WorldWideScience

Sample records for neural circuitry preferentially

  1. Neural circuitry underlying affective response to peer feedback in adolescence.

    Science.gov (United States)

    Guyer, Amanda E; Choate, Victoria R; Pine, Daniel S; Nelson, Eric E

    2012-01-01

    Peer feedback affects adolescents' behaviors, cognitions and emotions. We examined neural circuitry underlying adolescents' emotional response to peer feedback using a functional neuroimaging paradigm whereby, 36 adolescents (aged 9-17 years) believed they would interact with unknown peers postscan. Neural activity was expected to vary based on adolescents' perceptions of peers and feedback type. Ventrolateral prefrontal cortex (vlPFC) activity was found when adolescents indicated how they felt following feedback (acceptance or rejection) from peers of low vs high interest. Greater activation in both cortical (e.g. superior temporal gyrus, insula, anterior cingulate) and subcortical (e.g. striatum, thalamus) regions emerged in response to acceptance vs rejection feedback. Response to acceptance also varied by age and gender in similar regions (e.g. superior temporal gyrus, fusiform, insula), with greater age-related increases in activation to acceptance vs rejection for females than males. Affective response to rejection vs acceptance did not yield significantly greater neural activity in any region. vlPFC response suggests cognitive flexibility in reappraising initial perceptions of peers following feedback. Striatal response suggests that acceptance is a potent social reward for adolescents, an interpretation supported by more positive self-reported affective response to acceptance than rejection from high- but not low-interest peers.

  2. Mechanisms of Long Non-Coding RNAs in the Assembly and Plasticity of Neural Circuitry.

    Science.gov (United States)

    Wang, Andi; Wang, Junbao; Liu, Ying; Zhou, Yan

    2017-01-01

    The mechanisms underlying development processes and functional dynamics of neural circuits are far from understood. Long non-coding RNAs (lncRNAs) have emerged as essential players in defining identities of neural cells, and in modulating neural activities. In this review, we summarized latest advances concerning roles and mechanisms of lncRNAs in assembly, maintenance and plasticity of neural circuitry, as well as lncRNAs' implications in neurological disorders. We also discussed technical advances and challenges in studying functions and mechanisms of lncRNAs in neural circuitry. Finally, we proposed that lncRNA studies would advance our understanding on how neural circuits develop and function in physiology and disease conditions.

  3. Circuitry for a Wireless Microsystem for Neural Recording Microprobes

    National Research Council Canada - National Science Library

    Yu, Hao

    2001-01-01

    .... Recorded neural signals are amplified, multiplexed, digitized using a 2nd order sigma-delta modulator, and then transmitted to the outside world by an on-chip transmitter, The circuit is designed using a standard...

  4. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    Science.gov (United States)

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  5. Imaging the neural circuitry and chemical control of aggressive motivation

    Directory of Open Access Journals (Sweden)

    Blanchard D Caroline

    2008-11-01

    Full Text Available Abstract Background With the advent of functional magnetic resonance imaging (fMRI in awake animals it is possible to resolve patterns of neuronal activity across the entire brain with high spatial and temporal resolution. Synchronized changes in neuronal activity across multiple brain areas can be viewed as functional neuroanatomical circuits coordinating the thoughts, memories and emotions for particular behaviors. To this end, fMRI in conscious rats combined with 3D computational analysis was used to identifying the putative distributed neural circuit involved in aggressive motivation and how this circuit is affected by drugs that block aggressive behavior. Results To trigger aggressive motivation, male rats were presented with their female cage mate plus a novel male intruder in the bore of the magnet during image acquisition. As expected, brain areas previously identified as critical in the organization and expression of aggressive behavior were activated, e.g., lateral hypothalamus, medial basal amygdala. Unexpected was the intense activation of the forebrain cortex and anterior thalamic nuclei. Oral administration of a selective vasopressin V1a receptor antagonist SRX251 or the selective serotonin reuptake inhibitor fluoxetine, drugs that block aggressive behavior, both caused a general suppression of the distributed neural circuit involved in aggressive motivation. However, the effect of SRX251, but not fluoxetine, was specific to aggression as brain activation in response to a novel sexually receptive female was unaffected. Conclusion The putative neural circuit of aggressive motivation identified with fMRI includes neural substrates contributing to emotional expression (i.e. cortical and medial amygdala, BNST, lateral hypothalamus, emotional experience (i.e. hippocampus, forebrain cortex, anterior cingulate, retrosplenial cortex and the anterior thalamic nuclei that bridge the motor and cognitive components of aggressive responding

  6. The Neural Circuitry of Expertise: Perceptual Learning and Social Cognition

    Directory of Open Access Journals (Sweden)

    Michael eHarre

    2013-12-01

    Full Text Available Amongst the most significant questions we are confronted with today include the integration of the brain's micro-circuitry, our ability to build the complex social networks that underpin society and how our society impacts on our ecological environment. In trying to unravel these issues one place to begin is at the level of the individual: to consider how we accumulate information about our environment, how this information leads to decisions and how our individual decisions in turn create our social environment. While this is an enormous task, we may already have at hand many of the tools we need. This article is intended to review some of the recent results in neuro-cognitive research and show how they can be extended to two very specific types of expertise: perceptual expertise and social cognition. These two cognitive skills span a vast range of our genetic heritage. Perceptual expertise developed very early in our evolutionary history and is likely a highly developed part of all mammals' cognitive ability. On the other hand social cognition is most highly developed in humans in that we are able to maintain larger and more stable long term social connections with more behaviourally diverse individuals than any other species. To illustrate these ideas I will discuss board games as a toy model of social interactions as they include many of the relevant concepts: perceptual learning, decision-making, long term planning and understanding the mental states of other people. Using techniques that have been developed in mathematical psychology, I show that we can represent some of the key features of expertise using stochastic differential equations. Such models demonstrate how an expert's long exposure to a particular context influences the information they accumulate in order to make a decision.These processes are not confined to board games, we are all experts in our daily lives through long exposure to the many regularities of daily tasks and

  7. The neural circuitry of expertise: perceptual learning and social cognition.

    Science.gov (United States)

    Harré, Michael

    2013-12-17

    Amongst the most significant questions we are confronted with today include the integration of the brain's micro-circuitry, our ability to build the complex social networks that underpin society and how our society impacts on our ecological environment. In trying to unravel these issues one place to begin is at the level of the individual: to consider how we accumulate information about our environment, how this information leads to decisions and how our individual decisions in turn create our social environment. While this is an enormous task, we may already have at hand many of the tools we need. This article is intended to review some of the recent results in neuro-cognitive research and show how they can be extended to two very specific and interrelated types of expertise: perceptual expertise and social cognition. These two cognitive skills span a vast range of our genetic heritage. Perceptual expertise developed very early in our evolutionary history and is a highly developed part of all mammals' cognitive ability. On the other hand social cognition is most highly developed in humans in that we are able to maintain larger and more stable long term social connections with more behaviorally diverse individuals than any other species. To illustrate these ideas I will discuss board games as a toy model of social interactions as they include many of the relevant concepts: perceptual learning, decision-making, long term planning and understanding the mental states of other people. Using techniques that have been developed in mathematical psychology, I show that we can represent some of the key features of expertise using stochastic differential equations (SDEs). Such models demonstrate how an expert's long exposure to a particular context influences the information they accumulate in order to make a decision.These processes are not confined to board games, we are all experts in our daily lives through long exposure to the many regularities of daily tasks and social

  8. Neural Circuitry Based on Single Electron Transistors and Single Electron Memories

    Directory of Open Access Journals (Sweden)

    Aïmen BOUBAKER

    2014-05-01

    Full Text Available In this paper, we propose and explain a neural circuitry based on single electron transistors ‘SET’ which can be used in classification and recognition. We implement, after that, a Winner-Take-All ‘WTA’ neural network with lateral inhibition architecture. The original idea of this work is reflected, first, in the proposed new single electron memory ‘SEM’ design by hybridising two promising Single Electron Memory ‘SEM’ and the MTJ/Ring memory and second, in modeling and simulation results of neural memory based on SET. We prove the charge storage in quantum dot in two types of memories.

  9. Dysfunction in the neural circuitry of emotional self-regulation in major depressive disorder.

    Science.gov (United States)

    Beauregard, Mario; Paquette, Vincent; Lévesque, Johanne

    2006-05-29

    An inability to self-regulate negative emotions appears to play a pivotal role in the genesis of major depressive disorder. This inability may be related to a dysfunction of the neural circuitry underlying emotional self-regulation. This functional magnetic resonance imaging study was conducted to test this hypothesis. Depressed individuals and controls were scanned while they attempted to voluntarily down-regulate sad feelings. The degree of difficulty experienced during down-regulation of sadness was higher in depressed individuals. Furthermore, there was greater activation in the right dorsal anterior cingulate cortex, right anterior temporal pole, right amygdala, and right insula in depressed individuals. These results suggest that emotional dysregulation in major depressive disorder is related to a disturbance in the neural circuitry of emotional self-regulation.

  10. Blueprints for behavior: genetic specification of neural circuitry for innate behaviors.

    Science.gov (United States)

    Manoli, Devanand S; Meissner, Geoffrey W; Baker, Bruce S

    2006-08-01

    Innate behaviors offer a unique opportunity to use genetic analysis to dissect and characterize the neural substrates of complex behavioral programs. Courtship in Drosophila involves a complex series of stereotyped behaviors that include numerous exchanges of multimodal sensory information over time. As we will discuss in this review, recent work has demonstrated that male-specific expression of Fruitless transcription factors (Fru(M) proteins) is necessary and sufficient to confer the potential for male courtship behaviors. Fru(M) factors program neurons of the male central and peripheral nervous systems whose function is dedicated to sexual behaviors. This circuitry seems to integrate sensory information to define behavioral states and regulate conserved neural elements for sex-specific behavioral output. The principles that govern the circuitry specified by Fru(M) expression might also operate in subcortical networks that govern innate behaviors in mammals.

  11. Retina neural circuitry seen with particle detector technology

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Using particle physics techniques, high energy physics researchers have recently provided new insight into neural circuits inside the retina. After uncovering a new type of retinal cell and mapping how the retina deals with colours, the team from Santa Cruz (US), Krakow and Glasgow is now turning its attention to more complex issues such as how the retina gets wired up and how the brain deals with the signals it receives from the retina. All this using technology derived from high-density, multistrip silicon detectors…   Seen from the point of view of a particle physicist, eyes are image detectors that can gather many different types of data: light and dark, different colours, motion, etc. In particular, the retina, a thin tissue that lines the back of the eye, is a biological pixel detector that detects light and converts it to electrical signals that travel through the optic nerve to the brain. Neurobiologists know that many different cell types are involved in these processes, but they...

  12. Neural circuitry underlying sentence-level linguistic prosody.

    Science.gov (United States)

    Tong, Yunxia; Gandour, Jackson; Talavage, Thomas; Wong, Donald; Dzemidzic, Mario; Xu, Yisheng; Li, Xiaojian; Lowe, Mark

    2005-11-01

    This study investigates the neural substrates underlying the perception of two sentence-level prosodic phenomena in Mandarin Chinese: contrastive stress (initial vs. final emphasis position) and intonation (declarative vs. interrogative modality). In an fMRI experiment, Chinese and English listeners were asked to selectively attend to either stress or intonation in paired 3-word sentences, and make speeded-response discrimination judgments. Between-group comparisons revealed that the Chinese group exhibited significantly greater activity in the left supramarginal gyrus and posterior middle temporal gyrus relative to the English group for both tasks. These same two regions showed a leftward asymmetry in the stress task for the Chinese group only. For both language groups, rightward asymmetries were observed in the middle portion of the middle frontal gyrus across tasks. All task effects involved greater activity for the stress task as compared to intonation. A left-sided task effect was observed in the posterior middle temporal gyrus for the Chinese group only. Both language groups exhibited a task effect bilaterally in the intraparietal sulcus. These findings support the emerging view that speech prosody perception involves a dynamic interplay among widely distributed regions not only within a single hemisphere but also between the two hemispheres. This model of speech prosody processing emphasizes the role of right hemisphere regions for complex-sound analysis, whereas task-dependent regions in the left hemisphere predominate when language processing is required.

  13. Neural circuitry of impulsivity in a cigarette craving paradigm

    Directory of Open Access Journals (Sweden)

    Josiane eBourque

    2013-07-01

    Full Text Available Impulsivity has been shown to play a pivotal role in the onset, pattern of consumption, relapse and, most notably, craving of illicit and licit drugs such as cigarette smoking. The goal of this study was to examine the neurobiological influence of trait impulsivity during cue-induced cigarette craving. Thirty-one chronic smokers passively viewed appetitive smoking-related and neutral images while being scanned and reported their feelings of craving. They completed the Barratt Impulsiveness Scale, a measure of trait impulsivity. We conducted functional connectivity analyses using the psycho-physiological interaction method. During the processing of smoking stimuli, participants presented increased activations in the cingulate and prefrontal cortices, as well as in the limbic system. We observed a significant positive relationship between impulsivity scores and reported craving. A negative correlation was observed between the impulsivity score and activity in the posterior cingulate cortex (PCC. The insula, dorsal anterior cingulate cortex (dACC as well as the dorsolateral prefrontal cortex (DLPFC presented a negative connectivity with the PCC. Consistent with the view that the PCC is related to the ability to resist cigarette craving, our results suggest that high impulsive smokers have greater difficulty in controlling their cravings, and that this weakness may be mediated by lower PCC activity. Moreover, we argue that the less PCC activity, the greater the probability of a stronger emotional, physiological and biased attentional response to smoking cues mediated by insula, dACC and DLPFC activity. This is the first study on this topic, and so, results will need to be replicated in both licit and illicit drug abusers. Our findings also highlight a need for more emphasis on the PCC in drug addiction research, as it is one of the most consistently activated regions in fMRI studies examining the neural correlates of cue-induced alcohol, drug and

  14. Impulsivity and aggression in schizophrenia: a neural circuitry perspective with implications for treatment.

    Science.gov (United States)

    Hoptman, Matthew J

    2015-06-01

    Elevations of impulsive behavior have been observed in a number of serious mental illnesses. These phenomena can lead to harmful behaviors, including violence, and thus represent a serious public health concern. Such violence is often a reason for psychiatric hospitalization, and it often leads to prolonged hospital stays, suffering by patients and their victims, and increased stigmatization. Despite the attention paid to violence, little is understood about its neural basis in schizophrenia. On a psychological level, aggression in schizophrenia has been primarily attributed to psychotic symptoms, desires for instrumental gain, or impulsive responses to perceived personal slights. Often, multiple attributions can coexist during a single aggressive incident. In this review, I discuss the neural circuitry associated with impulsivity and aggression in schizophrenia, with an emphasis on implications for treatment. Impulsivity appears to account for a great deal of aggression in schizophrenia, especially in inpatient settings. Urgency, defined as impulsivity in the context of strong emotion, is the primary focus of this article. It is elevated in several psychiatric disorders, and in schizophrenia, it has been related to aggression. Many studies have implicated dysfunctional frontotemporal circuitry in impulsivity and aggression in schizophrenia, and pharmacological treatments may act via that circuitry to reduce urgency and aggressive behaviors; however, more mechanistic studies are critically needed. Recent studies point toward manipulable neurobehavioral targets and suggest that cognitive, pharmacological, neuromodulatory, and neurofeedback treatment approaches can be developed to ameliorate urgency and aggression in schizophrenia. It is hoped that these approaches will improve treatment efficacy.

  15. Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury.

    Science.gov (United States)

    Minassian, Karen; McKay, W Barry; Binder, Heinrich; Hofstoetter, Ursula S

    2016-04-01

    Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidurally over the posterior aspect of the lumbar spinal cord below a paralyzing injury. Current understanding is that such stimulation activates large-to-medium-diameter sensory fibers within the posterior roots. Those fibers then trans-synaptically activate various spinal reflex circuits and plurisegmentally organized interneuronal networks that control more complex contraction and relaxation patterns involving multiple muscles. The induced change in responsiveness of this spinal motor circuitry to any residual supraspinal input via clinically silent translesional neural connections that have survived the injury may be a likely explanation for rudimentary volitional control enabled by epidural stimulation in otherwise paralyzed muscles. Technological developments that allow dynamic control of stimulation parameters and the potential for activity-dependent beneficial plasticity may further unveil the remarkable capacity of spinal motor processing that remains even after severe spinal cord injuries.

  16. The emotional power of poetry: neural circuitry, psychophysiology and compositional principles.

    Science.gov (United States)

    Wassiliwizky, Eugen; Koelsch, Stefan; Wagner, Valentin; Jacobsen, Thomas; Menninghaus, Winfried

    2017-08-01

    It is a common experience-and well established experimentally-that music can engage us emotionally in a compelling manner. The mechanisms underlying these experiences are receiving increasing scrutiny. However, the extent to which other domains of aesthetic experience can similarly elicit strong emotions is unknown. Using psychophysiology, neuroimaging and behavioral responses, we show that recited poetry can act as a powerful stimulus for eliciting peak emotional responses, including chills and objectively measurable goosebumps that engage the primary reward circuitry. Importantly, while these responses to poetry are largely analogous to those found for music, their neural underpinnings show important differences, specifically with regard to the crucial role of the nucleus accumbens. We also go beyond replicating previous music-related studies by showing that peak aesthetic pleasure can co-occur with physiological markers of negative affect. Finally, the distribution of chills across the trajectory of poems provides insight into compositional principles of poetry. © The Author (2017). Published by Oxford University Press.

  17. Beautiful friendship: Social sharing of emotions improves subjective feelings and activates the neural reward circuitry.

    Science.gov (United States)

    Wagner, Ullrich; Galli, Lisa; Schott, Björn H; Wold, Andrew; van der Schalk, Job; Manstead, Antony S R; Scherer, Klaus; Walter, Henrik

    2015-06-01

    Humans have a strong tendency to affiliate with other people, especially in emotional situations. Here, we suggest that a critical mechanism underlying this tendency is that socially sharing emotional experiences is in itself perceived as hedonically positive and thereby contributes to the regulation of individual emotions. We investigated the effect of social sharing of emotions on subjective feelings and neural activity by having pairs of friends view emotional (negative and positive) and neutral pictures either alone or with the friend. While the two friends remained physically separated throughout the experiment-with one undergoing functional magnetic resonance imaging and the other performing the task in an adjacent room-they were made aware on a trial-by-trial basis whether they were seeing pictures simultaneously with their friend (shared) or alone (unshared). Ratings of subjective feelings were improved significantly when participants viewed emotional pictures together than alone, an effect that was accompanied by activity increase in ventral striatum and medial orbitofrontal cortex, two important components of the reward circuitry. Because these effects occurred without any communication or interaction between the friends, they point to an important proximate explanation for the basic human motivation to affiliate with others, particularly in emotional situations. © The Author (2014). Published by Oxford University Press.

  18. Sleep-wake disturbances in common neurodegenerative diseases: a closer look at selected aspects of the neural circuitry.

    Science.gov (United States)

    Zhong, George; Naismith, Sharon Linda; Rogers, Naomi Louise; Lewis, Simon John Geoffrey

    2011-08-15

    There is a growing appreciation regarding the relationship between common neurodegenerative diseases, such as Alzheimer's and Parkinson's and sleep-wake disturbances. These clinical features often herald the onset of such conditions and certainly appear to influence disease phenotype and progression. This article reviews some of the pathophysiological processes underlying specific disruptions within the neural circuitry underlying sleep-wake disturbances and explores how clinicopathological relationships commonly manifest. It is proposed that a greater understanding of these relationships should allow insights in to the efficacy of currently available treatments and help in the development of future therapies targeting disruptions within the sleep-wake neural circuitry. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Effects of direct social experience on trust decisions and neural reward circuitry

    Directory of Open Access Journals (Sweden)

    Dominic S. Fareri

    2012-10-01

    Full Text Available The human striatum is integral for reward-processing and supports learning by linking experienced outcomes with prior expectations. Recent endeavors implicate the striatum in processing outcomes of social interactions, such as social approval/rejection, as well as in learning reputations of others. Interestingly, social impressions often influence our behavior with others during interactions. Information about an interaction partner’s moral character acquired from biographical information hinders updating of expectations after interactions via top down modulation of reward circuitry. An outstanding question is whether initial impressions formed through experience similarly modulate the ability to update social impressions at the behavioral and neural level. We investigated the role of experienced social information on trust behavior and reward-related BOLD activity. Participants played a computerized ball tossing game with three fictional partners manipulated to be perceived as good, bad or neutral. Participants then played an iterated trust game as investors with these same partners while undergoing fMRI. Unbeknownst to participants, partner behavior in the trust game was random and unrelated to their ball-tossing behavior. Participants’ trust decisions were influenced by their prior experience in the ball tossing game, investing less often with the bad partner compared to the good and neutral. Reinforcement learning models revealed that participants were more sensitive to updating their beliefs about good and bad partners when experiencing outcomes consistent with initial experience. Increased striatal and anterior cingulate BOLD activity for positive versus negative trust game outcomes emerged, which further correlated with model-derived prediction-error (PE learning signals. These results suggest that initial impressions formed from direct social experience can be continually shaped by consistent information through reward learning

  20. A Role for the Lateral Dorsal Tegmentum in Memory and Decision Neural Circuitry

    Science.gov (United States)

    Redila, Van; Kinzel, Chantelle; Jo, Yong Sang; Puryear, Corey B.; Mizumori, Sheri J.Y.

    2017-01-01

    A role for the hippocampus in memory is clear, although the mechanism for its contribution remains a matter of debate. Converging evidence suggests that hippocampus evaluates the extent to which context-defining features of events occur as expected. The consequence of mismatches, or prediction error, signals from hippocampus is discussed in terms of its impact on neural circuitry that evaluates the significance of prediction errors: Ventral tegmental area (VTA) dopamine cells burst fire to rewards or cues that predict rewards (Schultz et al., 1997). Although the lateral dorsal tegmentum (LDTg) importantly controls dopamine cell burst firing (Lodge & Grace, 2006) the behavioral significance of the LDTg control is not known. Therefore, we evaluated LDTg functional activity as rats performed a spatial memory task that generates task-dependent reward codes in VTA (Jo et al., 2013; Puryear et al., 2010) and another VTA afferent, the pedunculopontine nucleus (PPTg, Norton et al., 2011). Reversible inactivation of the LDTg significantly impaired choice accuracy. LDTg neurons coded primarily egocentric information in the form of movement velocity, turning behaviors, and behaviors leading up to expected reward locations. A subset of the velocity-tuned LDTg cells also showed high frequency bursts shortly before or after reward encounters, after which they showed tonic elevated firing during consumption of small, but not large, rewards. Cells that fired before reward encounters showed stronger correlations with velocity as rats moved toward, rather than away from, rewarded sites. LDTg neural activity was more strongly regulated by egocentric behaviors than that observed for PPTg or VTA cells that were recorded by Puryear et al. and Norton et al. While PPTg activity was uniquely sensitive to ongoing sensory input, all three regions encoded reward magnitude (although in different ways), reward expectation, and reward encounters. Only VTA encoded reward prediction errors. LDTg

  1. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and roadmap for future research

    Science.gov (United States)

    Phillips, Mary L; Swartz, Holly A.

    2014-01-01

    Objective This critical review appraises neuroimaging findings in bipolar disorder in emotion processing, emotion regulation, and reward processing neural circuitry, to synthesize current knowledge of the neural underpinnings of bipolar disorder, and provide a neuroimaging research “roadmap” for future studies. Method We examined findings from all major studies in bipolar disorder that used fMRI, volumetric analyses, diffusion imaging, and resting state techniques, to inform current conceptual models of larger-scale neural circuitry abnormalities in bipolar disorder Results Bipolar disorder can be conceptualized in neural circuitry terms as parallel dysfunction in bilateral prefrontal cortical (especially ventrolateral prefrontal cortical)-hippocampal-amygdala emotion processing and emotion regulation neural circuitries, together with an “overactive” left-sided ventral striatal-ventrolateral and orbitofrontal cortical reward processing circuitry, that result in characteristic behavioral abnormalities associated with bipolar disorder: emotional lability, emotional dysregulation and heightened reward sensitivity. A potential structural basis for these functional abnormalities are gray matter decreases in prefrontal and temporal cortices, amygdala and hippocampus, and fractional anisotropy decreases in white matter tracts connecting prefrontal and subcortical regions. Conclusion Neuroimaging studies of bipolar disorder clearly demonstrate abnormalities in neural circuitries supporting emotion processing, emotion regulation and reward processing, although there are several limitations to these studies. Future neuroimaging research in bipolar disorder should include studies adopting dimensional approaches; larger studies examining neurodevelopmental trajectories in bipolar disorder and at-risk youth; multimodal neuroimaging studies using integrated systems approaches; and studies using pattern recognition approaches to provide clinically useful, individual

  2. Age and gender modulate the neural circuitry supporting facial emotion processing in adults with major depressive disorder.

    Science.gov (United States)

    Briceño, Emily M; Rapport, Lisa J; Kassel, Michelle T; Bieliauskas, Linas A; Zubieta, Jon-Kar; Weisenbach, Sara L; Langenecker, Scott A

    2015-03-01

    Emotion processing, supported by frontolimbic circuitry known to be sensitive to the effects of aging, is a relatively understudied cognitive-emotional domain in geriatric depression. Some evidence suggests that the neurophysiological disruption observed in emotion processing among adults with major depressive disorder (MDD) may be modulated by both gender and age. Therefore, the present study investigated the effects of gender and age on the neural circuitry supporting emotion processing in MDD. Cross-sectional comparison of fMRI signal during performance of an emotion processing task. Outpatient university setting. One hundred adults recruited by MDD status, gender, and age. Participants underwent fMRI while completing the Facial Emotion Perception Test. They viewed photographs of faces and categorized the emotion perceived. Contrast for fMRI was of face perception minus animal identification blocks. Effects of depression were observed in precuneus and effects of age in a number of frontolimbic regions. Three-way interactions were present between MDD status, gender, and age in regions pertinent to emotion processing, including frontal, limbic, and basal ganglia. Young women with MDD and older men with MDD exhibited hyperactivation in these regions compared with their respective same-gender healthy comparison (HC) counterparts. In contrast, older women and younger men with MDD exhibited hypoactivation compared to their respective same-gender HC counterparts. This the first study to report gender- and age-specific differences in emotion processing circuitry in MDD. Gender-differential mechanisms may underlie cognitive-emotional disruption in older adults with MDD. The present findings have implications for improved probes into the heterogeneity of the MDD syndrome. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Neural Circuitry of the Bilingual Mental Lexicon: Effect of Age of Second Language Acquisition

    Science.gov (United States)

    Isel, Frederic; Baumgaertner, Annette; Thran, Johannes; Meisel, Jurgen M.; Buchel, Christian

    2010-01-01

    Numerous studies have proposed that changes of the human language faculty caused by neural maturation can explain the substantial differences in ultimate attainment of grammatical competences between first language (L1) acquirers and second language (L2) learners. However, little evidence on the effect of neural maturation on the attainment of…

  4. Affective neural circuitry during facial emotion processing in pediatric bipolar disorder.

    Science.gov (United States)

    Pavuluri, Mani N; O'Connor, Megan Marlow; Harral, Erin; Sweeney, John A

    2007-07-15

    Facial emotions are central to human interaction. Identifying pathophysiology in affect processing circuitry that supports the ability to assess facial emotions might facilitate understanding of affect regulation in pediatric bipolar disorder. Ten euthymic, unmedicated pediatric bipolar patients and 10 healthy control subjects matched for age, gender, race, socioeconomic status, and IQ were scanned with functional magnetic resonance imaging. Angry, happy, and neutral faces were presented in 30-sec blocks, with a 20-sec rest period between blocks. Subjects were asked to press a button when each face appeared, to ensure that attention was maintained on-task. In bipolar patients, in response to both angry and happy faces relative to neutral faces, we observed reduced activation of right rostral ventrolateral prefrontal cortex together with increased activity in right pregenual anterior cingulate, amygdala, and paralimbic cortex. Bipolar patients also showed reduced activation of visual areas in occipital cortex together with greater activation in higher-order visual perceptual areas, including superior temporal sulcus and fusiform gyrus with angry faces and posterior parietal cortex with happy faces. Findings document a disturbance in affective neurocircuitry in pediatric bipolar disorder. Reduced activation in ventrolateral prefrontal cortex might reflect diminished top-down control that leads to the observed exaggerated activation in amygdala and paralimbic areas. Changes in occipital areas might represent an effort to gate sensory input when affective responses to the faces could not be successfully modulated. Disturbances in affect processing circuitry could contribute to emotional dysregulation and social cognitive difficulties in bipolar youth.

  5. Role of basal ganglia in sleep-wake regulation: neural circuitry and clinical significance

    Directory of Open Access Journals (Sweden)

    Ramalingam Vetrivelan

    2010-11-01

    Full Text Available Researchers over the last decade have made substantial progress towards understanding the roles of dopamine and the basal ganglia in the control of sleep-wake behavior. In this review, we outline recent advancements regarding dopaminergic modulation of sleep through the basal ganglia (BG and extra-BG sites. Our main hypothesis is that dopamine promotes sleep by its action on the D2 receptors in the BG and promotes wakefulness by its action on D1 and D2 receptors in the extra-BG sites. This hypothesis implicates dopamine depletion in the BG (such as in Parkinson’s disease in causing frequent nighttime arousal and overall insomnia. Furthermore, the arousal effects of psychostimulants (methamphetamine, cocaine and modafinil may be linked to the ventral periaquductal grey (vPAG dopaminergic circuitry targeting the extra-BG sleep-wake network.

  6. Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise.

    Directory of Open Access Journals (Sweden)

    Antoine Lutz

    2008-03-01

    Full Text Available Recent brain imaging studies using functional magnetic resonance imaging (fMRI have implicated insula and anterior cingulate cortices in the empathic response to another's pain. However, virtually nothing is known about the impact of the voluntary generation of compassion on this network. To investigate these questions we assessed brain activity using fMRI while novice and expert meditation practitioners generated a loving-kindness-compassion meditation state. To probe affective reactivity, we presented emotional and neutral sounds during the meditation and comparison periods. Our main hypothesis was that the concern for others cultivated during this form of meditation enhances affective processing, in particular in response to sounds of distress, and that this response to emotional sounds is modulated by the degree of meditation training. The presentation of the emotional sounds was associated with increased pupil diameter and activation of limbic regions (insula and cingulate cortices during meditation (versus rest. During meditation, activation in insula was greater during presentation of negative sounds than positive or neutral sounds in expert than it was in novice meditators. The strength of activation in insula was also associated with self-reported intensity of the meditation for both groups. These results support the role of the limbic circuitry in emotion sharing. The comparison between meditation vs. rest states between experts and novices also showed increased activation in amygdala, right temporo-parietal junction (TPJ, and right posterior superior temporal sulcus (pSTS in response to all sounds, suggesting, greater detection of the emotional sounds, and enhanced mentation in response to emotional human vocalizations for experts than novices during meditation. Together these data indicate that the mental expertise to cultivate positive emotion alters the activation of circuitries previously linked to empathy and theory of mind in

  7. Neural circuitry of the bilingual mental lexicon: effect of age of second language acquisition.

    Science.gov (United States)

    Isel, Frédéric; Baumgaertner, Annette; Thrän, Johannes; Meisel, Jürgen M; Büchel, Christian

    2010-03-01

    Numerous studies have proposed that changes of the human language faculty caused by neural maturation can explain the substantial differences in ultimate attainment of grammatical competences between first language (L1) acquirers and second language (L2) learners. However, little evidence on the effect of neural maturation on the attainment of lexical knowledge in L2 is available. The present functional magnetic resonance study addresses this question via a cross-linguistic neural adaptation paradigm. Age of acquisition (AoA) of L2 was systematically manipulated. Concrete nouns were repeated across language (e.g., French-German, valise(suitcase)-Koffer(suitcase)). Whereas early bilinguals (AoA of L210years) showed larger RE effects in the middle portion of the left insula and in the right middle frontal gyrus (MFG). We suggest that, as for grammatical knowledge, the attainment of lexical knowledge in L2 is affected by neural maturation. The present findings lend support to neurocognitive models of bilingual word recognition postulating that, for both early and late bilinguals, the two languages are interconnected at the conceptual level. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans.

    NARCIS (Netherlands)

    Hermans, E.J.; Ramsey, N.F.; Honk, J van

    2008-01-01

    BACKGROUND: In a range of species, the androgen steroid testosterone is known to potentiate neural circuits involved in intraspecific aggression. Disorders of impulsive aggression in humans have likewise been associated with high testosterone levels, but human evidence for the link between

  9. On the connection between level of education and the neural circuitry of emotion perception

    NARCIS (Netherlands)

    Demenescu, L.R.; Stan, A.; Kortekaas, R.; van der Wee, N.J.A.; Veltman, D.J.; Aleman, A.

    2014-01-01

    Through education, a social group transmits accumulated knowledge, skills, customs, and values to its members. So far, to the best of our knowledge, the association between educational attainment and neural correlates of emotion processing has been left unexplored. In a retrospective analysis of The

  10. Central neural circuitry in the jellyfish Aglantha: a model 'simple nervous system'.

    Science.gov (United States)

    Mackie, George O

    2004-01-01

    Like other hydrozoan medusae, Aglantha lacks a brain, but the two marginal nerve rings function together as a central nervous system. Twelve neuronal and two excitable epithelial conduction systems are described and their interactions summarized. Aglantha differs from most medusae in having giant axons. It can swim and contract its tentacles in two distinct ways (escape and slow). Escape responses are mediated primarily by giant axons but conventional interneurons are also involved in transmission of information within the nerve rings during one form of escape behavior. Surprisingly, giant axons provide the motor pathway to the swim muscles in both escape and slow swimming. This is possible because these axons can conduct calcium spikes as well as sodium spikes and do so on an either/or basis without overlap. The synaptic and ionic bases for these responses are reviewed. During feeding, the manubrium performs highly accurate flexions to points at the margin. At the same time, the oral lips flare open. The directional flexions are conducted by FMRFamide immunoreactive nerves, the lip flaring by an excitable epithelium lining the radial canals. Inhibition of swimming during feeding is due to impulses propagated centrifugally in the same epithelium. Aglantha probably evolved from an ancestor possessing a relatively simple wiring plan, as seen in other hydromedusae. Acquisition of giant axons resulted in considerable modification of this basic plan, and required novel solutions to the problems of integrating escape with non-escape circuitry. Copyright 2004 S. Karger AG, Basel

  11. On the connection between level of education and the neural circuitry of emotion perception

    Directory of Open Access Journals (Sweden)

    Liliana Ramona Demenescu

    2014-10-01

    Full Text Available Through education, a social group transmits accumulated knowledge, skills, customs, and values to its members. So far, to the best of our knowledge, the association between educational attainment and neural correlates of emotion processing has been left unexplored. In a retrospective analysis of the NESDA fMRI study, we compared two groups of fourteen healthy volunteers with intermediate and high educational attainment, matched for age and gender. The data concerned event-related functional magnetic resonance imaging of brain activation during perception of facial emotional expressions. The region of interest analysis showed stronger right amygdala activation to facial expressions in participants with lower relative to higher educational attainment. The psychophysiological interaction analysis revealed that participants with higher educational attainment exhibited stronger right amygdala – right insula connectivity during perception of emotional and neutral facial expressions. This exploratory study suggests the relevance of educational attainment on the neural mechanism of facial expression processing.

  12. Impulsivity and Aggression in Schizophrenia: A Neural Circuitry Perspective with Implications for Treatment

    OpenAIRE

    Hoptman, Matthew J.

    2015-01-01

    Elevations of impulsive behavior have been observed in a number of serious mental illnesses. These phenomena can lead to harmful behaviors, including violence, and thus represent a serious public health concern. Such violence is often a reason for psychiatric hospitalization, and it often leads to prolonged hospital stays, suffering by patients and their victims, and increased stigmatization. Despite the attention paid to violence, little is understood about its neural basis in schizophrenia....

  13. Tracing 'driver' versus 'modulator' information flow throughout large-scale, task-related neural circuitry.

    Science.gov (United States)

    Hermer-Vazquez, Linda

    2008-04-01

    PRIMARY OBJECTIVE: To determine the relative uses of neural action potential ('spike') data versus local field potentials (LFPs) for modeling information flow through complex brain networks. HYPOTHESIS: The common use of LFP data, which are continuous and therefore more mathematically suited for spectral information-flow modeling techniques such as Granger causality analysis, can lead to spurious inferences about whether a given brain area 'drives' the spiking in a downstream area. EXPERIMENT: We recorded spikes and LFPs from the forelimb motor cortex (M1) and the magnocellular red nucleus (mRN), which receives axon collaterals from M1 projection cells onto its distal dendrites, but not onto its perisomatic regions, as rats performed a skilled reaching task. RESULTS AND IMPLICATIONS: As predicted, Granger causality analysis on the LFPs-which are mainly composed of vector-summed dendritic currents-produced results that if conventionally interpreted would suggest that the M1 cells drove spike firing in the mRN, whereas analyses of spiking in the two recorded regions revealed no significant correlations. These results suggest that mathematical models of information flow should treat the sampled dendritic activity as more likely to reflect intrinsic dendritic and input-related processing in neural networks, whereas spikes are more likely to provide information about the output of neural network processing.

  14. Neural circuitry of emotion regulation: Effects of appraisal, attention, and cortisol administration.

    Science.gov (United States)

    Ma, Sean T; Abelson, James L; Okada, Go; Taylor, Stephan F; Liberzon, Israel

    2017-04-01

    Psychosocial well-being requires effective regulation of emotional responding in context of threat or stress. Neuroimaging studies have focused on instructed, volitional regulation (e.g., reappraisal or distancing), largely ignoring implicit regulation that does not involve purposeful effort to alter emotional experience. These implicit processes may or may not involve the same neural pathways as explicit regulatory strategies. We examined the neurobiology of implicit emotional regulation processes and the impact of the stress hormone cortisol on these processes. Our study task employed composite pictures of faces and places to examine neural activity during implicit emotional processing (of emotional faces), while these responses were implicitly regulated by attention shift away from the emotionally evocative stimuli, and while subjects reflectively appraised their own emotional response to them. Subjects completed the task in an fMRI scanner after random assignment to receive placebo or hydrocortisone (HCT), an orally administered version of cortisol. Implicit emotional processing activated insula/IFG, dACC/dMPFC, midbrain and amygdala. With attention shifting, we saw diminished signal in emotion generating/response regions (e.g., amygdala) and increased activations in task specific attention regions like parahippocampus. With appraisal of emotions, we observed robust activations in medial prefrontal areas, where activation is also seen in instructed reappraisal studies. We observed no main effects of HCT administration on brain, but males and females showed opposing neural effects in prefrontal areas. The data suggest that different types of emotion regulation utilize overlapping circuits, but with some strategy specific activation. Further study of the dimorphic sex response to cortisol is needed.

  15. Neural emotion regulation circuitry underlying anxiolytic effects of perceived control over pain.

    Science.gov (United States)

    Salomons, Tim V; Nusslock, Robin; Detloff, Allison; Johnstone, Tom; Davidson, Richard J

    2015-02-01

    Anxiolytic effects of perceived control have been observed across species. In humans, neuroimaging studies have suggested that perceived control and cognitive reappraisal reduce negative affect through similar mechanisms. An important limitation of extant neuroimaging studies of perceived control in terms of directly testing this hypothesis, however, is the use of within-subject designs, which confound participants' affective response to controllable and uncontrollable stress. To compare neural and affective responses when participants were exposed to either uncontrollable or controllable stress, two groups of participants received an identical series of stressors (thermal pain stimuli). One group ("controllable") was led to believe they had behavioral control over the pain stimuli, whereas another ("uncontrollable") believed they had no control. Controllable pain was associated with decreased state anxiety, decreased activation in amygdala, and increased activation in nucleus accumbens. In participants who perceived control over the pain, reduced state anxiety was associated with increased functional connectivity between each of these regions and ventral lateral/ventral medial pFC. The location of pFC findings is consistent with regions found to be critical for the anxiolytic effects of perceived control in rodents. Furthermore, interactions observed between pFC and both amygdala and nucleus accumbens are remarkably similar to neural mechanisms of emotion regulation through reappraisal in humans. These results suggest that perceived control reduces negative affect through a general mechanism involved in the cognitive regulation of emotion.

  16. A CREB-Sirt1-Hes1 Circuitry Mediates Neural Stem Cell Response to Glucose Availability

    Directory of Open Access Journals (Sweden)

    Salvatore Fusco

    2016-02-01

    Full Text Available Adult neurogenesis plays increasingly recognized roles in brain homeostasis and repair and is profoundly affected by energy balance and nutrients. We found that the expression of Hes-1 (hairy and enhancer of split 1 is modulated in neural stem and progenitor cells (NSCs by extracellular glucose through the coordinated action of CREB (cyclic AMP responsive element binding protein and Sirt-1 (Sirtuin 1, two cellular nutrient sensors. Excess glucose reduced CREB-activated Hes-1 expression and results in impaired cell proliferation. CREB-deficient NSCs expanded poorly in vitro and did not respond to glucose availability. Elevated glucose also promoted Sirt-1-dependent repression of the Hes-1 promoter. Conversely, in low glucose, CREB replaced Sirt-1 on the chromatin associated with the Hes-1 promoter enhancing Hes-1 expression and cell proliferation. Thus, the glucose-regulated antagonism between CREB and Sirt-1 for Hes-1 transcription participates in the metabolic regulation of neurogenesis.

  17. Dopamine Prediction Errors in Reward Learning and Addiction: From Theory to Neural Circuitry.

    Science.gov (United States)

    Keiflin, Ronald; Janak, Patricia H

    2015-10-21

    Midbrain dopamine (DA) neurons are proposed to signal reward prediction error (RPE), a fundamental parameter in associative learning models. This RPE hypothesis provides a compelling theoretical framework for understanding DA function in reward learning and addiction. New studies support a causal role for DA-mediated RPE activity in promoting learning about natural reward; however, this question has not been explicitly tested in the context of drug addiction. In this review, we integrate theoretical models with experimental findings on the activity of DA systems, and on the causal role of specific neuronal projections and cell types, to provide a circuit-based framework for probing DA-RPE function in addiction. By examining error-encoding DA neurons in the neural network in which they are embedded, hypotheses regarding circuit-level adaptations that possibly contribute to pathological error signaling and addiction can be formulated and tested. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Neural circuitry mediating inflammation-induced central pain amplification in human experimental endotoxemia.

    Science.gov (United States)

    Benson, Sven; Rebernik, Laura; Wegner, Alexander; Kleine-Borgmann, Julian; Engler, Harald; Schlamann, Marc; Forsting, Michael; Schedlowski, Manfred; Elsenbruch, Sigrid

    2015-08-01

    To elucidate the brain mechanisms underlying inflammation-induced visceral hyperalgesia in humans, in this functional magnetic resonance imaging (fMRI) study we tested if intravenous administration of lipopolysaccharide (LPS) involves altered central processing of visceral pain stimuli. In this randomized, double-blind, placebo-controlled fMRI study, 26 healthy male subjects received either an intravenous injection of low-dose LPS (N=14, 0.4 ng/kg body weight) or placebo (N=12, control group). Plasma cytokines (TNF-α, IL-6), body temperature, plasma cortisol and mood were assessed at baseline and up to 6 h post-injection. At baseline and 2 h post-injection (test), rectal pain thresholds and painful rectal distension-induced blood oxygen level-dependent (BOLD) responses in brain regions-of-interest were assessed. To address specificity for visceral pain, BOLD responses to non-painful rectal distensions and painful somatic stimuli (i.e., punctuate mechanical stimulation) were also analyzed as control stimuli. Compared to the control group, LPS-treated subjects demonstrated significant and transient increases in TNF-α, IL-6, body temperature and cortisol, along with impaired mood. In response to LPS, rectal pain thresholds decreased in trend, along with enhanced up-regulation of rectal pain-induced BOLD responses within the posterior insula, dorsolateral prefrontal (DLPFC), anterior midcingulate (aMCC) and somatosensory cortices (all FWE-corrected ppain-induced neural activation in DLPFC and aMCC. No significant LPS effects were observed on neural responses to non-painful rectal distensions or mechanical stimulation. These findings support that peripheral inflammatory processes affect visceral pain thresholds and the central processing of sensory-discriminative aspects of visceral pain. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. When the Sense of Smell Meets Emotion: Anxiety-State-Dependent Olfactory Processing and Neural Circuitry Adaptation

    Science.gov (United States)

    Novak, Lucas R.; Gitelman, Darren R.

    2013-01-01

    Phylogenetically the most ancient sense, olfaction is characterized by a unique intimacy with the emotion system. However, mechanisms underlying olfaction–emotion interaction remain unclear, especially in an ever-changing environment and dynamic internal milieu. Perturbing the internal state with anxiety induction in human subjects, we interrogated emotion-state-dependent olfactory processing in a functional magnetic resonance imaging (fMRI) study. Following anxiety induction, initially neutral odors become unpleasant and take longer to detect, accompanied by augmented response to these odors in the olfactory (anterior piriform and orbitofrontal) cortices and emotion-relevant pregenual anterior cingulate cortex. In parallel, the olfactory sensory relay adapts with increased anxiety, incorporating amygdala as an integral step via strengthened (afferent or efferent) connections between amygdala and all levels of the olfactory cortical hierarchy. This anxiety-state-dependent neural circuitry thus enables cumulative infusion of limbic affective information throughout the olfactory sensory progression, thereby driving affectively charged olfactory perception. These findings could constitute an olfactory etiology model of emotional disorders, as exaggerated emotion–olfaction interaction in negative mood states turns innocuous odors aversive, fueling anxiety and depression with rising ambient sensory stress. PMID:24068799

  20. Neural Circuitry That Mediates Behavior Governing the Tradeoffs Between Survival and Reproduction in Caenorhabditis elegans.

    Science.gov (United States)

    Emmons, Scott W

    2017-12-01

    In all outcrossing sexual species there is a mechanism that brings two parents together. For animals, this reproductive requirement may at times conflict with other needs, such as foraging for food. This tension has been studied using the tiny (1 mm) nematode worm, Caenorhabditis elegans. In a trade off between certainty of survival and possibility of reproduction, the C. elegans male will abandon a food patch lacking mates and explore its environment to find one where mates are present. A quantitative behavioral assay has been used to study the behavioral mechanism of mate searching and nutritional, sexual, and neurohormonal pathways that influence the underlying drive state. Taking advantage of the known connectivity of the C. elegans nervous system, neural pathways have been identified that influence the male's behavior in the presence of food with and without mates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Overlapping neural circuitry for narrative comprehension and proficient reading in children and adolescents.

    Science.gov (United States)

    Horowitz-Kraus, Tzipi; Vannest, Jennifer J; Holland, Scott K

    2013-11-01

    Narrative comprehension is a perinatal linguistic ability which is more intuitive than reading activity. Whether there are specific shared brain regions for narrative comprehension and reading that are tuned to reading proficiency, even before reading is acquired, is the question of the current study. We acquired fMRI data during a narrative comprehension task at two age points, when children are age 5-7 (K-2nd grade) and later when the same children were age 11 (5th-7th grade). We then examined correlations between this fMRI data and reading and reading comprehension scores from the same children at age 11. We found that greater frontal and supramarginal gyrus (BA 40) activation in narrative comprehension at the age of 5-7 years old was associated with better word reading and reading comprehension scores at the age of 11. A shift towards temporal and occipital activation was found when correlating their narrative comprehension functional data at age 11, with reading scores at the same age point. We suggest that increased reliance on executive functions and auditory-visual networks when listening to stories before reading is acquired, facilitates reading proficiency in older age and may be a biomarker for future reading ability. Children, who rely on use of imagination/visualization as well as auditory processing for narrative comprehension when they reach age 11, also show greater reading abilities. Understanding concordant neural pathways supporting auditory narrative and reading comprehension might be guide for development of effective tools for reading intervention programs. Published by Elsevier Ltd.

  2. Memory trace in feeding neural circuitry underlying conditioned taste aversion in Lymnaea.

    Directory of Open Access Journals (Sweden)

    Etsuro Ito

    Full Text Available BACKGROUND: The pond snail Lymnaea stagnalis can maintain a conditioned taste aversion (CTA as a long-term memory. Previous studies have shown that the inhibitory postsynaptic potential (IPSP evoked in the neuron 1 medial (N1M cell by activation of the cerebral giant cell (CGC in taste aversion-trained snails was larger and lasted longer than that in control snails. The N1M cell is one of the interneurons in the feeding central pattern generator (CPG, and the CGC is a key regulatory neuron for the feeding CPG. METHODOLOGY/PRINCIPLE FINDINGS: Previous studies have suggested that the neural circuit between the CGC and the N1M cell consists of two synaptic connections: (1 the excitatory connection from the CGC to the neuron 3 tonic (N3t cell and (2 the inhibitory connection from the N3t cell to the N1M cell. However, because the N3t cell is too small to access consistently by electrophysiological methods, in the present study the synaptic inputs from the CGC to the N3t cell and those from the N3t cell to the N1M cell were monitored as the monosynaptic excitatory postsynaptic potential (EPSP recorded in the large B1 and B3 motor neurons, respectively. The evoked monosynaptic EPSPs of the B1 motor neurons in the brains isolated from the taste aversion-trained snails were identical to those in the control snails, whereas the spontaneous monosynaptic EPSPs of the B3 motor neurons were significantly enlarged. CONCLUSION/SIGNIFICANCE: These results suggest that, after taste aversion training, the monosynaptic inputs from the N3t cell to the following neurons including the N1M cell are specifically facilitated. That is, one of the memory traces for taste aversion remains as an increase in neurotransmitter released from the N3t cell. We thus conclude that the N3t cell suppresses the N1M cell in the feeding CPG, in response to the conditioned stimulus in Lymnaea CTA.

  3. Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism.

    Science.gov (United States)

    Wolff, Jason J; Swanson, Meghan R; Elison, Jed T; Gerig, Guido; Pruett, John R; Styner, Martin A; Vachet, Clement; Botteron, Kelly N; Dager, Stephen R; Estes, Annette M; Hazlett, Heather C; Schultz, Robert T; Shen, Mark D; Zwaigenbaum, Lonnie; Piven, Joseph

    2017-01-01

    Restricted and repetitive behaviors are defining features of autism spectrum disorder (ASD). Under revised diagnostic criteria for ASD, this behavioral domain now includes atypical responses to sensory stimuli. To date, little is known about the neural circuitry underlying these features of ASD early in life. Longitudinal diffusion tensor imaging data were collected from 217 infants at high familial risk for ASD. Forty-four of these infants were diagnosed with ASD at age 2. Targeted cortical, cerebellar, and striatal white matter pathways were defined and measured at ages 6, 12, and 24 months. Dependent variables included the Repetitive Behavior Scale-Revised and the Sensory Experiences Questionnaire. Among children diagnosed with ASD, repetitive behaviors and sensory response patterns were strongly correlated, even when accounting for developmental level or social impairment. Longitudinal analyses indicated that the genu and cerebellar pathways were significantly associated with both repetitive behaviors and sensory responsiveness but not social deficits. At age 6 months, fractional anisotropy in the genu significantly predicted repetitive behaviors and sensory responsiveness at age 2. Cerebellar pathways significantly predicted later sensory responsiveness. Exploratory analyses suggested a possible disordinal interaction based on diagnostic status for the association between fractional anisotropy and repetitive behavior. Our findings suggest that restricted and repetitive behaviors contributing to a diagnosis of ASD at age 2 years are associated with structural properties of callosal and cerebellar white matter pathways measured during infancy and toddlerhood. We further identified that repetitive behaviors and unusual sensory response patterns co-occur and share common brain-behavior relationships. These results were strikingly specific given the absence of association between targeted pathways and social deficits.

  4. In Vitro Restoration of an Amyloid-Beta Altered Network Circuitry in a 'Mutated Biomimetic Acetylcholinesterase' Memristor/Memcapacitor Neural Prosthesis

    Directory of Open Access Journals (Sweden)

    John THORNTON

    2015-08-01

    Full Text Available Many diseases involve the ysregulation of acetylcholinesterase (ACHE causing inappropriate production of the neurotransmitter acetylcholine (ACH. Study of how the ACH actually restores a life threatening neural circuitry damage will provide valuable information for study Alzhermer’s disease. An artificial neuronal device was developed with nanostructured biomimetic mutated ACHE gorge membrane on gold chips having memristor/memcapacitor’s characteristics, served as a model for damaged brain circuitry prosthesis, compared before and after ACH treatments, for in vitro evaluation of the memory restoration in the presence of Amyloid-beta (Ab under the conditions of free from tracers and antibodies in NIST human serum. The results are presented in three categories in “Energy-Sensory” images. Before ACH treatments, images showed four stages of circuitry damages from non symptomatic to life threatening. After a 15 nM ACH treatment, the circuitry was restored due to the ACH removed Pathological High Frequency Oscillation (pHFO center during Slow- Waving Sleeping (SWS. After the prosthesis increased hydrophobicity, the High Frequency Oscillation (HFO was created. Results were compared between the recovered and the “normal brain”: 0.14 vs. 0.47 pJ/bit/µm3 for long-term and 14.0 vs.7.0 aJ/bit/µm3 for short-term memory restoration, respectively. The ratio of Rmax/Rmin value is 6.3-fold higher after the treatment of ACH compared without the treatment in the presence of Ab and the reentry sensitivity increased by 613.8- fold.

  5. Neural Correlates of Moral Sensitivity and Moral Judgment Associated with Brain Circuitries of Selfhood: A Meta-Analysis

    Science.gov (United States)

    Han, Hyemin

    2017-01-01

    The present study meta-analyzed 45 experiments with 959 subjects and 463 activation foci reported in 43 published articles that investigated the neural mechanism of moral functions by comparing neural activity between the moral task conditions and non-moral task conditions with the Activation Likelihood Estimation method. The present study…

  6. Food-Related Neural Circuitry in Prader-Willi Syndrome: Response to High- versus Low-Calorie Foods

    Science.gov (United States)

    Dimitropoulos, Anastasia; Schultz, Robert T.

    2008-01-01

    Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia and food preoccupations. Although dysfunction of the hypothalamus likely has a critical role in hyperphagia, it is only one of several regions involved in the regulation of eating. The purpose of this research was to examine food-related neural circuitry…

  7. rsfMRI effects of KB220Z™ on Neural Pathways in Reward Circuitry of Abstinent Genotyped Heroin Addicts

    Science.gov (United States)

    Blum, Kenneth; Liu, Yijun; Wang, Wei; Wang, Yarong; Zhang, Yi; Oscar-Berman, Marlene; Smolen, Andrew; Febo, Marcelo; Han, David; Simpatico, Thomas; Cronjé, Frans J; Demetrovics, Zsolt; Gold, Mark S.

    2016-01-01

    Recently Willuhn et al. reported that cocaine use and even non-substance related addictive behavior, increases, as dopaminergic function is reduced. Chronic cocaine exposure has been associated with decreases in D2/D3 receptors, also associated with lower activation to cues in occipital cortex and cerebellum in a recent PET study from Volkow’s group. Therefore, treatment strategies, like dopamine agonist therapy, that might conserve dopamine function may be an interesting approach to relapse prevention in psychoactive drug and behavioral addictions. To this aim, we evaluated the effect of KB220Z™ on reward circuitry of ten heroin addicts undergoing protracted abstinence, an average 16.9 months. In a randomized placebo-controlled crossover study of KB220Z™ five subjects completed a triple blinded–experiment in which the subject, the person administering the treatment and the person evaluating the response to treatment were blinded as to which treatment any particular subject was receiving. In addition, nine subjects total were genotyped utilizing the GARSRX™ test. We preliminarily report that KB220Z ™ induced an increase in BOLD activation in caudate-accumbens-dopaminergic pathways compared to placebo following one-hour acute administration. Furthermore, KB220Z™ also reduced resting state activity in the putamen of abstinent heroin addicts. In the second phase of this pilot study of all ten abstinent heroin-dependent subjects, three brain regions of interest (ROIs) we observed to be significantly activated from resting state by KB220Z compared to placebo (P addiction by direct or indirect dopaminergic interaction. Due to small sample size, we caution definitive interpretation of these preliminary results and confirmation with additional research and ongoing rodent and human studies of KB220Z, is required. PMID:25526228

  8. The Advantages of Human Milk Recognize the Spatiotemporal Locations of Toxins and Intelligently Bypass Them by Forming a Hummingbird-Like Hovering Neural Network Circuitry Based on an Organic Biomimetic Choline Acetyltransferase Memristor/Memcapacitor Prosthesis

    Directory of Open Access Journals (Sweden)

    E. T. CHEN

    2016-08-01

    Full Text Available We have demonstrated a unique approach to study human milk’s advantage in promoting and protecting infant early brain cognitive development by recognizing toxins and intelligently bypassing the toxin by forming high frequency oscillation (HFO in the brain circuitry when compared with organic cow milk samples based on an organic memristor/memcapacitor biomimetic Choline Acetyltransferase (CHAT neural network circuitry prosthesis along with a 3D Energy-sensory dynamic mapping method under antibody- free, radiolabeling-free, and reagent-less conditions. We also demonstrated cow milk is unfit for infant cognitive development, and it is actually harmful in terms of mutating infant brain synapse circuitry conformation, current flow direction, and energy output that lead to multiple Pathological High Frequency Oscillation (pHFO formations, and further, it led to sudden infant death syndrome (SIDS based on our prediction.

