WorldWideScience

Sample records for neural activation patterns

  1. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  2. Activity patterns of cultured neural networks on micro electrode arrays

    NARCIS (Netherlands)

    Rutten, Wim; van Pelt, J.

    2001-01-01

    A hybrid neuro-electronic interface is a cell-cultured micro electrode array, acting as a neural information transducer for stimulation and/or recording of neural activity in the brain or the spinal cord (ventral motor region or dorsal sensory region). It consists of an array of micro electrodes on

  3. Cultured Neural Networks: Optimization of Patterned Network Adhesiveness and Characterization of their Neural Activity

    Directory of Open Access Journals (Sweden)

    W. L. C. Rutten

    2006-01-01

    Full Text Available One type of future, improved neural interface is the “cultured probe”. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA on a planar substrate, each electrode being covered and surrounded by a local circularly confined network (“island” of cultured neurons. The main purpose of the local networks is that they act as biofriendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron–electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this paper, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to “islands” surrounding an electrode site. Additional coating of neurophobic, polyimide-coated substrate by triblock-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular “island” networks. For connected islands, the larger the island diameter (50, 100 or 150 μm, the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV, which is two weeks later than in unpatterned networks.

  4. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  5. Sociocultural patterning of neural activity during self-reflection.

    Science.gov (United States)

    Ma, Yina; Bang, Dan; Wang, Chenbo; Allen, Micah; Frith, Chris; Roepstorff, Andreas; Han, Shihui

    2014-01-01

    Western cultures encourage self-construals independent of social contexts, whereas East Asian cultures foster interdependent self-construals that rely on how others perceive the self. How are culturally specific self-construals mediated by the human brain? Using functional magnetic resonance imaging, we monitored neural responses from adults in East Asian (Chinese) and Western (Danish) cultural contexts during judgments of social, mental and physical attributes of themselves and public figures to assess cultural influences on self-referential processing of personal attributes in different dimensions. We found that judgments of self vs a public figure elicited greater activation in the medial prefrontal cortex (mPFC) in Danish than in Chinese participants regardless of attribute dimensions for judgments. However, self-judgments of social attributes induced greater activity in the temporoparietal junction (TPJ) in Chinese than in Danish participants. Moreover, the group difference in TPJ activity was mediated by a measure of a cultural value (i.e. interdependence of self-construal). Our findings suggest that individuals in different sociocultural contexts may learn and/or adopt distinct strategies for self-reflection by changing the weight of the mPFC and TPJ in the social brain network.

  6. Neural signatures of attention: insights from decoding population activity patterns.

    Science.gov (United States)

    Sapountzis, Panagiotis; Gregoriou, Georgia G

    2018-01-01

    Understanding brain function and the computations that individual neurons and neuronal ensembles carry out during cognitive functions is one of the biggest challenges in neuroscientific research. To this end, invasive electrophysiological studies have provided important insights by recording the activity of single neurons in behaving animals. To average out noise, responses are typically averaged across repetitions and across neurons that are usually recorded on different days. However, the brain makes decisions on short time scales based on limited exposure to sensory stimulation by interpreting responses of populations of neurons on a moment to moment basis. Recent studies have employed machine-learning algorithms in attention and other cognitive tasks to decode the information content of distributed activity patterns across neuronal ensembles on a single trial basis. Here, we review results from studies that have used pattern-classification decoding approaches to explore the population representation of cognitive functions. These studies have offered significant insights into population coding mechanisms. Moreover, we discuss how such advances can aid the development of cognitive brain-computer interfaces.

  7. Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation.

    Science.gov (United States)

    Anderson, Andrew James; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Aguilar, Mario; Wang, Xixi; Doko, Donias; Raizada, Rajeev D S

    2017-09-01

    We introduce an approach that predicts neural representations of word meanings contained in sentences then superposes these to predict neural representations of new sentences. A neurobiological semantic model based on sensory, motor, social, emotional, and cognitive attributes was used as a foundation to define semantic content. Previous studies have predominantly predicted neural patterns for isolated words, using models that lack neurobiological interpretation. Fourteen participants read 240 sentences describing everyday situations while undergoing fMRI. To connect sentence-level fMRI activation patterns to the word-level semantic model, we devised methods to decompose the fMRI data into individual words. Activation patterns associated with each attribute in the model were then estimated using multiple-regression. This enabled synthesis of activation patterns for trained and new words, which were subsequently averaged to predict new sentences. Region-of-interest analyses revealed that prediction accuracy was highest using voxels in the left temporal and inferior parietal cortex, although a broad range of regions returned statistically significant results, showing that semantic information is widely distributed across the brain. The results show how a neurobiologically motivated semantic model can decompose sentence-level fMRI data into activation features for component words, which can be recombined to predict activation patterns for new sentences. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Sociocultural patterning of neural activity during self-reflection

    DEFF Research Database (Denmark)

    Ma, Yina; Bang, Dan; Wang, Chenbo

    2014-01-01

    ) in Chinese than in Danish participants. Moreover, the group difference in TPJ activity was mediated by a measure of a cultural value (i.e., interdependence of self-construal). Our findings suggest that individuals in different sociocultural contexts may learn and/or adopt distinct strategies for self-reflection...

  9. Theories of Person Perception Predict Patterns of Neural Activity During Mentalizing.

    Science.gov (United States)

    Thornton, Mark A; Mitchell, Jason P

    2017-08-22

    Social life requires making inferences about other people. What information do perceivers spontaneously draw upon to make such inferences? Here, we test 4 major theories of person perception, and 1 synthetic theory that combines their features, to determine whether the dimensions of such theories can serve as bases for describing patterns of neural activity during mentalizing. While undergoing functional magnetic resonance imaging, participants made social judgments about well-known public figures. Patterns of brain activity were then predicted using feature encoding models that represented target people's positions on theoretical dimensions such as warmth and competence. All 5 theories of person perception proved highly accurate at reconstructing activity patterns, indicating that each could describe the informational basis of mentalizing. Cross-validation indicated that the theories robustly generalized across both targets and participants. The synthetic theory consistently attained the best performance-approximately two-thirds of noise ceiling accuracy--indicating that, in combination, the theories considered here can account for much of the neural representation of other people. Moreover, encoding models trained on the present data could reconstruct patterns of activity associated with mental state representations in independent data, suggesting the use of a common neural code to represent others' traits and states. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Subthalamic Neural Activity Patterns Anticipate Economic Risk Decisions in Gambling

    Science.gov (United States)

    Rosa, M.; Carpaneto, J.; Priori, A.

    2018-01-01

    Abstract Economic decision-making is disrupted in individuals with gambling disorder, an addictive behavior observed in Parkinson’s disease (PD) patients receiving dopaminergic therapy. The subthalamic nucleus (STN) is involved in the inhibition of impulsive behaviors; however, its role in impulse control disorders and addiction is still unclear. Here, we recorded STN local field potentials (LFPs) in PD patients with and without gambling disorder during an economic decision-making task. Reaction times analysis showed that for all patients, the decision whether to risk preceded task onset. We compared then for both groups the STN LFP preceding high- and low-risk economic decisions. We found that risk avoidance in gamblers correlated with larger STN LFP low-frequency (gambling disorder were instead not correlated with pretask STN LFP. Our results suggest that STN activity preceding task onset affects risk decisions by preemptively inhibiting attraction to high but unlikely rewards in favor of a long-term payoff. PMID:29445770

  11. Subthalamic Neural Activity Patterns Anticipate Economic Risk Decisions in Gambling.

    Science.gov (United States)

    Mazzoni, A; Rosa, M; Carpaneto, J; Romito, L M; Priori, A; Micera, S

    2018-01-01

    Economic decision-making is disrupted in individuals with gambling disorder, an addictive behavior observed in Parkinson's disease (PD) patients receiving dopaminergic therapy. The subthalamic nucleus (STN) is involved in the inhibition of impulsive behaviors; however, its role in impulse control disorders and addiction is still unclear. Here, we recorded STN local field potentials (LFPs) in PD patients with and without gambling disorder during an economic decision-making task. Reaction times analysis showed that for all patients, the decision whether to risk preceded task onset. We compared then for both groups the STN LFP preceding high- and low-risk economic decisions. We found that risk avoidance in gamblers correlated with larger STN LFP low-frequency (gambling disorder were instead not correlated with pretask STN LFP. Our results suggest that STN activity preceding task onset affects risk decisions by preemptively inhibiting attraction to high but unlikely rewards in favor of a long-term payoff.

  12. Similar patterns of neural activity predict memory function during encoding and retrieval.

    Science.gov (United States)

    Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J

    2017-07-15

    Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Recognition of neural brain activity patterns correlated with complex motor activity

    Science.gov (United States)

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  14. Acute stress evokes sexually dimorphic, stressor-specific patterns of neural activation across multiple limbic brain regions in adult rats.

    Science.gov (United States)

    Sood, Ankit; Chaudhari, Karina; Vaidya, Vidita A

    2018-03-01

    Stress enhances the risk for psychiatric disorders such as anxiety and depression. Stress responses vary across sex and may underlie the heightened vulnerability to psychopathology in females. Here, we examined the influence of acute immobilization stress (AIS) and a two-day short-term forced swim stress (FS) on neural activation in multiple cortical and subcortical brain regions, implicated as targets of stress and in the regulation of neuroendocrine stress responses, in male and female rats using Fos as a neural activity marker. AIS evoked a sex-dependent pattern of neural activation within the cingulate and infralimbic subdivisions of the medial prefrontal cortex (mPFC), lateral septum (LS), habenula, and hippocampal subfields. The degree of neural activation in the mPFC, LS, and habenula was higher in males. Female rats exhibited reduced Fos positive cell numbers in the dentate gyrus hippocampal subfield, an effect not observed in males. We addressed whether the sexually dimorphic neural activation pattern noted following AIS was also observed with the short-term stress of FS. In the paraventricular nucleus of the hypothalamus and the amygdala, FS similar to AIS resulted in robust increases in neural activation in both sexes. The pattern of neural activation evoked by FS was distinct across sexes, with a heightened neural activation noted in the prelimbic mPFC subdivision and hippocampal subfields in females and differed from the pattern noted with AIS. This indicates that the sex differences in neural activation patterns observed within stress-responsive brain regions are dependent on the nature of stressor experience.

  15. Linking dynamic patterns of neural activity in orbitofrontal cortex with decision making.

    Science.gov (United States)

    Rich, Erin L; Stoll, Frederic M; Rudebeck, Peter H

    2018-04-01

    Humans and animals demonstrate extraordinary flexibility in choice behavior, particularly when deciding based on subjective preferences. We evaluate options on different scales, deliberate, and often change our minds. Little is known about the neural mechanisms that underlie these dynamic aspects of decision-making, although neural activity in orbitofrontal cortex (OFC) likely plays a central role. Recent evidence from studies in macaques shows that attention modulates value responses in OFC, and that ensembles of OFC neurons dynamically signal different options during choices. When contexts change, these ensembles flexibly remap to encode the new task. Determining how these dynamic patterns emerge and relate to choices will inform models of decision-making and OFC function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The BDNF Val66Met Polymorphism Influences Reading Ability and Patterns of Neural Activation in Children.

    Directory of Open Access Journals (Sweden)

    Kaja K Jasińska

    Full Text Available Understanding how genes impact the brain's functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265 is associated with children's (age 6-10 neural activation patterns during a reading task (n = 81 using functional magnetic resonance imaging (fMRI, genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading-related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes.

  17. The BDNF Val66Met Polymorphism Influences Reading Ability and Patterns of Neural Activation in Children.

    Science.gov (United States)

    Jasińska, Kaja K; Molfese, Peter J; Kornilov, Sergey A; Mencl, W Einar; Frost, Stephen J; Lee, Maria; Pugh, Kenneth R; Grigorenko, Elena L; Landi, Nicole

    2016-01-01

    Understanding how genes impact the brain's functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children's (age 6-10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading-related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes.

  18. BDNFval66met affects neural activation pattern during fear conditioning and 24 h delayed fear recall.

    Science.gov (United States)

    Lonsdorf, Tina B; Golkar, Armita; Lindström, Kara M; Haaker, Jan; Öhman, Arne; Schalling, Martin; Ingvar, Martin

    2015-05-01

    Brain-derived neurotrophic factor (BDNF), the most abundant neutrophin in the mammalian central nervous system, is critically involved in synaptic plasticity. In both rodents and humans, BDNF has been implicated in hippocampus- and amygdala-dependent learning and memory and has more recently been linked to fear extinction processes. Fifty-nine healthy participants, genotyped for the functional BDNFval66met polymorphism, underwent a fear conditioning and 24h-delayed extinction protocol while skin conductance and blood oxygenation level dependent (BOLD) responses (functional magnetic resonance imaging) were acquired. We present the first report of neural activation pattern during fear acquisition 'and' extinction for the BDNFval66met polymorphism using a differential conditioned stimulus (CS)+ > CS- comparison. During conditioning, we observed heightened allele dose-dependent responses in the amygdala and reduced responses in the subgenual anterior cingulate cortex in BDNFval66met met-carriers. During early extinction, 24h later, we again observed heightened responses in several regions ascribed to the fear network in met-carriers as opposed to val-carriers (insula, amygdala, hippocampus), which likely reflects fear memory recall. No differences were observed during late extinction, which likely reflects learned extinction. Our data thus support previous associations of the BDNFval66met polymorphism with neural activation in the fear and extinction network, but speak against a specific association with fear extinction processes. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Spatial patterns of persistent neural activity vary with the behavioral context of short-term memory.

    Science.gov (United States)

    Daie, Kayvon; Goldman, Mark S; Aksay, Emre R F

    2015-02-18

    A short-term memory can be evoked by different inputs and control separate targets in different behavioral contexts. To address the circuit mechanisms underlying context-dependent memory function, we determined through optical imaging how memory is encoded at the whole-network level in two behavioral settings. Persistent neural activity maintaining a memory of desired eye position was imaged throughout the oculomotor integrator after saccadic or optokinetic stimulation. While eye position was encoded by the amplitude of network activity, the spatial patterns of firing were context dependent: cells located caudally generally were most persistent following saccadic input, whereas cells located rostrally were most persistent following optokinetic input. To explain these data, we computationally identified four independent modes of network activity and found these were differentially accessed by saccadic and optokinetic inputs. These results show how a circuit can simultaneously encode memory value and behavioral context, respectively, in its amplitude and spatial pattern of persistent firing. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Memory and pattern storage in neural networks with activity dependent synapses

    Science.gov (United States)

    Mejias, J. F.; Torres, J. J.

    2009-01-01

    We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.

  2. Neural activation patterns of successful episodic encoding: Reorganization during childhood, maintenance in old age

    Directory of Open Access Journals (Sweden)

    Yee Lee Shing

    2016-08-01

    Full Text Available The two-component framework of episodic memory (EM development posits that the contributions of medial temporal lobe (MTL and prefrontal cortex (PFC to successful encoding differ across the lifespan. To test the framework’s hypotheses, we compared subsequent memory effects (SME of 10–12 year-old children, younger adults, and older adults using functional magnetic resonance imaging (fMRI. Memory was probed by cued recall, and SME were defined as regional activation differences during encoding between subsequently correctly recalled versus omitted items. In MTL areas, children’s SME did not differ in magnitude from those of younger and older adults. In contrast, children’s SME in PFC were weaker than the corresponding SME in younger and older adults, in line with the hypothesis that PFC contributes less to successful encoding in childhood. Differences in SME between younger and older adults were negligible. The present results suggest that, among individuals with high memory functioning, the neural circuitry contributing to successful episodic encoding is reorganized from middle childhood to adulthood. Successful episodic encoding in later adulthood, however, is characterized by the ability to maintain the activation patterns that emerged in young adulthood.

  3. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    Science.gov (United States)

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  4. Techniques for extracting single-trial activity patterns from large-scale neural recordings

    Science.gov (United States)

    Churchland, Mark M; Yu, Byron M; Sahani, Maneesh; Shenoy, Krishna V

    2008-01-01

    Summary Large, chronically-implanted arrays of microelectrodes are an increasingly common tool for recording from primate cortex, and can provide extracellular recordings from many (order of 100) neurons. While the desire for cortically-based motor prostheses has helped drive their development, such arrays also offer great potential to advance basic neuroscience research. Here we discuss the utility of array recording for the study of neural dynamics. Neural activity often has dynamics beyond that driven directly by the stimulus. While governed by those dynamics, neural responses may nevertheless unfold differently for nominally identical trials, rendering many traditional analysis methods ineffective. We review recent studies – some employing simultaneous recording, some not – indicating that such variability is indeed present both during movement generation, and during the preceding premotor computations. In such cases, large-scale simultaneous recordings have the potential to provide an unprecedented view of neural dynamics at the level of single trials. However, this enterprise will depend not only on techniques for simultaneous recording, but also on the use and further development of analysis techniques that can appropriately reduce the dimensionality of the data, and allow visualization of single-trial neural behavior. PMID:18093826

  5. Temporal and Spatial Patterns of Neural Activity Associated with Information Selection in Open-ended Creativity.

    Science.gov (United States)

    Zhou, Siyuan; Chen, Shi; Wang, Shuang; Zhao, Qingbai; Zhou, Zhijin; Lu, Chunming

    2018-02-10

    Novel information selection is a crucial process in creativity and was found to be associated with frontal-temporal functional connectivity in the right brain in closed-ended creativity. Since it has distinct cognitive processing from closed-ended creativity, the information selection in open-ended creativity might be underlain by different neural activity. To address this issue, a creative generation task of Chinese two-part allegorical sayings was adopted, and the trials were classified into novel and normal solutions according to participants' self-ratings. The results showed that (1) novel solutions induced a higher lower alpha power in the temporal area, which might be associated with the automatic, unconscious mental process of retrieving extensive semantic information, and (2) upper alpha power in both frontal and temporal areas and frontal-temporal alpha coherence were higher in novel solutions than in normal solutions, which might reflect the selective inhibition of semantic information. Furthermore, lower alpha power in the temporal area showed a reduction with time, while the frontal-temporal and temporal-temporal coherence in the upper alpha band appeared to increase from the early to the middle phase. These dynamic changes in neural activity might reflect the transformation from divergent thinking to convergent thinking in the creative progress. The advantage of the right brain in frontal-temporal connectivity was not found in the present work, which might result from the diversity of solutions in open-ended creativity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    Directory of Open Access Journals (Sweden)

    Yosefu Arime

    Full Text Available Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days of either saline or PCP (10 mg/kg: (1 a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2 brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  7. Motivation alters response bias and neural activation patterns in a perceptual decision-making task.

    Science.gov (United States)

    Reckless, G E; Bolstad, I; Nakstad, P H; Andreassen, O A; Jensen, J

    2013-05-15

    Motivation has been demonstrated to affect individuals' response strategies in economic decision-making, however, little is known about how motivation influences perceptual decision-making behavior or its related neural activity. Given the important role motivation plays in shaping our behavior, a better understanding of this relationship is needed. A block-design, continuous performance, perceptual decision-making task where participants were asked to detect a picture of an animal among distractors was used during functional magnetic resonance imaging (fMRI). The effect of positive and negative motivation on sustained activity within regions of the brain thought to underlie decision-making was examined by altering the monetary contingency associated with the task. In addition, signal detection theory was used to investigate the effect of motivation on detection sensitivity, response bias and response time. While both positive and negative motivation resulted in increased sustained activation in the ventral striatum, fusiform gyrus, left dorsolateral prefrontal cortex (DLPFC) and ventromedial prefrontal cortex, only negative motivation resulted in the adoption of a more liberal, closer to optimal response bias. This shift toward a liberal response bias correlated with increased activation in the left DLPFC, but did not result in improved task performance. The present findings suggest that motivation alters aspects of the way perceptual decisions are made. Further, this altered response behavior is reflected in a change in left DLPFC activation, a region involved in the computation of perceptual decisions. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Patterns of longitudinal neural activity linked to different cognitive profiles in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Atsuko Nagano-Saito

    2016-11-01

    Full Text Available Mild cognitive impairment in Parkinson’s disease (PD has been linked with functional brain changes. Previously, using functional magnetic resonance imaging (fMRI, we reported reduced cortico-striatal activity in patients with PD who also had mild cognitive impairment (MCI versus those who did not (non-MCI. We followed up these patients to investigate the longitudinal effect on the neural activity. Twenty-four non-demented patients with Parkinson’s disease (non-MCI: 12, MCI; 12 were included in the study. Each participant underwent two fMRIs while performing the Wisconsin Card Sorting Task 20 months apart. The non-MCI patients recruited the usual cognitive corticostriatal loop at the first and second sessions (Time 1 and Time 2, respectively. However, decreased activity was observed in the cerebellum and occipital area and increased activity was observed in the medial prefrontal cortex and parietal lobe during planning set-shift at Time 2. Increased activity in the precuneus was also demonstrated while executing set-shifts at Time 2. The MCI patients revealed more activity in the frontal, parietal and occipital lobes during planning set-shifts, and in the parietal and occipital lobes, precuneus, and cerebellum, during executing set-shift at Time 2. Analysis regrouping of both groups of PD patients revealed that hippocampal and thalamic activity at Time 1 was associated with less cognitive decline over time. Our results reveal that functional alteration along the time-points differed between the non-MCI and MCI patients. They also underline the importance of preserving thalamic and hippocampal function with respect to cognitive decline over time.

