introduces a new web-based hybrid diagnostic system that can use the ANN inside the CBR , cycle.It can provide higher performance for the web diagnostic systems. Besides, the proposed system can be used as a web diagnostic system. It can be applied for diagnosis different types of systems in several domains. It has been applied in diagnosis of the cancer diseases that has a great spreading in recent years as a case of study . However, the suggested system has proved its acceptance in the manner.

  6. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  7. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    Central Pattern Generators (CPG) are oscillatory systems that are responsible for generating rhythmic patterns at the origin of many biological activities such as for example locomotion or digestion. These systems are generally modelled as recurrent neural networks whose parameters are tuned so...... that the network oscillates in a suitable way, this tuning being a non trivial task. It also appears that the link with the physical body that these oscillatory entities control has a fundamental importance, and it seems that most bodies used for experimental validation in the literature (walking robots, lamprey...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....

  8. Peak alpha frequency is a neural marker of cognitive function across the autism spectrum.

    Science.gov (United States)

    Dickinson, Abigail; DiStefano, Charlotte; Senturk, Damla; Jeste, Shafali Spurling

    2018-03-01

    Cognitive function varies substantially and serves as a key predictor of outcome and response to intervention in autism spectrum disorder (ASD), yet we know little about the neurobiological mechanisms that underlie cognitive function in children with ASD. The dynamics of neuronal oscillations in the alpha range (6-12 Hz) are associated with cognition in typical development. Peak alpha frequency is also highly sensitive to developmental changes in neural networks, which underlie cognitive function, and therefore, it holds promise as a developmentally sensitive neural marker of cognitive function in ASD. Here, we measured peak alpha band frequency under a task-free condition in a heterogeneous sample of children with ASD (N = 59) and age-matched typically developing (TD) children (N = 38). At a group level, peak alpha frequency was decreased in ASD compared to TD children. Moreover, within the ASD group, peak alpha frequency correlated strongly with non-verbal cognition. As peak alpha frequency reflects the integrity of neural networks, our results suggest that deviations in network development may underlie cognitive function in individuals with ASD. By shedding light on the neurobiological correlates of cognitive function in ASD, our findings lay the groundwork for considering peak alpha frequency as a useful biomarker of cognitive function within this population which, in turn, will facilitate investigations of early markers of cognitive impairment and predictors of outcome in high risk infants. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Neural plasticity in functional and anatomical MRI studies of children with Tourette syndrome.

    Science.gov (United States)

    Eichele, Heike; Plessen, Kerstin J

    2013-01-01

    Tourette syndrome (TS) is a neuropsychiatric disorder with childhood onset characterized by chronic motor and vocal tics. The typical clinical course of an attenuation of symptoms during adolescence in parallel with the emerging self-regulatory control during development suggests that plastic processes may play an important role in the development of tic symptoms. We conducted a systematic search to identify existing imaging studies (both anatomical and functional magnetic resonance imaging [fMRI]) in young persons under the age of 19 years with TS. The final search resulted in 13 original studies, which were reviewed with a focus on findings suggesting adaptive processes (using fMRI) and plasticity (using anatomical MRI). Differences in brain activation compared to healthy controls during tasks that require overriding of prepotent responses help to understand compensatory pathways in children with TS. Along with alterations in regions putatively representing the origin of tics, deviations in several other regions most likely represent an activity-dependent neural plasticity that help to modulate tic severity, such as the prefrontal cortex, but also in the corpus callosum and the limbic system. Factors that potentially influence the development of adaptive changes in the brain of children with TS are age, comorbidity with other developmental disorders, medication use, IQ along with study-design or MRI techniques for acquisition, and analysis of data. The most prominent limitation of all studies is their cross-sectional design. Longitudinal studies extending to younger age groups and to children at risk for developing TS hopefully will confirm findings of neural plasticity in future investigations.

  10. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology.

    Science.gov (United States)

    Coull, J T

    1998-07-01

    Attention and arousal are multi-dimensional psychological processes, which interact closely with one another. The neural substrates of attention, as well as the interaction between arousal and attention, are discussed in this review. After a brief discussion of psychological and neuropsychological theories of attention, event-related potential correlates of attention are discussed. Essentially, attention acts to modulate stimulus-induced electrical potentials (N100/P100, P300, N400), rather than generating any unique potentials of its own. Functional neuroimaging studies of attentional orienting, selective attention, divided attention and sustained attention (and its inter-dependence on underlying levels of arousal) are then reviewed. A distinction is drawn between the brain areas which are crucially involved in the top-down modulation of attention (the 'sources' of attention) and those sensory-association areas whose activity is modulated by attention (the 'sites' of attentional expression). Frontal and parietal (usually right-lateralised) cortices and thalamus are most often associated with the source of attentional modulation. Also, the use of functional neuroimaging to test explicit hypotheses about psychological theories of attention is emphasised. These experimental paradigms form the basis for a 'new generation' of functional imaging studies which exploit the dynamic aspect of imaging and demonstrate how it can be used as more than just a 'brain mapping' device. Finally, a review of psychopharmacological studies in healthy human volunteers outlines the contributions of the noradrenergic, cholinergic and dopaminergic neurotransmitter systems to the neurochemical modulation of human attention and arousal. While, noradrenergic and cholinergic systems are involved in 'low-level' aspects of attention (e.g. attentional orienting), the dopaminergic system is associated with more 'executive' aspects of attention such as attentional set-shifting or working memory.

  11. Direct process estimation from tomographic data using artificial neural systems

    Science.gov (United States)

    Mohamad-Saleh, Junita; Hoyle, Brian S.; Podd, Frank J.; Spink, D. M.

    2001-07-01

    The paper deals with the goal of component fraction estimation in multicomponent flows, a critical measurement in many processes. Electrical capacitance tomography (ECT) is a well-researched sensing technique for this task, due to its low-cost, non-intrusion, and fast response. However, typical systems, which include practicable real-time reconstruction algorithms, give inaccurate results, and existing approaches to direct component fraction measurement are flow-regime dependent. In the investigation described, an artificial neural network approach is used to directly estimate the component fractions in gas-oil, gas-water, and gas-oil-water flows from ECT measurements. A 2D finite- element electric field model of a 12-electrode ECT sensor is used to simulate ECT measurements of various flow conditions. The raw measurements are reduced to a mutually independent set using principal components analysis and used with their corresponding component fractions to train multilayer feed-forward neural networks (MLFFNNs). The trained MLFFNNs are tested with patterns consisting of unlearned ECT simulated and plant measurements. Results included in the paper have a mean absolute error of less than 1% for the estimation of various multicomponent fractions of the permittivity distribution. They are also shown to give improved component fraction estimation compared to a well known direct ECT method.

  12. Appling a Novel Cost Function to Hopfield Neural Network for Defects Boundaries Detection of Wood Image

    Directory of Open Access Journals (Sweden)

    Qi Dawei

    2010-01-01

    Full Text Available A modified Hopfield neural network with a novel cost function was presented for detecting wood defects boundary in the image. Different from traditional methods, the boundary detection problem in this paper was formulated as an optimization process that sought the boundary points to minimize a cost function. An initial boundary was estimated by Canny algorithm first. The pixel gray value was described as a neuron state of Hopfield neural network. The state updated till the cost function touches the minimum value. The designed cost function ensured that few neurons were activated except the neurons corresponding to actual boundary points and ensured that the activated neurons are positioned in the points which had greatest change in gray value. The tools of Matlab were used to implement the experiment. The results show that the noises of the image are effectively removed, and our method obtains more noiseless and vivid boundary than those of the traditional methods.

  13. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jørgensen, L S; Christiansen, P; Raundahl, U

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...

  14. Optimization of the kernel functions in a probabilistic neural network analyzing the local pattern distribution.

    Science.gov (United States)

    Galleske, I; Castellanos, J

    2002-05-01

    This article proposes a procedure for the automatic determination of the elements of the covariance matrix of the gaussian kernel function of probabilistic neural networks. Two matrices, a rotation matrix and a matrix of variances, can be calculated by analyzing the local environment of each training pattern. The combination of them will form the covariance matrix of each training pattern. This automation has two advantages: First, it will free the neural network designer from indicating the complete covariance matrix, and second, it will result in a network with better generalization ability than the original model. A variation of the famous two-spiral problem and real-world examples from the UCI Machine Learning Repository will show a classification rate not only better than the original probabilistic neural network but also that this model can outperform other well-known classification techniques.

  15. Application of neural networks to connectional expert system for identification of transients in nuclear power plants

    International Nuclear Information System (INIS)

    Cheon, Se Woo; Kim, Wan Joo; Chang, Soon Heung; Roh, Myung Sub

    1991-01-01

    The Back-propagation Neural Network (BPN) algorithm is applied to connectionist expert system for the identification of BWR transients. Several powerful features of neural network-based expert systems over traditional rule-based expert systems are described. The general mapping capability of the neural networks enables to identify transients easily. A number of case studies were performed with emphasis on the applicability of the neural networks to the diagnostic domain. It is revealed that the BPN algorithm can identify transients properly, even when incomplete or untrained symptoms are given. It is also shown that multiple transients are easily identified

  16. Nonlinear transfer function encodes synchronization in a neural network from the mammalian brain.

    Science.gov (United States)

    Menendez de la Prida, L; Sanchez-Andres, J V

    1999-09-01

    Synchronization is one of the mechanisms by which the brain encodes information. The observed synchronization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local features of specific areas. This means that biological neural networks should have an intrinsic mechanism able to synchronize the neuronal activity but also to preserve the firing capability of individual cells. Here, we investigate the input-output relationship of a biological neural network from developing mammalian brain, i.e., the hippocampus. We show that the probability of occurrence of synchronous output activity (which consists in stereotyped population bursts recorded throughout the hippocampus) is encoded by a sigmoidal transfer function of the input frequency. Under this scope, low-frequency inputs will not produce any coherent output while high-frequency inputs will determine a synchronous pattern of output activity (population bursts). We analyze the effect of the network size (N) on the parameters of the transfer function (threshold and slope). We found that sigmoidal functions realistically simulate the synchronous output activity of hippocampal neural networks. This outcome is particularly important in the application of results from neural network models to neurobiology.

  17. Characterizing the Spatial Density Functions of Neural Arbors

    Science.gov (United States)

    Teeter, Corinne Michelle

    Recently, it has been proposed that a universal function describes the way in which all arbors (axons and dendrites) spread their branches over space. Data from fish retinal ganglion cells as well as cortical and hippocampal arbors from mouse, rat, cat, monkey and human provide evidence that all arbor density functions (adf) can be described by a Gaussian function truncated at approximately two standard deviations. A Gaussian density function implies that there is a minimal set of parameters needed to describe an adf: two or three standard deviations (depending on the dimensionality of the arbor) and an amplitude. However, the parameters needed to completely describe an adf could be further constrained by a scaling law found between the product of the standard deviations and the amplitude of the function. In the following document, I examine the scaling law relationship in order to determine the minimal set of parameters needed to describe an adf. First, I find that the at, two-dimensional arbors of fish retinal ganglion cells require only two out of the three fundamental parameters to completely describe their density functions. Second, the three-dimensional, volume filling, cortical arbors require four fundamental parameters: three standard deviations and the total length of an arbor (which corresponds to the amplitude of the function). Next, I characterize the shape of arbors in the context of the fundamental parameters. I show that the parameter distributions of the fish retinal ganglion cells are largely homogenous. In general, axons are bigger and less dense than dendrites; however, they are similarly shaped. The parameter distributions of these two arbor types overlap and, therefore, can only be differentiated from one another probabilistically based on their adfs. Despite artifacts in the cortical arbor data, different types of arbors (apical dendrites, non-apical dendrites, and axons) can generally be differentiated based on their adfs. In addition, within

  18. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI

    Directory of Open Access Journals (Sweden)

    Elena Bilevicius

    2016-04-01

    Full Text Available Objective: To assess the neural activity associated with mindfulness-based alterations of pain perception. Methods: The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. Results: The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2, unpleasantness (n = 5, and intensity (n = 5, and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Conclusions: Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  19. Functional neural substrates of posterior cortical atrophy patients.

    Science.gov (United States)

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  20. Reactivating Neural Circuits with Clinically Accessible Stimulation to Restore Hand Function in Persons with Tetraplegia

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0395 TITLE: Reactivating Neural Circuits with Clinically Accessible Stimulation to Restore Hand Function in...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...Clinically Accessible Stimulation to Restore Hand Function in Persons with Tetraplegia 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  1. A functional neuroimaging study assessing gender differences in the neural mechanisms underlying the ability to resist impulsive desires.

    Science.gov (United States)

    Diekhof, Esther K; Keil, Maria; Obst, Katrin U; Henseler, Ilona; Dechent, Peter; Falkai, Peter; Gruber, Oliver

    2012-09-14

    There is ample evidence of gender differences in neural processes and behavior. Differences in reward-related behaviors have been linked to either temporary or permanent organizational influences of gonadal hormones on the mesolimbic dopamine system and reward-related activation. Still, little is known about the association between biological gender and the neural underpinnings of the ability to resist reward-related impulses. Here we assessed with functional magnetic resonance imaging which neural processes enable men and women to successfully control their desire for immediate reward when this is required by a higher-order goal (i.e., during a 'desire-reason dilemma'; Diekhof and Gruber, 2010). Thirty-two participants (16 females) were closely matched for age, personality characteristics (e.g., novelty seeking) and behavioral performance in the 'desire-reason task'. On the neural level, men and women showed similarities in the general response of the nucleus accumbens and of the ventral tegmental area to predictors of immediate reward, but they differed in additional brain mechanisms that enabled self-controlled decisions against the preference for immediate reward. Firstly, men exhibited a stronger reduction of activation in the ventral pallidum, putamen, temporal pole and pregenual anterior cingulate cortex during the 'desire-reason dilemma'. Secondly, connectivity analyses revealed a significant change in the direction of the connectivity between anteroventral prefrontal cortex and nucleus accumbens during decisions counteracting the reward-related impulse when comparing men and women. Together, these findings support the view of a sexual dimorphism that manifested in the recruitment of gender-specific neural resources during the successful deployment of self-control. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    Science.gov (United States)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  3. Fuzzy Wavelet Neural Network Using a Correntropy Criterion for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Leandro L. S. Linhares

    2015-01-01

    Full Text Available Recent researches have demonstrated that the Fuzzy Wavelet Neural Networks (FWNNs are an efficient tool to identify nonlinear systems. In these structures, features related to fuzzy logic, wavelet functions, and neural networks are combined in an architecture similar to the Adaptive Neurofuzzy Inference Systems (ANFIS. In practical applications, the experimental data set used in the identification task often contains unknown noise and outliers, which decrease the FWNN model reliability. In order to reduce the negative effects of these erroneous measurements, this work proposes the direct use of a similarity measure based on information theory in the FWNN learning procedure. The Mean Squared Error (MSE cost function is replaced by the Maximum Correntropy Criterion (MCC in the traditional error backpropagation (BP algorithm. The input-output maps of a real nonlinear system studied in this work are identified from an experimental data set corrupted by different outliers rates and additive white Gaussian noise. The results demonstrate the advantages of the proposed cost function using the MCC as compared to the MSE. This work also investigates the influence of the kernel size on the performance of the MCC in the BP algorithm, since it is the only free parameter of correntropy.

  4. Differential effects of erythropoietin on neural and cognitive measures of executive function 3 and 7 days post-administration

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla; Inkster, Becky; O'Sullivan, Ursula

    2008-01-01

    Erythropoietin (Epo) has neuroprotective and neurotrophic effects and improves cognitive function in animal models of neurodegenerative and neuropsychiatric illness. In humans, weekly Epo administration over 3 months improves cognitive function in schizophrenia. The neural underpinnings and time...