  9. Social pain and social gain in the adolescent brain: A common neural circuitry underlying both positive and negative social evaluation

    Science.gov (United States)

    Dalgleish, Tim; Walsh, Nicholas D.; Mobbs, Dean; Schweizer, Susanne; van Harmelen, Anne-Laura; Dunn, Barnaby; Dunn, Valerie; Goodyer, Ian; Stretton, Jason

    2017-01-01

    Social interaction inherently involves the subjective evaluation of cues salient to social inclusion and exclusion. Testifying to the importance of such social cues, parts of the neural system dedicated to the detection of physical pain, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been shown to be equally sensitive to the detection of social pain experienced after social exclusion. However, recent work suggests that this dACC-AI matrix may index any socially pertinent information. We directly tested the hypothesis that the dACC-AI would respond to cues of both inclusion and exclusion, using a novel social feedback fMRI paradigm in a population-derived sample of adolescents. We show that the dACC and left AI are commonly activated by feedback cues of inclusion and exclusion. Our findings suggest that theoretical accounts of the dACC-AI network as a neural alarm system restricted within the social domain to the processing of signals of exclusion require significant revision. PMID:28169323

  10. Speed hysteresis and noise shaping of traveling fronts in neural fields: role of local circuitry and nonlocal connectivity

    Science.gov (United States)

    Capone, Cristiano; Mattia, Maurizio

    2017-01-01

    Neural field models are powerful tools to investigate the richness of spatiotemporal activity patterns like waves and bumps, emerging from the cerebral cortex. Understanding how spontaneous and evoked activity is related to the structure of underlying networks is of central interest to unfold how information is processed by these systems. Here we focus on the interplay between local properties like input-output gain function and recurrent synaptic self-excitation of cortical modules, and nonlocal intermodular synaptic couplings yielding to define a multiscale neural field. In this framework, we work out analytic expressions for the wave speed and the stochastic diffusion of propagating fronts uncovering the existence of an optimal balance between local and nonlocal connectivity which minimizes the fluctuations of the activation front propagation. Incorporating an activity-dependent adaptation of local excitability further highlights the independent role that local and nonlocal connectivity play in modulating the speed of propagation of the activation and silencing wavefronts, respectively. Inhomogeneities in space of local excitability give raise to a novel hysteresis phenomenon such that the speed of waves traveling in opposite directions display different velocities in the same location. Taken together these results provide insights on the multiscale organization of brain slow-waves measured during deep sleep and anesthesia.

  11. Baseline Levels of Rapid Eye Movement Sleep May Protect Against Excessive Activity in Fear-Related Neural Circuitry.

    Science.gov (United States)

    Lerner, Itamar; Lupkin, Shira M; Sinha, Neha; Tsai, Alan; Gluck, Mark A

    2017-11-15

    Sleep, and particularly rapid eye movement sleep (REM), has been implicated in the modulation of neural activity following fear conditioning and extinction in both human and animal studies. It has long been presumed that such effects play a role in the formation and persistence of posttraumatic stress disorder, of which sleep impairments are a core feature. However, to date, few studies have thoroughly examined the potential effects of sleep prior to conditioning on subsequent acquisition of fear learning in humans. Furthermore, these studies have been restricted to analyzing the effects of a single night of sleep-thus assuming a state-like relationship between the two. In the current study, we used long-term mobile sleep monitoring and functional neuroimaging (fMRI) to explore whether trait-like variations in sleep patterns, measured in advance in both male and female participants, predict subsequent patterns of neural activity during fear learning. Our results indicate that higher baseline levels of REM sleep predict reduced fear-related activity in, and connectivity between, the hippocampus, amygdala and ventromedial PFC during conditioning. Additionally, skin conductance responses (SCRs) were weakly correlated to the activity in the amygdala. Conversely, there was no direct correlation between REM sleep and SCRs, indicating that REM may only modulate fear acquisition indirectly. In a follow-up experiment, we show that these results are replicable, though to a lesser extent, when measuring sleep over a single night just before conditioning. As such, baseline sleep parameters may be able to serve as biomarkers for resilience, or lack thereof, to trauma. SIGNIFICANCE STATEMENT Numerous studies over the past two decades have established a clear role of sleep in fear-learning processes. However, previous work has focused on the effects of sleep following fear acquisition, thus neglecting the potential effects of baseline sleep levels on the acquisition itself. The

  12. Neural circuitry of masked emotional face processing in youth with bipolar disorder, severe mood dysregulation, and healthy volunteers

    Directory of Open Access Journals (Sweden)

    Laura A. Thomas

    2014-04-01

    Full Text Available Youth with bipolar disorder (BD and those with severe, non-episodic irritability (severe mood dysregulation, SMD show face-emotion labeling deficits. These groups differ from healthy volunteers (HV in neural responses to emotional faces. It is unknown whether awareness is required to elicit these differences. We compared activation in BD (N = 20, SMD (N = 18, and HV (N = 22 during “Aware” and “Non-aware” priming of shapes by emotional faces. Subjects rated how much they liked the shape. In aware, a face (angry, fearful, happy, neutral, blank oval appeared (187 ms before the shape. In non-aware, a face appeared (17 ms, followed by a mask (170 ms, and shape. A Diagnosis-by-Awareness-by-Emotion ANOVA was not significant. There were significant Diagnosis-by-Awareness interactions in occipital regions. BD and SMD showed increased activity for non-aware vs. aware; HV showed the reverse pattern. When subjects viewed angry or neutral faces, there were Emotion-by-Diagnosis interactions in face-emotion processing regions, including the L precentral gyrus, R posterior cingulate, R superior temporal gyrus, R middle occipital gyrus, and L medial frontal gyrus. Regardless of awareness, BD and SMD differ in activation patterns from HV and each other in multiple brain regions, suggesting that BD and SMD are distinct developmental mood disorders.

  13. Emotional reactivity and its impact on neural circuitry for attention–emotion interaction in childhood and adolescence

    Directory of Open Access Journals (Sweden)

    Susan B. Perlman

    2014-04-01

    Full Text Available Attention modulation when confronted with emotional stimuli is considered a critical aspect of executive function, yet rarely studied during childhood and adolescence, a developmental period marked with changes in these processes. We employed a novel, and child-friendly fMRI task that used emotional faces to investigate the neural underpinnings of the attention–emotion interaction in a child and adolescent sample (n = 23, age M = 13.46, SD = 2.86, range = 8.05–16.93 years. Results implied modulation of activation in the orbitofrontal cortex (OFC due to emotional distractor valence, which marginally correlated with participant age. Additionally, parent-reported emotional reactivity predicted the trajectory of BOLD signal increase for fearful emotional face distractors such that participants low in emotional reactivity had a steeper latency to peak activation. Results imply that the use of the OFC to modulate attention in the face of social/emotional stimuli may mature with age and may be tightly coupled with adaptive emotional functioning. Findings are discussed in the context of risk for the development of psychiatric disorders, where increased emotional reactivity is particularly apparent.

  14. Optogenetic mapping of brain circuitry

    Science.gov (United States)

    Augustine, George J.; Berglund, Ken; Gill, Harin; Hoffmann, Carolin; Katarya, Malvika; Kim, Jinsook; Kudolo, John; Lee, Li M.; Lee, Molly; Lo, Daniel; Nakajima, Ryuichi; Park, Min Yoon; Tan, Gregory; Tang, Yanxia; Teo, Peggy; Tsuda, Sachiko; Wen, Lei; Yoon, Su-In

    2012-10-01

    Studies of the brain promise to be revolutionized by new experimental strategies that harness the combined power of optical techniques and genetics. We have mapped the circuitry of the mouse brain by using both optogenetic actuators that control neuronal activity and optogenetic sensors that detect neuronal activity. Using the light-activated cation channel, channelrhodopsin-2, to locally photostimulate neurons allows high-speed mapping of local and long-range circuitry. For example, with this approach we have mapped local circuits in the cerebral cortex, cerebellum and many other brain regions. Using the fluorescent sensor for chloride ions, Clomeleon, allows imaging of the spatial and temporal dimensions of inhibitory circuits in the brain. This approach allows imaging of both conventional "phasic" synaptic inhibition as well as unconventional "tonic" inhibition. The combined use of light to both control and monitor neural activity creates unprecedented opportunities to explore brain function, screen pharmaceutical agents, and potentially to use light to ameliorate psychiatric and neurological disorders.

  15. Anaesthetic tricaine acts preferentially on neural voltage-gated sodium channels and fails to block directly evoked muscle contraction.

    Directory of Open Access Journals (Sweden)

    Seetharamaiah Attili

    Full Text Available Movements in animals arise through concerted action of neurons and skeletal muscle. General anaesthetics prevent movement and cause loss of consciousness by blocking neural function. Anaesthetics of the amino amide-class are thought to act by blockade of voltage-gated sodium channels. In fish, the commonly used anaesthetic tricaine methanesulphonate, also known as 3-aminobenzoic acid ethyl ester, metacaine or MS-222, causes loss of consciousness. However, its role in blocking action potentials in distinct excitable cells is unclear, raising the possibility that tricaine could act as a neuromuscular blocking agent directly causing paralysis. Here we use evoked electrical stimulation to show that tricaine efficiently blocks neural action potentials, but does not prevent directly evoked muscle contraction. Nifedipine-sensitive L-type Cav channels affecting movement are also primarily neural, suggesting that muscle Nav channels are relatively insensitive to tricaine. These findings show that tricaine used at standard concentrations in zebrafish larvae does not paralyse muscle, thereby diminishing concern that a direct action on muscle could mask a lack of general anaesthesia.

  16. How plastic are human spinal cord motor circuitries?

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Lundbye-Jensen, Jesper; Perez, Monica A

    2017-01-01

    Human and animal studies have documented that neural circuitries in the spinal cord show adaptive changes caused by altered supraspinal and/or afferent input to the spinal circuitry in relation to learning, immobilization, injury and neurorehabilitation. Reversible adaptations following, e...

  17. Classifying Membrane Proteins in the Proteome by Using Artificial Neural Networks Based on the Preferential Parameters of Amino Acids

    Science.gov (United States)

    Bose, Subrata K.; Browne, Antony; Kazemian, Hassan; White, Kenneth

    Membrane proteins (MPs) are large set of biological macromolecules that play a fundamental role in physiology and pathophysiology for survival. From a pharma-economical perspective, though it is the fact that MPs constitute ˜75% of possible targets for novel drugs but MPs are one of the most understudied groups of proteins in biochemical research. This is mainly because of the technical difficulties of obtaining structural information about trans-membrane regions (these are small sequences that crossways the bilayer lipid membrane). It is quite useful to predict the location of transmembrane segments down the sequence, since these are the elementary structural building blocks defining their topology. There have been several attempts over the last 20 years to develop tools for predicting membrane-spanning regions but current tools are far away from achieving a considerable reliability in prediction. This study aims to exploit the knowledge and current understanding in the field of artificial neural networks (ANNs) in particular data representation through the development of a system to identify and predict membrane-spanning regions by analysing primary amino acids sequence. In this paper we present a novel neural network (NNs) architecture and algorithms for predicting membrane spanning regions from primary amino acids sequences by using their preference parameters.

  18. Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected.

    Science.gov (United States)

    Cumberworth, Stephanie L; Barrie, Jennifer A; Cunningham, Madeleine E; de Figueiredo, Daniely Paulino Gomes; Schultz, Verena; Wilder-Smith, Adrian J; Brennan, Benjamin; Pena, Lindomar J; Freitas de Oliveira França, Rafael; Linington, Christopher; Barnett, Susan C; Willison, Hugh J; Kohl, Alain; Edgar, Julia M

    2017-06-23

    The recent global outbreak of Zika virus (ZIKV) infection has been linked to severe neurological disorders affecting the peripheral and central nervous systems (PNS and CNS, respectively). The pathobiology underlying these diverse clinical phenotypes are the subject of intense research; however, even the principal neural cell types vulnerable to productive Zika infection remain poorly characterised. Here we used CNS and PNS myelinating cultures from wild type and Ifnar1 knockout mice to examine neuronal and glial tropism and short-term consequences of direct infection with a Brazilian variant of ZIKV. Cell cultures were infected pre- or post-myelination for various intervals, then stained with cell-type and ZIKV-specific antibodies. In bypassing systemic immunity using ex vivo culture, and the type I interferon response in Ifnar1 deficient cells, we were able to evaluate the intrinsic infectivity of neural cells. Through systematic quantification of ZIKV infected cells in myelinating cultures, we found that ZIKV infection is enhanced in the absence of the type I interferon responses and that CNS cells are considerably more susceptible to infection than PNS cells. In particular, we demonstrate that CNS axons and myelinating oligodendrocytes are especially vulnerable to injury. These results have implications for understanding the pathobiology of neurological symptoms associated with ZIKV infection. Furthermore, we provide a quantifiable ex vivo infection model that can be used for fundamental and therapeutic studies on viral neuroinvasion and its consequences.

  19. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.

    Science.gov (United States)

    Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi

    2011-11-01

    Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The Advantages of Human Milk Recognize the Spatiotemporal Locations of Toxins and Intelligently Bypass Them by Forming a Hummingbird-Like Hovering Neural Network Circuitry Based on an Organic Biomimetic Choline Acetyltransferase Memristor/Memcapacitor Prosthesis

    National Research Council Canada - National Science Library

    E T Chen; J Thornton; P T Kissinger; S-H Duh

    2016-01-01

    ... by forming high frequency oscillation (HFO) in the brain circuitry when compared with organic cow milk samples based on an organic memristor/memcapacitor biomimetic Choline Acetyltransferase (CHAT...

  1. Neural circuitry for rat recognition memory.

    Science.gov (United States)

    Warburton, E C; Brown, M W

    2015-05-15

    Information concerning the roles of different brain regions in recognition memory processes is reviewed. The review concentrates on findings from spontaneous recognition memory tasks performed by rats, including memory for single objects, locations, object-location associations and temporal order. Particular emphasis is given to the potential roles of different regions in the circuit of interacting structures involving the perirhinal cortex, hippocampus, medial prefrontal cortex and medial dorsal thalamus in recognition memory for the association of objects and places. It is concluded that while all structures in this circuit play roles critical to such memory, these roles can potentially be differentiated and differences in the underlying synaptic and biochemical processes involved in each region are beginning to be uncovered. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Functional characterization of obesogenic neural circuitries

    NARCIS (Netherlands)

    Boender, A.J.

    2015-01-01

    Obesity can be characterized as a disorder in which affected individuals fail to properly regulate the balance between energy intake and expenditure. Recently, genome-wide association studies have identified over 30 genetic variants that associate with increased body weight and thus provide clues on

  3. Layer 3 Excitatory and Inhibitory Circuitry in the Prefrontal Cortex: Developmental Trajectories and Alterations in Schizophrenia.

    Science.gov (United States)

    Hoftman, Gil D; Datta, Dibyadeep; Lewis, David A

    2017-05-15

    Convergent evidence suggests that schizophrenia is a disorder of neurodevelopment with alterations in both early and late developmental processes hypothesized to contribute to the disease process. Abnormalities in certain clinical features of schizophrenia, such as working memory impairments, depend on distributed neural circuitry including the dorsolateral prefrontal cortex (DLPFC) and appear to arise during the protracted maturation of this circuitry across childhood and adolescence. In particular, the neural circuitry substrate for working memory in primates involves the coordinated activity of excitatory pyramidal neurons and a specific population of inhibitory gamma-aminobutyric acid neurons (i.e., parvalbumin-containing basket cells) in layer 3 of the DLPFC. Understanding the relationships between the normal development of-and the schizophrenia-associated alterations in-the DLPFC circuitry that subserves working memory could provide new insights into the nature of schizophrenia as a neurodevelopmental disorder. Consequently, we review the following in this article: 1) recent findings regarding alterations of DLPFC layer 3 circuitry in schizophrenia, 2) the developmental refinements in this circuitry that occur during the period when the working memory alterations in schizophrenia appear to arise and progress, and 3) how various adverse environmental exposures could contribute to developmental disturbances of this circuitry in individuals with schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Progress toward the maintenance and repair of degenerating retinal circuitry.

    Science.gov (United States)

    Vugler, Anthony A

    2010-01-01

    Retinal diseases such as age-related macular degeneration and retinitis pigmentosa remain major causes of severe vision loss in humans. Clinical trials for treatment of retinal degenerations are underway and advancements in our understanding of retinal biology in health/disease have implications for novel therapies. A review of retinal biology is used to inform a discussion of current strategies to maintain/repair neural circuitry in age-related macular degeneration, retinitis pigmentosa, and Type 2 Leber congenital amaurosis. In age-related macular degeneration/retinitis pigmentosa, a progressive loss of rods/cones results in corruption of bipolar cell circuitry, although retinal output neurons/photoreceptive melanopsin cells survive. Visual function can be stabilized/enhanced after treatment in age-related macular degeneration, but in advanced degenerations, reorganization of retinal circuitry may preclude attempts to restore cone function. In Type 2 Leber congenital amaurosis, useful vision can be restored by gene therapy where central cones survive. Remarkable progress has been made in restoring vision to rodents using light-responsive ion channels inserted into bipolar cells/retinal ganglion cells. Advances in genetic, cellular, and prosthetic therapies show varying degrees of promise for treating retinal degenerations. While functional benefits can be obtained after early therapeutic interventions, efforts should be made to minimize circuitry changes as soon as possible after rod/cone loss. Advances in retinal anatomy/physiology and genetic technologies should allow refinement of future reparative strategies.

  5. Early Forming a Hummingbird-like Hovering Neural Network Circuitry Pattern with Reentrant Spatiotemporal Energy-Sensory Orientation Privileged to Avoid “Epilepsy” Based on a Biomimetic Acetylcholinesterase Memcapacitor Prosthesis

    Directory of Open Access Journals (Sweden)

    Ellen T. Chen

    2015-08-01

    Full Text Available The hummingbird’s significant asymmetry hovering flight with energy conservation pattern is remarkable among all vertebrates. However, little is known to human’s neuronal network circuitry current flow pattern for whether or not has this privilege during slow wave sleeping (SWS. What is the advantage in order to avoid diseases if we have this network pattern ? A memory device was developed with nanostructured biomimetic acetylcholinesterase (ACHE gorge membrane on gold chips as memcapacitor 1, served as a normal brain network prosthesis, compared with a mutated ACHE prosthesis as device 2, for evaluation of neuronal network circuitry integrity in the presence of Amyloid- beta (Ab under the conditions of free from tracers and antibodies in spiked NIST SRM 965A human serum. Three categories of Reentrant Energy-Sensory images are presented based on infused brain pulse energies in a matrix of “Sensory Biomarkers” having frequencies over 0.25-333 Hz at free and fixed Ab levels, respectively. Early non-symptomatic epilepsy was indentified and predicted by device 2 due to Pathological High Frequency Oscillation (pHFO and large areas of 38 µM Ab re-depositions. Device 1 sensitively “feels” Ab damage because of its Frequency Oscillation (HFO enhanced the hummingbird- like hovering pattern with higher reentrant energy sensitivity of 0.12 pj/bit/s/µm3 without Ab compared with Ab, 13 aj/bit/s/µm3/nM over 3.8-471 nM range over 0.003-4s. Device 1 reliably detected early CR dysfunction privileged to avoid epilepsy.

  6. Memristor Circuitry via Material Implication

    Science.gov (United States)

    Wright, Anna; Gergel-Hackett, Nadine

    Memristors are novel nanoelectronic devices that have advantages over traditional computer circuitry (eg., they are nonvolatile, two-terminal, and low power) and thus have potential circuit applications for both digital logic and memory. In this work, we used a simple memristor model that was designed to replicate the real-world electrical characteristics of previously fabricated and tested memristor devices. This model was developed and constructed with basic circuit elements using a free and widely available circuit simulator, LT Spice. We updated this model to more realistically simulate memristor behavior and then theoretically demonstrated that the model can be used to build memristor-based material implication gates (IMPLY gates). The development of these IMPLY gates is a critical step in the realization of memristor-based digital logic because they can be combined to act in place of any of the basic traditional logic gates (AND, NAND, etc), and thus enable efficient entirely memristor-based computing.

  7. Robust Langmuir probe circuitry for fusion research

    Science.gov (United States)

    Boedo, J.; Gunner, G.; Gray, D.; Conn, R.

    2001-02-01

    Langmuir probes attached to the plasma facing components of fusion experiments are biased with constant or swept voltages to obtain measurements of plasma parameters such as electron temperature and density. The circuitry used must be rugged and protect the power supplies and electronics against generally harsh conditions and sudden discharge terminations, or disruptions. Modularity, ease of repair and expandability are important because short-lived radiation from neutron activation is often present after the discharges, preventing access to the circuitry. We report the implementation of modular probe circuitry featuring robust protection, remote testing and reset and easy maintenance and expandability, achieved by using DIN-rail modules.

  8. Signal conditioning circuitry design for instrumentation systems.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Cory A.

    2012-01-01

    This report details the current progress in the design, implementation, and validation of the signal conditioning circuitry used in a measurement instrumentation system. The purpose of this text is to document the current progress of a particular design in signal conditioning circuitry in an instrumentation system. The input of the signal conditioning circuitry comes from a piezoresistive transducer and the output will be fed to a 250 ksps, 12-bit analog-to-digital converter (ADC) with an input range of 0-5 V. It is assumed that the maximum differential voltage amplitude input from the sensor is 20 mV with an unknown, but presumably high, sensor bandwidth. This text focuses on a specific design; however, the theory is presented in such a way that this text can be used as a basis for future designs.

  9. Adolescent gain in positive valence of a socially relevant stimulus: engagement of the mesocorticolimbic reward circuitry.

    Science.gov (United States)

    Bell, Margaret R; De Lorme, Kayla C; Figueira, Rayson J; Kashy, Deborah A; Sisk, Cheryl L

    2013-02-01

    A successful transition from childhood to adulthood requires adolescent maturation of social information processing. The neurobiological underpinnings of this maturational process remain elusive. This research employed the male Syrian hamster as a tractable animal model for investigating the neural circuitry involved in this critical transition. In this species, adult and juvenile males display different behavioral and neural responses to vaginal secretions, which contain pheromones essential for expression of sexual behavior in adulthood. These studies tested the hypothesis that vaginal secretions acquire positive valence over adolescent development via remodeling of neural circuits underlying sexual reward. Sexually naïve adult, but not juvenile, hamsters showed a conditioned place preference for vaginal secretions. Differences in behavioral response to vaginal secretions between juveniles and adults correlated with a difference in the vaginal secretion-induced neural activation pattern in mesocorticolimbic reward circuitry. Fos immunoreactivity increased in response to vaginal secretions in the medial amygdala and ventral tegmental dopaminergic cells of both juvenile and adult males. However, only in adults was there a Fos response to vaginal secretions in non-dopaminergic cells in interfascicular ventral tegmental area, nucleus accumbens core and infralimbic medial prefrontal cortex. These results demonstrate that a socially relevant chemosensory stimulus acquires the status of an unconditioned reward during adolescence, and that this adolescent gain in social reward is correlated with experience-independent engagement of specific cell groups in reward circuitry. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Construction of functional neuronal circuitry in the olfactory bulb.

    Science.gov (United States)

    Imai, Takeshi

    2014-11-01

    Recent studies using molecular genetics, electrophysiology, in vivo imaging, and behavioral analyses have elucidated detailed connectivity and function of the mammalian olfactory circuits. The olfactory bulb is the first relay station of olfactory perception in the brain, but it is more than a simple relay: olfactory information is dynamically tuned by local olfactory bulb circuits and converted to spatiotemporal neural code for higher-order information processing. Because the olfactory bulb processes ∼1000 discrete input channels from different odorant receptors, it serves as a good model to study neuronal wiring specificity, from both functional and developmental aspects. This review summarizes our current understanding of the olfactory bulb circuitry from functional standpoint and discusses important future studies with particular focus on its development and plasticity. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Optogenetic dissection of medial prefrontal cortex circuitry

    Directory of Open Access Journals (Sweden)

    Danai eRiga

    2014-12-01

    Full Text Available The medial prefrontal cortex (mPFC is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g. thalamus, striatum, amygdala and hippocampus, the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.

  12. The development of micromachined gyroscope structure and circuitry technology.

    Science.gov (United States)

    Xia, Dunzhu; Yu, Cheng; Kong, Lun

    2014-01-14

    This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface acoustic wave (SAW) gyroscopes, bulk acoustic wave (BAW) gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs), magnetically suspended gyroscopes (MSGs), micro fiber optic gyroscopes (MFOGs), micro fluid gyroscopes (MFGs), micro atom gyroscopes (MAGs), and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail.

  13. The Development of Micromachined Gyroscope Structure and Circuitry Technology

    Directory of Open Access Journals (Sweden)

    Dunzhu Xia

    2014-01-01

    Full Text Available This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs, piezoelectric vibrating gyroscopes (PVGs, surface acoustic wave (SAW gyroscopes, bulk acoustic wave (BAW gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs, magnetically suspended gyroscopes (MSGs, micro fiber optic gyroscopes (MFOGs, micro fluid gyroscopes (MFGs, micro atom gyroscopes (MAGs, and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail.

  14. Reading acceleration training changes brain circuitry in children with reading difficulties

    Science.gov (United States)

    Horowitz-Kraus, Tzipi; Vannest, Jennifer J; Kadis, Darren; Cicchino, Nicole; Wang, Yingying Y; Holland, Scott K

    2014-01-01

    Introduction Dyslexia is characterized by slow, inaccurate reading. Previous studies have shown that the Reading Acceleration Program (RAP) improves reading speed and accuracy in children and adults with dyslexia and in typical readers across different orthographies. However, the effect of the RAP on the neural circuitry of reading has not been established. In the current study, we examined the effect of the RAP training on regions of interest in the neural circuitry for reading using a lexical decision task during fMRI in children with reading difficulties and typical readers. Methods Children (8–12 years old) with reading difficulties and typical readers were studied before and after 4 weeks of training with the RAP in both groups. Results In addition to improvements in oral and silent contextual reading speed, training-related gains were associated with increased activation of the left hemisphere in both children with reading difficulties and typical readers. However, only children with reading difficulties showed improvements in reading comprehension, which were associated with significant increases in right frontal lobe activation. Conclusions Our results demonstrate differential effects of the RAP on neural circuits supporting reading in both children with reading difficulties and typical readers and suggest that the intervention may stimulate use of typical neural circuits for reading and engage compensatory pathways to support reading in the developing brain of children with reading difficulties. PMID:25365797

  15. Reading acceleration training changes brain circuitry in children with reading difficulties.

    Science.gov (United States)

    Horowitz-Kraus, Tzipi; Vannest, Jennifer J; Kadis, Darren; Cicchino, Nicole; Wang, Yingying Y; Holland, Scott K

    2014-01-01

    Dyslexia is characterized by slow, inaccurate reading. Previous studies have shown that the Reading Acceleration Program (RAP) improves reading speed and accuracy in children and adults with dyslexia and in typical readers across different orthographies. However, the effect of the RAP on the neural circuitry of reading has not been established. In the current study, we examined the effect of the RAP training on regions of interest in the neural circuitry for reading using a lexical decision task during fMRI in children with reading difficulties and typical readers. Children (8-12 years old) with reading difficulties and typical readers were studied before and after 4 weeks of training with the RAP in both groups. In addition to improvements in oral and silent contextual reading speed, training-related gains were associated with increased activation of the left hemisphere in both children with reading difficulties and typical readers. However, only children with reading difficulties showed improvements in reading comprehension, which were associated with significant increases in right frontal lobe activation. Our results demonstrate differential effects of the RAP on neural circuits supporting reading in both children with reading difficulties and typical readers and suggest that the intervention may stimulate use of typical neural circuits for reading and engage compensatory pathways to support reading in the developing brain of children with reading difficulties.

  16. Neural overlap in processing music and speech

    Science.gov (United States)

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L.

    2015-01-01

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513

  17. A preferential flow leaching index

    NARCIS (Netherlands)

    McGrath, G.S.; Hinz, C.; Sivapalan, M.

    2009-01-01

    The experimental evidence suggests that for many chemicals surface runoff and rapid preferential flow through the shallow unsaturated zone are significant pathways for transport to streams and groundwater. The signature of this is the episodic and pulsed leaching of these chemicals. The driver for

  18. Functional maps of neocortical local circuitry

    Directory of Open Access Journals (Sweden)

    Alex M Thomson

    2007-10-01

    Full Text Available This review aims to summarize data obtained with different techniques to provide a functional map of the local circuit connections made by neocortical neurones, a reference for those interested in cortical circuitry and the numerical information required by those wishing to model the circuit. A brief description of the main techniques used to study circuitry is followed by outline descriptions of the major classes of neocortical excitatory and inhibitory neurones and the connections that each layer makes with other cortical and subcortical regions. Maps summarizing the projection patterns of each class of neurone within the local circuit and tables of the properties of these local circuit connections are provided.This review relies primarily on anatomical studies that have identified the classes of neurones and their local and long distance connections and on paired intracellular and whole-cell recordings which have documented the properties of the connections between them. A large number of different types of synaptic connections have been described, but for some there are only a few published examples and for others the details that can only be obtained with paired recordings and dye-filling are lacking. A further complication is provided by the range of species, technical approaches and age groups used in these studies. Wherever possible the range of available data are summarised and compared. To fill some of the more obvious gaps for the less well-documented cases, data obtained with other methods are also summarized.

  19. NeuronBank: A Tool for Cataloging Neuronal Circuitry

    Science.gov (United States)

    Katz, Paul S.; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C.; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models. PMID:20428500

  20. Own-gender imitation activates the brain's reward circuitry.

    Science.gov (United States)

    Losin, Elizabeth A Reynolds; Iacoboni, Macro; Martin, Alia; Dapretto, Mirella

    2012-10-01

    Imitation is an important component of human social learning throughout life. Theoretical models and empirical data from anthropology and psychology suggest that people tend to imitate self-similar individuals, and that such imitation biases increase the adaptive value (e.g., self-relevance) of learned information. It is unclear, however, what neural mechanisms underlie people's tendency to imitate those similar to themselves. We focused on the own-gender imitation bias, a pervasive bias thought to be important for gender identity development. While undergoing fMRI, participants imitated own- and other-gender actors performing novel, meaningless hand signs; as control conditions, they also simply observed such actions and viewed still portraits of the same actors. Only the ventral and dorsal striatum, orbitofrontal cortex and amygdala were more active when imitating own- compared to other-gender individuals. A Bayesian analysis of the BrainMap neuroimaging database demonstrated that the striatal region preferentially activated by own-gender imitation is selectively activated by classical reward tasks in the literature. Taken together, these findings reveal a neurobiological mechanism associated with the own-gender imitation bias and demonstrate a novel role of reward-processing neural structures in social behavior.

  1. Mapping the brain's metaphor circuitry: metaphorical thought in everyday reason

    Science.gov (United States)

    Lakoff, George

    2014-01-01

    An overview of the basics of metaphorical thought and language from the perspective of Neurocognition, the integrated interdisciplinary study of how conceptual thought and language work in the brain. The paper outlines a theory of metaphor circuitry and discusses how everyday reason makes use of embodied metaphor circuitry. PMID:25566012

  2. Regulating Critical Period Plasticity: Insight from the Visual System to Fear Circuitry for Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    Elisa M. Nabel

    2013-11-01

    Full Text Available Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development –the preeminent model of experience-dependent critical period plasticity- actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins– endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions.

  3. Non-preferential Trading Clubs

    DEFF Research Database (Denmark)

    Raimondos-Møller, Pascalis; Woodland, Alan D.

    2006-01-01

    This paper examines the welfare implications of non-discriminatory tariff reforms by a subset of countries, which we term a non-preferential trading club. We show that there exist coordinated tariff reforms, accompanied by appropriate income transfers between the member countries, that unambiguou......, that unambiguously increase the welfare of these countries while leaving the welfare of non-members unaltered. In terms of economic policy implications, our results show that there exist regional, MFN-consistent arrangements that lead to Pareto improvements in world welfare....

  4. Superconducting circuitry for quantum electromechanical systems

    Science.gov (United States)

    LaHaye, Matthew D.; Rouxinol, Francisco; Hao, Yu; Shim, Seung-Bo; Irish, Elinor K.

    2015-05-01

    Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and e orts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.

  5. Limbic circuitry activation in ethanol withdrawal is regulated by a chromosome 1 locus.

    Science.gov (United States)

    Buck, Kari J; Chen, Gang; Kozell, Laura B

    2017-02-01

    Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force sustaining alcohol use/abuse and contributing to relapse in alcoholics. Although no animal model exactly duplicates alcoholism, models for specific factors, including the withdrawal syndrome, are useful for identifying potential genetic and neural determinants of liability in humans. We previously identified highly significant quantitative trait loci (QTLs) with large effects on predisposition to withdrawal after chronic and acute alcohol exposure in mice and mapped these loci to the same region of chromosome 1 (Alcdp1 and Alcw1, respectively). The present studies utilize a novel Alcdp1/Alcw1 congenic model (in which an interval spanning Alcdp1 and Alcw1 from the C57BL/6J donor strain [build GRCm38 150.3-174.6 Mb] has been introgressed onto a uniform inbred DBA/2J genetic background) known to demonstrate significantly less severe chronic and acute withdrawal compared to appropriate background strain animals. Here, using c-Fos induction as a high-resolution marker of neuronal activation, we report that male Alcdp1/Alcw1 congenic animals demonstrate significantly less alcohol withdrawal-associated neural activation compared to appropriate background strain animals in the prelimbic and cingulate cortices of the prefrontal cortex as well as discrete regions of the extended amygdala (i.e., basolateral) and extended basal ganglia (i.e., dorsolateral striatum, and caudal substantia nigra pars reticulata). These studies are the first to begin to elucidate circuitry by which this confirmed addiction-relevant QTL could influence behavior. This circuitry overlaps limbic circuitry involved in stress, providing additional mechanistic information. Alcdp1/Alcw1 maps to a region syntenic with human chromosome 1q, where multiple studies find significant associations with risk for alcoholism. Published by Elsevier Inc.

  6. Information filtering via preferential diffusion

    CERN Document Server

    Lu, Linyuan

    2011-01-01

    Recommender systems have shown great potential to address information overload problem, namely to help users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlook the significance of diversity and novelty which indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on user-object bipartite network. Numerical analyses on two benchmark datasets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.

  7. Information filtering via preferential diffusion

    Science.gov (United States)

    Lü, Linyuan; Liu, Weiping

    2011-06-01

    Recommender systems have shown great potential in addressing the information overload problem, namely helping users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including the heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlooking the significance of diversity and novelty that indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on a user-object bipartite network. Numerical analyses on two benchmark data sets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.

  8. Circuitry, systems and methods for detecting magnetic fields

    Science.gov (United States)

    Kotter, Dale K [Shelley, ID; Spencer, David F [Idaho Falls, ID; Roybal, Lyle G [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID

    2010-09-14

    Circuitry for detecting magnetic fields includes a first magnetoresistive sensor and a second magnetoresistive sensor configured to form a gradiometer. The circuitry includes a digital signal processor and a first feedback loop coupled between the first magnetoresistive sensor and the digital signal processor. A second feedback loop which is discrete from the first feedback loop is coupled between the second magnetoresistive sensor and the digital signal processor.

  9. Micro- and Nanotechnologies for Optical Neural Interfaces

    Science.gov (United States)

    Pisanello, Ferruccio; Sileo, Leonardo; De Vittorio, Massimo

    2016-01-01

    In last decade, the possibility to optically interface with the mammalian brain in vivo has allowed unprecedented investigation of functional connectivity of neural circuitry. Together with new genetic and molecular techniques to optically trigger and monitor neural activity, a new generation of optical neural interfaces is being developed, mainly thanks to the exploitation of both bottom-up and top-down nanofabrication approaches. This review highlights the role of nanotechnologies for optical neural interfaces, with particular emphasis on new devices and methodologies for optogenetic control of neural activity and unconventional methods for detection and triggering of action potentials using optically-active colloidal nanoparticles. PMID:27013939

  10. Coexistence in preferential attachment networks

    CERN Document Server

    Antunović, Tonći; Racz, Miklos Z

    2013-01-01

    Competition in markets is ubiquitous: cell-phone providers, computer manufacturers, and sport gear brands all vie for customers. Though several coexisting competitors are often observed in empirical data, many current theoretical models of competition on small-world networks predict a single winner taking over the majority of the network. We introduce a new model of product adoption that focuses on word-of-mouth recommendations to provide an explanation for this coexistence of competitors. The key property of our model is that customer choices evolve simultaneously with the network of customers. When a new node joins the network, it chooses neighbors according to preferential attachment, and then chooses its type based on the number of initial neighbors of each type. This can model a new cell-phone user choosing a cell-phone provider, a new student choosing a laptop, or a new athletic team member choosing a gear provider. We provide a detailed analysis of the new model; in particular, we determine the possibl...

  11. 15 CFR 700.14 - Preferential scheduling.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Preferential scheduling. 700.14...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE NATIONAL SECURITY INDUSTRIAL BASE REGULATIONS DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Industrial Priorities § 700.14 Preferential scheduling. (a) A...

  12. Method for integrating microelectromechanical devices with electronic circuitry

    Science.gov (United States)

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  13. PER2 rs2304672 polymorphism moderates circadian-relevant reward circuitry activity in adolescents.

    Science.gov (United States)

    Forbes, Erika E; Dahl, Ronald E; Almeida, Jorge R C; Ferrell, Robert E; Nimgaonkar, Vishwajit L; Mansour, Hader; Sciarrillo, Samantha R; Holm, Stephanie M; Rodriguez, Eric E; Phillips, Mary L

    2012-03-01

    Reward behavior in animals is influenced by circadian genes, including clock-pathway genes such as Period2 (PER2). Several forms of psychiatric illness are associated with both altered reward function and disturbances in circadian function. The PER2 single nucleotide polymorphism (SNP) rs2304672 has been associated with psychiatric illnesses involving reward dysfunction. Associations among circadian genes, function in neural reward circuits, and circadian-influenced behavior have not yet been studied in humans, however. 90 healthy adolescents underwent functional magnetic resonance imaging during a guessing task with monetary reward, genotyping for two PER2 SNPs (rs2304672, rs2304674), and actigraphy to measure sleep in their home environments. Weekend sleep midpoint, a behavioral index of circadian function, was derived from actigraphy. Puberty was measured by physical exam. The rs2304672 SNP predicted blood oxygenation level-dependent response to monetary reward as constrained by sleep midpoint. Later sleep midpoint was associated with reduced activity in a key component of reward circuitry, medial prefrontal cortex (mPFC; Brodmann area 9/10/32), to reward outcome (p(corrected) circadian genes have a significant impact upon circadian-relevant reward circuitry in humans. These findings have the potential to elucidate gene-brain-behavior relationships underlying reward processing and psychopathology.

  14. Nanocantilever based mass sensor integrated with cmos circuitry

    DEFF Research Database (Denmark)

    Davis, Zachary James; Abadal, G.; Campabadal, F.

    2003-01-01

    We have demonstrated the successful integration of a cantilever based mass detector with standard CMOS circuitry. The purpose of the circuitry is to facilitate the readout of the cantilever's deflection in order to measure resonant frequency shifts of the cantilever. The principle and design...... to solve the problem, namely freeze-drying and resist-assisted release. The fabrication results of cantilevers defined by laser and E-beam lithography are shown. Finally, an AFM based characterization setup is presented and the electrical characterization of a laser-defined cantilever fully integrated...

  15. Semantic foundation for preferential description logics

    CSIR Research Space (South Africa)

    Britz, K

    2011-12-01

    Full Text Available Description logics are a well-established family of knowledge representation formalisms in Artificial Intelligence. Enriching description logics with non-monotonic reasoning capabilities, especially preferential reasoning as developed by Lehmann...

  16. Optimal Design in Geostatistics under Preferential Sampling

    OpenAIRE

    Ferreira, Gustavo da Silva; Gamerman, Dani

    2015-01-01

    This paper analyses the effect of preferential sampling in Geostatistics when the choice of new sampling locations is the main interest of the researcher. A Bayesian criterion based on maximizing utility functions is used. Simulated studies are presented and highlight the strong influence of preferential sampling in the decisions. The computational complexity is faced by treating the new local sampling locations as a model parameter and the optimal choice is then made by analysing its posteri...

  17. Preferential tax regimes with asymmetric countries

    OpenAIRE

    Bucovetsky, Sam; Haufler, Andreas

    2006-01-01

    Current policy initiatives taken by the EU and the OECD aim at abolishing preferential corporate tax regimes. This note extends Keen's (2001) analysis of symmetric capital tax competition under preferential (or discriminatory) and non-discriminatory tax regimes to allow for countries of different size. Even though size asymmetries imply a redistribution of tax revenue from the larger to the smaller country, a non-discrimination policy is found to have similar effects as in the symmetric model...

  18. The origin of behavioral bursts in decision-making circuitry.

    Directory of Open Access Journals (Sweden)

    Amanda Sorribes

    2011-06-01

    Full Text Available From ants to humans, the timing of many animal behaviors comes in bursts of activity separated by long periods of inactivity. Recently, mathematical modeling has shown that simple algorithms of priority-driven behavioral choice can result in bursty behavior. To experimentally test this link between decision-making circuitry and bursty dynamics, we have turned to Drosophila melanogaster. We have found that the statistics of intervals between activity periods in endogenous activity-rest switches of wild-type Drosophila are very well described by the Weibull distribution, a common distribution of bursty dynamics in complex systems. The bursty dynamics of wild-type Drosophila walking activity are shown to be determined by this inter-event distribution alone and not by memory effects, thus resembling human dynamics. Further, using mutant flies that disrupt dopaminergic signaling or the mushroom body, circuitry implicated in decision-making, we show that the degree of behavioral burstiness can be modified. These results are thus consistent with the proposed link between decision-making circuitry and bursty dynamics, and highlight the importance of using simple experimental systems to test general theoretical models of behavior. The findings further suggest that analysis of bursts could prove useful for the study and evaluation of decision-making circuitry.

  19. Rugged microelectronic module package supports circuitry on heat sink

    Science.gov (United States)

    Johnson, A. L.

    1966-01-01

    Rugged module package for thin film hybrid microcircuits incorporated a rigid, thermally conductive support structure, which serves as a heat sink, and a lead wire block in which T-shaped electrical connectors are potted. It protects the circuitry from shock and vibration loads, dissipates internal heat, and simplifies electrical connections between adjacent modules.

  20. Reward Circuitry Function in Autism during Face Anticipation and Outcomes

    Science.gov (United States)

    Dichter, Gabriel S.; Richey, J. Anthony; Rittenberg, Alison M.; Sabatino, Antoinette; Bodfish, James W.

    2012-01-01

    The aim of this study was to investigate reward circuitry responses in autism during reward anticipation and outcomes for monetary and social rewards. During monetary anticipation, participants with autism spectrum disorders (ASDs) showed hypoactivation in right nucleus accumbens and hyperactivation in right hippocampus, whereas during monetary…

  1. Development and aging of human spinal cord circuitries

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Willerslev-Olsen, Maria; Lorentzen, Jakob

    2017-01-01

    development and to what extent they are shaped according to the demands of the body that they control and the environment that the body has to interact with. We also discuss how ageing processes and physiological changes in our body are reflected in adaptations of activity in the spinal cord motor circuitries...

  2. Discovering Preferential Patterns in Sectoral Trade Networks.

    Directory of Open Access Journals (Sweden)

    Isabella Cingolani

    Full Text Available We analyze the patterns of import/export bilateral relations, with the aim of assessing the relevance and shape of "preferentiality" in countries' trade decisions. Preferentiality here is defined as the tendency to concentrate trade on one or few partners. With this purpose, we adopt a systemic approach through the use of the tools of complex network analysis. In particular, we apply a pattern detection approach based on community and pseudocommunity analysis, in order to highlight the groups of countries within which most of members' trade occur. The method is applied to two intra-industry trade networks consisting of 221 countries, relative to the low-tech "Textiles and Textile Articles" and the high-tech "Electronics" sectors for the year 2006, to look at the structure of world trade before the start of the international financial crisis. It turns out that the two networks display some similarities and some differences in preferential trade patterns: they both include few significant communities that define narrow sets of countries trading with each other as preferential destinations markets or supply sources, and they are characterized by the presence of similar hierarchical structures, led by the largest economies. But there are also distinctive features due to the characteristics of the industries examined, in which the organization of production and the destination markets are different. Overall, the extent of preferentiality and partner selection at the sector level confirm the relevance of international trade costs still today, inducing countries to seek the highest efficiency in their trade patterns.

  3. Differences in brain circuitry for appetitive and reactive aggression as revealed by realistic auditory scripts

    Directory of Open Access Journals (Sweden)

    James Kenneth Moran

    2014-12-01

    Full Text Available Aggressive behavior is thought to divide into two motivational elements: The first being a self-defensively motivated aggression against threat and a second, hedonically motivated ‘appetitive’ aggression. Appetitive aggression is the less understood of the two, often only researched within abnormal psychology. Our approach is to understand it as a universal and adaptive response, and examine the functional neural activity of ordinary men (N=50 presented with an imaginative listening task involving a murderer describing a kill. We manipulated motivational context in a between-subjects design to evoke appetitive or reactive aggression, against a neutral control, measuring activity with Magnetoencephalography (MEG. Results show differences in left frontal regions in delta (2-5 Hz and alpha band (8-12 Hz for aggressive conditions and right parietal delta activity differentiating appetitive and reactive aggression. These results validate the distinction of reward-driven appetitive aggression from reactive aggression in ordinary populations at the level of functional neural brain circuitry.

  4. Congenital prosopagnosia: multistage anatomical and functional deficits in face processing circuitry.

    Science.gov (United States)

    Dinkelacker, V; Grüter, M; Klaver, P; Grüter, T; Specht, K; Weis, S; Kennerknecht, I; Elger, C E; Fernandez, G

    2011-05-01

    Face recognition is a primary social skill which depends on a distributed neural network. A pronounced face recognition deficit in the absence of any lesion is seen in congenital prosopagnosia. This study investigating 24 congenital prosopagnosic subjects and 25 control subjects aims at elucidating its neural basis with fMRI and voxel-based morphometry. We found a comprehensive behavioral pattern, an impairment in visual recognition for faces and buildings that spared long-term memory for faces with negative valence. Anatomical analysis revealed diminished gray matter density in the bilateral lingual gyrus, the right middle temporal gyrus, and the dorsolateral prefrontal cortex. In most of these areas, gray matter density correlated with memory success. Decreased functional activation was found in the left fusiform gyrus, a crucial area for face processing, and in the dorsolateral prefrontal cortex, whereas activation of the medial prefrontal cortex was enhanced. Hence, our data lend strength to the hypothesis that congenital prosopagnosia is explained by network dysfunction and suggest that anatomic curtailing of visual processing in the lingual gyrus plays a substantial role. The dysfunctional circuitry further encompasses the fusiform gyrus and the dorsolateral prefrontal cortex, which may contribute to their difficulties in long-term memory for complex visual information. Despite their deficits in face identity recognition, processing of emotion related information is preserved and possibly mediated by the medial prefrontal cortex. Congenital prosopagnosia may, therefore, be a blueprint of differential curtailing in networks of visual cognition.

  5. Brain imaging reveals neuronal circuitry underlying the crow’s perception of human faces

    Science.gov (United States)

    Marzluff, John M.; Miyaoka, Robert; Minoshima, Satoshi; Cross, Donna J.

    2012-01-01

    Crows pay close attention to people and can remember specific faces for several years after a single encounter. In mammals, including humans, faces are evaluated by an integrated neural system involving the sensory cortex, limbic system, and striatum. Here we test the hypothesis that birds use a similar system by providing an imaging analysis of an awake, wild animal’s brain as it performs an adaptive, complex cognitive task. We show that in vivo imaging of crow brain activity during exposure to familiar human faces previously associated with either capture (threatening) or caretaking (caring) activated several brain regions that allow birds to discriminate, associate, and remember visual stimuli, including the rostral hyperpallium, nidopallium, mesopallium, and lateral striatum. Perception of threatening faces activated circuitry including amygdalar, thalamic, and brainstem regions, known in humans and other vertebrates to be related to emotion, motivation, and conditioned fear learning. In contrast, perception of caring faces activated motivation and striatal regions. In our experiments and in nature, when perceiving a threatening face, crows froze and fixed their gaze (decreased blink rate), which was associated with activation of brain regions known in birds to regulate perception, attention, fear, and escape behavior. These findings indicate that, similar to humans, crows use sophisticated visual sensory systems to recognize faces and modulate behavioral responses by integrating visual information with expectation and emotion. Our approach has wide applicability and potential to improve our understanding of the neural basis for animal behavior. PMID:22984177

  6. Imaging conditioned fear circuitry using awake rodent fMRI.

    Directory of Open Access Journals (Sweden)

    Nichola M Brydges

    Full Text Available Functional magnetic resonance imaging (fMRI is a powerful method for exploring emotional and cognitive brain responses in humans. However rodent fMRI has not previously been applied to the analysis of learned behaviour in awake animals, limiting its use as a translational tool. Here we have developed a novel paradigm for studying brain activation in awake rats responding to conditioned stimuli using fMRI. Using this method we show activation of the amygdala and related fear circuitry in response to a fear-conditioned stimulus and demonstrate that the magnitude of fear circuitry activation is increased following early life stress, a rodent model of affective disorders. This technique provides a new translatable method for testing environmental, genetic and pharmacological manipulations on emotional and cognitive processes in awake rodent models.

  7. Using Intrinsic Flavoprotein and NAD(P)H Imaging to Map Functional Circuitry in the Main Olfactory Bulb

    Science.gov (United States)

    Puche, Adam C.; Munger, Steven D.

    2016-01-01

    Neurons exhibit strong coupling of electrochemical and metabolic activity. Increases in intrinsic fluorescence from either oxidized flavoproteins or reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] in the mitochondria have been used as an indicator of neuronal activity for the functional mapping of neural circuits. However, this technique has not been used to investigate the flow of olfactory information within the circuitry of the main olfactory bulb (MOB). We found that intrinsic flavoprotein fluorescence signals induced by electrical stimulation of single glomeruli displayed biphasic responses within both the glomerular (GL) and external plexiform layers (EPL) of the MOB. Pharmacological blockers of mitochondrial activity, voltage-gated Na+ channels, or ionotropic glutamate receptors abolished stimulus-dependent flavoprotein responses. Blockade of GABAA receptors enhanced the amplitude and spatiotemporal spread of the flavoprotein signals, indicating an important role for inhibitory neurotransmission in shaping the spread of neural activity in the MOB. Stimulus-dependent spread of fluorescence across the GL and EPL displayed a spatial distribution consistent with that of individual glomerular microcircuits mapped by neuroanatomic tract tracing. These findings demonstrated the feasibility of intrinsic fluorescence imaging in the olfactory systems and provided a new tool to examine the functional circuitry of the MOB. PMID:27902689

  8. Reverse preferential spread in complex networks

    Science.gov (United States)

    Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio

    2012-08-01

    Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.

  9. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord.

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2007-02-01

    Full Text Available Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC transplants have shown either poor differentiation or a preferential choice of glial lineages.In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter.NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major challenges remain, especially with respect to the

  10. Interdisciplinary approaches of transcranial magnetic stimulation applied to a respiratory neuronal circuitry model.

    Directory of Open Access Journals (Sweden)

    Stéphane Vinit

    Full Text Available Respiratory related diseases associated with the neuronal control of breathing represent life-threatening issues and to date, no effective therapeutics are available to enhance the impaired function. The aim of this study was to determine whether a preclinical respiratory model could be used for further studies to develop a non-invasive therapeutic tool applied to rat diaphragmatic neuronal circuitry. Transcranial magnetic stimulation (TMS was performed on adult male Sprague-Dawley rats using a human figure-of-eight coil. The largest diaphragmatic motor evoked potentials (MEPdia were recorded when the center of the coil was positioned 6 mm caudal from Bregma, involving a stimulation of respiratory supraspinal pathways. Magnetic shielding of the coil with mu metal reduced magnetic field intensities and improved focality with increased motor threshold and lower amplitude recruitment curve. Moreover, transynaptic neuroanatomical tracing with pseudorabies virus (applied to the diaphragm suggest that connections exist between the motor cortex, the periaqueductal grey cell regions, several brainstem neurons and spinal phrenic motoneurons (distributed in the C3-4 spinal cord. These results reveal the anatomical substrate through which supraspinal stimulation can convey descending action potential volleys to the spinal motoneurons (directly or indirectly. We conclude that MEPdia following a single pulse of TMS can be successfully recorded in the rat and may be used in the assessment of respiratory supraspinal plasticity. Supraspinal non-invasive stimulations aimed to neuromodulate respiratory circuitry will enable new avenues of research into neuroplasticity and the development of therapies for respiratory dysfunction associated with neural injury and disease (e.g. spinal cord injury, amyotrophic lateral sclerosis.

  11. Neuroanatomical circuitry associated with exploratory eye movement in schizophrenia: a voxel-based morphometric study.

    Directory of Open Access Journals (Sweden)

    Linlin Qiu

    Full Text Available Schizophrenic patients present abnormalities in a variety of eye movement tasks. Exploratory eye movement (EEM dysfunction appears to be particularly specific to schizophrenia. However, the underlying mechanisms of EEM dysfunction in schizophrenia are not clearly understood. To assess the potential neuroanatomical substrates of EEM, we recorded EEM performance and conducted a voxel-based morphometric analysis of gray matter in 33 schizophrenic patients and 29 well matched healthy controls. In schizophrenic patients, decreased responsive search score (RSS and widespread gray matter density (GMD reductions were observed. Moreover, the RSS was positively correlated with GMD in distributed brain regions in schizophrenic patients. Furthermore, in schizophrenic patients, some brain regions with neuroanatomical deficits overlapped with some ones associated with RSS. These brain regions constituted an occipito-tempro-frontal circuitry involved in visual information processing and eye movement control, including the left calcarine cortex [Brodmann area (BA 17], the left cuneus (BA 18, the left superior occipital cortex (BA 18/19, the left superior frontal gyrus (BA 6, the left cerebellum, the right lingual cortex (BA 17/18, the right middle occipital cortex (BA19, the right inferior temporal cortex (BA 37, the right dorsolateral prefrontal cortex (BA 46 and bilateral precentral gyri (BA 6 extending to the frontal eye fields (FEF, BA 8. To our knowledge, we firstly reported empirical evidence that gray matter loss in the occipito-tempro-frontal neuroanatomical circuitry of visual processing system was associated with EEM performance in schizophrenia, which may be helpful for the future effort to reveal the underlying neural mechanisms for EEM disturbances in schizophrenia.

  12. The reciprocal cerebellar circuitry in human hereditary ataxia.

    Science.gov (United States)

    Koeppen, Arnulf H; Ramirez, R Liane; Bjork, Sarah T; Bauer, Peter; Feustel, Paul J

    2013-08-01

    Clinicoanatomic correlation in the spinocerebellar ataxias (SCA) and Friedreich's ataxia (FRDA) is difficult as these diseases differentially affect multiple sites in the central and peripheral nervous systems. A new way to study cerebellar ataxia is the systematic analysis of the "reciprocal cerebellar circuitry" that consists of tightly organized reciprocal connections between Purkinje cells, dentate nuclei (DN), and inferior olivary nuclei (ION). This circuitry is similar to but not identical with the "cerebellar module" in experimental animals. Neurohumoral transmitters operating in the circuitry are both inhibitory (γ-aminobutyric acid in corticonuclear and dentato-olivary fibers) and excitatory (glutamate in olivocerebellar or climbing fibers). Glutamatergic climbing fibers also issue collaterals to the DN. The present study applied five immunohistochemical markers in six types of SCA (1, 2, 3, 6, 7, 17), genetically undefined SCA, FRDA, and FRDA carriers to identify interruptions within the circuitry: calbindin-D28k, neuron-specific enolase, glutamic acid decarboxylase, and vesicular glutamate transporters 1 and 2. Lesions of the cerebellar cortex, DN, and ION were scored according to a guide as 0 (normal), 1 (mild), 2 (moderate), and 3 (severe). Results of each of the five immunohistochemical stains were examined separately for each of the three regions. Combining scores of each anatomical region and each stain yielded a total score as an indicator of pathological severity. Total scores ranged from 16 to 38 in SCA-1 (nine cases); 22 to 39 in SCA-2 (six cases); 9 to 15 in SCA-3 (four cases); and 13 and 25 in SCA-6 (two cases). In single cases of SCA-7 and SCA-17, scores were 16 and 31, respectively. In two genetically undefined SCA, scores were 36 and 37, respectively. In nine cases of FRDA, total scores ranged from 11 to 19. The low scores in SCA-3 and FRDA reflect selective atrophy of the DN. The FRDA carriers did not differ from normal controls. These

  13. Neural Control of the Lower Urinary Tract

    Science.gov (United States)

    de Groat, William C.; Griffiths, Derek; Yoshimura, Naoki

    2015-01-01

    This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed. PMID:25589273

  14. Attention and attribute overlap in preferential choice.

    Science.gov (United States)

    Bhatia, Sudeep

    2017-07-01

    Attributes that are common, or overlapping, across alternatives in two-alternative forced preferential choice tasks are often non-diagnostic. In many settings, attending to and evaluating these attributes does not help the decision maker determine which of the available alternatives is the most desirable. For this reason, many existing behavioural theories propose that decision makers ignore common attributes while deliberating. Across six experiments, we find that decision makers do direct their attention selectively and ignore attributes that are not present in or associated with either of the available alternatives. However, they are as likely to attend to common attributes as they are to attend to attributes that are unique to a single alternative. These results suggest the need for novel theories of attention in preferential choice.

  15. Inducing nonlinear dynamic response via piezoelectric circuitry integration

    Science.gov (United States)

    Xu, J.; Tang, J.

    2014-04-01

    Owing to the two-way electro-mechanical coupling characteristics, piezoelectric transducers have been widely used as sensors and actuators in sensing and control applications. In this research, we explore the integration of piezoelectric transducer with the structure, in which the transducer is connected with a Wheatstone bridge based circuitry subjected to chaotic excitation. It is shown that a type of Wheatstone bridge circuit with proper parameters configuration can increase sensitivity in detecting structural anomaly. Such integration has the potential to significantly amplify the response change when the underlying structure is subject to property change. Comprehensive analytical and experimental studies are carried out to demonstrate the concept and validate the performance improvement.

  16. The Transcription Factor T-bet Limits Amplification of Type I IFN Transcriptome and Circuitry in T Helper 1 Cells.

    Science.gov (United States)

    Iwata, Shigeru; Mikami, Yohei; Sun, Hong-Wei; Brooks, Stephen R; Jankovic, Dragana; Hirahara, Kiyoshi; Onodera, Atsushi; Shih, Han-Yu; Kawabe, Takeshi; Jiang, Kan; Nakayama, Toshinori; Sher, Alan; O'Shea, John J; Davis, Fred P; Kanno, Yuka

    2017-06-20

    Host defense requires the specification of CD4 + helper T (Th) cells into distinct fates, including Th1 cells that preferentially produce interferon-γ (IFN-γ). IFN-γ, a member of a large family of anti-pathogenic and anti-tumor IFNs, induces T-bet, a lineage-defining transcription factor for Th1 cells, which in turn supports IFN-γ production in a feed-forward manner. Herein, we show that a cell-intrinsic role of T-bet influences how T cells perceive their secreted product in the environment. In the absence of T-bet, IFN-γ aberrantly induced a type I IFN transcriptomic program. T-bet preferentially repressed genes and pathways ordinarily activated by type I IFNs to ensure that its transcriptional response did not evoke an aberrant amplification of type I IFN signaling circuitry, otherwise triggered by its own product. Thus, in addition to promoting Th1 effector commitment, T-bet acts as a repressor in differentiated Th1 cells to prevent abberant autocrine type I IFN and downstream signaling. Published by Elsevier Inc.