  9. Adolescent-specific patterns of behavior and neural activity during social reinforcement learning.

    Science.gov (United States)

    Jones, Rebecca M; Somerville, Leah H; Li, Jian; Ruberry, Erika J; Powers, Alisa; Mehta, Natasha; Dyke, Jonathan; Casey, B J

    2014-06-01

    Humans are sophisticated social beings. Social cues from others are exceptionally salient, particularly during adolescence. Understanding how adolescents interpret and learn from variable social signals can provide insight into the observed shift in social sensitivity during this period. The present study tested 120 participants between the ages of 8 and 25 years on a social reinforcement learning task where the probability of receiving positive social feedback was parametrically manipulated. Seventy-eight of these participants completed the task during fMRI scanning. Modeling trial-by-trial learning, children and adults showed higher positive learning rates than did adolescents, suggesting that adolescents demonstrated less differentiation in their reaction times for peers who provided more positive feedback. Forming expectations about receiving positive social reinforcement correlated with neural activity within the medial prefrontal cortex and ventral striatum across age. Adolescents, unlike children and adults, showed greater insular activity during positive prediction error learning and increased activity in the supplementary motor cortex and the putamen when receiving positive social feedback regardless of the expected outcome, suggesting that peer approval may motivate adolescents toward action. While different amounts of positive social reinforcement enhanced learning in children and adults, all positive social reinforcement equally motivated adolescents. Together, these findings indicate that sensitivity to peer approval during adolescence goes beyond simple reinforcement theory accounts and suggest possible explanations for how peers may motivate adolescent behavior.

  10. MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION

    Directory of Open Access Journals (Sweden)

    Artur Popko

    2013-06-01

    Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.

  11. Dissociable Patterns of Neural Activity during Response Inhibition in Depressed Adolescents with and without Suicidal Behavior

    Science.gov (United States)

    Pan, Lisa A.; Batezati-Alves, Silvia C.; Almeida, Jorge R. C.; Segreti, AnnaMaria; Akkal, Dalila; Hassel, Stefanie; Lakdawala, Sara; Brent, David A.; Phillips, Mary L.

    2011-01-01

    Objectives: Impaired attentional control and behavioral control are implicated in adult suicidal behavior. Little is known about the functional integrity of neural circuitry supporting these processes in suicidal behavior in adolescence. Method: Functional magnetic resonance imaging was used in 15 adolescent suicide attempters with a history of…

  12. Neural activity patterns in response to interspecific and intraspecific variation in mating calls in the túngara frog.

    Directory of Open Access Journals (Sweden)

    Mukta Chakraborty

    2010-09-01

    Full Text Available During mate choice, individuals must classify potential mates according to species identity and relative attractiveness. In many species, females do so by evaluating variation in the signals produced by males. Male túngara frogs (Physalaemus pustulosus can produce single note calls (whines and multi-note calls (whine-chucks. While the whine alone is sufficient for species recognition, females greatly prefer the whine-chuck when given a choice.To better understand how the brain responds to variation in male mating signals, we mapped neural activity patterns evoked by interspecific and intraspecific variation in mating calls in túngara frogs by measuring expression of egr-1. We predicted that egr-1 responses to conspecific calls would identify brain regions that are potentially important for species recognition and that at least some of those brain regions would vary in their egr-1 responses to mating calls that vary in attractiveness. We measured egr-1 in the auditory brainstem and its forebrain targets and found that conspecific whine-chucks elicited greater egr-1 expression than heterospecific whines in all but three regions. We found no evidence that preferred whine-chuck calls elicited greater egr-1 expression than conspecific whines in any of eleven brain regions examined, in contrast to predictions that mating preferences in túngara frogs emerge from greater responses in the auditory system.Although selectivity for species-specific signals is apparent throughout the túngara frog brain, further studies are necessary to elucidate how neural activity patterns vary with the attractiveness of conspecific mating calls.

  13. Evidence for similar patterns of neural activity elicited by picture- and word-based representations of natural scenes.

    Science.gov (United States)

    Kumar, Manoj; Federmeier, Kara D; Fei-Fei, Li; Beck, Diane M

    2017-07-15

    frontal cortices. This similarity of neural activity patterns across the two input types, for categories that co-activate local brain regions, provides strong evidence of a common semantic code for pictures and words in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Frequency decoding of periodically timed action potentials through distinct activity patterns in a random neural network

    International Nuclear Information System (INIS)

    Reichenbach, Tobias; Hudspeth, A J

    2012-01-01

    Frequency discrimination is a fundamental task of the auditory system. The mammalian inner ear, or cochlea, provides a place code in which different frequencies are detected at different spatial locations. However, a temporal code based on spike timing is also available: action potentials evoked in an auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the stimulus—they exhibit phase locking—and thus provide temporal information about the tone's frequency. Humans employ this temporal information for discrimination of low frequencies. How might such temporal information be read out in the brain? Here we employ statistical and numerical methods to demonstrate that recurrent random neural networks in which connections between neurons introduce characteristic time delays, and in which neurons require temporally coinciding inputs for spike initiation, can perform sharp frequency discrimination when stimulated with phase-locked inputs. Although the frequency resolution achieved by such networks is limited by the noise in phase locking, the resolution for realistic values reaches the tiny frequency difference of 0.2% that has been measured in humans. (paper)

  15. Active Neural Localization

    OpenAIRE

    Chaplot, Devendra Singh; Parisotto, Emilio; Salakhutdinov, Ruslan

    2018-01-01

    Localization is the problem of estimating the location of an autonomous agent from an observation and a map of the environment. Traditional methods of localization, which filter the belief based on the observations, are sub-optimal in the number of steps required, as they do not decide the actions taken by the agent. We propose "Active Neural Localizer", a fully differentiable neural network that learns to localize accurately and efficiently. The proposed model incorporates ideas of tradition...

  16. The COMT Val/Met polymorphism is associated with reading related skills and consistent patterns of functional neural activation

    Science.gov (United States)

    Landi, Nicole; Frost, Stephen J.; Mencl, W. Einar; Preston, Jonathan L.; Jacobsen, Leslie K.; Lee, Maria; Yrigollen, Carolyn; Pugh, Kenneth R.; Grigorenko, Elena L.

    2013-01-01

    In both children and adults there is large variability in reading skill, with approximately 5–10% of individuals characterized as having reading disability; these individuals struggle to learn to read despite adequate intelligence and opportunity. Although it is well established that a substantial portion of this variability is attributed to the genetic differences between individuals, specifics of the connections between reading and the genome are not understood. This article presents data that suggest that variation in the COMT gene, which has previously been associated with variation in higher-order cognition, is associated with reading and reading-related skills, both at the level of brain and behavior. In particular, we found that the COMT Val/Met polymorphism at rs4680, which results in the substitution of the ancestral Valine (Val) by Methionine (Met), was associated with better performance on a number of critical reading measures and with patterns of functional neural activation that have been linked to better readers. We argue that this polymorphism, known for its broad effects on cognition, may modulate (likely through frontal lobe function) reading skill. PMID:23278923

  17. The COMT Val/Met polymorphism is associated with reading-related skills and consistent patterns of functional neural activation.

    Science.gov (United States)

    Landi, Nicole; Frost, Stephen J; Mencl, W Einar; Preston, Jonathan L; Jacobsen, Leslie K; Lee, Maria; Yrigollen, Carolyn; Pugh, Kenneth R; Grigorenko, Elena L

    2013-01-01

    In both children and adults there is large variability in reading skill, with approximately 5-10% of individuals characterized as having reading disability; these individuals struggle to learn to read despite adequate intelligence and opportunity. Although it is well established that a substantial portion of this variability is attributed to the genetic differences between individuals, specifics of the connections between reading and the genome are not understood. This article presents data that suggest that variation in the COMT gene, which has previously been associated with variation in higher-order cognition, is associated with reading and reading-related skills, at the level of both brain and behavior. In particular, we found that the COMT Val/Met polymorphism at rs4680, which results in the substitution of the ancestral Valine (Val) by Methionine (Met), was associated with better performance on a number of critical reading measures and with patterns of functional neural activation that have been linked to better readers. We argue that this polymorphism, known for its broad effects on cognition, may modulate (likely through frontal lobe function) reading skill. © 2012 Blackwell Publishing Ltd.

  18. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress.

    Science.gov (United States)

    Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; DePietro, Thomas; Chamness, Marisa; Schneider, Elizabeth K; Keller, Samantha M; Lawless, Caroline

    2018-04-02

    Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Patterns of cortical oscillations organize neural activity into whole-brain functional networks evident in the fMRI BOLD signal

    Directory of Open Access Journals (Sweden)

    Jennifer C Whitman

    2013-03-01

    Full Text Available Recent findings from electrophysiology and multimodal neuroimaging have elucidated the relationship between patterns of cortical oscillations evident in EEG / MEG and the functional brain networks evident in the BOLD signal. Much of the existing literature emphasized how high-frequency cortical oscillations are thought to coordinate neural activity locally, while low-frequency oscillations play a role in coordinating activity between more distant brain regions. However, the assignment of different frequencies to different spatial scales is an oversimplification. A more informative approach is to explore the arrangements by which these low- and high-frequency oscillations work in concert, coordinating neural activity into whole-brain functional networks. When relating such networks to the BOLD signal, we must consider how the patterns of cortical oscillations change at the same speed as cognitive states, which often last less than a second. Consequently, the slower BOLD signal may often reflect the summed neural activity of several transient network configurations. This temporal mismatch can be circumvented if we use spatial maps to assess correspondence between oscillatory networks and BOLD networks.

  20. Associative memory model with spontaneous neural activity

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  1. Neural activation patterns during retrieval of schema-related memories: differences and commonalities between children and adults.

    Science.gov (United States)

    Brod, Garvin; Lindenberger, Ulman; Shing, Yee Lee

    2017-11-01

    Schemas represent stable properties of individuals' experiences, and allow them to classify new events as being congruent or incongruent with existing knowledge. Research with adults indicates that the prefrontal cortex (PFC) is involved in memory retrieval of schema-related information. However, developmental differences between children and adults in the neural correlates of schema-related memories are not well understood. One reason for this is the inherent confound between schema-relevant experience and maturation, as both are related to time. To overcome this limitation, we used a novel paradigm that experimentally induces, and then probes for, task-relevant knowledge during encoding of new information. Thirty-one children aged 8-12 years and 26 young adults participated in the experiment. While successfully retrieving schema-congruent events, children showed less medial PFC activity than adults. In addition, medial PFC activity during successful retrieval correlated positively with children's age. While successfully retrieving schema-incongruent events, children showed stronger hippocampus (HC) activation as well as weaker connectivity between the striatum and the dorsolateral PFC than adults. These findings were corroborated by an exploratory full-factorial analysis investigating age differences in the retrieval of schema-congruent versus schema-incongruent events, comparing the two conditions directly. Consistent with the findings of the separate analyses, two clusters, one in the medial PFC, one in the HC, were identified that exhibited a memory × congruency × age group interaction. In line with the two-component model of episodic memory development, the present findings point to an age-related shift from a more HC-bound processing to an increasing recruitment of prefrontal brain regions in the retrieval of schema-related events. © 2016 John Wiley & Sons Ltd.

  2. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  3. Neural activation patterns and connectivity in visual attention during Number and Non-number processing: An ERP study using the Ishihara pseudoisochromatic plates.

    Science.gov (United States)

    Al-Marri, Faraj; Reza, Faruque; Begum, Tahamina; Hitam, Wan Hazabbah Wan; Jin, Goh Khean; Xiang, Jing

    2017-10-25

    Visual cognitive function is important to build up executive function in daily life. Perception of visual Number form (e.g., Arabic digit) and numerosity (magnitude of the Number) is of interest to cognitive neuroscientists. Neural correlates and the functional measurement of Number representations are complex occurrences when their semantic categories are assimilated with other concepts of shape and colour. Colour perception can be processed further to modulate visual cognition. The Ishihara pseudoisochromatic plates are one of the best and most common screening tools for basic red-green colour vision testing. However, there is a lack of study of visual cognitive function assessment using these pseudoisochromatic plates. We recruited 25 healthy normal trichromat volunteers and extended these studies using a 128-sensor net to record event-related EEG. Subjects were asked to respond by pressing Numbered buttons when they saw the Number and Non-number plates of the Ishihara colour vision test. Amplitudes and latencies of N100 and P300 event related potential (ERP) components were analysed from 19 electrode sites in the international 10-20 system. A brain topographic map, cortical activation patterns and Granger causation (effective connectivity) were analysed from 128 electrode sites. No major significant differences between N100 ERP components in either stimulus indicate early selective attention processing was similar for Number and Non-number plate stimuli, but Non-number plate stimuli evoked significantly higher amplitudes, longer latencies of the P300 ERP component with a slower reaction time compared to Number plate stimuli imply the allocation of attentional load was more in Non-number plate processing. A different pattern of asymmetric scalp voltage map was noticed for P300 components with a higher intensity in the left hemisphere for Number plate tasks and higher intensity in the right hemisphere for Non-number plate tasks. Asymmetric cortical activation

  4. Neural Global Pattern Similarity Underlies True and False Memories.

    Science.gov (United States)

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  5. Race modulates neural activity during imitation

    Science.gov (United States)

    Losin, Elizabeth A. Reynolds; Iacoboni, Marco; Martin, Alia; Cross, Katy A.; Dapretto, Mirella

    2014-01-01

    Imitation plays a central role in the acquisition of culture. People preferentially imitate others who are self-similar, prestigious or successful. Because race can indicate a person's self-similarity or status, race influences whom people imitate. Prior studies of the neural underpinnings of imitation have not considered the effects of race. Here we measured neural activity with fMRI while European American participants imitated meaningless gestures performed by actors of their own race, and two racial outgroups, African American, and Chinese American. Participants also passively observed the actions of these actors and their portraits. Frontal, parietal and occipital areas were differentially activated while participants imitated actors of different races. More activity was present when imitating African Americans than the other racial groups, perhaps reflecting participants' reported lack of experience with and negative attitudes towards this group, or the group's lower perceived social status. This pattern of neural activity was not found when participants passively observed the gestures of the actors or simply looked at their faces. Instead, during face-viewing neural responses were overall greater for own-race individuals, consistent with prior race perception studies not involving imitation. Our findings represent a first step in elucidating neural mechanisms involved in cultural learning, a process that influences almost every aspect of our lives but has thus far received little neuroscientific study. PMID:22062193

  6. Granular neural networks, pattern recognition and bioinformatics

    CERN Document Server

    Pal, Sankar K; Ganivada, Avatharam

    2017-01-01

    This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinf...

  7. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses.

    Science.gov (United States)

    Itoh, K; Stevens, B; Schachner, M; Fields, R D

    1995-11-24

    Development of the mammalian nervous system is regulated by neural impulse activity, but the molecular mechanisms are not well understood. If cell recognition molecules [for example, L1 and the neural cell adhesion molecule (NCAM)] were influenced by specific patterns of impulse activity, cell-cell interactions controlling nervous system structure could be regulated by nervous system function at critical stages of development. Low-frequency electrical pulses delivered to mouse sensory neurons in culture (0.1 hertz for 5 days) down-regulated expression of L1 messenger RNA and protein (but not NCAM). Fasciculation of neurites, adhesion of neuroblastoma cells, and the number of Schwann cells on neurites was reduced after 0.1-hertz stimulation, but higher frequencies or stimulation after synaptogenesis were without effect.

  8. Pattern activation/recognition theory of mind.

    Science.gov (United States)

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  9. Identifying Emotions on the Basis of Neural Activation.

    Science.gov (United States)

    Kassam, Karim S; Markey, Amanda R; Cherkassky, Vladimir L; Loewenstein, George; Just, Marcel Adam

    2013-01-01

    We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  10. Identifying Emotions on the Basis of Neural Activation.

    Directory of Open Access Journals (Sweden)

    Karim S Kassam

    Full Text Available We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1 neural activation of the same individual in other trials, 2 neural activation of other individuals who experienced similar trials, and 3 neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  11. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  12. Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition.

    Directory of Open Access Journals (Sweden)

    Jonathan Cannon

    2015-11-01

    Full Text Available Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.

  13. Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition.

    Science.gov (United States)

    Cannon, Jonathan; Kopell, Nancy; Gardner, Timothy; Markowitz, Jeffrey

    2015-11-01

    Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.

  14. Pattern recognition of state variables by neural networks

    International Nuclear Information System (INIS)

    Faria, Eduardo Fernandes; Pereira, Claubia

    1996-01-01

    An artificial intelligence system based on artificial neural networks can be used to classify predefined events and emergency procedures. These systems are being used in different areas. In the nuclear reactors safety, the goal is the classification of events whose data can be processed and recognized by neural networks. In this works we present a preliminary simple system, using neural networks in the recognition of patterns the recognition of variables which define a situation. (author)

  15. Using Graph Components Derived from an Associative Concept Dictionary to Predict fMRI Neural Activation Patterns that Represent the Meaning of Nouns.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Akama

    Full Text Available In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF. This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk and co-occurrence adjustment (degree balance and distribution. We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.

  16. The effect of the neural activity on topological properties of growing neural networks.

    Science.gov (United States)

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  17. Transformed Neural Pattern Reinstatement during Episodic Memory Retrieval.

    Science.gov (United States)

    Xiao, Xiaoqian; Dong, Qi; Gao, Jiahong; Men, Weiwei; Poldrack, Russell A; Xue, Gui

    2017-03-15

    Contemporary models of episodic memory posit that remembering involves the reenactment of encoding processes. Although encoding-retrieval similarity has been consistently reported and linked to memory success, the nature of neural pattern reinstatement is poorly understood. Using high-resolution fMRI on human subjects, our results obtained clear evidence for item-specific pattern reinstatement in the frontoparietal cortex, even when the encoding-retrieval pairs shared no perceptual similarity. No item-specific pattern reinstatement was found in the ventral visual cortex. Importantly, the brain regions and voxels carrying item-specific representation differed significantly between encoding and retrieval, and the item specificity for encoding-retrieval similarity was smaller than that for encoding or retrieval, suggesting different nature of representations between encoding and retrieval. Moreover, cross-region representational similarity analysis suggests that the encoded representation in the ventral visual cortex was reinstated in the frontoparietal cortex during retrieval. Together, these results suggest that, in addition to reinstatement of the originally encoded pattern in the brain regions that perform encoding processes, retrieval may also involve the reinstatement of a transformed representation of the encoded information. These results emphasize the constructive nature of memory retrieval that helps to serve important adaptive functions. SIGNIFICANCE STATEMENT Episodic memory enables humans to vividly reexperience past events, yet how this is achieved at the neural level is barely understood. A long-standing hypothesis posits that memory retrieval involves the faithful reinstatement of encoding-related activity. We tested this hypothesis by comparing the neural representations during encoding and retrieval. We found strong pattern reinstatement in the frontoparietal cortex, but not in the ventral visual cortex, that represents visual details. Critically

  18. Firing patterns transition and desynchronization induced by time delay in neural networks

    Science.gov (United States)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  19. Temporal-pattern learning in neural models

    CERN Document Server

    Genís, Carme Torras

    1985-01-01

    While the ability of animals to learn rhythms is an unquestionable fact, the underlying neurophysiological mechanisms are still no more than conjectures. This monograph explores the requirements of such mechanisms, reviews those previously proposed and postulates a new one based on a direct electric coding of stimulation frequencies. Experi­ mental support for the option taken is provided both at the single neuron and neural network levels. More specifically, the material presented divides naturally into four parts: a description of the experimental and theoretical framework where this work becomes meaningful (Chapter 2), a detailed specifica­ tion of the pacemaker neuron model proposed together with its valida­ tion through simulation (Chapter 3), an analytic study of the behavior of this model when submitted to rhythmic stimulation (Chapter 4) and a description of the neural network model proposed for learning, together with an analysis of the simulation results obtained when varying seve­ ral factors r...

  20. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2018-04-01

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  1. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation.

    Science.gov (United States)

    Faure, Sandrine; McKey, Jennifer; Sagnol, Sébastien; de Santa Barbara, Pascal

    2015-01-15

    In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric nervous system (ENS), the intrinsic innervation of the GI tract. The influence of vENCCs on early patterning and differentiation of the GI tract has never been evaluated. In this study, we report that a crucial number of vENCCs is required for proper chick stomach development, patterning and differentiation. We show that reducing the number of vENCCs by performing vENCC ablations induces sustained activation of the BMP and Notch pathways in the stomach mesenchyme and impairs smooth muscle development. A reduction in vENCCs also leads to the transdifferentiation of the stomach into a stomach-intestinal mixed phenotype. In addition, sustained Notch signaling activity in the stomach mesenchyme phenocopies the defects observed in vENCC-ablated stomachs, indicating that inhibition of the Notch signaling pathway is essential for stomach patterning and differentiation. Finally, we report that a crucial number of vENCCs is also required for maintenance of stomach identity and differentiation through inhibition of the Notch signaling pathway. Altogether, our data reveal that, through the regulation of mesenchyme identity, vENCCs act as a new mediator in the mesenchymal-epithelial interactions that control stomach development. © 2015. Published by The Company of Biologists Ltd.