  5. Neural mechanism of facilitation system during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available An enhanced facilitation system caused by motivational input plays an important role in supporting performance during physical fatigue. We tried to clarify the neural mechanisms of the facilitation system during physical fatigue using magnetoencephalography (MEG and a classical conditioning technique. Twelve right-handed volunteers participated in this study. Participants underwent MEG recording during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The metronome sounds were used as conditioned stimuli and maximum handgrip trials as unconditioned stimuli. The next day, they were randomly assigned to two groups in a single-blinded, two-crossover fashion to undergo two types of MEG recordings, that is, for the control and motivation sessions, during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. The alpha-band event-related desynchronizations (ERDs of the motivation session relative to the control session within the time windows of 500 to 700 and 800 to 900 ms after the onset of handgrip cue sounds were identified in the sensorimotor areas. In addition, the alpha-band ERD within the time window of 400 to 500 ms was identified in the right dorsolateral prefrontal cortex (Brodmann's area 46. The ERD level in the right dorsolateral prefrontal cortex was positively associated with that in the sensorimotor areas within the time window of 500 to 700 ms. These results suggest that the right dorsolateral prefrontal cortex is involved in the neural substrates of the facilitation system and activates the sensorimotor areas during physical fatigue.

  6. The Functional Role of Neural Oscillations in Non-Verbal Emotional Communication.

    Science.gov (United States)

    Symons, Ashley E; El-Deredy, Wael; Schwartze, Michael; Kotz, Sonja A

    2016-01-01

    Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS), and orbitofrontal cortex (OFC). However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterize the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronization appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronization may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronization reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities), presence or absence of predictive information, and attentional or task demands. Thus, the synchronization of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity across multiples

  7. Functional neural correlates of reduced physiological falls risk

    Directory of Open Access Journals (Sweden)

    Hsu Chun

    2011-08-01

    Full Text Available Abstract Background It is currently unclear whether the function of brain regions associated with executive cognitive processing are independently associated with reduced physiological falls risk. If these are related, it would suggest that the development of interventions targeted at improving executive neurocognitive function would be an effective new approach for reducing physiological falls risk in seniors. Methods We performed a secondary analysis of 73 community-dwelling senior women aged 65 to 75 years old who participated in a 12-month randomized controlled trial of resistance training. Functional MRI data were acquired while participants performed a modified Eriksen Flanker Task - a task of selective attention and conflict resolution. Brain volumes were obtained using MRI. Falls risk was assessed using the Physiological Profile Assessment (PPA. Results After accounting for baseline age, experimental group, baseline PPA score, and total baseline white matter brain volume, baseline activation in the left frontal orbital cortex extending towards the insula was negatively associated with reduced physiological falls risk over the 12-month period. In contrast, baseline activation in the paracingulate gyrus extending towards the anterior cingulate gyrus was positively associated with reduced physiological falls risk. Conclusions Baseline activation levels of brain regions underlying response inhibition and selective attention were independently associated with reduced physiological falls risk. This suggests that falls prevention strategies may be facilitated by incorporating intervention components - such as aerobic exercise - that are specifically designed to induce neurocognitive plasticity. Trial Registration ClinicalTrials.gov Identifier: NCT00426881

  8. Neural systems language: a formal modeling language for the systematic description, unambiguous communication, and automated digital curation of neural connectivity.

    Science.gov (United States)

    Brown, Ramsay A; Swanson, Larry W

    2013-09-01

    Systematic description and the unambiguous communication of findings and models remain among the unresolved fundamental challenges in systems neuroscience. No common descriptive frameworks exist to describe systematically the connective architecture of the nervous system, even at the grossest level of observation. Furthermore, the accelerating volume of novel data generated on neural connectivity outpaces the rate at which this data is curated into neuroinformatics databases to synthesize digitally systems-level insights from disjointed reports and observations. To help address these challenges, we propose the Neural Systems Language (NSyL). NSyL is a modeling language to be used by investigators to encode and communicate systematically reports of neural connectivity from neuroanatomy and brain imaging. NSyL engenders systematic description and communication of connectivity irrespective of the animal taxon described, experimental or observational technique implemented, or nomenclature referenced. As a language, NSyL is internally consistent, concise, and comprehensible to both humans and computers. NSyL is a promising development for systematizing the representation of neural architecture, effectively managing the increasing volume of data on neural connectivity and streamlining systems neuroscience research. Here we present similar precedent systems, how NSyL extends existing frameworks, and the reasoning behind NSyL's development. We explore NSyL's potential for balancing robustness and consistency in representation by encoding previously reported assertions of connectivity from the literature as examples. Finally, we propose and discuss the implications of a framework for how NSyL will be digitally implemented in the future to streamline curation of experimental results and bridge the gaps among anatomists, imagers, and neuroinformatics databases. Copyright © 2013 Wiley Periodicals, Inc.

  9. Prediction of water formation temperature in natural gas dehydrators using radial basis function (RBF neural networks

    Directory of Open Access Journals (Sweden)

    Tatar Afshin

    2016-03-01

    Full Text Available Raw natural gases usually contain water. It is very important to remove the water from these gases through dehydration processes due to economic reasons and safety considerations. One of the most important methods for water removal from these gases is using dehydration units which use Triethylene glycol (TEG. The TEG concentration at which all water is removed and dew point characteristics of mixture are two important parameters, which should be taken into account in TEG dehydration system. Hence, developing a reliable and accurate model to predict the performance of such a system seems to be very important in gas engineering operations. This study highlights the use of intelligent modeling techniques such as Multilayer perceptron (MLP and Radial Basis Function Neural Network (RBF-ANN to predict the equilibrium water dew point in a stream of natural gas based on the TEG concentration of stream and contractor temperature. Literature data set used in this study covers temperatures from 10 °C to 80 °C and TEG concentrations from 90.000% to 99.999%. Results showed that both models are accurate in prediction of experimental data and the MLP model gives more accurate predictions compared to RBF model.

  10. Artificial neural systems for interpretation and inversion of seismic data

    Science.gov (United States)

    Calderon-Macias, Carlos

    The goal of this work is to investigate the feasibility of using neural network (NN) models for solving geophysical exploration problems. First, a feedforward neural network (FNN) is used to solve inverse problems. The operational characteristics of a FNN are primarily controlled by a set of weights and a nonlinear function that performs a mapping between two sets of data. In a process known as training, the FNN weights are iteratively adjusted to perform the mapping. After training, the computed weights encode important features of the data that enable one pattern to be distinguished from another. Synthetic data computed from an ensemble of earth models and the corresponding models provide the training data. Two training methods are studied: the backpropagation method which is a gradient scheme, and a global optimization method called very fast simulated annealing (VFSA). A trained network is then used to predict models from new data (e.g., data from a new location) in a one-step procedure. The application of this method to the problems of obtaining formation resistivities and layer thicknesses from resistivity sounding data and 1D velocity models from seismic data shows that trained FNNs produce reasonably accurate earth models when observed data are input to the FNNs. In a second application, a FNN is used for automating the NMO correction process of seismic reflection data. The task of the FNN is to map CMP data at control locations along a seismic line into subsurface velocities. The network is trained while the velocity analyses are performed at the control locations. Once trained, the computed weights are used as an operator that acts on the remaining CMP data as a velocity interpolator, resulting in a fast method for NMO correction. The second part of this dissertation describes the application of a Hopfield neural network (HNN) to the problems of deconvolution and multiple attenuation. In these applications, the unknown parameters (reflection coefficients

  11. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture.

    Science.gov (United States)

    Meszlényi, Regina J; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.

  12. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhu

    2016-02-01

    Full Text Available Developing a model of primate neural tube (NT development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs. The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the “NESC-TO-NTs” system, we model the functions of folic acid (FA on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases.

  13. Stochastic Neural Field Theory and the System-Size Expansion

    KAUST Repository

    Bressloff, Paul C.

    2010-01-01

    We analyze a master equation formulation of stochastic neurodynamics for a network of synaptically coupled homogeneous neuronal populations each consisting of N identical neurons. The state of the network is specified by the fraction of active or spiking neurons in each population, and transition rates are chosen so that in the thermodynamic or deterministic limit (N → ∞) we recover standard activity-based or voltage-based rate models. We derive the lowest order corrections to these rate equations for large but finite N using two different approximation schemes, one based on the Van Kampen system-size expansion and the other based on path integral methods. Both methods yield the same series expansion of the moment equations, which at O(1/N) can be truncated to form a closed system of equations for the first-and second-order moments. Taking a continuum limit of the moment equations while keeping the system size N fixed generates a system of integrodifferential equations for the mean and covariance of the corresponding stochastic neural field model. We also show how the path integral approach can be used to study large deviation or rare event statistics underlying escape from the basin of attraction of a stable fixed point of the mean-field dynamics; such an analysis is not possible using the system-size expansion since the latter cannot accurately determine exponentially small transitions. © by SIAM.

  14. Decoupling control of vehicle chassis system based on neural network inverse system

    Science.gov (United States)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  15. Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors.

    Science.gov (United States)

    Sabour, Mohammad Reza; Moftakhari Anasori Movahed, Saman

    2017-02-01

    The soil sorption partition coefficient logK oc is an indispensable parameter that can be used in assessing the environmental risk of organic chemicals. In order to predict soil sorption partition coefficient for different and even unknown compounds in a fast and accurate manner, a radial basis function neural network (RBFNN) model was developed. Eight topological descriptors of 800 organic compounds were used as inputs of the model. These 800 organic compounds were chosen from a large and very diverse data set. Generalized Regression Neural Network (GRNN) was utilized as the function in this neural network model due to its capability to adapt very quickly. Hence, it can be used to predict logK oc for new chemicals, as well. Out of total data set, 560 organic compounds were used for training and 240 to test efficiency of the model. The obtained results indicate that the model performance is very well. The correlation coefficients (R2) for training and test sets were 0.995 and 0.933, respectively. The root-mean square errors (RMSE) were 0.2321 for training set and 0.413 for test set. As the results for both training and test set are extremely satisfactory, the proposed neural network model can be employed not only to predict logK oc of known compounds, but also to be adaptive for prediction of this value precisely for new products that enter the market each year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Hybrid intelligence systems and artificial neural network (ANN approach for modeling of surface roughness in drilling

    Directory of Open Access Journals (Sweden)

    Ch. Sanjay

    2014-12-01

    Full Text Available In machining processes, drilling operation is material removal process that has been widely used in manufacturing since industrial revolution. The useful life of cutting tool and its operating conditions largely controls the economics of machining operations. Drilling is most frequently performed material removing process and is used as a preliminary step for many operations, such as reaming, tapping, and boring. Drill wear has a bad effect on the surface finish and dimensional accuracy of the work piece. The surface finish of a machined part is one of the most important quality characteristics in manufacturing industries. The primary objective of this research is the prediction of suitable parameters for surface roughness in drilling. Cutting speed, cutting force, and machining time were given as inputs to the adaptive fuzzy neural network and neuro-fuzzy analysis for estimating the values of surface roughness by using 2, 3, 4, and 5 membership functions. The best structures were selected based on minimum of summation of square with the actual values with the estimated values by artificial neural fuzzy inference system (ANFIS and neuro-fuzzy systems. For artificial neural network (ANN analysis, the number of neurons was selected from 1, 2, 3, … , 20. The learning rate was selected as .5 and .5 smoothing factor was used. The inputs were selected as cutting speed, feed, machining time, and thrust force. The best structures of neural networks were selected based on the criteria as the minimum of summation of square with the actual value of surface roughness. Drilling experiments with 10 mm size were performed at two cutting speeds and feeds. Comparative analysis has been done between the actual values and the estimated values obtained by ANFIS, neuro-fuzzy, and ANN analysis.

  17. Neural Tuning Functions Underlie Both Generalization and Interference.

    Directory of Open Access Journals (Sweden)

    Ian S Howard

    Full Text Available In sports, the role of backswing is considered critical for generating a good shot, even though it plays no direct role in hitting the ball. We recently demonstrated the scientific basis of this phenomenon by showing that immediate past movement affects the learning and recall of motor memories. This effect occurred regardless of whether the past contextual movement was performed actively, passively, or shown visually. In force field studies, it has been shown that motor memories generalize locally and that the level of compensation decays as a function of movement angle away from the trained movement. Here we examine if the contextual effect of past movement exhibits similar patterns of generalization and whether it can explain behavior seen in interference studies. Using a single force-field learning task, the directional tuning curves of both the prior contextual movement and the subsequent force field adaptive movements were measured. The adaptation movement direction showed strong directional tuning, decaying to zero by 90° relative to the training direction. The contextual movement direction exhibited a similar directional tuning, although the effect was always above 60%. We then investigated the directional tuning of the passive contextual movement using interference tasks, where the contextual movements that uniquely specified the force field direction were separated by ±15° or ±45°. Both groups showed a pronounced tuning effect, which could be well explained by the directional tuning functions for single force fields. Our results show that contextual effect of past movement influences predictive force compensation, even when adaptation does not require contextual information. However, when such past movement contextual information is crucial to the task, such as in an interference study, it plays a strong role in motor memory learning and recall. This work demonstrates that similar tuning responses underlie both generalization of

  18. Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises.

    Science.gov (United States)

    Borrajo, M Lourdes; Baruque, Bruno; Corchado, Emilio; Bajo, Javier; Corchado, Juan M

    2011-08-01

    During the last years there has been a growing need of developing innovative tools that can help small to medium sized enterprises to predict business failure as well as financial crisis. In this study we present a novel hybrid intelligent system aimed at monitoring the modus operandi of the companies and predicting possible failures. This system is implemented by means of a neural-based multi-agent system that models the different actors of the companies as agents. The core of the multi-agent system is a type of agent that incorporates a case-based reasoning system and automates the business control process and failure prediction. The stages of the case-based reasoning system are implemented by means of web services: the retrieval stage uses an innovative weighted voting summarization of self-organizing maps ensembles-based method and the reuse stage is implemented by means of a radial basis function neural network. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.

  19. A new approach for sizing stand alone photovoltaic systems based in neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hontoria, L.; Aguilera, J. [Universidad de Jaen, Dept. de Electronica, Jaen (Spain); Zufiria, P. [UPM Ciudad Universitaria, Dept. de Matematica Aplicada a las Tecnologias de la Informacion, Madrid (Spain)

    2005-02-01

    Several methods for sizing stand alone photovoltaic (pv) systems has been developed. The more simplistic are called intuitive methods. They are a useful tool for a first approach in sizing stand alone photovoltaic systems. Nevertheless they are very inaccurate. Analytical methods use equations to describe the pv system size as a function of reliability. These ones are more accurate than the previous ones but they are also not accurate enough for sizing of high reliability. In a third group there are methods which use system simulations. These ones are called numerical methods. Many of the analytical methods employ the concept of reliability of the system or the complementary term: loss of load probability (LOLP). In this paper an improvement for obtaining LOLP curves based on the neural network called Multilayer Perceptron (MLP) is presented. A unique MLP for many locations of Spain has been trained and after the training, the MLP is able to generate LOLP curves for any value and location. (Author)

  20. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    Science.gov (United States)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  1. Combining neural networks and signed particles to simulate quantum systems more efficiently

    Science.gov (United States)

    Sellier, Jean Michel

    2018-04-01

    Recently a new formulation of quantum mechanics has been suggested which describes systems by means of ensembles of classical particles provided with a sign. This novel approach mainly consists of two steps: the computation of the Wigner kernel, a multi-dimensional function describing the effects of the potential over the system, and the field-less evolution of the particles which eventually create new signed particles in the process. Although this method has proved to be extremely advantageous in terms of computational resources - as a matter of fact it is able to simulate in a time-dependent fashion many-body systems on relatively small machines - the Wigner kernel can represent the bottleneck of simulations of certain systems. Moreover, storing the kernel can be another issue as the amount of memory needed is cursed by the dimensionality of the system. In this work, we introduce a new technique which drastically reduces the computation time and memory requirement to simulate time-dependent quantum systems which is based on the use of an appropriately tailored neural network combined with the signed particle formalism. In particular, the suggested neural network is able to compute efficiently and reliably the Wigner kernel without any training as its entire set of weights and biases is specified by analytical formulas. As a consequence, the amount of memory for quantum simulations radically drops since the kernel does not need to be stored anymore as it is now computed by the neural network itself, only on the cells of the (discretized) phase-space which are occupied by particles. As its is clearly shown in the final part of this paper, not only this novel approach drastically reduces the computational time, it also remains accurate. The author believes this work opens the way towards effective design of quantum devices, with incredible practical implications.