  17. Advanced Data Acquisition Systems with Self-Healing Circuitry

    Science.gov (United States)

    Larson, William E.; Ihlefeld, Curtis M.; Medelius, Pedro J.; Delgado, H. (Technical Monitor)

    2001-01-01

    Kennedy Space Center's Spaceport Engineering & Technology Directorate has developed a data acquisition system that will help drive down the cost of ground launch operations. This system automates both the physical measurement set-up function as well as configuration management documentation. The key element of the system is a self-configuring, self-calibrating, signal-conditioning amplifier that automatically adapts to any sensor to which it is connected. This paper will describe the core technology behind this device and the automated data system in which it has been integrated. The paper will also describe the revolutionary enhancements that are planned for this innovative measurement technology. All measurement electronics devices contain circuitry that, if it fails or degrades, requires the unit to be replaced, adding to the cost of operations. Kennedy Space Center is now developing analog circuits that will be able to detect their own failure and dynamically reconfigure their circuitry to restore themselves to normal operation. This technology will have wide ranging application in all electronic devices used in space and ground systems.

  18. Impedance-based damage identification enhancement via tunable piezoelectric circuitry

    Science.gov (United States)

    Kim, Jinki; Wang, K. W.

    2014-03-01

    The piezoelectric impedance-based method for damage detection has been explored extensively for its high sensitivity to small-sized damages with low-cost measurement circuit which enables remote damage monitoring. While the method has good potential, the amount of feasible impedance data is usually much less than the number of required system parameters to accurately identify the damage location/severity via an inverse formulation. This data incompleteness forms a highly underdetermined problem and because of this numerical ill-conditioning, the predicted damage parameters will be significantly influenced by unavoidable measurement noise and the accuracy of the base-line model. In this study, the state of the art of impedance-based damage identification is advanced by incorporating a tunable piezoelectric circuitry with the structure to enrich the impedance measurements. This piezoelectric circuitry introduces additional degrees of freedom to the structure and changes the dynamics of the coupled system. By tuning the inductance value, it is possible to perform various measurements under different system dynamics which reflects the damage effect. Therefore, if performed systematically, notably increased sets of measurement can be obtained, which will improve the inverse problem to be less underdetermined. Clearly, we can expect the accuracy and robustness in damage identification to be significantly enhanced. Numerical case study on localizing damage in a fixed-fixed beam using spectral element method is performed to demonstrate the effectiveness of the new method for structural damage identification.

  19. Phytochemical regulation of Fyn and AMPK signaling circuitry.

    Science.gov (United States)

    Lee, Chan Gyu; Koo, Ja Hyun; Kim, Sang Geon

    2015-12-01

    During the past decades, phytochemical terpenoids, polyphenols, lignans, flavonoids, and alkaloids have been identified as antioxidative and cytoprotective agents. Adenosine monophosphate-activated protein kinase (AMPK) is a kinase that controls redox-state and oxidative stress in the cell, and serves as a key molecule regulating energy metabolism. Many phytochemicals directly or indirectly alter the AMPK pathway in distinct manners, exerting catabolic metabolism. Some of them are considered promising in the treatment of metabolic diseases such as type II diabetes, obesity, and hyperlipidemia. Another important kinase that regulates energy metabolism is Fyn kinase, a member of the Src family kinases that plays a role in various cellular responses such as insulin signaling, cell growth, oxidative stress and apoptosis. Phytochemical inhibition of Fyn leads to AMPK-mediated protection of the cell in association with increased antioxidative capacity and mitochondrial biogenesis. The kinases may work together to form a signaling circuitry for the homeostasis of energy conservation and expenditure, and may serve as targets of phytochemicals. This review is intended as a compilation of recent advancements in the pharmacological research of phytochemicals targeting Fyn and AMPK circuitry, providing information for the prevention and treatment of metabolic diseases and the accompanying tissue injuries.

  20. Brain IL-6 elevation causes neuronal circuitry imbalances and mediates autism-like behaviors.

    Science.gov (United States)

    Wei, Hongen; Chadman, Kathryn K; McCloskey, Daniel P; Sheikh, Ashfaq M; Malik, Mazhar; Brown, W Ted; Li, Xiaohong

    2012-06-01

    Abnormal immune responses have been reported to be associated with autism. A number of studies showed that cytokines were increased in the blood, brain, and cerebrospinal fluid of autistic subjects. Elevated IL-6 in autistic brain has been a consistent finding. However, the mechanisms by which IL-6 may be involved in the pathogenesis of autism are not well understood. Here we show that mice with elevated IL-6 in the brain display many autistic features, including impaired cognitive abilities, deficits in learning, abnormal anxiety traits and habituations, as well as decreased social interactions. IL-6 elevation caused alterations in excitatory and inhibitory synaptic formations and disrupted the balance of excitatory/inhibitory synaptic transmissions. IL-6 elevation also resulted in an abnormal change in the shape, length and distributing pattern of dendritic spines. These findings suggest that IL-6 elevation in the brain could mediate autistic-like behaviors, possibly through the imbalances of neural circuitry and impairments of synaptic plasticity. Published by Elsevier B.V.

  1. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry

    Directory of Open Access Journals (Sweden)

    Daniel Charles Castro

    2015-06-01

    Full Text Available The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc and ventral pallidum (VP, in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (‘liking’ and motivational incentive salience (‘wanting’ of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating versus intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including ‘liking’ and ‘wanting’ for food rewards.

  2. Concept model semantics for DL preferential reasoning

    CSIR Research Space (South Africa)

    Britz, K

    2011-07-01

    Full Text Available ; where BM abbreviates the concept BacterialMeningitis, M stands for Menin- gitis, VM for viralMeningitis, and F abbreviates FatalDisease. One should be able to conclude that viral meningitis is usually non-fatal (VM @ :F ). On the other hand, we should... not conclude that fatal versions of meningitis are usually bacterial (F uM @ BM), nor, for that matter, that fatal versions of meningitis are usually not bacterial ones (F uM @ :BM). Armed with the notion of a preferential model (cf. Section 3) we de ne pref...

  3. Modeling Preferential Admissions at Elite Liberal Arts Colleges

    Science.gov (United States)

    Cockburn, Sally; Hewitt, Gordon; Kelly, Timothy

    2013-01-01

    This paper presents the results of a model that simulates the effects of varying preferential admissions policies on the academic profile of a set of 35 small liberal arts colleges. An underlying assumption is that all schools in the set use the same ratio of preferential to non-preferential admissions. The model predicts that even drastic changes…

  4. Infants preferentially approach and explore the unexpected.

    Science.gov (United States)

    Sim, Zi L; Xu, Fei

    2017-11-01

    Looking time experiments based on the violation-of-expectation (VOE) method have consistently demonstrated that infants look longer when their expectations are violated. However, it remains an open question whether similar effects will be observed in infants' approach behaviours. Specifically, do infants selectively approach and explore sources that violate their expectations? In this study, we address this question by examining how infants' looking times are related to their approach and exploration behaviours. Using a traditional VOE method and a crawling paradigm, we demonstrate a strong correspondence between looking time and approach behaviours, which indicates that 13-month-old infants preferentially explore sources of unexpected events. Such spontaneous exploration may provide learning opportunities and allow infants to play an active role in driving their own development. Statement of contribution What is already known on this subject? Infants look longer when their expectations are violated. There is some evidence that infants also preferentially explore objects that violate their 'core' physical expectations. What the present study adds? There is a clear correspondence between infants' looking behaviour and their approach behaviour. Expectancy violations involving non-core knowledge can similarly influence infants' exploration. © 2017 The British Psychological Society.

  5. Neural Emotion Regulation Circuitry Underlying Anxiolytic Effects of Perceived Control Over Pain

    OpenAIRE

    Salomons, Tim V.; Nusslock, Robin; Detloff, Allison; Johnstone, Tom; Davidson, Richard J.

    2015-01-01

    Anxiolytic effects of perceived control have been observed across species. In humans, neuroimaging studies have suggested that perceived control and cognitive reappraisal reduce negative affect through similar mechanisms. An important limitation of extant neuroimaging studies of perceived control in terms of directly testing this hypothesis, however, is the use of within subjects-designs, which confound participants' affective response to controllable and uncontrollable stress. To compare neu...

  6. Neural Circuitry that Evokes Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae.

    Science.gov (United States)

    Yoshino, Jiro; Morikawa, Rei K; Hasegawa, Eri; Emoto, Kazuo

    2017-08-21

    Noxious stimuli trigger a stereotyped escape response in animals. In Drosophila larvae, class IV dendrite arborization (C4 da) sensory neurons in the peripheral nervous system are responsible for perception of multiple nociceptive modalities, including noxious heat and harsh mechanical stimulation, through distinct receptors [1-9]. Silencing or ablation of C4 da neurons largely eliminates larval responses to noxious stimuli [10-12], whereas optogenetic activation of C4 da neurons is sufficient to provoke corkscrew-like rolling behavior similar to what is observed when larvae receive noxious stimuli, such as high temperature or harsh mechanical stimulation [10-12]. The receptors and the regulatory mechanisms for C4 da activation in response to a variety of noxious stimuli have been well studied [13-23], yet how C4 da activation triggers the escape behavior in the circuit level is still incompletely understood. Here we identify segmentally arrayed local interneurons (medial clusters of C4 da second-order interneurons [mCSIs]) in the ventral nerve cord that are necessary and sufficient to trigger rolling behavior. GFP reconstitution across synaptic partners (GRASP) analysis indicates that C4 da axons form synapses with mCSI dendrites. Optogenetic activation of mCSIs induces the rolling behavior, whereas silencing mCSIs reduces the probability of rolling behavior upon C4 da activation. Further anatomical and functional studies suggest that the C4 da-mCSI nociceptive circuit evokes rolling behavior at least in part through segmental nerve a (SNa) motor neurons. Our findings thus uncover a local circuit that promotes escape behavior upon noxious stimuli in Drosophila larvae and provide mechanistic insights into how noxious stimuli are transduced into the stereotyped escape behavior in the circuit level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. TQUID Magnetometer and Artificial Neural Circuitry Based on a Topological Kondo Insulator

    Science.gov (United States)

    2016-05-01

    samples are leached out in sodium hydroxide solution. The surfaces of these crystals were carefully etched using an equal mixture of hydrochloric acid...person or corporation; or convey any rights or permission to manufacture , use, or sell any patented invention that may relate to them. This report is the...detail. Crystals are grown using the aluminum flux method and selected based on size with extra aluminum etched off with hydrochloric acid. Two

  8. Role of Autism Susceptibility Gene, CNTNAP2, in Neural Circuitry for Vocal Communication

    Science.gov (United States)

    2013-10-01

    Iyama- Kurtycz, C. M., Hartley, S. L., . . . Shriberg, L. D. (2012). Phenotype of FOXP2 haploinsufficiency in a mother and son. American Journal of...2006). Speech, prosody, and voice characteristics of a mother and daughter with a 7;13 translocation affecting FOXP2. Journal of Speech...noninnate vocal output. Along the vocal tract, these include the larynx, pharynx, tongue , teeth, and lips, as well as the muscles of respiration

  9. Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.

    Science.gov (United States)

    Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan

    2012-01-01

    Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.

  10. Serotonin: a regulator of neuronal morphology and circuitry

    Science.gov (United States)

    Daubert, Elizabeth A.; Condron, Barry G.

    2010-01-01

    Serotonin is an important neuromodulator associated with a wide range of physiological effects in the central nervous system. The exact mechanisms for how serotonin influences brain development are not well understood, although studies in invertebrate and vertebrate model organisms are beginning to unravel a regulatory role for serotonin in neuronal morphology and circuit formation. Recent data suggests a developmental window during which altered serotonin levels permanently impact circuitry, however, the temporal constraints and molecular mechanisms responsible are still under investigation. Growing evidence suggests that alterations in early serotonin signaling contribute to a number of neurodevelopmental and neuropsychiatric disorders. Thus, understanding how altered serotonin signaling affects neuronal morphology and plasticity, and ultimately animal physiology and pathophysiology, will be of great significance. PMID:20561690

  11. Perturbation of Serotonin Homeostasis during Adulthood Affects Serotonergic Neuronal Circuitry.

    Science.gov (United States)

    Pratelli, Marta; Migliarini, Sara; Pelosi, Barbara; Napolitano, Francesco; Usiello, Alessandro; Pasqualetti, Massimo

    2017-01-01

    Growing evidence shows that the neurotransmitter serotonin (5-HT) modulates the fine-tuning of neuron development and the establishment of wiring patterns in the brain. However, whether serotonin is involved in the maintenance of neuronal circuitry in the adult brain remains elusive. Here, we use a Tph2(fl)°(x) conditional knockout (cKO) mouse line to assess the impact of serotonin depletion during adulthood on serotonergic system organization. Data show that the density of serotonergic fibers is increased in the hippocampus and decreased in the thalamic paraventricular nucleus (PVN) as a consequence of brain serotonin depletion. Strikingly, these defects are rescued following reestablishment of brain 5-HT signaling via administration of the serotonin precursor 5-hydroxytryptophan (5-HTP). Finally, 3D reconstruction of serotonergic fibers reveals that changes in serotonin homeostasis affect axonal branching complexity. These data demonstrate that maintaining proper serotonin homeostasis in the adult brain is crucial to preserve the correct serotonergic axonal wiring.

  12. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking.

    Science.gov (United States)

    Kalivas, Benjamin C; Kalivas, Peter W

    2016-03-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression.

  13. Focusing on optic tectum circuitry through the lens of genetics

    Directory of Open Access Journals (Sweden)

    Nevin Linda M

    2010-09-01

    Full Text Available Abstract The visual pathway is tasked with processing incoming signals from the retina and converting this information into adaptive behavior. Recent studies of the larval zebrafish tectum have begun to clarify how the 'micro-circuitry' of this highly organized midbrain structure filters visual input, which arrives in the superficial layers and directs motor output through efferent projections from its deep layers. The new emphasis has been on the specific function of neuronal cell types, which can now be reproducibly labeled, imaged and manipulated using genetic and optical techniques. Here, we discuss recent advances and emerging experimental approaches for studying tectal circuits as models for visual processing and sensorimotor transformation by the vertebrate brain.

  14. Integrated circuit electrometer and sweep circuitry for an atmospheric probe

    Science.gov (United States)

    Zimmerman, L. E.

    1971-01-01

    The design of electrometer circuitry using an integrated circuit operational amplifier with a MOSFET input is described. Input protection against static voltages is provided by a dual ultra low leakage diode or a neon lamp. Factors affecting frequency response leakage resistance, and current stability are discussed, and methods are suggested for increasing response speed and for eliminating leakage resistance and current instabilities. Based on the above, two practical circuits, one having a linear response and the other a logarithmic response, were designed and evaluated experimentally. The design of a sweep circuit to implement mobility measurements using atmospheric probes is presented. A triangular voltage waveform is generated and shaped to contain a step in voltage from zero volts in both positive and negative directions.

  15. Disrupted Structural and Functional Connectivity in Prefrontal-Hippocampus Circuitry in First-Episode Medication-Naïve Adolescent Depression.

    Directory of Open Access Journals (Sweden)

    Haiyang Geng

    Full Text Available Evidence implicates abnormalities in prefrontal-hippocampus neural circuitry in major depressive disorder (MDD. This study investigates the potential disruptions in prefrontal-hippocampus structural and functional connectivity, as well as their relationship in first-episode medication-naïve adolescents with MDD in order to investigate the early stage of the illness without confounds of illness course and medication exposure.Diffusion tensor imaging and resting-state functional magnetic resonance imaging (rs-fMRI data were acquired from 26 first-episode medication-naïve MDD adolescents and 31 healthy controls (HC. Fractional anisotropy (FA values of the fornix and the prefrontal-hippocampus functional connectivity was compared between MDD and HC groups. The correlation between the FA value of fornix and the strength of the functional connectivity in the prefrontal cortex (PFC region showing significant differences between the two groups was identified.Compared with the HC group, adolescent MDD group had significant lower FA values in the fornix, as well as decreased functional connectivity in four PFC regions. Significant negative correlations were observed between fornix FA values and functional connectivity from hippocampus to PFC within the HC group. There was no significant correlation between the fornix FA and the strength of functional connectivity within the adolescent MDD group.First-episode medication-naïve adolescent MDD showed decreased structural and functional connectivity as well as deficits of the association between structural and functional connectivity shown in HC in the PFC-hippocampus neural circuitry. These findings suggest that abnormal PFC-hippocampus neural circuitry may present in the early onset of MDD and play an important role in the neuropathophysiology of MDD.

  16. Sensitive Periods of Emotion Regulation: Influences of Parental Care on Frontoamygdala Circuitry and Plasticity

    Science.gov (United States)

    Gee, Dylan G.

    2016-01-01

    Early caregiving experiences play a central role in shaping emotional development, stress physiology, and refinement of limbic circuitry. Converging evidence across species delineates a sensitive period of heightened neuroplasticity when frontoamygdala circuitry is especially amenable to caregiver inputs early in life. During this period, parental…

  17. 76 FR 79215 - Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same...

    Science.gov (United States)

    2011-12-21

    ... COMMISSION Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same... importation of certain semiconductor chips with DRAM circuitry, and modules and products containing same by... containing same that infringe one or more of claims 1-6, 8-11, and 15- 18 of the `689 patent; claims 1-16 and...

  18. Stitching Codeable Circuits: High School Students' Learning about Circuitry and Coding with Electronic Textiles

    Science.gov (United States)

    Litts, Breanne K.; Kafai, Yasmin B.; Lui, Debora A.; Walker, Justice T.; Widman, Sari A.

    2017-01-01

    Learning about circuitry by connecting a battery, light bulb, and wires is a common activity in many science classrooms. In this paper, we expand students' learning about circuitry with electronic textiles, which use conductive thread instead of wires and sewable LEDs instead of lightbulbs, by integrating programming sensor inputs and light…

  19. Mapping the Brain’s Metaphor Circuitry:Is Abstract Thought Metaphorical Thought?

    Directory of Open Access Journals (Sweden)

    George eLakoff

    2014-12-01

    Full Text Available An overview of the basics of metaphorical thought and language from the perspective of Neurocognition, the integrated interdisciplinary study of how conceptual thought and language work in the brain. The paper outlines a theory of metaphor circuitry and discusses how everyday reason makes use of embodied metaphor circuitry.

  20. Neural bases of congenital amusia in tonal language speakers.

    Science.gov (United States)

    Zhang, Caicai; Peng, Gang; Shao, Jing; Wang, William S-Y

    2017-03-01

    Congenital amusia is a lifelong neurodevelopmental disorder of fine-grained pitch processing. In this fMRI study, we examined the neural bases of congenial amusia in speakers of a tonal language - Cantonese. Previous studies on non-tonal language speakers suggest that the neural deficits of congenital amusia lie in the music-selective neural circuitry in the right inferior frontal gyrus (IFG). However, it is unclear whether this finding can generalize to congenital amusics in tonal languages. Tonal language experience has been reported to shape the neural processing of pitch, which raises the question of how tonal language experience affects the neural bases of congenital amusia. To investigate this question, we examined the neural circuitries sub-serving the processing of relative pitch interval in pitch-matched Cantonese level tone and musical stimuli in 11 Cantonese-speaking amusics and 11 musically intact controls. Cantonese-speaking amusics exhibited abnormal brain activities in a widely distributed neural network during the processing of lexical tone and musical stimuli. Whereas the controls exhibited significant activation in the right superior temporal gyrus (STG) in the lexical tone condition and in the cerebellum regardless of the lexical tone and music conditions, no activation was found in the amusics in those regions, which likely reflects a dysfunctional neural mechanism of relative pitch processing in the amusics. Furthermore, the amusics showed abnormally strong activation of the right middle frontal gyrus and precuneus when the pitch stimuli were repeated, which presumably reflect deficits of attending to repeated pitch stimuli or encoding them into working memory. No significant group difference was found in the right IFG in either the whole-brain analysis or region-of-interest analysis. These findings imply that the neural deficits in tonal language speakers might differ from those in non-tonal language speakers, and overlap partly with the

  1. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model

    DEFF Research Database (Denmark)

    Tønnesen, Jan; Parish, Clare L; Sørensen, Andreas T

    2011-01-01

    Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson's disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral...

  2. Neural plasticity across the lifespan.

    Science.gov (United States)

    Power, Jonathan D; Schlaggar, Bradley L

    2017-01-01

    An essential feature of the brain is its capacity to change. Neuroscientists use the term 'plasticity' to describe the malleability of neuronal connectivity and circuitry. How does plasticity work? A review of current data suggests that plasticity encompasses many distinct phenomena, some of which operate across most or all of the lifespan, and others that operate exclusively in early development. This essay surveys some of the key concepts related to neural plasticity, beginning with how current patterns of neural activity (e.g., as you read this essay) come to impact future patterns of activity (e.g., your memory of this essay), and then extending this framework backward into more development-specific mechanisms of plasticity. WIREs Dev Biol 2017, 6:e216. doi: 10.1002/wdev.216 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  3. Single-site neural tube closure in human embryos revisited

    NARCIS (Netherlands)

    de Bakker, Bernadette S.; Driessen, Stan; Boukens, Bastiaan J. D.; van den Hoff, Maurice J. H.; Oostra, Roelof-Jan

    2017-01-01

    Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent

  4. Lessons from sleeping flies: insights from Drosophila melanogaster on the neuronal circuitry and importance of sleep.

    Science.gov (United States)

    Potdar, Sheetal; Sheeba, Vasu

    2013-06-01

    Sleep is a highly conserved behavior whose role is as yet unknown, although it is widely acknowledged as being important. Here we provide an overview of many vital questions regarding this behavior, that have been addressed in recent years using the genetically tractable model organism Drosophila melanogaster in several laboratories around the world. Rest in D. melanogaster has been compared to mammalian sleep and its homeostatic and circadian regulation have been shown to be controlled by intricate neuronal circuitry involving circadian clock neurons, mushroom bodies, and pars intercerebralis, although their exact roles are not entirely clear. We draw attention to the yet unanswered questions and contradictions regarding the nature of the interactions between the brain regions implicated in the control of sleep. Dopamine, octopamine, γ-aminobutyric acid (GABA), and serotonin are the chief neurotransmitters identified as functioning in different limbs of this circuit, either promoting arousal or sleep by modulating membrane excitability of underlying neurons. Some studies have suggested that certain brain areas may contribute towards both sleep and arousal depending on activation of specific subsets of neurons. Signaling pathways implicated in the sleep circuit include cyclic adenosine monophosphate (cAMP) and epidermal growth factor receptor-extracellular signal-regulated kinase (EGFR-ERK) signaling pathways that operate on different neural substrates. Thus, this field of research appears to be on the cusp of many new and exciting findings that may eventually help in understanding how this complex physiological phenomenon is modulated by various neuronal circuits in the brain. Finally, some efforts to approach the "Holy Grail" of why we sleep have been summarized.

  5. The banana code – Natural blend processing in the olfactory circuitry of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Marco eSchubert

    2014-02-01

    Full Text Available Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly’s olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I. In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca2+ signals in input and output neurons of the Drosophila antennal lobe (AL, the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions.

  6. Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry.

    Science.gov (United States)

    Jennings, Alistair; Tyurikova, Olga; Bard, Lucie; Zheng, Kaiyu; Semyanov, Alexey; Henneberger, Christian; Rusakov, Dmitri A

    2017-03-01

    Whilst astrocytes in culture invariably respond to dopamine with cytosolic Ca2+ rises, the dopamine sensitivity of astroglia in situ and its physiological roles remain unknown. To minimize effects of experimental manipulations on astroglial physiology, here we monitored Ca2+ in cells connected via gap junctions to astrocytes loaded whole-cell with cytosolic indicators in area CA1 of acute hippocampal slices. Aiming at high sensitivity of [Ca2+ ] measurements, we also employed life-time imaging of the Ca2+ indicator Oregon Green BAPTA-1. We found that dopamine triggered a dose-dependent, bidirectional Ca2+ response in stratum radiatum astroglia, a jagged elevation accompanied and followed by below-baseline decreases. The elevation depended on D1/D2 receptors and engaged intracellular Ca2+ storage and removal whereas the dopamine-induced [Ca2+ ] decrease involved D2 receptors only and was sensitive to Ca2+ channel blockade. In contrast, the stratum lacunosum moleculare astroglia generated higher-threshold dopamine-induced Ca2+ responses which did not depend on dopamine receptors and were uncoupled from the prominent inhibitory action of dopamine on local perforant path synapses. Our findings thus suggest that a single neurotransmitter-dopamine-could either elevate or decrease astrocyte [Ca2+ ] depending on the receptors involved, that such actions are specific to the regional neural circuitry and that they may be causally uncoupled from dopamine actions on local synapses. The results also indicate that [Ca2+ ] elevations commonly detected in astroglia can represent the variety of distinct mechanisms acting on the microscopic scale. GLIA 2017;65:447-459. © 2016 The Authors Glia Published by Wiley Periodicals, Inc.

  7. Disrupted brain circuitry for pain-related reward/punishment in fibromyalgia.

    Science.gov (United States)

    Loggia, Marco L; Berna, Chantal; Kim, Jieun; Cahalan, Christine M; Gollub, Randy L; Wasan, Ajay D; Harris, Richard E; Edwards, Robert R; Napadow, Vitaly

    2014-01-01

    While patients with fibromyalgia (FM) are known to exhibit hyperalgesia, the central mechanisms contributing to this altered pain processing are not fully understood. This study was undertaken to investigate potential dysregulation of the neural circuitry underlying cognitive and hedonic aspects of the subjective experience of pain, such as anticipation of pain and anticipation of pain relief. Thirty-one FM patients and 14 controls underwent functional magnetic resonance imaging, while receiving cuff pressure pain stimuli on the leg calibrated to elicit a pain rating of ~50 on a 100-point scale. During the scan, subjects also received visual cues informing them of the impending onset of pain (pain anticipation) and the impending offset of pain (relief anticipation). Patients exhibited less robust activation during both anticipation of pain and anticipation of relief within regions of the brain commonly thought to be involved in sensory, affective, cognitive, and pain-modulatory processes. In healthy controls, direct searches and region-of-interest analyses of the ventral tegmental area revealed a pattern of activity compatible with the encoding of punishment signals: activation during anticipation of pain and pain stimulation, but deactivation during anticipation of pain relief. In FM patients, however, activity in the ventral tegmental area during periods of pain and periods of anticipation (of both pain and relief) was dramatically reduced or abolished. FM patients exhibit disrupted brain responses to reward/punishment. The ventral tegmental area is a source of reward-linked dopaminergic/γ-aminobutyric acid-releasing (GABAergic) neurotransmission in the brain, and our observations are compatible with reports of altered dopaminergic/GABAergic neurotransmission in FM. Reduced reward/punishment signaling in FM may be related to the augmented central processing of pain and reduced efficacy of opioid treatments in these patients. Copyright © 2014 by the American

  8. Preferential Entailments, Extensions and Reductions of The Vocabulary

    OpenAIRE

    Moinard, Yves; Rolland, Raymond

    1999-01-01

    A preferential entailment is defined by a binary relation, or «preference relation», either among interpretations (or models) or among «states» which are «copies of interpretations». Firstly, we show how an extension of the vocabulary allows to express any preferential entailment as a preferent- ial entailment without state. Secondly, by reducing the vocabulary, we show how to express some preferential entailments in a smaller language. This second method works only for particular preferentia...

  9. Caffeine preferentially protects against oxygen-induced retinopathy.

    Science.gov (United States)

    Zhang, Shuya; Zhou, Rong; Li, Bo; Li, Haiyan; Wang, Yanyan; Gu, Xuejiao; Tang, Lingyun; Wang, Cun; Zhong, Dingjuan; Ge, Yuanyuan; Huo, Yuqing; Lin, Jing; Liu, Xiao-Ling; Chen, Jiang-Fan

    2017-08-01

    Retinopathy of prematurity (ROP) is the leading cause of childhood blindness, but current anti-VEGF therapy is concerned with delayed retinal vasculature, eye, and brain development of preterm infants. The clinical observation of reduced ROP severity in premature infants after caffeine treatment for apnea suggests that caffeine may protect against ROP. Here, we demonstrate that caffeine did not interfere with normal retinal vascularization development but selectively protected against oxygen-induced retinopathy (OIR) in mice. Moreover, caffeine attenuated not only hypoxia-induced pathologic angiogenesis, but also hyperoxia-induced vaso-obliteration, which suggests a novel protection window by caffeine. At the hyperoxic phase, caffeine reduced oxygen-induced neural apoptosis by adenosine A 2A receptor (A 2A R)-dependent mechanism, as revealed by combined caffeine and A 2A R-knockout treatment. At the hypoxic phase, caffeine reduced microglial activation and enhanced tip cell formation by A 2A R-dependent and -independent mechanisms, as combined caffeine and A 2A R knockout produced additive and nearly full protection against OIR. Together with clinical use of caffeine in neonates, our demonstration of the selective protection against OIR, effective therapeutic window, adenosine receptor mechanisms, and neuroglial involvement provide the direct evidence of the novel effects of caffeine therapy in the prevention and treatment of ROP.-Zhang, S., Zhou, R., Li, B., Li, H., Wang, Y., Gu, X., Tang, L., Wang, C., Zhong, D., Ge, Y., Huo, Y., Lin, J., Liu, X.-L., Chen, J.-F. Caffeine preferentially protects against oxygen-induced retinopathy. © FASEB.

  10. Bilingualism yields language-specific plasticity in left hemisphere's circuitry for learning to read in young children.

    Science.gov (United States)

    Jasińska, K K; Berens, M S; Kovelman, I; Petitto, L A

    2017-04-01

    How does bilingual exposure impact children's neural circuitry for learning to read? Theories of bilingualism suggests that exposure to two languages may yield a functional and neuroanatomical adaptation to support the learning of two languages (Klein et al., 2014). To test the hypothesis that this neural adaptation may vary as a function of structural and orthographic characteristics of bilinguals' two languages, we compared Spanish-English and French-English bilingual children, and English monolingual children, using functional Near Infrared Spectroscopy neuroimaging (fNIRS, ages 6-10, N =26). Spanish offers consistent sound-to-print correspondences ("phonologically transparent" or "shallow"); such correspondences are more opaque in French and even more opaque in English (which has both transparent and "phonologically opaque" or "deep" correspondences). Consistent with our hypothesis, both French- and Spanish-English bilinguals showed hyperactivation in left posterior temporal regions associated with direct sound-to-print phonological analyses and hypoactivation in left frontal regions associated with assembled phonology analyses. Spanish, but not French, bilinguals showed a similar effect when reading Irregular words. The findings inform theories of bilingual and cross-linguistic literacy acquisition by suggesting that structural characteristics of bilinguals' two languages and their orthographies have a significant impact on children's neuro-cognitive architecture for learning to read. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Netrin-1-dependent spinal interneuron subtypes are required for the formation of left-right alternating locomotor circuitry.

    Science.gov (United States)

    Rabe, Nadine; Gezelius, Henrik; Vallstedt, Anna; Memic, Fatima; Kullander, Klas

    2009-12-16

    Neuronal circuits in the spinal cord that produce the rhythmic and coordinated activities necessary for limb movements are referred to as locomotor central pattern generators (CPGs). The identities and preceding development of neurons essential for coordination between left and right limbs are not yet known. We show that the ventral floor plate chemoattractant Netrin-1 preferentially guides dorsally originating subtypes of commissural interneurons, the majority of which are inhibitory. In contrast, the excitatory and ventralmost V3 subtype of interneurons have a normal number of commissural fibers in Netrin-1 mutant mice, thus being entirely independent of Netrin-1-mediated attraction. This selective loss of commissural fibers in Netrin-1 mutant mice resulted in an abnormal circuitry manifested by a complete switch from alternating to synchronous fictive locomotor activity suggesting that the most ventral-originating excitatory commissural interneurons are an important component of a left-right synchrony circuit in the locomotor CPG. Thus, during development, Netrin-1 plays a critical role for the establishment of a functional balanced CPG.

  12. Optogenetic deconstruction of sleep-wake circuitry in the brain

    Directory of Open Access Journals (Sweden)

    Antoine Adamantidis

    2010-01-01

    Full Text Available How does the brain regulate the sleep-wake cycle? What are the temporal codes of sleep- and wake-promoting neural circuits? How do these circuits interact with each other across the light/dark cycle? Over the past few decades, many studies from a variety of disciplines have made substantial progress in answering these fundamental questions. For example, neurobiologists have identified multiple, redundant wake-promoting circuits in the brainstem, hypothalamus, and basal forebrain. Sleep-promoting circuits have been found in the preoptic area and hypothalamus. One of the greatest challenges in recent years has been to selectively record and manipulate these sleep-wake centers in vivo with high spatial and temporal resolution. Recent developments in microbial opsin-based neuromodulation tools, collectively referred to as “optogenetics,” have provided a novel method to demonstrate causal links between neural activity and specific behaviors. Here, we propose to use optogenetics as a fundamental tool to probe the necessity, sufficiency, and connectivity of defined neural circuits in the regulation of sleep and wakefulness.

  13. CMP substitutions preferentially inhibit polysialic acid synthesis.

    Science.gov (United States)

    Miyazaki, Tatsuo; Angata, Kiyohiko; Seeberger, Peter H; Hindsgaul, Ole; Fukuda, Minoru

    2008-02-01

    It is widely reported that derivatives of sugar moieties can be used to metabolically label cell surface carbohydrates or inhibit a particular glycosylation. However, few studies address the effect of substitution of the cytidylmonophosphate (CMP) portion on sialyltransferase activities. Here we first synthesized 2'-O-methyl CMP and 5-methyl CMP and then asked if these CMP derivatives are recognized by alpha2,3-sialyltransferases (ST3Gal-III and ST3Gal-IV), alpha2,6-sialyltransferase (ST6Gal-I), and alpha2,8-sialyltransferase (ST8Sia-II, ST8Sia-III, and ST8Sia-IV). We found that ST3Gal-III and ST3Gal-IV but not ST6Gal-I was inhibited by 2'-O-methyl CMP as potently as by CMP, while ST3Gal-III, ST3Gal-IV, and ST6Gal-I were moderately inhibited by 5-methyl CMP. Previously, it was reported that polysialyltransferase ST8Sia-II but not ST8Sia-IV was inhibited by CMP N-butylneuraminic acid. We found that ST8Sia-IV as well as ST8Sia-II and ST8Sia-III are inhibited by 2'-O-methyl CMP as robustly as by CMP and moderately by 5-methyl CMP. Moreover, the addition of CMP, 2'-O-methyl CMP, and 5-methyl CMP to the culture medium resulted in the decrease of polysialic acid expression on the cell surface and NCAM of Chinese hamster ovary cells. These results suggest that 2'-O-methyl CMP and 5-methyl CMP can be used to preferentially inhibit sialyltransferases, in particular, polysialyltransferases in vitro and in vivo. Such inhibition may be useful to determine the function of a carbohydrate synthesized by a specific sialyltransferase such as polysialyltransferase.

  14. Circuitry linking the Csr and stringent response global regulatory systems.

    Science.gov (United States)

    Edwards, Adrianne N; Patterson-Fortin, Laura M; Vakulskas, Christopher A; Mercante, Jeffrey W; Potrykus, Katarzyna; Vinella, Daniel; Camacho, Martha I; Fields, Joshua A; Thompson, Stuart A; Georgellis, Dimitris; Cashel, Michael; Babitzke, Paul; Romeo, Tony

    2011-06-01

    CsrA protein regulates important cellular processes by binding to target mRNAs and altering their translation and/or stability. In Escherichia coli, CsrA binds to sRNAs, CsrB and CsrC, which sequester CsrA and antagonize its activity. Here, mRNAs for relA, spoT and dksA of the stringent response system were found among 721 different transcripts that copurified with CsrA. Many of the transcripts that copurified with CsrA were previously determined to respond to ppGpp and/or DksA. We examined multiple regulatory interactions between the Csr and stringent response systems. Most importantly, DksA and ppGpp robustly activated csrB/C transcription (10-fold), while they modestly activated csrA expression. We propose that CsrA-mediated regulation is relieved during the stringent response. Gel shift assays confirmed high affinity binding of CsrA to relA mRNA leader and weaker interactions with dksA and spoT. Reporter fusions, qRT-PCR and immunoblotting showed that CsrA repressed relA expression, and (p)ppGpp accumulation during stringent response was enhanced in a csrA mutant. CsrA had modest to negligible effects on dksA and spoT expression. Transcription of dksA was negatively autoregulated via a feedback loop that tended to mask CsrA effects. We propose that the Csr system fine-tunes the stringent response and discuss biological implications of the composite circuitry. © Published 2011. This article is a US Government work and is in the public domain in the USA.

  15. Do cognitive measures and brain circuitry predict outcomes of exercise in Parkinson Disease: a randomized clinical trial.

    Science.gov (United States)

    King, L A; Peterson, D S; Mancini, M; Carlson-Kuhta, P; Fling, B W; Smulders, K; Nutt, J G; Dale, M; Carter, J; Winters-Stone, K M; Horak, F B

    2015-10-24

    There is emerging research detailing the relationship between balance/gait/falls and cognition. Imaging studies also suggest a link between structural and functional changes in the frontal lobe (a region commonly associated with cognitive function) and mobility. People with Parkinson's disease have important changes in cognitive function that may impact rehabilitation efficacy. Our underlying hypothesis is that cognitive function and frontal lobe connections with the basal ganglia and brainstem posture/locomotor centers are responsible for postural deficits in people with Parkinson's disease and play a role in rehabilitation efficacy. The purpose of this study is to 1) determine if people with Parkinson's disease can improve mobility and/or cognition after partaking in a cognitively challenging mobility exercise program and 2) determine if cognition and brain circuitry deficits predict responsiveness to exercise rehabilitation. This study is a randomized cross-over controlled intervention to take place at a University Balance Disorders Laboratory. The study participants will be people with Parkinson's disease who meet inclusion criteria for the study. The intervention will be 6 weeks of group exercise (case) and 6 weeks of group education (control). The exercise is a cognitively challenging program based on the Agility Boot Camp for people with PD. The education program is a 6-week program to teach people how to better live with a chronic disease. The primary outcome measure is the MiniBESTest and the secondary outcomes are measures of mobility, cognition and neural imaging. The results from this study will further our understanding of the relationship between cognition and mobility with a focus on brain circuitry as it relates to rehabilitation potential. This trial is registered at clinical trials.gov (NCT02231073).

  16. Susceptibility to enhanced chemical migration from depression-focused preferential flow, High Plains aquifer

    Science.gov (United States)

    Gurdak, J.J.; Walvoord, Michelle Ann; McMahon, P.B.

    2008-01-01

    Aquifer susceptibility to contamination is controlled in part by the inherent hydrogeologic properties of the vadose zone, which includes preferential-flow pathways. The purpose of this study was to investigate the importance of seasonal ponding near leaky irrigation wells as a mechanism for depression-focused preferential flow and enhanced chemical migration through the vadose zone of the High Plains aquifer. Such a mechanism may help explain the widespread presence of agrichemicals in recently recharged groundwater despite estimates of advective chemical transit times through the vadose zone from diffuse recharge that exceed the historical period of agriculture. Using a combination of field observations, vadose zone flow and transport simulations, and probabilistic neural network modeling, we demonstrated that vadose zone transit times near irrigation wells range from 7 to 50 yr, which are one to two orders of magnitude faster than previous estimates based on diffuse recharge. These findings support the concept of fast and slow transport zones and help to explain the previous discordant findings of long vadose zone transit times and the presence of agrichemicals at the water table. Using predictions of aquifer susceptibility from probabilistic neural network models, we delineated approximately 20% of the areal extent of the aquifer to have conditions that may promote advective chemical transit times to the water table of practices.

  17. Apparatus, system and method for providing cryptographic key information with physically unclonable function circuitry

    Science.gov (United States)

    Areno, Matthew

    2015-12-08

    Techniques and mechanisms for providing a value from physically unclonable function (PUF) circuitry for a cryptographic operation of a security module. In an embodiment, a cryptographic engine receives a value from PUF circuitry and based on the value, outputs a result of a cryptographic operation to a bus of the security module. The bus couples the cryptographic engine to control logic or interface logic of the security module. In another embodiment, the value is provided to the cryptographic engine from the PUF circuitry via a signal line which is distinct from the bus, where any exchange of the value by either of the cryptographic engine and the PUF circuitry is for communication of the first value independent of the bus.

  18. Conditional and preferential logics proof methods and theorem proving

    CERN Document Server

    Pozzato, GL

    2010-01-01

    Contains a version of the author's PhD dissertation and focuses on proof methods and theorem proving for conditional and preferential logics. This book introduces proof methods (sequent and tableau calculi) for conditional and preferential logics, as well as theorem provers obtained by implementing the proposed calculi.

  19. Predicting the growth of new links by new preferential attachment ...

    Indian Academy of Sciences (India)

    By revisiting the preferential attachment (PA) mechanism for generating a classical scale-free network, we propose a class of novel preferential attachment similarity indices for predicting future links in evolving networks. Extensive experiments on 14 real-life networks show that these new indices can provide more accurate ...

  20. Distributed network generation based on preferential attachment in ABS

    NARCIS (Netherlands)

    K. Azadbakht (Keyvan); N. Bezirgiannis (Nikolaos); F.S. de Boer (Frank)

    2017-01-01

    textabstractGeneration of social networks using Preferential Attachment (PA) mechanism is proposed in the Barabasi-Albert model. In this mechanism, new nodes are introduced to the network sequentially and they attach to the existing nodes preferentially where the preference can be based on the

  1. 19 CFR 10.213 - Articles eligible for preferential treatment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Articles eligible for preferential treatment. 10...; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Textile and Apparel Articles Under the African Growth and Opportunity Act § 10.213 Articles eligible for preferential treatment...

  2. Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide.

    Science.gov (United States)

    Shi, Zhen; Fujii, Kotaro; Kovary, Kyle M; Genuth, Naomi R; Röst, Hannes L; Teruel, Mary N; Barna, Maria

    2017-07-06

    Emerging studies have linked the ribosome to more selective control of gene regulation. However, an outstanding question is whether ribosome heterogeneity at the level of core ribosomal proteins (RPs) exists and enables ribosomes to preferentially translate specific mRNAs genome-wide. Here, we measured the absolute abundance of RPs in translating ribosomes and profiled transcripts that are enriched or depleted from select subsets of ribosomes within embryonic stem cells. We find that heterogeneity in RP composition endows ribosomes with differential selectivity for translating subpools of transcripts, including those controlling metabolism, cell cycle, and development. As an example, mRNAs enriched in binding to RPL10A/uL1-containing ribosomes are shown to require RPL10A/uL1 for their efficient translation. Within several of these transcripts, this level of regulation is mediated, at least in part, by internal ribosome entry sites. Together, these results reveal a critical functional link between ribosome heterogeneity and the post-transcriptional circuitry of gene expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Degenerate coding in neural systems.

    Science.gov (United States)

    Leonardo, Anthony

    2005-11-01

    When the dimensionality of a neural circuit is substantially larger than the dimensionality of the variable it encodes, many different degenerate network states can produce the same output. In this review I will discuss three different neural systems that are linked by this theme. The pyloric network of the lobster, the song control system of the zebra finch, and the odor encoding system of the locust, while different in design, all contain degeneracies between their internal parameters and the outputs they encode. Indeed, although the dynamics of song generation and odor identification are quite different, computationally, odor recognition can be thought of as running the song generation circuitry backwards. In both of these systems, degeneracy plays a vital role in mapping a sparse neural representation devoid of correlations onto external stimuli (odors or song structure) that are strongly correlated. I argue that degeneracy between input and output states is an inherent feature of many neural systems, which can be exploited as a fault-tolerant method of reliably learning, generating, and discriminating closely related patterns.

  4. Optogenetic manipulation of neural circuits in awake marmosets.

    Science.gov (United States)

    MacDougall, Matthew; Nummela, Samuel U; Coop, Shanna; Disney, Anita; Mitchell, Jude F; Miller, Cory T

    2016-09-01

    Optogenetics has revolutionized the study of functional neuronal circuitry (Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Nat Neurosci 8: 1263-1268, 2005; Deisseroth K. Nat Methods 8: 26-29, 2011). Although these techniques have been most successfully implemented in rodent models, they have the potential to be similarly impactful in studies of nonhuman primate brains. Common marmosets (Callithrix jacchus) have recently emerged as a candidate primate model for gene editing, providing a potentially powerful model for studies of neural circuitry and disease in primates. The application of viral transduction methods in marmosets for identifying and manipulating neuronal circuitry is a crucial step in developing this species for neuroscience research. In the present study we developed a novel, chronic method to successfully induce rapid photostimulation in individual cortical neurons transduced by adeno-associated virus to express channelrhodopsin (ChR2) in awake marmosets. We found that large proportions of neurons could be effectively photoactivated following viral transduction and that this procedure could be repeated for several months. These data suggest that techniques for viral transduction and optical manipulation of neuronal populations are suitable for marmosets and can be combined with existing behavioral preparations in the species to elucidate the functional neural circuitry underlying perceptual and cognitive processes. Copyright © 2016 the American Physiological Society.

  5. Preferential Interactions and the Effect of Protein PEGylation.

    Directory of Open Access Journals (Sweden)

    Louise Stenstrup Holm

    Full Text Available PEGylation is a strategy used by the pharmaceutical industry to prolong systemic circulation of protein drugs, whereas formulation excipients are used for stabilization of proteins during storage. Here we investigate the role of PEGylation in protein stabilization by formulation excipients that preferentially interact with the protein.The model protein hen egg white lysozyme was doubly PEGylated on two lysines with 5 kDa linear PEGs (mPEG-succinimidyl valerate, MW 5000 and studied in the absence and presence of preferentially excluded sucrose and preferentially bound guanine hydrochloride. Structural characterization by far- and near-UV circular dichroism spectroscopy was supplemented by investigation of protein thermal stability with the use of differential scanning calorimetry, far and near-UV circular dichroism and fluorescence spectroscopy. It was found that PEGylated lysozyme was stabilized by the preferentially excluded excipient and destabilized by the preferentially bound excipient in a similar manner as lysozyme. However, compared to lysozyme in all cases the melting transition was lower by up to a few degrees and the calorimetric melting enthalpy was decreased to half the value for PEGylated lysozyme. The ratio between calorimetric and van't Hoff enthalpy suggests that our PEGylated lysozyme is a dimer.The PEGylated model protein displayed similar stability responses to the addition of preferentially active excipients. This suggests that formulation principles using preferentially interacting excipients are similar for PEGylated and non-PEGylated proteins.

  6. Functional Circuitry Effect of Ventral Tegmental Area Deep Brain Stimulation: Imaging and Neurochemical Evidence of Mesocortical and Mesolimbic Pathway Modulation.

    Science.gov (United States)

    Settell, Megan L; Testini, Paola; Cho, Shinho; Lee, Jannifer H; Blaha, Charles D; Jo, Hang J; Lee, Kendall H; Min, Hoon-Ki

    2017-01-01

    Background: The ventral tegmental area (VTA), containing mesolimbic and mesocortical dopaminergic neurons, is implicated in processes involving reward, addiction, reinforcement, and learning, which are associated with a variety of neuropsychiatric disorders. Electrical stimulation of the VTA or the medial forebrain bundle and its projection target the nucleus accumbens (NAc) is reported to improve depressive symptoms in patients affected by severe, treatment-resistant major depressive disorder (MDD) and depressive-like symptoms in animal models of depression. Here we sought to determine the neuromodulatory effects of VTA deep brain stimulation (DBS) in a normal large animal model (swine) by combining neurochemical measurements with functional magnetic resonance imaging (fMRI). Methods: Animals (n = 8 swine) were implanted with a unilateral DBS electrode targeting the VTA. During stimulation (130 Hz frequency, 0.25 ms pulse width, and 3 V amplitude), fMRI was performed. Following fMRI, fast-scan cyclic voltammetry in combination with carbon fiber microelectrodes was performed to quantify VTA-DBS-evoked dopamine release in the ipsilateral NAc. In a subset of swine, the blood oxygen level-dependent (BOLD) percent change evoked by stimulation was performed at increasing voltages (1, 2, and 3 V). Results: A significant increase in VTA-DBS-evoked BOLD signal was found in the following regions: the ipsilateral dorsolateral prefrontal cortex, anterior and posterior cingulate, insula, premotor cortex, primary somatosensory cortex, and striatum. A decrease in the BOLD signal was also observed in the contralateral parahippocampal cortex, dorsolateral and anterior prefrontal cortex, insula, inferior temporal gyrus, and primary somatosensory cortex (Bonferroni-corrected modulation of the neural circuitry associated with VTA-DBS was characterized in a large animal. Our findings suggest that VTA-DBS could affect the activity of neural systems and brain regions implicated in

  7. Preferential interactions and the effect of protein PEGylation

    DEFF Research Database (Denmark)

    Holm, Louise Stenstrup; Thulstrup, Peter Waaben; Kasimova, Marina Robertovna

    2015-01-01

    excipients that preferentially interact with the protein. METHODOLOGY/PRINCIPAL FINDINGS: The model protein hen egg white lysozyme was doubly PEGylated on two lysines with 5 kDa linear PEGs (mPEG-succinimidyl valerate, MW 5000) and studied in the absence and presence of preferentially excluded sucrose...... excipients. This suggests that formulation principles using preferentially interacting excipients are similar for PEGylated and non-PEGylated proteins.......BACKGROUND: PEGylation is a strategy used by the pharmaceutical industry to prolong systemic circulation of protein drugs, whereas formulation excipients are used for stabilization of proteins during storage. Here we investigate the role of PEGylation in protein stabilization by formulation...

  8. Dissociable Patterns of Neural Activity during Response Inhibition in Depressed Adolescents with and without Suicidal Behavior

    Science.gov (United States)

    Pan, Lisa A.; Batezati-Alves, Silvia C.; Almeida, Jorge R. C.; Segreti, AnnaMaria; Akkal, Dalila; Hassel, Stefanie; Lakdawala, Sara; Brent, David A.; Phillips, Mary L.

    2011-01-01

    Objectives: Impaired attentional control and behavioral control are implicated in adult suicidal behavior. Little is known about the functional integrity of neural circuitry supporting these processes in suicidal behavior in adolescence. Method: Functional magnetic resonance imaging was used in 15 adolescent suicide attempters with a history of…

  9. Neural response to alcohol taste cues in youth : Effects of the OPRM1 gene

    NARCIS (Netherlands)

    Korucuoglu, Ozlem; Gladwin, Thomas E.; Baas, Frank; Mocking, Roel J. T.; Ruhé, Henricus G.; Groot, Paul F. C.; Wiers, Reinout W.

    2017-01-01

    Genetic variations in the mu-opioid receptor (OPRM1) gene have been related to high sensitivity to rewarding effects of alcohol. The current study focuses on the neural circuitry underlying this phenomenon using an alcohol versus water taste-cue reactivity paradigm in a young sample at relatively

  10. Growth of preferential attachment random graphs via continuous ...

    Indian Academy of Sciences (India)

    Abstract. Some growth asymptotics of a version of `preferential attachment' random graphs are studied through an embedding into a continuous-time branching scheme. These results complement and extend previous work in the literature.

  11. Preferential pairing estimates from multivalent frequencies in tetraploids.

    Science.gov (United States)

    Sybenga, J

    1994-12-01

    Mathematical models are presented for estimating preferential pairing and chiasma parameters in amphidiploids and autotetraploids on the basis of diakinesis or metaphase I configuration frequencies and are compared with other approaches of estimating affinity. With a preferential pairing factor p, estimated from quadrivalent and trivalent frequencies, and estimated chiasmate association factors for the two arms in quadrivalents (a(qu) and b(qu) for arms A and B, respectively) and in bivalents (a(bi) and b(bi)) a perfect fit between observed and predicted configuration frequencies can often be obtained in amphidiploids of several plant species, including Solanaceae and Gramineae. Since several proven autotetraploids give very similar apparent preferential pairing estimates, the biological significance of such parameters as preferential pairing and affinity factors is considered limited. The same is true for pairing parameters estimated by optimizing fit of configuration frequencies expected on the basis of theoretical models to observed data.

  12. Preferential attachment in the evolution of metabolic networks

    Directory of Open Access Journals (Sweden)

    Elofsson Arne

    2005-11-01

    Full Text Available Abstract Background Many biological networks show some characteristics of scale-free networks. Scale-free networks can evolve through preferential attachment where new nodes are preferentially attached to well connected nodes. In networks which have evolved through preferential attachment older nodes should have a higher average connectivity than younger nodes. Here we have investigated preferential attachment in the context of metabolic networks. Results The connectivities of the enzymes in the metabolic network of Escherichia coli were determined and representatives for these enzymes were located in 11 eukaryotes, 17 archaea and 46 bacteria. E. coli enzymes which have representatives in eukaryotes have a higher average connectivity while enzymes which are represented only in the prokaryotes, and especially the enzymes only present in βγ-proteobacteria, have lower connectivities than expected by chance. Interestingly, the enzymes which have been proposed as candidates for horizontal gene transfer have a higher average connectivity than the other enzymes. Furthermore, It was found that new edges are added to the highly connected enzymes at a faster rate than to enzymes with low connectivities which is consistent with preferential attachment. Conclusion Here, we have found indications of preferential attachment in the metabolic network of E. coli. A possible biological explanation for preferential attachment growth of metabolic networks is that novel enzymes created through gene duplication maintain some of the compounds involved in the original reaction, throughout its future evolution. In addition, we found that enzymes which are candidates for horizontal gene transfer have a higher average connectivity than other enzymes. This indicates that while new enzymes are attached preferentially to highly connected enzymes, these highly connected enzymes have sometimes been introduced into the E. coli genome by horizontal gene transfer. We speculate

  13. Preferential Regimes Can Make Tax Competition Less Harmful

    OpenAIRE

    Keen, Michael

    2001-01-01

    A key feature of the recent EU and OECD standards for good behavior in international taxation is a presumption against preferential tax regimes (such as those offering advantageous treatment to non-residents or enterprises not active in the domestic market), which are seen as especially corrosive forms of tax competition. This paper shows that, on the contrary, preferential regimes may serve a useful strategic purpose in enabling countries to confine their most aggressive tax competition to p...

  14. Dye staining and excavation of a lateral preferential flow network

    Directory of Open Access Journals (Sweden)

    A. E. Anderson

    2009-06-01

    Full Text Available Preferential flow paths have been found to be important for runoff generation, solute transport, and slope stability in many areas around the world. Although many studies have identified the particular characteristics of individual features and measured the runoff generation and solute transport within hillslopes, very few studies have determined how individual features are hydraulically connected at a hillslope scale. In this study, we used dye staining and excavation to determine the morphology and spatial pattern of a preferential flow network over a large scale (30 m. We explore the feasibility of extending small-scale dye staining techniques to the hillslope scale. We determine the lateral preferential flow paths that are active during the steady-state flow conditions and their interaction with the surrounding soil matrix. We also calculate the velocities of the flow through each cross-section of the hillslope and compare them to hillslope scale applied tracer measurements. Finally, we investigate the relationship between the contributing area and the characteristics of the preferential flow paths. The experiment revealed that larger contributing areas coincided with highly developed and hydraulically connected preferential flow paths that had flow with little interaction with the surrounding soil matrix. We found evidence of subsurface erosion and deposition of soil and organic material laterally and vertically within the soil. These results are important because they add to the understanding of the runoff generation, solute transport, and slope stability of preferential flow-dominated hillslopes.

  15. Brain and language: evidence for neural multifunctionality.

    Science.gov (United States)

    Cahana-Amitay, Dalia; Albert, Martin L

    2014-01-01

    This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term "neural multifunctionality" refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging.

  16. Mapping of pain circuitry in early post-natal development using manganese-enhanced MRI in rats.

    Science.gov (United States)

    Sperry, M M; Kandel, B M; Wehrli, S; Bass, K N; Das, S R; Dhillon, P S; Gee, J C; Barr, G A

    2017-06-03

    Premature or ill full-term infants are subject to a number of noxious procedures as part of their necessary medical care. Although we know that human infants show neural changes in response to such procedures, we know little of the sensory or affective brain circuitry activated by pain. In rodent models, the focus has been on spinal cord and, more recently, midbrain and medulla. The present study assesses activation of brain circuits using manganese-enhanced magnetic resonance imaging (MEMRI). Uptake of manganese, a paramagnetic contrast agent that is transported across active synapses and along axons, was measured in response to a hindpaw injection of dilute formalin in 12-day-old rat pups, the age at which rats begin to show aversion learning and which is roughly the equivalent of full-term human infants. Formalin induced the oft-reported biphasic response at this age and induced a conditioned aversion to cues associated with its injection, thus demonstrating the aversiveness of the stimulation. Morphometric analyses, structural equation modeling and co-expression analysis showed that limbic and sensory paths were activated, the most prominent of which were the prefrontal and anterior cingulate cortices, nucleus accumbens, amygdala, hypothalamus, several brainstem structures, and the cerebellum. Therefore, both sensory and affective circuits, which are activated by pain in the adult, can also be activated by noxious stimulation in 12-day-old rat pups. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Abnormalities in the effective connectivity of visuothalamic circuitry in schizophrenia.

    Science.gov (United States)

    Iwabuchi, S J; Palaniyappan, L

    2017-05-01

    Sensory-processing deficits appear crucial to the clinical expression of symptoms of schizophrenia. The visual cortex displays both dysconnectivity and aberrant spontaneous activity in patients with persistent symptoms and cognitive deficits. In this paper, we examine visual cortex in the context of the remerging notion of thalamic dysfunction in schizophrenia. We examined specific regional and longer-range abnormalities in sensory and thalamic circuits in schizophrenia, and whether these patterns are strong enough to discriminate symptomatic patients from controls. Using publicly available resting fMRI data of 71 controls and 62 schizophrenia patients, we derived conjunction maps of regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF) to inform further seed-based Granger causality analysis (GCA) to study effective connectivity patterns. ReHo, fALFF and GCA maps were entered into a multiple kernel learning classifier, to determine whether patterns of local and effective connectivity can differentiate controls from patients. Visual cortex shows both ReHo and fALFF reductions in patients. Visuothalamic effective connectivity in patients was significantly reduced. Local connectivity (ReHo) patterns discriminated patients from controls with the highest level of accuracy of 80.32%. Both the inflow and outflow of Granger causal information between visual cortex and thalamus is affected in schizophrenia; this occurs in conjunction with highly discriminatory but localized dysconnectivity and reduced neural activity within the visual cortex. This may explain the visual-processing deficits that are present despite symptomatic remission in schizophrenia.