  2. Neural pattern similarity underlies the mnemonic advantages for living words.

    Science.gov (United States)

    Xiao, Xiaoqian; Dong, Qi; Chen, Chuansheng; Xue, Gui

    2016-06-01

    It has been consistently shown that words representing living things are better remembered than words representing nonliving things, yet the underlying cognitive and neural mechanisms have not been clearly elucidated. The present study used both univariate and multivariate pattern analyses to examine the hypotheses that living words are better remembered because (1) they draw more attention and/or (2) they share more overlapping semantic features. Subjects were asked to study a list of living and nonliving words during a semantic judgment task. An unexpected recognition test was administered 30 min later. We found that subjects recognized significantly more living words than nonliving words. Results supported the overlapping semantic feature hypothesis by showing that (a) semantic ratings showed greater semantic similarity for living words than for nonliving words, (b) there was also significantly greater neural global pattern similarity (nGPS) for living words than for nonliving words in the posterior portion of left parahippocampus (LpPHG), (c) the nGPS in the LpPHG reflected the rated semantic similarity, and also mediated the memory differences between two semantic categories, and (d) greater univariate activation was found for living words than for nonliving words in the left hippocampus (LHIP), which mediated the better memory performance for living words and might reflect greater semantic context binding. In contrast, although living words were processed faster and elicited a stronger activity in the dorsal attention network, these differences did not mediate the animacy effect in memory. Taken together, our results provide strong support to the overlapping semantic features hypothesis, and emphasize the important role of semantic organization in episodic memory encoding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sequentially firing neurons confer flexible timing in neural pattern generators

    International Nuclear Information System (INIS)

    Urban, Alexander; Ermentrout, Bard

    2011-01-01

    Neuronal networks exhibit a variety of complex spatiotemporal patterns that include sequential activity, synchrony, and wavelike dynamics. Inhibition is the primary means through which such patterns are implemented. This behavior is dependent on both the intrinsic dynamics of the individual neurons as well as the connectivity patterns. Many neural circuits consist of networks of smaller subcircuits (motifs) that are coupled together to form the larger system. In this paper, we consider a particularly simple motif, comprising purely inhibitory interactions, which generates sequential periodic dynamics. We first describe the dynamics of the single motif both for general balanced coupling (all cells receive the same number and strength of inputs) and then for a specific class of balanced networks: circulant systems. We couple these motifs together to form larger networks. We use the theory of weak coupling to derive phase models which, themselves, have a certain structure and symmetry. We show that this structure endows the coupled system with the ability to produce arbitrary timing relationships between symmetrically coupled motifs and that the phase relationships are robust over a wide range of frequencies. The theory is applicable to many other systems in biology and physics.

  4. Oscillator Neural Network Retrieving Sparsely Coded Phase Patterns

    Science.gov (United States)

    Aoyagi, Toshio; Nomura, Masaki

    1999-08-01

    Little is known theoretically about the associative memory capabilities of neural networks in which information is encoded not only in the mean firing rate but also in the timing of firings. Particularly, in the case of sparsely coded patterns, it is biologically important to consider the timings of firings and to study how such consideration influences storage capacities and quality of recalled patterns. For this purpose, we propose a simple extended model of oscillator neural networks to allow for expression of a nonfiring state. Analyzing both equilibrium states and dynamical properties in recalling processes, we find that the system possesses good associative memory.

  5. Windowed active sampling for reliable neural learning

    NARCIS (Netherlands)

    Barakova, E.I; Spaanenburg, L

    The composition of the example set has a major impact on the quality of neural learning. The popular approach is focused on extensive pre-processing to bridge the representation gap between process measurement and neural presentation. In contrast, windowed active sampling attempts to solve these

  6. Typology of nonlinear activity waves in a layered neural continuum.

    Science.gov (United States)

    Koch, Paul; Leisman, Gerry

    2006-04-01

    Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).

  7. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  8. Active voltammetric microsensors with neural signal processing

    Science.gov (United States)

    Vogt, Michael C.; Skubal, Laura R.

    1999-02-01

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical 'signatures' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration; the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  9. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  10. Classification of data patterns using an autoassociative neural network topology

    Science.gov (United States)

    Dietz, W. E.; Kiech, E. L.; Ali, M.

    1989-01-01

    A diagnostic expert system based on neural networks is developed and applied to the real-time diagnosis of jet and rocket engines. The expert system methodologies are based on the analysis of patterns of behavior of physical mechanisms. In this approach, fault diagnosis is conceptualized as the mapping or association of patterns of sensor data to patterns representing fault conditions. The approach addresses deficiencies inherent in many feedforward neural network models and greatly reduces the number of networks necessary to identify the existence of a fault condition and estimate the duration and severity of the identified fault. The network topology used in the present implementation of the diagnostic system is described, as well as the training regimen used and the response of the system to inputs representing both previously observed and unknown fault scenarios. Noise effects on the integrity of the diagnosis are also evaluated.

  11. Learning-induced pattern classification in a chaotic neural network

    International Nuclear Information System (INIS)

    Li, Yang; Zhu, Ping; Xie, Xiaoping; He, Guoguang; Aihara, Kazuyuki

    2012-01-01

    In this Letter, we propose a Hebbian learning rule with passive forgetting (HLRPF) for use in a chaotic neural network (CNN). We then define the indices based on the Euclidean distance to investigate the evolution of the weights in a simplified way. Numerical simulations demonstrate that, under suitable external stimulations, the CNN with the proposed HLRPF acts as a fuzzy-like pattern classifier that performs much better than an ordinary CNN. The results imply relationship between learning and recognition. -- Highlights: ► Proposing a Hebbian learning rule with passive forgetting (HLRPF). ► Defining indices to investigate the evolution of the weights simply. ► The chaotic neural network with HLRPF acts as a fuzzy-like pattern classifier. ► The pattern classifier ability of the network is improved much.

  12. Neural activation in stress-related exhaustion

    DEFF Research Database (Denmark)

    Gavelin, Hanna Malmberg; Neely, Anna Stigsdotter; Andersson, Micael

    2017-01-01

    The primary purpose of this study was to investigate the association between burnout and neural activation during working memory processing in patients with stress-related exhaustion. Additionally, we investigated the neural effects of cognitive training as part of stress rehabilitation. Fifty...... association between burnout level and working memory performance was found, however, our findings indicate that frontostriatal neural responses related to working memory were modulated by burnout severity. We suggest that patients with high levels of burnout need to recruit additional cognitive resources...... to uphold task performance. Following cognitive training, increased neural activation was observed during 3-back in working memory-related regions, including the striatum, however, low sample size limits any firm conclusions....

  13. Neural breathing pattern in newborn infants pre- and postextubation.

    Science.gov (United States)

    Iyer, Narayan P; Dickson, John; Ruiz, Michelle E; Chatburn, Robert; Beck, Jennifer; Sinderby, Chister; Rodriguez, Ricardo J

    2017-12-01

    To describe the neural breathing pattern before and after extubation in newborn infants. Prospective, observational study. In infants deemed ready for extubation, the diaphragm electrical activity (EAdi) was continuously recorded from 30 minute before to two hours after extubation. Total of 25 neonates underwent 29 extubations; 10 extubations resulted in re-intubation within 72 hours. Postextubation, there was an increase in peak EAdi (EAdi-max) and EAdi-delta (peak minus minimum EAdi) in both groups. The pre- to postextubation change in EAdi-max (8.9-11.1 μv) and EAdi-delta (6-8 μv) was less in the failure group in comparison with the change in EAdi-max (10.2-13.4 μv) and EAdi-delta (6.3-10.6 μv) in the success group, (p = 0.02 and 0.01, respectively). In our neonatal cohort, extubation failure was associated with a smaller increase in peak and delta EAdi after extubation. If confirmed, these findings indicate an important cause of extubation failure in preterm infants. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  14. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  15. Global Neural Pattern Similarity as a Common Basis for Categorization and Recognition Memory

    Science.gov (United States)

    Xue, Gui; Love, Bradley C.; Preston, Alison R.; Poldrack, Russell A.

    2014-01-01

    Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. PMID:24872552

  16. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location.

    Science.gov (United States)

    Crago, Patrick E; Makowski, Nathaniel S

    2014-10-01

    Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.

  17. Optimization of patterns of control bars using neural networks

    International Nuclear Information System (INIS)

    Mejia S, D.M.; Ortiz S, J.J.

    2005-01-01

    In this work the RENOPBC system that is based on a recurrent multi state neural network, for the optimization of patterns of control bars in a cycle of balance of a boiling water reactor (BWR for their initials in English) is presented. The design of patterns of bars is based on the execution of operation thermal limits, to maintain criticizes the reactor and that the axial profile of power is adjusted to one predetermined along several steps of burnt. The patterns of control bars proposed by the system are comparable to those proposed by human experts with many hour-man of experience. These results are compared with those proposed by other techniques as genetic algorithms, colonies of ants and tabu search for the same operation cycle. As consequence it is appreciated that the proposed patterns of control bars, have bigger operation easiness that those proposed by the other techniques. (Author)

  18. Self-reported empathy and neural activity during action imitation and observation in schizophrenia

    Directory of Open Access Journals (Sweden)

    William P. Horan

    2014-01-01

    Conclusions: Although patients with schizophrenia demonstrated largely normal patterns of neural activation across the finger movement and facial expression tasks, they reported decreased self perceived empathy and failed to show the typical relationship between neural activity and self-reported empathy seen in controls. These findings suggest that patients show a disjunction between automatic neural responses to low level social cues and higher level, integrative social cognitive processes involved in self-perceived empathy.

  19. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  20. Photopolymerized materials and patterning for improved performance of neural prosthetics

    Science.gov (United States)

    Tuft, Bradley William

    correlates with the maximum feature slope. Neurite alignment is compared on unpatterned, unidirectional, and multidirectional photopolymerized micropatterns. The effect of substrate rigidity on neurite alignment to physical cues was determined by maintaining equivalent pattern microfeatures, afforded by the reaction control of photopolymerization, while concomitantly altering the composition of several copolymer platforms to tune matrix stiffness. For each platform, neurite alignment to unidirectional patterns increases with increasing substrate rigidity. Interestingly, SGN neurites respond to material stiffness cues that are orders of magnitude higher (GPa) than what is typically ascribed to neural environments (kPa). Finally, neurite behavior at bioactive borders of various adhesion modulating molecules was evaluated on micropatterned materials to determine which cues took precedence in establishing neurite directionality. At low microfeatures aspect ratios, neurites align to the pattern direction but are then caused to turn and repel from or turn and align to bioactive borders. Conversely, physical cues dominate neurite path-finding as pattern feature slope increases, i.e. aspect ratio of sloping photopolymerized features increases, causing neurites to readily cross bioactive borders. The photopolymerization method developed in this work to generate micro and nanopatterned materials serves as an additional surface engineering tool that enables investigation of cell-material interactions including directed de novo neurite growth. The results of this interdisciplinary effort contribute substantially to polymer neural regeneration technology and will lead to development of advanced biomaterials that improve neural prosthetic tissue integration and performance by spatially directing nerve growth.

  1. Neural activity in the hippocampus during conflict resolution.

    Science.gov (United States)

    Sakimoto, Yuya; Okada, Kana; Hattori, Minoru; Takeda, Kozue; Sakata, Shogo

    2013-01-15

    This study examined configural association theory and conflict resolution models in relation to hippocampal neural activity during positive patterning tasks. According to configural association theory, the hippocampus is important for responses to compound stimuli in positive patterning tasks. In contrast, according to the conflict resolution model, the hippocampus is important for responses to single stimuli in positive patterning tasks. We hypothesized that if configural association theory is applicable, and not the conflict resolution model, the hippocampal theta power should be increased when compound stimuli are presented. If, on the other hand, the conflict resolution model is applicable, but not configural association theory, then the hippocampal theta power should be increased when single stimuli are presented. If both models are valid and applicable in the positive patterning task, we predict that the hippocampal theta power should be increased by presentation of both compound and single stimuli during the positive patterning task. To examine our hypotheses, we measured hippocampal theta power in rats during a positive patterning task. The results showed that hippocampal theta power increased during the presentation of a single stimulus, but did not increase during the presentation of a compound stimulus. This finding suggests that the conflict resolution model is more applicable than the configural association theory for describing neural activity during positive patterning tasks. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Patterns of interval correlations in neural oscillators with adaptation

    Directory of Open Access Journals (Sweden)

    Tilo eSchwalger

    2013-11-01

    Full Text Available Neural firing is often subject to negative feedback by adaptationcurrents. These currents can induce strong correlations among the timeintervals between spikes. Here we study analytically the intervalcorrelations of a broad class of noisy neural oscillators withspike-triggered adaptation of arbitrary strength and time scale. Ourweak-noise theory provides a general relation between the correlationsand the phase-response curve (PRC of the oscillator, provesanti-correlations between neighboring intervals for adapting neuronswith type I PRC and identifies a single order parameter thatdetermines the qualitative pattern of correlations. Monotonicallydecaying or oscillating correlation structures can be related toqualitatively different voltage traces after spiking, which can beexplained by the phase plane geometry. At high firing rates, thelong-term variability of the spike train associated with thecumulative interval correlations becomes small, independent of modeldetails. Our results are verified by comparison with stochasticsimulations of the exponential, leaky, and generalizedintegrate-and-fire models with adaptation.

  3. Multi-Connection Pattern Analysis: Decoding the representational content of neural communication.

    Science.gov (United States)

    Li, Yuanning; Richardson, Robert Mark; Ghuman, Avniel Singh

    2017-11-15

    The lack of multivariate methods for decoding the representational content of interregional neural communication has left it difficult to know what information is represented in distributed brain circuit interactions. Here we present Multi-Connection Pattern Analysis (MCPA), which works by learning mappings between the activity patterns of the populations as a factor of the information being processed. These maps are used to predict the activity from one neural population based on the activity from the other population. Successful MCPA-based decoding indicates the involvement of distributed computational processing and provides a framework for probing the representational structure of the interaction. Simulations demonstrate the efficacy of MCPA in realistic circumstances. In addition, we demonstrate that MCPA can be applied to different signal modalities to evaluate a variety of hypothesis associated with information coding in neural communications. We apply MCPA to fMRI and human intracranial electrophysiological data to provide a proof-of-concept of the utility of this method for decoding individual natural images and faces in functional connectivity data. We further use a MCPA-based representational similarity analysis to illustrate how MCPA may be used to test computational models of information transfer among regions of the visual processing stream. Thus, MCPA can be used to assess the information represented in the coupled activity of interacting neural circuits and probe the underlying principles of information transformation between regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Neural activity when people solve verbal problems with insight.

    Directory of Open Access Journals (Sweden)

    Mark Jung-Beeman

    2004-04-01

    Full Text Available People sometimes solve problems with a unique process called insight, accompanied by an "Aha!" experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1 revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2 revealed a sudden burst of high-frequency (gamma-band neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them.

  5. Pooling and correlated neural activity

    Directory of Open Access Journals (Sweden)

    Robert Rosenbaum

    2010-04-01

    Full Text Available Correlations between spike trains can strongly modulate neuronal activity and affect the ability of neurons to encode information. Neurons integrate inputs from thousands of afferents. Similarly, a number of experimental techniques are designed to record pooled cell activity. We review and generalize a number of previous results that show how correlations between cells in a population can be amplified and distorted in signals that reflect their collective activity. The structure of the underlying neuronal response can significantly impact correlations between such pooled signals. Therefore care needs to be taken when interpreting pooled recordings, or modeling networks of cells that receive inputs from large presynaptic populations. We also show that the frequently observed runaway synchrony in feedforward chains is primarily due to the pooling of correlated inputs.

  6. Optimal Hierarchical Modular Topologies for Producing Limited Sustained Activation of Neural Networks

    OpenAIRE

    Kaiser, Marcus; Hilgetag, Claus C.

    2010-01-01

    An essential requirement for the representation of functional patterns in complex neural networks, such as the mammalian cerebral cortex, is the existence of stable regimes of network activation, typically arising from a limited parameter range. In this range of limited sustained activity (LSA), the activity of neural populations in the network persists between the extremes of either quickly dying out or activating the whole network. Hierarchical modular networks were previously found to show...

  7. Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Walshe Muriel

    2011-01-01

    Full Text Available Abstract Background Impairments in executive function and language processing are characteristic of both schizophrenia and bipolar disorder. Their functional neuroanatomy demonstrate features that are shared as well as specific to each disorder. Determining the distinct pattern of neural responses in schizophrenia and bipolar disorder may provide biomarkers for their diagnoses. Methods 104 participants underwent functional magnetic resonance imaging (fMRI scans while performing a phonological verbal fluency task. Subjects were 32 patients with schizophrenia in remission, 32 patients with bipolar disorder in an euthymic state, and 40 healthy volunteers. Neural responses to verbal fluency were examined in each group, and the diagnostic potential of the pattern of the neural responses was assessed with machine learning analysis. Results During the verbal fluency task, both patient groups showed increased activation in the anterior cingulate, left dorsolateral prefrontal cortex and right putamen as compared to healthy controls, as well as reduced deactivation of precuneus and posterior cingulate. The magnitude of activation was greatest in patients with schizophrenia, followed by patients with bipolar disorder and then healthy individuals. Additional recruitment in the right inferior frontal and right dorsolateral prefrontal cortices was observed in schizophrenia relative to both bipolar disorder and healthy subjects. The pattern of neural responses correctly identified individual patients with schizophrenia with an accuracy of 92%, and those with bipolar disorder with an accuracy of 79% in which mis-classification was typically of bipolar subjects as healthy controls. Conclusions In summary, both schizophrenia and bipolar disorder are associated with altered function in prefrontal, striatal and default mode networks, but the magnitude of this dysfunction is particularly marked in schizophrenia. The pattern of response to verbal fluency is highly

  8. Sow-activity classification from acceleration patterns

    DEFF Research Database (Denmark)

    Escalante, Hugo Jair; Rodriguez, Sara V.; Cordero, Jorge

    2013-01-01

    sow-activity classification can be approached with standard machine learning methods for pattern classification. Individual predictions for elements of times series of arbitrary length are combined to classify it as a whole. An extensive comparison of representative learning algorithms, including......This paper describes a supervised learning approach to sow-activity classification from accelerometer measurements. In the proposed methodology, pairs of accelerometer measurements and activity types are considered as labeled instances of a usual supervised classification task. Under this scenario...... neural networks, support vector machines, and ensemble methods, is presented. Experimental results are reported using a data set for sow-activity classification collected in a real production herd. The data set, which has been widely used in related works, includes measurements from active (Feeding...

  9. Application of neural networks to seismic active control

    International Nuclear Information System (INIS)

    Tang, Yu.

    1995-01-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads

  10. A simple method for estimating the entropy of neural activity

    International Nuclear Information System (INIS)

    Berry II, Michael J; Tkačik, Gašper; Dubuis, Julien; Marre, Olivier; Da Silveira, Rava Azeredo

    2013-01-01

    The number of possible activity patterns in a population of neurons grows exponentially with the size of the population. Typical experiments explore only a tiny fraction of the large space of possible activity patterns in the case of populations with more than 10 or 20 neurons. It is thus impossible, in this undersampled regime, to estimate the probabilities with which most of the activity patterns occur. As a result, the corresponding entropy—which is a measure of the computational power of the neural population—cannot be estimated directly. We propose a simple scheme for estimating the entropy in the undersampled regime, which bounds its value from both below and above. The lower bound is the usual ‘naive’ entropy of the experimental frequencies. The upper bound results from a hybrid approximation of the entropy which makes use of the naive estimate, a maximum entropy fit, and a coverage adjustment. We apply our simple scheme to artificial data, in order to check their accuracy; we also compare its performance to those of several previously defined entropy estimators. We then apply it to actual measurements of neural activity in populations with up to 100 cells. Finally, we discuss the similarities and differences between the proposed simple estimation scheme and various earlier methods. (paper)

  11. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    Science.gov (United States)

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  12. Patterns of work attitudes: A neural network approach

    Science.gov (United States)

    Mengov, George D.; Zinovieva, Irina L.; Sotirov, George R.

    2000-05-01

    In this paper we introduce a neural networks based approach to analyzing empirical data and models from work and organizational psychology (WOP), and suggest possible implications for the practice of managers and business consultants. With this method it becomes possible to have quantitative answers to a bunch of questions like: What are the characteristics of an organization in terms of its employees' motivation? What distinct attitudes towards the work exist? Which pattern is most desirable from the standpoint of productivity and professional achievement? What will be the dynamics of behavior as quantified by our method, during an ongoing organizational change or consultancy intervention? Etc. Our investigation is founded on the theoretical achievements of Maslow (1954, 1970) in human motivation, and of Hackman & Oldham (1975, 1980) in job diagnostics, and applies the mathematical algorithm of the dARTMAP variation (Carpenter et al., 1998) of the Adaptive Resonance Theory (ART) neural networks introduced by Grossberg (1976). We exploit the ART capabilities to visualize the knowledge accumulated in the network's long-term memory in order to interpret the findings in organizational research.