  2. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    Directory of Open Access Journals (Sweden)

    Jinjun Tang

    Full Text Available Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN, two learning processes are proposed: (1 a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2 a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE, root mean square error (RMSE, and mean absolute relative error (MARE are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR, instantaneous model (IM, linear model (LM, neural network (NN, and cumulative plots (CP.

  3. NNETS - NEURAL NETWORK ENVIRONMENT ON A TRANSPUTER SYSTEM

    Science.gov (United States)

    Villarreal, J.

    1994-01-01

    The primary purpose of NNETS (Neural Network Environment on a Transputer System) is to provide users a high degree of flexibility in creating and manipulating a wide variety of neural network topologies at processing speeds not found in conventional computing environments. To accomplish this purpose, NNETS supports back propagation and back propagation related algorithms. The back propagation algorithm used is an implementation of Rumelhart's Generalized Delta Rule. NNETS was developed on the INMOS Transputer. NNETS predefines a Back Propagation Network, a Jordan Network, and a Reinforcement Network to assist users in learning and defining their own networks. The program also allows users to configure other neural network paradigms from the NNETS basic architecture. The Jordan network is basically a feed forward network that has the outputs connected to a pseudo input layer. The state of the network is dependent on the inputs from the environment plus the state of the network. The Reinforcement network learns via a scalar feedback signal called reinforcement. The network propagates forward randomly. The environment looks at the outputs of the network to produce a reinforcement signal that is fed back to the network. NNETS was written for the INMOS C compiler D711B version 1.3 or later (MS-DOS version). A small portion of the software was written in the OCCAM language to perform the communications routing between processors. NNETS is configured to operate on a 4 X 10 array of Transputers in sequence with a Transputer based graphics processor controlled by a master IBM PC 286 (or better) Transputer. A RGB monitor is required which must be capable of 512 X 512 resolution. It must be able to receive red, green, and blue signals via BNC connectors. NNETS is meant for experienced Transputer users only. The program is distributed on 5.25 inch 1.2Mb MS-DOS format diskettes. NNETS was developed in 1991. Transputer and OCCAM are registered trademarks of Inmos Corporation. MS

  4. Symptom based diagnostic system using artificial neural networks

    International Nuclear Information System (INIS)

    Santosh; Vinod, Gopika; Saraf, R.K.

    2003-01-01

    Nuclear power plant experiences a number of transients during its operations. In case of such an undesired plant condition generally known as an initiating event, the operator has to carry out diagnostic and corrective actions. The operator's response may be too late to mitigate or minimize the negative consequences in such scenarios. The objective of this work is to develop an operator support system based on artificial neural networks that will assist the operator to identify the initiating events at the earliest stages of their developments. A symptom based diagnostic system has been developed to investigate the initiating events. Neutral networks are utilized for carrying out the event identification by continuously monitoring process parameters. Whenever an event is detected, the system will display the necessary operator actions along with the initiating event. The system will also show the graphical trend of process parameters that are relevant to the event. This paper describes the features of the software that is used to monitor the reactor. (author)

  5. Barrier Function-Based Neural Adaptive Control With Locally Weighted Learning and Finite Neuron Self-Growing Strategy.

    Science.gov (United States)

    Jia, Zi-Jun; Song, Yong-Duan

    2017-06-01

    This paper presents a new approach to construct neural adaptive control for uncertain nonaffine systems. By integrating locally weighted learning with barrier Lyapunov function (BLF), a novel control design method is presented to systematically address the two critical issues in neural network (NN) control field: one is how to fulfill the compact set precondition for NN approximation, and the other is how to use varying rather than a fixed NN structure to improve the functionality of NN control. A BLF is exploited to ensure the NN inputs to remain bounded during the entire system operation. To account for system nonlinearities, a neuron self-growing strategy is proposed to guide the process for adding new neurons to the system, resulting in a self-adjustable NN structure for better learning capabilities. It is shown that the number of neurons needed to accomplish the control task is finite, and better performance can be obtained with less number of neurons as compared with traditional methods. The salient feature of the proposed method also lies in the continuity of the control action everywhere. Furthermore, the resulting control action is smooth almost everywhere except for a few time instants at which new neurons are added. Numerical example illustrates the effectiveness of the proposed approach.

  6. Toward a distributed free-floating wireless implantable neural recording system.

    Science.gov (United States)

    Pyungwoo Yeon; Xingyuan Tong; Byunghun Lee; Mirbozorgi, Abdollah; Ash, Bruce; Eckhardt, Helmut; Ghovanloo, Maysam

    2016-08-01

    To understand the complex correlations between neural networks across different regions in the brain and their functions at high spatiotemporal resolution, a tool is needed for obtaining long-term single unit activity (SUA) across the entire brain area. The concept and preliminary design of a distributed free-floating wireless implantable neural recording (FF-WINeR) system are presented, which can enabling SUA acquisition by dispersedly implanting tens to hundreds of untethered 1 mm3 neural recording probes, floating with the brain and operating wirelessly across the cortical surface. For powering FF-WINeR probes, a 3-coil link with an intermediate high-Q resonator provides a minimum S21 of -22.22 dB (in the body medium) and -21.23 dB (in air) at 2.8 cm coil separation, which translates to 0.76%/759 μW and 0.6%/604 μW of power transfer efficiency (PTE) / power delivered to a 9 kΩ load (PDL), in body and air, respectively. A mock-up FF-WINeR is implemented to explore microassembly method of the 1×1 mm2 micromachined silicon die with a bonding wire-wound coil and a tungsten micro-wire electrode. Circuit design methods to fit the active circuitry in only 0.96 mm2 of die area in a 130 nm standard CMOS process, and satisfy the strict power and performance requirements (in simulations) are discussed.

  7. Predictive Control of Hydronic Floor Heating Systems using Neural Networks and Genetic Algorithms

    DEFF Research Database (Denmark)

    Vinther, Kasper; Green, Torben; Østergaard, Søren

    2017-01-01

    This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures. Additio...... space is not guaranteed. Evaluation of the performance of multiple neural networks is performed, using different levels of information, and optimization results are presented on a detailed house simulation model....

  8. Transcriptional and Genomic Targets of Neural Stem Cells for Functional Recovery after Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Le Zhang

    2017-01-01

    Full Text Available Hemorrhagic stroke is a life-threatening disease characterized by a sudden rupture of cerebral blood vessels, and it is widely believed that neural cell death occurs after exposure to blood metabolites or subsequently damaged cells. Neural stem cells (NSCs, which maintain neurogenesis and are found in subgranular zone and subventricular zone, are thought to be an endogenous neuroprotective mechanism for these brain injuries. However, due to the complexity of NSCs and their microenvironment, current strategies cannot satisfactorily enhance functional recovery after hemorrhagic stroke. It is well known that transcriptional and genomic pathways play important roles in ensuring the normal functions of NSCs, including proliferation, migration, differentiation, and neural reconnection. Recently, emerging evidence from the use of new technologies such as next-generation sequencing and transcriptome profiling has provided insight into our understanding of genomic function and regulation of NSCs. In the present article, we summarize and present the current data on the control of NSCs at both the transcriptional and genomic levels. Using bioinformatics methods, we sought to predict novel therapeutic targets of endogenous neurogenesis and exogenous NSC transplantation for functional recovery after hemorrhagic stroke, which could also advance our understanding of its pathophysiology.

  9. Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function.

    Science.gov (United States)

    Caron, Emilie; Ciofi, Philippe; Prevot, Vincent; Bouret, Sebastien G

    2012-08-15

    It is increasingly accepted that alterations of the early life environment may have lasting impacts on physiological functions. In particular, epidemiological and animal studies have indicated that changes in growth and nutrition during childhood and adolescence can impair reproductive function. However, the precise biological mechanisms that underlie these programming effects of neonatal nutrition on reproduction are still poorly understood. Here, we used a mouse model of divergent litter size to investigate the effects of early postnatal overnutrition and undernutrition on the maturation of hypothalamic circuits involved in reproductive function. Neonatally undernourished females display attenuated postnatal growth associated with delayed puberty and defective development of axonal projections from the arcuate nucleus to the preoptic region. These alterations persist into adulthood and specifically affect the organization of neural projections containing kisspeptin, a key neuropeptide involved in pubertal activation and fertility. Neonatal overfeeding also perturbs the development of neural projections from the arcuate nucleus to the preoptic region, but it does not result in alterations in kisspeptin projections. These studies indicate that alterations in the early nutritional environment cause lasting and deleterious effects on the organization of neural circuits involved in the control of reproduction, and that these changes are associated with lifelong functional perturbations.

  10. Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics.

    Science.gov (United States)

    Si, Wenjie; Dong, Xunde; Yang, Feifei

    2018-03-01

    This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Vertical System Functions

    NARCIS (Netherlands)

    Pias, M.; Coulouris, G.; Marron, P.J.; Minder, D.; Meratnia, Nirvana; Lijding, M.E.M.; Havinga, Paul J.M.; Baydere, S.; Cayirci, E.; Petrioli, C.; Banatre, M.; Marron, P.J.; Ollero, A.; Wolisz, A.

    A number of different system concepts have become apparent in the broader context of embedded systems over the past few years. Whilst there are some differences between these, this book argues that in fact there is much they share in common, particularly the important notions of control,

  12. Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Yu, Lianchun; De Mazancourt, Marine; Hess, Agathe; Ashadi, Fakhrul R; Klein, Isabelle; Mal, Hervé; Courbage, Maurice; Mangin, Laurence

    2016-08-01

    Breathing involves a complex interplay between the brainstem automatic network and cortical voluntary command. How these brain regions communicate at rest or during inspiratory loading is unknown. This issue is crucial for several reasons: (i) increased respiratory loading is a major feature of several respiratory diseases, (ii) failure of the voluntary motor and cortical sensory processing drives is among the mechanisms that precede acute respiratory failure, (iii) several cerebral structures involved in responding to inspiratory loading participate in the perception of dyspnea, a distressing symptom in many disease. We studied functional connectivity and Granger causality of the respiratory network in controls and patients with chronic obstructive pulmonary disease (COPD), at rest and during inspiratory loading. Compared with those of controls, the motor cortex area of patients exhibited decreased connectivity with their contralateral counterparts and no connectivity with the brainstem. In the patients, the information flow was reversed at rest with the source of the network shifted from the medulla towards the motor cortex. During inspiratory loading, the system was overwhelmed and the motor cortex became the sink of the network. This major finding may help to understand why some patients with COPD are prone to acute respiratory failure. Network connectivity and causality were related to lung function and illness severity. We validated our connectivity and causality results with a mathematical model of neural network. Our findings suggest a new therapeutic strategy involving the modulation of brain activity to increase motor cortex functional connectivity and improve respiratory muscles performance in patients. Hum Brain Mapp 37:2736-2754, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  13. The application of expert systems and neural networks to gas turbine prognostics and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    DePold, H.R.; Gass, F.D.

    1999-10-01

    Condition monitoring of engine gas generators plays an essential role in airline fleet management. Adaptive diagnostic systems are becoming available that interpret measured data, furnish diagnosis of problems, provide a prognosis of engine health for planning purposes, and rank engines for scheduled maintenance. More than four hundred operations worldwide currently use versions of the first or second generation diagnostic tools. Development of a third generation system is underway which will provide additional system enhancements and combine the functions of the existing tools. Proposed enhancements include the use of artificial intelligence to automate, improve the quality of the analysis, provide timely alerts, and the use of an Internet link for collaboration. One objective of these enhancements is to have the intelligent system do more of the analysis and decision making, while continuing to support the depth of analysis currently available at experienced operations. This paper presents recent developments in technology and strategies in engine condition monitoring including: (1) application of statistical analysis and artificial neural network filters to improve data quality, (2) neural networks for trend change detection, and classification to diagnose performance change, and (3) expert systems to diagnose, provide alerts and to rank maintenance action recommendations.

  14. A neural network based artificial vision system for licence plate recognition.

    Science.gov (United States)

    Draghici, S

    1997-02-01

    This paper presents a neural network based artificial vision system able to analyze the image of a car given by a camera, locate the registration plate and recognize the registration number of the car. The paper describes in detail various practical problems encountered in implementing this particular application and the solutions used to solve them. The main features of the system presented are: controlled stability-plasticity behavior, controlled reliability threshold, both off-line and on-line learning, self assessment of the output reliability and high reliability based on high level multiple feedback. The system has been designed using a modular approach. Sub-modules can be upgraded and/or substituted independently, thus making the system potentially suitable in a large variety of vision applications. The OCR engine was designed as an interchangeable plug-in module. This allows the user to choose an OCR engine which is suited to the particular application and to upgrade it easily in the future. At present, there are several versions of this OCR engine. One of them is based on a fully connected feedforward artificial neural network with sigmoidal activation functions. This network can be trained with various training algorithms such as error backpropagation. An alternative OCR engine is based on the constraint based decomposition (CBD) training architecture. The system has showed the following performances (on average) on real-world data: successful plate location and segmentation about 99%, successful character recognition about 98% and successful recognition of complete registration plates about 80%.

  15. Amyloid-independent functional neural correlates of episodic memory in amnestic mild cognitive impairment.

    Science.gov (United States)

    Seo, Eun Hyun; Choo, I L Han

    2016-06-01

    Although amnestic mild cognitive impairment (aMCI) could have various biological characteristics, little attention has been given to the nature of episodic memory decline in aMCI with pathophysiologies other than Alzheimer's disease (AD), i.e., aMCI with low beta-amyloid (Aβ) burden. This study aimed to identify the functional neural basis of episodic memory impairment in aMCI with Aβ burden negative (aMCI-Aβ-) and to compare these results with aMCI with Aβ burden positive (aMCI-Aβ+). Individuals with aMCI (n = 498) were selected from the Alzheimer's Disease Neuroimaging Initiative database. Based on the mean florbetapir standard uptake value ratio, participants were classified as aMCI-Aβ- or aMCI-Aβ+. Correlations between memory scores and regional cerebral glucose metabolism (rCMglc) were analyzed separately for the two subgroups using a multiple regression model. For aMCI-Aβ-, significant positive correlations between memory and rCMglc were found in the bilateral claustrum, right thalamus, left anterior cingulate cortex, left insula, and right posterior cingulate. For aMCI-Aβ+, significant positive correlations between memory and rCMglc were found in the temporoparietal areas. These correlation patterns remained unchanged when clinical severity was added as a covariate Our findings indicate that memory impairment in aMCI-Aβ- is related to multimodal integrative processing and the attentional control system, whereas memory impairment in aMCI-Aβ+ is related to the typical brain memory systems and AD signature. These results suggest that although the two subgroups are clinically in the same category as aMCI, the memory impairment process depends on completely different functional brain regions according to their Aβ burden level.

  16. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  17. Intelligent PV Power Smoothing Control Using Probabilistic Fuzzy Neural Network with Asymmetric Membership Function

    Directory of Open Access Journals (Sweden)

    Faa-Jeng Lin

    2017-01-01

    Full Text Available An intelligent PV power smoothing control using probabilistic fuzzy neural network with asymmetric membership function (PFNN-AMF is proposed in this study. First, a photovoltaic (PV power plant with a battery energy storage system (BESS is introduced. The BESS consisted of a bidirectional DC/AC 3-phase inverter and LiFePO4 batteries. Then, the difference of the actual PV power and smoothed power is supplied by the BESS. Moreover, the network structure of the PFNN-AMF and its online learning algorithms are described in detail. Furthermore, the three-phase output currents of the PV power plant are converted to the dq-axis current components. The resulted q-axis current is the input of the PFNN-AMF power smoothing control, and the output is a smoothing PV power curve to achieve the effect of PV power smoothing. Comparing to the other smoothing methods, a minimum energy capacity of the BESS with a small fluctuation of the grid power can be achieved by the PV power smoothing control using PFNN-AMF. In addition, a personal computer- (PC- based PV power plant emulator and BESS are built for the experimentation. From the experimental results of various irradiance variation conditions, the effectiveness of the proposed intelligent PV power smoothing control can be verified.