  18. Method, apparatus and system to compensate for drift by physically unclonable function circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason

    2016-11-22

    Techniques and mechanisms to detect and compensate for drift by a physically uncloneable function (PUF) circuit. In an embodiment, first state information is registered as reference information to be made available for subsequent evaluation of whether drift by PUF circuitry has occurred. The first state information is associated with a first error correction strength. The first state information is generated based on a first PUF value output by the PUF circuitry. In another embodiment, second state information is determined based on a second PUF value that is output by the PUF circuitry. An evaluation of whether drift has occurred is performed based on the first state information and the second state information, the evaluation including determining whether a threshold error correction strength is exceeded concurrent with a magnitude of error being less than the first error correction strength.

  19. Abnormalities in the Climbing Fiber-Purkinje Cell Circuitry Contribute to Neuronal Dysfunction in ATXN1[82Q] Mice

    Science.gov (United States)

    Barnes, J; Ebner, BA; Duvick, LA; Gao, W; Chen, G; Orr, HT; Ebner, TJ

    2011-01-01

    One fundamental unanswered question in the field of polyglutamine diseases concerns the pathophysiology of neuronal dysfunction. Is there dysfunction in a specific neuronal population or circuit initially that contributes the onset of behavioral abnormalities? This study used a systems-level approach to investigate the functional integrity of the excitatory cerebellar cortical circuitry in vivo from several transgenic ATXN1 mouse lines. We tested the hypotheses that there are functional climbing fiber (CF)-Purkinje cell (PC) and parallel fiber (PF)-PC circuit abnormalities using flavoprotein autofluorescence optical imaging and extracellular field potential recordings. In early symptomatic and symptomatic animals expressing ATXN1[82Q] there is a marked reduction in PC responsiveness to CF activation. Immunostaining of vesicular glutamate transporter type 2 demonstrated a decrement in CF extension on PC dendrites in symptomatic ATXN1[82Q] mice. In contrast, responses to PF stimulation were relatively normal. Importantly, the deficits in CF-PC synaptic transmission required expression of pathogenic ataxin-1 (ATXN1[82Q]) and for its entrance into the nucleus of PCs. Loss of endogenous mouse Atxn1 had no discernible effects. Furthermore, the abnormalities in CF-PC synaptic transmission were ameliorated when mutant transgene expression was prevented during postnatal cerebellar development. The results demonstrate the preferential susceptibility of the CF-PC circuit to the effects of ATXN1[82Q]. Further, this deficit likely contributes to the abnormal motor phenotype of ATXN1[82Q] mice. For polyglutamine diseases generally, the findings support a model whereby specific neuronal circuits suffer insults that alter function before cell death. PMID:21900557

  20. Unilamellar DMPC Vesicles in Aqueous Glycerol: Preferential Interactions and Thermochemistry

    Science.gov (United States)

    Westh, Peter

    2003-01-01

    Glycerol is accumulated in response to environmental stresses in a diverse range of organisms. Understanding of favorable in vivo effects of this solute requires insight into its interactions with biological macromolecules, and one access to this information is the quantification of so-called preferential interactions in glycerol-biopolymer solutions. For model membrane systems, preferential interactions have been discussed, but not directly measured. Hence, we have applied a new differential vapor pressure equipment to quantify the isoosmotic preferential binding parameter, Γμ1, for systems of unilamellar vesicles of DMPC in aqueous glycerol. It is found that Γμ1 decreases linearly with the glycerol concentration with a slope of −0.14 ± 0.014 per molal. This implies that glycerol is preferentially excluded from the membrane-solvent interface. Calorimetric investigations of the same systems showed that the glycerol-DMPC interactions are weakly endothermic, and the temperature of the main phase transition increases slightly (0.16°C per molal) with the glycerol concentration. The results are discussed with respect to a molecular picture which takes into account both the partitioning of glycerol into the membrane and the preferential exclusion from the hydration layer, and it is concluded that the latter effect contributes about four times stronger than the former to the net interaction. PMID:12524287

  1. Converging hydrostatic and hydromechanic concepts of preferential flow definitions.

    Science.gov (United States)

    Kutilek, M; Germann, P F

    2009-02-16

    The boundary between preferential flow and Richards-type flow is a priori set at a volumetric soil water content theta* at which soil water diffusivity D (theta*) = eta (= 10(-6) m(2) s(-1)), where eta is the kinematic viscosity. First we estimated with a hydrostatic approach from soil water retention curves the boundary, theta(K), between the structural pore domain, in which preferential flow occurs, and the matrix pore domain, in which Richards-type flow occurs. We then compared theta(K) with theta* that was derived from the respective soil hydrological property functions of same soil sample. Second, from in situ investigations we determined 96 values of theta(G) as the terminal soil water contents that established themselves when the corresponding water-content waves of preferential flow have practically ceased. We compared the frequency distribution of theta(G) with the one of theta* that was calculated from the respective soil hydrological property functions of 32 soil samples that were determined with pressure plate apparatuses in the laboratory. There is support of the notion that theta(K) approximately = theta(G) approximately = theta*, thus indicating the potential of theta* to explain more generally what constitutes preferential flow. However, the support is assessed as working hypothesis on which to base further research rather than a procedure to a clear-cut identification of preferential flow and associated flow paths.

  2. A cortical neural prosthesis for restoring and enhancing memory

    Science.gov (United States)

    Berger, Theodore W.; Hampson, Robert E.; Song, Dong; Goonawardena, Anushka; Marmarelis, Vasilis Z.; Deadwyler, Sam A.

    2011-08-01

    A primary objective in developing a neural prosthesis is to replace neural circuitry in the brain that no longer functions appropriately. Such a goal requires artificial reconstruction of neuron-to-neuron connections in a way that can be recognized by the remaining normal circuitry, and that promotes appropriate interaction. In this study, the application of a specially designed neural prosthesis using a multi-input/multi-output (MIMO) nonlinear model is demonstrated by using trains of electrical stimulation pulses to substitute for MIMO model derived ensemble firing patterns. Ensembles of CA3 and CA1 hippocampal neurons, recorded from rats performing a delayed-nonmatch-to-sample (DNMS) memory task, exhibited successful encoding of trial-specific sample lever information in the form of different spatiotemporal firing patterns. MIMO patterns, identified online and in real-time, were employed within a closed-loop behavioral paradigm. Results showed that the model was able to predict successful performance on the same trial. Also, MIMO model-derived patterns, delivered as electrical stimulation to the same electrodes, improved performance under normal testing conditions and, more importantly, were capable of recovering performance when delivered to animals with ensemble hippocampal activity compromised by pharmacologic blockade of synaptic transmission. These integrated experimental-modeling studies show for the first time that, with sufficient information about the neural coding of memories, a neural prosthesis capable of real-time diagnosis and manipulation of the encoding process can restore and even enhance cognitive, mnemonic processes.

  3. A cortical neural prosthesis for restoring and enhancing memory.

    Science.gov (United States)

    Berger, Theodore W; Hampson, Robert E; Song, Dong; Goonawardena, Anushka; Marmarelis, Vasilis Z; Deadwyler, Sam A

    2011-08-01

    A primary objective in developing a neural prosthesis is to replace neural circuitry in the brain that no longer functions appropriately. Such a goal requires artificial reconstruction of neuron-to-neuron connections in a way that can be recognized by the remaining normal circuitry, and that promotes appropriate interaction. In this study, the application of a specially designed neural prosthesis using a multi-input/multi-output (MIMO) nonlinear model is demonstrated by using trains of electrical stimulation pulses to substitute for MIMO model derived ensemble firing patterns. Ensembles of CA3 and CA1 hippocampal neurons, recorded from rats performing a delayed-nonmatch-to-sample (DNMS) memory task, exhibited successful encoding of trial-specific sample lever information in the form of different spatiotemporal firing patterns. MIMO patterns, identified online and in real-time, were employed within a closed-loop behavioral paradigm. Results showed that the model was able to predict successful performance on the same trial. Also, MIMO model-derived patterns, delivered as electrical stimulation to the same electrodes, improved performance under normal testing conditions and, more importantly, were capable of recovering performance when delivered to animals with ensemble hippocampal activity compromised by pharmacologic blockade of synaptic transmission. These integrated experimental-modeling studies show for the first time that, with sufficient information about the neural coding of memories, a neural prosthesis capable of real-time diagnosis and manipulation of the encoding process can restore and even enhance cognitive, mnemonic processes.

  4. Preferential Voting in Denmark: How, Why, and to What Effect?

    DEFF Research Database (Denmark)

    Elklit, Jørgen

    is then briefly compared to the Swedish and the Finnish systems before a few empirical results from Danish impact studies are presented. Finally, a model attempts to illustrate how the various explanatory factors interact to produce the parties’ votes in the Danish multi-member constituencies.......The paper provides an overview of (1) the Danish system for casting a preferential – or personal – vote in a proportional list system and (2) how seats are subsequently allocated. Denmark differs from most (all?) preferential list PR systems by letting the parties themselves (actually the parties......’ multi-member constituency branches) decide which one of four possible preferential list options they want to employ in an upcoming election. The two dominant options are explained in some detail, to allow a full understanding of how they function. The paper then goes on to discuss how this system can...

  5. The Stable Equilibrium of Preferential Trade Agreements under Technology Asymmetry

    Directory of Open Access Journals (Sweden)

    Young-Han Kim

    2011-12-01

    Full Text Available This paper examines the optimal policy for trade negotiation in the current multilateral and preferential trade regime. Using a four country oligopoly model with asymmetric technology, we examine the implication of preferential trade agreement on tariff and welfare. We find any preferential trade agreement has a tariff complementarity effect. Social welfare of the more efficient country is also higher with more cooperative trade negotiation regime. However, for technically inefficient country, the cooperative trade policy does not always guarantee to improve the social welfare when the technology difference is large or the global free trade is not feasible. Under large technology difference, we show that South-South FTAs is an optimal alternative policy for the inefficient countries and is more sustainable.

  6. Inherently stochastic spiking neurons for probabilistic neural computation

    KAUST Repository

    Al-Shedivat, Maruan

    2015-04-01

    Neuromorphic engineering aims to design hardware that efficiently mimics neural circuitry and provides the means for emulating and studying neural systems. In this paper, we propose a new memristor-based neuron circuit that uniquely complements the scope of neuron implementations and follows the stochastic spike response model (SRM), which plays a cornerstone role in spike-based probabilistic algorithms. We demonstrate that the switching of the memristor is akin to the stochastic firing of the SRM. Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards memristive, scalable and efficient stochastic neuromorphic platforms. © 2015 IEEE.

  7. Current challenges in quantifying preferential flow through the vadose zone

    Science.gov (United States)

    Koestel, John; Larsbo, Mats; Jarvis, Nick

    2017-04-01

    In this presentation, we give an overview of current challenges in quantifying preferential flow through the vadose zone. A review of the literature suggests that current generation models do not fully reflect the present state of process understanding and empirical knowledge of preferential flow. We believe that the development of improved models will be stimulated by the increasingly widespread application of novel imaging technologies as well as future advances in computational power and numerical techniques. One of the main challenges in this respect is to bridge the large gap between the scales at which preferential flow occurs (pore to Darcy scales) and the scale of interest for management (fields, catchments, regions). Studies at the pore scale are being supported by the development of 3-D non-invasive imaging and numerical simulation techniques. These studies are leading to a better understanding of how macropore network topology and initial/boundary conditions control key state variables like matric potential and thus the strength of preferential flow. Extrapolation of this knowledge to larger scales would require support from theoretical frameworks such as key concepts from percolation and network theory, since we lack measurement technologies to quantify macropore networks at these large scales. Linked hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data enable investigation of the larger-scale heterogeneities that can generate preferential flow patterns at pedon, hillslope and field scales. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help in parameterizing models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  8. Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa.

    Science.gov (United States)

    Holsen, Laura M; Lawson, Elizabeth A; Blum, Justine; Ko, Eunice; Makris, Nikos; Fazeli, Pouneh K; Klibanski, Anne; Goldstein, Jill M

    2012-09-01

    Previous studies have provided evidence of food motivation circuitry dysfunction in individuals with anorexia nervosa. However, methodological limitations present challenges to the development of a cohesive neurobiological model of anorexia nervosa. Our goal was to investigate the neural circuitry of appetite dysregulation across states of hunger and satiety in active and weight-restored phases of anorexia nervosa using robust methodology to advance our understanding of potential neural circuitry abnormalities related to hedonic and nonhedonic state and trait. We scanned women with active anorexia nervosa, weight-restored women with anorexia nervosa and healthy-weight controls on a 3-T Siemens magnetic resonance scanner while they viewed images of high- and low-calorie foods and objects before (premeal) and after (postmeal) eating a 400 kcal meal. We enrolled 12 women with active disease, 10 weight-restored women with anorexia nervosa and 11 controls in our study. Compared with controls, both weight-restored women and those with active disease demonstrated hypoactivity premeal in the hypothalamus, amygdala and anterior insula in response to high-calorie foods (v. objects). Postmeal, hypoactivation in the anterior insula persisted in women with active disease. Percent signal change in the anterior insula was positively correlated with food stimuli ratings and hedonic and nonhedonic appetite ratings in controls, but not women with active disease. Our findings are limited by a relatively small sample size, which prevented the use of an analysis of variance model and exploration of interaction effects, although our substantial effect sizes of between-group differences suggest adequate power for our statistical analysis approach. Participants taking psychotropic medications were included. Our data provide evidence of potential state and trait hypoactivations in food motivation regions involved in the assessment of food's reward value and integration of these with

  9. Some modifications of electric circuitry for internal friction measurements of U-shape specimens

    OpenAIRE

    Osamu, Yoshinari; M., KOIWA; H., Sugawara; I., SATO

    1980-01-01

    Some modifications of the electric circuitry are described for the apparatus of the internal friction measurement of thin wire specimens; the apparatus has been developed by Franklin et al. The improved apparatus has been successfully used in the internal friction measurements of cold‐worked vanadium specimens.

  10. Analysis and simulation of the SLD WIC (Warm Iron Calorimeter) PADS hybrid preamplifier circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.D.; Horelick, D.

    1990-10-01

    The SLD PADS electronics consist of over 9000 channels of charge-sensitive preamplifiers followed by integrated sample/hold data storage, digitizing, and readout circuitry. This paper uses computer simulation techniques to analyze critical performance parameters of the preamplifier hybrid including its interactions with the detector system. Simulation results are presented and verified with measured performance. 6 refs., 9 figs.

  11. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Karen K Y Ling

    2010-11-01

    Full Text Available Spinal muscular atrophy (SMA is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7. In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3-5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.

  12. 78 FR 41079 - Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same

    Science.gov (United States)

    2013-07-09

    ... COMMISSION Certain Semiconductor Chips With Dram Circuitry, and Modules and Products Containing Same AGENCY... invalid. The same day Nanya filed a petition for review of a number of the determinations in the ID that.... Patent Publication No. 2006/0126401 to Ba (RX-107) should or should not have the same number of legs? b...

  13. Preferential positron annihilation in Fe-Al system

    Energy Technology Data Exchange (ETDEWEB)

    Kuriplach, J.; Dauve, C. [Ghent Univ. (Belgium); Sob, M. [Akademie Ved Ceske Republiky, Brno (Czech Republic). Ustav Fyzikalni Metalurgie

    1997-10-01

    The effect of preferential positron annihilation in binary Fe-Al system is studied by means of LMTO electron and positron structure method. The study covers the whole concentration range from Fe to Al. The supercell approach is utilized to model the structure of alloys. We conclude that positron preferential occupation of Fe sites is negligible for small Al concentrations and increases with Al content. The nonlinear dependence of positron annihilation rate on Al concentration can be almost fully explained as a volume effect. (author). 16 refs, 5 figs.

  14. [Glutamate signaling and neural plasticity].

    Science.gov (United States)

    Watanabe, Masahiko

    2013-07-01

    Proper functioning of the nervous system relies on the precise formation of neural circuits during development. At birth, neurons have redundant synaptic connections not only to their proper targets but also to other neighboring cells. Then, functional neural circuits are formed during early postnatal development by the selective strengthening of necessary synapses and weakening of surplus connections. Synaptic connections are also modified so that projection fields of active afferents expand at the expense of lesser ones. We have studied the molecular mechanisms underlying these activity-dependent prunings and the plasticity of synaptic circuitry using gene-engineered mice defective in the glutamatergic signaling system. NMDA-type glutamate receptors are critically involved in the establishment of the somatosensory pathway ascending from the brainstem trigeminal nucleus to the somatosensory cortex. Without NMDA receptors, whisker-related patterning fails to develop, whereas lesion-induced plasticity occurs normally during the critical period. In contrast, mice lacking the glutamate transporters GLAST or GLT1 are selectively impaired in the lesion-induced critical plasticity of cortical barrels, although whisker-related patterning itself develops normally. In the developing cerebellum, multiple climbing fibers initially innervating given Purkinje cells are eliminated one by one until mono-innervation is achieved. In this pruning process, P/Q-type Ca2+ channels expressed on Purkinje cells are critically involved by the selective strengthening of single main climbing fibers against other lesser afferents. Therefore, the activation of glutamate receptors that leads to an activity-dependent increase in the intracellular Ca2+ concentration plays a key role in the pruning of immature synaptic circuits into functional circuits. On the other hand, glutamate transporters appear to control activity-dependent plasticity among afferent fields, presumably through adjusting

  15. Preferential utilization of pans by springbok (Antidorcas marsupialis ...

    African Journals Online (AJOL)

    Preferential utilization of pans by springbok (Antidorcas marsupialis). Milton S.J., Dean W.R.J., Marincowitz C.P.. Abstract. Forage utilization by springbok in pans and surrounding habitats was compared at one karroid shrubland site and two desert grassland sites and was found to be greater in pans than on adjacent plains ...

  16. Fitness networks for real world systems via modified preferential attachment

    Science.gov (United States)

    Shang, Ke-ke; Small, Michael; Yan, Wei-sheng

    2017-05-01

    Complex networks are virtually ubiquitous, and the Barabási and Albert model (BA model) has became an acknowledged standard for the modelling of these systems. The so-called BA model is a kind of preferential attachment growth model based on the intuitive premise that popularity is attractive. However, preferential attachment alone is insufficient to describe the diversity of complex networks observed in the real world. In this paper we first use the accuracy of a link prediction method, as a metric for network fitness. The link prediction method predicts the occurrence of links consistent with preferential attachment, the performance of this link prediction scheme is then a natural measure of the ;preferential-attachment-likeness; of a given network. We then propose several modification methods and modified BA models to construct networks which more accurately describe the fitness properties of real networks. We find that all features assortativity, degree distribution and rich-club formation can play significant roles for the network construction and eventual structure. Moreover, link sparsity and the size of a network are key factors for network reconstruction. In addition, we find that the structure of the network which is limited by geographic location (nodes are embedded in a Euclidean space and connectivity is correlated with distances) differs from other typical networks. In social networks, we observe that the high school contact network has similar structure as the friends network and so we speculate that the contact behaviours can reflect real friendships.

  17. Preferential procurement in the public sector: The case of Amathole ...

    African Journals Online (AJOL)

    5 of 2000: Preferential Procurement Policy Framework Act (PPPFA), 2000 at government departments, with particular focus on the Amathole region of the Eastern Cape Province. The assessment was undertaken in a qualitative and quantitative research study conducted among key construction industry stakeholders such ...

  18. Predicting Alcohol, Cigarette, and Marijuana Use from Preferential Music Consumption

    Science.gov (United States)

    Oberle, Crystal D.; Garcia, Javier A.

    2015-01-01

    This study investigated whether use of alcohol, cigarettes, and marijuana may be predicted from preferential consumption of particular music genres. Undergraduates (257 women and 78 men) completed a questionnaire assessing these variables. Partial correlation analyses, controlling for sensation-seeking tendencies and behaviors, revealed that…

  19. Soil properties and preferential solute transport at the field scale

    DEFF Research Database (Denmark)

    Koestel, J K; Minh, Luong Nhat; Nørgaard, Trine

    An important fraction of water flow and solute transport through soil takes place through preferential flow paths. Although this had been already observed in the nineteenth century, it had been forgotten by the scientific community until it was rediscovered during the 1970s. The awareness...

  20. Growth of preferential attachment random graphs via continuous ...

    Indian Academy of Sciences (India)

    1Departments of Mathematics and Statistics, Iowa State University, Ames, IA 50011,. USA. 2Department of Statistics, Iowa State ... Introduction and results. Preferential attachment processes have ... rential attachment', that is by attaching new vertices to existing nodes with probabilities proportional to their 'weight'. When the ...

  1. Preferential Market Access, Foreign Aid and Economic Development

    DEFF Research Database (Denmark)

    Afesorgbor, Sylvanus Kwaku; Abreha, Kaleb Girma

    contributed to the economic development of the beneficiary countries. Focusing on the ACP countries over the period 1970-2009, we show that only the EU preferential scheme is effective in promoting exports and that market access plays a significant and economically large role in the development of beneficiary...

  2. Preferential treatment of women and psychological reactance theory: An experiment

    NARCIS (Netherlands)

    Vrugt, A.J.

    1992-01-01

    187 male academic staff members read a low- or high-threat (freedom restricting) description of measures for the preferential treatment of women in job selection for academic staff functions. The high-threat condition evoked more psychological reactance than the low-threat condition. Ss with high

  3. Preferential procurement in the public sector: The case of Amathole

    African Journals Online (AJOL)

    clients, architects, engineers, and quantity surveyors based within the Amathole region. Selected findings include that there is a perceived low level of awareness of preferential procurement in the public sector as the majority of the institutions investigated have not completely implemented procurement responsibilities.

  4. 19 CFR 10.253 - Articles eligible for preferential treatment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Articles eligible for preferential treatment. 10...; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Andean Trade Promotion and Drug Eradication Act Extension of Atpa Benefits to Tuna and Certain Other Non-Textile Articles...

  5. 19 CFR 10.223 - Articles eligible for preferential treatment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Articles eligible for preferential treatment. 10...; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. United States-Caribbean Basin Trade Partnership Act Textile and Apparel Articles Under the United States-Caribbean Basin...

  6. 19 CFR 10.243 - Articles eligible for preferential treatment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Articles eligible for preferential treatment. 10...; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Andean Trade Promotion and Drug Eradication Act Apparel and Other Textile Articles Under the Andean Trade Promotion and...

  7. Infants' Preferential Attention to Sung and Spoken Stimuli

    Science.gov (United States)

    Costa-Giomi, Eugenia; Ilari, Beatriz

    2014-01-01

    Caregivers and early childhood teachers all over the world use singing and speech to elicit and maintain infants' attention. Research comparing infants' preferential attention to music and speech is inconclusive regarding their responses to these two types of auditory stimuli, with one study showing a music bias and another one…

  8. Predicting the growth of new links by new preferential attachment ...

    Indian Academy of Sciences (India)

    2014-03-07

    Mar 7, 2014 ... 4School of Management Science and Engineering, Central University of Finance and Economics, ... cal scale-free network, we propose a class of novel preferential attachment similarity indices for predicting ... unknown links and new insights to understand the underlying mechanisms that drive the network.

  9. Normative data on development of neural and behavioral mechanisms underlying attention orienting toward social-emotional stimuli: An exploratory study

    OpenAIRE

    Lindstrom, Kara; Guyer, Amanda E; Mogg, Karin; Bradley, Brendan P.; Fox, Nathan A.; Ernst, Monique; Nelson, Eric E.; Leibenluft, Ellen; Britton, Jennifer C.; Monk, Christopher S.; Pine, Daniel S.; Bar-Haim, Yair

    2009-01-01

    The ability of positive and negative facial signals to influence attention orienting is crucial to social functioning. Given the dramatic developmental change in neural architecture supporting social function, positive and negative facial cues may influence attention orienting differently in relatively young or old individuals. However, virtually no research examines such age-related differences in the neural circuitry supporting attention orienting to emotional faces. We examined age-related...

  10. Identification and expression analysis of nervous wreck, which is preferentially expressed in the brain of the male silkworm moth, Bombyx mori

    OpenAIRE

    Kiya, Taketoshi; Iwami, Masafumi

    2011-01-01

    Sexually dimorphic neural circuits are essential for reproductive behaviour. The molecular basis of sexual dimorphism in the silkworm moth (Bombyx mori) brain, however, is unclear. We conducted cDNA subtraction screening and identified nervous wreck (Bmnwk), a synaptic growth regulatory gene, whose expression is higher in the male brain than in the female brain of the silkworm. Bmnwk was preferentially expressed in the brain at the late pupae and adult stages. In situ hybridization revealed t...

  11. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  12. Sex differences in the development of emotion circuitry in adolescents at risk for substance abuse: a longitudinal fMRI study.

    Science.gov (United States)

    Hardee, Jillian E; Cope, Lora M; Munier, Emily C; Welsh, Robert C; Zucker, Robert A; Heitzeg, Mary M

    2017-06-01

    There is substantial evidence for behavioral sex differences in risk trajectories for alcohol and substance use, with internalizing factors such as negative affectivity contributing more to female risk. Because the neural development of emotion circuitry varies between males and females across adolescence, it represents a potential mechanism by which underlying neurobiology contributes to risk for substance use. Longitudinal functional magnetic resonance imaging was conducted in males and females (n = 18 each) with a family history of alcohol use disorders starting at ages 8-13 years. Participants performed an affective word task during functional magnetic resonance imaging at 1- to 2-year intervals, covering the age range of 8.5-17.6 years (3-4 scans per participant). Significant age-related sex differences were found in the right amygdala and right precentral gyrus for the negative vs neutral word condition. Males showed a significant decrease in both amygdala and precentral gyrus activation with age, whereas the response in females persisted. The subjective experience of internalizing symptomatology significantly increased with age for females but not for males. Taken together, these results reveal sex differences in negative affect processing in at-risk adolescents, and offer longitudinal neural evidence for female substance use risk through internalizing pathways. © The Author (2017). Published by Oxford University Press.

  13. Epsilon-Near-Zero Photonics Wires for Mid-Infrared Optical Lumped Circuitry

    CERN Document Server

    Liu, Runyu; Zhong, Yujun; Podolskiy, Viktor; Wasserman, Daniel

    2016-01-01

    There has been recent interest in the development of optical analogues of lumped element circuitry, where optical elements act as effective optical inductors, capacitors, and resistors. Such optical circuitry requires the photonic equivalent of electrical wires, structures able carry optical frequency signals to and from the lumped circuit elements while simultaneously maintaining signal carrier wavelengths much larger than the size of the lumped elements. Here we demonstrate the design, fabrication, and characterization of hybrid metal/doped-semiconductor 'photonic wires' operating at optical frequencies with effective indices of propagation near-zero. Our samples are characterized by polarization and angle-dependent FTIR spectroscopy and modeled by finite element methods and rigorous coupled wave analysis. We demonstrate coupling to such photonic wires from free space, and show the effective wavelength of the excited mode to be approximately an order of magnitude larger than the free-space wavelength of our...

  14. Stitching Codeable Circuits: High School Students' Learning About Circuitry and Coding with Electronic Textiles

    Science.gov (United States)

    Litts, Breanne K.; Kafai, Yasmin B.; Lui, Debora A.; Walker, Justice T.; Widman, Sari A.

    2017-10-01

    Learning about circuitry by connecting a battery, light bulb, and wires is a common activity in many science classrooms. In this paper, we expand students' learning about circuitry with electronic textiles, which use conductive thread instead of wires and sewable LEDs instead of lightbulbs, by integrating programming sensor inputs and light outputs and examining how the two domains interact. We implemented an electronic textiles unit with 23 high school students ages 16-17 years who learned how to craft and code circuits with the LilyPad Arduino, an electronic textile construction kit. Our analyses not only confirm significant increases in students' understanding of functional circuits but also showcase students' ability in designing and remixing program code for controlling circuits. In our discussion, we address opportunities and challenges of introducing codeable circuit design for integrating maker activities that include engineering and computing into classrooms.

  15. Optogenetics in Silicon: A Neural Processor for Predicting Optically Active Neural Networks.

    Science.gov (United States)

    Junwen Luo; Nikolic, Konstantin; Evans, Benjamin D; Na Dong; Xiaohan Sun; Andras, Peter; Yakovlev, Alex; Degenaar, Patrick

    2017-02-01

    We present a reconfigurable neural processor for real-time simulation and prediction of opto-neural behaviour. We combined a detailed Hodgkin-Huxley CA3 neuron integrated with a four-state Channelrhodopsin-2 (ChR2) model into reconfigurable silicon hardware. Our architecture consists of a Field Programmable Gated Array (FPGA) with a custom-built computing data-path, a separate data management system and a memory approach based router. Advancements over previous work include the incorporation of short and long-term calcium and light-dependent ion channels in reconfigurable hardware. Also, the developed processor is computationally efficient, requiring only 0.03 ms processing time per sub-frame for a single neuron and 9.7 ms for a fully connected network of 500 neurons with a given FPGA frequency of 56.7 MHz. It can therefore be utilized for exploration of closed loop processing and tuning of biologically realistic optogenetic circuitry.

  16. Functional role for cortical-striatal circuitry in modulating alcohol self-administration.

    Science.gov (United States)

    Jaramillo, Anel A; Randall, Patrick A; Stewart, Spencer; Fortino, Brayden; Van Voorhies, Kalynn; Besheer, Joyce

    2018-03-01

    The cortical-striatal brain circuitry is heavily implicated in drug-use. As such, the present study investigated the functional role of cortical-striatal circuitry in modulating alcohol self-administration. Given that a functional role for the nucleus accumbens core (AcbC) in modulating alcohol-reinforced responding has been established, we sought to test the role of cortical brain regions with afferent projections to the AcbC: the medial prefrontal cortex (mPFC) and the insular cortex (IC). Long-Evans rats were trained to self-administer alcohol (15% alcohol (v/v)+2% sucrose (w/v)) during 30 min sessions. To test the functional role of the mPFC or IC, we utilized a chemogenetic technique (hM4D i -Designer Receptors Activation by Designer Drugs) to silence neuronal activity prior to an alcohol self-administration session. Additionally, we chemogenetically silenced mPFC→AcbC or IC→AcbC projections, to investigate the role of cortical-striatal circuitry in modulating alcohol self-administration. Chemogenetically silencing the mPFC decreased alcohol self-administration, while silencing the IC increased alcohol self-administration, an effect absent in mCherry-Controls. Interestingly, silencing mPFC→AcbC projections had no effect on alcohol self-administration. In contrast, silencing IC→AcbC projections decreased alcohol self-administration, in a reinforcer-specific manner as there was no effect in rats trained to self-administer sucrose (0.8%, w/v). Additionally, no change in self-administration was observed in the mCherry-Controls. Together these data demonstrate the complex role of the cortical-striatal circuitry while implicating a role for the insula-striatal circuit in modulating ongoing alcohol self-administration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Endothelial-dependent vasodilators preferentially increase subendocardial blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Pelc, L.R.; Gross, G.J.; Warltier, D.C.

    1986-03-05

    Interference with arachidonic acid metabolism on the effect of acetylcholine (Ach) or arachidonic acid (AA) to preferentially increase subendocardial perfusion was investigated in anesthetized dogs. Hemodynamics, regional myocardial blood flow (MBF (ml/min/g):radioactive microspheres) and the left ventricular transmural distribution of flow (endo/epi) were measured. Intracoronary infusion of Ach (10 ..mu..g/min) and AA (585 ..mu..g/min) significantly (P < .05*) increased myocardial perfusion and selectively redistributed flow to the subendocardium (increased endo/epi) without changes in systemic hemodynamics. Inhibition of phospholipase A/sub 2/ by quinacrine (Q; 600 ..mu..g/min, ic) attenuated the increase in myocardial perfusion produced by Ach but not by AA and inhibited the redistribution of flow to the subendocardium. The present results suggest that endothelium-dependent vasodilators produce a preferential increase in subendocardial perfusion via a product of AA metabolism.

  18. Bioclogging in Porous Media: Preferential Flow Paths and Anomalous Transport

    Science.gov (United States)

    Holzner, M.; Carrel, M.; Morales, V.; Derlon, N.; Beltran, M. A.; Morgenroth, E.; Kaufmann, R.

    2016-12-01

    Biofilms are sessile communities of microorganisms held together by an extracellular polymeric substance that enables surface colonization. In porous media (e.g. soils, trickling filters etc.) biofilm growth has been shown to affect the hydrodynamics in a complex fashion at the pore-scale by clogging individual pores and enhancing preferential flow pathways and anomalous transport. These phenomena are a direct consequence of microbial growth and metabolism, mass transfer processes and complex flow velocity fields possibly exhibiting pronounced three-dimensional features. Despite considerable past work, however, it is not fully understood how bioclogging interacts with flow and mass transport processes in porous media. In this work we use imaging techniques to determine the flow velocities and the distribution of biofilm in a porous medium. Three-dimensional millimodels are packed with a transparent porous medium and a glucose solution to match the optical refractive index. The models are inoculated with planktonic wildtype bacteria and biofilm cultivated for 60 h under a constant flow and nutrient conditions. The pore flow velocities in the increasingly bioclogged medium are measured using 3D particle tracking velocimetry (3D-PTV). The three-dimensional spatial distribution of the biofilm within the pore space is assessed by imaging the model with X-Ray microtomography. We find that biofilm growth increases the complexity of the pore space, leading to the formation of preferential flow pathways and "dead" pore zones. The probability of persistent high and low velocity regions (within preferential paths resp. stagnant flow regions) thus increases upon biofilm growth, leading to an enhancement of anomalous transport. The structural data seems to indicate that the largest pores are not getting clogged and carry the preferential flow, whereas intricated structures develop in the smallest pores, where the flow becomes almost stagnant. These findings may be relevant for

  19. Preferential growth in FeCoV/Ti:N multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D.; Senthil Kumar, M.; Boeni, P.; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The preferential growth in Fe{sub 0.50}Co{sub 0.48}V{sub 0.02}/Ti:N multilayers was studied by X-ray diffraction. X-ray specular reflectometry and subsequent simulation of the spectra was used to extract information about the thickness and interface roughness of individual layers. The investigation gives structural information about the material combination and its potential for the use of neutron polarizers. (author) 2 figs., 1 tab., 2 refs.

  20. A Developmental Shift from Positive to Negative Connectivity in Human Amygdala-Prefrontal Circuitry

    Science.gov (United States)

    Gee, Dylan G.; Humphreys, Kathryn L.; Flannery, Jessica; Goff, Bonnie; Telzer, Eva H.; Shapiro, Mor; Hare, Todd A.; Bookheimer, Susan Y.; Tottenham, Nim

    2013-01-01

    Recent human imaging and animal studies highlight the importance of frontoamygdala circuitry in the regulation of emotional behavior and its disruption in anxiety-related disorders. While tracing studies have suggested changes in amygdala-cortical connectivity through the adolescent period in rodents, less is known about the reciprocal connections within this circuitry across human development, when these circuits are being fine-tuned and substantial changes in emotional control are observed. The present study examined developmental changes in amygdala-prefrontal circuitry across the ages of 4 to 22 years using task-based functional magnetic resonance imaging (fMRI). Results suggest positive amygdala-prefrontal connectivity in early childhood that switches to negative functional connectivity during the transition to adolescence. Amygdala-mPFC functional connectivity was significantly positive (greater than zero) among participants younger than ten, whereas functional connectivity was significantly negative (less than zero) among participants ten years and older, over and above the effect of amygdala reactivity. The developmental switch in functional connectivity was paralleled by a steady decline in amygdala reactivity. Moreover, the valence switch might explain age-related improvement in task performance and a developmentally normative decline in anxiety. Initial positive connectivity followed by a valence shift to negative connectivity provides a neurobiological basis for regulatory development and may present novel insight into a more general process of developing regulatory connections. PMID:23467374

  1. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings

    Directory of Open Access Journals (Sweden)

    Dichter Gabriel S

    2012-07-01

    Full Text Available Abstract This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders, neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette’s syndrome, conduct disorder/oppositional defiant disorder, and genetic syndromes (i.e., Fragile X syndrome, Prader–Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome. We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.

  2. Neurocircuitry Underlying the Preferential Sensitivity of Prefrontal Catecholamines to Low-Dose Psychostimulants

    Science.gov (United States)

    Schmeichel, Brooke E; Berridge, Craig W

    2013-01-01

    Low doses of psychostimulants, including methylphenidate (MPH), are highly effective in the treatment of attention-deficit/hyperactivity disorder (ADHD). At these doses, psychostimulants improve prefrontal cortex (PFC)-dependent function. Recent evidence indicates that low and clinically relevant doses of psychostimulants target norepinephrine (NE) and dopamine (DA) signaling preferentially in the PFC. To better understand the neural mechanisms responsible for the regional selectivity of low-dose psychostimulant action, it is important to first identify the underlying neurocircuitry. The current study used reverse microdialysis to test the hypothesis that the preferential targeting of PFC catecholamines by low-dose psychostimulants involves direct action within the PFC, reflecting an intrinsic property of this region. For these studies, the effects of varying concentrations of MPH (0.25, 1.0, and 4.0 μM) on NE and DA efflux were examined within the PFC and select subcortical fields in unanesthetized rats. Low concentrations of MPH elicited significantly larger increases in extracellular levels of NE and DA in the PFC than in subcortical regions linked to motor-activating and arousal-promoting actions of psychostimulants (nucleus accumbens and medial septal area, respectively). The differential action of MPH across regions disappeared at higher concentrations. The enhanced sensitivity of PFC catecholamines to low and clinically relevant doses of psychostimulants, at least in part, reflects a unique sensitivity of this region to NE/DA transporter blockade. Available evidence suggests that the increased sensitivity of PFC catecholamines likely involves DA clearance through the NE transporter within the PFC. PMID:23303075

  3. Restructuring of basal ganglia circuitry and associated behaviors triggered by low striatal D2 receptor expression: implications for substance use disorders.

    Science.gov (United States)

    Dobbs, L K; Lemos, J C; Alvarez, V A

    2017-01-01

    Dopamine D2 receptors (D2Rs) consistently emerge as a critical substrate for the etiology of some major psychiatric disorders. Indeed, a central theory of substance use disorders (SUDs) postulates that a reduction in D2R levels in the striatum is a determining factor that confers vulnerability to abuse substances. A large number of clinical and preclinical studies strongly support this link between SUDs and D2Rs; however, identifying the mechanism by which low D2Rs facilitate SUDs has been hindered by the complexity of circuit connectivity, the heterogeneity of D2R expression and the multifaceted constellation of phenotypes observed in SUD patient. Animal models are well-suited for understanding the mechanisms because they allow access to the circuitry and the genetic tools that enable a dissection of the D2R heterogeneity. This review discusses recent findings on the functional role of D2Rs and highlights the distinctive contributions of D2Rs expressed on specific neuronal subpopulations to the behavioral responses to stimulant drugs. A circuit-wide restructuring of local and long-range inhibitory connectivity within the basal ganglia is observed in response to manipulation of striatal D2R levels and is accompanied by multiple alterations in dopamine-dependent behaviors. Collectively, these new findings provide compelling evidence for a critical role of striatal D2Rs in shaping basal ganglia connectivity; even among neurons that do not express D2Rs. These findings from animal models have deep clinical implications for SUD patients with low levels D2R availability where a similar restructuring of basal ganglia circuitry is expected to take place. © 2016 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  4. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study

    Directory of Open Access Journals (Sweden)

    Arianna eLaCroix

    2015-08-01

    Full Text Available The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel’s Shared Syntactic Integration Resource Hypothesis (SSIRH and Koelsch’s neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music versus speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music.

  5. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study

    Science.gov (United States)

    LaCroix, Arianna N.; Diaz, Alvaro F.; Rogalsky, Corianne

    2015-01-01

    The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent) music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel's Shared Syntactic Integration Resource Hypothesis (SSIRH) and Koelsch's neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET) literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music vs. speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music. PMID:26321976

  6. Neural reuse: a fundamental organizational principle of the brain.

    Science.gov (United States)

    Anderson, Michael L

    2010-08-01

    An emerging class of theories concerning the functional structure of the brain takes the reuse of neural circuitry for various cognitive purposes to be a central organizational principle. According to these theories, it is quite common for neural circuits established for one purpose to be exapted (exploited, recycled, redeployed) during evolution or normal development, and be put to different uses, often without losing their original functions. Neural reuse theories thus differ from the usual understanding of the role of neural plasticity (which is, after all, a kind of reuse) in brain organization along the following lines: According to neural reuse, circuits can continue to acquire new uses after an initial or original function is established; the acquisition of new uses need not involve unusual circumstances such as injury or loss of established function; and the acquisition of a new use need not involve (much) local change to circuit structure (e.g., it might involve only the establishment of functional connections to new neural partners). Thus, neural reuse theories offer a distinct perspective on several topics of general interest, such as: the evolution and development of the brain, including (for instance) the evolutionary-developmental pathway supporting primate tool use and human language; the degree of modularity in brain organization; the degree of localization of cognitive function; and the cortical parcellation problem and the prospects (and proper methods to employ) for function to structure mapping. The idea also has some practical implications in the areas of rehabilitative medicine and machine interface design.

  7. Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters

    Science.gov (United States)

    Weems, Peyton W.; Goodman, Robert L.; Lehman, Michael N.

    2015-01-01

    Seasonal reproduction is a common adaptive strategy among mammals that allows for breeding to occur at times of the year when it is most advantageous for the subsequent survival and growth of offspring. A major mechanism responsible for seasonal reproduction is a striking increase in the responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the negative feedback effects of estradiol. The neural and neuroendocrine circuitry responsible for mammalian seasonal reproduction has been primarily studied in three animal models: the sheep, and two species of hamsters. In this review, we first describe the afferent signals, neural circuitry and transmitters/peptides responsible for seasonal reproductive transitions in sheep, and then compare these mechanisms with those derived from studies in hamsters. The results suggest common principles as well as differences in the role of specific brain nuclei and neuropeptides, including that of kisspeptin cells of the hypothalamic arcuate nucleus, in regulating seasonal reproduction among mammals. PMID:25582913

  8. Assessing preferential flow by simultaneously injecting nanoparticle and chemical tracers

    KAUST Repository

    Subramanian, S. K.

    2013-01-01

    The exact manner in which preferential (e.g., much faster than average) flow occurs in the subsurface through small fractures or permeable connected pathways of other kinds is important to many processes but is difficult to determine, because most chemical tracers diffuse quickly enough from small flow channels that they appear to move more uniformly through the rock than they actually do. We show how preferential flow can be assessed by injecting 2 to 5 nm carbon particles (C-Dots) and an inert KBr chemical tracer at different flow rates into a permeable core channel that is surrounded by a less permeable matrix in laboratory apparatus of three different designs. When the KBr tracer has a long enough transit through the system to diffuse into the matrix, but the C-Dot tracer does not, the C-Dot tracer arrives first and the KBr tracer later, and the separation measures the degree of preferential flow. Tracer sequestration in the matrix can be estimated with a Peclet number, and this is useful for experiment design. A model is used to determine the best fitting core and matrix dispersion parameters and refine estimates of the core and matrix porosities. Almost the same parameter values explain all experiments. The methods demonstrated in the laboratory can be applied to field tests. If nanoparticles can be designed that do not stick while flowing through the subsurface, the methods presented here could be used to determine the degree of fracture control in natural environments, and this capability would have very wide ranging value and applicability.

  9. Using DC electrical resistivity tomography to quantify preferential flow in fractured rock environments

    CSIR Research Space (South Africa)

    May, F

    2011-09-01

    Full Text Available . This investigation aims to identify preferential flow paths in fractured rock environments. Time-lapse Electrical Resistivity Tomography (TLERT, Lund Imaging System), is regarded as a suitable method for identifying preferential water flow....

  10. A Nonmonotonic Extension of KLM Preferential Logic P

    Science.gov (United States)

    Giordano, Laura; Gliozzi, Valentina; Olivetti, Nicola; Pozzato, Gian Luca

    In this paper, we propose the logic P min , which is a nonmonotonic extension of Preferential logic P defined by Kraus, Lehmann and Magidor (KLM). In order to perform nonmonotonic inferences, we define a "minimal model" semantics. Given a modal interpretation of a minimal A-world as A ∧ □¬A, the intuition is that preferred, or minimal models are those that minimize the number of worlds where ¬□¬A holds, that is of A-worlds which are not minimal. We also present a tableau calculus for deciding entailment in P min .

  11. Magnetic preferential orientation of metal oxide superconducting materials

    Science.gov (United States)

    Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

  12. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  13. Neural correlates of the formation and retention of cocaine-induced stimulus-reward associations

    OpenAIRE

    Nelissen, Koen; Jarraya, Bechir; Arsenault, John; Rosen, Bruce; Wald, Lawrence,; Mandeville, Joseph; Marota, John; Vanduffel, Wim

    2012-01-01

    Background: Cocaine can elicit drug-seeking behavior for drug-predicting stimuli, even after a single stimulus-cocaine pairing. While orbitofrontal cortex is thought to be important during encoding and maintenance of stimulus-reward value, we still lack a comprehensive model of the neural circuitry underlying this cognitive process. Methods: We studied the conditioned effects of cocaine using monkey fMRI and classical conditioning by pairing a visual shape (conditioning stimulus, CS+) wit...

  14. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, Antrozous pallidus

    OpenAIRE

    Measor, Kevin R.; Leavell, Brian C.; Brewton, Dustin H.; Rumschlag, Jeffrey; Barber, Jesse R.; Razak, Khaleel A.

    2017-01-01

    Abstract In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat?s auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and stron...

  15. Sequence tolerance of the phage lambda PRM promoter: implications for evolution of gene regulatory circuitry.

    Science.gov (United States)

    Michalowski, Christine B; Short, Megan D; Little, John W

    2004-12-01

    Much of the gene regulatory circuitry of phage lambda centers on a complex region called the O(R) region. This approximately 100-bp region is densely packed with regulatory sites, including two promoters and three repressor-binding sites. The dense packing of this region is likely to impose severe constraints on its ability to change during evolution, raising the question of how the specific arrangement of sites and their exact sequences could evolve to their present form. Here we ask whether the sequence of a cis-acting site can be widely varied while retaining its function; if it can, evolution could proceed by a larger number of paths. To help address this question, we developed a lambda cloning vector that allowed us to clone fragments spanning the O(R) region. By using this vector, we carried out intensive mutagenesis of the P(RM) promoter, which drives expression of CI repressor and is activated by CI itself. We made a pool of fragments in which 8 of the 12 positions in the -35 and -10 regions were randomized and cloned this pool into the vector, making a pool of P(RM) variant phage. About 10% of the P(RM) variants were able to lysogenize, suggesting that the lambda regulatory circuitry is compatible with a wide range of P(RM) sequences. Analysis of several of these phages indicated a range of behaviors in prophage induction. Several isolates had induction properties similar to those of the wild type, and their promoters resembled the wild type in their responses to CI. We term this property of different sequences allowing roughly equivalent function "sequence tolerance " and discuss its role in the evolution of gene regulatory circuitry.

  16. Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry.

    Science.gov (United States)

    Navratilova, Edita; Xie, Jennifer Y; Okun, Alec; Qu, Chaoling; Eyde, Nathan; Ci, Shuang; Ossipov, Michael H; King, Tamara; Fields, Howard L; Porreca, Frank

    2012-12-11

    Relief of pain is rewarding. Using a model of experimental postsurgical pain we show that blockade of afferent input from the injury with local anesthetic elicits conditioned place preference, activates ventral tegmental dopaminergic cells, and increases dopamine release in the nucleus accumbens. Importantly, place preference is associated with increased activity in midbrain dopaminergic neurons and blocked by dopamine antagonists injected into the nucleus accumbens. The data directly support the hypothesis that relief of pain produces negative reinforcement through activation of the mesolimbic reward-valuation circuitry.

  17. Fabrication and Measurement of a Suspended Nanochannel Microbridge Resonator Monolithically Integrated with CMOS Readout Circuitry

    Directory of Open Access Journals (Sweden)

    Gabriel Vidal-Álvarez

    2016-03-01

    Full Text Available We present the fabrication and characterization of a suspended microbridge resonator with an embedded nanochannel. The suspended microbridge resonator is electrostatically actuated, capacitively sensed, and monolithically integrated with complementary metal-oxide-semiconductor (CMOS readout circuitry. The device is fabricated using the back end of line (BEOL layers of the AMS 0.35 μm commercial CMOS technology, interconnecting two metal layers with a contact layer. The fabricated device has a 6 fL capacity and has one of the smallest embedded channels so far. It is able to attain a mass sensitivity of 25 ag/Hz using a fully integrable electrical transduction.

  18. Solute transport along preferential flow paths in unsaturated fractures

    Science.gov (United States)

    Su, G.W.; Geller, J.T.; Pruess, K.; Hunt, J.R.

    2001-01-01

    Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock-replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors-in-series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.

  19. Drosophila TRF2 is a preferential core promoter regulator.

    Science.gov (United States)

    Kedmi, Adi; Zehavi, Yonathan; Glick, Yair; Orenstein, Yaron; Ideses, Diana; Wachtel, Chaim; Doniger, Tirza; Waldman Ben-Asher, Hiba; Muster, Nemone; Thompson, James; Anderson, Scott; Avrahami, Dorit; Yates, John R; Shamir, Ron; Gerber, Doron; Juven-Gershon, Tamar

    2014-10-01

    Transcription of protein-coding genes is highly dependent on the RNA polymerase II core promoter. Core promoters, generally defined as the regions that direct transcription initiation, consist of functional core promoter motifs (such as the TATA-box, initiator [Inr], and downstream core promoter element [DPE]) that confer specific properties to the core promoter. The known basal transcription factors that support TATA-dependent transcription are insufficient for in vitro transcription of DPE-dependent promoters. In search of a transcription factor that supports DPE-dependent transcription, we used a biochemical complementation approach and identified the Drosophila TBP (TATA-box-binding protein)-related factor 2 (TRF2) as an enriched factor in the fractions that support DPE-dependent transcription. We demonstrate that the short TRF2 isoform preferentially activates DPE-dependent promoters. DNA microarray analysis reveals the enrichment of DPE promoters among short TRF2 up-regulated genes. Using primer extension analysis and reporter assays, we show the importance of the DPE in transcriptional regulation of TRF2 target genes. It was previously shown that, unlike TBP, TRF2 fails to bind DNA containing TATA-boxes. Using microfluidic affinity analysis, we discovered that short TRF2-bound DNA oligos are enriched for Inr and DPE motifs. Taken together, our findings highlight the role of short TRF2 as a preferential core promoter regulator. © 2014 Kedmi et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Preferential control of basal dendritic protrusions by EphB2.

    Directory of Open Access Journals (Sweden)

    Matthew S Kayser

    2011-02-01

    Full Text Available The flow of information between neurons in many neural circuits is controlled by a highly specialized site of cell-cell contact known as a synapse. A number of molecules have been identified that are involved in central nervous system synapse development, but knowledge is limited regarding whether these cues direct organization of specific synapse types or on particular regions of individual neurons. Glutamate is the primary excitatory neurotransmitter in the brain, and the majority of glutamatergic synapses occur on mushroom-shaped protrusions called dendritic spines. Changes in the morphology of these structures are associated with long-lasting modulation of synaptic strength thought to underlie learning and memory, and can be abnormal in neuropsychiatric disease. Here, we use rat cortical slice cultures to examine how a previously-described synaptogenic molecule, the EphB2 receptor tyrosine kinase, regulates dendritic protrusion morphology in specific regions of the dendritic arbor in cortical pyramidal neurons. We find that alterations in EphB2 signaling can bidirectionally control protrusion length, and knockdown of EphB2 expression levels reduces the number of dendritic spines and filopodia. Expression of wild-type or dominant negative EphB2 reveals that EphB2 preferentially regulates dendritic protrusion structure in basal dendrites. Our findings suggest that EphB2 may act to specify synapse formation in a particular subcellular region of cortical pyramidal neurons.

  1. A dynamical systems view of motor preparation: Implications for neural prosthetic system design

    Science.gov (United States)

    Shenoy, Krishna V.; Kaufman, Matthew T.; Sahani, Maneesh; Churchland, Mark M.

    2013-01-01

    Neural prosthetic systems aim to help disabled patients suffering from a range of neurological injuries and disease by using neural activity from the brain to directly control assistive devices. This approach in effect bypasses the dysfunctional neural circuitry, such as an injured spinal cord. To do so, neural prostheses depend critically on a scientific understanding of the neural activity that drives them. We review here several recent studies aimed at understanding the neural processes in premotor cortex that precede arm movements and lead to the initiation of movement. These studies were motivated by hypotheses and predictions conceived of within a dynamical systems perspective. This perspective concentrates on describing the neural state using as few degrees of freedom as possible and on inferring the rules that govern the motion of that neural state. Although quite general, this perspective has led to a number of specific predictions that have been addressed experimentally. It is hoped that the resulting picture of the dynamical role of preparatory and movement-related neural activity will be particularly helpful to the development of neural prostheses, which can themselves be viewed as dynamical systems under the control of the larger dynamical system to which they are attached. PMID:21763517

  2. Games in the Brain: Neural Substrates of Gambling Addiction.

    Science.gov (United States)

    Murch, W Spencer; Clark, Luke

    2016-10-01

    As a popular form of recreational risk taking, gambling games offer a paradigm for decision neuroscience research. As an individual behavior, gambling becomes dysfunctional in a subset of the population, with debilitating consequences. Gambling disorder has been recently reconceptualized as a "behavioral addiction" in the DSM-5, based on emerging parallels with substance use disorders. Why do some individuals undergo this transition from recreational to disordered gambling? The biomedical model of problem gambling is a "brain disorder" account that posits an underlying neurobiological abnormality. This article first delineates the neural circuitry that underpins gambling-related decision making, comprising ventral striatum, ventromedial prefrontal cortex, dopaminergic midbrain, and insula, and presents evidence for pathophysiology in this circuitry in gambling disorder. These biological dispositions become translated into clinical disorder through the effects of gambling games. This influence is better articulated in a public health approach that describes the interplay between the player and the (gambling) product. Certain forms of gambling, including electronic gambling machines, appear to be overrepresented in problem gamblers. These games harness psychological features, including variable ratio schedules, near-misses, "losses disguised as wins," and the illusion of control, which modulate the core decision-making circuitry that is perturbed in gambling disorder. © The Author(s) 2015.

  3. Combined driving and sensing circuitry for dielectric elastomer actuators in mobile applications

    Science.gov (United States)

    Matysek, Marc; Haus, Henry; Moessinger, Holger; Brokken, Dirk; Lotz, Peter; Schlaak, Helmut F.

    2011-04-01

    Dielectric elastomer stack actuators (DESA) promise breakthrough functionality in user interfaces by enabling freely programmable surfaces with various shapes. Besides the fundamental advantages of this technology, like comparatively low energy consumption, it is well known that these actuators can be used as sensors simultaneously. The work we present in this paper is focused on the implementation of a DEA-based tactile display into a mobile device. The generation of the driving voltage of up to 1.1 kV out of a common rechargeable battery and the implementation of the sensor functionality are the most challenging tasks. To realize a large range of tactile experiences, both static and dynamic driving voltages are required. We present a structure combining different step-up topologies to realize the driving unit. The final circuitry complies with typical requirements for mobile devices, like small size, low weight, high efficiency and low costs. The sensing functionality has to be realized for different actuator elements regardless of their actual state. An additional sensing layer on top or within the actuators would cause a higher fabrication effort and additional interconnections. Therefore, we developed a high voltage compatible sensing system. The circuitry allows sensing of user input at every actuator element. Both circuits are implemented into a handheld-like device.

  4. A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry.

    Science.gov (United States)

    Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai

    2017-01-07

    This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm.

  5. Microstructural abnormalities in subcortical reward circuitry of subjects with major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Anne J Blood

    2010-11-01

    Full Text Available Previous studies of major depressive disorder (MDD have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN, and medial forebrain bundle (MFB.We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity.These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression.

  6. Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence.

    Science.gov (United States)

    Herringa, Ryan J; Birn, Rasmus M; Ruttle, Paula L; Burghy, Cory A; Stodola, Diane E; Davidson, Richard J; Essex, Marilyn J

    2013-11-19

    Maltreatment during childhood is a major risk factor for anxiety and depression, which are major public health problems. However, the underlying brain mechanism linking maltreatment and internalizing disorders remains poorly understood. Maltreatment may alter the activation of fear circuitry, but little is known about its impact on the connectivity of this circuitry in adolescence and whether such brain changes actually lead to internalizing symptoms. We examined the associations between experiences of maltreatment during childhood, resting-state functional brain connectivity (rs-FC) of the amygdala and hippocampus, and internalizing symptoms in 64 adolescents participating in a longitudinal community study. Childhood experiences of maltreatment were associated with lower hippocampus-subgenual cingulate rs-FC in both adolescent females and males and lower amygdala-subgenual cingulate rs-FC in females only. Furthermore, rs-FC mediated the association of maltreatment during childhood with adolescent internalizing symptoms. Thus, maltreatment in childhood, even at the lower severity levels found in a community sample, may alter the regulatory capacity of the brain's fear circuit, leading to increased internalizing symptoms by late adolescence. These findings highlight the importance of fronto-hippocampal connectivity for both sexes in internalizing symptoms following maltreatment in childhood. Furthermore, the impact of maltreatment during childhood on both fronto-amygdala and -hippocampal connectivity in females may help explain their higher risk for internalizing disorders such as anxiety and depression.

  7. Testing the connections within face processing circuitry in Capgras delusion with diffusion imaging tractography

    Directory of Open Access Journals (Sweden)

    Maria A. Bobes

    2016-01-01

    Full Text Available Although Capgras delusion (CD patients are capable of recognizing familiar faces, they present a delusional belief that some relatives have been replaced by impostors. CD has been explained as a selective disruption of a pathway processing affective values of familiar faces. To test the integrity of connections within face processing circuitry, diffusion tensor imaging was performed in a CD patient and 10 age-matched controls. Voxel-based morphometry indicated gray matter damage in right frontal areas. Tractography was used to examine two important tracts of the face processing circuitry: the inferior fronto-occipital fasciculus (IFOF and the inferior longitudinal (ILF. The superior longitudinal fasciculus (SLF and commissural tracts were also assessed. CD patient did not differ from controls in the commissural fibers, or the SLF. Right and left ILF, and right IFOF were also equivalent to those of controls. However, the left IFOF was significantly reduced respect to controls, also showing a significant dissociation with the ILF, which represents a selective impairment in the fiber-tract connecting occipital and frontal areas. This suggests a possible involvement of the IFOF in affective processing of faces in typical observers and in covert recognition in some cases with prosopagnosia.