  13. Differential theory of learning for efficient neural network pattern recognition

    Science.gov (United States)

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-09-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generate well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  14. Improved Discriminability of Spatiotemporal Neural Patterns in Rat Motor Cortical Areas as Directional Choice Learning Progresses

    Directory of Open Access Journals (Sweden)

    Hongwei eMao

    2015-03-01

    Full Text Available Animals learn to choose a proper action among alternatives to improve their odds of success in food foraging and other activities critical for survival. Through trial-and-error, they learn correct associations between their choices and external stimuli. While a neural network that underlies such learning process has been identified at a high level, it is still unclear how individual neurons and a neural ensemble adapt as learning progresses. In this study, we monitored the activity of single units in the rat medial and lateral agranular (AGm and AGl, respectively areas as rats learned to make a left or right side lever press in response to a left or right side light cue. We noticed that rat movement parameters during the performance of the directional choice task quickly became stereotyped during the first 2-3 days or sessions. But learning the directional choice problem took weeks to occur. Accompanying rats’ behavioral performance adaptation, we observed neural modulation by directional choice in recorded single units. Our analysis shows that ensemble mean firing rates in the cue-on period did not change significantly as learning progressed, and the ensemble mean rate difference between left and right side choices did not show a clear trend of change either. However, the spatiotemporal firing patterns of the neural ensemble exhibited improved discriminability between the two directional choices through learning. These results suggest a spatiotemporal neural coding scheme in a motor cortical neural ensemble that may be responsible for and contributing to learning the directional choice task.

  15. Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf

    Science.gov (United States)

    Almeida, Jorge; He, Dongjun; Chen, Quanjing; Mahon, Bradford Z.; Zhang, Fan; Gonçalves, Óscar F.; Fang, Fang; Bi, Yanchao

    2016-01-01

    Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus—a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex. PMID:26423461

  16. What Neural Substrates Trigger the Adept Scientific Pattern Discovery by Biologists?

    Science.gov (United States)

    Lee, Jun-Ki; Kwon, Yong-Ju

    2011-04-01

    This study investigated the neural correlates of experts and novices during biological object pattern detection using an fMRI approach in order to reveal the neural correlates of a biologist's superior pattern discovery ability. Sixteen healthy male participants (8 biologists and 8 non-biologists) volunteered for the study. Participants were shown fifteen series of organism pictures and asked to detect patterns amid stimulus pictures. Primary findings showed significant activations in the right middle temporal gyrus and inferior parietal lobule amongst participants in the biologist (expert) group. Interestingly, the left superior temporal gyrus was activated in participants from the non-biologist (novice) group. These results suggested that superior pattern discovery ability could be related to a functional facilitation of the parieto-temporal network, which is particularly driven by the right middle temporal gyrus and inferior parietal lobule in addition to the recruitment of additional brain regions. Furthermore, the functional facilitation of the network might actually pertain to high coherent processing skills and visual working memory capacity. Hence, study results suggested that adept scientific thinking ability can be detected by neuronal substrates, which may be used as criteria for developing and evaluating a brain-based science curriculum and test instrument.

  17. Self-reported empathy and neural activity during action imitation and observation in schizophrenia.

    Science.gov (United States)

    Horan, William P; Iacoboni, Marco; Cross, Katy A; Korb, Alex; Lee, Junghee; Nori, Poorang; Quintana, Javier; Wynn, Jonathan K; Green, Michael F

    2014-01-01

    Although social cognitive impairments are key determinants of functional outcome in schizophrenia their neural bases are poorly understood. This study investigated neural activity during imitation and observation of finger movements and facial expressions in schizophrenia, and their correlates with self-reported empathy. 23 schizophrenia outpatients and 23 healthy controls were studied with functional magnetic resonance imaging (fMRI) while they imitated, executed, or simply observed finger movements and facial emotional expressions. Between-group activation differences, as well as relationships between activation and self-reported empathy, were evaluated. Both patients and controls similarly activated neural systems previously associated with these tasks. We found no significant between-group differences in task-related activations. There were, however, between-group differences in the correlation between self-reported empathy and right inferior frontal (pars opercularis) activity during observation of facial emotional expressions. As in previous studies, controls demonstrated a positive association between brain activity and empathy scores. In contrast, the pattern in the patient group reflected a negative association between brain activity and empathy. Although patients with schizophrenia demonstrated largely normal patterns of neural activation across the finger movement and facial expression tasks, they reported decreased self perceived empathy and failed to show the typical relationship between neural activity and self-reported empathy seen in controls. These findings suggest that patients show a disjunction between automatic neural responses to low level social cues and higher level, integrative social cognitive processes involved in self-perceived empathy.

  18. Cross-Modal Decoding of Neural Patterns Associated with Working Memory: Evidence for Attention-Based Accounts of Working Memory.

    Science.gov (United States)

    Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica

    2016-01-01

    Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Cortical activity patterns predict robust speech discrimination ability in noise

    Science.gov (United States)

    Shetake, Jai A.; Wolf, Jordan T.; Cheung, Ryan J.; Engineer, Crystal T.; Ram, Satyananda K.; Kilgard, Michael P.

    2012-01-01

    The neural mechanisms that support speech discrimination in noisy conditions are poorly understood. In quiet conditions, spike timing information appears to be used in the discrimination of speech sounds. In this study, we evaluated the hypothesis that spike timing is also used to distinguish between speech sounds in noisy conditions that significantly degrade neural responses to speech sounds. We tested speech sound discrimination in rats and recorded primary auditory cortex (A1) responses to speech sounds in background noise of different intensities and spectral compositions. Our behavioral results indicate that rats, like humans, are able to accurately discriminate consonant sounds even in the presence of background noise that is as loud as the speech signal. Our neural recordings confirm that speech sounds evoke degraded but detectable responses in noise. Finally, we developed a novel neural classifier that mimics behavioral discrimination. The classifier discriminates between speech sounds by comparing the A1 spatiotemporal activity patterns evoked on single trials with the average spatiotemporal patterns evoked by known sounds. Unlike classifiers in most previous studies, this classifier is not provided with the stimulus onset time. Neural activity analyzed with the use of relative spike timing was well correlated with behavioral speech discrimination in quiet and in noise. Spike timing information integrated over longer intervals was required to accurately predict rat behavioral speech discrimination in noisy conditions. The similarity of neural and behavioral discrimination of speech in noise suggests that humans and rats may employ similar brain mechanisms to solve this problem. PMID:22098331

  20. NEURAL PROGENITORS, PATTERNING AND ECOLOGY IN NEOCORTICAL ORIGINS

    Directory of Open Access Journals (Sweden)

    Francisco eAboitiz

    2013-11-01

    Full Text Available The anatomical organization of the mammalian neocortex stands out among vertebrates for its laminar and columnar arrangement, featuring vertically oriented, excitatory pyramidal neurons. The evolutionary origin of this structure is discussed here in relation to the brain organization of other amniotes, i.e. the sauropsids (reptiles and birds. Specifically, we address the developmental modifications that had to take place to generate the neocortex, and to what extent these modifications were shared by other amniote lineages or can be considered unique to mammals. In this article, we propose a hypothesis that combines the control of proliferation in neural progenitor pools with the specification of regional morphogenetic gradients, yielding different anatomical results by virtue of the differential modulation of these processes in each lineage. Thus, there is a highly conserved genetic and developmental battery that becomes modulated in different directions according to specific selective pressures. In the case of early mammals, ecological conditions like nocturnal habits and reproductive strategies are considered to have played a key role in the selection of the particular brain patterning mechanisms that led to the origin of the neocortex.

  1. Comparison of eye imaging pattern recognition using neural network

    Science.gov (United States)

    Bukhari, W. M.; Syed A., M.; Nasir, M. N. M.; Sulaima, M. F.; Yahaya, M. S.

    2015-05-01

    The beauty of eye recognition system that it is used in automatic identifying and verifies a human weather from digital images or video source. There are various behaviors of the eye such as the color of the iris, size of pupil and shape of the eye. This study represents the analysis, design and implementation of a system for recognition of eye imaging. All the eye images that had been captured from the webcam in RGB format must through several techniques before it can be input for the pattern and recognition processes. The result shows that the final value of weight and bias after complete training 6 eye images for one subject is memorized by the neural network system and be the reference value of the weight and bias for the testing part. The target classifies to 5 different types for 5 subjects. The eye images can recognize the subject based on the target that had been set earlier during the training process. When the values between new eye image and the eye image in the database are almost equal, it is considered the eye image is matched.

  2. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  3. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes.

    Science.gov (United States)

    Du, Mingde; Xu, Xianchen; Yang, Long; Guo, Yichuan; Guan, Shouliang; Shi, Jidong; Wang, Jinfen; Fang, Ying

    2018-05-15

    Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Pattern Recognition and Classification of Fatal Traffic Accidents in Israel A Neural Network Approach

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo; Gitelman, Victoria; Bekhor, Shlomo

    2011-01-01

    on 1,793 fatal traffic accidents occurred during the period between 2003 and 2006 and applies Kohonen and feed-forward back-propagation neural networks with the objective of extracting from the data typical patterns and relevant factors. Kohonen neural networks reveal five compelling accident patterns....... Feed-forward back-propagation neural networks indicate that sociodemographic characteristics of drivers and victims, accident location, and period of the day are extremely relevant factors. Accident patterns suggest that countermeasures are necessary for identified problems concerning mainly vulnerable...

  5. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  6. Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns.

    Directory of Open Access Journals (Sweden)

    Silvia Scarpetta

    Full Text Available We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain. Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.

  7. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    Science.gov (United States)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  8. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    Science.gov (United States)

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  9. An Activity for Demonstrating the Concept of a Neural Circuit

    Science.gov (United States)

    Kreiner, David S.

    2012-01-01

    College students in two sections of a general psychology course participated in a demonstration of a simple neural circuit. The activity was based on a neural circuit that Jeffress proposed for localizing sounds. Students in one section responded to a questionnaire prior to participating in the activity, while students in the other section…

  10. Fuzzy logic and neural networks in artificial intelligence and pattern recognition

    Science.gov (United States)

    Sanchez, Elie

    1991-10-01

    With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.

  11. Pattern recognition neural-net by spatial mapping of biology visual field

    Science.gov (United States)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  12. Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.

    Science.gov (United States)

    Goudar, Vishwa; Buonomano, Dean V

    2018-03-14

    Much of the information the brain processes and stores is temporal in nature-a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds-we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. © 2018, Goudar et al.

  13. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Science.gov (United States)

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  14. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns

    Science.gov (United States)

    Meulemans, Daniel; Bronner-Fraser, Marianne

    2002-01-01

    The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.

  15. Neural activity reveals perceptual grouping in working memory.

    Science.gov (United States)

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  16. Neural activity associated with self-reflection.

    Science.gov (United States)

    Herwig, Uwe; Kaffenberger, Tina; Schell, Caroline; Jäncke, Lutz; Brühl, Annette B

    2012-05-24

    Self-referential cognitions are important for self-monitoring and self-regulation. Previous studies have addressed the neural correlates of self-referential processes in response to or related to external stimuli. We here investigated brain activity associated with a short, exclusively mental process of self-reflection in the absence of external stimuli or behavioural requirements. Healthy subjects reflected either on themselves, a personally known or an unknown person during functional magnetic resonance imaging (fMRI). The reflection period was initialized by a cue and followed by photographs of the respective persons (perception of pictures of oneself or the other person). Self-reflection, compared with reflecting on the other persons and to a major part also compared with perceiving photographs of one-self, was associated with more prominent dorsomedial and lateral prefrontal, insular, anterior and posterior cingulate activations. Whereas some of these areas showed activity in the "other"-conditions as well, self-selective characteristics were revealed in right dorsolateral prefrontal and posterior cingulate cortex for self-reflection; in anterior cingulate cortex for self-perception and in the left inferior parietal lobe for self-reflection and -perception. Altogether, cingulate, medial and lateral prefrontal, insular and inferior parietal regions show relevance for self-related cognitions, with in part self-specificity in terms of comparison with the known-, unknown- and perception-conditions. Notably, the results are obtained here without behavioural response supporting the reliability of this methodological approach of applying a solely mental intervention. We suggest considering the reported structures when investigating psychopathologically affected self-related processing.

  17. Large-scale multielectrode recording and stimulation of neural activity

    International Nuclear Information System (INIS)

    Sher, A.; Chichilnisky, E.J.; Dabrowski, W.; Grillo, A.A.; Grivich, M.; Gunning, D.; Hottowy, P.; Kachiguine, S.; Litke, A.M.; Mathieson, K.; Petrusca, D.

    2007-01-01

    Large circuits of neurons are employed by the brain to encode and process information. How this encoding and processing is carried out is one of the central questions in neuroscience. Since individual neurons communicate with each other through electrical signals (action potentials), the recording of neural activity with arrays of extracellular electrodes is uniquely suited for the investigation of this question. Such recordings provide the combination of the best spatial (individual neurons) and temporal (individual action-potentials) resolutions compared to other large-scale imaging methods. Electrical stimulation of neural activity in turn has two very important applications: it enhances our understanding of neural circuits by allowing active interactions with them, and it is a basis for a large variety of neural prosthetic devices. Until recently, the state-of-the-art in neural activity recording systems consisted of several dozen electrodes with inter-electrode spacing ranging from tens to hundreds of microns. Using silicon microstrip detector expertise acquired in the field of high-energy physics, we created a unique neural activity readout and stimulation framework that consists of high-density electrode arrays, multi-channel custom-designed integrated circuits, a data acquisition system, and data-processing software. Using this framework we developed a number of neural readout and stimulation systems: (1) a 512-electrode system for recording the simultaneous activity of as many as hundreds of neurons, (2) a 61-electrode system for electrical stimulation and readout of neural activity in retinas and brain-tissue slices, and (3) a system with telemetry capabilities for recording neural activity in the intact brain of awake, naturally behaving animals. We will report on these systems, their various applications to the field of neurobiology, and novel scientific results obtained with some of them. We will also outline future directions

  18. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    Science.gov (United States)

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance

  19. The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2017-09-01

    Full Text Available Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the “intermediate neurons.” We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes

  20. Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network

    NARCIS (Netherlands)

    Park, Y.S.; Verdonschot, P.F.M.; Chon, T.S.; Lek, S.

    2003-01-01

    A counterpropagation neural network (CPN) was applied to predict species richness (SR) and Shannon diversity index (SH) of benthic macroinvertebrate communities using 34 environmental variables. The data were collected at 664 sites at 23 different water types such as springs, streams, rivers,

  1. Hypothetical Pattern Recognition Design Using Multi-Layer Perceptorn Neural Network For Supervised Learning

    Directory of Open Access Journals (Sweden)

    Md. Abdullah-al-mamun

    2015-08-01

    Full Text Available Abstract Humans are capable to identifying diverse shape in the different pattern in the real world as effortless fashion due to their intelligence is grow since born with facing several learning process. Same way we can prepared an machine using human like brain called Artificial Neural Network that can be recognize different pattern from the real world object. Although the various techniques is exists to implementation the pattern recognition but recently the artificial neural network approaches have been giving the significant attention. Because the approached of artificial neural network is like a human brain that is learn from different observation and give a decision the previously learning rule. Over the 50 years research now a days pattern recognition for machine learning using artificial neural network got a significant achievement. For this reason many real world problem can be solve by modeling the pattern recognition process. The objective of this paper is to present the theoretical concept for pattern recognition design using Multi-Layer Perceptorn neural networkin the algorithm of artificial Intelligence as the best possible way of utilizing available resources to make a decision that can be a human like performance.

  2. Modeling Patterns of Activities using Activity Curves.

    Science.gov (United States)

    Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen

    2016-06-01

    Pervasive computing offers an unprecedented opportunity to unobtrusively monitor behavior and use the large amount of collected data to perform analysis of activity-based behavioral patterns. In this paper, we introduce the notion of an activity curve , which represents an abstraction of an individual's normal daily routine based on automatically-recognized activities. We propose methods to detect changes in behavioral routines by comparing activity curves and use these changes to analyze the possibility of changes in cognitive or physical health. We demonstrate our model and evaluate our change detection approach using a longitudinal smart home sensor dataset collected from 18 smart homes with older adult residents. Finally, we demonstrate how big data-based pervasive analytics such as activity curve-based change detection can be used to perform functional health assessment. Our evaluation indicates that correlations do exist between behavior and health changes and that these changes can be automatically detected using smart homes, machine learning, and big data-based pervasive analytics.

  3. Neural Pattern Similarity in the Left IFG and Fusiform Is Associated with Novel Word Learning

    Science.gov (United States)

    Qu, Jing; Qian, Liu; Chen, Chuansheng; Xue, Gui; Li, Huiling; Xie, Peng; Mei, Leilei

    2017-01-01

    Previous studies have revealed that greater neural pattern similarity across repetitions is associated with better subsequent memory. In this study, we used an artificial language training paradigm and representational similarity analysis to examine whether neural pattern similarity across repetitions before training was associated with post-training behavioral performance. Twenty-four native Chinese speakers were trained to learn a logographic artificial language for 12 days and behavioral performance was recorded using the word naming and picture naming tasks. Participants were scanned while performing a passive viewing task before training, after 4-day training and after 12-day training. Results showed that pattern similarity in the left pars opercularis (PO) and fusiform gyrus (FG) before training was negatively associated with reaction time (RT) in both word naming and picture naming tasks after training. These results suggest that neural pattern similarity is an effective neurofunctional predictor of novel word learning in addition to word memory. PMID:28878640

  4. Neural Pattern Similarity in the Left IFG and Fusiform Is Associated with Novel Word Learning

    Directory of Open Access Journals (Sweden)

    Jing Qu

    2017-08-01

    Full Text Available Previous studies have revealed that greater neural pattern similarity across repetitions is associated with better subsequent memory. In this study, we used an artificial language training paradigm and representational similarity analysis to examine whether neural pattern similarity across repetitions before training was associated with post-training behavioral performance. Twenty-four native Chinese speakers were trained to learn a logographic artificial language for 12 days and behavioral performance was recorded using the word naming and picture naming tasks. Participants were scanned while performing a passive viewing task before training, after 4-day training and after 12-day training. Results showed that pattern similarity in the left pars opercularis (PO and fusiform gyrus (FG before training was negatively associated with reaction time (RT in both word naming and picture naming tasks after training. These results suggest that neural pattern similarity is an effective neurofunctional predictor of novel word learning in addition to word memory.

  5. Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition

    CERN Document Server

    Melin, Patricia

    2012-01-01

    This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural ne...

  6. Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern.

    Science.gov (United States)

    Thaut, Michael H; Trimarchi, Pietro Davide; Parsons, Lawrence M

    2014-06-17

    Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET) as they made covert same-different discriminations of (a) pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b) pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices. Meter processing alone activated areas in right prefrontal and inferior frontal cortex associated with more cognitive and abstract representations. Pattern processing alone recruited right cortical areas involved in different kinds of auditory processing. Tempo processing alone engaged mechanisms subserving somatosensory and premotor information (e.g., posterior insula, postcentral gyrus). Melody produced activity different from the rhythm conditions (e.g., right anterior insula and various cerebellar areas). These exploratory findings suggest the outlines of some distinct neural components underlying the components of rhythmic structure.

  7. Neural communication patterns underlying conflict detection, resolution, and adaptation.

    Science.gov (United States)

    Oehrn, Carina R; Hanslmayr, Simon; Fell, Juergen; Deuker, Lorena; Kremers, Nico A; Do Lam, Anne T; Elger, Christian E; Axmacher, Nikolai

    2014-07-30

    In an ever-changing environment, selecting appropriate responses in conflicting situations is essential for biological survival and social success and requires cognitive control, which is mediated by dorsomedial prefrontal cortex (DMPFC) and dorsolateral prefrontal cortex (DLPFC). How these brain regions communicate during conflict processing (detection, resolution, and adaptation), however, is still unknown. The Stroop task provides a well-established paradigm to investigate the cognitive mechanisms mediating such response conflict. Here, we explore the oscillatory patterns within and between the DMPFC and DLPFC in human epilepsy patients with intracranial EEG electrodes during an auditory Stroop experiment. Data from the DLPFC were obtained from 12 patients. Thereof four patients had additional DMPFC electrodes available for interaction analyses. Our results show that an early θ (4-8 Hz) modulated enhancement of DLPFC γ-band (30-100 Hz) activity constituted a prerequisite for later successful conflict processing. Subsequent conflict detection was reflected in a DMPFC θ power increase that causally entrained DLPFC θ activity (DMPFC to DLPFC). Conflict resolution was thereafter completed by coupling of DLPFC γ power to DMPFC θ oscillations. Finally, conflict adaptation was related to increased postresponse DLPFC γ-band activity and to θ coupling in the reverse direction (DLPFC to DMPFC). These results draw a detailed picture on how two regions in the prefrontal cortex communicate to resolve cognitive conflicts. In conclusion, our data show that conflict detection, control, and adaptation are supported by a sequence of processes that use the interplay of θ and γ oscillations within and between DMPFC and DLPFC. Copyright © 2014 the authors 0270-6474/14/3410438-15$15.00/0.