  18. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    Science.gov (United States)

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  19. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...

  20. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...... choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...

  1. TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

    DEFF Research Database (Denmark)

    Yao, Wei; Fang, Jiakun; Zhao, Ping

    2013-01-01

    the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency......In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...

  2. Different Neural Systems Contribute to Semantic Bias and Conflict Detection in the Inclusion Fallacy Task

    Directory of Open Access Journals (Sweden)

    Peipeng eLiang

    2014-10-01

    Full Text Available more general conclusion category is considered stronger than a generalization to a specific conclusion category nested within the more general set. Such inferences violate rational norms and are part of the reasoning fallacy literature that provides interesting tasks to explore cognitive and neural basis of reasoning. To explore the functional neuroanatomy of the inclusion fallacy, we used a 2×2 factorial design, with factors for Quantification (explicit and implicit and Response (fallacious and nonfallacious. It was found that a left fronto-temporal system, along with a superior medial frontal system, was specifically activated in response to fallacy responses consistent with a semantic biasing of judgment explanation. A right fronto-parietal system was specifically recruited in response to detecting conflict associated with the heightened fallacy condition. These results are largely consistent with previous studies of reasoning fallacy and support a multiple systems model of reasoning.

  3. Anger under control: neural correlates of frustration as a function of trait aggression.

    Directory of Open Access Journals (Sweden)

    Christina M Pawliczek

    Full Text Available Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21 and one reporting low (n=18 trait aggression. Using functional magnetic resonance imaging (fMRI at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  4. NEURAL NETWORKS AS A CLASSIFICATION TOOL BIOTECHNOLOGICAL SYSTEMS (FOR EXAMPLE FLOUR PRODUCTION

    Directory of Open Access Journals (Sweden)

    V. K. Bitykov

    2015-01-01

    Full Text Available Summary. To date, artificial intelligence systems are the most common type to classify objects of different quality. The proposed modeling technology to predict the quality of flour products by using artificial neural networks allows to solve problems of analysis of the factors determining the quality of the products. Interest in artificial neural networks has grown due to the fact that they can change their behavior depending on external environment. This factor more than any other responsible for the interest that they cause. After the presentation of input signals (possibly together with the desired outputs, they self-configurable to provide the desired reaction. We developed a set of training algorithms, each with their own strengths and weaknesses. The solution to the problem of classification is one of the most important applications of neural networks, which represents a problem of attributing the sample to one of several non-intersecting sets. To solve this problem developed algorithms for synthesis of NA with the use of nonlinear activation functions, the algorithms for training the network. Training the NS involves determining the weights of layers of neurons. Training the NA occurs with the teacher, that is, the network must meet the values of both input and desired output signals, and it is according to some internal algorithm adjusts the weights of their synaptic connections. The work was built an artificial neural network, multilayer perceptron example. With the help of correlation analysis in total sample revealed that the traits are correlated at the significance level of 0.01 with grade quality bread. The classification accuracy exceeds 90%.

  5. Machine learning of radial basis function neural network based on Kalman filter: Introduction

    Directory of Open Access Journals (Sweden)

    Vuković Najdan L.

    2014-01-01

    Full Text Available This paper analyzes machine learning of radial basis function neural network based on Kalman filtering. Three algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. We emphasize basic properties of these estimation algorithms, demonstrate how their advantages can be used for optimization of network parameters, derive mathematical models and show how they can be applied to model problems in engineering practice.

  6. Gold nanoparticles functionalized with a fragment of the neural cell adhesion molecule L1 stimulate L1-mediated functions

    Science.gov (United States)

    Schulz, Florian; Lutz, David; Rusche, Norman; Bastús, Neus G.; Stieben, Martin; Höltig, Michael; Grüner, Florian; Weller, Horst; Schachner, Melitta; Vossmeyer, Tobias; Loers, Gabriele

    2013-10-01

    The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1 sequence of the third fibronectin type III domain of murine L1 was identified and conjugated to gold nanoparticles (AuNPs) to obtain constructs that interact homophilically with the extracellular domain of L1 and trigger the cognate beneficial L1-mediated functions. Covalent conjugation was achieved by reacting mixtures of two cysteine-terminated forms of this L1 peptide and thiolated poly(ethylene) glycol (PEG) ligands (~2.1 kDa) with citrate stabilized AuNPs of two different sizes (~14 and 40 nm in diameter). By varying the ratio of the L1 peptide-PEG mixtures, an optimized layer composition was achieved that resulted in the expected homophilic interaction of the AuNPs. These AuNPs were stable as tested over a time period of 30 days in artificial cerebrospinal fluid and interacted with the extracellular domain of L1 on neurons and Schwann cells, as could be shown by using cells from wild-type and L1-deficient mice. In vitro, the L1-derivatized particles promoted neurite outgrowth and survival of neurons from the central and peripheral nervous system and stimulated Schwann cell process formation and proliferation. These observations raise the hope that, in combination with other therapeutic approaches, L1 peptide-functionalized AuNPs may become a useful tool to ameliorate the deficits resulting from acute and chronic injuries of the mammalian nervous system.The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1

  7. Safety system function trends

    International Nuclear Information System (INIS)

    Johnson, C.

    1989-01-01

    This paper describes research to develop risk-based indicators of plant safety performance. One measure of the safety-performance of operating nuclear power plants is the unavailability of important safety systems. Brookhaven National Laboratory and Science Applications International Corporation are evaluating ways to aggregate train-level or component-level data to provide such an indicator. This type of indicator would respond to changes in plant safety margins faster than the currently used indicator of safety system unavailability (i.e., safety system failures reported in licensee event reports). Trends in the proposed indicator would be one indication of trends in plant safety performance and maintenance effectiveness. This paper summarizes the basis for such an indicator, identifies technical issues to be resolved, and illustrates the potential usefullness of such indicators by means of computer simulations and case studies

  8. On the Universality and Non-Universality of Spiking Neural P Systems With Rules on Synapses.

    Science.gov (United States)

    Song, Tao; Xu, Jinbang; Pan, Linqiang

    2015-12-01

    Spiking neural P systems with rules on synapses are a new variant of spiking neural P systems. In the systems, the neuron contains only spikes, while the spiking/forgetting rules are moved on the synapses. It was obtained that such system with 30 neurons (using extended spiking rules) or with 39 neurons (using standard spiking rules) is Turing universal. In this work, this number is improved to 6. Specifically, we construct a Turing universal spiking neural P system with rules on synapses having 6 neurons, which can generate any set of Turing computable natural numbers. As well, it is obtained that spiking neural P system with rules on synapses having less than two neurons are not Turing universal: i) such systems having one neuron can characterize the family of finite sets of natural numbers; ii) the family of sets of numbers generated by the systems having two neurons is included in the family of semi-linear sets of natural numbers.

  9. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    Science.gov (United States)

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  10. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  11. Adaptive Neural-Sliding Mode Control of Active Suspension System for Camera Stabilization

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-01-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to the unintentional vibrations caused by road roughness. This paper presents a novel adaptive neural network based on sliding mode control strategy to stabilize the image captured area of the camera. The purpose is to suppress vertical displacement of sprung mass with the application of active suspension system. Since the active suspension system has nonlinear and time varying characteristics, adaptive neural network (ANN is proposed to make the controller robustness against systematic uncertainties, which release the model-based requirement of the sliding model control, and the weighting matrix is adjusted online according to Lyapunov function. The control system consists of two loops. The outer loop is a position controller designed with sliding mode strategy, while the PID controller in the inner loop is to track the desired force. The closed loop stability and asymptotic convergence performance can be guaranteed on the basis of the Lyapunov stability theory. Finally, the simulation results show that the employed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  12. Combined expert system/neural networks method for process fault diagnosis

    Science.gov (United States)

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  13. Combined expert system/neural networks method for process fault diagnosis

    Science.gov (United States)

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  14. Adaptive fuzzy-neural-network control for maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  15. Flood forecasting within urban drainage systems using NARX neural network.

    Science.gov (United States)

    Abou Rjeily, Yves; Abbas, Oras; Sadek, Marwan; Shahrour, Isam; Hage Chehade, Fadi

    2017-11-01

    Urbanization activity and climate change increase the runoff volumes, and consequently the surcharge of the urban drainage systems (UDS). In addition, age and structural failures of these utilities limit their capacities, and thus generate hydraulic operation shortages, leading to flooding events. The large increase in floods within urban areas requires rapid actions from the UDS operators. The proactivity in taking the appropriate actions is a key element in applying efficient management and flood mitigation. Therefore, this work focuses on developing a flooding forecast system (FFS), able to alert in advance the UDS managers for possible flooding. For a forecasted storm event, a quick estimation of the water depth variation within critical manholes allows a reliable evaluation of the flood risk. The Nonlinear Auto Regressive with eXogenous inputs (NARX) neural network was chosen to develop the FFS as due to its calculation nature it is capable of relating water depth variation in manholes to rainfall intensities. The campus of the University of Lille is used as an experimental site to test and evaluate the FFS proposed in this paper.

  16. PERFORMANCE COMPARISON FOR INTRUSION DETECTION SYSTEM USING NEURAL NETWORK WITH KDD DATASET

    Directory of Open Access Journals (Sweden)

    S. Devaraju

    2014-04-01

    Full Text Available Intrusion Detection Systems are challenging task for finding the user as normal user or attack user in any organizational information systems or IT Industry. The Intrusion Detection System is an effective method to deal with the kinds of problem in networks. Different classifiers are used to detect the different kinds of attacks in networks. In this paper, the performance of intrusion detection is compared with various neural network classifiers. In the proposed research the four types of classifiers used are Feed Forward Neural Network (FFNN, Generalized Regression Neural Network (GRNN, Probabilistic Neural Network (PNN and Radial Basis Neural Network (RBNN. The performance of the full featured KDD Cup 1999 dataset is compared with that of the reduced featured KDD Cup 1999 dataset. The MATLAB software is used to train and test the dataset and the efficiency and False Alarm Rate is measured. It is proved that the reduced dataset is performing better than the full featured dataset.

  17. Review: the role of neural crest cells in the endocrine system.

    Science.gov (United States)

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  18. A neural network method for solving a system of linear variational inequalities

    International Nuclear Information System (INIS)

    Lan Hengyou; Cui Yishun

    2009-01-01

    In this paper, we transmute the solution for a new system of linear variational inequalities to an equilibrium point of neural networks, and by using analytic technique, some sufficient conditions are presented. Further, the estimation of the exponential convergence rates of the neural networks is investigated. The new and useful results obtained in this paper generalize and improve the corresponding results of recent works.

  19. Decoupling control of a five-phase fault-tolerant permanent magnet motor by radial basis function neural network inverse

    Science.gov (United States)

    Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir

    2018-05-01

    This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.

  20. Neural network models for biological waste-gas treatment systems.

    Science.gov (United States)

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  1. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    Science.gov (United States)

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  2. A model for integrating elementary neural functions into delayed-response behavior.

    Directory of Open Access Journals (Sweden)

    Thomas Gisiger

    2006-04-01

    Full Text Available It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning, and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task, or recalling from this image another one that has been associated with it during training (delayed-pair association task. The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.

  3. A model for integrating elementary neural functions into delayed-response behavior.

    Science.gov (United States)

    Gisiger, Thomas; Kerszberg, Michel

    2006-04-01

    It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning), and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task), or recalling from this image another one that has been associated with it during training (delayed-pair association task). The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.

  4. Investigations on Incipient Fault Diagnosis of Power Transformer Using Neural Networks and Adaptive Neurofuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Nandkumar Wagh

    2014-01-01

    Full Text Available Continuity of power supply is of utmost importance to the consumers and is only possible by coordination and reliable operation of power system components. Power transformer is such a prime equipment of the transmission and distribution system and needs to be continuously monitored for its well-being. Since ratio methods cannot provide correct diagnosis due to the borderline problems and the probability of existence of multiple faults, artificial intelligence could be the best approach. Dissolved gas analysis (DGA interpretation may provide an insight into the developing incipient faults and is adopted as the preliminary diagnosis tool. In the proposed work, a comparison of the diagnosis ability of backpropagation (BP, radial basis function (RBF neural network, and adaptive neurofuzzy inference system (ANFIS has been investigated and the diagnosis results in terms of error measure, accuracy, network training time, and number of iterations are presented.

  5. Systems biological approach to investigate the lack of familial link between Down's Syndrome & Neural Tube Disorders.

    Science.gov (United States)

    Ragunath, Pk; Abhinand, Pa

    2013-01-01

    Systems Biology involves the study of the interactions of biological systems and ultimately their functions. Down's syndrome (DS) is one of the most common genetic disorders which are caused by complete, or occasionally partial, triplication of chromosome 21, characterized by cognitive and language dysfunction coupled with sensory and neuromotor deficits. Neural Tube Disorders (NTDs) are a group of congenital malformations of the central nervous system and neighboring structures related to defective neural tube closure during the first trimester of pregnancy usually occurring between days 18-29 of gestation. Several studies in the past have provided considerable evidence that abnormal folate and methyl metabolism are associated with onset of DS & NTDs. There is a possible common etiological pathway for both NTDs and Down's syndrome. But, various research studies over the years have indicated very little evidence for familial link between the two disorders. Our research aimed at the gene expression profiling of microarray datasets pertaining to the two disorders to identify genes whose expression levels are significantly altered in these conditions. The genes which were 1.5 fold unregulated and having a p-value disorders were recognized and over representation analysis was carried out for each of the constituent genes. The comprehensive manual analysis of these genes yields a hypothetical understanding of the lack of familial link between DS and NTDs. There were no genes involved with folic acid present in the dense cliques. Only - CBL, EGFR genes were commonly present, which makes the allelic variants of these genes - good candidates for future studies regarding the familial link between DS and NTDs. NTD - Neural Tube Disorders, DS - Down's Syndrome, MTHFR - Methylenetetrahydrofolate reductase, MTRR- 5 - methyltetrahydrofolate-homocysteine methyltransferase reductase.

  6. Neural Correlates of Symptom Dimensions in Pediatric Obsessive-Compulsive Disorder: A Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Gilbert, Andrew R.; Akkal, Dalila; Almeida, Jorge R. C.; Mataix-Cols, David; Kalas, Catherine; Devlin, Bernie; Birmaher, Boris; Phillips, Mary L.

    2009-01-01

    The use of functional magnetic resonance imaging on a group of pediatric subjects with obsessive compulsive disorder reveals that this group has reduced activity in neural regions underlying emotional processing, cognitive processing, and motor performance as compared to control subjects.

  7. The neural basis of love as a subliminal prime: an event-related functional magnetic resonance imaging study.

    Science.gov (United States)

    Ortigue, S; Bianchi-Demicheli, F; Hamilton, A F de C; Grafton, S T

    2007-07-01

    Throughout the ages, love has been defined as a motivated and goal-directed mechanism with explicit and implicit mechanisms. Recent evidence demonstrated that the explicit representation of love recruits subcorticocortical pathways mediating reward, emotion, and motivation systems. However, the neural basis of the implicit (unconscious) representation of love remains unknown. To assess this question, we combined event-related functional magnetic resonance imaging (fMRI) with a behavioral subliminal priming paradigm embedded in a lexical decision task. In this task, the name of either a beloved partner, a neutral friend, or a passionate hobby was subliminally presented before a target stimulus (word, nonword, or blank), and participants were required to decide if the target was a word or not. Behavioral results showed that subliminal presentation of either a beloved's name (love prime) or a passion descriptor (passion prime) enhanced reaction times in a similar fashion. Subliminal presentation of a friend's name (friend prime) did not show any beneficial effects. Functional results showed that subliminal priming with a beloved's name (as opposed to either a friend's name or a passion descriptor) specifically recruited brain areas involved in abstract representations of others and the self, in addition to motivation circuits shared with other sources of passion. More precisely, love primes recruited the fusiform and angular gyri. Our findings suggest that love, as a subliminal prime, involves a specific neural network that surpasses a dopaminergic-motivation system.