  8. Personalized recommendation based on preferential bidirectional mass diffusion

    Science.gov (United States)

    Chen, Guilin; Gao, Tianrun; Zhu, Xuzhen; Tian, Hui; Yang, Zhao

    2017-03-01

    Recommendation system provides a promising way to alleviate the dilemma of information overload. In physical dynamics, mass diffusion has been used to design effective recommendation algorithms on bipartite network. However, most of the previous studies focus overwhelmingly on unidirectional mass diffusion from collected objects to uncollected objects, while overlooking the opposite direction, leading to the risk of similarity estimation deviation and performance degradation. In addition, they are biased towards recommending popular objects which will not necessarily promote the accuracy but make the recommendation lack diversity and novelty that indeed contribute to the vitality of the system. To overcome the aforementioned disadvantages, we propose a preferential bidirectional mass diffusion (PBMD) algorithm by penalizing the weight of popular objects in bidirectional diffusion. Experiments are evaluated on three benchmark datasets (Movielens, Netflix and Amazon) by 10-fold cross validation, and results indicate that PBMD remarkably outperforms the mainstream methods in accuracy, diversity and novelty.

  9. From Idealism to Realism? EU Preferential Trade Agreement Policy

    Directory of Open Access Journals (Sweden)

    Maria Garcia

    2013-10-01

    Full Text Available This article examines how the EU’s ‘conflicted power’ in trade has played out within its preferential trade agreement (PTA strategies with third parties. It does this by providing an overview of how approaches to the EU’s external trade policies have evolved over time, especially since the end of the Cold War. Tracing changes in discourse in the EU’s consolidated trade policy demonstrates how the policy objectives have evolved from what could be characterised as a soft and even normative power to a much more realist one, attempting to safeguard its position in the international economic order. Notwithstanding these changes, explained by a combination of international context and ideational preferences, an underlying overall continuity has remained in terms of the main economic interests to be realised through trade policy, which presents a portrait of the EU as a rational and realist (if sometimes conflicted actor in the global economy.

  10. Preferential partner selection in an evolutionary study of prisoner's dilemma

    CERN Document Server

    Ashlock, D; Stanley, E A; Tesfatsion, L; Ashlock, Dan; Smucker, Mark D; Stanley, E Ann; Tesfatsion, Leigh

    1994-01-01

    Partner selection is an important process in many social interactions, permitting individuals to decrease the risks associated with cooperation. In large populations, defectors may escape punishment by roving from partner to partner, but defectors in smaller populations risk social isolation. We investigate these possibilities for an evolutionary prisoner's dilemma in which agents use expected payoffs to choose and refuse partners. In comparison to random or round-robin partner matching, we find that the average payoffs attained with preferential partner selection tend to be more narrowly confined to a few isolated payoff regions. Most ecologies evolve to essentially full cooperative behavior, but when agents are intolerant of defections, or when the costs of refusal and social isolation are small, we also see the emergence of wallflower ecologies in which all agents are socially isolated. In between these two extremes, we see the emergence of ecologies whose agents tend to engage in a small number of defecti...

  11. Seeking a preferential option for the rural poor in Chile

    Directory of Open Access Journals (Sweden)

    Edward Dew

    2006-01-01

    Full Text Available From colonial times well into the twentieth century (and, unfortunately, even beyond the man/land relationship in Latin America has been markedly unjust. Small numbers of families have owned large tracts of the best land, while large numbers of poor families have struggled with tiny plots of marginal land or labored on the estates of the rich. Chile was no exception to this pattern. Thus, its experiment with land reform in the 1960s and 1970s, the setback of reform under the military in the 1970s and 1980s, and the resumption of reform under democrats in the 1990s, may provide lessons for the rest of Latin America. Is a preferential option for the rural poor still possible in a neoliberal economic system? In Chile, the answer is a qualified “yes”

  12. Megacity pumping and preferential flow threaten groundwater quality.

    Science.gov (United States)

    Khan, Mahfuzur R; Koneshloo, Mohammad; Knappett, Peter S K; Ahmed, Kazi M; Bostick, Benjamin C; Mailloux, Brian J; Mozumder, Rajib H; Zahid, Anwar; Harvey, Charles F; van Geen, Alexander; Michael, Holly A

    2016-09-27

    Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide.

  13. DNA mismatch repair preferentially protects genes from mutation.

    Science.gov (United States)

    Belfield, Eric J; Ding, Zhong Jie; Jamieson, Fiona J C; Visscher, Anne M; Zheng, Shao Jian; Mithani, Aziz; Harberd, Nicholas P

    2017-12-12

    Mutation is the source of genetic variation and fuels biological evolution. Many mutations first arise as DNA replication errors. These errors subsequently evade correction by cellular DNA repair, for example, by the well-known DNA mismatch repair (MMR) mechanism. Here, we determine the genome-wide effects of MMR on mutation. We first identify almost 9000 mutations accumulated over five generations in eight MMR-deficient mutation accumulation (MA) lines of the model plant species, Arabidopsis thaliana We then show that MMR deficiency greatly increases the frequency of both smaller-scale insertions and deletions (indels) and of single-nucleotide variant (SNV) mutations. Most indels involve A or T nucleotides and occur preferentially in homopolymeric (poly A or poly T) genomic stretches. In addition, we find that the likelihood of occurrence of indels in homopolymeric stretches is strongly related to stretch length, and that this relationship causes ultrahigh localized mutation rates in specific homopolymeric stretch regions. For SNVs, we show that MMR deficiency both increases their frequency and changes their molecular mutational spectrum, causing further enhancement of the GC to AT bias characteristic of organisms with normal MMR function. Our final genome-wide analyses show that MMR deficiency disproportionately increases the numbers of SNVs in genes, rather than in nongenic regions of the genome. This latter observation indicates that MMR preferentially protects genes from mutation and has important consequences for understanding the evolution of genomes during both natural selection and human tumor growth. © 2018 Belfield et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Cyclosporin A preferentially attenuates skeletal slow-twitch muscle regeneration

    Directory of Open Access Journals (Sweden)

    Miyabara E.H.

    2005-01-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA, on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001 and CsA significantly reduced the body weight gain (15.5%; P = 0.01 during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05. CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001. Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.

  15. Neural Tube Defects

    Science.gov (United States)

    ... vitamin, before and during pregnancy prevents most neural tube defects. Neural tube defects are usually diagnosed before the infant is ... or imaging tests. There is no cure for neural tube defects. The nerve damage and loss of function ...

  16. Smooth pursuit eye movement preferentially facilitates motor-evoked potential elicited by anterior-posterior current in the brain.

    Science.gov (United States)

    Hiraoka, Koichi; Ae, Minori; Ogura, Nana; Komuratani, Sayo; Sano, Chisa; Shiomi, Keigo; Morita, Yuji; Yokoyama, Haruka

    2014-03-26

    Neural interaction between the eye and hand movement centers must be a critical part of the mechanism underlying eye-hand coordination. One of the previous findings supporting this view is smooth pursuit eye movement-induced suppression of motor-evoked potential (MEP) in the hand muscles. The purpose of this study was to determine which descending volleys contributing to MEP are preferentially modulated by smooth pursuit eye movement. MEP in the first dorsal interosseous muscle was elicited by different directions of current in the brain during the steady-state phase of smooth pursuit eye movement. Smooth pursuit eye movement facilitated MEP elicited by anterior-posterior (AP) current, but this effect was not seen in MEP elicited by lateromedial or posterior-anterior current. Latency of MEP elicited by AP current was significantly longer than latencies of MEPs elicited by other directions of current, indicating that AP current in the brain predominantly elicited later I-waves. We conclude that smooth pursuit eye movement in the steady-state phase preferentially facilitates MEP predominantly elicited by later I-waves generated by AP current in the brain.

  17. Alcohol-induced dysregulation of stress-related circuitry: The search for novel targets and implications for interventions across the sexes.

    Science.gov (United States)

    Retson, T A; Sterling, R C; Van Bockstaele, E J

    2016-02-04

    While the ability to process fermented fruits and alcohols was once an adaptive trait that improved nutrition and quality of life, the availability and prevalence of high potency alcoholic drinks has contributed to alcohol abuse disorders in a vulnerable portion of the population. Although the neural reward systems take part in the initial response to alcohol, negative reinforcement and stress, which are normally adaptive responses, can intersect to promote continued alcohol use at all stages of the addiction cycle. Eventually a point is reached where these once adaptive responses become dysregulated resulting in uncontrolled intake that constitutes a clinically important condition termed alcohol use disorder (AUD). Current research is targeted at both the behavioral and molecular adaptations in AUDs in an effort to better develop novel approaches to intervention. In this review, historical context is provided demonstrating the societal burden of alcohol use and abuse disorders. The importance of gender in the mechanism of action of alcohol is discussed. Finally, the impact of alcohol on stress-related circuitry, uncovered by preclinical research, is outlined to provide insight into potential novel pharmacological approaches to the treatment of AUD. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Motor cortex-periaqueductal gray-spinal cord neuronal circuitry may involve in modulation of nociception: a virally mediated transsynaptic tracing study in spinally transected transgenic mouse model.

    Directory of Open Access Journals (Sweden)

    Da-Wei Ye

    Full Text Available Several studies have shown that motor cortex stimulation provided pain relief by motor cortex plasticity and activating descending inhibitory pain control systems. Recent evidence indicated that the melanocortin-4 receptor (MC4R in the periaqueductal gray played an important role in neuropathic pain. This study was designed to assess whether MC4R signaling existed in motor cortex-periaqueductal gray-spinal cord neuronal circuitry modulated the activity of sympathetic pathway by a virally mediated transsynaptic tracing study. Pseudorabies virus (PRV-614 was injected into the left gastrocnemius muscle in adult male MC4R-green fluorescent protein (GFP transgenic mice (n = 15. After a survival time of 4-6 days, the mice (n = 5 were randomly assigned to humanely sacrifice, and spinal cords and brains were removed and sectioned, and processed for PRV-614 visualization. Neurons involved in the efferent control of the left gastrocnemius muscle were identified following visualization of PRV-614 retrograde tracing. The neurochemical phenotype of MC4R-GFP-positive neurons was identified using fluorescence immunocytochemical labeling. PRV-614/MC4R-GFP dual labeled neurons were detected in spinal IML, periaqueductal gray and motor cortex. Our findings support the hypothesis that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may participate in the modulation of the melanocortin-sympathetic signaling and contribute to the descending modulation of nociceptive transmission, suggesting that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may modulate the activity of sympathetic outflow sensitive to nociceptive signals.

  19. Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry

    Science.gov (United States)

    Dereux, A.; Hassan, K.; Weeber, J.-C.; Djellali, N.; Bozhevolnyi, S. I.; Tsilipakos, O.; Pitilakis, A.; Kriezis, E.; Papaioannou, S.; Vyrsokinos, K.; Pleros, N.; Tekin, T.; Baus, M.; Kalavrouziotis, D.; Giannoulis, G.; Avramopoulos, H.

    2011-01-01

    Surface plasmons polaritons are electromagnetic waves propagating along the surface of a conductor. Surface plasmons photonics is a promising candidate to satisfy the constraints of miniaturization of optical interconnects. This contribution reviews an experimental parametric study of dielectric loaded surface plasmon waveguides ring resonators and add-drop filters within the perspective of the recently suggested hybrid technology merging plasmonic and silicon photonics on a single board (European FP7 project PLATON "Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing in optical interconnects"). Conclusions relevant for dielectric loaded surface plasmon switches to be integrated in silicon photonic circuitry will be drawn. They rely on the opportunity offered by plasmonic circuitry to carry optical signals and electric currents through the same thin metal circuitry. The heating of the dielectric loading by the electric current enables to design low foot-print thermo-optical switches driving the optical signal flow.

  20. Electro-active sensor, method for constructing the same; apparatus and circuitry for detection of electro-active species

    Science.gov (United States)

    Buehler, Martin (Inventor)

    2009-01-01

    An electro-active sensor includes a nonconductive platform with a first electrode set attached with a first side of a nonconductive platform. The first electrode set serves as an electrochemical cell that may be utilized to detect electro-active species in solution. A plurality of electrode sets and a variety of additional electrochemical cells and sensors may be attached with the nonconductive platform. The present invention also includes a method for constructing the aforementioned electro-active sensor. Additionally, an apparatus for detection and observation is disclosed, where the apparatus includes a sealable chamber for insertion of a portion of an electro-active sensor. The apparatus allows for monitoring and detection activities. Allowing for control of attached cells and sensors, a dual-mode circuitry is also disclosed. The dual-mode circuitry includes a switch, allowing the circuitry to be switched from a potentiostat to a galvanostat mode.

  1. Neural systems and hormones mediating attraction to infant and child faces

    Directory of Open Access Journals (Sweden)

    Lizhu eLuo

    2015-07-01

    Full Text Available We find infant faces highly attractive as a result of specific features which Konrad Lorenz termed Kindchenschema or baby schema, and this is considered to be an important adaptive trait for promoting protective and caregiving behaviors in adults, thereby increasing the chances of infant survival. This review first examines the behavioral support for this effect and physical and behavioral factors which can influence it. It next reviews the increasing number of neuroimaging and electrophysiological studies investigating the neural circuitry underlying this baby schema effect in both parents and non-parents of both sexes. Next it considers potential hormonal contributions to the baby schema effect in both sexes and then neural effects associated with reduced responses to infant cues in post-partum depression, anxiety and drug taking. Overall the findings reviewed reveal a very extensive neural circuitry involved in our perception of cutenessin infant faces with enhanced activation compared to adult faces being found in brain regions involved in face perception, attention, emotion, empathy, memory, reward and attachment, theory of mind and also control of motor responses.Both mothers and fathers also show evidence for enhanced responses in these same neural systems when viewing their own as opposed to another child. Furthermore, responses to infant cues in many of these neural systems are reduced in mothers with post-partum depression or anxiety or have taken addictive drugs throughout pregnancy. In general reproductively active women tend to rate infant faces as cuter than men, which may reflect both heightened attention to relevant cues and a stronger activation in their brain reward circuitry. Perception of infant cuteness may also be influenced by reproductive hormones with the hypothalamic neuropeptide oxytocin being most strongly associated to date with increased attention andattractionto infant cues in both sexes.

  2. [Neural repair].

    Science.gov (United States)

    Kitada, Masaaki; Dezawa, Mari

    2008-05-01

    Recent progress of stem cell biology gives us the hope for neural repair. We have established methods to specifically induce functional Schwann cells and neurons from bone marrow stromal cells (MSCs). The effectiveness of these induced cells was evaluated by grafting them either into peripheral nerve injury, spinal cord injury, or Parkinson' s disease animal models. MSCs-derived Schwann cells supported axonal regeneration and re-constructed myelin to facilitate the functional recovery in peripheral and spinal cord injury. MSCs-derived dopaminergic neurons integrated into host striatum and contributed to behavioral repair. In this review, we introduce the differentiation potential of MSCs and finally discuss about their benefits and drawbacks of these induction systems for cell-based therapy in neuro-traumatic and neuro-degenerative diseases.

  3. Exercise-enhanced Neuroplasticity Targeting Motor and Cognitive Circuitry in Parkinson’s Disease

    Science.gov (United States)

    Petzinger, G. M.; Fisher, B. E.; McEwen, S.; Beeler, J. A.; Walsh, J. P.; Jakowec, M. W.

    2013-01-01

    The purpose of this review is to highlight the potential role of exercise in promoting neuroplasticity and repair in Parkinson’s disease (PD). Exercise interventions in individuals with PD incorporate goal-based motor skill training in order to engage cognitive circuitry important in motor learning. Using this exercise approach, physical therapy facilitates learning through instruction and feedback (reinforcement), and encouragement to perform beyond self-perceived capability. Individuals with PD become more cognitively engaged with the practice and learning of movements and skills that were previously automatic and unconscious. Studies that have incorporated both goal-based training and aerobic exercise have supported the potential for improving both cognitive and automatic components of motor control. Utilizing animal models, basic research is beginning to reveal exercise-induced effects on neuroplasticity. Since neuroplasticity occurs at the level of circuits and synaptic connections, we examine the effects of exercise from this perspective. PMID:23769598

  4. Exploiting the dynamic properties of covalent modification cycle for the design of synthetic analog biomolecular circuitry.

    Science.gov (United States)

    Foo, Mathias; Sawlekar, Rucha; Bates, Declan G

    2016-01-01

    Cycles of covalent modification are ubiquitous motifs in cellular signalling. Although such signalling cycles are implemented via a highly concise set of chemical reactions, they have been shown to be capable of producing multiple distinct input-output mapping behaviours - ultrasensitive, hyperbolic, signal-transducing and threshold-hyperbolic. In this paper, we show how the set of chemical reactions underlying covalent modification cycles can be exploited for the design of synthetic analog biomolecular circuitry. We show that biomolecular circuits based on the dynamics of covalent modification cycles allow (a) the computation of nonlinear operators using far fewer chemical reactions than purely abstract designs based on chemical reaction network theory, and (b) the design of nonlinear feedback controllers with strong performance and robustness properties. Our designs provide a more efficient route for translation of complex circuits and systems from chemical reactions to DNA strand displacement-based chemistry, thus facilitating their experimental implementation in future Synthetic Biology applications.

  5. Speech and music quality ratings for linear and nonlinear hearing aid circuitry.

    Science.gov (United States)

    Davies-Venn, Evelyn; Souza, Pamela; Fabry, David

    2007-09-01

    This study evaluated quality ratings for speech and music stimuli processed using peak clipping (PC), compression limiting (CL), and wide-dynamic range compression (WDRC) hearing aid circuitry. Eighteen listeners with mild-to-moderate hearing loss were binaurally fitted with behind-the-ear (BTE) hearing aids and instructed to rate the quality of speech under various conditions in quiet and noise and two genres of music. Results for speech revealed a slight preference for WDRC at 80 dB SPL, and equivalent ratings for the three circuits under all other listening conditions. Music ratings revealed a marginally significant preference for WDRC and a preference for classical over popular music. For music, judgments on pleasantness were the most influential on overall circuit preference.

  6. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jr., Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ericson, Milton Nance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bobrek, Miljko [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blalock, Benjamin [Univ. of Tennessee, Knoxville, TN (United States)

    2015-12-01

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEET 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.

  7. Understanding the Molecular Circuitry of Cell Lineage Specification in the Early Mouse Embryo

    Science.gov (United States)

    Bergsmedh, Anna; Donohoe, Mary E.; Hughes, Rebecca-Ayme; Hadjantonakis, Anna-Katerina

    2011-01-01

    Pluripotent stem cells hold great promise for cell-based therapies in regenerative medicine. However, critical to understanding and exploiting mechanisms of cell lineage specification, epigenetic reprogramming, and the optimal environment for maintaining and differentiating pluripotent stem cells is a fundamental knowledge of how these events occur in normal embryogenesis. The early mouse embryo has provided an excellent model to interrogate events crucial in cell lineage commitment and plasticity, as well as for embryo-derived lineage-specific stem cells and induced pluripotent stem (iPS) cells. Here we provide an overview of cell lineage specification in the early (preimplantation) mouse embryo focusing on the transcriptional circuitry and epigenetic marks necessary for successive differentiation events leading to the formation of the blastocyst. PMID:24710206

  8. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation

    Science.gov (United States)

    Li, Jiang; Green, Alexander A.; Yan, Hao; Fan, Chunhai

    2017-11-01

    Nucleic acids have attracted widespread attention due to the simplicity with which they can be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of DNA/RNA nanotechnology offer numerous opportunities for in-cell and in-vivo applications, and the technology holds great promise to advance the growing field of synthetic biology. Many elegant examples have revealed the potential in integrating nucleic acid nanostructures in cells and in vivo where they can perform important physiological functions. In this Review, we summarize the current abilities of DNA/RNA nanotechnology to realize applications in live cells and then discuss the key problems that must be solved to fully exploit the useful properties of nanostructures. Finally, we provide viewpoints on how to integrate the tools provided by DNA/RNA nanotechnology and related new technologies to construct nucleic acid nanostructure-based molecular circuitry for synthetic biology.

  9. Trigeminal-Rostral Ventromedial Medulla circuitry is involved in orofacial hyperalgesia contralateral to tissue injury

    Directory of Open Access Journals (Sweden)

    Chai Bryan

    2012-10-01

    Full Text Available Abstract Background Our previous studies have shown that complete Freund’s adjuvant (CFA-induced masseter inflammation and microinjection of the pro-inflammatory cytokine interleukin-1β (IL-1β into the subnucleus interpolaris/subnucleus caudalis transition zone of the spinal trigeminal nucleus (Vi/Vc can induce contralateral orofacial hyperalgesia in rat models. We have also shown that contralateral hyperalgesia is attenuated with a lesion of the rostral ventromedial medulla (RVM, a critical site of descending pain modulation. Here we investigated the involvement of the RVM-Vi/Vc circuitry in mediating contralateral orofacial hyperalgesia after an injection of CFA into the masseter muscle. Results Microinjection of the IL-1 receptor antagonist (5 nmol, n=6 into the ipsilateral Vi/Vc attenuated the CFA-induced contralateral hyperalgesia but not the ipsilateral hyperalgesia. Intra-RVM post-treatment injection of the NK1 receptor antagonists, RP67580 (0.5-11.4 nmol and L-733,060 (0.5-11.4 nmol, attenuated CFA-induced bilateral hyperalgesia and IL-1β induced bilateral hyperalgesia. Serotonin depletion in RVM neurons prior to intra-masseter CFA injection prevented the development of contralateral hyperalgesia 1–3 days after CFA injection. Inhibition of 5-HT3 receptors in the contralateral Vi/Vc with direct microinjection of the select 5-HT3 receptor antagonist, Y-25130 (2.6-12.9 nmol, attenuated CFA-induced contralateral hyperalgesia. Lesions to the ipsilateral Vc prevented the development of ipsilateral hyperalgesia but did not prevent the development of contralateral hyperalgesia. Conclusions These results suggest that the development of CFA-induced contralateral orofacial hyperalgesia is mediated through descending facilitatory mechanisms of the RVM-Vi/Vc circuitry.

  10. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis.

    Science.gov (United States)

    Polvi, Elizabeth J; Averette, Anna F; Lee, Soo Chan; Kim, Taeyup; Bahn, Yong-Sun; Veri, Amanda O; Robbins, Nicole; Heitman, Joseph; Cowen, Leah E

    2016-10-01

    Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which metal chelation

  11. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Polvi

    2016-10-01

    Full Text Available Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which

  12. Neural Mechanisms of Circadian Regulation of Natural and Drug Reward

    Directory of Open Access Journals (Sweden)

    Lauren M. DePoy

    2017-01-01

    Full Text Available Circadian rhythms are endogenously generated near 24-hour variations of physiological and behavioral functions. In humans, disruptions to the circadian system are associated with negative health outcomes, including metabolic, immune, and psychiatric diseases, such as addiction. Animal models suggest bidirectional relationships between the circadian system and drugs of abuse, whereby desynchrony, misalignment, or disruption may promote vulnerability to drug use and the transition to addiction, while exposure to drugs of abuse may entrain, disrupt, or perturb the circadian timing system. Recent evidence suggests natural (i.e., food and drug rewards may influence overlapping neural circuitry, and the circadian system may modulate the physiological and behavioral responses to these stimuli. Environmental disruptions, such as shifting schedules or shorter/longer days, influence food and drug intake, and certain mutations of circadian genes that control cellular rhythms are associated with altered behavioral reward. We highlight the more recent findings associating circadian rhythms to reward function, linking environmental and genetic evidence to natural and drug reward and related neural circuitry.

  13. Précis of Neural organization: structure, function, and dynamics.

    Science.gov (United States)

    Arbib, M A; Erdi, P

    2000-08-01

    NEURAL ORGANIZATION: Structure, function, and dynamics shows how theory and experiment can supplement each other in an integrated, evolving account of the brain's structure, function, and dynamics. (1) STRUCTURE: Studies of brain function and dynamics build on and contribute to an understanding of many brain regions, the neural circuits that constitute them, and their spatial relations. We emphasize Szentágothai's modular architectonics principle, but also stress the importance of the microcomplexes of cerebellar circuitry and the lamellae of hippocampus. (2) FUNCTION: Control of eye movements, reaching and grasping, cognitive maps, and the roles of vision receive a functional decomposition in terms of schemas. Hypotheses as to how each schema is implemented through the interaction of specific brain regions provide the basis for modeling the overall function by neural networks constrained by neural data. Synthetic PET integrates modeling of primate circuitry with data from human brain imaging. (3) DYNAMICS: Dynamic system theory analyzes spatiotemporal neural phenomena, such as oscillatory and chaotic activity in both single neurons and (often synchronized) neural networks, the self-organizing development and plasticity of ordered neural structures, and learning and memory phenomena associated with synaptic modification. Rhythm generation involves multiple levels of analysis, from intrinsic cellular processes to loops involving multiple brain regions. A variety of rhythms are related to memory functions. The Précis presents a multifaceted case study of the hippocampus. We conclude with the claim that language and other cognitive processes can be fruitfully studied within the framework of neural organization that the authors have charted with John Szentágothai.

  14. Neural substrates of approach-avoidance conflict decision-making.

    Science.gov (United States)

    Aupperle, Robin L; Melrose, Andrew J; Francisco, Alex; Paulus, Martin P; Stein, Murray B

    2015-02-01

    Animal approach-avoidance conflict paradigms have been used extensively to operationalize anxiety, quantify the effects of anxiolytic agents, and probe the neural basis of fear and anxiety. Results from human neuroimaging studies support that a frontal-striatal-amygdala neural circuitry is important for approach-avoidance learning. However, the neural basis of decision-making is much less clear in this context. Thus, we combined a recently developed human approach-avoidance paradigm with functional magnetic resonance imaging (fMRI) to identify neural substrates underlying approach-avoidance conflict decision-making. Fifteen healthy adults completed the approach-avoidance conflict (AAC) paradigm during fMRI. Analyses of variance were used to compare conflict to nonconflict (avoid-threat and approach-reward) conditions and to compare level of reward points offered during the decision phase. Trial-by-trial amplitude modulation analyses were used to delineate brain areas underlying decision-making in the context of approach/avoidance behavior. Conflict trials as compared to the nonconflict trials elicited greater activation within bilateral anterior cingulate cortex, anterior insula, and caudate, as well as right dorsolateral prefrontal cortex (PFC). Right caudate and lateral PFC activation was modulated by level of reward offered. Individuals who showed greater caudate activation exhibited less approach behavior. On a trial-by-trial basis, greater right lateral PFC activation related to less approach behavior. Taken together, results suggest that the degree of activation within prefrontal-striatal-insula circuitry determines the degree of approach versus avoidance decision-making. Moreover, the degree of caudate and lateral PFC activation related to individual differences in approach-avoidance decision-making. Therefore, the approach-avoidance conflict paradigm is ideally suited to probe anxiety-related processing differences during approach-avoidance decision

  15. Multimodality imaging demonstrates trafficking of liposomes preferentially to ischemic myocardium.

    Science.gov (United States)

    Lipinski, Michael J; Albelda, M Teresa; Frias, Juan C; Anderson, Stasia A; Luger, Dror; Westman, Peter C; Escarcega, Ricardo O; Hellinga, David G; Waksman, Ron; Arai, Andrew E; Epstein, Stephen E

    2016-03-01

    Nanoparticles may serve as a promising means to deliver novel therapeutics to the myocardium following myocardial infarction. We sought to determine whether lipid-based liposomal nanoparticles can be shown through different imaging modalities to specifically target injured myocardium following intravenous injection in an ischemia-reperfusion murine myocardial infarction model. Mice underwent ischemia-reperfusion surgery and then either received tail-vein injection with gadolinium- and fluorescent-labeled liposomes or no injection (control). The hearts were harvested 24h later and underwent T1 and T2-weighted ex vivo imaging using a 7 Tesla Bruker magnet. The hearts were then sectioned for immunohistochemistry and optical fluorescent imaging. The mean size of the liposomes was 100nm. T1-weighted signal intensity was significantly increased in the ischemic vs. the non-ischemic myocardium for mice that received liposomes compared with control. Optical imaging demonstrated significant fluorescence within the infarct area for the liposome group compared with control (163±31% vs. 13±14%, p=0.001) and fluorescent microscopy confirmed the presence of liposomes within the ischemic myocardium. Liposomes traffic to the heart and preferentially home to regions of myocardial injury, enabling improved diagnosis of myocardial injury and could serve as a vehicle for drug delivery. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Preferential isolation of Megasphaera elsdenii from pig feces.

    Science.gov (United States)

    Kajihara, Yu; Yoshikawa, Shota; Cho, Yuichiro; Ito, Toshiyuki; Miyamoto, Hirokuni; Kodama, Hiroaki

    2017-08-28

    Lactic acid produced by intestinal bacteria is fermented by lactate-utilizing bacteria. In this study, we developed a selective culture medium (KMI medium) for Megasphaera elsdenii, a lactate-utilizing bacterium that is abundant in pig intestines. Supplementation of the medium with lactate and beef extract powder was necessary for the preferential growth of M. elsdenii. In addition, we designed a species-specific primer set to detect M. elsdenii. When pig fecal samples were plated on KMI agar medium, approximately 60-100% of the resulting colonies tested positive using the M. elsdenii-specific PCR primers. In fact, nearly all of the large, yellow-white colonies that grew on the KMI agar medium tested positive by PCR with this primer set. The 16S rRNA gene sequences of three representative PCR-positive strains showed strong similarities to that of M. elsdenii ATCC 25940(T) (98.9-99.2% identity). These three strains were approximately 1.5 μm sized cocci that were primarily arranged in pairs, as was observed for M. elsdenii JCM 1772(T). The selective KMI medium and species-specific primer set developed in this study are useful for the isolation and detection of M. elsdenii and will be useful in research aimed at increasing our understanding of intestinal short-chain fatty acid metabolism in pigs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. GPCR genes are preferentially retained after whole genome duplication.

    Directory of Open Access Journals (Sweden)

    Jenia Semyonov

    Full Text Available One of the most interesting questions in biology is whether certain pathways have been favored during evolution, and if so, what properties could cause such a preference. Due to the lack of experimental evidence, whether select gene families have been preferentially retained over time after duplication in metazoan organisms remains unclear. Here, by syntenic mapping of nonchemosensory G protein-coupled receptor genes (nGPCRs which represent half the receptome for transmembrane signaling in the vertebrate genomes, we found that, as opposed to the 8-15% retention rate for whole genome duplication (WGD-derived gene duplicates in the entire genome of pufferfish, greater than 27.8% of WGD-derived nGPCRs which interact with a nonpeptide ligand were retained after WGD in pufferfish Tetraodon nigroviridis. In addition, we show that concurrent duplication of cognate ligand genes by WGD could impose selection of nGPCRs that interact with a polypeptide ligand. Against less than 2.25% probability for parallel retention of a pair of WGD-derived ligands and a pair of cognate receptor duplicates, we found a more than 8.9% retention of WGD-derived ligand-nGPCR pairs--threefold greater than one would surmise. These results demonstrate that gene retention is not uniform after WGD in vertebrates, and suggest a Darwinian selection of GPCR-mediated intercellular communication in metazoan organisms.

  18. Preferential sequestration of terrestrial organic matter in boreal lake sediments

    Science.gov (United States)

    Guillemette, François; von Wachenfeldt, Eddie; Kothawala, Dolly N.; Bastviken, David; Tranvik, Lars J.

    2017-04-01

    The molecular composition and origin has recently been demonstrated to play a critical role in the persistence of organic matter in lake water, but it is unclear to what degree chemical attributes and sources may also control settling and burial of organic matter in lake sediments. Here we compared the annual contribution of allochthonous and autochthonous sources to the organic matter settling in the water column and present in the sediments of 12 boreal lakes. We used the fluorescence properties and elemental composition of the organic matter to trace its origin and found a consistent pattern of increasing contribution of terrestrial compounds in the sediments as compared to the settling matter, with an annual average allochthony of 87% and 57%, respectively. Seasonal data revealed a predominance of in-lake-produced compounds sinking in the water column in summer. Yet only a slight concurrent decrease in the contribution of terrestrial C to lake sediments was observed during the same period, and sediment allochthony increased again to high levels in autumn. Our results reveal a preferential preservation of allochthonous matter in the sediments and highlight the role of lakes as sequesters of organic carbon primarily originating from the surrounding landscape.

  19. Multimodality imaging demonstrates trafficking of liposomes preferentially to ischemic myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, Michael J., E-mail: mjlipinski12@gmail.com [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States); Albelda, M. Teresa [GIBI2" 3" 0, Grupo de Investigación Biomédica en Imagen, IIS La Fe, Valencia (Spain); Frias, Juan C. [Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia (Spain); Anderson, Stasia A. [Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Luger, Dror; Westman, Peter C.; Escarcega, Ricardo O.; Hellinga, David G.; Waksman, Ron [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States); Arai, Andrew E. [Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Epstein, Stephen E. [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States)

    2016-03-15

    Introduction: Nanoparticles may serve as a promising means to deliver novel therapeutics to the myocardium following myocardial infarction. We sought to determine whether lipid-based liposomal nanoparticles can be shown through different imaging modalities to specifically target injured myocardium following intravenous injection in an ischemia–reperfusion murine myocardial infarction model. Methods: Mice underwent ischemia–reperfusion surgery and then either received tail-vein injection with gadolinium- and fluorescent-labeled liposomes or no injection (control). The hearts were harvested 24 h later and underwent T1 and T2-weighted ex vivo imaging using a 7 Tesla Bruker magnet. The hearts were then sectioned for immunohistochemistry and optical fluorescent imaging. Results: The mean size of the liposomes was 100 nm. T1-weighted signal intensity was significantly increased in the ischemic vs. the non-ischemic myocardium for mice that received liposomes compared with control. Optical imaging demonstrated significant fluorescence within the infarct area for the liposome group compared with control (163 ± 31% vs. 13 ± 14%, p = 0.001) and fluorescent microscopy confirmed the presence of liposomes within the ischemic myocardium. Conclusions: Liposomes traffic to the heart and preferentially home to regions of myocardial injury, enabling improved diagnosis of myocardial injury and could serve as a vehicle for drug delivery.

  20. Preferential HLA Usage in the Influenza Virus-Specific CTL Response

    National Research Council Canada - National Science Library

    Boon, Adrianus C. M; de Mutsert, Gerrie; Fouchier, Ron A. M; Sintnicolaas, Kees; Osterhaus, Albert D. M. E; Rimmelzwaan, Guus F

    2004-01-01

    ...; and Sanquin Bloodbank Rotterdam, Laboratory for Histocompatibility and Immunogenetics, Dordrecht, The Netherlands To study whether individual HLA class I alleles are used preferentially or equally...

  1. Preferential Solvation/Hydration of α-Chymotrypsin in Water-Acetonitrile Mixtures.

    Science.gov (United States)

    Sirotkin, Vladimir A; Kuchierskaya, Alexandra A

    2017-05-04

    The aim of our study is to monitor the preferential hydration/solvation of the protein macromolecules at low and high water content in water-organic mixtures. Our approach is based on the analysis of the absolute values of the water/organic solvent sorption. We applied this approach to estimate the protein stabilization/destabilization due to the preferential interactions of α-chymotrypsin with water-acetonitrile mixtures. At high water content, α-chymotrypsin is preferentially hydrated. At the intermediate water content, the preferential interaction changed from preferential hydration to preferential binding of acetonitrile. From infrared spectra, changes in the structure of α-chymotrypsin were determined through an analysis of the structure of the amide I band. Acetonitrile augments the intensity of the 1626 cm(-1) band assigned to the intermolecular β-sheet aggregates. At low water content, the protein is in a glassy (rigid) state. The H-bond accepting acetonitrile molecules are not effective in solvating the dehydrated protein molecules alone. Therefore, the acetonitrile molecules are preferentially excluded from the protein surface, resulting in the preferential hydration. Advantages of our approach: (i) The preferential interaction parameters can be determined in the entire range of water content in water-organic mixtures. (ii) Our approach facilitates the individual evaluation of the Gibbs energies of water, protein, and organic solvent.

  2. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    Science.gov (United States)

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  3. Frac Sand Mines Are Preferentially Sited in Unzoned Rural Areas.

    Science.gov (United States)

    Locke, Christina

    2015-01-01

    Shifting markets can cause unexpected, stochastic changes in rural landscapes that may take local communities by surprise. Preferential siting of new industrial facilities in poor areas or in areas with few regulatory restrictions can have implications for environmental sustainability, human health, and social justice. This study focuses on frac sand mining-the mining of high-quality silica sand used in hydraulic fracturing processes for gas and oil extraction. Frac sand mining gained prominence in the 2000s in the upper midwestern United States where nonmetallic mining is regulated primarily by local zoning. I asked whether frac sand mines were more commonly sited in rural townships without formal zoning regulations or planning processes than in those that undertook zoning and planning before the frac sand boom. I also asked if mine prevalence was correlated with socioeconomic differences across townships. After creating a probability surface to map areas most suitable for frac sand mine occurrence, I developed neutral landscape models from which to compare actual mine distributions in zoned and unzoned areas at three different spatial extents. Mines were significantly clustered in unzoned jurisdictions at the statewide level and in 7 of the 8 counties with at least three frac sand mines and some unzoned land. Subsequent regression analyses showed mine prevalence to be uncorrelated with land value, tax rate, or per capita income, but correlated with remoteness and zoning. The predicted mine count in unzoned townships was over two times higher than that in zoned townships. However, the county with the most mines by far was under a county zoning ordinance, perhaps indicating industry preferences for locations with clear, homogenous rules over patchwork regulation. Rural communities can use the case of frac sand mining as motivation to discuss and plan for sudden land-use predicaments, rather than wait to grapple with unfamiliar legal processes during a period of

  4. Adult motor axons preferentially reinnervate predegenerated muscle nerve.

    Science.gov (United States)

    Abdullah, M; O'Daly, A; Vyas, A; Rohde, C; Brushart, T M

    2013-11-01

    Preferential motor reinnervation (PMR) is the tendency for motor axons regenerating after repair of mixed nerve to reinnervate muscle nerve and/or muscle rather than cutaneous nerve or skin. PMR may occur in response to the peripheral nerve pathway alone in juvenile rats (Brushart, 1993; Redett et al., 2005), yet the ability to identify and respond to specific pathway markers is reportedly lost in adults (Uschold et al., 2007). The experiments reported here evaluate the relative roles of pathway and end organ in the genesis of PMR in adult rats. Fresh and 2-week predegenerated femoral nerve grafts were transferred in correct or reversed alignment to replace the femoral nerves of previously unoperated Lewis rats. After 8 weeks of regeneration the motoneurons projecting through the grafts to recipient femoral cutaneous and muscle branches and their adjacent end organs were identified by retrograde labeling. Motoneuron counts were subjected to Poisson regression analysis to determine the relative roles of pathway and end organ identity in generating PMR. Transfer of fresh grafts did not result in PMR, whereas substantial PMR was observed when predegenerated grafts were used. Similarly, the pathway through which motoneurons reached the muscle had a significant impact on PMR when grafts were predegenerated, but not when they were fresh. Comparison of the relative roles of pathway and end organ in generating PMR revealed that neither could be shown to be more important than the other. These experiments demonstrate unequivocally that adult muscle nerve and cutaneous nerve differ in qualities that can be detected by regenerating adult motoneurons and that can modify their subsequent behavior. They also reveal that two weeks of Wallerian degeneration modify the environment in the graft from one that provides no modality-specific cues for motor neurons to one that actively promotes PMR. © 2013.

  5. Frac Sand Mines Are Preferentially Sited in Unzoned Rural Areas.

    Directory of Open Access Journals (Sweden)

    Christina Locke

    Full Text Available Shifting markets can cause unexpected, stochastic changes in rural landscapes that may take local communities by surprise. Preferential siting of new industrial facilities in poor areas or in areas with few regulatory restrictions can have implications for environmental sustainability, human health, and social justice. This study focuses on frac sand mining-the mining of high-quality silica sand used in hydraulic fracturing processes for gas and oil extraction. Frac sand mining gained prominence in the 2000s in the upper midwestern United States where nonmetallic mining is regulated primarily by local zoning. I asked whether frac sand mines were more commonly sited in rural townships without formal zoning regulations or planning processes than in those that undertook zoning and planning before the frac sand boom. I also asked if mine prevalence was correlated with socioeconomic differences across townships. After creating a probability surface to map areas most suitable for frac sand mine occurrence, I developed neutral landscape models from which to compare actual mine distributions in zoned and unzoned areas at three different spatial extents. Mines were significantly clustered in unzoned jurisdictions at the statewide level and in 7 of the 8 counties with at least three frac sand mines and some unzoned land. Subsequent regression analyses showed mine prevalence to be uncorrelated with land value, tax rate, or per capita income, but correlated with remoteness and zoning. The predicted mine count in unzoned townships was over two times higher than that in zoned townships. However, the county with the most mines by far was under a county zoning ordinance, perhaps indicating industry preferences for locations with clear, homogenous rules over patchwork regulation. Rural communities can use the case of frac sand mining as motivation to discuss and plan for sudden land-use predicaments, rather than wait to grapple with unfamiliar legal processes

  6. Partial preferential chromosome pairing is genotype dependent in tetraploid rose.

    Science.gov (United States)

    Bourke, Peter M; Arens, Paul; Voorrips, Roeland E; Esselink, G Danny; Koning-Boucoiran, Carole F S; Van't Westende, Wendy P C; Santos Leonardo, Tiago; Wissink, Patrick; Zheng, Chaozhi; van Geest, Geert; Visser, Richard G F; Krens, Frans A; Smulders, Marinus J M; Maliepaard, Chris

    2017-04-01

    It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term 'segmental allopolyploid' to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra-high-density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re-mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsion-phase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca. Aligning the integrated ultra-dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co-linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  7. Adolescent girls' neural response to reward mediates the relation between childhood financial disadvantage and depression.

    Science.gov (United States)

    Romens, Sarah E; Casement, Melynda D; McAloon, Rose; Keenan, Kate; Hipwell, Alison E; Guyer, Amanda E; Forbes, Erika E

    2015-11-01

    Children who experience socioeconomic disadvantage are at heightened risk for developing depression; however, little is known about neurobiological mechanisms underlying this association. Low socioeconomic status (SES) during childhood may confer risk for depression through its stress-related effects on the neural circuitry associated with processing monetary rewards. In a prospective study, we examined the relationships among the number of years of household receipt of public assistance from age 5-16 years, neural activation during monetary reward anticipation and receipt at age 16, and depression symptoms at age 16 in 123 girls. Number of years of household receipt of public assistance was positively associated with heightened response in the medial prefrontal cortex during reward anticipation, and this heightened neural response mediated the relationship between socioeconomic disadvantage and current depression symptoms, controlling for past depression. Chronic exposure to socioeconomic disadvantage in childhood may alter neural circuitry involved in reward anticipation in adolescence, which in turn may confer risk for depression. © 2015 Association for Child and Adolescent Mental Health.

  8. Adolescent girls’ neural response to reward mediates the relation between childhood financial disadvantage and depression

    Science.gov (United States)

    Romens, Sarah E.; Casement, Melynda D.; McAloon, Rose; Keenan, Kate; Hipwell, Alison E.; Guyer, Amanda E.; Forbes, Erika E.

    2015-01-01

    Background Children who experience socioeconomic disadvantage are at heightened risk for developing depression; however, little is known about neurobiological mechanisms underlying this association. Low socioeconomic status (SES) during childhood may confer risk for depression through its stress-related effects on the neural circuitry associated with processing monetary rewards. Methods In a prospective study, we examined the relationships among the number of years of household receipt of public assistance from age 5–16 years, neural activation during monetary reward anticipation and receipt at age 16, and depression symptoms at age 16 in 123 girls. Results Number of years of household receipt of public assistance was positively associated with heightened response in the medial prefrontal cortex during reward anticipation, and this heightened neural response mediated the relationship between socioeconomic disadvantage and current depression symptoms, controlling for past depression. Conclusions Chronic exposure to socioeconomic disadvantage in childhood may alter neural circuitry involved in reward anticipation in adolescence, which in turn may confer risk for depression. PMID:25846746

  9. A physiological neural controller of a muscle fiber oculomotor plant in horizontal monkey saccades.

    Science.gov (United States)

    Ghahari, Alireza; Enderle, John D

    2014-01-01

    A neural network model of biophysical neurons in the midbrain is presented to drive a muscle fiber oculomotor plant during horizontal monkey saccades. Neural circuitry, including omnipause neuron, premotor excitatory and inhibitory burst neurons, long lead burst neuron, tonic neuron, interneuron, abducens nucleus, and oculomotor nucleus, is developed to examine saccade dynamics. The time-optimal control strategy by realization of agonist and antagonist controller models is investigated. In consequence, each agonist muscle fiber is stimulated by an agonist neuron, while an antagonist muscle fiber is unstimulated by a pause and step from the antagonist neuron. It is concluded that the neural network is constrained by a minimum duration of the agonist pulse and that the most dominant factor in determining the saccade magnitude is the number of active neurons for the small saccades. For the large saccades, however, the duration of agonist burst firing significantly affects the control of saccades. The proposed saccadic circuitry establishes a complete model of saccade generation since it not only includes the neural circuits at both the premotor and motor stages of the saccade generator, but also uses a time-optimal controller to yield the desired saccade magnitude.

  10. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  11. Young Children with Autism Spectrum Disorder Do Not Preferentially Attend to Biological Motion

    Science.gov (United States)

    Annaz, Dagmara; Campbell, Ruth; Coleman, Mike; Milne, Elizabeth; Swettenham, John

    2012-01-01

    Preferential attention to biological motion can be seen in typically developing infants in the first few days of life and is thought to be an important precursor in the development of social communication. We examined whether children with autism spectrum disorder (ASD) aged 3-7 years preferentially attend to point-light displays depicting…

  12. Spreading dynamics of an e-commerce preferential information model on scale-free networks

    Science.gov (United States)

    Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding

    2017-02-01

    In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.

  13. Single-site neural tube closure in human embryos revisited.

    Science.gov (United States)

    de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan

    2017-10-01

    Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Divergent influences of anterior cingulate cortex GABA concentrations on the emotion circuitry

    NARCIS (Netherlands)

    Levar, Nina; van Leeuwen, Judith M C; Denys, Damiaan; Van Wingen, G.

    2017-01-01

    Neuroimaging research has revealed that emotion processing recruits a widespread neural network including the dorsal anterior cingulate cortex (dACC), hippocampus, and amygdala. Recent studies have started to investigate the role of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA)

  15. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    Science.gov (United States)

    2011-09-01

    Eisner-Janowicz et al., 2008), as well as the cortex of the uninjured hemisphere (Re- inecke et al., 2003; Rema and Ebner , 2003). Neural reorgani...in rats. Eur. J. Neurosci. 17, 623–627. Rema, V., and Ebner , F.F. (2003). Lesions of mature barrel field cortex interfere with sensory processing and

  16. A Model for Improving the Learning Curves of Artificial Neural Networks.

    Directory of Open Access Journals (Sweden)

    Roberto L S Monteiro

    Full Text Available In this article, the performance of a hybrid artificial neural network (i.e. scale-free and small-world was analyzed and its learning curve compared to three other topologies: random, scale-free and small-world, as well as to the chemotaxis neural network of the nematode Caenorhabditis Elegans. One hundred equivalent networks (same number of vertices and average degree for each topology were generated and each was trained for one thousand epochs. After comparing the mean learning curves of each network topology with the C. elegans neural network, we found that the networks that exhibited preferential attachment exhibited the best learning curves.

  17. Neural substrate expansion for the restoration of brain function

    Directory of Open Access Journals (Sweden)

    Han-Chiao Isaac Chen

    2016-01-01

    Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.

  18. Internal models and neural computation in the vestibular system.

    Science.gov (United States)

    Green, Andrea M; Angelaki, Dora E

    2010-01-01

    The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem-cerebellar circuitry. These include the sensorimotor transformations for reflex generation, the neural computations for inertial motion estimation, the distinction between active and passive head movements, as well as the integration of vestibular and proprioceptive information for body motion estimation. A common theme in the solution to such computational problems is the concept of internal models and their neural implementation. Recent studies have shed new insights into important organizational principles that closely resemble those proposed for other sensorimotor systems, where their neural basis has often been more difficult to identify. As such, the vestibular system provides an excellent model to explore common neural processing strategies relevant both for reflexive and for goal-directed, voluntary movement as well as perception.

  19. Differentiating neural reward responsiveness in autism versus ADHD

    Directory of Open Access Journals (Sweden)

    Gregor Kohls

    2014-10-01

    Full Text Available Although attention deficit hyperactivity disorders (ADHD and autism spectrum disorders (ASD share certain neurocognitive characteristics, it has been hypothesized to differentiate the two disorders based on their brain's reward responsiveness to either social or monetary reward. Thus, the present fMRI study investigated neural activation in response to both reward types in age and IQ-matched boys with ADHD versus ASD relative to typically controls (TDC. A significant group by reward type interaction effect emerged in the ventral striatum with greater activation to monetary versus social reward only in TDC, whereas subjects with ADHD responded equally strong to both reward types, and subjects with ASD showed low striatal reactivity across both reward conditions. Moreover, disorder-specific neural abnormalities were revealed, including medial prefrontal hyperactivation in response to social reward in ADHD versus ventral striatal hypoactivation in response to monetary reward in ASD. Shared dysfunction was characterized by fronto-striato-parietal hypoactivation in both clinical groups when money was at stake. Interestingly, lower neural activation within parietal circuitry was associated with higher autistic traits across the entire study sample. In sum, the present findings concur with the assumption that both ASD and ADHD display distinct and shared neural dysfunction in response to reward.

  20. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease.

    Science.gov (United States)

    Petzinger, Giselle M; Fisher, Beth E; McEwen, Sarah; Beeler, Jeff A; Walsh, John P; Jakowec, Michael W

    2013-07-01

    Exercise interventions in individuals with Parkinson's disease incorporate goal-based motor skill training to engage cognitive circuitry important in motor learning. With this exercise approach, physical therapy helps with learning through instruction and feedback (reinforcement) and encouragement to perform beyond self-perceived capability. Individuals with Parkinson's disease become more cognitively engaged with the practice and learning of movements and skills that were previously automatic and unconscious. Aerobic exercise, regarded as important for improvement of blood flow and facilitation of neuroplasticity in elderly people, might also have a role in improvement of behavioural function in individuals with Parkinson's disease. Exercises that incorporate goal-based training and aerobic activity have the potential to improve both cognitive and automatic components of motor control in individuals with mild to moderate disease through experience-dependent neuroplasticity. Basic research in animal models of Parkinson's disease is beginning to show exercise-induced neuroplastic effects at the level of synaptic connections and circuits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements.

    Science.gov (United States)

    Schoenfelder, Stefan; Furlan-Magaril, Mayra; Mifsud, Borbala; Tavares-Cadete, Filipe; Sugar, Robert; Javierre, Biola-Maria; Nagano, Takashi; Katsman, Yulia; Sakthidevi, Moorthy; Wingett, Steven W; Dimitrova, Emilia; Dimond, Andrew; Edelman, Lucas B; Elderkin, Sarah; Tabbada, Kristina; Darbo, Elodie; Andrews, Simon; Herman, Bram; Higgs, Andy; LeProust, Emily; Osborne, Cameron S; Mitchell, Jennifer A; Luscombe, Nicholas M; Fraser, Peter

    2015-04-01

    The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression. © 2015 Schoenfelder et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry.

    Science.gov (United States)

    Neira, Andres D; Wurtz, Gregory A; Ginzburg, Pavel; Zayats, Anatoly V

    2014-05-05

    The integration of optical metamaterials within silicon integrated photonic circuitry bears significantly potential in the design of low-power, nanoscale footprint, all-optical functionalities. We propose a novel concept and provide detailed analysis of an on-chip ultrafast all-optical modulator based on an hyperbolic metamaterial integrated in a silicon waveguide. The anisotropic metamaterial based on gold nanorods is placed on top of the silicon waveguide to form a modulator with a 300x440x600 nm(3) footprint. For the operating wavelength of 1.5 μm, the optimized geometry of the device has insertion loss of about 5 dB and a modulation depth of 35% with a sub-ps switching rate. The switching energy estimated from nonlinear transient dynamic numerical simulations is 3.7 pJ/bit when the transmission is controlled optically at a wavelength of 532 nm, resonant with the transverse plasmonic mode of the metamaterial. The switching mechanism is based on the control of the hybridization of eigenmodes in the metamaterial slab and the Si waveguide.

  3. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  4. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    Science.gov (United States)

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  5. Assessing Ink Transfer Performance of Gravure-Offset Fine-Line Circuitry Printing

    Science.gov (United States)

    Cheng, Hsien-Chie; Chen, You-Wei; Chen, Wen-Hwa; Lu, Su-Tsai; Lin, Shih-Ming

    2017-12-01

    In this study, the printing mechanism and performance of gravure-offset fine-line circuitry printing technology are investigated in terms of key printing parameters through experimental and theoretical analyses. First, the contact angles of the ink deposited on different substrates, blankets, and gravure metal plates are experimentally determined; moreover, their temperature and solvent content dependences are analyzed. Next, the ink solvent absorption and evaporation behaviors of the blankets at different temperatures, times, and numbers of printing repetitions are characterized by conducting experiments. In addition, while printing repeatedly, the surface characteristics of the blankets, such as the contact angle, vary with the amount of absorbed ink solvent, further affecting the ink transfer performance (ratio) and printing quality. Accordingly, the surface effect of the blanket due to ink solvent absorption on the ink contact angle is analyzed. Furthermore, the amount of ink transferred from the gravure plate to the blanket in the "off process" and from the blanket to the substrate in the "set process" is evaluated by conducting a simplified plate-to-plate experiment. The influences of loading rate (printing velocity), temperature, and solvent content on the ink transfer performance are addressed. Finally, the ink transfer mechanism is theoretically analyzed for different solvent contents using Surface Evolver. The calculation results are compared with those of the experiment.

  6. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination

    Science.gov (United States)

    Frittoli, Emanuela; Palamidessi, Andrea; Marighetti, Paola; Confalonieri, Stefano; Bianchi, Fabrizio; Malinverno, Chiara; Mazzarol, Giovanni; Viale, Giuseppe; Martin-Padura, Ines; Garré, Massimilliano; Parazzoli, Dario; Mattei, Valentina; Cortellino, Salvatore; Bertalot, Giovanni

    2014-01-01

    The mechanisms by which tumor cells metastasize and the role of endocytic proteins in this process are not well understood. We report that overexpression of the GTPase RAB5A, a master regulator of endocytosis, is predictive of aggressive behavior and metastatic ability in human breast cancers. RAB5A is necessary and sufficient to promote local invasion and distant dissemination of various mammary and nonmammary tumor cell lines, and this prometastatic behavior is associated with increased intratumoral cell motility. Specifically, RAB5A is necessary for the formation of invadosomes, membrane protrusions specialized in extracellular matrix (ECM) degradation. RAB5A promotes RAB4- and RABENOSYN-5–dependent endo/exocytic cycles (EECs) of critical cargos (membrane-type 1 matrix metalloprotease [MT1-MMP] and β3 integrin) required for invadosome formation in response to motogenic stimuli. This trafficking circuitry is necessary for spatially localized hepatocyte growth factor (HGF)/MET signaling that drives invasive, proteolysis-dependent chemotaxis in vitro and for conversion of ductal carcinoma in situ to invasive ductal carcinoma in vivo. Thus, RAB5A/RAB4 EECs promote tumor dissemination by controlling a proteolytic, mesenchymal invasive program. PMID:25049275

  7. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior.

    Science.gov (United States)

    McFarland, K; Kalivas, P W

    2001-11-01

    The role of limbic-striato-pallidal circuitry in cocaine-induced reinstatement was evaluated. The transient inhibition of brain nuclei associated with motor systems [including the ventral tegmental area (VTA), dorsal prefrontal cortex (dPFC), core of the nucleus accumbens (NAcore), and ventral pallidum (VP)] prevented cocaine-induced reinstatement. However, only the VP proved to be necessary for food reinstatement, suggesting that the identified circuit is specific to drug-related reinstatement. Supporting the possibility that the VTA-dPFC-NAcore-VP is a series circuit mediating reinstatement, simultaneous unilateral microinjection of GABA agonists into the dPFC in one hemisphere and into the VP in the contralateral hemisphere abolished cocaine reinstatement. Although dopamine projections from the VTA innervate all three forebrain nuclei, the blockade of dopamine receptors only in the dPFC antagonized cocaine-induced reinstatement. Furthermore, DA administration into the dPFC was sufficient to elicit a reinstatement in drug-related responding. These data demonstrate that dopamine release in the dPFC initiates a dPFC-NAcore-VP series circuit that mediates cocaine-induced drug-seeking behavior.

  8. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform.

    Science.gov (United States)

    McPolin, Cillian P T; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A; Justice, John; Corbett, Brian; Zayats, Anatoly V

    2016-08-05

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices.

  9. Corticospinal tract insult alters GABAergic circuitry in the mammalian spinal cord

    Directory of Open Access Journals (Sweden)

    Jeffrey B. Russ

    2013-09-01

    Full Text Available During perinatal development, corticospinal tract (CST projections into the spinal cord help refine spinal circuitry. Although the normal developmental processes that are controlled by the arrival of corticospinal input are becoming clear, little is known about how perinatal cortical damage impacts specific aspects of spinal circuit development, particularly the inhibitory microcircuitry that regulates spinal reflex circuits. In this study, we sought to determine how ischemic cortical damage impacts the synaptic attributes of a well-characterized population of inhibitory, GABAergic interneurons, called GABApre neurons, which modulates the efficiency of proprioceptive sensory terminals in the sensorimotor reflex circuit. We found that putative GABApre interneurons receive CST input and, using an established mouse model of perinatal stroke, that cortical ischemic injury results in a reduction of CST density within the intermediate region of the spinal cord, where these interneurons reside. Importantly, CST alterations were restricted to the side contralateral to the injury. Within the synaptic terminals of the GABApre interneurons, we observed a dramatic upregulation of the 65-isoform of the GABA synthetic enzyme glutamic acid decarboxylase (GAD65. In accordance with the CST density reduction, GAD65 was elevated on the side of the spinal cord contralateral to cortical injury. This effect was not seen for other GABApre synaptic markers or in animals that received sham surgery. Our data reveal a novel effect of perinatal stroke that involves severe deficits in the architecture of descending spinal pathways, which in turn appear to promote molecular alterations in a specific spinal GABAergic circuit.