  8. Compact holographic optical neural network system for real-time pattern recognition

    Science.gov (United States)

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  9. Modulation of Neural Activity during Guided Viewing of Visual Art.

    Science.gov (United States)

    Herrera-Arcos, Guillermo; Tamez-Duque, Jesús; Acosta-De-Anda, Elsa Y; Kwan-Loo, Kevin; de-Alba, Mayra; Tamez-Duque, Ulises; Contreras-Vidal, Jose L; Soto, Rogelio

    2017-01-01

    Mobile Brain-Body Imaging (MoBI) technology was deployed to record multi-modal data from 209 participants to examine the brain's response to artistic stimuli at the Museo de Arte Contemporáneo (MARCO) in Monterrey, México. EEG signals were recorded as the subjects walked through the exhibit in guided groups of 6-8 people. Moreover, guided groups were either provided with an explanation of each art piece (Guided-E), or given no explanation (Guided-NE). The study was performed using portable Muse (InteraXon, Inc, Toronto, ON, Canada) headbands with four dry electrodes located at AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL) control condition devoid of artistic stimuli and selected his/her favorite piece of art (FP) during the guided tour. In this study, we report data related to participants' demographic information and aesthetic preference as well as effects of art viewing on neural activity (EEG) in a select subgroup of 18-30 year-old subjects (Nc = 25) that generated high-quality EEG signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and presence or absence of art explanation were also analyzed. After denoising, clustering of spectral EEG models was used to identify neural patterns associated with BL and FP conditions. Results indicate statistically significant suppression of beta band frequencies (15-25 Hz) in the prefrontal electrodes (AF7 and AF8) during appreciation of subjects' favorite painting, compared to the BL condition, which was significantly different from EEG responses to non-favorite paintings (NFP). No significant differences in brain activity in relation to the presence or absence of explanation during exhibit tours were found. Moreover, a frontal to posterior asymmetry in neural activity was observed, for both BL and FP conditions. These findings provide new information about frequency-related effects of preferred art viewing in brain activity, and support the view that art appreciation is

  10. Information content of neural networks with self-control and variable activity

    International Nuclear Information System (INIS)

    Bolle, D.; Amari, S.I.; Dominguez Carreta, D.R.C.; Massolo, G.

    2001-01-01

    A self-control mechanism for the dynamics of neural networks with variable activity is discussed using a recursive scheme for the time evolution of the local field. It is based upon the introduction of a self-adapting time-dependent threshold as a function of both the neural and pattern activity in the network. This mechanism leads to an improvement of the information content of the network as well as an increase of the storage capacity and the basins of attraction. Different architectures are considered and the results are compared with numerical simulations

  11. Neural Activity Reveals Preferences Without Choices

    Science.gov (United States)

    Smith, Alec; Bernheim, B. Douglas; Camerer, Colin

    2014-01-01

    We investigate the feasibility of inferring the choices people would make (if given the opportunity) based on their neural responses to the pertinent prospects when they are not engaged in actual decision making. The ability to make such inferences is of potential value when choice data are unavailable, or limited in ways that render standard methods of estimating choice mappings problematic. We formulate prediction models relating choices to “non-choice” neural responses and use them to predict out-of-sample choices for new items and for new groups of individuals. The predictions are sufficiently accurate to establish the feasibility of our approach. PMID:25729468

  12. Neural code alterations and abnormal time patterns in Parkinson’s disease

    Science.gov (United States)

    Andres, Daniela Sabrina; Cerquetti, Daniel; Merello, Marcelo

    2015-04-01

    Objective. The neural code used by the basal ganglia is a current question in neuroscience, relevant for the understanding of the pathophysiology of Parkinson’s disease. While a rate code is known to participate in the communication between the basal ganglia and the motor thalamus/cortex, different lines of evidence have also favored the presence of complex time patterns in the discharge of the basal ganglia. To gain insight into the way the basal ganglia code information, we studied the activity of the globus pallidus pars interna (GPi), an output node of the circuit. Approach. We implemented the 6-hydroxydopamine model of Parkinsonism in Sprague-Dawley rats, and recorded the spontaneous discharge of single GPi neurons, in head-restrained conditions at full alertness. Analyzing the temporal structure function, we looked for characteristic scales in the neuronal discharge of the GPi. Main results. At a low-scale, we observed the presence of dynamic processes, which allow the transmission of time patterns. Conversely, at a middle-scale, stochastic processes force the use of a rate code. Regarding the time patterns transmitted, we measured the word length and found that it is increased in Parkinson’s disease. Furthermore, it showed a positive correlation with the frequency of discharge, indicating that an exacerbation of this abnormal time pattern length can be expected, as the dopamine depletion progresses. Significance. We conclude that a rate code and a time pattern code can co-exist in the basal ganglia at different temporal scales. However, their normal balance is progressively altered and replaced by pathological time patterns in Parkinson’s disease.

  13. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  14. Rotation-invariant neural pattern recognition system with application to coin recognition.

    Science.gov (United States)

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  15. Activity patterns in malformed fetuses.

    Science.gov (United States)

    Rayburn, W F; Barr, M

    1982-04-15

    Knowledge of a malformed fetus before the onset of labor would assist the physician in preparing the expectant parents, managing the timing and method of delivery, and preparing for the immediate care of a salvageable infant. This 3-year prospective investigation compared the activity patterns of fetuses who were later found to have major malformation with those of fetuses who had no apparent defects. Fetal motion over prolonged periods was determined by daily charting of fetal movement by the mother. Although not a reliable predictor for all malformations, evidence of fetal inactivity was found to be more common (p less than 0.0001) among fetuses with anomalies (16 of 58 cases, 28%) than among those with no defects (39 of 1,098 cases, 4%). All malformations associated with fetal inactivity were strongly suspected ultrasonographically and included hydrocephalus, gastroschisis, nonimmune hydrops, bilateral renal agenesis, and bilateral dislocation of the hips. Documentation of fetal inactivity is helpful in recognizing certain major malformations and constitutes grounds for more detailed study by ultrasonography.

  16. A Simple Quantum Neural Net with a Periodic Activation Function

    OpenAIRE

    Daskin, Ammar

    2018-01-01

    In this paper, we propose a simple neural net that requires only $O(nlog_2k)$ number of qubits and $O(nk)$ quantum gates: Here, $n$ is the number of input parameters, and $k$ is the number of weights applied to these parameters in the proposed neural net. We describe the network in terms of a quantum circuit, and then draw its equivalent classical neural net which involves $O(k^n)$ nodes in the hidden layer. Then, we show that the network uses a periodic activation function of cosine values o...

  17. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  18. Artificial neural network for bubbles pattern recognition on the images

    International Nuclear Information System (INIS)

    Poletaev, I E; Pervunin, K S; Tokarev, M P

    2016-01-01

    Two-phase bubble flows have been used in many technological and energy processes as processing oil, chemical and nuclear reactors. This explains large interest to experimental and numerical studies of such flows last several decades. Exploiting of optical diagnostics for analysis of the bubble flows allows researchers obtaining of instantaneous velocity fields and gaseous phase distribution with the high spatial resolution non-intrusively. Behavior of light rays exhibits an intricate manner when they cross interphase boundaries of gaseous bubbles hence the identification of the bubbles images is a complicated problem. This work presents a method of bubbles images identification based on a modern technology of deep learning called convolutional neural networks (CNN). Neural networks are able to determine overlapping, blurred, and non-spherical bubble images. They can increase accuracy of the bubble image recognition, reduce the number of outliers, lower data processing time, and significantly decrease the number of settings for the identification in comparison with standard recognition methods developed before. In addition, usage of GPUs speeds up the learning process of CNN owning to the modern adaptive subgradient optimization techniques. (paper)

  19. An improved genetic algorithm for designing optimal temporal patterns of neural stimulation

    Science.gov (United States)

    Cassar, Isaac R.; Titus, Nathan D.; Grill, Warren M.

    2017-12-01

    Objective. Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. Approach. We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. Main results. The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. Significance. The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.

  20. Numerical analysis of a neural network with hierarchically organized patterns

    International Nuclear Information System (INIS)

    Bacci, Silvia; Wiecko, Cristina; Parga, Nestor

    1988-01-01

    A numerical analysis of the retrieval behaviour of an associative memory model where the memorized patterns are stored hierarchically is performed. It is found that the model is able to categorize errors. For a finite number of categories, these are retrieved correctly even when the stored patterns are not. Instead, when they are allowed to increase with the number of neurons, their retrieval quality deteriorates above a critical category capacity. (Author)

  1. Differences in Neural Activation as a Function of Risk-taking Task Parameters

    Directory of Open Access Journals (Sweden)

    Eliza eCongdon

    2013-09-01

    Full Text Available Despite evidence supporting a relationship between impulsivity and naturalistic risk-taking, the relationship of impulsivity with laboratory-based measures of risky decision-making remains unclear. One factor contributing to this gap in our understanding is the degree to which different risky decision-making tasks vary in their details. We conducted an fMRI investigation of the Angling Risk Task (ART, which is an improved behavioral measure of risky decision-making. In order to examine whether the observed pattern of neural activation was specific to the ART or generalizable, we also examined correlates of the Balloon Analogue Risk Taking (BART task in the same sample of 23 healthy adults. Exploratory analyses were conducted to examine the relationship between neural activation, performance, impulsivity and self-reported risk-taking. While activation in a valuation network was associated with reward tracking during the ART but not the BART, increased fronto-cingulate activation was seen during risky choice trials in the BART as compared to the ART. Thus, neural activation during risky decision-making trials differed between the two tasks, and this observation was likely driven by differences in task parameters, namely the absence vs. presence of ambiguity and/or stationary vs. increasing probability of loss on the ART and BART, respectively. Exploratory association analyses suggest that sensitivity of neural response to the magnitude of potential reward during the ART was associated with a suboptimal performance strategy, higher scores on a scale of dysfunctional impulsivity and a greater likelihood of engaging in risky behaviors, while this pattern was not seen for the BART. Our results suggest that the ART is decomposable and associated with distinct patterns of neural activation; this represents a preliminary step towards characterizing a behavioral measure of risky decision-making that may support a better understanding of naturalistic risk-taking.

  2. Designing a Pattern Recognition Neural Network with a Reject Output and Many Sets of Weights and Biases

    OpenAIRE

    Dung, Le; Mizukawa, Makoto

    2008-01-01

    Adding the reject output to the pattern recognition neural network is an approach to help the neural network can classify almost all patterns of a training data set by using many sets of weights and biases, even if the neural network is small. With a smaller number of neurons, we can implement the neural network on a hardware-based platform more easily and also reduce the response time of it. With the reject output the neural network can produce not only right or wrong results but also reject...

  3. Organization of Anti-Phase Synchronization Pattern in Neural Networks: What are the Key Factors?

    Science.gov (United States)

    Li, Dong; Zhou, Changsong

    2011-01-01

    Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the mechanism underlying the organization of anti-phase pattern is of significance for better understanding more complicated pattern formations in brain networks. In dynamical systems theory, the organization of anti-phase oscillation pattern has usually been considered to relate to time delay in coupling. This is consistent to conduction delays in real neural networks in the brain due to finite propagation velocity of action potentials. However, other structural factors in cortical neural network, such as modular organization (connection density) and the coupling types (excitatory or inhibitory), could also play an important role. In this work, we investigate the anti-phase oscillation pattern organized on a two-module network of either neuronal cell model or neural mass model, and analyze the impact of the conduction delay times, the connection densities, and coupling types. Our results show that delay times and coupling types can play key roles in this organization. The connection densities may have an influence on the stability if an anti-phase pattern exists due to the other factors. Furthermore, we show that anti-phase synchronization of slow oscillations can be achieved with small delay times if there is interaction between slow and fast oscillations. These results are significant for further understanding more realistic spatiotemporal dynamics of cortico-cortical communications. PMID:22232576

  4. Strategies influence neural activity for feedback learning across child and adolescent development.

    Science.gov (United States)

    Peters, Sabine; Koolschijn, P Cédric M P; Crone, Eveline A; Van Duijvenvoorde, Anna C K; Raijmakers, Maartje E J

    2014-09-01

    Learning from feedback is an important aspect of executive functioning that shows profound improvements during childhood and adolescence. This is accompanied by neural changes in the feedback-learning network, which includes pre-supplementary motor area (pre- SMA)/anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC), and the basal ganglia. However, there can be considerable differences within age ranges in performance that are ascribed to differences in strategy use. This is problematic for traditional approaches of analyzing developmental data, in which age groups are assumed to be homogenous in strategy use. In this study, we used latent variable models to investigate if underlying strategy groups could be detected for a feedback-learning task and whether there were differences in neural activation patterns between strategies. In a sample of 268 participants between ages 8 to 25 years, we observed four underlying strategy groups, which were cut across age groups and varied in the optimality of executive functioning. These strategy groups also differed in neural activity during learning; especially the most optimal performing group showed more activity in DLPFC, SPC and pre-SMA/ACC compared to the other groups. However, age differences remained an important contributor to neural activation, even when correcting for strategy. These findings contribute to the debate of age versus performance predictors of neural development, and highlight the importance of studying individual differences in strategy use when studying development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Vector neural net identifying many strongly distorted and correlated patterns

    Science.gov (United States)

    Kryzhanovsky, Boris V.; Mikaelian, Andrei L.; Fonarev, Anatoly B.

    2005-01-01

    We suggest an effective and simple algorithm providing a polynomial storage capacity of a network of the form M ~ N2s+1, where N is the dimension of the stored binary patterns. In this problem the value of the free parameter s is restricted by the inequalities N >> slnN >= 1. The algorithm allows us to identify a large number of highly distorted similar patterns. The negative influence of correlations of the patterns is suppressed by choosing a sufficiently large value of the parameter s. We show the efficiency of the algorithm by the example of a perceptron identifier, but it also can be used to increase the storage capacity of full connected systems of associative memory.

  6. Optimization of the kernel functions in a probabilistic neural network analyzing the local pattern distribution.

    Science.gov (United States)

    Galleske, I; Castellanos, J

    2002-05-01

    This article proposes a procedure for the automatic determination of the elements of the covariance matrix of the gaussian kernel function of probabilistic neural networks. Two matrices, a rotation matrix and a matrix of variances, can be calculated by analyzing the local environment of each training pattern. The combination of them will form the covariance matrix of each training pattern. This automation has two advantages: First, it will free the neural network designer from indicating the complete covariance matrix, and second, it will result in a network with better generalization ability than the original model. A variation of the famous two-spiral problem and real-world examples from the UCI Machine Learning Repository will show a classification rate not only better than the original probabilistic neural network but also that this model can outperform other well-known classification techniques.

  7. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    Science.gov (United States)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  8. COMMUNICATION Designing a somatosensory neural prosthesis: percepts evoked by different patterns of thalamic stimulation

    Science.gov (United States)

    Heming, Ethan; Sanden, Andrew; Kiss, Zelma H. T.

    2010-12-01

    Although major advances have been made in the development of motor prostheses, fine motor control requires intuitive somatosensory feedback. Here we explored whether a thalamic site for a somatosensory neural prosthetic could provide natural somatic sensation to humans. Different patterns of electrical stimulation (obtained from thalamic spike trains) were applied in patients undergoing deep brain stimulation surgery. Changes in pattern produced different sensations, while preserving somatotopic representation. While most percepts were reported as 'unnatural', some stimulations produced more 'natural' sensations than others. However, the additional patterns did not elicit more 'natural' percepts than high-frequency (333 Hz) electrical stimulation. These features suggest that despite some limitations, the thalamus may be a feasible site for a somatosensory neural prosthesis and different stimulation patterns may be useful in its development.

  9. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.

    Science.gov (United States)

    Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang

    2014-07-03

    Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.

  10. Changing patterns of brain activation during maze learning.

    Science.gov (United States)

    Van Horn, J D; Gold, J M; Esposito, G; Ostrem, J L; Mattay, V; Weinberger, D R; Berman, K F

    1998-05-18

    Recent research has found that patterns of brain activation involving the frontal cortex during novel task performance change dramatically following practice and repeat performance. Evidence for differential left vs. right frontal lobe activation, respectively, during episodic memory encoding and retrieval has also been reported. To examine these potentially related issues regional cerebral blood flow (rCBF) was measured in 15 normal volunteers using positron emission tomography (PET) during the naive and practiced performance of a maze task paradigm. SPM analysis indicated a largely right-sided, frontal lobe activation during naive performance. Following training and practice, performance of the same maze task elicited a more posterior pattern of rCBF activation involving posterior cingulate and precuneus. The change in the pattern of rCBF activation between novel and practiced task conditions agrees with results found in previous studies using repeat task methodology, and indicates that the neural circuitry required for encoding novel task information differs from that required when the same task has become familiar and information is being recalled. The right-sided preponderance of activation during naive performance may relate to task novelty and the spatially-based nature of the stimuli, whereas posterior areas activated during repeat performance are those previously found to be associated with visuospatial memory recall. Activation of these areas, however, does not agree with previously reported findings of left-sided activation during verbal episodic memory encoding and right-sided activation during retrieval, suggesting different neural substrates for verbal and visuospatial processing within memory. Copyright 1998 Elsevier Science B.V.

  11. Definition of new 3D invariants. Applications to pattern recognition problems with neural networks

    International Nuclear Information System (INIS)

    Proriol, J.

    1996-01-01

    We propose a definition of new 3D invariants. Usual pattern recognition methods use 2D descriptions of 3D objects, we propose a 2D approximation of the defined 3D invariants which can be used with neural networks to solve pattern recognition problems. We describe some methods to use the 2 D approximants. This work is an extension of previous 3D invariants used to solve some high energy physics problems. (author)

  12. Whose Balance Sheet is this? Neural Networks for Banks' Pattern Recognition

    NARCIS (Netherlands)

    Leon Rincon, Carlos; Moreno, José Fernando; Cely, Jorge

    2017-01-01

    The balance sheet is a snapshot that portraits the financial position of a firm at a specific point of time. Under the reasonable assumption that the financial position of a firm is unique and representative, we use a basic artificial neural network pattern recognition method on Colombian banks’

  13. Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts

    Science.gov (United States)

    Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-01-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…

  14. Play It Again: Neural Responses to Reunion with Excluders Predicted by Attachment Patterns

    Science.gov (United States)

    White, Lars O.; Wu, Jia; Borelli, Jessica L.; Mayes, Linda C.; Crowley, Michael J.

    2013-01-01

    Reunion behavior following stressful separations from caregivers is often considered the single most sensitive clue to infant attachment patterns. Extending these ideas to middle childhood/early adolescence, we examined participants' neural responses to reunion with peers who had previously excluded them. We recorded event-related potentials…

  15. Behavioral and Physiological Neural Network Analyses: A Common Pathway toward Pattern Recognition and Prediction

    Science.gov (United States)

    Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.

    2012-01-01

    Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…

  16. Horizontal two phase flow pattern identification by neural networks

    International Nuclear Information System (INIS)

    Crivelaro, Kelen Cristina Oliveira; Seleghim Junior, Paulo; Hervieu, Eric

    1999-01-01

    A multiphase fluid can flow according to several flow regimes. The problem associated with multiphase systems are basically related to the behavior of macroscopic parameters, such as pressure drop, thermal exchanges and so on, and their strong correlation to the flow regime. From the industrial applications point of view, the safety and longevity of equipment and systems can only be assured when they work according to the flow regimes for which they were designed to. This implies in the need to diagnose flow regimes in real time. The automatic diagnosis of flow regimes represents an objective of extreme importance, mainly for applications on nuclear and petrochemical industries. In this work, a neural network is used in association to a probe of direct visualization for the identification of a gas-liquid flow horizontal regimes, developed in an experimental circuit. More specifically, the signals produced by the probe are used to compose a qualitative image of the flow, which is promptly sent to the network for the recognition of the regimes. Results are presented for different transitions among the flow regimes, which demonstrate the extremely satisfactory performance of the diagnosis system. (author)

  17. Neural Activity During The Formation Of A Giant Auditory Synapse

    NARCIS (Netherlands)

    M.C. Sierksma (Martijn)

    2018-01-01

    markdownabstractThe formation of synapses is a critical step in the development of the brain. During this developmental stage neural activity propagates across the brain from synapse to synapse. This activity is thought to instruct the precise, topological connectivity found in the sensory central

  18. Signal Processing, Pattern Formation and Adaptation in Neural Oscillators

    Science.gov (United States)

    2016-11-29

    rhythmic patterns. As such, our models are appropriate for describing various phenomena in the auditory system, including critical nonlinear...several distinct intrinsic behaviors available near a Hopf bifurcation or a Bautin (a.k.a. double limit cycle) bifurcation. Stability analysis shows...example the perception of pitch at event timescales (Meddis & O’Mard, 2006) and the perception of pulse and meter at rhythmic timescales (Large

  19. Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks.

    Science.gov (United States)

    Gardner, Brian; Sporea, Ioana; Grüning, André

    2015-12-01

    Information encoding in the nervous system is supported through the precise spike timings of neurons; however, an understanding of the underlying processes by which such representations are formed in the first place remains an open question. Here we examine how multilayered networks of spiking neurons can learn to encode for input patterns using a fully temporal coding scheme. To this end, we introduce a new supervised learning rule, MultilayerSpiker, that can train spiking networks containing hidden layer neurons to perform transformations between spatiotemporal input and output spike patterns. The performance of the proposed learning rule is demonstrated in terms of the number of pattern mappings it can learn, the complexity of network structures it can be used on, and its classification accuracy when using multispike-based encodings. In particular, the learning rule displays robustness against input noise and can generalize well on an example data set. Our approach contributes to both a systematic understanding of how computations might take place in the nervous system and a learning rule that displays strong technical capability.