  8. The modelling of lead removal from water by deep eutectic solvents functionalized CNTs: artificial neural network (ANN) approach.

    Science.gov (United States)

    Fiyadh, Seef Saadi; AlSaadi, Mohammed Abdulhakim; AlOmar, Mohamed Khalid; Fayaed, Sabah Saadi; Hama, Ako R; Bee, Sharifah; El-Shafie, Ahmed

    2017-11-01

    The main challenge in the lead removal simulation is the behaviour of non-linearity relationships between the process parameters. The conventional modelling technique usually deals with this problem by a linear method. The substitute modelling technique is an artificial neural network (ANN) system, and it is selected to reflect the non-linearity in the interaction among the variables in the function. Herein, synthesized deep eutectic solvents were used as a functionalized agent with carbon nanotubes as adsorbents of Pb 2+ . Different parameters were used in the adsorption study including pH (2.7 to 7), adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and Pb 2+ initial concentration (3 to 60 mg/l). The number of experimental trials to feed and train the system was 158 runs conveyed in laboratory scale. Two ANN types were designed in this work, the feed-forward back-propagation and layer recurrent; both methods are compared based on their predictive proficiency in terms of the mean square error (MSE), root mean square error, relative root mean square error, mean absolute percentage error and determination coefficient (R 2 ) based on the testing dataset. The ANN model of lead removal was subjected to accuracy determination and the results showed R 2 of 0.9956 with MSE of 1.66 × 10 -4 . The maximum relative error is 14.93% for the feed-forward back-propagation neural network model.

  9. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.

    Science.gov (United States)

    Mall, Susmita; Chakraverty, S

    2016-08-01

    Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.

  10. Neural mechanisms of subclinical depressive symptoms in women: a pilot functional brain imaging study

    Directory of Open Access Journals (Sweden)

    Felder Jennifer N

    2012-09-01

    Full Text Available Abstract Background Studies of individuals who do not meet criteria for major depressive disorder (MDD but with subclinical levels of depressive symptoms may aid in the identification of neurofunctional abnormalities that possibly precede and predict the development of MDD. The purpose of this study was to evaluate relations between subclinical levels of depressive symptoms and neural activation patterns during tasks previously shown to differentiate individuals with and without MDD. Methods Functional magnetic resonance imaging (fMRI was used to assess neural activations during active emotion regulation, a resting state scan, and reward processing. Participants were twelve females with a range of depressive symptoms who did not meet criteria for MDD. Results Increased depressive symptom severity predicted (1 decreased left midfrontal gyrus activation during reappraisal of sad stimuli; (2 increased right midfrontal gyrus activation during distraction from sad stimuli; (3 increased functional connectivity between a precuneus seed region and left orbitofrontal cortex during a resting state scan; and (4 increased paracingulate activation during non-win outcomes during a reward-processing task. Conclusions These pilot data shed light on relations between subclinical levels of depressive symptoms in the absence of a formal MDD diagnosis and neural activation patterns. Future studies will be needed to test the utility of these activation patterns for predicting MDD onset in at-risk samples.

  11. A novel neural-wavelet approach for process diagnostics and complex system modeling

    Science.gov (United States)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  12. Altered Immune Function Associated with Disordered Neural Connectivity and Executive Dysfunctions: A Neurophysiological Study on Children with Autism Spectrum Disorders

    Science.gov (United States)

    Han, Yvonne M. Y.; Chan, Agnes S.; Sze, Sophia L.; Cheung, Mei-Chun; Wong, Chun-kwok; Lam, Joseph M. K.; Poon, Priscilla M. K.

    2013-01-01

    Previous studies have shown that children with autism spectrum disorders (ASDs) have impaired executive function, disordered neural connectivity, and abnormal immunologic function. The present study examined whether these abnormalities were associated. Seventeen high-functioning (HFA) and 17 low-functioning (LFA) children with ASD, aged 8-17…

  13. Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network.

    Science.gov (United States)

    Wang, Yunpeng; Cheng, Long; Hou, Zeng-Guang; Yu, Junzhi; Tan, Min

    2016-02-01

    The optimal formation problem of multirobot systems is solved by a recurrent neural network in this paper. The desired formation is described by the shape theory. This theory can generate a set of feasible formations that share the same relative relation among robots. An optimal formation means that finding one formation from the feasible formation set, which has the minimum distance to the initial formation of the multirobot system. Then, the formation problem is transformed into an optimization problem. In addition, the orientation, scale, and admissible range of the formation can also be considered as the constraints in the optimization problem. Furthermore, if all robots are identical, their positions in the system are exchangeable. Then, each robot does not necessarily move to one specific position in the formation. In this case, the optimal formation problem becomes a combinational optimization problem, whose optimal solution is very hard to obtain. Inspired by the penalty method, this combinational optimization problem can be approximately transformed into a convex optimization problem. Due to the involvement of the Euclidean norm in the distance, the objective function of these optimization problems are nonsmooth. To solve these nonsmooth optimization problems efficiently, a recurrent neural network approach is employed, owing to its parallel computation ability. Finally, some simulations and experiments are given to validate the effectiveness and efficiency of the proposed optimal formation approach.

  14. Recovery of Dynamics and Function in Spiking Neural Networks with Closed-Loop Control.

    Science.gov (United States)

    Vlachos, Ioannis; Deniz, Taşkin; Aertsen, Ad; Kumar, Arvind

    2016-02-01

    There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptually simple but effective method, to control pathological oscillations in spiking neural networks (SNNs). Using mathematical analysis and numerical simulations we show that DFC can restore a wide range of aberrant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly, DFC, besides steering the system back to a healthy state, also recovers the computations performed by the underlying network. Finally, using our theory we identify the role of single neuron and synapse properties in determining the stability of the closed-loop system.

  15. Application of RBF neural network improved by peak density function in intelligent color matching of wood dyeing

    International Nuclear Information System (INIS)

    Guan, Xuemei; Zhu, Yuren; Song, Wenlong

    2016-01-01

    According to the characteristics of wood dyeing, we propose a predictive model of pigment formula for wood dyeing based on Radial Basis Function (RBF) neural network. In practical application, however, it is found that the number of neurons in the hidden layer of RBF neural network is difficult to determine. In general, we need to test several times according to experience and prior knowledge, which is lack of a strict design procedure on theoretical basis. And we also don’t know whether the RBF neural network is convergent. This paper proposes a peak density function to determine the number of neurons in the hidden layer. In contrast to existing approaches, the centers and the widths of the radial basis function are initialized by extracting the features of samples. So the uncertainty caused by random number when initializing the training parameters and the topology of RBF neural network is eliminated. The average relative error of the original RBF neural network is 1.55% in 158 epochs. However, the average relative error of the RBF neural network which is improved by peak density function is only 0.62% in 50 epochs. Therefore, the convergence rate and approximation precision of the RBF neural network are improved significantly.

  16. Identifying thematic roles from neural representations measured by functional magnetic resonance imaging.

    Science.gov (United States)

    Wang, Jing; Cherkassky, Vladimir L; Yang, Ying; Chang, Kai-Min Kevin; Vargas, Robert; Diana, Nicholas; Just, Marcel Adam

    2016-01-01

    The generativity and complexity of human thought stem in large part from the ability to represent relations among concepts and form propositions. The current study reveals how a given object such as rabbit is neurally encoded differently and identifiably depending on whether it is an agent ("the rabbit punches the monkey") or a patient ("the monkey punches the rabbit"). Machine-learning classifiers were trained on functional magnetic resonance imaging (fMRI) data evoked by a set of short videos that conveyed agent-verb-patient propositions. When tested on a held-out video, the classifiers were able to reliably identify the thematic role of an object from its associated fMRI activation pattern. Moreover, when trained on one subset of the study participants, classifiers reliably identified the thematic roles in the data of a left-out participant (mean accuracy = .66), indicating that the neural representations of thematic roles were common across individuals.

  17. Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks

    Directory of Open Access Journals (Sweden)

    Thierry Moudiki

    2018-03-01

    Full Text Available We are interested in obtaining forecasts for multiple time series, by taking into account the potential nonlinear relationships between their observations. For this purpose, we use a specific type of regression model on an augmented dataset of lagged time series. Our model is inspired by dynamic regression models (Pankratz 2012, with the response variable’s lags included as predictors, and is known as Random Vector Functional Link (RVFL neural networks. The RVFL neural networks have been successfully applied in the past, to solving regression and classification problems. The novelty of our approach is to apply an RVFL model to multivariate time series, under two separate regularization constraints on the regression parameters.

  18. Artificial Neural Network-Based System for PET Volume Segmentation

    Directory of Open Access Journals (Sweden)

    Mhd Saeed Sharif

    2010-01-01

    Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  19. A new evolutionary system for evolving artificial neural networks.

    Science.gov (United States)

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  20. Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network

    Energy Technology Data Exchange (ETDEWEB)

    Du, Zhimin; Jin, Xinqiao; Yang, Yunyu [School of Mechanical Engineering, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai (China)

    2009-09-15

    Wavelet neural network, the integration of wavelet analysis and neural network, is presented to diagnose the faults of sensors including temperature, flow rate and pressure in variable air volume (VAV) systems to ensure well capacity of energy conservation. Wavelet analysis is used to process the original data collected from the building automation first. With three-level wavelet decomposition, the series of characteristic information representing various operation conditions of the system are obtained. In addition, neural network is developed to diagnose the source of the fault. To improve the diagnosis efficiency, three data groups based on several physical models or balances are classified and constructed. Using the data decomposed by three-level wavelet, the neural network can be well trained and series of convergent networks are obtained. Finally, the new measurements to diagnose are similarly processed by wavelet. And the well-trained convergent neural networks are used to identify the operation condition and isolate the source of the fault. (author)

  1. Compensating for Channel Fading in DS-CDMA Communication Systems Employing ICA Neural Network Detectors

    Directory of Open Access Journals (Sweden)

    David Overbye

    2005-06-01

    Full Text Available In this paper we examine the impact of channel fading on the bit error rate of a DS-CDMA communication system. The system employs detectors that incorporate neural networks effecting methods of independent component analysis (ICA, subspace estimation of channel noise, and Hopfield type neural networks. The Rayleigh fading channel model is used. When employed in a Rayleigh fading environment, the ICA neural network detectors that give superior performance in a flat fading channel did not retain this superior performance. We then present a new method of compensating for channel fading based on the incorporation of priors in the ICA neural network learning algorithms. When the ICA neural network detectors were compensated using the incorporation of priors, they give significantly better performance than the traditional detectors and the uncompensated ICA detectors. Keywords: CDMA, Multi-user Detection, Rayleigh Fading, Multipath Detection, Independent Component Analysis, Prior Probability Hebbian Learning, Natural Gradient

  2. Protection of visual functions by human neural progenitors in a rat model of retinal disease.

    Directory of Open Access Journals (Sweden)

    David M Gamm

    2007-03-01

    Full Text Available A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat.Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90-100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed.Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in

  3. The influence of motherhood on neural systems for reward processing in low income, minority, young women.

    Science.gov (United States)

    Moses-Kolko, Eydie L; Forbes, Erika E; Stepp, Stephanie; Fraser, David; Keenan, Kate E; Guyer, Amanda E; Chase, Henry W; Phillips, Mary L; Zevallos, Carlos R; Guo, Chaohui; Hipwell, Alison E

    2016-04-01

    Given the association between maternal caregiving behavior and heightened neural reward activity in experimental animal studies, the present study examined whether motherhood in humans positively modulates reward-processing neural circuits, even among mothers exposed to various life stressors and depression. Subjects were 77 first-time mothers and 126 nulliparous young women from the Pittsburgh Girls Study, a longitudinal study beginning in childhood. Subjects underwent a monetary reward task during functional magnetic resonance imaging in addition to assessment of current depressive symptoms. Life stress was measured by averaging data collected between ages 8-15 years. Using a region-of-interest approach, we conducted hierarchical regression to examine the relationship of psychosocial factors (life stress and current depression) and motherhood with extracted ventral striatal (VST) response to reward anticipation. Whole-brain regression analyses were performed post-hoc to explore non-striatal regions associated with reward anticipation in mothers vs nulliparous women. Anticipation of monetary reward was associated with increased neural activity in expected regions including caudate, orbitofrontal, occipital, superior and middle frontal cortices. There was no main effect of motherhood nor motherhood-by-psychosocial factor interaction effect on VST response during reward anticipation. Depressive symptoms were associated with increased VST activity across the entire sample. In exploratory whole brain analysis, motherhood was associated with increased somatosensory cortex activity to reward (FWE cluster forming threshold preward anticipation-related VST activity nor does motherhood modulate the impact of depression or life stress on VST activity. Future studies are needed to evaluate whether earlier postpartum assessment of reward function, inclusion of mothers with more severe depressive symptoms, and use of reward tasks specific for social reward might reveal an

  4. A Fault Diagnosis Approach for the Hydraulic System by Artificial Neural Networks

    OpenAIRE

    Xiangyu He; Shanghong He

    2014-01-01

    Based on artificial neural networks, a fault diagnosis approach for the hydraulic system was proposed in this paper. Normal state samples were used as the training data to develop a dynamic general regression neural network (DGRNN) model. The trained DGRNN model then served as the fault determinant to diagnose test faults and the work condition of the hydraulic system was identified. Several typical faults of the hydraulic system were used to verify the fault diagnosis approach. Experiment re...

  5. An artificial neural network for modeling reliability, availability and maintainability of a repairable system

    International Nuclear Information System (INIS)

    Rajpal, P.S.; Shishodia, K.S.; Sekhon, G.S.

    2006-01-01

    The paper explores the application of artificial neural networks to model the behaviour of a complex, repairable system. A composite measure of reliability, availability and maintainability parameters has been proposed for measuring the system performance. The artificial neural network has been trained using past data of a helicopter transportation facility. It is used to simulate behaviour of the facility under various constraints. The insights obtained from results of simulation are useful in formulating strategies for optimal operation of the system

  6. Development of the disable software reporting system on the basis of the neural network

    Science.gov (United States)

    Gavrylenko, S.; Babenko, O.; Ignatova, E.

    2018-04-01

    The PE structure of malicious and secure software is analyzed, features are highlighted, binary sign vectors are obtained and used as inputs for training the neural network. A software model for detecting malware based on the ART-1 neural network was developed, optimal similarity coefficients were found, and testing was performed. The obtained research results showed the possibility of using the developed system of identifying malicious software in computer systems protection systems

  7. Synchronization of chaotic systems and identification of nonlinear systems by using recurrent hierarchical type-2 fuzzy neural networks.