  10. Taste Reward Circuitry Related Brain Structures Characterize Ill and Recovered Anorexia Nervosa and Bulimia Nervosa

    Science.gov (United States)

    Frank, Guido K.; Shott, Megan E.; Hagman, Jennifer O.; Mittal, Vijay A.

    2013-01-01

    Objective The pathophysiology of the eating disorder anorexia nervosa remains obscure, but structural brain alterations could be functionally important biomarkers. Here we assessed taste pleasantness and reward sensitivity in relation to brain structure, which might be related to food avoidance commonly seen in eating disorders. Method We used structural magnetic resonance brain imaging to study gray and white matter volumes in individuals with restricting type currently ill (n = 19) or recovered-anorexia nervosa (n = 24), bulimia nervosa (n= 19) and healthy control women (n=24). Results All eating disorder groups showed increased gray matter volume of the medial orbitofrontal cortex (gyrus rectus). Manually tracing confirmed larger gyrus rectus volume, and predicted taste pleasantness across all groups. The analyses also indicated other morphological differences between diagnostic categories: Ill and recovered-anorexia nervosa had increased right, while bulimia nervosa had increased left antero-ventral insula gray matter volumes compared to controls. Furthermore, dorsal striatum volumes were reduced in recovered-anorexia and bulimia nervosa, and predicted sensitivity to reward in the eating disorder groups. The eating disorder groups also showed reduced white matter in right temporal and parietal areas when compared to healthy controls. Notably, the results held when controlling for a range of covariates (e.g., age, depression, anxiety, medications). Conclusion Brain structure in medial orbitofrontal cortex, insula and striatum is altered in eating disorders and suggests altered brain circuitry that has been associated with taste pleasantness and reward value. PMID:23680873

  11. Closed circuitry operation influence on microbial electrofermentation: Proton/electron effluxes on electro-fuels productivity.

    Science.gov (United States)

    Nikhil, G N; Venkata Subhash, G; Yeruva, Dileep Kumar; Venkata Mohan, S

    2015-11-01

    A novel biocatalyzed electrofermentor (BEF) was designed which uncovers the intricate role of biocatalyst involved in cogeneration of electro-fuels (hydrogen and electricity). The specific role of external resistance (Rext, electrical load) on the performance of BEF was evaluated. Four BEFs were operated separately with different resistances (25, 50, 100 and 200 Ω) at an organic load of 5 g/L. Among the tested conditions, external resistance (R3) with 100 Ω revealed maximum power and cumulative H2 production (148 mW and 450 mL, respectively). The competence of closed circuitry comparatively excelled because it facilitates congenial ambiance for the enriched EAB (electroactive bacteria) resulting high rate of metabolic activity that paves way for higher substrate degradation and electro-fuel productivity. Probing of electron kinetics was studied using voltammetric analyses wherein electron transfer by redox proteins was noticed. The designed BEF is found to be sustainable system for harnessing renewable energy through wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Kernel Architecture of the Genetic Circuitry of the Arabidopsis Circadian System.

    Directory of Open Access Journals (Sweden)

    Mathias Foo

    2016-02-01

    Full Text Available A wide range of organisms features molecular machines, circadian clocks, which generate endogenous oscillations with ~24 h periodicity and thereby synchronize biological processes to diurnal environmental fluctuations. Recently, it has become clear that plants harbor more complex gene regulatory circuits within the core circadian clocks than other organisms, inspiring a fundamental question: are all these regulatory interactions between clock genes equally crucial for the establishment and maintenance of circadian rhythms? Our mechanistic simulation for Arabidopsis thaliana demonstrates that at least half of the total regulatory interactions must be present to express the circadian molecular profiles observed in wild-type plants. A set of those essential interactions is called herein a kernel of the circadian system. The kernel structure unbiasedly reveals four interlocked negative feedback loops contributing to circadian rhythms, and three feedback loops among them drive the autonomous oscillation itself. Strikingly, the kernel structure, as well as the whole clock circuitry, is overwhelmingly composed of inhibitory, rather than activating, interactions between genes. We found that this tendency underlies plant circadian molecular profiles which often exhibit sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate profiles, inhibitory interactions may facilitate the global coordination of temporally-distant clock events that are markedly peaked at very specific times of day. Our systematic approach resulting in experimentally-testable predictions provides insights into a design principle of biological clockwork, with implications for synthetic biology.

  13. The neural correlates of face processing and Chinese character processing in children

    Science.gov (United States)

    Liu, Jiangang; Feng, Lu; Li, Ling; Tian, Jie

    2011-03-01

    It is well known that adults are experts at processing words and faces. Accordingly, adult research has identified two neural expertise systems involved in word processing and face processing within the fusiform gyrus, respectively, namely the visual word form area (VWFA) and fusiform face area (FFA). The present study used fMRI to explore whether similar differentiations exist for the FFA and VWFA in 10~11-aged children, by comparing the activation between faces, Chinese characters, and common objects. Our study identified adult-like Chinese character-preferential activation and common object-preferential activation in 10~11-aged children, especially with the fusiform gyrus, while fail to reveal a consistent region showing preferential response to faces. An inspection of individual activation of faces relative to Chinese characters and common objects revealed adults-like FFA in some of children, indicating that the absence of face-preferential activation at the group level may be mainly due to the considerable variability in the magnitude and locus of individual face-preferential activation. Our finds suggested that the Chinese character-preferential regions and common object-preferential regions within the fusiform gyrus may be formed earlier than that of faces. Especially, though the VWFA and FFA are both related to visual expertise, our findings indicated that the VWFA can be formed only through a 3~4-years' schooling; in contrast the formation of FFA appear to undergo a more prolonged development before it reaches the adult level.

  14. Neural correlates of threat perception: neural equivalence of conspecific and heterospecific mobbing calls is learned.

    Science.gov (United States)

    Avey, Marc T; Hoeschele, Marisa; Moscicki, Michele K; Bloomfield, Laurie L; Sturdy, Christopher B

    2011-01-01

    Songbird auditory areas (i.e., CMM and NCM) are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators. Mobbing calls produced in response to smaller, higher-threat predators contain more "D" notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG) expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned.

  15. Neural correlates of threat perception: neural equivalence of conspecific and heterospecific mobbing calls is learned.

    Directory of Open Access Journals (Sweden)

    Marc T Avey

    Full Text Available Songbird auditory areas (i.e., CMM and NCM are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators. Mobbing calls produced in response to smaller, higher-threat predators contain more "D" notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned.

  16. Introduction to neural networks

    CERN Document Server

    James, Frederick E

    1994-02-02

    1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.

  17. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  18. Neural song preference during vocal learning in the zebra finch depends on age and state.

    Science.gov (United States)

    Nick, Teresa A; Konishi, Masakazu

    2005-02-05

    The zebra finch acquires its song by first memorizing a model song from a tutor and then matching its own vocalizations to the memory trace of the tutor song, called a template. Neural mechanisms underlying this process require a link between the neural memory trace and the premotor song circuitry, which drives singing. We now report that a premotor song nucleus responds more to the tutor song model than to every other stimulus examined, including the bird's own song (BOS). Neural tuning to the song model occurred only during waking and peaked during the template-matching period of development, when the vocal motor output is sculpted to match the tutor song. During the same developmental phase, the BOS was the most effective excitatory stimulus during sleep. The preference for BOS compared to tutor song inverted with sleep/wake state. Thus, song preference shifts with development and state. 2004 Wiley Periodicals, Inc.

  19. A case for spiking neural network simulation based on configurable multiple-FPGA systems.

    Science.gov (United States)

    Yang, Shufan; Wu, Qiang; Li, Renfa

    2011-09-01

    Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.

  20. First realization of a tracking detector for high energy physics experiments based on Josephson digital readout circuitry

    CERN Document Server

    Pagano, S; Esposito, A P; Mukhanov, O; Rylov, S

    1999-01-01

    We have designed and realized a prototype of a high energy particle microstrip detector with Josephson readout circuits. The key features of this device are: minimum ionizing particle sensitivity, due to the use of semiconductive sensors, fast speed and radiation hardness, due to the use of superconductive circuitry, and current discrimination, which allows the use of several types of semiconductors as detector (Si, GaAs, CVD-diamond) without loss in performances. The Josephson circuitry, made by a combination of RSFQ and latching logic gates, realizes an 8-bit current discriminator and parallel to serial converter and can be directly interfaced to room temperature electronics. This device, which is designed for application as vertex detector for the Compass and LHC-B accelerator experiments, has been tested with small radioactive sources acid will undergo to a test beam at the CERN SPS facility with 24 GeV/c protons. Current results and future perspectives will be reported. (11 refs).

  1. Apollo experience report: Detection and minimization of ignition hazards from water/glycol contamination of silver-clad electrical circuitry

    Science.gov (United States)

    Downs, W. R.

    1976-01-01

    The potential flammability hazard when a water/glycol solution contacts defectively insulated silver-clad copper circuitry or electrical components carrying a direct current is described. The chemical reactions and means for detecting them are explained. Methods for detecting and cleaning contaminated areas and the use of inhibitors to arrest chemical reactivity are also explained. Preventive measures to minimize hazards are given. Photomicrographs of the chemical reactions occurring on silver clad wires are also included.

  2. Analysis of graph invariants in functional neocortical circuitry reveals generalized features common to three areas of sensory cortex.

    Directory of Open Access Journals (Sweden)

    Suchin S Gururangan

    2014-07-01

    Full Text Available Correlations in local neocortical spiking activity can provide insight into the underlying organization of cortical microcircuitry. However, identifying structure in patterned multi-neuronal spiking remains a daunting task due to the high dimensionality of the activity. Using two-photon imaging, we monitored spontaneous circuit dynamics in large, densely sampled neuronal populations within slices of mouse primary auditory, somatosensory, and visual cortex. Using the lagged correlation of spiking activity between neurons, we generated functional wiring diagrams to gain insight into the underlying neocortical circuitry. By establishing the presence of graph invariants, which are label-independent characteristics common to all circuit topologies, our study revealed organizational features that generalized across functionally distinct cortical regions. Regardless of sensory area, random and k-nearest neighbors null graphs failed to capture the structure of experimentally derived functional circuitry. These null models indicated that despite a bias in the data towards spatially proximal functional connections, functional circuit structure is best described by non-random and occasionally distal connections. Eigenvector centrality, which quantifies the importance of a neuron in the temporal flow of circuit activity, was highly related to feedforwardness in all functional circuits. The number of nodes participating in a functional circuit did not scale with the number of neurons imaged regardless of sensory area, indicating that circuit size is not tied to the sampling of neocortex. Local circuit flow comprehensively covered angular space regardless of the spatial scale that we tested, demonstrating that circuitry itself does not bias activity flow toward pia. Finally, analysis revealed that a minimal numerical sample size of neurons was necessary to capture at least 90 percent of functional circuit topology. These data and analyses indicated that

  3. High-Density Liquid-State Machine Circuitry for Time-Series Forecasting.

    Science.gov (United States)

    Rosselló, Josep L; Alomar, Miquel L; Morro, Antoni; Oliver, Antoni; Canals, Vincent

    2016-08-01

    Spiking neural networks (SNN) are the last neural network generation that try to mimic the real behavior of biological neurons. Although most research in this area is done through software applications, it is in hardware implementations in which the intrinsic parallelism of these computing systems are more efficiently exploited. Liquid state machines (LSM) have arisen as a strategic technique to implement recurrent designs of SNN with a simple learning methodology. In this work, we show a new low-cost methodology to implement high-density LSM by using Boolean gates. The proposed method is based on the use of probabilistic computing concepts to reduce hardware requirements, thus considerably increasing the neuron count per chip. The result is a highly functional system that is applied to high-speed time series forecasting.

  4. Perceptual alternation in obsessive compulsive disorder--implications for a role of the cortico-striatal circuitry in mediating awareness.

    Science.gov (United States)

    Li, C S; Chen, M C; Yang, Y Y; Chang, H L; Liu, C Y; Shen, S; Chen, C Y

    2000-06-15

    Mounting evidence suggests that obsessive compulsive disorder (OCD) results from functional aberrations of the fronto-striatal circuitry. However, empirical studies of the behavioral manifestations of OCD have been relatively lacking. The present study employs a behavioral task that allows a quantitative measure of how alternative percepts are formed from one moment to another, a process mimicking the brain state in which different thoughts and imageries compete for access to awareness. Eighteen patients with OCD, 12 with generalized anxiety disorder, and 18 normal subjects participated in the experiment, in which they viewed one of the three Schröder staircases and responded by pressing a key to each perceptual reversal. The results demonstrate that the patients with OCD have a higher perceptual alternation rate than the normal controls. Moreover, the frequency of perceptual alternation is significantly correlated with the Yale-Brown obsessive compulsive and the Hamilton anxiety scores. The increase in the frequency of perceptual reversals cannot easily be accounted for by learning or by different patterns of eye fixations on the task. These results provide further evidence that an impairment of the inhibitory function of the cortico-striatal circuitry might underlie the etiology of OCD. The implications of the results for a general role of the cortico-striatal circuitry in mediating awareness are discussed.

  5. Effects of intranasal oxytocin on neural processing within a socially relevant neural circuit.

    Science.gov (United States)

    Singh, Fiza; Nunag, Jason; Muldoon, Glennis; Cadenhead, Kristin S; Pineda, Jaime A; Feifel, David

    2016-03-01

    Dysregulation of the Mirror Neuron System (MNS) in schizophrenia (SCZ) may underlie the cognitive and behavioral manifestations of social dysfunction associated with that disorder. In healthy subjects intranasal (IN) oxytocin (OT) improves neural processing in the MNS and is associated with improved social cognition. OT's brain effects can be measured through its modulation of the MNS by suppressing EEG mu-band electrical activity (8-13Hz) in response to motion perception. Although IN OT's effects on social cognition have been tested in SCZ, OT's impact on the MNS has not been evaluated to date. Therefore, we designed a study to investigate the effects of two different OT doses on biological motion-induced mu suppression in SCZ and healthy subjects. EEG recordings were taken after each subject received a single IN administration of placebo, OT-24IU and OT-48IU in randomized order in a double-blind crossover design. The results provide support for OT's regulation of the MNS in both healthy and SCZ subjects, with the optimal dose dependent on diagnostic group and sex of subject. A statistically significant response was seen in SCZ males only, indicating a heightened sensitivity to those effects, although sex hormone related effects cannot be ruled out. In general, OT appears to have positive effects on neural circuitry that supports social cognition and socially adaptive behaviors. Published by Elsevier B.V.

  6. An Examination of Executive Dysfunction Associated with Frontostriatal Circuitry in Parkinson’s Disease

    Science.gov (United States)

    ZGALJARDIC, DENNIS J.; BOROD, JOAN C.; FOLDI, NANCY S.; MATTIS, PAUL J.; GORDON, MARK F.; FEIGIN, ANDREW; EIDELBERG, DAVID

    2015-01-01

    Parkinson’s disease (PD) is a neurodegenerative movement disorder presenting with subcortical pathology and characterized by motor deficits. However, as is frequently reported in the literature, patients with PD can also exhibit cognitive and behavioral (i.e., nonmotor) impairments, cognitive executive deficits and depression being the most prominent. Considerable attention has addressed the role that disruption to frontostriatal circuitry can play in mediating nonmotor dysfunction in PD. The three nonmotor frontostriatal circuits, which connect frontal cortical regions to the basal ganglia, originate from the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and orbitofrontal cortex (OFC). The objective of the current study was to use our understanding of frontostriatal circuit function (via literature review) to categorize neuropsychological measures of cognitive and behavioral executive functions by circuit. To our knowledge, such an approach has not been previously attempted in the study of executive dysfunction in PD. Neuropsychological measures of executive functions and self-report behavioral inventories, categorized by circuit function, were administered to 32 nondemented patients with Parkinson’s disease (NDPD) and to 29 demographically matched, healthy normal control participants (NC). Our findings revealed significant group differences for each circuit, with the PD group performing worse than the NC group. Among the patients with PD, indices of impairment were greater for tasks associated with DLPFC function than with OFC function. Further, only an index of DLPFC test performance was demonstrated to significantly discriminate individuals with and without PD. In conclusion, our findings suggest that nondemented patients with PD exhibit greater impairment on neuropsychological measures associated with DLPFC than with ACC or OFC circuit function. PMID:16840240

  7. Triglyceride sensing in the reward circuitry: A new insight in feeding behaviour regulation.

    Science.gov (United States)

    Cansell, Celine; Luquet, Serge

    2016-01-01

    In both developed and emerging countries, sedentary life style and over exposition to high energy dense foods has led to a thermodynamic imbalance and consequently obesity. Obesity often involves a behavioural component in which, similar to drugs abuse, compulsive consumption of palatable food rich in lipids and sugar drives energy intake far beyond metabolic demands. The hypothalamus is one of the primary integration sites of circulating energy-related signals like leptin or ghrelin and is therefore considered as one of the main central regulators of energy balance. However, food intake is also modulated by sensory inputs, such as tastes and odours, as well as by affective or emotional states. The mesolimbic pathway is well established as a key actor of the rewarding aspect of feeding. Particularly, the hedonic and motivational aspects of food are closely tied to the release of the neurotransmitter dopamine (DA) in striatal structure such as the Nucleus Accumbens (Nacc). In both rodent and humans several studies shows an attenuated activity of dopaminergic signal associated with obesity and there is evidence that consumption of palatable food per se leads to DA signalling alterations. Furthermore impaired cognition in obese mice is improved by selectively lowering triglycerides (TG) and intracerebroventricular administration of TG induces by itself acquisition impairment in several cognitive paradigms in normal body weight mice. Together, these observations raise the possibility that nutritional lipids, particularly TG, directly affect cognitive and reward processes by modulating the mesolimbic pathway and might contribute to the downward spiral of compulsive consumption of palatable food and obesity. This review is an attempt to capture recent evolution in the field that might point toward a direct action of nutritional lipid in the reward circuitry. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights

  8. Invasive circuitry-based neurotherapeutics: stereotactic ablation and deep brain stimulation for OCD.

    Science.gov (United States)

    Greenberg, Benjamin D; Rauch, Scott L; Haber, Suzanne N

    2010-01-01

    patterns of potential benefits and burdens. Translational research to elucidate how targeting specific nodes in putative OCD circuitry might lead to therapeutic gains is accelerating in tandem with clinical use.

  9. Hyperleptinemia in Neonatally Overfed Female Rats Does Not Dysregulate Feeding Circuitry

    Directory of Open Access Journals (Sweden)

    Ilvana Ziko

    2017-10-01

    Full Text Available Neonatal overfeeding during the first weeks of life in male rats is associated with a disruption in the peripheral and central leptin systems. Neonatally overfed male rats have increased circulating leptin in the first 2 weeks of life, which corresponds to an increase in body weight compared to normally fed counterparts. These effects are associated with a short-term disruption in the connectivity of neuropeptide Y (NPY, agouti-related peptide (AgRP, and pro-opiomelanocortin (POMC neurons within the regions of the hypothalamus responsible for control of energy balance and food intake. Female rats that are overfed during the first weeks of their life experience similar changes in circulating leptin levels as well as in their body weight. However, it has not yet been studied whether these metabolic changes are associated with the same central effects as observed in males. Here, we hypothesized that hyperleptinemia associated with neonatal overfeeding would lead to changes in central feeding circuitry in females as it does in males. We assessed hypothalamic NPY, AgRP, and POMC gene expression and immunoreactivity at 7, 12, or 14 days of age, as well as neuronal activation in response to exogenous leptin in neonatally overfed and control female rats. Neonatally overfed female rats were hyperleptinemic and were heavier than controls. However, these metabolic changes were not mirrored centrally by changes in hypothalamic NPY, AGRP, and POMC fiber density. These findings are suggestive of sex differences in the effects of neonatal overfeeding and of differences in the ability of the female and male central systems to respond to changes in the early life nutritional environment.

  10. Differential neural contributions to native- and foreign-language talker identification.

    Science.gov (United States)

    Perrachione, Tyler K; Pierrehumbert, Janet B; Wong, Patrick C M

    2009-12-01

    Humans are remarkably adept at identifying individuals by the sound of their voice, a behavior supported by the nervous system's ability to integrate information from voice and speech perception. Talker-identification abilities are significantly impaired when listeners are unfamiliar with the language being spoken. Recent behavioral studies describing the language-familiarity effect implicate functionally integrated neural systems for speech and voice perception, yet specific neuroscientific evidence demonstrating the basis for such integration has not yet been shown. Listeners in the present study learned to identify voices speaking a familiar (native) or unfamiliar (foreign) language. The talker-identification performance of neural circuitry in each cerebral hemisphere was assessed using dichotic listening. To determine the relative contribution of circuitry in each hemisphere to ecological (binaural) talker identification abilities, we compared the predictive capacity of dichotic performance on binaural performance across languages. Listeners' right-ear (left hemisphere) performance was a better predictor of binaural accuracy in their native language than a foreign one. This enhanced role of the classically language-dominant left hemisphere in listeners' native language demonstrates functionally integrated neural systems for speech and voice perception during talker identification.

  11. Whole-brain 3D mapping of human neural transplant innervation.

    Science.gov (United States)

    Doerr, Jonas; Schwarz, Martin Karl; Wiedermann, Dirk; Leinhaas, Anke; Jakobs, Alina; Schloen, Florian; Schwarz, Inna; Diedenhofen, Michael; Braun, Nils Christian; Koch, Philipp; Peterson, Daniel A; Kubitscheck, Ulrich; Hoehn, Mathias; Brüstle, Oliver

    2017-01-19

    While transplantation represents a key tool for assessing in vivo functionality of neural stem cells and their suitability for neural repair, little is known about the integration of grafted neurons into the host brain circuitry. Rabies virus-based retrograde tracing has developed into a powerful approach for visualizing synaptically connected neurons. Here, we combine this technique with light sheet fluorescence microscopy (LSFM) to visualize transplanted cells and connected host neurons in whole-mouse brain preparations. Combined with co-registration of high-precision three-dimensional magnetic resonance imaging (3D MRI) reference data sets, this approach enables precise anatomical allocation of the host input neurons. Our data show that the same neural donor cell population grafted into different brain regions receives highly orthotopic input. These findings indicate that transplant connectivity is largely dictated by the circuitry of the target region and depict rabies-based transsynaptic tracing and LSFM as efficient tools for comprehensive assessment of host-donor cell innervation.

  12. Evolving a neural olfactorimotor system in virtual and real olfactory environments.

    Science.gov (United States)

    Rhodes, Paul A; Anderson, Todd O

    2012-01-01

    To provide a platform to enable the study of simulated olfactory circuitry in context, we have integrated a simulated neural olfactorimotor system with a virtual world which simulates both computational fluid dynamics as well as a robotic agent capable of exploring the simulated plumes. A number of the elements which we developed for this purpose have not, to our knowledge, been previously assembled into an integrated system, including: control of a simulated agent by a neural olfactorimotor system; continuous interaction between the simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and background odor; the systematic use of artificial evolution driven by olfactorimotor performance (e.g., time to locate a plume source) to specify parameter values; the incorporation of the realities of an imperfect physical robot using a hybrid model where a physical robot encounters a simulated plume. We close by describing ongoing work toward engineering a high dimensional, reversible, low power electronic olfactory sensor which will allow olfactorimotor neural circuitry evolved in the virtual world to control an autonomous olfactory robot in the physical world. The platform described here is intended to better test theories of olfactory circuit function, as well as provide robust odor source localization in realistic environments.

  13. Preferential Interaction of Na+ over K+ to Carboxylate-functionalized Silver Nanoparticles

    Science.gov (United States)

    Elucidating mechanistic interactions between specific ions (Na+/ K+) and nanoparticle surfaces to alter particle stability in polar media has received little attention. We investigated relative preferential binding of Na+ and K+ to carboxylate-functionalized silver nanoparticles ...

  14. A macroscopic relationship for preferential flow in the vadose zone: Theory and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Zhang, R.D.

    2010-02-15

    Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the ground surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential flow patterns observed from fields are fractals. This paper discusses a macroscopic rela-tionship for modeling preferential flow in the vadose zone. Conceptually, the flow domain can be di-vided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. The portion of the active region was found to be a power function of saturation. The validity of this macroscopic relationship is demonstrated by its consistency with field observations and the related numerical experiments.

  15. Neural Network Spectral Robustness under Perturbations of the Underlying Graph.

    Science.gov (United States)

    Rădulescu, Anca

    2016-01-01

    Recent studies have been using graph-theoretical approaches to model complex networks (such as social, infrastructural, or biological networks) and how their hardwired circuitry relates to their dynamic evolution in time. Understanding how configuration reflects on the coupled behavior in a system of dynamic nodes can be of great importance, for example, in the context of how the brain connectome is affecting brain function. However, the effect of connectivity patterns on network dynamics is far from being fully understood. We study the connections between edge configuration and dynamics in a simple oriented network composed of two interconnected cliques (representative of brain feedback regulatory circuitry). In this article our main goal is to study the spectra of the graph adjacency and Laplacian matrices, with a focus on three aspects in particular: (1) the sensitivity and robustness of the spectrum in response to varying the intra- and intermodular edge density, (2) the effects on the spectrum of perturbing the edge configuration while keeping the densities fixed, and (3) the effects of increasing the network size. We study some tractable aspects analytically, then simulate more general results numerically, thus aiming to motivate and explain our further work on the effect of these patterns on the network temporal dynamics and phase transitions. We discuss the implications of such results to modeling brain connectomics. We suggest potential applications to understanding synaptic restructuring in learning networks and the effects of network configuration on function of regulatory neural circuits.

  16. TWO MEASURES OF THE DEPENDENCE OF PREFERENTIAL RANKINGS ON CATEGORICAL VARIABLES

    Directory of Open Access Journals (Sweden)

    Lissowski Grzegorz

    2017-06-01

    Full Text Available The aim of this paper is to apply a general methodology for constructing statistical methods, which is based on decision theory, to give a statistical description of preferential rankings, with a focus on the rankings’ dependence on categorical variables. In the paper, I use functions of description errors that are based on the Kemeny and Hamming distances between preferential orderings, but the proposed methodology can also be applied to other methods of estimating description errors.

  17. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  18. Abnormal structure of fear circuitry in pediatric post-traumatic stress disorder.

    Science.gov (United States)

    Keding, Taylor J; Herringa, Ryan J

    2015-02-01

    Structural brain studies of adult post-traumatic stress disorder (PTSD) show reduced gray matter volume (GMV) in fear regulatory areas including the ventromedial prefrontal cortex (vmPFC) and hippocampus. Surprisingly, neither finding has been reported in pediatric PTSD. One possibility is that they represent age-dependent effects that are not fully apparent until adulthood. In addition, lower-resolution MRI and image processing in prior studies may have limited detection of such differences. Here we examine fear circuitry GMV, including age-related differences, using higher-resolution MRI in pediatric PTSD vs healthy youth. In a cross-sectional design, 3 T anatomical brain MRI was acquired in 27 medication-free youth with PTSD and 27 healthy non-traumatized youth of comparable age, sex, and IQ. Voxel-based morphometry was used to compare GMV in a priori regions including the medial prefrontal cortex and amygdala/hippocampus. Compared with healthy youth, PTSD youth had reduced GMV but no age-related differences in anterior vmPFC (BA 10/11, Z=4.5), which inversely correlated with PTSD duration. In contrast, although there was no overall group difference in hippocampal volume, a group × age interaction (Z=3.6) was present in the right anterior hippocampus. Here, age positively predicted hippocampal volume in healthy youth but negatively predicted volume in PTSD youth. Within the PTSD group, re-experiencing symptoms inversely correlated with subgenual anterior cingulate cortex (sgACC, Z=3.7) and right anterior hippocampus (Z=3.5) GMV. Pediatric PTSD is associated with abnormal structure of the vmPFC and age-related differences in the hippocampus, regions important in the extinction and contextual gating of fear. Reduced anterior vmPFC volume may confer impaired recovery from illness, consistent with its role in the allocation of attentional resources. In contrast, individual differences in sgACC volume were associated with re-experiencing symptoms, consistent with

  19. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Report 3

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jr, Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shelton, Jacob H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ericson, Milton Nance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blalock, Benjamin [Univ. of Tennessee, Knoxville, TN (United States)

    2015-03-01

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios when human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments because of the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is a report of the activities involving Task 3 of the Nuclear Energy Enabling Technologies (NEET) 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays [1]. Evaluation of the performance of the system for both pre- and post-irradiation as well as operation at elevated temperature will be performed. Detailed performance of the system will be documented to ensure the design meets requirements prior to any extended evaluation. A suite of tests will be developed which will allow evaluation before and after irradiation and during temperature. Selection of the radiation exposure facilities will be determined in the early phase of the project. Radiation exposure will consist of total integrated dose (TID) up to 200 kRad or above with several intermediate doses during test. Dose rates will be in various ranges determined by the facility that will be used with a target of 30 kRad/hr. Many samples of the pre-commercial devices to be used will have been tested in previous projects to doses of at least 300 kRad and temperatures up to 125C. The complete systems will therefore be tested for performance at intermediate doses. Extended temperature testing will be performed up to the limit of the commercial sensors. The test suite performed at each test point will consist of operational testing of the three basic

  20. General anesthesia: a gateway to modulate synapse formation and neural plasticity?

    Science.gov (United States)

    Vutskits, Laszlo

    2012-11-01

    Appropriate balance between excitatory and inhibitory neural activity patterns is of utmost importance in the maintenance of neuronal homeostasis. General anesthetic-induced pharmacological interference with this equilibrium results not only in a temporary loss of consciousness but can also initiate long-term changes in brain function. Although these alterations were initially considered deleterious, recent observations suggest that at least under some specific conditions, they may eventually improve neural function. The goal of this review is to provide insights into the mechanisms underlying these dual effects. Basic science issues on the important role of critical periods during neural circuitry assembly will be discussed to better understand how even brief exposures to general anesthetics could initiate context-dependent lasting changes in neuronal structure and function. Recent series of observations suggesting a developmental stage-dependent impact of these drugs on synaptogenesis will then be summarized together with currently known molecular mechanisms underlying these effects. Particular emphasis will be placed on how anesthetic drugs modulate neural plasticity in the adult brain and how this may improve neural function under some pathological states. The ensemble of these new observations strongly suggests that general anesthetics should not merely be considered toxic drugs but rather acknowledged as robust, context-dependent modulators of neural plasticity.

  1. Single-Trial Neural Correlates of Arm Movement Preparation

    Science.gov (United States)

    Afshar, Afsheen; Santhanam, Gopal; Yu, Byron M.; Ryu, Stephen I.; Sahani, Maneesh; Shenoy, Krishna V.

    2011-01-01

    Summary The process by which neural circuitry in the brain plans and executes arm movements is not well understood. Prevailing data (single-neuron and field potential recordings) do not reveal how individual neurons’ activities are coordinated within the population, and thus inferences about how the neural circuit forms a motor plan have been indirect. Here we frame and test a new ‘initial condition hypothesis’ in which the reaction time (RT) of upcoming movements may be predicted on each trial using neurons’ moment-by-moment firing rates and rates of change of those rates. Using microelectrode array recordings from premotor cortex of monkeys performing delayed-reach movements, we compare such single-trial RT predictions to those of other theories. The initial condition hypothesis model can explain approximately four-fold more RT variance than the best alternative method. Thus, the initial condition hypothesis elucidates a new view of the relationship between single-trial preparatory neural population dynamics and single-trial behavior. PMID:21835350

  2. A Sub-millimeter, Inductively Powered Neural Stimulator

    Directory of Open Access Journals (Sweden)

    Daniel K. Freeman

    2017-11-01

    Full Text Available Wireless neural stimulators are being developed to address problems associated with traditional lead-based implants. However, designing wireless stimulators on the sub-millimeter scale (<1 mm3 is challenging. As device size shrinks, it becomes difficult to deliver sufficient wireless power to operate the device. Here, we present a sub-millimeter, inductively powered neural stimulator consisting only of a coil to receive power, a capacitor to tune the resonant frequency of the receiver, and a diode to rectify the radio-frequency signal to produce neural excitation. By replacing any complex receiver circuitry with a simple rectifier, we have reduced the required voltage levels that are needed to operate the device from 0.5 to 1 V (e.g., for CMOS to ~0.25–0.5 V. This reduced voltage allows the use of smaller receive antennas for power, resulting in a device volume of 0.3–0.5 mm3. The device was encapsulated in epoxy, and successfully passed accelerated lifetime tests in 80°C saline for 2 weeks. We demonstrate a basic proof-of-concept using stimulation with tens of microamps of current delivered to the sciatic nerve in rat to produce a motor response.

  3. Impaired fear extinction in adolescent rodents: Behavioural and neural analyses.

    Science.gov (United States)

    Baker, Kathryn D; Bisby, Madelyne A; Richardson, Rick

    2016-11-01

    Despite adolescence being a developmental window of vulnerability, up until very recently there were surprisingly few studies on fear extinction during this period. Here we summarise the recent work in this area, focusing on the unique behavioural and neural characteristics of fear extinction in adolescent rodents, and humans where relevant. A prominent hypothesis posits that anxiety disorders peak during late childhood/adolescence due to the non-linear maturation of the fear inhibition neural circuitry. We discuss evidence that impaired extinction retention in adolescence is due to subregions of the medial prefrontal cortex and amygdala mediating fear inhibition being underactive while other subregions that mediate fear expression are overactive. We also review work on various interventions and surprising circumstances which enhance fear extinction in adolescence. This latter work revealed that the neural correlates of extinction in adolescence are different to that in younger and older animals even when extinction retention is not impaired. This growing body of work highlights that adolescence is a unique period of development for fear inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Science.gov (United States)

    Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C

    2012-01-01

    The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  5. Neural correlates of the perception for novel objects.

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    Full Text Available Perception of novel objects is of enormous importance in our lives. People have to perceive or understand novel objects when seeing an original painting, admiring an unconventional construction, and using an inventive device. However, very little is known about neural mechanisms underlying the perception for novel objects. Perception of novel objects relies on the integration of unusual features of novel objects in order to identify what such objects are. In the present study, functional Magnetic Resonance Imaging (MRI was employed to investigate neural correlates of perception of novel objects. The neuroimaging data on participants engaged in novel object viewing versus ordinary object viewing revealed that perception of novel objects involves significant activation in the left precuneus (Brodmann area 7 and the right visual cortex. The results suggest that the left precuneus is associated with the integration of unusual features of novel objects, while the right visual cortex is sensitive to the detection of such features. Our findings highlight the left precuneus as a crucial component of the neural circuitry underlying perception of novel objects.

  6. The neural substrates of infant sleep in rats.

    Directory of Open Access Journals (Sweden)

    Karl A E Karlsson

    2005-05-01

    Full Text Available Sleep is a poorly understood behavior that predominates during infancy but is studied almost exclusively in adults. One perceived impediment to investigations of sleep early in ontogeny is the absence of state-dependent neocortical activity. Nonetheless, in infant rats, sleep is reliably characterized by the presence of tonic (i.e., muscle atonia and phasic (i.e., myoclonic twitching components; the neural circuitry underlying these components, however, is unknown. Recently, we described a medullary inhibitory area (MIA in week-old rats that is necessary but not sufficient for the normal expression of atonia. Here we report that the infant MIA receives projections from areas containing neurons that exhibit state-dependent activity. Specifically, neurons within these areas, including the subcoeruleus (SubLC, pontis oralis (PO, and dorsolateral pontine tegmentum (DLPT, exhibit discharge profiles that suggest causal roles in the modulation of muscle tone and the production of myoclonic twitches. Indeed, lesions in the SubLC and PO decreased the expression of muscle atonia without affecting twitching (resulting in "REM sleep without atonia", whereas lesions of the DLPT increased the expression of atonia while decreasing the amount of twitching. Thus, the neural substrates of infant sleep are strikingly similar to those of adults, a surprising finding in light of theories that discount the contribution of supraspinal neural elements to sleep before the onset of state-dependent neocortical activity.

  7. Monitoring activity in neural circuits with genetically encoded indicators

    Directory of Open Access Journals (Sweden)

    Gerard Joseph Broussard

    2014-12-01

    Full Text Available Recent developments in genetically encoded indicators of neural activity (GINAs have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning.Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators, sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the genetically encoded calcium indicator GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function.

  8. Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorder

    Science.gov (United States)

    Morey, R A; Dunsmoor, J E; Haswell, C C; Brown, V M; Vora, A; Weiner, J; Stjepanovic, D; Wagner, H R; Brancu, Mira; Marx, Christine E; Naylor, Jennifer C; Van Voorhees, Elizabeth; Taber, Katherine H; Beckham, Jean C; Calhoun, Patrick S; Fairbank, John A; Szabo, Steven T; LaBar, K S

    2015-01-01

    Fear conditioning is an established model for investigating posttraumatic stress disorder (PTSD). However, symptom triggers may vaguely resemble the initial traumatic event, differing on a variety of sensory and affective dimensions. We extended the fear-conditioning model to assess generalization of conditioned fear on fear processing neurocircuitry in PTSD. Military veterans (n=67) consisting of PTSD (n=32) and trauma-exposed comparison (n=35) groups underwent functional magnetic resonance imaging during fear conditioning to a low fear-expressing face while a neutral face was explicitly unreinforced. Stimuli that varied along a neutral-to-fearful continuum were presented before conditioning to assess baseline responses, and after conditioning to assess experience-dependent changes in neural activity. Compared with trauma-exposed controls, PTSD patients exhibited greater post-study memory distortion of the fear-conditioned stimulus toward the stimulus expressing the highest fear intensity. PTSD patients exhibited biased neural activation toward high-intensity stimuli in fusiform gyrus (Pgeneralization in PTSD is biased toward stimuli with higher emotional intensity than the original conditioned-fear stimulus. Functional brain differences provide a putative neurobiological model for fear generalization whereby PTSD symptoms are triggered by threat cues that merely resemble the index trauma. PMID:26670285

  9. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... a dynamic entity, which physical structure changes according to its use and environment. This change may take the form of growth of new neurons, the creation of new networks and structures, and change within network structures, that is, changes in synaptic strengths. Plasticity raises questions about...

  10. Hafnium transistor design for neural interfacing.

    Science.gov (United States)

    Parent, David W; Basham, Eric J

    2008-01-01

    A design methodology is presented that uses the EKV model and the g(m)/I(D) biasing technique to design hafnium oxide field effect transistors that are suitable for neural recording circuitry. The DC gain of a common source amplifier is correlated to the structural properties of a Field Effect Transistor (FET) and a Metal Insulator Semiconductor (MIS) capacitor. This approach allows a transistor designer to use a design flow that starts with simple and intuitive 1-D equations for gain that can be verified in 1-D MIS capacitor TCAD simulations, before final TCAD process verification of transistor properties. The DC gain of a common source amplifier is optimized by using fast 1-D simulations and using slower, complex 2-D simulations only for verification. The 1-D equations are used to show that the increased dielectric constant of hafnium oxide allows a higher DC gain for a given oxide thickness. An additional benefit is that the MIS capacitor can be employed to test additional performance parameters important to an open gate transistor such as dielectric stability and ionic penetration.

  11. Language evolution: neural homologies and neuroinformatics.

    Science.gov (United States)

    Arbib, Michael; Bota, Mihail

    2003-11-01

    This paper contributes to neurolinguistics by grounding an evolutionary account of the readiness of the human brain for language in the search for homologies between different cortical areas in macaque and human. We consider two hypotheses for this grounding, that of Aboitiz and Garci;a [Brain Res. Rev. 25 (1997) 381] and the Mirror System Hypothesis of Rizzolatti and Arbib [Trends Neurosci. 21 (1998) 188] and note the promise of computational modeling of neural circuitry of the macaque and its linkage to analysis of human brain imaging data. In addition to the functional differences between the two hypotheses, problems arise because they are grounded in different cortical maps of the macaque brain. In order to address these divergences, we have developed several neuroinformatics tools included in an on-line knowledge management system, the NeuroHomology Database, which is equipped with inference engines both to relate and translate information across equivalent cortical maps and to evaluate degrees of homology for brain regions of interest in different species.

  12. Fuzzy and neural control

    Science.gov (United States)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  13. Modelling capillary hysteresis effects on preferential flow through melting and cold layered snowpacks

    Science.gov (United States)

    Leroux, Nicolas R.; Pomeroy, John W.

    2017-09-01

    Accurate estimation of the amount and timing of water flux through melting snowpacks is important for runoff prediction in cold regions. Most existing snowmelt models only account for one-dimensional matrix flow and neglect to simulate the formation of preferential flow paths. Consideration of lateral and preferential flows has proven critical to improve the performance of soil and groundwater porous media flow models. A two-dimensional physically-based snowpack model that simulates snowmelt, refreezing of meltwater, heat and water flows, and preferential flow paths is presented. The model assumes thermal equilibrium between solid and liquid phases and uses recent snow physics advances to estimate snowpack hydraulic and thermal properties. For the first time, capillary hysteresis is accounted in a snowmelt model. A finite volume method is applied to solve for the 2D coupled heat and mass transfer equations. The model with capillary hysteresis provided better simulations of water suction at the wet to dry snow interface in a wetting snow sample than did a model that only accounted for the boundary drying curve. Capillary hysteresis also improved simulations of preferential flow path dynamics and the snowpack discharge hydrograph. Simulating preferential flow in a subfreezing snowpack allowed the model to generate ice layers, and increased the vertical exchange of energy, thus modelling a faster warming of the snowpack than would be possible without preferential flow. The model is thus capable of simulating many attributes of heterogeneous natural melting snowpacks. These features not only qualitatively improve water flow simulations, but improve the understanding of snowmelt flow processes for both level and sloping terrain, and illuminate how uncertainty in snowmelt-derived runoff calculations might be reduced through the inclusion of more realistic preferential flow through snowpacks.

  14. IMPROVING THE MECHANISM OF PREFERENTIAL LENDING TO AGRICULTURAL ENTERPRISES OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Elena Lemishko

    2016-11-01

    Full Text Available Basic tools of the mechanism of preferential lending to agricultural enterprises of Ukraine are considered in the article. The analysis of state and dynamics of lending to agricultural enterprises for the period 2001–2014 are done. The accent of attention on the need of state regulation intensification of the formation of an effective mechanism of preferential crediting to agricultural enterprises is marked. Methods. In the article are used tabular, graphical and statistical methods for economic research. Information base of research are legislative and legal acts, which regulate activity of agricultural enterprises, report data from the Ministry of Agrarian Policy and Food of Ukraine, the Annual Report of the National Bank of Ukraine, the State Statistics Service of Ukraine, taxed financial statements of agricultural enterprises, the results of own research. Results. In the process of research, it was found that effectiveness of crediting, primarily, determined by the validity of credit policy, effectiveness of the key factors of credit mechanism and macro-financial stability of the state. It is found that the mechanism of preferential lending to agricultural enterprises in Ukraine was not optimized and perfected at the appropriate level throughout the study period, the volume of direct support to agricultural production, which is also preferential loans to agricultural enterprises, were insufficient. Practical meaning. It is proved that improve of the mechanism of preferential lending to agricultural enterprises should be based on optimizing the needs of the state, borrowers (subjects of the agricultural sector, lenders (banks and non-bank institutions and financial market regulators. Value/originality. Ways to improve the mechanism of preferential lending to agricultural enterprises by creating appropriate institutional framework to support agro-industrial complex, intensification of cooperation of agricultural enterprises and banking

  15. Lysozyme in water-acetonitrile mixtures: Preferential solvation at the inner edge of excess hydration

    Science.gov (United States)

    Sirotkin, Vladimir A.; Kuchierskaya, Alexandra A.

    2017-06-01

    Preferential solvation/hydration is an effective way for regulating the mechanism of the protein destabilization/stabilization. Organic solvent/water sorption and residual enzyme activity measurements were performed to monitor the preferential solvation/hydration of hen egg-white lysozyme at high and low water content in acetonitrile at 25 °C. The obtained results show that the protein destabilization/stabilization depends essentially on the initial hydration level of lysozyme and the water content in acetonitrile. There are three composition regimes for the dried lysozyme. At high water content, the lysozyme has a higher affinity for water than for acetonitrile. The residual enzyme activity values are close to 100%. At the intermediate water content, the dehydrated lysozyme has a higher affinity for acetonitrile than for water. A minimum on the residual enzyme activity curve was observed in this concentration range. At the lowest water content, the organic solvent molecules are preferentially excluded from the dried lysozyme, resulting in the preferential hydration. The residual catalytic activity is ˜80%, compared with that observed after incubation in pure water. Two distinct schemes are operative for the hydrated lysozyme. At high and intermediate water content, lysozyme is preferentially hydrated. However, in contrast to the dried protein, at the intermediate water content, the initially hydrated lysozyme has the increased preferential hydration parameters. At low water content, the preferential binding of the acetonitrile molecules to the initially hydrated lysozyme was detected. No residual enzyme activity was observed in the water-poor acetonitrile. Our data clearly show that the initial hydration level of the protein macromolecules is one of the key factors that govern the stability of the protein-water-organic solvent systems.

  16. What Is Neural Plasticity?

    Science.gov (United States)

    von Bernhardi, Rommy; Bernhardi, Laura Eugenín-von; Eugenín, Jaime

    2017-01-01

    "Neural plasticity" refers to the capacity of the nervous system to modify itself, functionally and structurally, in response to experience and injury. As the various chapters in this volume show, plasticity is a key component of neural development and normal functioning of the nervous system, as well as a response to the changing environment, aging, or pathological insult. This chapter discusses how plasticity is necessary not only for neural networks to acquire new functional properties, but also for them to remain robust and stable. The article also reviews the seminal proposals developed over the years that have driven experiments and strongly influenced concepts of neural plasticity.

  17. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  18. A neural flow estimator

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur; Bruun, Erik

    1995-01-01

    is implemented using switched-current technique and is capable of estimating flow in the μl/s range. The neural estimator is built around a multiplierless neural network, containing 96 synaptic weights which are updated using the LMS1-algorithm. An experimental chip has been designed that operates at 5 V......This paper proposes a new way to estimate the flow in a micromechanical flow channel. A neural network is used to estimate the delay of random temperature fluctuations induced in a fluid. The design and implementation of a hardware efficient neural flow estimator is described. The system...

  19. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans.

    Science.gov (United States)

    Gerasimenko, Yury; Gorodnichev, Ruslan; Puhov, Aleksandr; Moshonkina, Tatiana; Savochin, Aleksandr; Selionov, Victor; Roy, Roland R; Lu, Daniel C; Edgerton, V Reggie

    2015-02-01

    The mammalian lumbar spinal cord has the capability to generate locomotor activity in the absence of input from the brain. Previously, we reported that transcutaneous electrical stimulation of the spinal cord at vertebral level T11 can activate the locomotor circuitry in noninjured subjects when their legs are placed in a gravity-neutral position (Gorodnichev RM, Pivovarova EA, Pukhov A, Moiseev SA, Savokhin AA, Moshonkina TR, Shcherbakova NA, Kilimnik VA, Selionov VA, Kozlovskaia IB, Edgerton VR, Gerasimenko IU. Fiziol Cheloveka 38: 46-56, 2012). In the present study we hypothesized that stimulating multiple spinal sites and therefore unique combinations of networks converging on postural and locomotor lumbosacral networks would be more effective in inducing more robust locomotor behavior and more selective control than stimulation of more restricted networks. We demonstrate that simultaneous stimulation at the cervical, thoracic, and lumbar levels induced coordinated stepping movements with a greater range of motion at multiple joints in five of six noninjured subjects. We show that the addition of stimulation at L1 and/or at C5 to stimulation at T11 immediately resulted in enhancing the kinematics and interlimb coordination as well as the EMG patterns in proximal and distal leg muscles. Sequential cessation of stimulation at C5 and then at L1 resulted in a progressive degradation of the stepping pattern. The synergistic and interactive effects of transcutaneous stimulation suggest a multisegmental convergence of descending and ascending, and most likely propriospinal, influences on the spinal neuronal circuitries associated with locomotor activity. The potential impact of using multisite spinal cord stimulation as a strategy to neuromodulate the spinal circuitry has significant implications in furthering our understanding of the mechanisms controlling posture and locomotion and for regaining significant sensorimotor function even after a severe spinal cord

  20. Identification and expression analysis of nervous wreck, which is preferentially expressed in the brain of the male silkworm moth, Bombyx mori.

    Science.gov (United States)

    Kiya, Taketoshi; Iwami, M

    2011-10-01

    Sexually dimorphic neural circuits are essential for reproductive behaviour. The molecular basis of sexual dimorphism in the silkworm moth (Bombyx mori) brain, however, is unclear. We conducted cDNA subtraction screening and identified nervous wreck (Bmnwk), a synaptic growth regulatory gene, whose expression is higher in the male brain than in the female brain of the silkworm. Bmnwk was preferentially expressed in the brain at the late pupae and adult stages. In situ hybridization revealed that Bmnwk is highly expressed in the optic lobe of the male moth brain. These findings suggest that Bmnwk has a role in the development and/or maintenance of the optic lobe in the male silkworm brain. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  1. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep.

    Directory of Open Access Journals (Sweden)

    Christelle Anaclet

    2010-01-01

    Full Text Available Rapid eye movement sleep (REMS is characterized by activation of the cortical and hippocampal electroencephalogram (EEG and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw phasic activity during REMS. The trigeminal motor nucleus (Mo5, which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt, but also from the adjacent paramedian reticular area (PMnR. On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS.To test our hypothesis, we measured masseter electromyogram (EMG, neck muscle EMG, electrooculogram (EOG and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt, but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS.These results indicate that (1 premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2 separate brainstem neural circuits control postural and cranial muscle

  2. Changes in Membrane Cholesterol Differentially Influence Preferential and Non-preferential Signaling of the M1 and M3 Muscarinic Acetylcholine Receptors.

    Science.gov (United States)

    Michal, Pavel; El-Fakahany, Esam E; Doležal, Vladimír

    2015-10-01

    We have found earlier that changes in membrane cholesterol content have distinct impact on signaling via the M1, M2, or M3 receptors expressed in CHO cells (CHO-M1 through CHO-M3). Now we investigated whether gradual changes in membrane cholesterol exerts differential effects on coupling of the M1 and M3 muscarinic receptors to preferential signaling pathways through Gq/11 and non-preferential Gs G-proteins signaling. Changes in membrane cholesterol resulted in only marginal alterations of antagonist and agonist affinity of the M1 and M3 receptors, and did not influence precoupling of either subtype. Changes in membrane cholesterol did not influence parameters of carbachol-stimulated GTP-γ(35)S binding in CHO-M1 membranes while reduction as well as augmentation of membrane cholesterol lowered the efficacy but increased the potency of carbachol in CHO-M3 membranes. Gradual increase or decrease in membrane cholesterol concentration dependently attenuated agonist-induced inositolphosphates release while only cholesterol depletion increased basal values in both cell lines. Similarly, membrane cholesterol manipulation modified basal and agonist-stimulated cAMP synthesis via Gs in the same way in both cell lines. These results demonstrate that changes in membrane cholesterol concentration differentially impact preferential and non-preferential M1 and M3 receptor signaling. They point to the activated G-protein/effector protein interaction as the main site of action in alterations of M1 receptor-mediated stimulation of second messenger pathways. On the other hand, modifications in agonist-stimulated GTP-γ(35)S binding in CHO-M3 membranes indicate that in this case changes in ligand-activated receptor/G-protein interaction may also play a role.

  3. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  4. Working memory circuitry in schizophrenia shows widespread cortical inefficiency and compensation.

    Science.gov (United States)

    Kim, Miyoung A; Tura, Emanuela; Potkin, Steven G; Fallon, James H; Manoach, Dara S; Calhoun, Vince D; Turner, Jessica A

    2010-03-01

    Working memory studies in schizophrenia (SZ), using functional magnetic resonance imaging (fMRI) and univariate analyses, have led to observations of hypo- or hyperactivation of discrete cortical regions and subsequent interpretations (e.g. neural inefficiencies). We employed a data-driven, multivariate analysis to identify the patterns of brain-behavior relationships in SZ during working memory. fMRI scans were collected from 13 SZ and 18 healthy control (HC) participants performing a modified Sternberg item recognition paradigm with three memory loads. We applied partial least squares analysis (PLS) to assess brain activation during the task both alone and with behavioral measures (accuracy and response time, RT) as covariates. While the HC primary pattern was not affected by increasing load demands, SZ participants showed an exaggerated change in the Blood Oxygenation Level Dependent (BOLD) signal from the low to moderate memory load conditions and subsequent decrease in the greatest memory load, in frontal, motor, parietal and subcortical areas. With behavioral covariates, the separate groups identified distinct brain-behavior relationships and circuits. Increased activation of the middle temporal gyrus was associated with greater accuracy and faster RT only in SZ. The inverted U-shaped curves in the SZ BOLD signal in the same areas that show flat activation in the HC data indicate widespread neural inefficiency in working memory in SZ. While both groups performed the task with similar levels of accuracy, participants with schizophrenia show a compensatory network of different sub-regions of the prefrontal cortex, parietal lobule, and the temporal gyri in this working memory task. (c) 2009 Elsevier B.V. All rights reserved.

  5. Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli.

    Science.gov (United States)

    Pannuri, Archana; Vakulskas, Christopher A; Zere, Tesfalem; McGibbon, Louise C; Edwards, Adrianne N; Georgellis, Dimitris; Babitzke, Paul; Romeo, Tony

    2016-11-01

    Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status. Csr (Rsm) noncoding small RNAs (sRNAs) CsrB and CsrC of Escherichia coli use molecular mimicry to sequester the RNA binding protein CsrA (RsmA) away from lower

  6. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  7. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  8. Inert Carbon Nanoparticles for the Assessment of Preferential Flow in Saturated Dual-Permeability Porous Media

    KAUST Repository

    Yao, Chuanjin

    2017-06-07

    Knowledge of preferential flow in heterogeneous environments is essential for enhanced hydrocarbon recovery, geothermal energy extraction, and successful sequestration of chemical waste and carbon dioxide. Dual tracer tests using nanoparticles with a chemical tracer could indicate the preferential flow. A dual-permeability model with a high permeable core channel surrounded by a low permeable annulus was constructed and used to determine the viability of an inert carbon nanoparticle tracer for this application. A series of column experiments were conducted to demonstrate how this nanoparticle tracer can be used to implement the dual tracer tests in heterogeneous environments. The results indicate that, with the injection rate selected and controlled appropriately, nanoparticles together with a chemical tracer can assess the preferential flow in heterogeneous environments. The results also implement the dual tracer tests in heterogeneous environments by simultaneously injecting chemical and nanoparticle tracers.

  9. How Medical Tourism Enables Preferential Access to Care: Four Patterns from the Canadian Context.

    Science.gov (United States)

    Snyder, Jeremy; Johnston, Rory; Crooks, Valorie A; Morgan, Jeff; Adams, Krystyna

    2017-06-01

    Medical tourism is the practice of traveling across international borders with the intention of accessing medical care, paid for out-of-pocket. This practice has implications for preferential access to medical care for Canadians both through inbound and outbound medical tourism. In this paper, we identify four patterns of medical tourism with implications for preferential access to care by Canadians: (1) Inbound medical tourism to Canada's public hospitals; (2) Inbound medical tourism to a First Nations reserve; (3) Canadian patients opting to go abroad for medical tourism; and (4) Canadian patients traveling abroad with a Canadian surgeon. These patterns of medical tourism affect preferential access to health care by Canadians by circumventing domestic regulation of care, creating jurisdictional tensions over the provision of health care, and undermining solidarity with the Canadian health system.

  10. Automatic attention does not equal automatic fear: preferential attention without implicit valence.

    Science.gov (United States)

    Purkis, Helena M; Lipp, Ottmar V

    2007-05-01

    Theories of nonassociative fear acquisition hold that humans have an innate predisposition for some fears, such as fear of snakes and spiders. This predisposition may be mediated by an evolved fear module (Ohman & Mineka, 2001) that responds to basic perceptual features of threat stimuli by directing attention preferentially and generating an automatic fear response. Visual search and affective priming tasks were used to examine attentional processing and implicit evaluation of snake and spider pictures in participants with different explicit attitudes; controls (n = 25) and snake and spider experts (n = 23). Attentional processing and explicit evaluation were found to diverge; snakes and spiders were preferentially attended to by all participants; however, they were negative only for controls. Implicit evaluations of dangerous and nondangerous snakes and spiders, which have similar perceptual features, differed for expert participants, but not for controls. The authors suggest that although snakes and spiders are preferentially attended to, negative evaluations are not automatically elicited during this processing.

  11. Kinds and meaning of preferential credits for development of agriculture and rural areas

    Directory of Open Access Journals (Sweden)

    Antoni Mickiewicz

    2013-06-01

    Full Text Available The theme of the paper was of preferential credits granted in two periods, that means after Poland’s accession to the European Union (2004-2006 and in the period after introduction of new legal regulations (2007-2010. The institution responsible for realisation of preferential credits was Agency of Restructuring and Modernisation of Agriculture which delegated its rights to banks. The credit policy in first period of our functioning in the European Union relied on gradual ending old legal regulations, not compliant with EU standards and undertaking activities in adaptation of Polish agriculture to standards obeyed in EU-15 Member States. Directions of preferential credits granting were changed in 2007. There were introduced 7 credit lines which aim was improvement of production efficiency, better use of production base in agricultural farms and acceleration of agrarian changes. The biggest beneficiaries of structural pensions were young farmers and farmers who wanted to increase the size of their farms.