  20. Model for a flexible motor memory based on a self-active recurrent neural network.

    Science.gov (United States)

    Boström, Kim Joris; Wagner, Heiko; Prieske, Markus; de Lussanet, Marc

    2013-10-01

    Using recent recurrent network architecture based on the reservoir computing approach, we propose and numerically simulate a model that is focused on the aspects of a flexible motor memory for the storage of elementary movement patterns into the synaptic weights of a neural network, so that the patterns can be retrieved at any time by simple static commands. The resulting motor memory is flexible in that it is capable to continuously modulate the stored patterns. The modulation consists in an approximately linear inter- and extrapolation, generating a large space of possible movements that have not been learned before. A recurrent network of thousand neurons is trained in a manner that corresponds to a realistic exercising scenario, with experimentally measured muscular activations and with kinetic data representing proprioceptive feedback. The network is "self-active" in that it maintains recurrent flow of activation even in the absence of input, a feature that resembles the "resting-state activity" found in the human and animal brain. The model involves the concept of "neural outsourcing" which amounts to the permanent shifting of computational load from higher to lower-level neural structures, which might help to explain why humans are able to execute learned skills in a fluent and flexible manner without the need for attention to the details of the movement. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Neural activation toward erotic stimuli in homosexual and heterosexual males.

    Science.gov (United States)

    Kagerer, Sabine; Klucken, Tim; Wehrum, Sina; Zimmermann, Mark; Schienle, Anne; Walter, Bertram; Vaitl, Dieter; Stark, Rudolf

    2011-11-01

    Studies investigating sexual arousal exist, yet there are diverging findings on the underlying neural mechanisms with regard to sexual orientation. Moreover, sexual arousal effects have often been confounded with general arousal effects. Hence, it is still unclear which structures underlie the sexual arousal response in homosexual and heterosexual men. Neural activity and subjective responses were investigated in order to disentangle sexual from general arousal. Considering sexual orientation, differential and conjoint neural activations were of interest. The functional magnetic resonance imaging (fMRI) study focused on the neural networks involved in the processing of sexual stimuli in 21 male participants (11 homosexual, 10 heterosexual). Both groups viewed pictures with erotic content as well as aversive and neutral stimuli. The erotic pictures were subdivided into three categories (most sexually arousing, least sexually arousing, and rest) based on the individual subjective ratings of each participant. Blood oxygen level-dependent responses measured by fMRI and subjective ratings. A conjunction analysis revealed conjoint neural activation related to sexual arousal in thalamus, hypothalamus, occipital cortex, and nucleus accumbens. Increased insula, amygdala, and anterior cingulate gyrus activation could be linked to general arousal. Group differences emerged neither when viewing the most sexually arousing pictures compared with highly arousing aversive pictures nor compared with neutral pictures. Results suggest that a widespread neural network is activated by highly sexually arousing visual stimuli. A partly distinct network of structures underlies sexual and general arousal effects. The processing of preferred, highly sexually arousing stimuli recruited similar structures in homosexual and heterosexual males. © 2011 International Society for Sexual Medicine.

  2. Understanding the Implications of Neural Population Activity on Behavior

    Science.gov (United States)

    Briguglio, John

    Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests

  3. Forecasting Flare Activity Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Hernandez, T.

    2017-12-01

    Current operational flare forecasting relies on human morphological analysis of active regions and the persistence of solar flare activity through time (i.e. that the Sun will continue to do what it is doing right now: flaring or remaining calm). In this talk we present the results of applying deep Convolutional Neural Networks (CNNs) to the problem of solar flare forecasting. CNNs operate by training a set of tunable spatial filters that, in combination with neural layer interconnectivity, allow CNNs to automatically identify significant spatial structures predictive for classification and regression problems. We will start by discussing the applicability and success rate of the approach, the advantages it has over non-automated forecasts, and how mining our trained neural network provides a fresh look into the mechanisms behind magnetic energy storage and release.

  4. Neural Network Based Recognition of Signal Patterns in Application to Automatic Testing of Rails

    Directory of Open Access Journals (Sweden)

    Tomasz Ciszewski

    2006-01-01

    Full Text Available The paper describes the application of neural network for recognition of signal patterns in measuring data gathered by the railroad ultrasound testing car. Digital conversion of the measuring signal allows to store and process large quantities of data. The elaboration of smart, effective and automatic procedures recognizing the obtained patterns on the basisof measured signal amplitude has been presented. The test shows only two classes of pattern recognition. In authors’ opinion if we deliver big enough quantity of training data, presented method is applicable to a system that recognizes many classes.

  5. Shades of grey; Assessing the contribution of the magno- and parvocellular systems to neural processing of the retinal input in the human visual system from the influence of neural population size and its discharge activity on the VEP.

    Science.gov (United States)

    Marcar, Valentine L; Baselgia, Silvana; Lüthi-Eisenegger, Barbara; Jäncke, Lutz

    2018-03-01

    Retinal input processing in the human visual system involves a phasic and tonic neural response. We investigated the role of the magno- and parvocellular systems by comparing the influence of the active neural population size and its discharge activity on the amplitude and latency of four VEP components. We recorded the scalp electric potential of 20 human volunteers viewing a series of dartboard images presented as a pattern reversing and pattern on-/offset stimulus. These patterns were designed to vary both neural population size coding the temporal- and spatial luminance contrast property and the discharge activity of the population involved in a systematic manner. When the VEP amplitude reflected the size of the neural population coding the temporal luminance contrast property of the image, the influence of luminance contrast followed the contrast response function of the parvocellular system. When the VEP amplitude reflected the size of the neural population responding to the spatial luminance contrast property the image, the influence of luminance contrast followed the contrast response function of the magnocellular system. The latencies of the VEP components examined exhibited the same behavior across our stimulus series. This investigation demonstrates the complex interplay of the magno- and parvocellular systems on the neural response as captured by the VEP. It also demonstrates a linear relationship between stimulus property, neural response, and the VEP and reveals the importance of feedback projections in modulating the ongoing neural response. In doing so, it corroborates the conclusions of our previous study.

  6. Using a multi-state recurrent neural network to optimize loading patterns in BWRs

    International Nuclear Information System (INIS)

    Ortiz, Juan Jose; Requena, Ignacio

    2004-01-01

    A Multi-State Recurrent Neural Network is used to optimize Loading Patterns (LP) in BWRs. We have proposed an energy function that depends on fuel assembly positions and their nuclear cross sections to carry out optimisation. Multi-State Recurrent Neural Networks creates LPs that satisfy the Radial Power Peaking Factor and maximize the effective multiplication factor at the Beginning of the Cycle, and also satisfy the Minimum Critical Power Ratio and Maximum Linear Heat Generation Rate at the End of the Cycle, thereby maximizing the effective multiplication factor. In order to evaluate the LPs, we have used a trained back-propagation neural network to predict the parameter values, instead of using a reactor core simulator, which saved considerable computation time in the search process. We applied this method to find optimal LPs for five cycles of Laguna Verde Nuclear Power Plant (LVNPP) in Mexico

  7. Neural markers of loss aversion in resting-state brain activity.

    Science.gov (United States)

    Canessa, Nicola; Crespi, Chiara; Baud-Bovy, Gabriel; Dodich, Alessandra; Falini, Andrea; Antonellis, Giulia; Cappa, Stefano F

    2017-02-01

    Neural responses in striatal, limbic and somatosensory brain regions track individual differences in loss aversion, i.e. the higher sensitivity to potential losses compared with equivalent gains in decision-making under risk. The engagement of structures involved in the processing of aversive stimuli and experiences raises a further question, i.e. whether the tendency to avoid losses rather than acquire gains represents a transient fearful overreaction elicited by choice-related information, or rather a stable component of one's own preference function, reflecting a specific pattern of neural activity. We tested the latter hypothesis by assessing in 57 healthy human subjects whether the relationship between behavioral and neural loss aversion holds at rest, i.e. when the BOLD signal is collected during 5minutes of cross-fixation in the absence of an explicit task. Within the resting-state networks highlighted by a spatial group Independent Component Analysis (gICA), we found a significant correlation between strength of activity and behavioral loss aversion in the left ventral striatum and right posterior insula/supramarginal gyrus, i.e. the very same regions displaying a pattern of neural loss aversion during explicit choices. Cross-study analyses confirmed that this correlation holds when voxels identified by gICA are used as regions of interest in task-related activity and vice versa. These results suggest that the individual degree of (neural) loss aversion represents a stable dimension of decision-making, which reflects in specific metrics of intrinsic brain activity at rest possibly modulating cortical excitability at choice. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns.

    Science.gov (United States)

    Xu, W; LeBeau, J M

    2018-05-01

    We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the need for pretreating the data. With the aligned data, additional networks then measure the sample thickness and tilt. The performance of the network is explored as a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the response of the neural network to various pattern features is also presented. Processing patterns at a rate of  ∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We also discuss the generality of the method to other materials/orientations as well as a hybrid approach that combines the features of the neural network with least squares fitting for even more robust analysis. The source code is available at https://github.com/subangstrom/DeepDiffraction. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Gait pattern recognition in cerebral palsy patients using neural network modelling

    International Nuclear Information System (INIS)

    Muhammad, J.; Gibbs, S.; Abboud, R.; Anand, S.

    2015-01-01

    Interpretation of gait data obtained from modern 3D gait analysis is a challenging and time consuming task. The aim of this study was to create neural network models which can recognise the gait patterns from pre- and post-treatment and the normal ones. Neural network is a method which works on the principle of learning from experience and then uses the obtained knowledge to predict the unknown. Methods: Twenty-eight patients with cerebral palsy were recruited as subjects whose gait was analysed in pre- and post-treatment. A group of twenty-six normal subjects also participated in this study as control group. All subjects gait was analysed using Vicon Nexus to obtain the gait parameters and kinetic and kinematic parameters of hip, knee and ankle joints in three planes of both limbs. The gait data was used as input to create neural network models. A total of approximately 300 trials were split into 70% and 30% to train and test the models, respectively. Different models were built using different parameters. The gait was categorised as three patterns, i.e., normal, pre- and post-treatments. Result: The results showed that the models using all parameters or using the joint angles and moments could predict the gait patterns with approximately 95% accuracy. Some of the models e.g., the models using joint power and moments, had lower rate in recognition of gait patterns with approximately 70-90% successful ratio. Conclusion: Neural network model can be used in clinical practice to recognise the gait pattern for cerebral palsy patients. (author)

  10. On the origin of reproducible sequential activity in neural circuits

    Science.gov (United States)

    Afraimovich, V. S.; Zhigulin, V. P.; Rabinovich, M. I.

    2004-12-01

    Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.

  11. Neural activity predicts attitude change in cognitive dissonance.

    Science.gov (United States)

    van Veen, Vincent; Krug, Marie K; Schooler, Jonathan W; Carter, Cameron S

    2009-11-01

    When our actions conflict with our prior attitudes, we often change our attitudes to be more consistent with our actions. This phenomenon, known as cognitive dissonance, is considered to be one of the most influential theories in psychology. However, the neural basis of this phenomenon is unknown. Using a Solomon four-group design, we scanned participants with functional MRI while they argued that the uncomfortable scanner environment was nevertheless a pleasant experience. We found that cognitive dissonance engaged the dorsal anterior cingulate cortex and anterior insula; furthermore, we found that the activation of these regions tightly predicted participants' subsequent attitude change. These effects were not observed in a control group. Our findings elucidate the neural representation of cognitive dissonance, and support the role of the anterior cingulate cortex in detecting cognitive conflict and the neural prediction of attitude change.

  12. Vascular pattern of the dentate gyrus is regulated by neural progenitors.

    Science.gov (United States)

    Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador

    2018-05-01

    Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.

  13. Reduction of the dimension of neural network models in problems of pattern recognition and forecasting

    Science.gov (United States)

    Nasertdinova, A. D.; Bochkarev, V. V.

    2017-11-01

    Deep neural networks with a large number of parameters are a powerful tool for solving problems of pattern recognition, prediction and classification. Nevertheless, overfitting remains a serious problem in the use of such networks. A method of solving the problem of overfitting is proposed in this article. This method is based on reducing the number of independent parameters of a neural network model using the principal component analysis, and can be implemented using existing libraries of neural computing. The algorithm was tested on the problem of recognition of handwritten symbols from the MNIST database, as well as on the task of predicting time series (rows of the average monthly number of sunspots and series of the Lorentz system were used). It is shown that the application of the principal component analysis enables reducing the number of parameters of the neural network model when the results are good. The average error rate for the recognition of handwritten figures from the MNIST database was 1.12% (which is comparable to the results obtained using the "Deep training" methods), while the number of parameters of the neural network can be reduced to 130 times.

  14. Death and rebirth of neural activity in sparse inhibitory networks

    Science.gov (United States)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  15. Recurrent Neural Network For Forecasting Time Series With Long Memory Pattern

    Science.gov (United States)

    Walid; Alamsyah

    2017-04-01

    Recurrent Neural Network as one of the hybrid models are often used to predict and estimate the issues related to electricity, can be used to describe the cause of the swelling of electrical load which experienced by PLN. In this research will be developed RNN forecasting procedures at the time series with long memory patterns. Considering the application is the national electrical load which of course has a different trend with the condition of the electrical load in any country. This research produces the algorithm of time series forecasting which has long memory pattern using E-RNN after this referred to the algorithm of integrated fractional recurrent neural networks (FIRNN).The prediction results of long memory time series using models Fractional Integrated Recurrent Neural Network (FIRNN) showed that the model with the selection of data difference in the range of [-1,1] and the model of Fractional Integrated Recurrent Neural Network (FIRNN) (24,6,1) provides the smallest MSE value, which is 0.00149684.

  16. Shared memories reveal shared structure in neural activity across individuals

    Science.gov (United States)

    Chen, J.; Leong, Y.C.; Honey, C.J.; Yong, C.H.; Norman, K.A.; Hasson, U.

    2016-01-01

    Our lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? Participants viewed a fifty-minute movie, then verbally described the events during functional MRI, producing unguided detailed descriptions lasting up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated in default-network, medial-temporal, and high-level visual areas. Individual event patterns were both highly discriminable from one another and similar between people, suggesting consistent spatial organization. In many high-order areas, patterns were more similar between people recalling the same event than between recall and perception, indicating systematic reshaping of percept into memory. These results reveal the existence of a common spatial organization for memories in high-level cortical areas, where encoded information is largely abstracted beyond sensory constraints; and that neural patterns during perception are altered systematically across people into shared memory representations for real-life events. PMID:27918531

  17. Underlying neural alpha frequency patterns associated with intra-hemispheric inhibition during an interhemispheric transfer task.

    Science.gov (United States)

    Simon-Dack, Stephanie L; Kraus, Brian; Walter, Zachary; Smith, Shelby; Cadle, Chelsea

    2018-05-18

    Interhemispheric transfer measured via differences in right- or left-handed motoric responses to lateralized visual stimuli, known as the crossed-uncrossed difference (CUD), is one way of identifying patterns of processing that are vital for understanding the transfer of neural signals. Examination of interhemispheric transfer by means of the CUD is not entirely explained by simple measures of response time. Multiple processes contribute to wide variability observed in CUD reaction times. Prior research has suggested that intra-hemispheric inhibitory processes may be involved in regulation of speed of transfer. Our study examined electroencephalography recordings and time-locked alpha frequency activity while 18 participants responded to lateralized targets during performance of the Poffenberger Paradigm. Our results suggest that there are alpha frequency differences at fronto-central lateral electrodes based on target, hand-of-response, and receiving hemisphere. These findings suggest that early motoric inhibitory mechanisms may help explain the wide range of variability typically seen with the CUD. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Neural activity in the hippocampus predicts individual visual short-term memory capacity.

    Science.gov (United States)

    von Allmen, David Yoh; Wurmitzer, Karoline; Martin, Ernst; Klaver, Peter

    2013-07-01

    Although the hippocampus had been traditionally thought to be exclusively involved in long-term memory, recent studies raised controversial explanations why hippocampal activity emerged during short-term memory tasks. For example, it has been argued that long-term memory processes might contribute to performance within a short-term memory paradigm when memory capacity has been exceeded. It is still unclear, though, whether neural activity in the hippocampus predicts visual short-term memory (VSTM) performance. To investigate this question, we measured BOLD activity in 21 healthy adults (age range 19-27 yr, nine males) while they performed a match-to-sample task requiring processing of object-location associations (delay period  =  900 ms; set size conditions 1, 2, 4, and 6). Based on individual memory capacity (estimated by Cowan's K-formula), two performance groups were formed (high and low performers). Within whole brain analyses, we found a robust main effect of "set size" in the posterior parietal cortex (PPC). In line with a "set size × group" interaction in the hippocampus, a subsequent Finite Impulse Response (FIR) analysis revealed divergent hippocampal activation patterns between performance groups: Low performers (mean capacity  =  3.63) elicited increased neural activity at set size two, followed by a drop in activity at set sizes four and six, whereas high performers (mean capacity  =  5.19) showed an incremental activity increase with larger set size (maximal activation at set size six). Our data demonstrated that performance-related neural activity in the hippocampus emerged below capacity limit. In conclusion, we suggest that hippocampal activity reflected successful processing of object-location associations in VSTM. Neural activity in the PPC might have been involved in attentional updating. Copyright © 2013 Wiley Periodicals, Inc.

  19. Physical Activity and Pattern of Blood Pressure

    African Journals Online (AJOL)

    GB

    2014-04-02

    Apr 2, 2014 ... This study investigated physical activity (PA) and pattern of blood ... values of SBP, DBP, BMI and WHR were higher among participants with low PA compared to those ..... nervous system is associated with abdominal visceral ...

  20. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    Science.gov (United States)

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  1. Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling

    Science.gov (United States)

    Song, Yongli; Zhang, Tonghua; Tadé, Moses O.

    2009-12-01

    The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.

  2. Anisotropy of ongoing neural activity in the primate visual cortex

    Directory of Open Access Journals (Sweden)

    Maier A

    2014-09-01

    Full Text Available Alexander Maier,1 Michele A Cox,1 Kacie Dougherty,1 Brandon Moore,1 David A Leopold2 1Department of Psychology, College of Arts and Science, Vanderbilt University, Nashville, TN, USA; 2Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA Abstract: The mammalian neocortex features distinct anatomical variation in its tangential and radial extents. This review consolidates previously published findings from our group in order to compare and contrast the spatial profile of neural activity coherence across these distinct cortical dimensions. We focus on studies of ongoing local field potential (LFP data obtained simultaneously from multiple sites in the primary visual cortex in two types of experiments in which electrode contacts were spaced either along the cortical surface or at different laminar positions. These studies demonstrate that across both dimensions the coherence of ongoing LFP fluctuations diminishes as a function of interelectrode distance, although the nature and spatial scale of this falloff is very different. Along the cortical surface, the overall LFP coherence declines gradually and continuously away from a given position. In contrast, across the cortical layers, LFP coherence is discontinuous and compartmentalized as a function of depth. Specifically, regions of high LFP coherence fall into discrete superficial and deep laminar zones, with an abrupt discontinuity between the granular and infragranular layers. This spatial pattern of ongoing LFP coherence is similar when animals are at rest and when they are engaged in a behavioral task. These results point to the existence of partially segregated laminar zones of cortical processing that extend tangentially within the laminar compartments and are thus oriented orthogonal to the cortical columns. We interpret these electrophysiological observations in light of the known anatomical organization of

  3. In-vivo determination of chewing patterns using FBG and artificial neural networks

    Science.gov (United States)

    Pegorini, Vinicius; Zen Karam, Leandro; Rocha Pitta, Christiano S.; Ribeiro, Richardson; Simioni Assmann, Tangriani; Cardozo da Silva, Jean Carlos; Bertotti, Fábio L.; Kalinowski, Hypolito J.; Cardoso, Rafael

    2015-09-01

    This paper reports the process of pattern classification of the chewing process of ruminants. We propose a simplified signal processing scheme for optical fiber Bragg grating (FBG) sensors based on machine learning techniques. The FBG sensors measure the biomechanical forces during jaw movements and an artificial neural network is responsible for the classification of the associated chewing pattern. In this study, three patterns associated to dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior studies were monitored, rumination and idle period. Experimental results show that the proposed approach for pattern classification has been capable of differentiating the materials involved in the chewing process with a small classification error.

  4. Ex vivo determination of chewing patterns using FBG and artificial neural networks

    Science.gov (United States)

    Karam, L. Z.; Pegorini, V.; Pitta, C. S. R.; Assmann, T. S.; Cardoso, R.; Kalinowski, H. J.; Silva, J. C. C.