    Science.gov (United States)

    Mohammadzadeh, Ardashir; Ghaemi, Sehraneh

    2015-09-01

    This paper proposes a novel approach for training of proposed recurrent hierarchical interval type-2 fuzzy neural networks (RHT2FNN) based on the square-root cubature Kalman filters (SCKF). The SCKF algorithm is used to adjust the premise part of the type-2 FNN and the weights of defuzzification and the feedback weights. The recurrence property in the proposed network is the output feeding of each membership function to itself. The proposed RHT2FNN is employed in the sliding mode control scheme for the synchronization of chaotic systems. Unknown functions in the sliding mode control approach are estimated by RHT2FNN. Another application of the proposed RHT2FNN is the identification of dynamic nonlinear systems. The effectiveness of the proposed network and its learning algorithm is verified by several simulation examples. Furthermore, the universal approximation of RHT2FNNs is also shown. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Neural signal during immediate reward anticipation in schizophrenia: Relationship to real-world motivation and function

    Science.gov (United States)

    Subramaniam, Karuna; Hooker, Christine I.; Biagianti, Bruno; Fisher, Melissa; Nagarajan, Srikantan; Vinogradov, Sophia

    2015-01-01

    Amotivation in schizophrenia is a central predictor of poor functioning, and is thought to occur due to deficits in anticipating future rewards, suggesting that impairments in anticipating pleasure can contribute to functional disability in schizophrenia. In healthy comparison (HC) participants, reward anticipation is associated with activity in frontal–striatal networks. By contrast, schizophrenia (SZ) participants show hypoactivation within these frontal–striatal networks during this motivated anticipatory brain state. Here, we examined neural activation in SZ and HC participants during the anticipatory phase of stimuli that predicted immediate upcoming reward and punishment, and during the feedback/outcome phase, in relation to trait measures of hedonic pleasure and real-world functional capacity. SZ patients showed hypoactivation in ventral striatum during reward anticipation. Additionally, we found distinct differences between HC and SZ groups in their association between reward-related immediate anticipatory neural activity and their reported experience of pleasure. HC participants recruited reward-related regions in striatum that significantly correlated with subjective consummatory pleasure, while SZ patients revealed activation in attention-related regions, such as the IPL, which correlated with consummatory pleasure and functional capacity. These findings may suggest that SZ patients activate compensatory attention processes during anticipation of immediate upcoming rewards, which likely contribute to their functional capacity in daily life. PMID:26413478

  9. Neural signal during immediate reward anticipation in schizophrenia: Relationship to real-world motivation and function

    Directory of Open Access Journals (Sweden)

    Karuna Subramaniam

    2015-01-01

    Full Text Available Amotivation in schizophrenia is a central predictor of poor functioning, and is thought to occur due to deficits in anticipating future rewards, suggesting that impairments in anticipating pleasure can contribute to functional disability in schizophrenia. In healthy comparison (HC participants, reward anticipation is associated with activity in frontal–striatal networks. By contrast, schizophrenia (SZ participants show hypoactivation within these frontal–striatal networks during this motivated anticipatory brain state. Here, we examined neural activation in SZ and HC participants during the anticipatory phase of stimuli that predicted immediate upcoming reward and punishment, and during the feedback/outcome phase, in relation to trait measures of hedonic pleasure and real-world functional capacity. SZ patients showed hypoactivation in ventral striatum during reward anticipation. Additionally, we found distinct differences between HC and SZ groups in their association between reward-related immediate anticipatory neural activity and their reported experience of pleasure. HC participants recruited reward-related regions in striatum that significantly correlated with subjective consummatory pleasure, while SZ patients revealed activation in attention-related regions, such as the IPL, which correlated with consummatory pleasure and functional capacity. These findings may suggest that SZ patients activate compensatory attention processes during anticipation of immediate upcoming rewards, which likely contribute to their functional capacity in daily life.

  10. The Principle of the Micro-Electronic Neural Bridge and a Prototype System Design.

    Science.gov (United States)

    Huang, Zong-Hao; Wang, Zhi-Gong; Lu, Xiao-Ying; Li, Wen-Yuan; Zhou, Yu-Xuan; Shen, Xiao-Yan; Zhao, Xin-Tai

    2016-01-01

    The micro-electronic neural bridge (MENB) aims to rebuild lost motor function of paralyzed humans by routing movement-related signals from the brain, around the damage part in the spinal cord, to the external effectors. This study focused on the prototype system design of the MENB, including the principle of the MENB, the neural signal detecting circuit and the functional electrical stimulation (FES) circuit design, and the spike detecting and sorting algorithm. In this study, we developed a novel improved amplitude threshold spike detecting method based on variable forward difference threshold for both training and bridging phase. The discrete wavelet transform (DWT), a new level feature coefficient selection method based on Lilliefors test, and the k-means clustering method based on Mahalanobis distance were used for spike sorting. A real-time online spike detecting and sorting algorithm based on DWT and Euclidean distance was also implemented for the bridging phase. Tested by the data sets available at Caltech, in the training phase, the average sensitivity, specificity, and clustering accuracies are 99.43%, 97.83%, and 95.45%, respectively. Validated by the three-fold cross-validation method, the average sensitivity, specificity, and classification accuracy are 99.43%, 97.70%, and 96.46%, respectively.

  11. A web-based system for neural network based classification in temporomandibular joint osteoarthritis.

    Science.gov (United States)

    de Dumast, Priscille; Mirabel, Clément; Cevidanes, Lucia; Ruellas, Antonio; Yatabe, Marilia; Ioshida, Marcos; Ribera, Nina Tubau; Michoud, Loic; Gomes, Liliane; Huang, Chao; Zhu, Hongtu; Muniz, Luciana; Shoukri, Brandon; Paniagua, Beatriz; Styner, Martin; Pieper, Steve; Budin, Francois; Vimort, Jean-Baptiste; Pascal, Laura; Prieto, Juan Carlos

    2018-07-01

    The purpose of this study is to describe the methodological innovations of a web-based system for storage, integration and computation of biomedical data, using a training imaging dataset to remotely compute a deep neural network classifier of temporomandibular joint osteoarthritis (TMJOA). This study imaging dataset consisted of three-dimensional (3D) surface meshes of mandibular condyles constructed from cone beam computed tomography (CBCT) scans. The training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients with diagnosis of TMJ OA. For the image analysis classification, 34 right and left condyles from 17 patients (39.9 ± 11.7 years), who experienced signs and symptoms of the disease for less than 5 years, were included as the testing dataset. For the integrative statistical model of clinical, biological and imaging markers, the sample consisted of the same 17 test OA subjects and 17 age and sex matched control subjects (39.4 ± 15.4 years), who did not show any sign or symptom of OA. For these 34 subjects, a standardized clinical questionnaire, blood and saliva samples were also collected. The technological methodologies in this study include a deep neural network classifier of 3D condylar morphology (ShapeVariationAnalyzer, SVA), and a flexible web-based system for data storage, computation and integration (DSCI) of high dimensional imaging, clinical, and biological data. The DSCI system trained and tested the neural network, indicating 5 stages of structural degenerative changes in condylar morphology in the TMJ with 91% close agreement between the clinician consensus and the SVA classifier. The DSCI remotely ran with a novel application of a statistical analysis, the Multivariate Functional Shape Data Analysis, that computed high dimensional correlations between shape 3D coordinates, clinical pain levels and levels of biological markers, and then graphically displayed the computation results. The findings of this

  12. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)

    2006-07-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  13. Neutron spectrometry and dosimetry by means of Bonner spheres system and artificial neural networks applying robust design of artificial neural networks

    International Nuclear Information System (INIS)

    Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R.

    2006-01-01

    An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)

  14. Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light.

    Science.gov (United States)

    Stöckl, Anna Lisa; O'Carroll, David Charles; Warrant, Eric James

    2016-03-21

    Most of the world's animals are active in dim light and depend on good vision for the tasks of daily life. Many have evolved visual adaptations that permit a performance superior to that of manmade imaging devices [1]. In insects, a major model visual system, nocturnal species show impressive visual abilities ranging from flight control [2, 3], to color discrimination [4, 5], to navigation using visual landmarks [6-8] or dim celestial compass cues [9, 10]. In addition to optical adaptations that improve their sensitivity in dim light [11], neural summation of light in space and time-which enhances the coarser and slower features of the scene at the expense of noisier finer and faster features-has been suggested to improve sensitivity in theoretical [12-14], anatomical [15-17], and behavioral [18-20] studies. How these summation strategies function neurally is, however, presently unknown. Here, we quantified spatial and temporal summation in the motion vision pathway of a nocturnal hawkmoth. We show that spatial and temporal summation combine supralinearly to substantially increase contrast sensitivity and visual information rate over four decades of light intensity, enabling hawkmoths to see at light levels 100 times dimmer than without summation. Our results reveal how visual motion is calculated neurally in dim light and how spatial and temporal summation improve sensitivity while simultaneously maximizing spatial and temporal resolution, thus extending models of insect motion vision derived predominantly from diurnal flies. Moreover, the summation strategies we have revealed may benefit manmade vision systems optimized for variable light levels [21]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Plastic reorganization of neural systems for perception of others in the congenitally blind.

    Science.gov (United States)

    Fairhall, S L; Porter, K B; Bellucci, C; Mazzetti, M; Cipolli, C; Gobbini, M I

    2017-09-01

    Recent evidence suggests that the function of the core system for face perception might extend beyond visual face-perception to a broader role in person perception. To critically test the broader role of core face-system in person perception, we examined the role of the core system during the perception of others in 7 congenitally blind individuals and 15 sighted subjects by measuring their neural responses using fMRI while they listened to voices and performed identity and emotion recognition tasks. We hypothesised that in people who have had no visual experience of faces, core face-system areas may assume a role in the perception of others via voices. Results showed that emotions conveyed by voices can be decoded in homologues of the core face system only in the blind. Moreover, there was a specific enhancement of response to verbal as compared to non-verbal stimuli in bilateral fusiform face areas and the right posterior superior temporal sulcus showing that the core system also assumes some language-related functions in the blind. These results indicate that, in individuals with no history of visual experience, areas of the core system for face perception may assume a role in aspects of voice perception that are relevant to social cognition and perception of others' emotions. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A New Controller to Enhance PV System Performance Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Roshdy A AbdelRassoul

    2017-06-01

    Full Text Available In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.

  18. Functional capability of piping systems

    International Nuclear Information System (INIS)

    Terao, D.; Rodabaugh, E.C.

    1992-11-01

    General Design Criterion I of Appendix A to Part 50 of Title 10 of the Code of Federal Regulations requires, in part, that structures, systems, and components important to safety be designed to withstand the effects of earthquakes without a loss of capability to perform their safety function. ne function of a piping system is to convey fluids from one location to another. The functional capability of a piping system might be lost if, for example, the cross-sectional flow area of the pipe were deformed to such an extent that the required flow through the pipe would be restricted. The objective of this report is to examine the present rules in the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, and potential changes to these rules, to determine if they are adequate for ensuring the functional capability of safety-related piping systems in nuclear power plants

  19. Neural response during the activation of the attachment system in patients with borderline personality disorder: An fMRI study

    Directory of Open Access Journals (Sweden)

    Anna Buchheim

    2016-08-01

    Full Text Available Individuals with borderline personality disorder (BPD are characterized by emotional instability, impaired emotion regulation and unresolved attachment patterns associated with abusive childhood experiences. We investigated the neural response during the activation of the attachment system in BPD patients compared to healthy controls using functional magnetic resonance imaging. Eleven female patients with BPD without posttraumatic stress disorder and seventeen healthy female controls matched for age and education were telling stories in the scanner in response to the Adult Attachment Projective Picture System, an eight-picture set assessment of adult attachment. The picture set includes theoretically-derived attachment scenes, such as separation, death, threat and potential abuse. The picture presentation order is designed to gradually increase the activation of the attachment system. Each picture stimulus was presented for two minutes. Analyses examine group differences in attachment classifications and neural activation patterns over the course of the task. Unresolved attachment was associated with increasing amygdala activation over the course of the attachment task in patients as well as controls. Unresolved controls, but not patients, showed activation in the right dorsolateral prefrontal cortex and the rostral cingulate zone. We interpret this as a neural signature of BPD patients’ inability to exert top-down control under conditions of attachment distress. These findings point to possible neural mechanisms for underlying affective dysregulation in BPD in the context of attachment trauma and fear.

  20. An artificial neural network system to identify alleles in reference electropherograms.

    Science.gov (United States)

    Taylor, Duncan; Harrison, Ash; Powers, David

    2017-09-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells them about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. This process of interpreting the electropherograms can be time consuming and is prone to subjective differences between analysts. Recently it was demonstrated that artificial neural networks could be used to classify information within an electropherogram as allelic (i.e. representative of a DNA fragment present in the DNA extract) or as one of several different categories of artefactual fluorescence that arise as a result of generating an electropherogram. We extend that work here to demonstrate a series of algorithms and artificial neural networks that can be used to identify peaks on an electropherogram and classify them. We demonstrate the functioning of the system on several profiles and compare the results to a leading commercial DNA profile reading system. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Trait approach and avoidance motivation: lateralized neural activity associated with executive function.

    Science.gov (United States)

    Spielberg, Jeffrey M; Miller, Gregory A; Engels, Anna S; Herrington, John D; Sutton, Bradley P; Banich, Marie T; Heller, Wendy

    2011-01-01

    Motivation and executive function are both necessary for the completion of goal-directed behavior. Research investigating the manner in which these processes interact is beginning to emerge and has implicated middle frontal gyrus (MFG) as a site of interaction for relevant neural mechanisms. However, this research has focused on state motivation, and it has not examined functional lateralization. The present study examined the impact of trait levels of approach and avoidance motivation on neural processes associated with executive function. Functional magnetic resonance imaging was conducted while participants performed a color-word Stroop task. Analyses identified brain regions in which trait approach and avoidance motivation (measured by questionnaires) moderated activation associated with executive control. Approach was hypothesized to be associated with left-lateralized MFG activation, whereas avoidance was hypothesized to be associated with right-lateralized MFG activation. Results supported both hypotheses. Present findings implicate areas of middle frontal gyrus in top-down control to guide behavior in accordance with motivational goals. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Variability of Neuronal Responses: Types and Functional Significance in Neuroplasticity and Neural Darwinism.

    Science.gov (United States)

    Chervyakov, Alexander V; Sinitsyn, Dmitry O; Piradov, Michael A

    2016-01-01

    HIGHLIGHTS We suggest classifying variability of neuronal responses as follows: false (associated with a lack of knowledge about the influential factors), "genuine harmful" (noise), "genuine neutral" (synonyms, repeats), and "genuine useful" (the basis of neuroplasticity and learning).The genuine neutral variability is considered in terms of the phenomenon of degeneracy.Of particular importance is the genuine useful variability that is considered as a potential basis for neuroplasticity and learning. This type of variability is considered in terms of the neural Darwinism theory. In many cases, neural signals detected under the same external experimental conditions significantly change from trial to trial. The variability phenomenon, which complicates extraction of reproducible results and is ignored in many studies by averaging, has attracted attention of researchers in recent years. In this paper, we classify possible types of variability based on its functional significance and describe features of each type. We describe the key adaptive significance of variability at the neural network level and the degeneracy phenomenon that may be important for learning processes in connection with the principle of neuronal group selection.

  3. Study of functional viability of SU-8-based microneedles for neural applications

    International Nuclear Information System (INIS)

    Fernández, Luis J; Altuna, Ane; Tijero, Maria; Vilares, Roman; Berganzo, Javier; Blanco, F J; Gabriel, Gemma; Villa, Rosa; Rodríguez, Manuel J; Batlle, Montse

    2009-01-01

    This paper presents the design, fabrication, packaging and first test results of SU-8-based microneedles for neural applications. By the use of photolithography, sputtering and bonding techniques, polymer needles with integrated microchannels and electrodes have been successfully fabricated. The use of photolithography for the patterning of the fluidic channel integrated in the needle allows the design of multiple outlet ports at the needle tip, minimizing the possibility of being blocked by the tissue. Furthermore, the flexibility of the polymer reduces the risk of fracture and tissue damage once the needle is inserted, while it is still rigid enough to allow a perfect insertion into the neural tissue. Fluidic and electric characterization of the microneedles has shown their viability for drug delivery and monitoring in neural applications. First drug delivery tests in ex vivo tissue demonstrated the functional viability of the needle to deliver drugs to precise points. Furthermore, in vivo experiments have demonstrated lower associated damages during insertion than those by stereotaxic standard needles

  4. Dynamic neural network of insight: a functional magnetic resonance imaging study on solving Chinese 'chengyu' riddles.

    Directory of Open Access Journals (Sweden)

    Qingbai Zhao

    Full Text Available The key components of insight include breaking mental sets and forming the novel, task-related associations. The majority of researchers have agreed that the anterior cingulate cortex may mediate processes of breaking one's mental set, while the exact neural correlates of forming novel associations are still debatable. In the present study, we used a paradigm of answer selection to explore brain activations of insight by using event-related functional magnetic resonance imaging during solving Chinese 'chengyu' (in Chinese pinyin riddles. Based on the participant's choice, the trials were classified into the insight and non-insight conditions. Both stimulus-locked and response-locked analyses are conducted to detect the neural activity corresponding to the early and late periods of insight solution, respectively. Our data indicate that the early period of insight solution shows more activation in the middle temporal gyrus, the middle frontal gyrus and the anterior cingulate cortex. These activities might be associated to the extensive semantic processing, as well as detecting and resolving cognitive conflicts. In contrast, the late period of insight solution produced increased activities in the hippocampus and the amygdala, possibly reflecting the forming of novel association and the concomitant "Aha" feeling. Our study supports the key role of hippocampus in forming novel associations, and indicates a dynamic neural network during insight solution.