  12. The neural circuit basis of learning

    Science.gov (United States)

    Patrick, Kaifosh William John

    The astounding capacity for learning ranks among the nervous system's most impressive features. This thesis comprises studies employing varied approaches to improve understanding, at the level of neural circuits, of the brain's capacity for learning. The first part of the thesis contains investigations of hippocampal circuitry -- both theoretical work and experimental work in the mouse Mus musculus -- as a model system for declarative memory. To begin, Chapter 2 presents a theory of hippocampal memory storage and retrieval that reflects nonlinear dendritic processing within hippocampal pyramidal neurons. As a prelude to the experimental work that comprises the remainder of this part, Chapter 3 describes an open source software platform that we have developed for analysis of data acquired with in vivo Ca2+ imaging, the main experimental technique used throughout the remainder of this part of the thesis. As a first application of this technique, Chapter 4 characterizes the content of signaling at synapses between GABAergic neurons of the medial septum and interneurons in stratum oriens of hippocampal area CA1. Chapter 5 then combines these techniques with optogenetic, pharmacogenetic, and pharmacological manipulations to uncover inhibitory circuit mechanisms underlying fear learning. The second part of this thesis focuses on the cerebellum-like electrosensory lobe in the weakly electric mormyrid fish Gnathonemus petersii, as a model system for non-declarative memory. In Chapter 6, we study how short-duration EOD motor commands are recoded into a complex temporal basis in the granule cell layer, which can be used to cancel Purkinje-like cell firing to the longer duration and temporally varying EOD-driven sensory responses. In Chapter 7, we consider not only the temporal aspects of the granule cell code, but also the encoding of body position provided from proprioceptive and efference copy sources. Together these studies clarify how the cerebellum-like circuitry of the

  13. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4.

    Science.gov (United States)

    Stice, Eric; Yokum, Sonja; Bohon, Cara; Marti, Nate; Smolen, Andrew

    2010-05-01

    To determine whether responsivity of reward circuitry to food predicts future increases in body mass and whether polymorphisms in DRD2 and DRD4 moderate these relations. The functional magnetic resonance imaging (fMRI) paradigm investigated blood oxygen level dependent activation in response to imagined intake of palatable foods, unpalatable foods, and glasses of water shown in pictures. DNA was extracted from saliva samples using standard salting-out and solvent precipitation methods. Forty-four adolescent female high school students ranging from lean to obese. Future increases in body mass index (BMI). Weaker activation of the frontal operculum, lateral orbitofrontal cortex, and striatum in response to imagined intake of palatable foods, versus imagined intake of unpalatable foods or water, predicted future increases in body mass for those with the DRD2 TaqIA A1 allele or the DRD4-7R allele. Data also suggest that for those lacking these alleles, greater responsivity of these food reward regions predicted future increases in body mass. This novel prospective fMRI study indicates that responsivity of reward circuitry to food increases risk for future weight gain, but that genes that impact dopamine signaling capacity moderate the predictive effects, suggesting two qualitatively distinct pathways to unhealthy weight gain based on genetic risk. 2010 Elsevier Inc. All rights reserved.

  14. Positive autoregulation of cI is a dispensable feature of the phage lambda gene regulatory circuitry.

    Science.gov (United States)

    Michalowski, Christine B; Little, John W

    2005-09-01

    Complex gene regulatory circuits contain many features that are likely to contribute to their operation. It is unclear, however, whether all these features are necessary for proper circuit behavior or whether certain ones are refinements that make the circuit work better but are dispensable for qualitatively normal behavior. We have addressed this question using the phage lambda regulatory circuit, which can persist in two stable states, the lytic state and the lysogenic state. In the lysogenic state, the CI repressor positively regulates its own expression by stimulating transcription from the P(RM) promoter. We tested whether this feature is an essential part of the regulatory circuitry. Several phages with a cI mutation preventing positive autoregulation and an up mutation in the P(RM) promoter showed near-normal behavior. We conclude that positive autoregulation is not necessary for proper operation of the lambda circuitry and speculate that it serves a partially redundant function of stabilizing a bistable circuit, a form of redundancy we term "circuit-level redundancy." We discuss our findings in the context of a two-stage model for evolution and elaboration of regulatory circuits from simpler to more complex forms.

  15. Top-down gain control of the auditory space map by gaze control circuitry in the barn owl.

    Science.gov (United States)

    Winkowski, Daniel E; Knudsen, Eric I

    2006-01-19

    High-level circuits in the brain that control the direction of gaze are intimately linked with the control of visual spatial attention. Immediately before an animal directs its gaze towards a stimulus, both psychophysical sensitivity to that visual stimulus and the responsiveness of high-order neurons in the cerebral cortex that represent the stimulus increase dramatically. Equivalent effects on behavioural sensitivity and neuronal responsiveness to visual stimuli result from focal electrical microstimulation of gaze control centres in monkeys. Whether the gaze control system modulates neuronal responsiveness in sensory modalities other than vision is unknown. Here we show that electrical microstimulation applied to gaze control circuitry in the forebrain of barn owls regulates the gain of midbrain auditory responses in an attention-like manner. When the forebrain circuit was activated, midbrain responses to auditory stimuli at the location encoded by the forebrain site were enhanced and spatial selectivity was sharpened. The same stimulation suppressed responses to auditory stimuli represented at other locations in the midbrain map. Such space-specific, top-down regulation of auditory responses by gaze control circuitry in the barn owl suggests that the central nervous system uses a common strategy for dynamically regulating sensory gain that applies across modalities, brain areas and classes of vertebrate species. This approach provides a path for discovering mechanisms that underlie top-down gain control in the central nervous system.

  16. Processing of Multi-dimensional Sensorimotor Information in the Spinal and Cerebellar Neuronal Circuitry: A New Hypothesis

    Science.gov (United States)

    Spanne, Anton; Jörntell, Henrik

    2013-01-01

    Why are sensory signals and motor command signals combined in the neurons of origin of the spinocerebellar pathways and why are the granule cells that receive this input thresholded with respect to their spike output? In this paper, we synthesize a number of findings into a new hypothesis for how the spinocerebellar systems and the cerebellar cortex can interact to support coordination of our multi-segmented limbs and bodies. A central idea is that recombination of the signals available to the spinocerebellar neurons can be used to approximate a wide array of functions including the spatial and temporal dependencies between limb segments, i.e. information that is necessary in order to achieve coordination. We find that random recombination of sensory and motor signals is not a good strategy since, surprisingly, the number of granule cells severely limits the number of recombinations that can be represented within the cerebellum. Instead, we propose that the spinal circuitry provides useful recombinations, which can be described as linear projections through aspects of the multi-dimensional sensorimotor input space. Granule cells, potentially with the aid of differentiated thresholding from Golgi cells, enhance the utility of these projections by allowing the Purkinje cell to establish piecewise-linear approximations of non-linear functions. Our hypothesis provides a novel view on the function of the spinal circuitry and cerebellar granule layer, illustrating how the coordinating functions of the cerebellum can be crucially supported by the recombinations performed by the neurons of the spinocerebellar systems. PMID:23516353

  17. Left-right asymmetry defect in the hippocampal circuitry impairs spatial learning and working memory in iv mice.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Goto

    Full Text Available Although left-right (L-R asymmetry is a fundamental feature of higher-order brain function, little is known about how asymmetry defects of the brain affect animal behavior. Previously, we identified structural and functional asymmetries in the circuitry of the mouse hippocampus resulting from the asymmetrical distribution of NMDA receptor GluR ε2 (NR2B subunits. We further examined the ε2 asymmetry in the inversus viscerum (iv mouse, which has randomized laterality of internal organs, and found that the iv mouse hippocampus exhibits right isomerism (bilateral right-sidedness in the synaptic distribution of the ε2 subunit, irrespective of the laterality of visceral organs. To investigate the effects of hippocampal laterality defects on higher-order brain functions, we examined the capacity of reference and working memories of iv mice using a dry maze and a delayed nonmatching-to-position (DNMTP task, respectively. The iv mice improved dry maze performance more slowly than control mice during acquisition, whereas the asymptotic level of performance was similar between the two groups. In the DNMTP task, the iv mice showed poorer accuracy than control mice as the retention interval became longer. These results suggest that the L-R asymmetry of hippocampal circuitry is critical for the acquisition of reference memory and the retention of working memory.

  18. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  19. A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun

    Science.gov (United States)

    Kasper, J. C.; Klein, K. G.; Weber, T.; Maksimovic, M.; Zaslavsky, A.; Bale, S. D.; Maruca, B. A.; Stevens, M. L.; Case, A. W.

    2017-11-01

    The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relaxation to solve for the typical outer boundary of this zone of preferential heating. Applied to two decades of observations by the Wind spacecraft, our results are consistent with preferential heating being active in a zone extending from the transition region in the lower corona to an outer boundary 20–40 solar radii from the Sun, producing a steady-state super-mass-proportional α-to-proton temperature ratio of 5.2–5.3. Preferential ion heating continues far beyond the transition region and is important for the evolution of both the outer corona and the solar wind. The outer boundary of this zone is well below the orbits of spacecraft at 1 au and even closer missions such as Helios and MESSENGER, meaning it is likely that no existing mission has directly observed intense preferential heating, just residual signatures. We predict that the Parker Solar Probe will be the first spacecraft with a perihelion sufficiently close to the Sun to pass through the outer boundary, enter the zone of preferential heating, and directly observe the physical mechanism in action.

  20. When and where does preferential flow matter - from observation to large scale modelling

    Science.gov (United States)

    Weiler, Markus; Leistert, Hannes; Steinbrich, Andreas

    2017-04-01

    Preferential flow can be of relevance in a wide range of soils and the interaction of different processes and factors are still difficult to assess. As most studies (including our own studies) focusing on the effect of preferential flow are based on relatively high precipitation rates, there is always the question how relevant preferential flow is under natural conditions, considering the site specific precipitation characteristics, the effect of the drying and wetting cycle on the initial soil water condition and shrinkage cracks, the site specific soil properties, soil structure and rock fragments, and the effect of plant roots and soil fauna (e.g. earthworm channels). In order to assess this question, we developed the distributed, process-based model RoGeR (Runoff Generation Research) to include a large number relevant features and processes of preferential flow in soils. The model was developed from a large number of process based research and experiments and includes preferential flow in roots, earthworm channels, along rock fragments and shrinkage cracks. We parameterized the uncalibrated model at a high spatial resolution of 5x5m for the whole state of Baden-Württemberg in Germany using LiDAR data, degree of sealing, landuse, soil properties and geology. As the model is an event based model, we derived typical event based precipitation characteristics based on rainfall duration, mean intensity and amount. Using the site-specific variability of initial soil moisture derived from a water balance model based on the same dataset, we simulated the infiltration and recharge amounts of all event classes derived from the event precipitation characteristics and initial soil moisture conditions. The analysis of the simulation results allowed us to extracts the relevance of preferential flow for infiltration and recharge considering all factors above. We could clearly see a strong effect of the soil properties and land-use, but also, particular for clay rich soils a

  1. Introduction to the Special Issue: Precarious Solidarity-Preferential Access in Canadian Health Care.

    Science.gov (United States)

    Reid, Lynette

    2017-06-01

    Systems of universal health coverage may aspire to provide care based on need and not ability to pay; the complexities of this aspiration (conceptual, practical, and ethical) call for normative analysis. This special issue arises in the wake of a judicial inquiry into preferential access in the Canadian province of Alberta, the Vertes Commission. I describe this inquiry and set out a taxonomy of forms of differential and preferential access. Papers in this special issue focus on the conceptual specification of health system boundaries (the concept of medical need) and on the normative questions raised by complex models of funding and delivery of care, where patients, providers, and services cross system boundaries.

  2. Electrical and Network Neuronal Properties Are Preferentially Disrupted in Dorsal, But Not Ventral, Medial Entorhinal Cortex in a Mouse Model of Tauopathy.

    Science.gov (United States)

    Booth, Clair A; Ridler, Thomas; Murray, Tracey K; Ward, Mark A; de Groot, Emily; Goodfellow, Marc; Phillips, Keith G; Randall, Andrew D; Brown, Jonathan T

    2016-01-13

    The entorhinal cortex (EC) is one of the first areas to be disrupted in neurodegenerative diseases such as Alzheimer's disease and frontotemporal dementia. The responsiveness of individual neurons to electrical and environmental stimuli varies along the dorsal-ventral axis of the medial EC (mEC) in a manner that suggests this topographical organization plays a key role in neural encoding of geometric space. We examined the cellular properties of layer II mEC stellate neurons (mEC-SCs) in rTg4510 mice, a rodent model of neurodegeneration. Dorsoventral gradients in certain intrinsic membrane properties, such as membrane capacitance and afterhyperpolarizations, were flattened in rTg4510 mEC-SCs, while other cellular gradients [e.g., input resistance (Ri), action potential properties] remained intact. Specifically, the intrinsic properties of rTg4510 mEC-SCs in dorsal aspects of the mEC were preferentially affected, such that action potential firing patterns in dorsal mEC-SCs were altered, while those in ventral mEC-SCs were unaffected. We also found that neuronal oscillations in the gamma frequency band (30-80 Hz) were preferentially disrupted in the dorsal mEC of rTg4510 slices, while those in ventral regions were comparatively preserved. These alterations corresponded to a flattened dorsoventral gradient in theta-gamma cross-frequency coupling of local field potentials recorded from the mEC of freely moving rTg4510 mice. These differences were not paralleled by changes to the dorsoventral gradient in parvalbumin staining or neurodegeneration. We propose that the selective disruption to dorsal mECs, and the resultant flattening of certain dorsoventral gradients, may contribute to disturbances in spatial information processing observed in this model of dementia. The medial entorhinal cortex (mEC) plays a key role in spatial memory and is one of the first areas to express the pathological features of dementia. Neurons of the mEC are anatomically arranged to express

  3. The Contributions of Cerebro-Cerebellar Circuitry to Executive Verbal Working Memory

    Science.gov (United States)

    Marvel, Cherie L.; Desmond, John E.

    2009-01-01

    Contributions of cerebro-cerebellar function to executive verbal working memory were examined using event-related functional magnetic resonance imaging (fMRI) while 16 subjects completed two versions of the Sternberg task. In both versions subjects were presented with two or six target letters during the encoding phase, which were held in memory during the maintenance phase. A single probe letter was presented during the retrieval phase. In the “match condition”, subjects decided whether the probe matched the target letters. In the “executive condition”, subjects created a new probe by counting two alphabetical letters forward (e.g., f → h) and decided whether the new probe matched the target letters. Neural activity during the match and executive conditions was compared during each phase of the task. There were four main findings. First, cerebro-cerebellar activity increased as a function of executive load. Second, the dorsal cerebellar dentate co-activated with the supplementary motor area (SMA) during encoding. This likely represented the formation of an articulatory (motor) trajectory. Third, the ventral cerebellar dentate co-activated with anterior prefrontal regions BA 9/46 and the pre-SMA during retrieval. This likely represented the manipulation of information and formation of a response. A functional dissociation between the dorsal “motor” dentate and “cognitive” ventral dentate agrees with neuroanatomical tract tracing studies that have demonstrated separate neural pathways involving each region of the dentate: the dorsal dentate projects to frontal motor areas (including the SMA), and the ventral dentate projects to frontal cognitive areas (including BA 9/46 and the pre-SMA). Finally, activity during the maintenance phase in BA 9, anterior insula, pre-SMA and ventral dentate predicted subsequent accuracy of response to the probe during the retrieval phase. This finding underscored the significant contribution of the pre

  4. Neural correlates of anxiety sensitivity in panic disorder: A functional magnetic resonance imaging study.

    Science.gov (United States)

    Poletti, Sara; Radaelli, Daniele; Cucchi, Michele; Ricci, Liana; Vai, Benedetta; Smeraldi, Enrico; Benedetti, Francesco

    2015-08-30

    Panic disorder has been associated with dysfunctional neuropsychological dimensions, including anxiety sensitivity. Brain-imaging studies of the neural correlates of emotional processing have identified a network of structures that constitute the neural circuitry for emotions. The anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC) and insula, which are part of this network, are also involved in the processing of threat-related stimuli. The aim of the study was to investigate if neural activity in response to emotional stimuli in the cortico-limbic network is associated to anxiety sensitivity in panic disorder. In a sample of 18 outpatients with panic disorder, we studied neural correlates of implicit emotional processing of facial affect expressions with a face-matching paradigm; correlational analyses were performed between brain activations and anxiety sensitivity. The correlational analyses performed showed a positive correlation between anxiety sensitivity and brain activity during emotional processing in regions encompassing the PFC, ACC and insula. Our data seem to confirm that anxiety sensitivity is an important component of panic disorder. Accordingly, the neural underpinnings of anxiety sensitivity could be an interesting focus for treatment and further research. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Using Neural Networks in Decision Making for a Reconfigurable Electro Mechanical Actuator (EMA)

    Science.gov (United States)

    Latino, Carl D.

    2001-01-01

    The objectives of this project were to demonstrate applicability and advantages of a neural network approach for evaluating the performance of an electro-mechanical actuator (EMA). The EMA in question was intended for the X-37 Advanced Technology Vehicle. It will have redundant components for safety and reliability. The neural networks for this application are to monitor the operation of the redundant electronics that control the actuator in real time and decide on the operating configuration. The system we proposed consists of the actuator, sensors, control circuitry and dedicated (embedded) processors. The main purpose of the study was to develop suitable hardware and neural network capable of allowing real time reconfiguration decisions to be made. This approach was to be compared to other methods such as fuzzy logic and knowledge based systems considered for the same application. Over the course of the project a more general objective was the identification of the other neural network applications and the education of interested NASA personnel on the topic of Neural Networks.

  6. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  7. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  8. Dynamics of neural cryptography.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  9. Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters.

    Science.gov (United States)

    Weems, Peyton W; Goodman, Robert L; Lehman, Michael N

    2015-04-01

    Seasonal reproduction is a common adaptive strategy among mammals that allows for breeding to occur at times of the year when it is most advantageous for the subsequent survival and growth of offspring. A major mechanism responsible for seasonal reproduction is a striking increase in the responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the negative feedback effects of estradiol. The neural and neuroendocrine circuitry responsible for mammalian seasonal reproduction has been primarily studied in three animal models: the sheep, and two species of hamsters. In this review, we first describe the afferent signals, neural circuitry and transmitters/peptides responsible for seasonal reproductive transitions in sheep, and then compare these mechanisms with those derived from studies in hamsters. The results suggest common principles as well as differences in the role of specific brain nuclei and neuropeptides, including that of kisspeptin cells of the hypothalamic arcuate nucleus, in regulating seasonal reproduction among mammals. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Neural Correlates of “Food Addiction”

    Science.gov (United States)

    Gearhardt, Ashley N.; Yokum, Sonja; Orr, Patrick T.; Stice, Eric; Corbin, William R.; Brownell, Kelly D.

    2014-01-01

    Context Research has implicated an addictive process in the development and maintenance of obesity. Although parallels in neural functioning between obesity and substance dependence have been found, no studies have examined the neural correlates of addictive-like eating behavior. Objective To test the hypothesis that elevated “food addiction” scores are associated with similar patterns of neural activation as substance dependence. Design Between-Subjects fMRI study. Participants Forty-eight healthy adolescent females ranging from lean to obese recruited for a healthy weight maintenance trial. Main Outcome Measure The relation between elevated “food addiction” scores and blood oxygen level-dependent fMRI activation in response to receipt and anticipated receipt of palatable food (chocolate milkshake). Results Food addiction scores (N = 39) correlated with greater activation in the anterior cingulate cortex (ACC), medial orbitofrontal cortex (OFC), and amygdala in response to anticipated receipt of food (P <0.05, false-discovery rate (FDR) corrected for multiple comparisons in small volumes). Participants with higher (n=15) versus lower (n=11) food addiction scores showed greater activation in the dorsolateral prefrontal cortex (DLPFC) and the caudate in response to anticipated receipt of food, but less activation in the lateral OFC in response to receipt of food (pFDR <0.05). Conclusions Similar patterns of neural activation are implicated in addictive-like eating behavior and substance dependence; elevated activation in reward circuitry in response to food cues and reduced activation of inhibitory regions in response to food intake. PMID:21464344

  11. ANT Advanced Neural Tool

    Energy Technology Data Exchange (ETDEWEB)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-07-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.

  12. Hypoxia preferentially destroys GABAergic neurons in developing rat neocortex explants in culture

    NARCIS (Netherlands)

    Romijn, H. J.; Ruijter, J. M.; Wolters, P. S.

    1988-01-01

    The hypothesis that hypoxic ischemia before or during the human birth process preferentially destroys GABAergic nerve cells, particularly in the neocortex, was tested in a tissue culture model system. To that end, rat neocortex explants dissected from 6-day-old rat pups and cultured to a

  13. Quantification of the influence of preferential flow on slope stability using a numerical modeling approach (discussions)

    NARCIS (Netherlands)

    Shao, W.; Bogaard, T.A.; Bakker, M.; Greco, R.

    2014-01-01

    The effect of preferential flow on the stability of landslides is studied through numerical simulation of two types of rainfall events on a hypothetical hillslope. A model is developed that consists of two parts. The first part is a model for combined saturated/unsaturated subsurface flow and is

  14. Preferential aerosolization of bacteria in bioaerosols generated in vitro.

    Science.gov (United States)

    Perrott, P; Turgeon, N; Gauthier-Levesque, L; Duchaine, C

    2017-09-01

    Little is known about how bacteria are aerosolized in terms of whether some bacteria will be found in the air more readily than others that are present in the source. This report describes in vitro experiments to compare aerosolization rates (also known as preferential aerosolization) of Gram-positive and Gram-negative bacteria as well as rod- and coccus-shaped bacteria, using two nebulization conditions. A consortium of five bacterial species was aerosolized in a homemade chamber. Aerosols generated with a commercial nebulizer and a homemade bubble-burst aerosol generator were compared. Data suggest that Pseudomonas aeruginosa was preferentially aerosolized in comparison to Moraxella catarrhalis, Lactobacillus paracasei, Staphylococcus aureus and Streptococcus suis, independently of the method of aerosolization. Bacterial integrity of Strep. suis was more preserved compared to other bacteria studied as revealed with PMA-qPCR. We reported the design of an aerosol chamber and bubble-burst generator for the in vitro study of preferential aerosolization. In our setting, preferential aerosolization was influenced by bacterial properties instead of aerosolization mechanism. These findings could have important implications for predicting the composition of bioaerosols in various locations such as wastewater treatment plants, agricultural settings and health care settings. © 2017 The Society for Applied Microbiology.

  15. An elaboration of theory about preventing outbreaks in homogeneous populations to include heterogeneity or preferential mixing

    Science.gov (United States)

    Feng, Zhilan; Hill, Andrew N.; Smith, Philip J.; Glasser, John W.

    2017-01-01

    The goal of many vaccination programs is to attain the population immunity above which pathogens introduced by infectious people (e.g., travelers from endemic areas) will not cause outbreaks. Using a simple meta-population model, we demonstrate that, if sub-populations either differ in characteristics affecting their basic reproduction numbers or if their members mix preferentially, weighted average sub-population immunities cannot be compared with the proportionally-mixing homogeneous population-immunity threshold, as public health practitioners are wont to do. Then we review the effect of heterogeneity in average per capita contact rates on the basic meta-population reproduction number. To the extent that population density affects contacts, for example, rates might differ in urban and rural sub-populations. Other differences among sub-populations in characteristics affecting their basic reproduction numbers would contribute similarly. In agreement with more recent results, we show that heterogeneous preferential mixing among sub-populations increases the basic meta-population reproduction number more than homogeneous preferential mixing does. Next we refine earlier results on the effects of heterogeneity in sub-population immunities and preferential mixing on the effective meta-population reproduction number. Finally, we propose the vector of partial derivatives of the reproduction number with respect to the sub-population immunities as a fundamentally new tool for targeting vaccination efforts. PMID:26375548

  16. Influence of sampling strategy on detecting preferential flow paths in water-repellent sand

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.

    1996-01-01

    A sample spacing up to 22 cm over a distance of several metres is just sufficient to collect information about preferential flow paths in a water-repellent sandy soil. When larger sample spacings were used, the water content distributions became more horizontally stratified. Increasing the sample

  17. Unsteady behavior of locally strained diffusion flames affected by curvature and preferential diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kenji; Takagi, Toshimi

    1999-07-01

    Experimental and numerical studies are made of transient H{sub 2}/N{sub 2}--air counterflow diffusion flames unsteadily strained by an impinging micro jet. Two-dimensional temperature measurements by laser Rayleigh scattering method and numerical computations taking into account detailed chemical kinetics are conducted paying attention to transient local extinction and reignition in relation to the unsteadiness, flame curvature and preferential diffusion effects. The results are as follows. (1) Transient local flame extinction is observed where the micro jet impinges. But, the transient flame can survive instantaneously in spite of quite high stretch rate where the steady flame cannot exist. (2) Reignition is observed after the local extinction due to the micro air jet impingement. The temperature after reignition becomes significantly higher than that of the original flame. This high temperature is induced by the concentration of H{sub 2} species due to the preferential diffusion in relation to the concave curvature. The predicted behaviors of the local transient extinction and reignition are well confirmed by the experiments. (3) The reignition is induced after the formation of combustible premixed gas mixture and the consequent flame propagation. (4) The reignition is hardly observed after the extinction by micro fuel jet impingement. This is due to the dilution of H{sub 2} species induced by the preferential diffusion in relation to the convex curvature. (5) The maximum flame temperature cannot be rationalized by the stretch rate but changes widely depending on the unsteadiness and the flame curvature in relation with preferential diffusion.

  18. From Free to Fee: Neoliberalising Preferential Policy Measures for Minority Education in China

    Science.gov (United States)

    Yamada, Naomi C. F.

    2015-01-01

    In both China and in the United States, policies of "positive discrimination" were originally intended to lessen educational and economic inequalities, and to provide equal opportunities. As with affirmative action in the American context, China's "preferential policies" are broad-reaching, but are best known for taking ethnic…

  19. Is there a preferential interaction between cholesterol and tryptophan residues in membrane proteins?

    NARCIS (Netherlands)

    Holt, A.|info:eu-repo/dai/nl/304837423; de Almeida, R.F.M.; Nyholm, T.K.M.; Loura, L.M.S.; Daily, A.E.; Staffhorst, R.W.H.M.; Rijkers, D.T.S.|info:eu-repo/dai/nl/126713758; Koeppe II, R.E.; Prieto, M.; Killian, J.A.|info:eu-repo/dai/nl/071792317

    2008-01-01

    Recently, several indications have been found that suggest a preferential interaction between cholesterol and tryptophan residues located near the membrane-water interface. The aim of this study was to investigate by direct methods how tryptophan and cholesterol interact with each other and what the

  20. 19 CFR 10.233 - Articles eligible for preferential tariff treatment.

    Science.gov (United States)

    2010-04-01

    ... the territory of any country that is not a CBTPA beneficiary country, the articles in the shipment do... 19 Customs Duties 1 2010-04-01 2010-04-01 false Articles eligible for preferential tariff... SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. United...

  1. Preferential flow of bromide, bentazon, and imidacloprid in a Dutch clay soil

    NARCIS (Netherlands)

    Scorza Júnior, R.P.; Smelt, J.H.; Boesten, J.J.T.I.; Hendriks, R.F.A.; Zee, van der S.E.A.T.M.

    2004-01-01

    Leaching to ground water and tile drains are important parts of the environmental assessment of pesticides. The aims of the present study were to (i) assess the significance of preferential flow for pesticide leaching under realistic worst-case conditions for Dutch agriculture (soil profile with

  2. Preferential Trade Arrangements, Induced Investment, and National Income in a Heckscher-Ohlin-Ramsey Model

    NARCIS (Netherlands)

    J.F. François (Joseph); M. Rombout

    2000-01-01

    textabstractWe develop a Heckscher-Ohlin-Ramsey model, combining dual techniques with classic geometric techniques from trade theory. This framework is used to explore the long-run general equilibrium effects of regional integration (preferential trade agreements). Emphasis is placed on positive

  3. 19 CFR 10.470 - Verification and justification of claim for preferential treatment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Verification and justification of claim for preferential treatment. 10.470 Section 10.470 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... identification of the types of machinery used in production, and the number of workers employed in production...

  4. Preferential processing of visual trauma-film reminders predicts subsequent intrusive memories

    NARCIS (Netherlands)

    Verwoerd, J.R.L.; Wessel, I.; De Jong, P.J.; Nieuwenhuis, Maurice

    2009-01-01

    This study used an analogue design to test the hypothesis that preferential processing of visual trauma reminders in the aftermath of a stressful or traumatic event gives rise to subsequent intrusive memories. Shortly after the presentation of a stressful film fragment, participants (n=36) were

  5. Preferential Trade Agreements and the Law and Politics of GATT Article XXIV

    DEFF Research Database (Denmark)

    Alavi, Amin

    2010-01-01

    The tasks Preferential Trade Agreements (PTAs) perform are expressed in their scope and covered issues, thus in order to be WTO compatible these aspects of PTAs should comply with the relevant WTO rules. This paper examines which aspects of PTAs can violate these rules and therefore can be challe...

  6. Preferential HLA usage in the influenza virus-specific CTL response

    NARCIS (Netherlands)

    A.C.M. Boon (Adrianus); G. de Mutsert (Gerrie); R.A.M. Fouchier (Ron); K. Sintnicolaas (Krijn); G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    2004-01-01

    textabstractTo study whether individual HLA class I alleles are used preferentially or equally in human virus-specific CTL responses, the contribution of individual HLA-A and -B alleles to the human influenza virus-specific CTL response was investigated. To this end, PBMC were obtained from three

  7. Exploring the antecedents of preferential customer treatment by suppliers: a mixed methods approach

    NARCIS (Netherlands)

    Huttinger, Lisa; Schiele, Holger; Schröer, Dennis

    2014-01-01

    Purpose – This paper aims to understand the factors that influence a supplier’s choice to treat selected customers more preferentially than others. Suppliers often lack the resources to treat all their customers equally, instead having to make choices to treat some customers as preferred. Empirical

  8. Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs.

    Directory of Open Access Journals (Sweden)

    Francesca Gabanella

    2007-09-01

    Full Text Available Spinal muscular atrophy (SMA is a motor neuron disease caused by reduced levels of the survival motor neuron (SMN protein. SMN together with Gemins2-8 and unrip proteins form a macromolecular complex that functions in the assembly of small nuclear ribonucleoproteins (snRNPs of both the major and the minor splicing pathways. It is not known whether the levels of spliceosomal snRNPs are decreased in SMA. Here we analyzed the consequence of SMN deficiency on snRNP metabolism in the spinal cord of mouse models of SMA with differing phenotypic severities. We demonstrate that the expression of a subset of Gemin proteins and snRNP assembly activity are dramatically reduced in the spinal cord of severe SMA mice. Comparative analysis of different tissues highlights a similar decrease in SMN levels and a strong impairment of snRNP assembly in tissues of severe SMA mice, although the defect appears smaller in kidney than in neural tissue. We further show that the extent of reduction in both Gemin proteins expression and snRNP assembly activity in the spinal cord of SMA mice correlates with disease severity. Remarkably, defective SMN complex function in snRNP assembly causes a significant decrease in the levels of a subset of snRNPs and preferentially affects the accumulation of U11 snRNP--a component of the minor spliceosome--in tissues of severe SMA mice. Thus, impairment of a ubiquitous function of SMN changes the snRNP profile of SMA tissues by unevenly altering the normal proportion of endogenous snRNPs. These findings are consistent with the hypothesis that SMN deficiency affects the splicing machinery and in particular the minor splicing pathway of a rare class of introns in SMA.

  9. Modeling preferential flow and its consequences on solute transfer in a strongly heterogeneous deposit

    Science.gov (United States)

    Ben Slimene, Erij; Lassabatere, Laurent; Winiarski, Thierry; Gourdon, Remy

    2016-04-01

    The understanding of the fate of pollutants in the vadose zone is a prerequisite to manage soil and groundwater quality. Water infiltrates into the soil and carries a large amount of pollutants (heavy metals, organic compounds, etc.). The quality of groundwater depends on the capability of soils to remove pollutants while water infiltrates. The capability of soils to remove pollutants depends not only on their geochemical properties and affinity with pollutants but also on the quality of the contact between the reactive particles of the soil and pollutants. In such a context, preferential flows are the worst scenario since they prevent pollutants from reaching large parts of the soil including reactive zones that could serve for pollutant removal. The negative effects of preferential flow have already been pointed out by several studies. In this paper, we investigate numerically the effect of the establishment of preferential flow in a numerical section (13.5m long and 2.5m deep) that mimics a strongly heterogeneous deposit. The modelled deposit is made of several lithofacies with contrasting hydraulic properties. The numerical study proves that this strong contrast in hydraulic properties triggers the establishment of preferential flow (capillary barriers and funneled flow). Preferential flow develops mainly for low initial water contents and low fluxes imposed at the soil surface. The impact of these flows on solute transfer is also investigated as a function of solute reactivity and affinity to soil sorption sites. Modeled results clearly show that solute transport is greatly impacted by flow heterogeneity. Funneled flows have the same impacts as water fractionation into mobile and immobile transfer with a fast transport of solutes by preferential flow and solute diffusion to zones where the flow is slower. Such a pattern greatly impacts retention and reduces the access of pollutants into large parts of the soil. Retention is thus greatly reduced at the section

  10. A framework for estimating the occurrence frequency and dominant controls of preferential flow across diverse soil-landscapes

    Science.gov (United States)

    Lin, H.; Guo, L.

    2016-12-01

    Preferential flow can occur in practically all soils and landscapes and has significant impacts on water quantity and quality, stream discharge, groundwater recharge, contaminant transport, biogeochemical dynamics, and many other environmental and ecological processes. However, due to limited methods available to quantify and monitor preferential flow in the field, the frequency and controls of preferential flow occurrence remain poorly understood. This study examines various methods for identifying and quantifying preferential flow occurrence across space and time and its dominant controls under various field conditions. Based on data collected from a forest catchment and a farm land, we discuss soil moisture sensor networks that provide new opportunities to characterize preferential flow occurrence in real time. We summarize spatial factors that influence preferential flow occurrence, including landscape features (such as landform, hillslope type/shape, slope, and underlying bedrock), soil properties (such as soil type, texture, layering, and structure), and land use/land cover (such as vegetation type and management practices). Temporal factors influencing preferential flow occurrence include precipitation characteristics (such as amount, intensity, duration, and timing), initial soil moisture condition (such as dry, moist, and wet), and vegetation dynamics (such as canopy cover and root growth). We organize these six key categories of factors into an overarching framework for estimating the occurrence frequency and dominant controls of preferential flow across diverse soil-landscapes. Finally, we address optimal experimental design for preferential flow investigation in the field and provide a future outlook on new research opportunities.

  11. Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development.

    Science.gov (United States)

    Plaza, David Fernando; Lin, Chia-Wei; van der Velden, Niels Sebastiaan Johannes; Aebi, Markus; Künzler, Markus

    2014-06-19

    It is well known that mushrooms produce defense proteins and secondary metabolites against predators and competitors; however, less is known about the correlation between the tissue-specific expression and the target organism (antagonist) specificity of these molecules. In addition, conserved transcriptional circuitries involved in developing sexual organs in fungi are not characterized, despite the growing number of gene expression datasets available from reproductive and vegetative tissue. The aims of this study were: first, to evaluate the tissue specificity of defense gene expression in the model mushroom Coprinopsis cinerea and, second, to assess the degree of conservation in transcriptional regulation during sexual development in basidiomycetes. In order to characterize the regulation in the expression of defense loci and the transcriptional circuitries controlling sexual reproduction in basidiomycetes, we sequenced the poly (A)-positive transcriptome of stage 1 primordia and vegetative mycelium of C. cinerea A43mutB43mut. Our data show that many genes encoding predicted and already characterized defense proteins are differentially expressed in these tissues. The predicted specificity of these proteins with regard to target organisms suggests that their expression pattern correlates with the type of antagonists these tissues are confronted with. Accordingly, we show that the stage 1 primordium-specific protein CC1G_11805 is toxic to insects and nematodes. Comparison of our data to analogous data from Laccaria bicolor and Schizophyllum commune revealed that the transcriptional regulation of nearly 70 loci is conserved and probably subjected to stabilizing selection. A Velvet domain-containing protein was found to be up-regulated in all three fungi, providing preliminary evidence of a possible role of the Velvet protein family in sexual development of basidiomycetes. The PBS-soluble proteome of C. cinerea primordia and mycelium was analyzed by shotgun LC

  12. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception.

    Science.gov (United States)

    Turner, Clare E; Byblow, Winston D; Stinear, Cathy M; Gant, Nicholas

    2014-09-01

    The presence of carbohydrate in the human mouth has been associated with the facilitation of motor output and improvements in physical performance. Oral receptors have been identified as a potential mode of afferent transduction for this novel form of nutrient signalling that is distinct from taste. In the current study oral exposure to carbohydrate was combined with a motor task in a neuroimaging environment to identify areas of the brain involved in this phenomenon. A mouth-rinsing protocol was conducted whilst carbohydrate (CHO) and taste-matched placebo (PLA) solutions were delivered and recovered from the mouths of 10 healthy volunteers within a double-blind, counterbalanced design. This protocol eliminates post-oral factors and controls for the perceptual qualities of solutions. Functional magnetic resonance imaging of the brain was used to identify cortical areas responsive to oral carbohydrate during rest and activity phases of a hand-grip motor task. Mean blood-oxygen-level dependent signal change experienced in the contralateral primary sensorimotor cortex was larger for CHO compared with PLA during the motor task when contrasted with a control condition. Areas of activation associated with CHO exclusively were observed over the primary taste cortex and regions involved in visual perception. Regions in the limbic system associated with reward were also significantly more active with CHO. This is the first demonstration that oral carbohydrate signalling can increase activation within the primary sensorimotor cortex during physical activity and enhance activation of neural networks involved in sensory perception. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Land cover effects on infiltration and preferential flow pathways in the high rainfall zone of Madagascar

    Science.gov (United States)

    Zwartendijk, Bob; van Meerveld, Ilja; Ravelona, Maafaka; Razakamanarivo, Herintsitohaina; Ghimire, Chandra; Bruijnzeel, Sampurno; Jones, Julia

    2015-04-01

    Shortened slash-and-burn cycles exhaust agricultural land and have resulted in extensive tracts of highly degraded land across the tropics. Land degradation typically results in decreased rainfall infiltration due to a reduced field-saturated hydraulic conductivity of the topsoil because of a progressive decline in soil organic matter, exposure to raindrop impact, surface sealing and compaction. This results, in turn, in enhanced surface runoff and erosion, and consequently less subsurface flow and groundwater recharge. On the other hand, natural vegetation regrowth or active reforestation can lead to a renewed accumulation of soil organic matter, macropore development and increased infiltration rates. As part of the P4GES project (Can Paying 4 Global Ecosystem Services values reduce poverty?; www.p4ges.org), we study the effects of land use change and reforestation on water resources in the Corridor Ankeniheny-Zahamena (CAZ) in eastern Madagascar. In this poster, we present the results of infiltration and preferential flow measurements in four different land uses in the southern part of the CAZ: (i) closed canopy forest, (ii) 3-14 year-old regrowth on fallow land (savokas), (iii) exhausted and severely degraded land (tany maty), and (iv) recently reforested sites (6-8 years old). The results show that infiltrability increases significantly after several years of forest regrowth after land abandonment, but it remains unclear whether active replanting decreases the time required for restoration of soil hydrological functioning. Preferential flow pathways differed strikingly between the respective land cover types: infiltration in mature forests was predominantly characterized by macropore flow (preferential flow pathways), whereas infiltration in exhausted agricultural land was dominated by matrix flow (few preferential flow pathways). Occurrence of preferential flow pathways in reforestation and fallow sites varied considerably. These results suggest that land

  14. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  15. [Neural codes for perception].

    Science.gov (United States)

    Romo, R; Salinas, E; Hernández, A; Zainos, A; Lemus, L; de Lafuente, V; Luna, R

    This article describes experiments designed to show the neural codes associated with the perception and processing of tactile information. The results of these experiments have shown the neural activity correlated with tactile perception. The neurones of the primary somatosensory cortex (S1) represent the physical attributes of tactile perception. We found that these representations correlated with tactile perception. By means of intracortical microstimulation we demonstrated the causal relationship between S1 activity and tactile perception. In the motor areas of the frontal lobe is to be found the connection between sensorial and motor representation whilst decisions are being taken. S1 generates neural representations of the somatosensory stimuli which seen to be sufficient for tactile perception. These neural representations are subsequently processed by central areas to S1 and seem useful in perception, memory and decision making.

  16. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  17. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  18. Neural cryptography with feedback

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  19. Neural network applications

    Science.gov (United States)

    Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.

    1993-01-01

    A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.

  20. Building Neural Net Software

    OpenAIRE

    Neto, João Pedro; Costa, José Félix

    1999-01-01

    In a recent paper [Neto et al. 97] we showed that programming languages can be translated on recurrent (analog, rational weighted) neural nets. The goal was not efficiency but simplicity. Indeed we used a number-theoretic approach to machine programming, where (integer) numbers were coded in a unary fashion, introducing a exponential slow down in the computations, with respect to a two-symbol tape Turing machine. Implementation of programming languages in neural nets turns to be not only theo...

  1. NEMEFO: NEural MEteorological FOrecast

    Energy Technology Data Exchange (ETDEWEB)

    Pasero, E.; Moniaci, W.; Meindl, T.; Montuori, A. [Polytechnic of Turin (Italy). Dept. of Electronics

    2004-07-01

    Artificial Neural Systems are a well-known technique used to classify and recognize objects. Introducing the time dimension they can be used to forecast numerical series. NEMEFO is a ''nowcasting'' tool, which uses both statistical and neural systems to forecast meteorological data in a restricted area close to a meteorological weather station in a short time range (3 hours). Ice, fog, rain are typical events which can be anticipated by NEMEFO. (orig.)

  2. Cellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of Autism Genes in the Brain.

    Science.gov (United States)

    Hulbert, Samuel W; Jiang, Yong-Hui

    2017-04-01

    Transgenic mice carrying mutations that cause Autism Spectrum Disorders (ASDs) continue to be valuable for determining the molecular underpinnings of the disorders. Recently, researchers have taken advantage of such models combined with Cre-loxP and similar systems to manipulate gene expression over space and time. Thus, a clearer picture is starting to emerge of the cell types, circuits, brain regions, and developmental time periods underlying ASDs. ASD-causing mutations have been restricted to or rescued specifically in excitatory or inhibitory neurons, different neurotransmitter systems, and cells specific to the forebrain or cerebellum. In addition, mutations have been induced or corrected in adult mice, providing some evidence for the plasticity and reversibility of core ASD symptoms. The limited availability of Cre lines that are highly specific to certain cell types or time periods provides a challenge to determining the cellular and circuitry bases of autism, but other technological advances may eventually overcome this obstacle.

  3. In search of the next memory inside the circuitry from the oldest to the emerging non-volatile memories

    CERN Document Server

    Campardo, Giovanni

    2017-01-01

    This book provides students and practicing chip designers with an easy-to-follow yet thorough, introductory treatment of the most promising emerging memories under development in the industry. Focusing on the chip designer rather than the end user, this book offers expanded, up-to-date coverage of emerging memories circuit design. After an introduction on the old solid-state memories and the fundamental limitations soon to be encountered, the working principle and main technology issues of each of the considered technologies (PCRAM, MRAM, FeRAM, ReRAM) are reviewed and a range of topics related to design is explored: the array organization, sensing and writing circuitry, programming algorithms and error correction techniques are reviewed comparing the approach followed and the constraints for each of the technologies considered. Finally the issue of radiation effects on memory devices has been briefly treated. Additionally some considerations are entertained about how emerging memories can find a place in the...

  4. The neural basis of unwanted thoughts during resting state.

    Science.gov (United States)

    Kühn, Simone; Vanderhasselt, Marie-Anne; De Raedt, Rudi; Gallinat, Jürgen

    2014-09-01

    Human beings are constantly engaged in thought. Sometimes thoughts occur repetitively and can become distressing. Up to now the neural bases of these intrusive or unwanted thoughts is largely unexplored. To study the neural correlates of unwanted thoughts, we acquired resting-state fMRI data of 41 female healthy subjects and assessed the self-reported amount of unwanted thoughts during measurement. We analyzed local connectivity by means of regional homogeneity (ReHo) and functional connectivity of a seed region. More unwanted thoughts (state) were associated with lower ReHo in right dorsolateral prefrontal cortex (DLPFC) and higher ReHo in left striatum (putamen). Additional seed-based analysis revealed higher functional connectivity of the left striatum with left inferior frontal gyrus (IFG) in participants reporting more unwanted thoughts. The state-dependent higher connectivty in left striatum was positively correlated with rumination assessed with a dedicated questionnaire focussing on trait aspects. Unwanted thoughts are associated with activity in the fronto-striatal brain circuitry. The reduction of local connectivity in DLPFC could reflect deficiencies in thought suppression processes, whereas the hightened activity in left striatum could imply an imbalance of gating mechanisms housed in basal ganglia. Its functional connectivity to left IFG is discussed as the result of thought-related speech processes. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Nonlinear modeling of neural population dynamics for hippocampal prostheses.

    Science.gov (United States)

    Song, Dong; Chan, Rosa H M; Marmarelis, Vasilis Z; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2009-11-01

    Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the input-output transformation of spike trains. In this approach, a MIMO model comprises a series of physiologically-plausible multiple-input, single-output (MISO) neuron models that consist of five components each: (1) feedforward Volterra kernels transforming the input spike trains into the synaptic potential, (2) a feedback kernel transforming the output spikes into the spike-triggered after-potential, (3) a noise term capturing the system uncertainty, (4) an adder generating the pre-threshold potential, and (5) a threshold function generating output spikes. It is shown that this model is equivalent to a generalized linear model with a probit link function. To reduce model complexity and avoid overfitting, statistical model selection and cross-validation methods are employed to choose the significant inputs and interactions between inputs. The model is applied successfully to the hippocampal CA3-CA1 population dynamics. Such a model can serve as a computational basis for the development of hippocampal prostheses.

  6. Neural and neurochemical basis of reinforcement-guided decision making.

    Science.gov (United States)

    Khani, Abbas; Rainer, Gregor

    2016-08-01

    Decision making is an adaptive behavior that takes into account several internal and external input variables and leads to the choice of a course of action over other available and often competing alternatives. While it has been studied in diverse fields ranging from mathematics, economics, ecology, and ethology to psychology and neuroscience, recent cross talk among perspectives from different fields has yielded novel descriptions of decision processes. Reinforcement-guided decision making models are based on economic and reinforcement learning theories, and their focus is on the maximization of acquired benefit over a defined period of time. Studies based on reinforcement-guided decision making have implicated a large network of neural circuits across the brain. This network includes a wide range of cortical (e.g., orbitofrontal cortex and anterior cingulate cortex) and subcortical (e.g., nucleus accumbens and subthalamic nucleus) brain areas and uses several neurotransmitter systems (e.g., dopaminergic and serotonergic systems) to communicate and process decision-related information. This review discusses distinct as well as overlapping contributions of these networks and neurotransmitter systems to the processing of decision making. We end the review by touching on neural circuitry and neuromodulatory regulation of exploratory decision making. Copyright © 2016 the American Physiological Society.

  7. Acute Stress Influences Neural Circuits of Reward Processing

    Directory of Open Access Journals (Sweden)

    Anthony John Porcelli

    2012-11-01

    Full Text Available People often make decisions under aversive conditions such as acute stress. Yet, less is known about the process in which acute stress can influence decision-making. A growing body of research has established that reward-related information associated with the outcomes of decisions exerts a powerful influence over the choices people make and that an extensive network of brain regions, prominently featuring the striatum, is involved in the processing of this reward-related information. Thus, an important step in research on the nature of acute stress’ influence over decision-making is to examine how it may modulate responses to rewards and punishments within reward-processing neural circuitry. In the current experiment, we employed a simple reward processing paradigm – where participants received monetary rewards and punishments – known to evoke robust striatal responses. Immediately prior to performing each of two task runs, participants were exposed to acute stress (i.e., cold pressor or a no stress control procedure in a between-subjects fashion. No stress group participants exhibited a pattern of activity within the dorsal striatum and orbitofrontal cortex consistent with past research on outcome processing – specifically, differential responses for monetary rewards over punishments. In contrast, acute stress group participants’ dorsal striatum and orbitofrontal cortex demonstrated decreased sensitivity to monetary outcomes and a lack of differential activity. These findings provide insight into how neural circuits may process rewards and punishments associated with simple decisions under acutely stressful conditions.

  8. TUTORIAL: The dynamic neural field approach to cognitive robotics

    Science.gov (United States)

    Erlhagen, Wolfram; Bicho, Estela

    2006-09-01

    This tutorial presents an architecture for autonomous robots to generate behavior in joint action tasks. To efficiently interact with another agent in solving a mutual task, a robot should be endowed with cognitive skills such as memory, decision making, action understanding and prediction. The proposed architecture is strongly inspired by our current understanding of the processing principles and the neuronal circuitry underlying these functionalities in the primate brain. As a mathematical framework, we use a coupled system of dynamic neural fields, each representing the basic functionality of neuronal populations in different brain areas. It implements goal-directed behavior in joint action as a continuous process that builds on the interpretation of observed movements in terms of the partner's action goal. We validate the architecture in two experimental paradigms: (1) a joint search task; (2) a reproduction of an observed or inferred end state of a grasping-placing sequence. We also review some of the mathematical results about dynamic neural fields that are important for the implementation work. .

  9. TPX2-p53-GLIPR1 regulatory circuitry in cell proliferation, invasion, and tumor growth of bladder cancer.

    Science.gov (United States)

    Yan, Liang; Li, Qi; Yang, Juan; Qiao, Baoping

    2017-08-11

    The targeting protein for Xenopus kinesin-like protein 2 (TPX2) is associated with the metastasis and prognosis of bladder cancer. p53 is closely related to the progression of bladder cancer. Human glioma pathogenesis-related protein 1 (GLIPR1) is a p53 target gene with antitumor activity. This study aims to explore the interplay between TPX2, p53, and GLIPR1 and its correlation with cell proliferation, invasion, and tumor growth in bladder cancer. Here, Western blot and qRT-PCR analysis revealed that TPX2 at both mRNA and protein levels was up-regulated in bladder carcinoma tissues compared to their paired adjacent normal tissues. Additionally, tissues expressing high TPX2 level exhibited high p53 level and low GLIPR1 level. The expressions of TPX2 and p53 in non-muscle-invasive bladder cancer cells (KK47 and RT4) were lower than those in muscle-invasive bladder cancer cells (T24, 5637, and UM-UC-3), while GLIPR1 showed the converse expression pattern. Further investigation revealed that TPX2 activated the synthesis of p53; and GLIPR1 is up-regulated by wild-type (wt)-p53 but not affected by mutated p53; Additionally, GLIPR1 inhibited TPX2. These data suggested a TPX2-p53-GLIPR1 regulatory circuitry. Meanwhile, TPX2 overexpression promoted while overexpression of GLIPR1 or p53 inhibited bladder cancer growth. Interestingly, in T24 cells with mutated p53, p53 silence suppressed bladder cancer growth. This study identified a novel TPX2-p53-GLIPR1 regulatory circuitry which modulated cell proliferation, migration, invasion, and tumorigenicity of bladder cancer. Our findings provide new insight into underlying mechanisms of tumorigenesis and novel therapeutic options in bladder cancer. © 2017 Wiley Periodicals, Inc.

  10. Origin of preferential flow and its controlling factors on emission potential using numerical simulations and lab experiments

    NARCIS (Netherlands)

    Baviskar, S.M.; Heimovaara, T.J.

    2015-01-01

    We believe the unsaturated and heterogeneous nature of landfills leads to the emergence of preferential pathways of water and dissolved compounds through the waste body. In this research we explore the origin of preferential flow in a porous media with a deterministic numerical model. In this model

  11. The neural basis of theory of mind and its relationship to social functioning and social anhedonia in individuals with schizophrenia

    Directory of Open Access Journals (Sweden)

    David Dodell-Feder

    2014-01-01

    Full Text Available Theory of mind (ToM, the ability to attribute and reason about the mental states of others, is a strong determinant of social functioning among individuals with schizophrenia. Identifying the neural bases of ToM and their relationship to social functioning may elucidate functionally relevant neurobiological targets for intervention. ToM ability may additionally account for other social phenomena that affect social functioning, such as social anhedonia (SocAnh. Given recent research in schizophrenia demonstrating improved neural functioning in response to increased use of cognitive skills, it is possible that SocAnh, which decreases one's opportunity to engage in ToM, could compromise social functioning through its deleterious effect on ToM-related neural circuitry. Here, twenty individuals with schizophrenia and 18 healthy controls underwent fMRI while performing the False-Belief Task. Aspects of social functioning were assessed using multiple methods including self-report (Interpersonal Reactivity Index, Social Adjustment Scale, clinician-ratings (Global Functioning Social Scale, and performance-based tasks (MSCEIT—Managing Emotions. SocAnh was measured with the Revised Social Anhedonia Scale. Region-of-interest and whole-brain analyses revealed reduced recruitment of medial prefrontal cortex (MPFC for ToM in individuals with schizophrenia. Across all participants, activity in this region correlated with most social variables. Mediation analysis revealed that neural activity for ToM in MPFC accounted for the relationship between SocAnh and social functioning. These findings demonstrate that reduced recruitment of MPFC for ToM is an important neurobiological determinant of social functioning. Furthermore, SocAhn may affect social functioning through its impact on ToM-related neural circuitry. Together, these findings suggest ToM ability as an important locus for intervention.

  12. Risperidone and Divalproex Differentially Engage the Fronto-Striato-Temporal Circuitry in Pediatric Mania: A Pharmacological Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Pavuluri, Mani N.; Passarotti, Alessandra M.; Fitzgerald, Jacklynn M.; Wegbreit, Ezra; Sweeney, John A.

    2012-01-01

    Objective: The current study examined the impact of risperidone and divalproex on affective and working memory circuitry in patients with pediatric bipolar disorder (PBD). Method: This was a six-week, double-blind, randomized trial of risperidone plus placebo versus divalproex plus placebo for patients with mania (n = 21; 13.6 [plus or minus] 2.5…

  13. Effects of Soil Compaction and Organic Carbon Content on Preferential Flow in Loamy Field Soils

    DEFF Research Database (Denmark)

    Soares, Antonio; Moldrup, Per; Vendelboe, Anders Lindblad

    2015-01-01

    Preferential flow and transport through macropores affects plant water use efficiency and enhances leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. As part of the Danish Pesticide Leaching Assessment Program this study...... investigated effects of soil compaction and organic carbon content on macroporosity and preferential flow and transport. More than 150 undisturbed soil cores were extracted from two field sites in Denmark. While both sites exhibited loamy soil textures, one site had significantly higher organic carbon contents......, the relationships between bulk density and tritium transport parameters were markedly different for the two soils although the relationship between bulk density and macroporosity was nearly identical. The difference was likely caused by the higher organic carbon content of one soil leading to a more pronounced pipe...

  14. Assortativity and leadership emergence from anti-preferential attachment in heterogeneous networks

    CERN Document Server

    Sendiña-Nadal, I; Wang, Z; Havlin, S; Boccaletti, S

    2015-01-01

    Many real-world networks exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Particularly in social networks, the contribution to the total assortativity varies with degree, featuring a distinctive peak slightly past the average degree. The way traditional models imprint assortativity on top of pre-defined topologies is via degree-preserving link permutations, which however destroy the particular graph's hierarchical traits of clustering. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties and tunable realistic assortativity. In our approach, two distinct populations of nodes are added to an initial network seed: one (the followers) that abides by usual preferential rules, and one (the potential leaders) connecting via anti-preferential attachments, i.e. selecting lower degree nodes for their initial links. The latter nodes come to develop a higher average degree, and convert eventually into the final hubs....

  15. Use of an imaging infiltrometer to understand soil crack sealing and preferential flow

    Science.gov (United States)

    Stewart, R. D.

    2015-12-01

    Soil cracks can act as preferential flowpaths, but their effects on non-equilibrium flow and transport are difficult to quantify because of dynamic interactions between water and the crack structure. I have developed a simple method that combines infiltration measurements with digital imaging to simultaneously quantify infiltration and crack closure. Preliminary data collected on soils with moderate shrink-swell potential (possessing surface-connected cracks of 1-5 mm width) reveal that soil cracks begin to close almost immediately after the onset of infiltration, but soon thereafter attain quasi-stable geometries. This suggests that in the context of short-term infiltration tests it may be possible to model soil cracks as having relatively constant contributions to preferential flow.

  16. A preferential attachment strategy for connectivity link addition strategy in improving the robustness of interdependent networks

    Science.gov (United States)

    Wang, Xingyuan; Cao, Jianye; Li, Rui; Zhao, Tianfang

    2017-10-01

    Given the same two networks and only one-to-one interlinks are allowed, apparently interdependent networks coupled by these two networks has the optimal robustness when we connect every pair of the same nodes in these two networks. According to the structure of this interdependent network with the optimal robustness, we propose a preferential attachment strategy. And by applying this preferential attachment strategy to three existing connectivity link addition strategies RA (random addition strategy), LD (low degree addition strategy) and LIDD (low inter degree-degree difference addition strategy), we find that each improved strategy is obviously better than before in improving the robustness of interdependent networks. Our findings can provide guidance on connectivity link addition strategy to improve robustness of interdependent networks against cascading failures.

  17. Modes of Collaboration in Modern Science - Beyond Power Laws and Preferential Attachment

    CERN Document Server

    Milojević, Staša

    2010-01-01

    The goal of the study is to determine the underlying processes leading to the observed collaborator distribution in modern scientific fields, with special attention to non-power law behavior. Nanoscience is used as a case study of a modern interdisciplinary field, and its coauthorship network for 2000-04 period is constructed from NanoBank database. We find three collaboration modes that correspond to three distinct ranges in the distribution of collaborators: (1) for authors with fewer than 20 collaborators (the majority) preferential attachment does not hold and they form a log-normal "hook" instead of a power law, (2) authors with more than 20 collaborators benefit from preferential attachment and form a power law tail, and (3) authors with between 250 and 800 collaborators are more frequent than expected because of the hyperauthorship practices in certain subfields.

  18. Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake

    Science.gov (United States)

    Flavahan, William A.; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E.; Weil, Robert J.; Nakano, Ichiro; Sarkaria, Jann N.; Stringer, Brett W.; Day, Bryan W.; Li, Meizhang; Lathia, Justin D.; Rich, Jeremy N.; Hjelmeland, Anita B.