    2014-05-01

    This paper reports the experimental procedures performed in a bovine head for the determination of chewing patterns during the mastication process. Mandible movements during the chewing have been simulated either by using two plasticine materials with different textures or without material. Fibre Bragg grating sensors were fixed in the jaw to monitor the biomechanical forces involved in the chewing process. The acquired signals from the sensors fed the input of an artificial neural network aiming at the classification of the measured chewing patterns for each material used in the experiment. The results obtained from the simulation of the chewing process presented different patterns for the different textures of plasticine, resulting on the determination of three chewing patterns with a classification error of 5%.

  5. Cross-Coupled Eye Movement Supports Neural Origin of Pattern Strabismus

    Science.gov (United States)

    Ghasia, Fatema F.; Shaikh, Aasef G.; Jacobs, Jonathan; Walker, Mark F.

    2015-01-01

    Purpose. Pattern strabismus describes vertically incomitant horizontal strabismus. Conventional theories emphasized the role of orbital etiologies, such as abnormal fundus torsion and misaligned orbital pulleys as a cause of the pattern strabismus. Experiments in animal models, however, suggested the role of abnormal cross-connections between the neural circuits. We quantitatively assessed eye movements in patients with pattern strabismus with a goal to delineate the role of neural circuits versus orbital etiologies. Methods. We measured saccadic eye movements with high-precision video-oculography in 14 subjects with pattern strabismus, 5 with comitant strabismus, and 15 healthy controls. We assessed change in eye position in the direction orthogonal to that of the desired eye movement (cross-coupled responses). We used fundus photography to quantify the fundus torsion. Results. We found cross-coupling of saccades in all patients with pattern strabismus. The cross-coupled responses were in the same direction in both eyes, but larger in the nonviewing eye. All patients had clinically apparent inferior oblique overaction with abnormal excylotorsion. There was no correlation between the amount of the fundus torsion or the grade of oblique overaction and the severity of cross-coupling. The disconjugacy in the saccade direction and amplitude in pattern strabismics did not have characteristics predicted by clinically apparent inferior oblique overaction. Conclusions. Our results validated primate models of pattern strabismus in human patients. We found no correlation between ocular torsion or oblique overaction and cross-coupling. Therefore, we could not ascribe cross-coupling exclusively to the orbital etiology. Patients with pattern strabismus could have abnormalities in the saccade generators. PMID:26024072

  6. Using Neural Pattern Classifiers to Quantify the Modularity of Conflict–Control Mechanisms in the Human Brain

    Science.gov (United States)

    Jiang, Jiefeng; Egner, Tobias

    2014-01-01

    Resolving conflicting sensory and motor representations is a core function of cognitive control, but it remains uncertain to what degree control over different sources of conflict is implemented by shared (domain general) or distinct (domain specific) neural resources. Behavioral data suggest conflict–control to be domain specific, but results from neuroimaging studies have been ambivalent. Here, we employed multivoxel pattern analyses that can decode a brain region's informational content, allowing us to distinguish incidental activation overlap from actual shared information processing. We trained independent sets of “searchlight” classifiers on functional magnetic resonance imaging data to decode control processes associated with stimulus-conflict (Stroop task) and ideomotor-conflict (Simon task). Quantifying the proportion of domain-specific searchlights (capable of decoding only one type of conflict) and domain-general searchlights (capable of decoding both conflict types) in each subject, we found both domain-specific and domain-general searchlights, though the former were more common. When mapping anatomical loci of these searchlights across subjects, neural substrates of stimulus- and ideomotor-specific conflict–control were found to be anatomically consistent across subjects, whereas the substrates of domain-general conflict–control were not. Overall, these findings suggest a hybrid neural architecture of conflict–control that entails both modular (domain specific) and global (domain general) components. PMID:23402762

  7. Using neural pattern classifiers to quantify the modularity of conflict-control mechanisms in the human brain.

    Science.gov (United States)

    Jiang, Jiefeng; Egner, Tobias

    2014-07-01

    Resolving conflicting sensory and motor representations is a core function of cognitive control, but it remains uncertain to what degree control over different sources of conflict is implemented by shared (domain general) or distinct (domain specific) neural resources. Behavioral data suggest conflict-control to be domain specific, but results from neuroimaging studies have been ambivalent. Here, we employed multivoxel pattern analyses that can decode a brain region's informational content, allowing us to distinguish incidental activation overlap from actual shared information processing. We trained independent sets of "searchlight" classifiers on functional magnetic resonance imaging data to decode control processes associated with stimulus-conflict (Stroop task) and ideomotor-conflict (Simon task). Quantifying the proportion of domain-specific searchlights (capable of decoding only one type of conflict) and domain-general searchlights (capable of decoding both conflict types) in each subject, we found both domain-specific and domain-general searchlights, though the former were more common. When mapping anatomical loci of these searchlights across subjects, neural substrates of stimulus- and ideomotor-specific conflict-control were found to be anatomically consistent across subjects, whereas the substrates of domain-general conflict-control were not. Overall, these findings suggest a hybrid neural architecture of conflict-control that entails both modular (domain specific) and global (domain general) components. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    Science.gov (United States)

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., synergy force vector was reduced by ~45% when generalizability requirements were imposed. Muscles recruited in the generalizable muscle activation patterns had less sensitive torque-producing characteristics to changes in postures. We

  9. Automated target recognition and tracking using an optical pattern recognition neural network

    Science.gov (United States)

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  10. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Directory of Open Access Journals (Sweden)

    Christopher L Buckley

    2018-01-01

    Full Text Available During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results

  11. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Science.gov (United States)

    Buckley, Christopher L; Toyoizumi, Taro

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence

  12. Probing neural cell behaviors through micro-/nano-patterned chitosan substrates

    International Nuclear Information System (INIS)

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Chen, Wen-Shiang; Wang, Yang-Kao; Cheng, Chao-Min

    2015-01-01

    In this study, we describe the development of surface-modified chitosan substrates to examine topographically related Neuro-2a cell behaviors. Different functional groups can be modified on chitosan surfaces to probe Neuro-2a cell morphology. To prepare chitosan substrates with micro/nano-scaled features, we demonstrated an easy-to-handle method that combined photolithography, inductively coupled plasma reactive ion etching, Ag nanoparticle-assisted etching, and solution casting. The results show that Neuro-2a cells preferred to adhere to a flat chitosan surface rather than a nanotextured chitosan surface as evidenced by greater immobilization and differentiation, suggesting that surface topography is crucial for neural patterning. In addition, we developed chitosan substrates with different geometric patterns and flat region depth; this allowed us to re-arrange or re-pattern Neuro-2a cell colonies at desired locations. We found that a polarity-induced micropattern provided the most suitable surface pattern for promoting neural network formation on a chitosan substrate. The cellular polarity of single Neuro-2a cell spreading correlated to a diamond-like geometry and neurite outgrowth was induced from the corners toward the grooves of the structures. This study provide greater insight into neurobiology, including neurotransmitter screening, electrophysiological stimulation platforms, and biomedical engineering. (paper)

  13. Efficient universal computing architectures for decoding neural activity.

    Directory of Open Access Journals (Sweden)

    Benjamin I Rapoport

    Full Text Available The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain- machine interfaces (BMIs. Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain- machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than [Formula: see text]. We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA implementation of this portion

  14. Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition.

    Science.gov (United States)

    Su, Zhenghui; Zhang, Yanqi; Liao, Baojian; Zhong, Xiaofen; Chen, Xin; Wang, Haitao; Guo, Yiping; Shan, Yongli; Wang, Lihui; Pan, Guangjin

    2018-03-23

    During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3β (GSK3β) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Young Adults with Autism Spectrum Disorder Show Early Atypical Neural Activity during Emotional Face Processing

    Directory of Open Access Journals (Sweden)

    Rachel C. Leung

    2018-02-01

    Full Text Available Social cognition is impaired in autism spectrum disorder (ASD. The ability to perceive and interpret affect is integral to successful social functioning and has an extended developmental course. However, the neural mechanisms underlying emotional face processing in ASD are unclear. Using magnetoencephalography (MEG, the present study explored neural activation during implicit emotional face processing in young adults with and without ASD. Twenty-six young adults with ASD and 26 healthy controls were recruited. Participants indicated the location of a scrambled pattern (target that was presented alongside a happy or angry face. Emotion-related activation sources for each emotion were estimated using the Empirical Bayes Beamformer (pcorr ≤ 0.001 in Statistical Parametric Mapping 12 (SPM12. Emotional faces elicited elevated fusiform, amygdala and anterior insula and reduced anterior cingulate cortex (ACC activity in adults with ASD relative to controls. Within group comparisons revealed that angry vs. happy faces elicited distinct neural activity in typically developing adults; there was no distinction in young adults with ASD. Our data suggest difficulties in affect processing in ASD reflect atypical recruitment of traditional emotional processing areas. These early differences may contribute to difficulties in deriving social reward from faces, ascribing salience to faces, and an immature threat processing system, which collectively could result in deficits in emotional face processing.

  16. The characteristic patterns of neuronal avalanches in mice under anesthesia and at rest: An investigation using constrained artificial neural networks

    Science.gov (United States)

    Knöpfel, Thomas; Leech, Robert

    2018-01-01

    Local perturbations within complex dynamical systems can trigger cascade-like events that spread across significant portions of the system. Cascades of this type have been observed across a broad range of scales in the brain. Studies of these cascades, known as neuronal avalanches, usually report the statistics of large numbers of avalanches, without probing the characteristic patterns produced by the avalanches themselves. This is partly due to limitations in the extent or spatiotemporal resolution of commonly used neuroimaging techniques. In this study, we overcome these limitations by using optical voltage (genetically encoded voltage indicators) imaging. This allows us to record cortical activity in vivo across an entire cortical hemisphere, at both high spatial (~30um) and temporal (~20ms) resolution in mice that are either in an anesthetized or awake state. We then use artificial neural networks to identify the characteristic patterns created by neuronal avalanches in our data. The avalanches in the anesthetized cortex are most accurately classified by an artificial neural network architecture that simultaneously connects spatial and temporal information. This is in contrast with the awake cortex, in which avalanches are most accurately classified by an architecture that treats spatial and temporal information separately, due to the increased levels of spatiotemporal complexity. This is in keeping with reports of higher levels of spatiotemporal complexity in the awake brain coinciding with features of a dynamical system operating close to criticality. PMID:29795654

  17. Can Neural Activity Propagate by Endogenous Electrical Field?

    Science.gov (United States)

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic

  18. Task-dependent modulation of oscillatory neural activity during movements

    DEFF Research Database (Denmark)

    Herz, D. M.; Christensen, M. S.; Reck, C.

    2011-01-01

    connectivity was strongest between central and cerebellar regions. Our results show that neural coupling within motor networks is modulated in distinct frequency bands depending on the motor task. They provide evidence that dynamic causal modeling in combination with EEG source analysis is a valuable tool......Neural oscillations in different frequency bands have been observed in a range of sensorimotor tasks and have been linked to coupling of spatially distinct neurons. The goal of this study was to detect a general motor network that is activated during phasic and tonic movements and to study the task......-dependent modulation of frequency coupling within this network. To this end we recorded 122-multichannel EEG in 13 healthy subjects while they performed three simple motor tasks. EEG data source modeling using individual MR images was carried out with a multiple source beamformer approach. A bilateral motor network...

  19. Risk-taking on the road and in the mind: behavioural and neural patterns of decision making between risky and safe drivers.

    Science.gov (United States)

    Ba, Yutao; Zhang, Wei; Peng, QiJia; Salvendy, Gavriel; Crundall, David

    2016-01-01

    Drivers' risk-taking is a key issue of road safety. This study explored individual differences in drivers' decision-making, linking external behaviours to internal neural activity, to reveal the cognitive mechanisms of risky driving. Twenty-four male drivers were split into two groups (risky vs. safe drivers) via the Drivier Behaviour Questionnaire-violation. The risky drivers demonstrated higher preference for the risky choices in the paradigms of Iowa Gambling Task and Balloon Analogue Risk Task. More importantly, the risky drivers showed lower amplitudes of feedback-related negativity (FRN) and loss-minus-gain FRN in both paradigms, which indicated their neural processing of error-detection. A significant difference of P300 amplitudes was also reported between groups, which indicated their neural processing of reward-evaluation and were modified by specific paradigm and feedback. These results suggested that the neural basis of risky driving was the decision patterns less revised by losses and more motivated by rewards. Risk-taking on the road is largely determined by inherent cognitive mechanisms, which can be indicated by the behavioural and neural patterns of decision-making. In this regard, it is feasible to quantize drivers’ riskiness in the cognitive stage before actual risky driving or accidents, and intervene accordingly.

  20. Organization of anti-phase synchronization pattern in neural networks: what are the key factors?

    Directory of Open Access Journals (Sweden)

    Dong eLi

    2011-12-01

    Full Text Available Anti-phase oscillation has been widely observed in cortical neuralnetwork. Elucidating the mechanism underlying the organization ofanti-phase pattern is of significance for better understanding morecomplicated pattern formations in brain networks. In dynamicalsystems theory, the organization of anti-phase oscillation patternhas usually been considered to relate to time-delay in coupling.This is consistent to conduction delays in real neural networks inthe brain due to finite propagation velocity of action potentials.However, other structural factors in cortical neural network, suchas modular organization (connection density and the coupling types(excitatory or inhibitory, could also play an important role. Inthis work, we investigate the anti-phase oscillation patternorganized on a two-module network of either neuronal cell model orneural mass model, and analyze the impact of the conduction delaytimes, the connection densities, and coupling types. Our resultsshow that delay times and coupling types can play key roles in thisorganization. The connection densities may have an influence on thestability if an anti-phase pattern exists due to the other factors.Furthermore, we show that anti-phase synchronization of slowoscillations can be achieved with small delay times if there isinteraction between slow and fast oscillations. These results aresignificant for further understanding more realistic spatiotemporaldynamics of cortico-cortical communications.

  1. Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation.

    Science.gov (United States)

    Baertsch, Nathan A; Baker-Herman, Tracy L

    2015-04-15

    In many neural networks, mechanisms of compensatory plasticity respond to prolonged reductions in neural activity by increasing cellular excitability or synaptic strength. In the respiratory control system, a prolonged reduction in synaptic inputs to the phrenic motor pool elicits a TNF-α- and atypical PKC-dependent form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although iPMF may be elicited by a prolonged reduction in respiratory neural activity, iPMF is more efficiently induced when reduced respiratory neural activity (neural apnea) occurs intermittently. Mechanisms giving rise to iPMF following intermittent neural apnea are unknown. The purpose of this study was to test the hypothesis that iPMF following intermittent reductions in respiratory neural activity requires spinal TNF-α and aPKC. Phrenic motor output was recorded in anesthetized and ventilated rats exposed to brief intermittent (5, ∼1.25 min), brief sustained (∼6.25 min), or prolonged sustained (30 min) neural apnea. iPMF was elicited following brief intermittent and prolonged sustained neural apnea, but not following brief sustained neural apnea. Unlike iPMF following prolonged neural apnea, spinal TNF-α was not required to initiate iPMF during intermittent neural apnea; however, aPKC was still required for its stabilization. These results suggest that different patterns of respiratory neural activity induce iPMF through distinct cellular mechanisms but ultimately converge on a similar downstream pathway. Understanding the diverse cellular mechanisms that give rise to inactivity-induced respiratory plasticity may lead to development of novel therapeutic strategies to treat devastating respiratory control disorders when endogenous compensatory mechanisms fail. Copyright © 2015 the American Physiological Society.

  2. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.

    Science.gov (United States)

    Zeng, Tao; Li, Rongjian; Mukkamala, Ravi; Ye, Jieping; Ji, Shuiwang

    2015-05-07

    Profiling gene expression in brain structures at various spatial and temporal scales is essential to understanding how genes regulate the development of brain structures. The Allen Developing Mouse Brain Atlas provides high-resolution 3-D in situ hybridization (ISH) gene expression patterns in multiple developing stages of the mouse brain. Currently, the ISH images are annotated with anatomical terms manually. In this paper, we propose a computational approach to annotate gene expression pattern images in the mouse brain at various structural levels over the course of development. We applied deep convolutional neural network that was trained on a large set of natural images to extract features from the ISH images of developing mouse brain. As a baseline representation, we applied invariant image feature descriptors to capture local statistics from ISH images and used the bag-of-words approach to build image-level representations. Both types of features from multiple ISH image sections of the entire brain were then combined to build 3-D, brain-wide gene expression representations. We employed regularized learning methods for discriminating gene expression patterns in different brain structures. Results show that our approach of using convolutional model as feature extractors achieved superior performance in annotating gene expression patterns at multiple levels of brain structures throughout four developing ages. Overall, we achieved average AUC of 0.894 ± 0.014, as compared with 0.820 ± 0.046 yielded by the bag-of-words approach. Deep convolutional neural network model trained on natural image sets and applied to gene expression pattern annotation tasks yielded superior performance, demonstrating its transfer learning property is applicable to such biological image sets.

  3. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses.

    Science.gov (United States)

    Yan, Yuanwei; Bejoy, Julie; Xia, Junfei; Guan, Jingjiao; Zhou, Yi; Li, Yan

    2016-09-15

    Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune

  4. Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective.

    Science.gov (United States)

    Zirra, Alexandra; Wiethoff, Sarah; Patani, Rickie

    2016-01-01

    Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.

  5. Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective

    Directory of Open Access Journals (Sweden)

    Alexandra Zirra

    2016-01-01

    Full Text Available Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.

  6. The effects of gratitude expression on neural activity.

    Science.gov (United States)

    Kini, Prathik; Wong, Joel; McInnis, Sydney; Gabana, Nicole; Brown, Joshua W

    2016-03-01

    Gratitude is a common aspect of social interaction, yet relatively little is known about the neural bases of gratitude expression, nor how gratitude expression may lead to longer-term effects on brain activity. To address these twin issues, we recruited subjects who coincidentally were entering psychotherapy for depression and/or anxiety. One group participated in a gratitude writing intervention, which required them to write letters expressing gratitude. The therapy-as-usual control group did not perform a writing intervention. After three months, subjects performed a "Pay It Forward" task in the fMRI scanner. In the task, subjects were repeatedly endowed with a monetary gift and then asked to pass it on to a charitable cause to the extent they felt grateful for the gift. Operationalizing gratitude as monetary gifts allowed us to engage the subjects and quantify the gratitude expression for subsequent analyses. We measured brain activity and found regions where activity correlated with self-reported gratitude experience during the task, even including related constructs such as guilt motivation and desire to help as statistical controls. These were mostly distinct from brain regions activated by empathy or theory of mind. Also, our between groups cross-sectional study found that a simple gratitude writing intervention was associated with significantly greater and lasting neural sensitivity to gratitude - subjects who participated in gratitude letter writing showed both behavioral increases in gratitude and significantly greater neural modulation by gratitude in the medial prefrontal cortex three months later. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Decoding subjective mental states from fMRI activity patterns

    International Nuclear Information System (INIS)

    Tamaki, Masako; Kamitani, Yukiyasu

    2011-01-01

    In recent years, functional magnetic resonance imaging (fMRI) decoding has emerged as a powerful tool to read out detailed stimulus features from multi-voxel brain activity patterns. Moreover, the method has been extended to perform a primitive form of 'mind-reading,' by applying a decoder 'objectively' trained using stimulus features to more 'subjective' conditions. In this paper, we first introduce basic procedures for fMRI decoding based on machine learning techniques. Second, we discuss the source of information used for decoding, in particular, the possibility of extracting information from subvoxel neural structures. We next introduce two experimental designs for decoding subjective mental states: the 'objective-to-subjective design' and the 'subjective-to-subjective design.' Then, we illustrate recent studies on the decoding of a variety of mental states, such as, attention, awareness, decision making, memory, and mental imagery. Finally, we discuss the challenges and new directions of fMRI decoding. (author)

  8. Improving Pattern Recognition and Neural Network Algorithms with Applications to Solar Panel Energy Optimization

    Science.gov (United States)

    Zamora Ramos, Ernesto

    Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and optimize solar panel energy production. Our contributions detail an improved non-linear pre-processing technique to enhance poorly illuminated images based on modifications to the standard histogram equalization for an image. While the original motivation was to improve nocturnal navigation, the results have applications in surveillance, search and rescue, medical imaging enhancing, and many others. We created a vision system for precise camera distance positioning motivated to correctly locate the robot for capture of solar panel images for classification. The classification algorithm marks solar panels as clean or dirty for later processing. Our algorithm extends past image classification and, based on historical and experimental data, it identifies the optimal moment in which to perform maintenance on marked solar panels as to minimize the energy and profit loss. In order to improve upon the classification algorithm, we delved into feedforward neural networks because of their recent advancements, proven universal approximation and classification capabilities, and excellent recognition rates. We explore state-of-the-art neural network training techniques offering pointers and insights, culminating on the implementation of a complete library with support for modern deep learning architectures

  9. Neural response during the activation of the attachment system in patients with borderline personality disorder: An fMRI study

    Directory of Open Access Journals (Sweden)

    Anna Buchheim

    2016-08-01

    Full Text Available Individuals with borderline personality disorder (BPD are characterized by emotional instability, impaired emotion regulation and unresolved attachment patterns associated with abusive childhood experiences. We investigated the neural response during the activation of the attachment system in BPD patients compared to healthy controls using functional magnetic resonance imaging. Eleven female patients with BPD without posttraumatic stress disorder and seventeen healthy female controls matched for age and education were telling stories in the scanner in response to the Adult Attachment Projective Picture System, an eight-picture set assessment of adult attachment. The picture set includes theoretically-derived attachment scenes, such as separation, death, threat and potential abuse. The picture presentation order is designed to gradually increase the activation of the attachment system. Each picture stimulus was presented for two minutes. Analyses examine group differences in attachment classifications and neural activation patterns over the course of the task. Unresolved attachment was associated with increasing amygdala activation over the course of the attachment task in patients as well as controls. Unresolved controls, but not patients, showed activation in the right dorsolateral prefrontal cortex and the rostral cingulate zone. We interpret this as a neural signature of BPD patients’ inability to exert top-down control under conditions of attachment distress. These findings point to possible neural mechanisms for underlying affective dysregulation in BPD in the context of attachment trauma and fear.