  5. Adaptive Neural Output-Feedback Control for a Class of Nonlower Triangular Nonlinear Systems With Unmodeled Dynamics.

    Science.gov (United States)

    Wang, Huanqing; Liu, Peter Xiaoping; Li, Shuai; Wang, Ding

    2017-08-29

    This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.

  6. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Science.gov (United States)

    Ignatius, Myron S; Unal Eroglu, Arife; Malireddy, Smitha; Gallagher, Glen; Nambiar, Roopa M; Henion, Paul D

    2013-01-01

    The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382) mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382) mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382) mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382) defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  7. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Directory of Open Access Journals (Sweden)

    Myron S Ignatius

    Full Text Available The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  8. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  9. Opto-electronic system for a formal neural network

    Science.gov (United States)

    Heggarty, Keven

    A study on the construction of an optoelectronic system which makes use of the capacities of holographic optics for performing interconnections is presented. In the chosen application (digit recognition) the system acts as an associative memory treating two dimensional data structures (images) in parallel. Starting from the Hopfield model, the synaptic matrix algorithm is modified to adapt the network to optical implementation and improve its discrimination of similar memory vectors. The approach leads to a correlation-reconstruction interpretation of pseudo-inverse techniques. The coding of the computed generated hologram used to perform the connections between two planes which form the outputs and the inputs of the neurons is addressed. This hologram is unusual in that it fulfills simultaneously the necessary correlation and reconstruction functions. The standard techniques of digital holography, usually optimized for one or the other of these functions, is therefore adapted to the specific needs of the connection hologram. In particular, the reduction of the dynamic range of the hologram, whilst retaining the correlation function and a useful degree of shift invariance, is demonstrated. The construction of the prototype system and the adaptation of a laser lithography facility to the fabrication of the holograms are described. The potential of the system is illustrated with experimental results demonstrating its capacity to recognize and discriminate to correlated images from noisy, translated input images. Generalization of the system for use as an interconnection stage in more complicated architectures is illustrated.

  10. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-07-01

    This article present a comparison of artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) applied for modelling a ground-coupled heat pump system (GCHP). The aim of this study is predicting system performance related to ground and air (condenser inlet and outlet) temperatures by using desired models. Performance forecasting is the precondition for the optimal design and energy-saving operation of air-conditioning systems. So obtained models will help the system designer to realize this precondition. The most suitable algorithm and neuron number in the hidden layer are found as Levenberg-Marquardt (LM) with seven neurons for ANN model whereas the most suitable membership function and number of membership functions are found as Gauss and two, respectively, for ANFIS model. The root-mean squared (RMS) value and the coefficient of variation in percent (cov) value are 0.0047 and 0.1363, respectively. The absolute fraction of variance (R{sup 2}) is 0.9999 which can be considered as very promising. This paper shows the appropriateness of ANFIS for the quantitative modeling of GCHP systems. (author)

  11. SWANN: The Snow Water Artificial Neural Network Modelling System

    Science.gov (United States)

    Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.

    2017-12-01

    Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.

  12. Neural networks for combined control of capacitor banks and voltage regulators in distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Z.; Rizy, D.T.

    1996-02-01

    A neural network for controlling shunt capacitor banks and feeder voltage regulators in electric distribution systems is presented. The objective of the neural controller is to minimize total I{sup 2}R losses and maintain all bus voltages within standard limits. The performance of the neural network for different input selections and training data is discussed and compared. Two different input selections are tried, one using the previous control states of the capacitors and regulator along with measured line flows and voltage which is equivalent to having feedback and the other with measured line flows and voltage without previous control settings. The results indicate that the neural net controller with feedback can outperform the one without. Also, proper selection of a training data set that adequately covers the operating space of the distribution system is important for achieving satisfactory performance with the neural controller. The neural controller is tested on a radially configured distribution system with 30 buses, 5 switchable capacitor banks an d one nine tap line regulator to demonstrate the performance characteristics associated with these principles. Monte Carlo simulations show that a carefully designed and relatively compact neural network with a small but carefully developed training set can perform quite well under slight and extreme variation of loading conditions.

  13. Neural correlate of resting-state functional connectivity under α2 adrenergic receptor agonist, medetomidine.

    Science.gov (United States)

    Nasrallah, Fatima A; Lew, Si Kang; Low, Amanda Si-Min; Chuang, Kai-Hsiang

    2014-01-01

    Correlative fluctuations in functional MRI (fMRI) signals across the brain at rest have been taken as a measure of functional connectivity, but the neural basis of this resting-state MRI (rsMRI) signal is not clear. Previously, we found that the α2 adrenergic agonist, medetomidine, suppressed the rsMRI correlation dose-dependently but not the stimulus evoked activation. To understand the underlying electrophysiology and neurovascular coupling, which might be altered due to the vasoconstrictive nature of medetomidine, somatosensory evoked potential (SEP) and resting electroencephalography (EEG) were measured and correlated with corresponding BOLD signals in rat brains under three dosages of medetomidine. The SEP elicited by electrical stimulation to both forepaws was unchanged regardless of medetomidine dosage, which was consistent with the BOLD activation. Identical relationship between the SEP and BOLD signal under different medetomidine dosages indicates that the neurovascular coupling was not affected. Under resting state, EEG power was the same but a depression of inter-hemispheric EEG coherence in the gamma band was observed at higher medetomidine dosage. Different from medetomidine, both resting EEG power and BOLD power and coherence were significantly suppressed with increased isoflurane level. Such reduction was likely due to suppressed neural activity as shown by diminished SEP and BOLD activation under isoflurane, suggesting different mechanisms of losing synchrony at resting-state. Even though, similarity between electrophysiology and BOLD under stimulation and resting-state implicates a tight neurovascular coupling in both medetomidine and isoflurane. Our results confirm that medetomidine does not suppress neural activity but dissociates connectivity in the somatosensory cortex. The differential effect of medetomidine and its receptor specific action supports the neuronal origin of functional connectivity and implicates the mechanism of its sedative

  14. Prospects of application of artificial neural networks for forecasting of cargo transportation volume in transport systems

    Directory of Open Access Journals (Sweden)

    D. T. Yakupov

    2017-01-01

    Full Text Available The purpose of research – to identify the prospects for the use of neural network approach in relation to the tasks of economic forecasting of logistics performance, in particular of volume freight traffic in the transport system promiscuous regional freight traffic, as well as to substantiate the effectiveness of the use of artificial neural networks (ANN, as compared with the efficiency of traditional extrapolative methods of forecasting. The authors consider the possibility of forecasting to use ANN for these economic indicators not as an alternative to the traditional methods of statistical forecasting, but as one of the available simple means for solving complex problems.Materials and methods. When predicting the ANN, three methods of learning were used: 1 the Levenberg-Marquardt algorithm-network training stops when the generalization ceases to improve, which is shown by the increase in the mean square error of the output value; 2 Bayes regularization method - network training is stopped in accordance with the minimization of adaptive weights; 3 the method of scaled conjugate gradients, which is used to find the local extremum of a function on the basis of information about its values and gradient. The Neural Network Toolbox package is used for forecasting. The neural network model consists of a hidden layer of neurons with a sigmoidal activation function and an output neuron with a linear activation function, the input values of the dynamic time series, and the predicted value is removed from the output. For a more objective assessment of the prospects of the ANN application, the results of the forecast are presented in comparison with the results obtained in predicting the method of exponential smoothing.Results. When predicting the volumes of freight transportation by rail, satisfactory indicators of the verification of forecasting by both the method of exponential smoothing and ANN had been obtained, although the neural network

  15. Effects of aripiprazole and haloperidol on neural activation during a simple motor task in healthy individuals: A functional MRI study.

    Science.gov (United States)

    Goozee, Rhianna; O'Daly, Owen; Handley, Rowena; Reis Marques, Tiago; Taylor, Heather; McQueen, Grant; Hubbard, Kathryn; Pariante, Carmine; Mondelli, Valeria; Reinders, Antje A T S; Dazzan, Paola

    2017-04-01

    The dopaminergic system plays a key role in motor function and motor abnormalities have been shown to be a specific feature of psychosis. Due to their dopaminergic action, antipsychotic drugs may be expected to modulate motor function, but the precise effects of these drugs on motor function remain unclear. We carried out a within-subject, double-blind, randomized study of the effects of aripiprazole, haloperidol and placebo on motor function in 20 healthy men. For each condition, motor performance on an auditory-paced task was investigated. We entered maps of neural activation into a random effects general linear regression model to investigate motor function main effects. Whole-brain imaging revealed a significant treatment effect in a distributed network encompassing posterior orbitofrontal/anterior insula cortices, and the inferior temporal and postcentral gyri. Post-hoc comparison of treatments showed neural activation after aripiprazole did not differ significantly from placebo in either voxel-wise or region of interest analyses, with the results above driven primarily by haloperidol. We also observed a simple main effect of haloperidol compared with placebo, with increased task-related recruitment of posterior cingulate and precentral gyri. Furthermore, region of interest analyses revealed greater activation following haloperidol compared with placebo in the precentral and post-central gyri, and the putamen. These diverse modifications in cortical motor activation may relate to the different pharmacological profiles of haloperidol and aripiprazole, although the specific mechanisms underlying these differences remain unclear. Evaluating healthy individuals can allow investigation of the effects of different antipsychotics on cortical activation, independently of either disease-related pathology or previous treatment. Hum Brain Mapp 38:1833-1845, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Neural systems of second language reading are shaped by native language.

    Science.gov (United States)

    Tan, Li Hai; Spinks, John A; Feng, Ching-Mei; Siok, Wai Ting; Perfetti, Charles A; Xiong, Jinhu; Fox, Peter T; Gao, Jia-Hong

    2003-03-01

    Reading in a second language (L2) is a complex task that entails an interaction between L2 and the native language (L1). To study the underlying mechanisms, we used functional magnetic resonance imaging (fMRI) to visualize Chinese-English bilinguals' brain activity in phonological processing of logographic Chinese and alphabetic English, two written languages with a sharp contrast in phonology and orthography. In Experiment 1, we found that phonological processing of Chinese characters recruits a neural system involving left middle frontal and posterior parietal gyri, cortical regions that are known to contribute to spatial information representation, spatial working memory, and coordination of cognitive resources as a central executive system. We assume that the peak activation of this system is relevant to the unique feature of Chinese that a logographic character has a square configuration that maps onto a monosyllabic unit of speech. Equally important, when our bilingual subjects performed a phonological task on English words, this neural system was most active, whereas brain areas mediating English monolinguals' fine-grained phonemic analysis, as demonstrated by Experiment 2, were only weakly activated. This suggests that our bilingual subjects were applying their L1 system to L2 reading and that the lack of letter-to-sound conversion rules in Chinese led Chinese readers to being less capable of processing English by recourse to an analytic reading system on which English monolinguals rely. Our brain imaging findings lend strongest support to the idea that language experience tunes the cortex. Copyright 2003 Wiley-Liss, Inc.

  17. Design and Modeling of RF Power Amplifiers with Radial Basis Function Artificial Neural Networks

    OpenAIRE

    Ali Reza Zirak; Sobhan Roshani

    2016-01-01

    A radial basis function (RBF) artificial neural network model for a designed high efficiency radio frequency class-F power amplifier (PA) is presented in this paper. The presented amplifier is designed at 1.8 GHz operating frequency with 12 dB of gain and 36 dBm of 1dB output compression point. The obtained power added efficiency (PAE) for the presented PA is 76% under 26 dBm input power. The proposed RBF model uses input and DC power of the PA as inputs variables and considers output power a...

  18. Functional Magnetic Resonance Imaging Evaluation of Auricular Percutaneous Electrical Neural Field Stimulation for Fibromyalgia: Protocol for a Feasibility Study.

    Science.gov (United States)

    Gebre, Melat; Woodbury, Anna; Napadow, Vitaly; Krishnamurthy, Venkatagiri; Krishnamurthy, Lisa C; Sniecinski, Roman; Crosson, Bruce

    2018-02-06

    patient comorbidities and preferences, prescribed by a pain management practitioner. The PENFS group will include the above therapies in addition to the PENFS treatments. The PENFS subject group will have the Neuro-Stim System placed on the ear for 5 days then removed and replaced once per week for 4 weeks. The primary outcome will be resting functional magnetic resonance imaging connectivity between DMN and insula, which will also be correlated with pain relief and functional improvements. This connectivity will be analyzed utilizing functional connectivity magnetic resonance imaging (fcMRI) and will be compared with patient-reported analgesic improvements as indicated by the DVPRS and patient-reported analgesic medication consumption. Pain and function will be further evaluated using Patient-Reported Outcomes Measurement Information System measures and measures describing a person's functional status from Activity and Participation section of the International Classification of Functioning Disability and Health. This trial has been funded by the Veterans Health Administration Program Office. This study attained approval by the Emory University/Veterans Affairs (VA) institutional review board and VA Research & Development committee. Institutional review board expedited approval was granted on 2/7/17 (IRB00092224). The study start date is 6/1/17 and estimated completion date is 5/31/20. The recruitment started in June 2017. This is a feasibility study that is meant to demonstrate the practicality of using fcMRI to study the neural correlates of PENFS outcomes and provide information regarding power calculations in order to design and execute a larger randomized controlled clinical trial to determine the efficacy of PENFS for improving pain and function. ClinicalTrials.gov NCT03008837; https://clinicaltrials.gov/ct2/show/NCT03008837 (Archived by WebCite at http://www.webcitation.org/6wrY3NmaQ). ©Melat Gebre, Anna Woodbury, Vitaly Napadow, Venkatagiri Krishnamurthy, Lisa C

  19. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    Science.gov (United States)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  20. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study.

    Science.gov (United States)

    Wang, Ping; Zhu, Xing-Ting; Qi, Zhigang; Huang, Silin; Li, Hui-Jie

    2017-01-01

    Video games have been found to have positive influences on executive function in older adults; however, the underlying neural basis of the benefits from video games has been unclear. Adopting a task-based functional magnetic resonance imaging (fMRI) study targeted at the flanker task, the present study aims to explore the neural basis of the improved executive function in older adults with video game experiences. Twenty video game players (VGPs) and twenty non-video game players (NVGPs) of 60 years of age or older participated in the present study, and there are no significant differences in age ( t = 0.62, p = 0.536), gender ratio ( t = 1.29, p = 0.206) and years of education ( t = 1.92, p = 0.062) between VGPs and NVGPs. The results show that older VGPs present significantly better behavioral performance than NVGPs. Older VGPs activate greater than NVGPs in brain regions, mainly in frontal-parietal areas, including the right dorsolateral prefrontal cortex, the left supramarginal gyrus, the right angular gyrus, the right precuneus and the left paracentral lobule. The present study reveals that video game experiences may have positive influences on older adults in behavioral performance and the underlying brain activation. These results imply the potential role that video games can play as an effective tool to improve cognitive ability in older adults.

  1. Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke

    Science.gov (United States)

    Volz, L. J.; Rehme, A. K.; Michely, J.; Nettekoven, C.; Eickhoff, S. B.; Fink, G. R.; Grefkes, C.