    2013-01-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) due to preferential BTIC survival and adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3 and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, TICs may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may instruct the tumor hierarchy and portend poor prognosis. PMID:23995067

  19. Ageism at Work: What Happens to Older Workers Who Benefit from Preferential Treatment?

    Directory of Open Access Journals (Sweden)

    Caroline Iweins

    2012-12-01

    Full Text Available In order to increase the activity rate of older workers, the Organisation for Economic Cooperation and Development (OECD recommends that national governments implement policies promoting the employment of this category of workers. However, policies that favour minority groups have been shown to produce detrimental effects such as devaluing members of these groups. In two studies, we examined whether age-related preferential treatment reinforces ageist attitudes in the workplace. A first study revealed that policies favouring 50 years old workers increased negative perceptions toward them. In a second experimental study, results indicated that, compared to a merit-based treatment, a preferential treatment increased negative perceptions, emotions, and behaviours toward an old target. As a set, our findings shed new light on ageism at work and on the role of context.

  20. The dynamics of power laws: Fitness and aging in preferential attachment trees

    OpenAIRE

    Garavaglia, Alessandro; van der Hofstad, Remco; Woeginger, Gerhard

    2017-01-01

    Continuous-time branching processes describe the evolution of a population whose individuals generate a random number of children according to a birth process. Such branching processes can be used to understand preferential attachment models in which the birth rates are linear functions. We are motivated by citation networks, where power-law citation counts are observed as well as aging in the citation patterns. To model this, we introduce fitness and age-dependence in these birth processes. ...

  1. Effects of subsoil compaction on hydraulic properties and preferential flow in a Swedish clay soil

    OpenAIRE

    Mossadeghi-Björklund Mona; Arvidsson Johan; Keller Thomas; Koestel John; Lamandé Mathieu; Larsbo Mats; Jarvis Nick

    2016-01-01

    Soil compaction by vehicular traffic modifies the pore structure and soil hydraulic properties. These changes potentially influence the occurrence of preferential flow which so far has been little studied. Our aim was to study the effect of compaction on soil hydraulic and transport properties in subsoil. A randomized block design trial at two sites on a well structured clay soil in central Sweden was established. Plots with two levels of compaction were created at both sites in the following...

  2. SAT1, a glutamine transporter, is preferentially expressed in GABAergic neurons

    OpenAIRE

    Tom Tallak Solbu; Tom Tallak Solbu; Mona Bjørkmo; Mona Bjørkmo; Paul Berghuis; Tibor Harkany; Tibor Harkany; Farrukh A Chaudhry; Farrukh A Chaudhry

    2010-01-01

    Subsets of GABAergic neurons are able to maintain high frequency discharge patterns, which requires efficient replenishment of the releasable pool of GABA. Although glutamine is considered a preferred precursor of GABA, the identity of transporters involved in glutamine uptake by GABAergic neurons remains elusive. Molecular analyses revealed that SAT1 (Slc38a1) features system A characteristics with a preferential affinity for glutamine, and that SAT1 mRNA expression is associated with GABAe...

  3. SAT1, A Glutamine Transporter, is Preferentially Expressed in GABAergic Neurons

    OpenAIRE

    Solbu, Tom Tallak; Bjørkmo, Mona; Berghuis, Paul; Harkany, Tibor; Chaudhry, Farrukh A.

    2010-01-01

    Subsets of GABAergic neurons are able to maintain high frequency discharge patterns, which requires efficient replenishment of the releasable pool of GABA. Although glutamine is considered a preferred precursor of GABA, the identity of transporters involved in glutamine uptake by GABAergic neurons remains elusive. Molecular analyses revealed that SAT1 (Slc38a1) features system A characteristics with a preferential affinity for glutamine, and that SAT1 mRNA expression is associated with GABAer...

  4. The anti-protozoan drug nifurtimox preferentially inhibits clonogenic tumor cells under hypoxic conditions

    OpenAIRE

    Li, Quhuan; Lin, Qun; Kim, Hoon; Yun, Zhong

    2017-01-01

    Tumor hypoxia is an independent prognostic indicator of tumor malignant progression and poor patient survival. Therefore, eradication of hypoxic tumor cells is of paramount importance for successful disease control. In this study, we have made a new discovery that nifurtimox, a clinically approved drug to treat Chagas disease caused by the parasitic protozoan trypanosomes, can function as a hypoxia-activated cytotoxin. We have found that nifurtimox preferentially kill clonogenic tumor cells e...

  5. Observation of field- scale preferential flow in soil landscapes with kettle holes as internal drainage system

    Science.gov (United States)

    Gerke, Horst H.

    2010-05-01

    Complementary to pedon-scale phenomena (e.g., macropore flow in structured soil), preferential flow may be also defined at larger scales mainly along impeding structures that allow for the development of transient ‘local' non-equilibrium in water potentials depending on characteristic boundary conditions. The phenomenon is then related to a ‘global' system (i.e., field, hillslope, or catchment). Larger scale preferential flow processes have recently been hypothesized although full conceptual understanding for model development remains challenging. The objective of this contribution is to discuss field observations of area-scale preferential water flow for improving the conceptual model. Examples are from a typical post-glacial landscape with kettle holes (i.e., site Grünow, north East Germany) as internal catchment systems where surface runoff and lateral subsurface flow occur. Where soils are developed from the till, and predominately used for agriculture, water moves along the surface as runoff or within highly conductive soil regions before it enters the central depression. From there it may either evaporate or eventually lead to depression-focussed recharge. Observations show lateral flow ‘bypassing' relatively dry subsoil in most of the catchment and re-wetting the subsoil near the depression by lateral infiltration from the pond indicated by reversal of hydraulic gradients. Results suggest that surface runoff is dominating the hydrological regime during the winter when the soil is frozen and in the summer during storm events. The lateral exchange fluxes between pond and surrounding soil suggest that additional geomorphologic and pedologic structures affect the hydrological function of the system. Ponds can trap large volumes of surface runoff and control seepage function. The field-scale lateral preferential flow can strongly control percolation and discharge and may be a possible route for ground water contamination.

  6. Modeling, Analysis and Simulation of Multiscale Preferential Flow - 8/05-8/10 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ralph Showalter; Malgorzata Peszynska

    2012-07-03

    The research agenda of this project are: (1) Modeling of preferential transport from mesoscale to macroscale; (2) Modeling of fast flow in narrow fractures in porous media; (3) Pseudo-parabolic Models of Dynamic Capillary Pressure; (4) Adaptive computational upscaling of flow with inertia from porescale to mesoscale; (5) Adaptive modeling of nonlinear coupled systems; and (6) Adaptive modeling and a-posteriori estimators for coupled systems with heterogeneous data.

  7. Beneficial Effect of Preferential Music on Exercise Induced Changes in Heart Rate Variability.

    Science.gov (United States)

    Archana, R; Mukilan, R

    2016-05-01

    Music is known to reduce pain, anxiety and fear in several stressful conditions in both males and females. Further, listening to preferred music enhances the endurance during running performance of women rather than listening to non-preferred music. In recent years Heart Rate Variability (HRV) has been used as an indicator of autonomic nervous activity. This study was aimed to assess the effectiveness of preferential music on HRV after moderate exercise. This was an experimental study done in 30 healthy students aged between 20-25 years, of either sex. HRV was measured at rest, 15 minutes of exercise only and 15 minutes of exercise with listening preferential music in same participants. Data was analysed by One-Way ANOVA and Tukey HSD Post-hoc Test. Statistical significance was taken to be a p-value of less than 0.05. Low frequency and high frequency component was significantly increased followed by only exercise. Music minimized increase in both high and low frequency component followed by exercise. However, only high frequency change was statistically significant. LF/HF ratio was significantly increased followed by only exercise. Music significantly minimized increase in LF/HF ratio. This study provides the preliminary evidence that listening to preferential music could be an effective method of relaxation, as indicated by a shift of the autonomic balance towards the parasympathetic activity among medical students.

  8. Preferential transfer of certain plasma membrane proteins onto T and B cells by trogocytosis.

    Directory of Open Access Journals (Sweden)

    Sandrine Daubeuf

    Full Text Available T and B cells capture antigens via membrane fragments of antigen presenting cells (APC in a process termed trogocytosis. Whether (and how a preferential transfer of some APC components occurs during trogocytosis is still largely unknown. We analyzed the transfer onto murine T and B cells of a large panel of fluorescent proteins with different intra-cellular localizations in the APC or various types of anchors in the plasma membrane (PM. Only the latter were transferred by trogocytosis, albeit with different efficiencies. Unexpectedly, proteins anchored to the PM's cytoplasmic face, or recruited to it via interaction with phosphinositides, were more efficiently transferred than those facing the outside of the cell. For proteins spanning the PM's whole width, transfer efficiency was found to vary quite substantially, with tetraspanins, CD4 and FcRgamma found among the most efficiently transferred proteins. We exploited our findings to set immunodiagnostic assays based on the capture of preferentially transferred components onto T or B cells. The preferential transfer documented here should prove useful in deciphering the cellular structures involved in trogocytosis.

  9. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks

    Science.gov (United States)

    Sendiña-Nadal, I.; Danziger, M. M.; Wang, Z.; Havlin, S.; Boccaletti, S.

    2016-02-01

    Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph’s hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.

  10. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  11. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells.

    Science.gov (United States)

    Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-01

    This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

  12. Conducting Polymers for Neural Prosthetic and Neural Interface Applications

    Science.gov (United States)

    2015-01-01

    Neural interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review the application of CPs for neural prostheses and other neural interfacing devices are discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery. PMID:26414302

  13. Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours.

    Science.gov (United States)

    Voon, Valerie; Mole, Thomas B; Banca, Paula; Porter, Laura; Morris, Laurel; Mitchell, Simon; Lapa, Tatyana R; Karr, Judy; Harrison, Neil A; Potenza, Marc N; Irvine, Michael

    2014-01-01

    Although compulsive sexual behaviour (CSB) has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions.

  14. Category-Specific Neural Oscillations Predict Recall Organization During Memory Search

    Science.gov (United States)

    Morton, Neal W.; Kahana, Michael J.; Rosenberg, Emily A.; Baltuch, Gordon H.; Litt, Brian; Sharan, Ashwini D.; Sperling, Michael R.; Polyn, Sean M.

    2013-01-01

    Retrieved-context models of human memory propose that as material is studied, retrieval cues are constructed that allow one to target particular aspects of past experience. We examined the neural predictions of these models by using electrocorticographic/depth recordings and scalp electroencephalography (EEG) to characterize category-specific oscillatory activity, while participants studied and recalled items from distinct, neurally discriminable categories. During study, these category-specific patterns predict whether a studied item will be recalled. In the scalp EEG experiment, category-specific activity during study also predicts whether a given item will be recalled adjacent to other same-category items, consistent with the proposal that a category-specific retrieval cue is used to guide memory search. Retrieved-context models suggest that integrative neural circuitry is involved in the construction and maintenance of the retrieval cue. Consistent with this hypothesis, we observe category-specific patterns that rise in strength as multiple same-category items are studied sequentially, and find that individual differences in this category-specific neural integration during study predict the degree to which a participant will use category information to organize memory search. Finally, we track the deployment of this retrieval cue during memory search: Category-specific patterns are stronger when participants organize their responses according to the category of the studied material. PMID:22875859

  15. Hyperbolic Hopfield neural networks.

    Science.gov (United States)

    Kobayashi, M

    2013-02-01

    In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states.

  16. Neural Semantic Encoders.

    Science.gov (United States)

    Munkhdalai, Tsendsuren; Yu, Hong

    2017-04-01

    We present a memory augmented neural network for natural language understanding: Neural Semantic Encoders. NSE is equipped with a novel memory update rule and has a variable sized encoding memory that evolves over time and maintains the understanding of input sequences through read, compose and write operations. NSE can also access multiple and shared memories. In this paper, we demonstrated the effectiveness and the flexibility of NSE on five different natural language tasks: natural language inference, question answering, sentence classification, document sentiment analysis and machine translation where NSE achieved state-of-the-art performance when evaluated on publically available benchmarks. For example, our shared-memory model showed an encouraging result on neural machine translation, improving an attention-based baseline by approximately 1.0 BLEU.

  17. Neural Mechanisms of Cognitive Dissonance (Revised): An EEG Study.

    Science.gov (United States)

    Colosio, Marco; Shestakova, Anna; Nikulin, Vadim V; Blagovechtchenski, Evgeny; Klucharev, Vasily

    2017-05-17

    Cognitive dissonance theory suggests that our preferences are modulated by the mere act of choosing. A choice between two similarly valued alternatives creates psychological tension (cognitive dissonance) that is reduced by a postdecisional reevaluation of the alternatives. We measured EEG of human subjects during rest and free-choice paradigm. Our study demonstrates that choices associated with stronger cognitive dissonance trigger a larger negative frontocentral evoked response similar to error-related negativity, which has in turn been implicated in general performance monitoring. Furthermore, the amplitude of the evoked response is correlated with the reevaluation of the alternatives. We also found a link between individual neural dynamics (long-range temporal correlations) of the frontocentral cortices during rest and follow-up neural and behavioral effects of cognitive dissonance. Individuals with stronger resting-state long-range temporal correlations demonstrated a greater postdecisional reevaluation of the alternatives and larger evoked brain responses associated with stronger cognitive dissonance. Thus, our results suggest that cognitive dissonance is reflected in both resting-state and choice-related activity of the prefrontal cortex as part of the general performance-monitoring circuitry. SIGNIFICANCE STATEMENT Contrary to traditional decision theory, behavioral studies repeatedly demonstrate that our preferences are modulated by the mere act of choosing. Difficult choices generate psychological (cognitive) dissonance, which is reduced by the postdecisional devaluation of unchosen options. We found that decisions associated with a higher level of cognitive dissonance elicited a stronger negative frontocentral deflection that peaked ∼60 ms after the response. This activity shares similar spatial and temporal features as error-related negativity, the electrophysiological correlate of performance monitoring. Furthermore, the frontocentral resting

  18. Neural correlate of human reciprocity in social interactions

    Directory of Open Access Journals (Sweden)

    Shiro eSakaiya

    2013-12-01

    Full Text Available Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human and strategy (random, tit-for-tat in repeated prisoner’s dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate and theory of mind (ToM regions (i.e., ventromedial prefrontal cortex [VMPFC] and precuneus. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (deactivation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during

  19. Psychological and neural mechanisms of experimental extinction: a selective review.

    Science.gov (United States)

    Delamater, Andrew R; Westbrook, R Frederick

    2014-02-01

    The present review examines key psychological concepts in the study of experimental extinction and implications these have for an understanding of the underlying neurobiology of extinction learning. We suggest that many of the signature characteristics of extinction learning (spontaneous recovery, renewal, reinstatement, rapid reacquisition) can be accommodated by the standard associative learning theory assumption that extinction results in partial erasure of the original learning together with new inhibitory learning. Moreover, we consider recent behavioral and neural evidence that supports the partial erasure view of extinction, but also note shortcomings in our understanding of extinction circuits as these relate to the negative prediction error concept. Recent work suggests that common prediction error and stimulus-specific prediction error terms both may be required to explain neural plasticity both in acquisition and extinction learning. In addition, we suggest that many issues in the content of extinction learning have not been fully addressed in current research, but that neurobiological approaches should be especially helpful in addressing such issues. These include questions about the nature of extinction learning (excitatory CS-No US, inhibitory CS-US learning, occasion setting processes), especially as this relates to studies of the micro-circuitry of extinction, as well as its representational content (sensory, motivational, response). An additional understudied problem in extinction research is the role played by attention processes and their underlying neural networks, although some research and theory converge on the idea that extinction is accompanied by attention decrements (i.e., habituation-like processes). Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Neural correlate of human reciprocity in social interactions.

    Science.gov (United States)

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions.

  1. The neural crest and neural crest cells: discovery and significance ...

    Indian Academy of Sciences (India)

    In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of ...

  2. Generalized derivation of an exact relationship linking different coefficients that characterize thermodynamic effects of preferential interactions.

    Science.gov (United States)

    Anderson, Charles F; Felitsky, Daniel J; Hong, Jiang; Record, M Thomas

    2002-12-10

    In solutions consisting of solvent water (component '1') and two solute components ('2' and '3'), various thermodynamic effects of differences between solute-solute and solute-solvent interactions are quantitatively characterized by state functions commonly called 'preferential interaction coefficients': gamma(mu(1),mu(3)) triple bond (delta(m3)/delta(m2))(T,mu(1),mu(3)) and gamma(mu(k)) triple bond (delta(m3)/delta(m2))(T,P,mu(k)), where k = 1,2 or 3. These different derivatives are not all directly accessible to experimental determination, nor are they entirely equivalent for analyses and interpretations of thermodynamic and molecular effects of preferential interactions. Consequently, various practical and theoretical considerations arise when, for a given system, different kinds of preferential interaction coefficients have significantly different numerical values. Previously we derived the exact relationship linking all three coefficients of the type gamma(mu(k), and hence identified the physical origins of the differences between gamma(mu(1)) and gamma(mu(3)) that have been experimentally determined for each of various common biochemical solutes interacting with a protein [J. Phys. Chem. B, 106 (2002) 418-433]. Continuing our investigation of exact thermodynamic linkages among different types of preferential interaction coefficients, we present here a generalized derivation of the relationship linking gamma(mu(1),mu(3)), gamma(mu(3)) and gamma(mu(1)), with no restrictions on m(2), m(3) or any physical characteristic of either solute component (such as partial molar volume). Hence, we show that (gamma(mu(1),mu(3)) - gamma(mu(3))) is related directly to (gamma(mu(3)) - gamma(mu(1))), for which the physical determinants have been considered in detail previously, and to a factor dependent on the ratio of the partial molar volumes V3/V1. Our generalized expression also provides a basis for calculating gamma(mu(1),mu(3)), even in situations where preferential

  3. Preferential flow effects on transport and fate of chemicals and microorganisms in soils irrigated with wastewater

    Science.gov (United States)

    Puddu, Rita; Corrias, Roberto; Dessena, Maria Antonietta; Ferralis, Marcella; Marras, Gabriele; Pin, Paola; Spanu, Paola

    2010-05-01

    This work is part of a multidisciplinary research properly planned by the ENAS (Cagliari-Sardinia-Italy) to verify the consequences of urban wastewater reuse in irrigation practices on chemical, biological and hydrological behavior of agricultural soils of the Had as Soualem area (Morocco). The area consists of Fluventic Haploxerept soils, according to USDA Soil Taxonomy. Undisturbed large soil columns, 70 cm height and 20 cm diameter, were collected from plots, the locations of which were preliminarily individuated through a prior pedological study. The soils are characterized by an apparent structure, suggesting that preferential flow processes may occur in the study area, which may impact usable groundwater at depth. Wastewater reuse for irrigation simultaneously solves water shortage and wastewater disposal problems. Unfortunately, wastewaters generally contain high concentrations of suspended and dissolved solids, both organic and inorganic, and microbial contaminants (virus and bacteria) added to wastewater during domestic and industrial usage. Most of these contaminants are only partially removed during conventional sewage treatment so they remain in the irrigation water. Although adsorbing ions and microbes are relatively immobile within porous media, preferential flow and adsorption to mobile colloids can enhance their transport. There is limited knowledge regarding the role of preferential flow and colloidal transport on adsorbing contaminants. The main aim of this research is to determine the influence of preferential flow and colloids on wastewater contaminant transport. Leaching rates and arrival time of wastewater contaminants will be determined using field and laboratory measurements at the study sites in combination with preferential flow numerical modeling. To achieve these objectives the soil columns were analyzed for physical, chemical, and microbial characterization. At the laboratory, an experimental facility was set up and sensors for

  4. Evaluation of the interaction between plant roots and preferential flow paths

    Science.gov (United States)

    Zhang, Yinghu; Niu, Jianzhi; Zhang, Mingxiang; Xiao, Zixing; Zhu, Weili

    2017-04-01

    Introduction Preferential flow causing environmental issues by carrying contaminants to the groundwater resources level, occurs throughout the world. Soil water flow and solute transportation via preferential flow paths with little resistance could bypass soil matrix quickly. It is necessary to characterize preferential flow phenomenon because of its understanding of ecological functions of soil, including the degradation of topsoil, the low activity of soil microorganisms, the loss of soil nutrients, and the serious source of pollution of groundwater resources (Brevik et al., 2015; Singh et al., 2015). Studies on the interaction between plant roots and soil water flow in response to preferential flow is promising increasingly. However, it is complicated to evaluate soil hydrology when plant roots are associated with the mechanisms of soil water flow and solute transportation, especially preferential flow (Ola et al., 2015). Root channels formed by living/decayed plant roots and root-soil interfaces affect soil hydrology (Tracy et al., 2011). For example, Jørgensen et al. (2002) stated that soil water flow was more obvious in soil profiles with plant roots than in soil profiles without plant roots. The present study was conducted to investigate the interaction between plant roots and soil water flow in response to preferential flow in stony soils. Materials and methods Field experiments: field dye tracing experiments centered on experimental plants (S. japonica Linn, P. orientalis (L.) Franco, and Q. dentata Thunb) were conducted to characterize the root length density, preferential flow paths (stained areas), and soil matrix (unstained areas). Brilliant Blue FCF (C.I. Food Blue 2) as dye solution (50 L) was applied to the experimental plots. Laboratory analyses: undisturbed soil columns (7-cm diameter, 10 cm high) obtained from soil depths of 0-20, 20-40, and 40-60 cm, respectively, were conducted with breakthrough curves experiments under different conditions

  5. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  6. Deconvolution using a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  7. Using the dye tracer for visualization of preferential flow in macro and micro-scale

    Science.gov (United States)

    Kodesova, Radka; Nemecek, Karel; Kodes, Vit; Fer, Miroslav; Jirku, Veronika; Nikodem, Antonin; Zigova, Anna; Jaksik, Ondrej; Kocarek, Martin

    2010-05-01

    Study is focused on the visualization of the preferential flow in different soil types and their horizons using the dye tracer experiment. Study was performed in the Haplic Luvisol in Hněvčeves and the Haplic Cambisol in Humpolec in the Czech Republic. The 100 (Haplic Luvisol) and 50 (Haplic Cambisol) liters of solute of dye Brilliant Blue FCF (5g/litr) was infiltrated on a 1 x 1 m plot (applying an initial ponding depth of 10 and 5 cm, respectively) immediately after the wheat harvest. On the next day, one half of the plot was sliced horizontally and another half vertically to study the dye distribution within the soil profile to the depth of 100 cm (macro-scale). The 3-D image of the dye distribution was created. In addition, the thin soil sections were made and micromorphological images were used to study a soil aggregate structure and dye distribution in micro-scale. The staining patterns within the vertical and horizontal sections documented very different nature of the preferential flow in different soil types and also within the soil profiles. Images of the Haplic Luvisol showed that while dye tracer was partly regularly transported and only some isolated domains were visible in the surface Ap1 horizon, the preferential flow occurred in the subsurface horizons. The preferential flow in the upper subsurface Ap2 horizon (plow pan) was caused by the gravitational biopores in the very compact matrix structure, which considerably slowed down the dye transport. In the case of deeper horizons (Bt1 and Bt2), the preferential flow occurred due to the gravitational biopores and extensively developed prismatic structure (small and very large aggregates in the Bt1 and Bt2 horizon respectively), which was highly affected by clay coatings. Even better characterization of the preferential flow particularly in these two horizons was obtained, when the same ponding dye infiltration experiment was performed directly on the top of the Bt1 horizon. Images of the Haplic

  8. The role of heterogeneous lithology in a glaciofluvial deposit on unsaturated preferential flow – a numerical study

    Directory of Open Access Journals (Sweden)

    Ben Slimene Erij

    2017-09-01

    Full Text Available An understanding of preferential flow in the vadose zone is crucial for the prediction of the fate of pollutants. Infiltration basins, developed to mitigate the adverse effects of impervious surfaces in urban areas, are established above strongly heterogeneous and highly permeable deposits and thus are prone to preferential flow and enhanced pollutant transport. This study numerically investigates the establishment of preferential flow in an infiltration basin in the Lyon suburbs (France established over a highly heterogeneous glaciofluvial deposit covering much of the Lyon region. An investigation of the soil transect (13.5 m long and 2.5 m deep provided full characterization of lithology and hydraulic properties of present lithofacies. Numerical modeling with the HYDRUS-2D model of water flow in the transect was used to identify the effects of individual lithofacies that constitute the deposit. Multiple scenarios that considered different levels of heterogeneity were evaluated. Preferential flow was studied for several values of infiltration rates applied after a long dry period. The numerical study shows that the high contrast in hydraulic properties of different lithofacies triggers the establishment of preferential flow (capillary barriers and funneled flow. Preferential flow develops mainly for low water fluxes imposed at the surface. The role of individual lithofacies in triggering preferential flow depends on their shapes (layering versus inclusions and their sizes. While lenses and inclusions produce preferential flow pathways, the presence of the surface layer has no effect on the development of preferential flow and it only affects the effective hydraulic conductivity of the heterogeneous transect.

  9. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  10. Neural systems for control

    National Research Council Canada - National Science Library

    Omidvar, Omid; Elliott, David L

    1997-01-01

    ... is reprinted with permission from A. Barto, "Reinforcement Learning," Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.. The MIT Press, Cambridge, MA, pp. 804-809, 1995. Chapter 4, Figures 4-5 and 7-9 and Tables 2-5, are reprinted with permission, from S. Cho, "Map Formation in Proprioceptive Cortex," International Jour...

  11. Neural Tube Defects

    Science.gov (United States)

    ... pregnancies each year in the United States. A baby’s neural tube normally develops into the brain and spinal cord. ... fluid in the brain. This is called hydrocephalus. Babies with this condition are treated with surgery to insert a tube (called a shunt) into the brain. The shunt ...

  12. Response of neural reward regions to food cues in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Cascio Carissa J

    2012-05-01

    Full Text Available Abstract Background One hypothesis for the social deficits that characterize autism spectrum disorders (ASD is diminished neural reward response to social interaction and attachment. Prior research using established monetary reward paradigms as a test of non-social reward to compare with social reward may involve confounds in the ability of individuals with ASD to utilize symbolic representation of money and the abstraction required to interpret monetary gains. Thus, a useful addition to our understanding of neural reward circuitry in ASD includes a characterization of the neural response to primary rewards. Method We asked 17 children with ASD and 18 children without ASD to abstain from eating for at least four hours before an MRI scan in which they viewed images of high-calorie foods. We assessed the neural reward network for increases in the blood oxygenation level dependent (BOLD signal in response to the food images Results We found very similar patterns of increased BOLD signal to these images in the two groups; both groups showed increased BOLD signal in the bilateral amygdala, as well as in the nucleus accumbens, orbitofrontal cortex, and insula. Direct group comparisons revealed that the ASD group showed a stronger response to food cues in bilateral insula along the anterior-posterior gradient and in the anterior cingulate cortex than the control group, whereas there were no neural reward regions that showed higher activation for controls than for ASD. Conclusion These results suggest that neural response to primary rewards is not diminished but in fact shows an aberrant enhancement in children with ASD.

  13. CHD7 cooperates with PBAF to control multipotent neural crest formation

    Science.gov (United States)

    Bajpai, Ruchi; Chen, Denise A.; Rada-Iglesias, Alvaro; Zhang, Junmei; Xiong, Yiqin; Helms, Jill; Chang, Ching-Pin; Zhao, Yingming; Swigut, Tomek; Wysocka, Joanna

    2010-01-01

    Summary Heterozygous mutations in the gene encoding CHD7, an ATP-dependent chromatin remodeler result in a complex constellation of congenital anomalies called CHARGE syndrome. Here we show that in humans and in Xenopus, CHD7 is essential for the formation of multipotent migratory neural crest cells, a transient cell population that is ectodermal in origin, but undergoes a major gene expression reprogramming to acquire a remarkably broad differentiation potential and ability to migrate throughout the body to give rise to bones, cartilages, nerves, and cardiac structures. We demonstrate that CHD7 function is essential for activation of core components of neural crest transcriptional circuitry, including Sox9, Twist and Slug. Moreover, the major features of CHARGE are recapitulated in Xenopus embryo by the downregulation of CHD7 levels or overexpression of its catalytically inactive ATP-ase mutant. We further show that in human multipotent neural crest cells, CHD7 associates with a BRG1-containing complex PBAF, and both factors co-occupy a neural crest-specific distal SOX9 enhancer, as well as a novel genomic element located upstream from TWIST1 gene and marked by H3K4me1. Furthermore, in the embryo CHD7 and PBAF act synergistically to promote neural crest gene expression and cell migration. Our work identifies an evolutionary conserved role for CHD7 in orchestrating neural crest gene expression programs, provides insights into the synergistic regulation of distal genomic elements by two distinct chromatin remodelers, and illuminates the patho-embryology of CHARGE syndrome. PMID:20130577

  14. A low-cost dielectric spectroscopic system using metamaterial open horn-ring resonator-inspired BSF and detection circuitry

    Science.gov (United States)

    Kumari, Ratnesh; Patel, Piyush N.

    2016-07-01

    The sensitivity in a lower microwave band dielectric spectroscopic system is relatively less compared to that of millimeter wave and terahertz system. This work reports modeling and development of an epsilon-negative metamaterial resonator-inspired microwave band-stop filter as a prototype device and its detection circuitry for the spectroscopic analysis of dielectric samples in S-band. The device structure consists of a diamond-shaped patch with a complementary open split horn-ring resonator, fabricated on a Neltech substrate of relative permittivity ( ɛ r = 3.2). The measured transmission coefficient at 2.2 GHz and simulated result at 2.24 GHz demonstrate an excellent accuracy in the device fabrication. A low-cost connector-type microwave signal detection system was assembled for the real-time transduction of device signal into an equivalent DC voltage. Further, a single channel cavity developed using polydimethylsiloxane was placed over the resonator gap for analyzing the perturbation effect of electric field intensity on the resonance and circuit output DC level for different dielectric samples under test. The performed calibrations show linearity up to 82.5 % in the device response.

  15. Broadband wireless radio frequency power telemetry using a metamaterial resonator embedded with non-foster impedance circuitry

    Science.gov (United States)

    Fu, Guoqing; Sonkusale, Sameer

    2015-05-01

    Wireless powering of implantable biomedical devices and smart radio frequency identification (RFID) tags with very low profile antennas is desired. We propose a low profile electrically small antenna for near-field wireless power telemetry employing a metamaterial Split Ring Resonator (SRR) antenna. SRRs can be designed for operation over wide frequencies from RF to visible. However, they are inherently narrowband making them sensitive to component mismatch with respect to external transmit antenna. Here, we propose an embedding of a non-foster impedance circuitry into the metamaterial SRR structure that imparts conjugate negative complex impedance to this resonator antenna thereby increasing the effective bandwidth and thus overcoming the fundamental limit for efficient signal coupling. We demonstrate the concept through extensive numerical simulations and a prototype system at the board level using discrete off-the-shelf components and printed circuit SRR antenna at 500 MHz. We show that the power transfer between SRR receive antenna and the external transmit loop antenna is improved by more than 8 dB over a wide frequency band (from 525 MHz to 635 MHz), before and after non-foster circuit activation.

  16. A digitally controlled AGC loop circuitry for GNSS receiver chip with a binary weighted accurate dB-linear PGA

    Science.gov (United States)

    Gang, Jin; Yiqi, Zhuang; Yue, Yin; Miao, Cui

    2015-03-01

    A novel digitally controlled automatic gain control (AGC) loop circuitry for the global navigation satellite system (GNSS) receiver chip is presented. The entire AGC loop contains a programmable gain amplifier (PGA), an AGC circuit and an analog-to-digital converter (ADC), which is implemented in a 0.18 μm complementary metal-oxide-semiconductor (CMOS) process and measured. A binary-weighted approach is proposed in the PGA to achieve wide dB-linear gain control with small gain error. With binary-weighted cascaded amplifiers for coarse gain control, and parallel binary-weighted trans-conductance amplifier array for fine gain control, the PGA can provide a 64 dB dynamic range from -4 to 60 dB in 1.14 dB gain steps with a less than 0.15 dB gain error. Based on the Gaussian noise statistic characteristic of the GNSS signal, a digital AGC circuit is also proposed with low area and fast settling. The feed-backward AGC loop occupies an area of 0.27 mm2 and settles within less than 165 μs while consuming an average current of 1.92 mA at 1.8 V.

  17. Neural correlates of gratitude.

    Science.gov (United States)

    Fox, Glenn R; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2015-01-01

    Gratitude is an important aspect of human sociality, and is valued by religions and moral philosophies. It has been established that gratitude leads to benefits for both mental health and interpersonal relationships. It is thus important to elucidate the neurobiological correlates of gratitude, which are only now beginning to be investigated. To this end, we conducted an experiment during which we induced gratitude in participants while they underwent functional magnetic resonance imaging. We hypothesized that gratitude ratings would correlate with activity in brain regions associated with moral cognition, value judgment and theory of mind. The stimuli used to elicit gratitude were drawn from stories of survivors of the Holocaust, as many survivors report being sheltered by strangers or receiving lifesaving food and clothing, and having strong feelings of gratitude for such gifts. The participants were asked to place themselves in the context of the Holocaust and imagine what their own experience would feel like if they received such gifts. For each gift, they rated how grateful they felt. The results revealed that ratings of gratitude correlated with brain activity in the anterior cingulate cortex and medial prefrontal cortex, in support of our hypotheses. The results provide a window into the brain circuitry for moral cognition and positive emotion that accompanies the experience of benefitting from the goodwill of others.

  18. Neural Correlates of Gratitude

    Directory of Open Access Journals (Sweden)

    Glenn Ryan Fox

    2015-09-01

    Full Text Available Gratitude is an important aspect of human sociality, and is valued by religions and moral philosophies. It has been established that gratitude leads to benefits for both mental health and interpersonal relationships. It is thus important to elucidate the neurobiological correlates of gratitude, which are only now beginning to be investigated. To this end, we conducted an experiment during which we induced gratitude in participants while they underwent functional magnetic resonance imaging. We hypothesized that gratitude ratings would correlate with activity in brain regions associated with moral cognition, value judgment and theory of mind. The stimuli used to elicit gratitude were drawn from stories of survivors of the Holocaust, as many survivors report being sheltered by strangers or receiving lifesaving food and clothing, and having strong feelings of gratitude for such gifts. The participants were asked to place themselves in the context of the Holocaust and imagine what their own experience would feel like if they received such gifts. For each gift, they rated how grateful they felt. The results revealed that ratings of gratitude correlated with brain activity in the anterior cingulate cortex and medial prefrontal cortex, in support of our hypotheses. The results provide a window into the brain circuitry for moral cognition and positive emotion that accompanies the experience of benefitting from the goodwill of others.

  19. Understanding the role of speech production in reading: Evidence for a print-to-speech neural network using graphical analysis.

    Science.gov (United States)

    Cummine, Jacqueline; Cribben, Ivor; Luu, Connie; Kim, Esther; Bahktiari, Reyhaneh; Georgiou, George; Boliek, Carol A

    2016-05-01

    The neural circuitry associated with language processing is complex and dynamic. Graphical models are useful for studying complex neural networks as this method provides information about unique connectivity between regions within the context of the entire network of interest. Here, the authors explored the neural networks during covert reading to determine the role of feedforward and feedback loops in covert speech production. Brain activity of skilled adult readers was assessed in real word and pseudoword reading tasks with functional MRI (fMRI). The authors provide evidence for activity coherence in the feedforward system (inferior frontal gyrus-supplementary motor area) during real word reading and in the feedback system (supramarginal gyrus-precentral gyrus) during pseudoword reading. Graphical models provided evidence of an extensive, highly connected, neural network when individuals read real words that relied on coordination of the feedforward system. In contrast, when individuals read pseudowords the authors found a limited/restricted network that relied on coordination of the feedback system. Together, these results underscore the importance of considering multiple pathways and articulatory loops during language tasks and provide evidence for a print-to-speech neural network. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Effect of maternal rumination and disengagement during childhood on offspring neural response to reward in late adolescence.

    Science.gov (United States)

    Morgan, Judith K; Shaw, Daniel S; Jacobs, Rachel H; Romens, Sarah E; Sitnick, Stephanie L; Forbes, Erika E

    2017-04-30

    Maternal rumination is a cognitive-affective trait that could influence offspring's ability to respond flexibly to positive and negative events, depending on the quality of maternal problem-solving behaviors with which rumination co-occurs. As reward circuitry is sensitive to stressors and related to risk for depression, reward circuitry is an appropriate candidate mechanism for how maternal characteristics influence offspring. We evaluated the independent and combined effect of maternal rumination and disengagement on adolescent neural response to reward win and loss. Participants were 122 boys and their mothers from low-income, urban backgrounds followed prospectively in a longitudinal study. The combination of high maternal rumination at child age 6 and high maternal disengagement during problem-solving at child age 10-12 was associated with lower anterior cingulate response to winning reward at age 20, but unrelated to neural response to losing reward. Lower anterior cingulate response to winning reward was associated with fewer anxiety symptoms during late adulthood. Findings suggest that maternal rumination occurring within the context of maternal disengagement during challenging experiences may be related to offspring blunted engagement during positive events. Helping highly ruminative mothers to restructure repetitive negative thoughts and to develop context-appropriate problem-solving behaviors may be important for promoting offspring affective development. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  1. Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility.

    Science.gov (United States)

    de Boer, Sietse F; Buwalda, Bauke; Koolhaas, Jaap M

    2017-03-01

    Considerable individual differences exist in trait-like patterns of behavioral and physiological responses to salient environmental challenges. This individual variation in stress coping styles has an important functional role in terms of health and fitness. Hence, understanding the neural embedding of coping style variation is fundamental for biobehavioral neurosciences in probing individual disease susceptibility. This review outlines individual differences in trait-aggressiveness as an adaptive component of the natural sociobiology of rats and mice, and highlights that these reflect the general style of coping that varies from proactive (aggressive) to reactive (docile). We propose that this qualitative coping style can be disentangled into multiple quantitative behavioral domains, e.g., flexibility/impulse control, emotional reactivity and harm avoidance/reward processing, that each are encoded into selective neural circuitries. Since functioning of all these brain circuitries rely on fine-tuned serotonin signaling, autoinhibitory control mechanisms of serotonergic neuron (re)activity are crucial in orchestrating general coping style. Untangling the precise neuromolecular mechanisms of different coping styles will provide a roadmap for developing better therapeutic strategies of stress-related diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Preferential attention towards the eye-region amongst individuals with insomnia.

    Science.gov (United States)

    Akram, Umair; Ellis, Jason G; Myachykov, Andriy; Barclay, Nicola L

    2017-02-01

    People with insomnia often perceive their own facial appearance as more tired compared with the appearance of others. Evidence also highlights the eye-region in projecting tiredness cues to perceivers, and tiredness judgements often rely on preferential attention towards this region. Using a novel eye-tracking paradigm, this study examined: (i) whether individuals with insomnia display preferential attention towards the eye-region, relative to nose and mouth regions, whilst observing faces compared with normal-sleepers; and (ii) whether an attentional bias towards the eye-region amongst individuals with insomnia is self-specific or general in nature. Twenty individuals with DSM-5 Insomnia Disorder and 20 normal-sleepers viewed 48 neutral facial photographs (24 of themselves, 24 of other people) for periods of 4000 ms. Eye movements were recorded using eye-tracking, and first fixation onset, first fixation duration and total gaze duration were examined for three interest-regions (eyes, nose, mouth). Significant group × interest-region interactions indicated that, regardless of the face presented, participants with insomnia were quicker to attend to, and spent more time observing, the eye-region relative to the nose and mouth regions compared with normal-sleepers. However, no group × face × interest-region interactions were established. Thus, whilst individuals with insomnia displayed preferential attention towards the eye-region in general, this effect was not accentuated during self-perception. Insomnia appears to be characterized by a general, rather than self-specific, attentional bias towards the eye-region. These findings contribute to our understanding of face perception in insomnia, and provide tentative support for cognitive models of insomnia demonstrating that individuals with insomnia monitor faces in general, with a specific focus around the eye-region, for cues associated with tiredness. © 2016 European Sleep Research Society.

  3. Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils

    Directory of Open Access Journals (Sweden)

    Henry Lin

    2009-07-01

    Full Text Available Ecohydrology and hydropedology are two emerging fields that are interconnected. In this study, we demonstrate stemflow hydrology and preferential water flow along roots in two desert shrubs (H. scoparium and S. psammophila in the south fringe of Mu Us sandy land in North China. Stemflow generation and subsequent movement within soil-root system were investigated during the growing seasons from 2006 to 2008. The results indicated that the amount of stemflow in H. scoparium averaged 3.4% of incident gross rainfall with a range of 2.3–7.0%, while in S. psammophila stemflow averaged 6.3% with a range of 0.2–14.2%. Stemflow was produced from rainfall events with total amount more than 1 mm for both shrubs. The average funneling ratio (the ratio of rainfall amount delivered to the base of the tree to the rainfall that would have reached the ground should the tree were not present was 77.8 and 48.7 for H. scoparium and S. psammophila, respectively, indicating that branches and stems were fully contributing to stemflow generation and thereby provided sources of water for possible preferential flow into deeper soil layer. Analysis of Rhodamine-B dye distribution under the shrubs showed that root channels were preferential pathways for the movement of most stemflow water into the soil. Distribution of soil water content under the shrubs with and without stemflow ascertained that stemflow was conducive to concentrate and store water in deeper layers in the soil profiles, which may create favorable soil water conditions for plant growth under arid conditions. Accordingly, a clear linkage between aboveground ecohydrology and belowground hydropedology in the desert shrubs is worth noticing, whereby an increase in stemflow would result in an increase in soil hydrologic heterogeneity.

  4. Zebularine induces replication-dependent double-strand breaks which are preferentially repaired by homologous recombination.

    Science.gov (United States)

    Orta, Manuel Luis; Pastor, Nuria; Burgos-Morón, Estefanía; Domínguez, Inmaculada; Calderón-Montaño, José Manuel; Huertas Castaño, Carlos; López-Lázaro, Miguel; Helleday, Thomas; Mateos, Santiago

    2017-09-01

    Zebularine is a second-generation, highly stable hydrophilic inhibitor of DNA methylation with oral bioavailability that preferentially target cancer cells. It acts primarily as a trap for DNA methyl transferases (DNMTs) protein by forming covalent complexes between DNMT protein and zebularine-substrate DNA. It's well documented that replication-blocking DNA lesions can cause replication fork collapse and thereby to the formation of DNA double-strand breaks (DSB). DSB are dangerous lesions that can lead to potentially oncogenic genomic rearrangements or cell death. The two major pathways for repair of DSB are non-homologous end joining (NHEJ) and homologous recombination (HR). Recently, multiple functions for the HR machinery have been identified at arrested forks. Here we investigate in more detail the importance of the lesions induced by zebularine in terms of DNA damage and cytotoxicity as well as the role of HR in the repair of these lesions. When we examined the contribution of NHEJ and HR in the repair of DSB induced by zebularine we found that these breaks were preferentially repaired by HR. Also we show that the production of DSB is dependent on active replication. To test this, we determined chromosome damage by zebularine while transiently inhibiting DNA synthesis. Here we report that cells deficient in single-strand break (SSB) repair are hypersensitive to zebularine. We have observed more DSB induced by zebularine in XRCC1 deficient cells, likely to be the result of conversion of SSB into toxic DSB when encountered by a replication fork. Furthermore we demonstrate that HR is required for the repair of these breaks. Overall, our data suggest that zebularine induces replication-dependent DSB which are preferentially repaired by HR. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases

    Directory of Open Access Journals (Sweden)

    A. Mishra

    2011-05-01

    Full Text Available In this review, recent works on the preferential oxidation of carbon monoxide in hydrogen rich gases for fuel cell applications are summarized. H2 is used as a fuel for polymer-electrolyte membrane fuel cell (PEMFC. It is produced by reforming of natural gas or liquid fuels followed by water gas shift reaction. The produced gas consists of H2, CO, and CO2. In which CO content is around 1%, which is highly poisonous for the Pt anode of the PEMFC so that further removal of CO is needed. Catalytic preferential oxidation of CO (CO-PROX is one of the most suitable methods of purification of H2 because of high CO conversion rate at low temperature range, which is preferable for PEMFC operating conditions. Catalysts used for COPROX are mainly noble metal based; gold based and base metal oxide catalysts among them Copper-Ceria based catalysts are the most appropriate due to its low cost, easy availability and result obtained by these catalysts are comparable with the conventional noble metal catalysts. Copyright © 2011 BCREC UNDIP. All rights reserved(Received: 22nd October 2010, Revised: 12nd January 2011, Accepted: 19th January 2011[How to Cite: A. Mishra, R. Prasad. (2011. A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (1: 1-14. doi:10.9767/bcrec.6.1.191.1-14][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.191.1-14 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/191] | View in 

  6. Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths

    Science.gov (United States)

    Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.

    2011-01-01

    This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.

  7. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [Max Planck Institute for Intelligent Systems (formerly MPI for Metals Research), Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Han, Y.S. [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China); Wang, J.Y., E-mail: wangjy@stu.edu.cn [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063 Guangdong (China)

    2017-07-15

    Highlights: • Interfacial depth resolution from MRI model depends on sputtering rate differences. • Depth resolution critically depends on the dominance of roughness or atomic mixing. • True (depth scale) and apparent (time scale) depth resolutions are different. • Average sputtering rate approximately yields true from apparent depth resolution. • Profiles by SIMS and XPS are different but similar to surface concentrations. - Abstract: The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16–84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16–84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  8. A coevolving model based on preferential triadic closure for social media networks.

    Science.gov (United States)

    Li, Menghui; Zou, Hailin; Guan, Shuguang; Gong, Xiaofeng; Li, Kun; Di, Zengru; Lai, Choy-Heng

    2013-01-01

    The dynamical origin of complex networks, i.e., the underlying principles governing network evolution, is a crucial issue in network study. In this paper, by carrying out analysis to the temporal data of Flickr and Epinions-two typical social media networks, we found that the dynamical pattern in neighborhood, especially the formation of triadic links, plays a dominant role in the evolution of networks. We thus proposed a coevolving dynamical model for such networks, in which the evolution is only driven by the local dynamics-the preferential triadic closure. Numerical experiments verified that the model can reproduce global properties which are qualitatively consistent with the empirical observations.

  9. The TPP and its Relation with Regional and Preferential Agreements in Latin America

    OpenAIRE

    Polanco, Rodrigo Javier

    2016-01-01

    The goal of this paper is to study the impact that the Trans-Pacific Partnership Agreement (TPP) may have on regional and preferential trade agreements (PTAs) in Latin America. If we understand TPP as an ordering project operating both on a mega-regional scale and at a regional dimension, this research examine the influence of TPP wording and commitments on TPP negotiating countries in Latin America (Chile, Mexico and Peru), and on other countries that are not part of the TPP negotiation, inc...

  10. Preferential attachment of communities: The same principle, but a higher level

    Science.gov (United States)

    Pollner, P.; Palla, G.; Vicsek, T.

    2006-02-01

    The graph of communities is a network emerging above the level of individual nodes in the hierarchical organisation of a complex system. In this graph the nodes correspond to communities (highly interconnected subgraphs, also called modules or clusters), and the links refer to members shared by two communities. Our analysis indicates that the development of this modular structure is driven by preferential attachment, in complete analogy with the growth of the underlying network of nodes. We study how the links between communities are born in a growing co-authorship network, and introduce a simple model for the dynamics of overlapping communities.

  11. Identification of Preferential Groundwater Flow Pathways from Local Tracer Breakthrough Curves

    Science.gov (United States)

    Kokkinaki, A.; Sleep, B. E.; Dearden, R.; Wealthall, G.

    2009-12-01

    Characterizing preferential groundwater flow paths in the subsurface is a key factor in the design of in situ remediation technologies. When applying reaction-based remediation methods, such as enhanced bioremediation, preferential flow paths result in fast solute migration and potentially ineffective delivery of reactants, thereby adversely affecting treatment efficiency. The presence of such subsurface conduits was observed at the SABRe (Source Area Bioremediation) research site. Non-uniform migration of contaminants and electron donor during the field trials of enhanced bioremediation supported this observation. To better determine the spatial flow field of the heterogeneous aquifer, a conservative tracer test was conducted. Breakthrough curves were obtained at a reference plane perpendicular to the principal groundwater flow direction. The resulting dataset was analyzed using three different methods: peak arrival times, analytical solution fitting and moment analysis. Interpretation using the peak arrival time method indicated areas of fast plume migration. However, some of the high velocities are supported by single data points, thus adding considerable uncertainty to the estimated velocity distribution. Observation of complete breakthrough curves indicated different types of solute breakthrough, corresponding to different transport mechanisms. Sharp peaks corresponded to high conductivity preferential flow pathways, whereas more dispersed breakthrough curves with long tails were characteristic of significant dispersive mixing and dilution. While analytical solutions adequately quantified flow characteristics for the first type of curves, they failed to do so for the second type, in which case they gave unrealistic results. Therefore, a temporal moment analysis was performed to obtain complete spatial distributions of mass recovery, velocity and dispersivity. Though the results of moment analysis qualitatively agreed with the results of previous methods, more

  12. Nonlinear preferential rewiring in fixed-size networks as a diffusion process.

    Science.gov (United States)

    Johnson, Samuel; Torres, Joaquín J; Marro, Joaquín

    2009-05-01

    We present an evolving network model in which the total numbers of nodes and edges are conserved, but in which edges are continuously rewired according to nonlinear preferential detachment and reattachment. Assuming power-law kernels with exponents alpha and beta , the stationary states which the degree distributions evolve toward exhibit a second-order phase transition-from relatively homogeneous to highly heterogeneous (with the emergence of starlike structures) at alpha=beta . Temporal evolution of the distribution in this critical regime is shown to follow a nonlinear diffusion equation, arriving at either pure or mixed power laws of exponents -alpha and 1-alpha .

  13. Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis

    Science.gov (United States)

    Sasidharan, Abhilash; Chandran, Parwathy; Menon, Deepthy; Raman, Sreerekha; Nair, Shantikumar; Koyakutty, Manzoor

    2011-09-01

    The microenvironment of cancer plays a very critical role in the survival, proliferation and drug resistance of solid tumors. Here, we report an interesting, acidic cancer microenvironment-mediated dissolution-induced preferential toxicity of ZnO nanocrystals (NCs) against cancer cells while leaving primary cells unaffected. Irrespective of the size-scale (5 and 200 nm) and surface chemistry differences (silica, starch or polyethylene glycol coating), ZnO NCs exhibited multiple stress mechanisms against cancer cell lines (IC50 ~150 μM) while normal human primary cells (human dermal fibroblast, lymphocytes, human umbilical vein endothelial cells) remain less affected. Flow cytometry and confocal microscopy studies revealed that ZnO NCs undergo rapid preferential dissolution in acidic (pH ~5-6) cancer microenvironment causing elevated ROS stress, mitochondrial superoxide formation, depolarization of mitochondrial membrane, and cell cycle arrest at S/G2 phase leading to apoptosis. In effect, by elucidating the unique toxicity mechanism of ZnO NCs, we show that ZnO NCs can destabilize cancer cells by utilizing its own hostile acidic microenvironment, which is otherwise critical for its survival.The microenvironment of cancer plays a very critical role in the survival, proliferation and drug resistance of solid tumors. Here, we report an interesting, acidic cancer microenvironment-mediated dissolution-induced preferential toxicity of ZnO nanocrystals (NCs) against cancer cells while leaving primary cells unaffected. Irrespective of the size-scale (5 and 200 nm) and surface chemistry differences (silica, starch or polyethylene glycol coating), ZnO NCs exhibited multiple stress mechanisms against cancer cell lines (IC50 ~150 μM) while normal human primary cells (human dermal fibroblast, lymphocytes, human umbilical vein endothelial cells) remain less affected. Flow cytometry and confocal microscopy studies revealed that ZnO NCs undergo rapid preferential dissolution in

  14. Preferential Solvation of Lithium Cations and Impacts on Oxygen Reduction in Lithium-Air Batteries.

    Science.gov (United States)

    Zheng, Dong; Qu, Deyu; Yang, Xiao-Qing; Lee, Hung-Sui; Qu, Deyang

    2015-09-16

    The solvation of Li+ with 11 nonaqueous solvents commonly used as electrolytes for lithium batteries was studied. The solvation preferences of different solvents were compared by means of electrospray mass spectrometry and collision-induced dissociation. The relative strength of the solvent for the solvation of Li+ was determined. The Lewis acidity of the solvated Li+ cations was determined by the preferential solvation of the solvent in the solvation shell. The kinetics of the catalytic disproportionation of the O2•- depends on the relative Lewis acidity of the solvated Li+ ion. The impact of the solvated Li+ cation on the O2 redox reaction was also investigated.

  15. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of CT Number-Derived Matrix Density on Preferential Flow 1 and Transport in a Macroporous Agricultural Soil

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Moldrup, Per; Lamandé, Mathieu

    2015-01-01

    Preferential flow and transport in structured soils can be intimately linked to numerous environmental problems. Surface-applied chemicals are susceptible to rapid transport in structural soil pores to deeper depths, thereby potentially contaminating valuable environmental resources and posing ri...

  17. α-chymotrypsin in water-acetone and water-dimethyl sulfoxide mixtures: Effect of preferential solvation and hydration.

    Science.gov (United States)

    Sirotkin, Vladimir A; Kuchierskaya, Alexandra A

    2017-10-01

    We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α-chymotrypsin with water-acetone (moderate-strength H-bond acceptor) and water-DMSO (strong H-bond acceptor) mixtures. There are three concentration regimes for the dried α-chymotrypsin. α-Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α-chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water-poor acetone is ∼80%, compared with that observed after incubation in pure water. This effect is very small for the water-poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α-chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α-chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α-chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein-water-organic solvent systems. © 2017 Wiley Periodicals, Inc.

  18. Behavioral and neural correlates of delay of gratification 40 years later.

    Science.gov (United States)

    Casey, B J; Somerville, Leah H; Gotlib, Ian H; Ayduk, Ozlem; Franklin, Nicholas T; Askren, Mary K; Jonides, John; Berman, Marc G; Wilson, Nicole L; Teslovich, Theresa; Glover, Gary; Zayas, Vivian; Mischel, Walter; Shoda, Yuichi

    2011-09-06

    We examined the neural basis of self-regulation in individuals from a cohort of preschoolers who performed the delay-of-gratification task 4 decades ago. Nearly 60 individuals, now in their mid-forties, were tested on "hot" and "cool" versions of a go/nogo task to assess whether delay of gratification in childhood predicts impulse control abilities and sensitivity to alluring cues (happy faces). Individuals who were less able to delay gratification in preschool and consistently showed low self-control abilities in their twenties and thirties performed more poorly than did high delayers when having to suppress a response to a happy face but not to a neutral or fearful face. This finding suggests that sensitivity to environmental hot cues plays a significant role in individuals' ability to suppress actions toward such stimuli. A subset of these participants (n = 26) underwent functional imaging for the first time to test for biased recruitment of frontostriatal circuitry when required to suppress responses to alluring cues. Whereas the prefrontal cortex differentiated between nogo and go trials to a greater extent in high delayers, the ventral striatum showed exaggerated recruitment in low delayers. Thus, resistance to temptation as measured originally by the delay-of-gratification task is a relatively stable individual difference that predicts reliable biases in frontostriatal circuitries that integrate motivational and control processes.

  19. Distinct neural bases of disruptive behavior and autism symptom severity in boys with autism spectrum disorder.

    Science.gov (United States)

    Yang, Y J Daniel; Sukhodolsky, Denis G; Lei, Jiedi; Dayan, Eran; Pelphrey, Kevin A; Ventola, Pamela

    2017-01-01

    Disruptive behavior in autism spectrum disorder (ASD) is an important clinical problem, but its neural basis remains poorly understood. The current research aims to better understand the neural underpinnings of disruptive behavior in ASD, while addressing whether the neural basis is shared with or separable from that of core ASD symptoms. Participants consisted of 48 male children and adolescents: 31 ASD (7 had high disruptive behavior) and 17 typically developing (TD) controls, well-matched on sex, age, and IQ. For ASD participants, autism symptom severity, disruptive behavior, anxiety symptoms, and ADHD symptoms were measured. All participants were scanned while viewing biological motion (BIO) and scrambled motion (SCR). Two fMRI contrasts were analyzed: social perception (BIO > SCR) and Default Mode Network (DMN) deactivation (fixation > BIO). Age and IQ were included as covariates of no interest in all analyses. First, the between-group analyses on BIO > SCR showed that ASD is characterized by hypoactivation in the social perception circuitry, and ASD with high or low disruptive behavior exhibited similar patterns of hypoactivation. Second, the between-group analyses on fixation > BIO showed that ASD with high disruptive behavior exhibited more restricted and less DMN deactivation, when compared to ASD with low disruptive behavior or TD. Third, the within-ASD analyses showed that (a) autism symptom severity (but not disruptive behavior) was uniquely associated with less activation in the social perception regions including the posterior superior temporal sulcus and inferior frontal gyrus; (b) disruptive behavior (but not autism symptom severity) was uniquely associated with less DMN deactivation in the medial prefrontal cortex (MPFC) and lateral parietal cortex; and (c) anxiety symptoms mediated the link between disruptive behavior and less DMN deactivation in both anterior cingulate cortex (ACC) and MPFC, while ADHD symptoms mediated the link

  20. Pre-encoding administration of amphetamine or THC preferentially modulates emotional memory in humans

    Science.gov (United States)

    Ballard, Michael E.; Gallo, David A.; de Wit, Harriet

    2012-01-01

    Rationale Many addictive drugs are known to have effects on learning and memory, and these effects could motivate future drug use. Specifically, addictive drugs may affect memory of emotional events and experiences in ways that are attractive to some users. However, few studies have investigated the effects of addictive drugs on emotional memory in humans. Objectives This study examined the effects of the memory-enhancing drug dextroamphetamine (AMP) and the memory-impairing drug Δ9-tetrahydrocannabinol (THC) on emotional memory in healthy volunteers. Methods Participants completed three experimental sessions across which they received capsules containing placebo and two doses of either AMP (10 and 20 mg; N=25) or THC (7.5 and 15 mg; N=25) before viewing pictures of positive (pleasant), neutral, and negative (unpleasant) scenes. Memory for the pictures was assessed two days later, under drug-free conditions. Results Relative to placebo, memory for emotional pictures was improved by AMP and impaired by THC, but neither drug significantly affected memory for unemotional pictures. Positive memory biases were not observed with either drug, and there was no indication that the drugs’ memory effects were directly related to their subjective or physiological effects alone. Conclusions This study provides the first clear evidence that stimulant drugs can preferentially strengthen, and cannabinoids can preferentially impair, memory for emotional events in humans. Although addictive drugs do not appear to positively bias memory, the possibility remains that these drugs’ effects on emotional memory could influence drug use among certain individuals. PMID:23224510