    2016-01-01

    Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis. PMID:26980614

  2. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2017-11-01

    Full Text Available Video games have been found to have positive influences on executive function in older adults; however, the underlying neural basis of the benefits from video games has been unclear. Adopting a task-based functional magnetic resonance imaging (fMRI study targeted at the flanker task, the present study aims to explore the neural basis of the improved executive function in older adults with video game experiences. Twenty video game players (VGPs and twenty non-video game players (NVGPs of 60 years of age or older participated in the present study, and there are no significant differences in age (t = 0.62, p = 0.536, gender ratio (t = 1.29, p = 0.206 and years of education (t = 1.92, p = 0.062 between VGPs and NVGPs. The results show that older VGPs present significantly better behavioral performance than NVGPs. Older VGPs activate greater than NVGPs in brain regions, mainly in frontal-parietal areas, including the right dorsolateral prefrontal cortex, the left supramarginal gyrus, the right angular gyrus, the right precuneus and the left paracentral lobule. The present study reveals that video game experiences may have positive influences on older adults in behavioral performance and the underlying brain activation. These results imply the potential role that video games can play as an effective tool to improve cognitive ability in older adults.

  3. Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy

    Science.gov (United States)

    Zhang, Yu-Jin; Lu, Chun-Ming; Biswal, Bharat B.; Zang, Yu-Feng; Peng, Dan-Lin; Zhu, Chao-Zhe

    2010-07-01

    Functional connectivity has become one of the important approaches to understanding the functional organization of the human brain. Recently, functional near-infrared spectroscopy (fNIRS) was demonstrated as a feasible method to study resting-state functional connectivity (RSFC) in the sensory and motor systems. However, whether such fNIRS-based RSFC can be revealed in high-level and complex functional systems remains unknown. In the present study, the feasibility of such an approach is tested on the language system, of which the neural substrates have been well documented in the literature. After determination of a seed channel by a language localizer task, the correlation strength between the low frequency fluctuations of the fNIRS signal at the seed channel and those at all other channels is used to evaluate the language system RSFC. Our results show a significant RSFC between the left inferior frontal cortex and superior temporal cortex, components both associated with dominant language regions. Moreover, the RSFC map demonstrates left lateralization of the language system. In conclusion, the present study successfully utilized fNIRS-based RSFC to study a complex and high-level neural system, and provides further evidence for the validity of the fNIRS-based RSFC approach.

  4. Multistability of delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions

    International Nuclear Information System (INIS)

    Huang Yu-Jiao; Hu Hai-Gen

    2015-01-01

    In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results. (paper)

  5. Contact psychophysiological and neural functions with technical and tactical readiness volleyball

    Directory of Open Access Journals (Sweden)

    I.D. Glazyrin

    2013-06-01

    Full Text Available Set the level of neural development, psycho-physiological functions in highly skilled volleyball players. Defined technical and tactical preparedness highly skilled volleyball players in the competitive period of the annual cycle of training. The study involved six masters of sport and 8 candidates for the master of sports. That the quality of play activities and the successful execution of technical elements depend on functional mobility, strength and reactivity of nerve processes, associative thinking, memory and attention. The results, which may have a prognostic value. It is shown that the neurodynamic functions are genetically determined. It is recommended to use them for the initial recruitment and selection stages for sports improvement. The necessity influence the types of thinking, memory and attention in the training process of volleyball players.

  6. Computer simulation system of neural PID control on nuclear reactor

    International Nuclear Information System (INIS)

    Chen Yuzhong; Yang Kaijun; Shen Yongping

    2001-01-01

    Neural network proportional integral differential (PID) controller on nuclear reactor is designed, and the control process is simulated by computer. The simulation result show that neutral network PID controller can automatically adjust its parameter to ideal state, and good control result can be gotten in reactor control process

  7. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

    Science.gov (United States)

    Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei

    2013-03-01

    Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Rapid and Objective Assessment of Neural Function in Autism Spectrum Disorder Using Transient Visual Evoked Potentials.

    Directory of Open Access Journals (Sweden)

    Paige M Siper

    Full Text Available There is a critical need to identify biomarkers and objective outcome measures that can be used to understand underlying neural mechanisms in autism spectrum disorder (ASD. Visual evoked potentials (VEPs offer a noninvasive technique to evaluate the functional integrity of neural mechanisms, specifically visual pathways, while probing for disease pathophysiology.Transient VEPs (tVEPs were obtained from 96 unmedicated children, including 37 children with ASD, 36 typically developing (TD children, and 23 unaffected siblings (SIBS. A conventional contrast-reversing checkerboard condition was compared to a novel short-duration condition, which was developed to enable objective data collection from severely affected populations who are often excluded from electroencephalographic (EEG studies.Children with ASD showed significantly smaller amplitudes compared to TD children at two of the earliest critical VEP components, P60-N75 and N75-P100. SIBS showed intermediate responses relative to ASD and TD groups. There were no group differences in response latency. Frequency band analyses indicated significantly weaker responses for the ASD group in bands encompassing gamma-wave activity. Ninety-two percent of children with ASD were able to complete the short-duration condition compared to 68% for the standard condition.The current study establishes the utility of a short-duration tVEP test for use in children at varying levels of functioning and describes neural abnormalities in children with idiopathic ASD. Implications for excitatory/inhibitory balance as well as the potential application of VEP for use in clinical trials are discussed.

  9. Neural mechanism of lmplicit and explicit memory retrieval: functional MR imaging

    International Nuclear Information System (INIS)

    Kang, Heoung Keun; Jeong, Gwang Woo; Park, Tae Jin; Seo, Jeong Jin; Kim, Hyung Joong; Eun, Sung Jong; Chung, Tae Woong

    2003-01-01

    To identify, using functional MR imaging, distinct cerebral centers and to evaluate the neural mechanism associated with implicit and explicit retrieval of words during conceptual processing. Seven healthy volunteers aged 21-25 (mean, 22) years underwent BOLD-based fMR imaging using a 1.5T signa horizon echospeed MR system. To activate the cerebral cortices, a series of tasks was performed as follows: the encoding of two-syllable words, and implicit and explicit retrieval of previously learned words during conceptual processing. The activation paradigm consisted of a cycle of alternating periods of 30 seconds of stimulation and 30 seconds of rest. Stimulation was accomplished by encoding eight two-syllable words and the retrieval of previously presented words, while the control condition was a white screen with a small fixed cross. During the tasks we acquired ten slices (6 mm slice thickness, 1 mm gap) parallel to the AC-PC line, and the resulting functional activation maps were reconstructed using a statistical parametric mapping program (SPM99). A comparison of activation ratios (percentages), based on the number of volunteers, showed that activation of Rhs-35, PoCiG-23 and ICiG-26·30 was associated with explicit retrieval only; other brain areas were activated during the performance of both implicit and explicit retrieval tasks. Activation ratios were higher for explicit tasks than for implicit; in the cingulate gyrus and temporal lobe they were 30% and 10% greater, respectively. During explicit retrieval, a distinct brain activation index (percentage) was seen in the temporal, parietal, and occipital lobe and cingulate gyrus, and PrCeG-4, Pr/ PoCeG-43 in the frontal lobe. During implicit retrieval, on the other hand, activity was greater in the frontal lobe, including the areas of SCA-25, SFG/MFG-10, IFG-44·45, OrbG-11·47, SFG-6·8 and MFG-9·46. Overall, activation was lateralized mainly in the left hemisphere during both implicit and explicit retrieval

  10. Neural mechanism of lmplicit and explicit memory retrieval: functional MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Heoung Keun; Jeong, Gwang Woo; Park, Tae Jin; Seo, Jeong Jin; Kim, Hyung Joong; Eun, Sung Jong; Chung, Tae Woong [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2003-03-01

    To identify, using functional MR imaging, distinct cerebral centers and to evaluate the neural mechanism associated with implicit and explicit retrieval of words during conceptual processing. Seven healthy volunteers aged 21-25 (mean, 22) years underwent BOLD-based fMR imaging using a 1.5T signa horizon echospeed MR system. To activate the cerebral cortices, a series of tasks was performed as follows: the encoding of two-syllable words, and implicit and explicit retrieval of previously learned words during conceptual processing. The activation paradigm consisted of a cycle of alternating periods of 30 seconds of stimulation and 30 seconds of rest. Stimulation was accomplished by encoding eight two-syllable words and the retrieval of previously presented words, while the control condition was a white screen with a small fixed cross. During the tasks we acquired ten slices (6 mm slice thickness, 1 mm gap) parallel to the AC-PC line, and the resulting functional activation maps were reconstructed using a statistical parametric mapping program (SPM99). A comparison of activation ratios (percentages), based on the number of volunteers, showed that activation of Rhs-35, PoCiG-23 and ICiG-26{center_dot}30 was associated with explicit retrieval only; other brain areas were activated during the performance of both implicit and explicit retrieval tasks. Activation ratios were higher for explicit tasks than for implicit; in the cingulate gyrus and temporal lobe they were 30% and 10% greater, respectively. During explicit retrieval, a distinct brain activation index (percentage) was seen in the temporal, parietal, and occipital lobe and cingulate gyrus, and PrCeG-4, Pr/ PoCeG-43 in the frontal lobe. During implicit retrieval, on the other hand, activity was greater in the frontal lobe, including the areas of SCA-25, SFG/MFG-10, IFG-44{center_dot}45, OrbG-11{center_dot}47, SFG-6{center_dot}8 and MFG-9{center_dot}46. Overall, activation was lateralized mainly in the left

  11. High-Intensity Progressive Resistance Training Increases Strength With No Change in Cardiovascular Function and Autonomic Neural Regulation in Older Adults.

    Science.gov (United States)

    Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L

    2015-07-01

    The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.

  12. Systems security and functional readiness

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1988-01-01

    In Protective Programming Planning, it is important that every facility or installation be configured to support the basic functions and mission of the using organization. This paper addresses the process of identifying the key functional operations of our facilities in Europe and providing the security necessary to keep them operating in natural and man-made threat environments. Functional Readiness is important since many of our existing facilities in Europe were not constructed to meet the demands of today's requirements. There are increased requirements for real-time systems with classified terminals and stringent access control, tempest and other electronic protection devices. One must prioritize the operations of these systems so that essential functions are provided even when the facilities are affected by overt or covert hostile activities

  13. Compact holographic optical neural network system for real-time pattern recognition

    Science.gov (United States)

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  14. System-Level Design of a 64-Channel Low Power Neural Spike Recording Sensor.

    Science.gov (United States)

    Delgado-Restituto, Manuel; Rodriguez-Perez, Alberto; Darie, Angela; Soto-Sanchez, Cristina; Fernandez-Jover, Eduardo; Rodriguez-Vazquez, Angel

    2017-04-01

    This paper reports an integrated 64-channel neural spike recording sensor, together with all the circuitry to process and configure the channels, process the neural data, transmit via a wireless link the information and receive the required instructions. Neural signals are acquired, filtered, digitized and compressed in the channels. Additionally, each channel implements an auto-calibration algorithm which individually configures the transfer characteristics of the recording site. The system has two transmission modes; in one case the information captured by the channels is sent as uncompressed raw data; in the other, feature vectors extracted from the detected neural spikes are released. Data streams coming from the channels are serialized by the embedded digital processor. Experimental results, including in vivo measurements, show that the power consumption of the complete system is lower than 330 μW.

  15. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  16. Viewing pictures of a romantic partner reduces experimental pain: involvement of neural reward systems.

    Science.gov (United States)

    Younger, Jarred; Aron, Arthur; Parke, Sara; Chatterjee, Neil; Mackey, Sean

    2010-10-13

    The early stages of a new romantic relationship are characterized by intense feelings of euphoria, well-being, and preoccupation with the romantic partner. Neuroimaging research has linked those feelings to activation of reward systems in the human brain. The results of those studies may be relevant to pain management in humans, as basic animal research has shown that pharmacologic activation of reward systems can substantially reduce pain. Indeed, viewing pictures of a romantic partner was recently demonstrated to reduce experimental thermal pain. We hypothesized that pain relief evoked by viewing pictures of a romantic partner would be associated with neural activations in reward-processing centers. In this functional magnetic resonance imaging (fMRI) study, we examined fifteen individuals in the first nine months of a new, romantic relationship. Participants completed three tasks under periods of moderate and high thermal pain: 1) viewing pictures of their romantic partner, 2) viewing pictures of an equally attractive and familiar acquaintance, and 3) a word-association distraction task previously demonstrated to reduce pain. The partner and distraction tasks both significantly reduced self-reported pain, although only the partner task was associated with activation of reward systems. Greater analgesia while viewing pictures of a romantic partner was associated with increased activity in several reward-processing regions, including the caudate head, nucleus accumbens, lateral orbitofrontal cortex, amygdala, and dorsolateral prefrontal cortex--regions not associated with distraction-induced analgesia. The results suggest that the activation of neural reward systems via non-pharmacologic means can reduce the experience of pain.

  17. Adaptive neural network/expert system that learns fault diagnosis for different structures

    Science.gov (United States)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  18. Neural Network Based Maximum Power Point Tracking Control with Quadratic Boost Converter for PMSG—Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Ramji Tiwari

    2018-02-01

    Full Text Available This paper proposes an artificial neural network (ANN based maximum power point tracking (MPPT control strategy for wind energy conversion system (WECS implemented with a DC/DC converter. The proposed topology utilizes a radial basis function network (RBFN based neural network control strategy to extract the maximum available power from the wind velocity. The results are compared with a classical Perturb and Observe (P&O method and Back propagation network (BPN method. In order to achieve a high voltage rating, the system is implemented with a quadratic boost converter and the performance of the converter is validated with a boost and single ended primary inductance converter (SEPIC. The performance of the MPPT technique along with a DC/DC converter is demonstrated using MATLAB/Simulink.

  19. Neural correlates of own- and other-race face recognition in children: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Ding, Xiao Pan; Fu, Genyue; Lee, Kang

    2014-01-15

    The present study used the functional Near-infrared Spectroscopy (fNIRS) methodology to investigate the neural correlates of elementary school children's own- and other-race face processing. An old-new paradigm was used to assess children's recognition ability of own- and other-race faces. FNIRS data revealed that other-race faces elicited significantly greater [oxy-Hb] changes than own-race faces in the right middle frontal gyrus and inferior frontal gyrus regions (BA9) and the left cuneus (BA18). With increased age, the [oxy-Hb] activity differences between own- and other-race faces, or the neural other-race effect (NORE), underwent significant changes in these two cortical areas: at younger ages, the neural response to the other-race faces was modestly greater than that to the own-race faces, but with increased age, the neural response to the own-race faces became increasingly greater than that to the other-race faces. Moreover, these areas had strong regional functional connectivity with a swath of the cortical regions in terms of the neural other-race effect that also changed with increased age. We also found significant and positive correlations between the behavioral other-race effect (reaction time) and the neural other-race effect in the right middle frontal gyrus and inferior frontal gyrus regions (BA9). These results taken together suggest that children, like adults, devote different amounts of neural resources to processing own- and other-race faces, but the size and direction of the neural other-race effect and associated functional regional connectivity change with increased age. © 2013.

  20. Anesthesia, brain changes, and behavior: Insights from neural systems biology.

    Science.gov (United States)

    Colon, Elisabeth; Bittner, Edward A; Kussman, Barry; McCann, Mary Ellen; Soriano, Sulpicio; Borsook, David

    2017-06-01

    Long-term consequences of anesthetic exposure in humans are not well understood. It is possible that alterations in brain function occur beyond the initial anesthetic administration. Research in children and adults has reported cognitive and/or behavioral changes after surgery and general anesthesia that may be short lived in some patients, while in others, such changes may persist. The changes observed in humans are corroborated by a large body of evidence from animal studies that support a role for alterations in neuronal survival (neuroapoptosis) or structure (altered dendritic and glial morphology) and later behavioral deficits at older age after exposure to various anesthetic agents during fetal or early life. The potential of anesthetics to induce long-term alterations in brain function, particularly in vulnerable populations, warrants investigation. In this review, we critically evaluate the available preclinical and clinical data on the developing and aging brain, and in known vulnerable populations to provide insights into potential changes that may affect the general population of patients in a more, subtle manner. In addition this review summarizes underlying processes of how general anesthetics produce changes in the brain at the cellular and systems level and the current understanding underlying mechanisms of anesthetics agents on brain systems. Finally, we present how neuroimaging techniques currently emerge as promising approaches to evaluate and define changes in brain function resulting from anesthesia, both in the short and the long-term. Copyright © 2017 Elsevier Ltd. All rights reserved.