  10. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  11. Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites

    Directory of Open Access Journals (Sweden)

    Bogdan C. Raducanu

    2017-10-01

    Full Text Available We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm and 12 reference pixels (20 µm × 80 µm, densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678. Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission.

  12. Population-wide distributions of neural activity during perceptual decision-making

    Science.gov (United States)

    Machens, Christian

    2018-01-01

    Cortical activity involves large populations of neurons, even when it is limited to functionally coherent areas. Electrophysiological recordings, on the other hand, involve comparatively small neural ensembles, even when modern-day techniques are used. Here we review results which have started to fill the gap between these two scales of inquiry, by shedding light on the statistical distributions of activity in large populations of cells. We put our main focus on data recorded in awake animals that perform simple decision-making tasks and consider statistical distributions of activity throughout cortex, across sensory, associative, and motor areas. We transversally review the complexity of these distributions, from distributions of firing rates and metrics of spike-train structure, through distributions of tuning to stimuli or actions and of choice signals, and finally the dynamical evolution of neural population activity and the distributions of (pairwise) neural interactions. This approach reveals shared patterns of statistical organization across cortex, including: (i) long-tailed distributions of activity, where quasi-silence seems to be the rule for a majority of neurons; that are barely distinguishable between spontaneous and active states; (ii) distributions of tuning parameters for sensory (and motor) variables, which show an extensive extrapolation and fragmentation of their representations in the periphery; and (iii) population-wide dynamics that reveal rotations of internal representations over time, whose traces can be found both in stimulus-driven and internally generated activity. We discuss how these insights are leading us away from the notion of discrete classes of cells, and are acting as powerful constraints on theories and models of cortical organization and population coding. PMID:23123501

  13. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    Science.gov (United States)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  14. A Pattern Construction Scheme for Neural Network-Based Cognitive Communication

    Directory of Open Access Journals (Sweden)

    Ozgur Orcay

    2011-01-01

    Full Text Available Inefficient utilization of the frequency spectrum due to conventional regulatory limitations and physical performance limiting factors, mainly the Signal to Noise Ratio (SNR, are prominent restrictions in digital wireless communication. Pattern Based Communication System (PBCS is an adaptive and perceptual communication method based on a Cognitive Radio (CR approach. It intends an SNR oriented cognition mechanism in the physical layer for improvement of Link Spectral Efficiency (LSE. The key to this system is construction of optimal communication signals, which consist of encoded data in different pattern forms (waveforms depending on spectral availabilities. The signals distorted in the communication medium are recovered according to the pre-trained pattern glossary by the perceptual receiver. In this study, we have shown that it is possible to improve the bandwidth efficiency when largely uncorrelated signal patterns are chosen in order to form a glossary that represents symbols for different length data groups and the information can be recovered by the Artificial Neural Network (ANN in the receiver site.

  15. Deep Recurrent Neural Networks for Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Abdulmajid Murad

    2017-11-01

    Full Text Available Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM and k-nearest neighbors (KNN. Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs and CNNs.

  16. Copper is an endogenous modulator of neural circuit spontaneous activity.

    Science.gov (United States)

    Dodani, Sheel C; Firl, Alana; Chan, Jefferson; Nam, Christine I; Aron, Allegra T; Onak, Carl S; Ramos-Torres, Karla M; Paek, Jaeho; Webster, Corey M; Feller, Marla B; Chang, Christopher J

    2014-11-18

    For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.

  17. Deep Recurrent Neural Networks for Human Activity Recognition.

    Science.gov (United States)

    Murad, Abdulmajid; Pyun, Jae-Young

    2017-11-06

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.

  18. Preparatory neural activity predicts performance on a conflict task.

    Science.gov (United States)

    Stern, Emily R; Wager, Tor D; Egner, Tobias; Hirsch, Joy; Mangels, Jennifer A

    2007-10-24

    Advance preparation has been shown to improve the efficiency of conflict resolution. Yet, with little empirical work directly linking preparatory neural activity to the performance benefits of advance cueing, it is not clear whether this relationship results from preparatory activation of task-specific networks, or from activity associated with general alerting processes. Here, fMRI data were acquired during a spatial Stroop task in which advance cues either informed subjects of the upcoming relevant feature of conflict stimuli (spatial or semantic) or were neutral. Informative cues decreased reaction time (RT) relative to neutral cues, and cues indicating that spatial information would be task-relevant elicited greater activity than neutral cues in multiple areas, including right anterior prefrontal and bilateral parietal cortex. Additionally, preparatory activation in bilateral parietal cortex and right dorsolateral prefrontal cortex predicted faster RT when subjects responded to spatial location. No regions were found to be specific to semantic cues at conventional thresholds, and lowering the threshold further revealed little overlap between activity associated with spatial and semantic cueing effects, thereby demonstrating a single dissociation between activations related to preparing a spatial versus semantic task-set. This relationship between preparatory activation of spatial processing networks and efficient conflict resolution suggests that advance information can benefit performance by leading to domain-specific biasing of task-relevant information.

  19. Neural activity related to cognitive and emotional empathy in post-traumatic stress disorder.

    Science.gov (United States)

    Mazza, Monica; Tempesta, Daniela; Pino, Maria Chiara; Nigri, Anna; Catalucci, Alessia; Guadagni, Veronica; Gallucci, Massimo; Iaria, Giuseppe; Ferrara, Michele

    2015-04-01

    The aim of this study is to evaluate the empathic ability and its functional brain correlates in post-traumatic stress disorder subjects (PTSD). Seven PTSD subjects and ten healthy controls, all present in the L'Aquila area during the earthquake of the April 2009, underwent fMRI during which they performed a modified version of the Multifaceted Empathy Test. PTSD patients showed impairments in implicit and explicit emotional empathy, but not in cognitive empathy. Brain responses during cognitive empathy showed an increased activation in patients compared to controls in the right medial frontal gyrus and the left inferior frontal gyrus. During implicit emotional empathy responses patients with PTSD, compared to controls, exhibited greater neural activity in the left pallidum and right insula; instead the control group showed an increased activation in right inferior frontal gyrus. Finally, in the explicit emotional empathy responses the PTSD group showed a reduced neural activity in the left insula and the left inferior frontal gyrus. The behavioral deficit limited to the emotional empathy dimension, accompanied by different patterns of activation in empathy related brain structures, represent a first piece of evidence of a dissociation between emotional and cognitive empathy in PTSD patients. The present findings support the idea that empathy is a multidimensional process, with different facets depending on distinct anatomical substrates. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Social power and approach-related neural activity.

    Science.gov (United States)

    Boksem, Maarten A S; Smolders, Ruud; De Cremer, David

    2012-06-01

    It has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motivation has been found to be associated with increased relative left-sided frontal brain activity, while withdrawal motivation has been associated with increased right sided activations. We measured EEG activity while subjects engaged in a task priming either high or low social power. Results show that high social power is indeed associated with greater left-frontal brain activity compared to low social power, providing the first neural evidence for the theory that high power is associated with approach-related motivation. We propose a framework accounting for differences in both approach motivation and goal-directed behaviour associated with different levels of power.

  1. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  2. West African spatial patterns of economic activities

    DEFF Research Database (Denmark)

    Walther, Olivier; Howard, Allen; Retaillé, Denis

    2015-01-01

    Over the last 30 years, two different bodies of literature developed by both US historians and francophone geographers have moved toward similar conclusions regarding West African economic spatial patterns. Despite their different backgrounds, both the ‘spatial factor’ approach promoted by histor......Over the last 30 years, two different bodies of literature developed by both US historians and francophone geographers have moved toward similar conclusions regarding West African economic spatial patterns. Despite their different backgrounds, both the ‘spatial factor’ approach promoted...... by historians and the ‘mobile space’ approach developed by geographers view exchange centres as nodes of transnational trade networks and places in production territories, and perceive spatial dynamics as highly dependent on shifts of trade flows and production activities. The objective of this article...

  3. TOUCHING MOMENTS: DESIRE MODULATES THE NEURAL ANTICIPATION OF ACTIVE ROMANTIC CARESS

    Directory of Open Access Journals (Sweden)

    Sjoerd J.H. Ebisch

    2014-02-01

    Full Text Available A romantic caress is a basic expression of affiliative behavior and a primary reinforcer. Given its inherent affective valence, its performance also would imply the prediction of reward values. For example, touching a person for whom one has strong passionate feelings likely is motivated by a strong desire for physical contact and associated with the anticipation of hedonic experiences. The present study aims at investigating how the anticipatory neural processes of active romantic caress are modulated by the intensity of the desire for affective contact as reflected by passionate feelings for the other. Functional magnetic resonance imaging scanning was performed in romantically involved partners using a paradigm that allowed to isolate the specific anticipatory representations of active romantic caress, compared with control caress, while testing for the relationship between neural activity and measures of feelings of passionate love for the other. The results demonstrated that right posterior insula activity in anticipation of romantic caress significantly co-varied with the intensity of desire for union with the other. This effect was independent of the sensory-affective properties of the performed touch, like its pleasantness. Furthermore, functional connectivity analysis showed that the same posterior insula cluster interacted with brain regions related to sensory-motor functions as well as to the processing and anticipation of reward. The findings provide insight on the neural substrate mediating between the desire for and the performance of romantic caress. In particular, we propose that anticipatory activity patterns in posterior insula may modulate subsequent sensory-affective processing of skin-to-skin contact.

  4. An Effective and Novel Neural Network Ensemble for Shift Pattern Detection in Control Charts

    Directory of Open Access Journals (Sweden)

    Mahmoud Barghash

    2015-01-01

    Full Text Available Pattern recognition in control charts is critical to make a balance between discovering faults as early as possible and reducing the number of false alarms. This work is devoted to designing a multistage neural network ensemble that achieves this balance which reduces rework and scrape without reducing productivity. The ensemble under focus is composed of a series of neural network stages and a series of decision points. Initially, this work compared using multidecision points and single-decision point on the performance of the ANN which showed that multidecision points are highly preferable to single-decision points. This work also tested the effect of population percentages on the ANN and used this to optimize the ANN’s performance. Also this work used optimized and nonoptimized ANNs in an ensemble and proved that using nonoptimized ANN may reduce the performance of the ensemble. The ensemble that used only optimized ANNs has improved performance over individual ANNs and three-sigma level rule. In that respect using the designed ensemble can help in reducing the number of false stops and increasing productivity. It also can be used to discover even small shifts in the mean as early as possible.

  5. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos.

    Science.gov (United States)

    Mellott, Dan O; Thisdelle, Jordan; Burke, Robert D

    2017-10-01

    We have examined regulation of neurogenesis by Delta/Notch signaling in sea urchin embryos. At gastrulation, neural progenitors enter S phase coincident with expression of Sp-SoxC. We used a BAC containing GFP knocked into the Sp-SoxC locus to label neural progenitors. Live imaging and immunolocalizations indicate that Sp-SoxC-expressing cells divide to produce pairs of adjacent cells expressing GFP. Over an interval of about 6 h, one cell fragments, undergoes apoptosis and expresses high levels of activated Caspase3. A Notch reporter indicates that Notch signaling is activated in cells adjacent to cells expressing Sp-SoxC. Inhibition of γ-secretase, injection of Sp-Delta morpholinos or CRISPR/Cas9-induced mutation of Sp-Delta results in supernumerary neural progenitors and neurons. Interfering with Notch signaling increases neural progenitor recruitment and pairs of neural progenitors. Thus, Notch signaling restricts the number of neural progenitors recruited and regulates the fate of progeny of the asymmetric division. We propose a model in which localized signaling converts ectodermal and ciliary band cells to neural progenitors that divide asymmetrically to produce a neural precursor and an apoptotic cell. © 2017. Published by The Company of Biologists Ltd.

  6. Activity patterns of elderly men and women.

    Science.gov (United States)

    Sidney, K H; Shephard, R J

    1977-01-01

    The activity patterns of elderly men and women (greater than 60 years) were examined by diaries, ECG taperecorders, and electro-chemical integrators. Although the subjects thought that they were active relative to others of their age, both activity measurements and initial assessments of fitness indicated an inactive life style. At different periods of the day, the heart rate averaged 70-90 beats per minute, and the physical training threshold was rarely approached. During the week, the women engaged in 90 min. more physical activity than the men. However, at the weekend the men added an average of 100 min. of physical activity, whereas the women carried out 30 min. less physical work. Introduction of a 1-hour physical activity class four times per week increased the average daily energy expenditure by 150-200 kCal, to 2500 kCal in the men and 2200 kCal in the women. The added activity was sufficient to augment aerobic power, to induce favorable changes in body composition and to initiate change in other areas of life style, including a diminished use of the car.

  7. Fluid pipeline system leak detection based on neural network and pattern recognition

    International Nuclear Information System (INIS)

    Tang Xiujia

    1998-01-01

    The mechanism of the stress wave propagation along the pipeline system of NPP, caused by turbulent ejection from pipeline leakage, is researched. A series of characteristic index are described in time domain or frequency domain, and compress numerical algorithm is developed for original data compression. A back propagation neural networks (BPNN) with the input matrix composed by stress wave characteristics in time domain or frequency domain is first proposed to classify various situations of the pipeline, in order to detect the leakage in the fluid flow pipelines. The capability of the new method had been demonstrated by experiments and finally used to design a handy instrument for the pipeline leakage detection. Usually a pipeline system has many inner branches and often in adjusting dynamic condition, it is difficult for traditional pipeline diagnosis facilities to identify the difference between inner pipeline operation and pipeline fault. The author first proposed pipeline wave propagation identification by pattern recognition to diagnose pipeline leak. A series of pattern primitives such as peaks, valleys, horizon lines, capstan peaks, dominant relations, slave relations, etc., are used to extract features of the negative pressure wave form. The context-free grammar of symbolic representation of the negative wave form is used, and a negative wave form parsing system with application to structural pattern recognition based on the representation is first proposed to detect and localize leaks of the fluid pipelines

  8. Genetic algorithms and artificial neural networks for loading pattern optimisation of advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ziver, A.K. E-mail: a.k.ziver@imperial.ac.uk; Pain, C.C; Carter, J.N.; Oliveira, C.R.E. de; Goddard, A.J.H.; Overton, R.S

    2004-03-01

    A non-generational genetic algorithm (GA) has been developed for fuel management optimisation of Advanced Gas-Cooled Reactors, which are operated by British Energy and produce around 20% of the UK's electricity requirements. An evolutionary search is coded using the genetic operators; namely selection by tournament, two-point crossover, mutation and random assessment of population for multi-cycle loading pattern (LP) optimisation. A detailed description of the chromosomes in the genetic algorithm coded is presented. Artificial Neural Networks (ANNs) have been constructed and trained to accelerate the GA-based search during the optimisation process. The whole package, called GAOPT, is linked to the reactor analysis code PANTHER, which performs fresh fuel loading, burn-up and power shaping calculations for each reactor cycle by imposing station-specific safety and operational constraints. GAOPT has been verified by performing a number of tests, which are applied to the Hinkley Point B and Hartlepool reactors. The test results giving loading pattern (LP) scenarios obtained from single and multi-cycle optimisation calculations applied to realistic reactor states of the Hartlepool and Hinkley Point B reactors are discussed. The results have shown that the GA/ANN algorithms developed can help the fuel engineer to optimise loading patterns in an efficient and more profitable way than currently available for multi-cycle refuelling of AGRs. Research leading to parallel GAs applied to LP optimisation are outlined, which can be adapted to present day LWR fuel management problems.

  9. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state

    Science.gov (United States)

    Winder, Aaron T.; Echagarruga, Christina; Zhang, Qingguang; Drew, Patrick J.

    2017-01-01

    Spontaneous fluctuations in hemodynamic signals in the absence of a task or overt stimulation are used to infer neural activity. We tested this coupling by simultaneously measuring neural activity and changes in cerebral blood volume (CBV) in the somatosensory cortex of awake, head-fixed mice during periods of true rest, and during whisker stimulation and volitional whisking. Here we show that neurovascular coupling was similar across states, and large spontaneous CBV changes in the absence of sensory input were driven by volitional whisker and body movements. Hemodynamic signals during periods of rest were weakly correlated with neural activity. Spontaneous fluctuations in CBV and vessel diameter persisted when local neural spiking and glutamatergic input was blocked, and during blockade of noradrenergic receptors, suggesting a non-neuronal origin for spontaneous CBV fluctuations. Spontaneous hemodynamic signals reflect a combination of behavior, local neural activity, and putatively non-neural processes. PMID:29184204

  10. Effect of the size of an artificial neural network used as pattern identifier

    International Nuclear Information System (INIS)

    Reynoso V, M.R.; Vega C, J.J.

    2003-01-01

    A novel way to extract relevant parameters associated with the outgoing ions from nuclear reactions, obtained by digitizing the signals provided by a Bragg curve spectrometer (BCS) is presented. This allowed the implementation of a more thorough pulse-shape analysis. Due to the complexity of this task, it was required to take advantage of new and more powerful computational paradigms. This was fulfilled using a back-propagation artificial neural network (ANN) as a pattern identifier. Over training of ANNs is a common problem during the training stage. In the performance of the ANN there is a compromise between its size and the size of the training set. Here, this effect will be illustrated in relation to the problem of Bragg Curve (BC) identification. (Author)

  11. Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Directory of Open Access Journals (Sweden)

    Mario Sansone

    2013-01-01

    Full Text Available Computer systems for Electrocardiogram (ECG analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units or in prompt detection of dangerous events (e.g., ventricular fibrillation. Together with clinical applications (arrhythmia detection and heart rate variability analysis, ECG is currently being investigated in biometrics (human identification, an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned.

  12. Effect of the size of an artificial neural network used as pattern identifier

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso V, M.R.; Vega C, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    A novel way to extract relevant parameters associated with the outgoing ions from nuclear reactions, obtained by digitizing the signals provided by a Bragg curve spectrometer (BCS) is presented. This allowed the implementation of a more thorough pulse-shape analysis. Due to the complexity of this task, it was required to take advantage of new and more powerful computational paradigms. This was fulfilled using a back-propagation artificial neural network (ANN) as a pattern identifier. Over training of ANNs is a common problem during the training stage. In the performance of the ANN there is a compromise between its size and the size of the training set. Here, this effect will be illustrated in relation to the problem of Bragg Curve (BC) identification. (Author)

  13. Methods for discriminating gas-liquid two phase flow patterns based on gray neural networks and SVM

    International Nuclear Information System (INIS)

    Li Jingjing; Zhou Tao; Duan Jun; Zhang Lei

    2013-01-01

    Background: The flow patterns of two phase flow will directly influence the heat transfer and mass transfer of the flow. Purpose: By wavelet analysis of the pressure drop experimental data, the wavelet coefficients of different frequency can be obtained. Methods: Get the wavelet energy and then train them in the model of BP neural network to distinguish the flow patterns. Introduced the implant gray neural networks model and use it for the two phase flow for the first time. At the same time, set up the method of training the pressure data and wavelet energy data in the support vector machine. Results: Through treatment of the gray layer, the result of the neural network is more accuracy. It can obviously reduce the effect of data marginalization. The accuracy of the pressure drop Lib-SVM method is 95.2%. Conclusions: The results show that these three methods can make a distinction among the different flow patterns and the Lib-SVM method gets the best result, then the gray neural networks, and at last the BP neural networks. (authors)

  14. Training verb argument structure production in agrammatic aphasia: Behavioral and neural recovery patterns

    Science.gov (United States)

    Thompson, Cynthia K.; Riley, Ellyn A.; den Ouden, Dirk-Bart; Meltzer-Asscher, Aya; Lukic, Sladjana

    2013-01-01

    Introduction Neuroimaging and lesion studies indicate a left hemisphere network for verb and verb argument structure processing, involving both frontal and temporoparietal brain regions. Although their verb comprehension is generally unimpaired, it is well known that individuals with agrammatic aphasia often present with verb production deficits, characterized by an argument structure complexity hierarchy, indicating faulty access to argument structure representations for production and integration into syntactic contexts. Recovery of verb processing in agrammatism, however, has received little attention and no studies have examined the neural mechanisms associated with improved verb and argument structure processing. In the present study we trained agrammatic individuals on verbs with complex argument structure in sentence contexts and examined generalization to verbs with less complex argument structure. The neural substrates of improved verb production were examined using functional magnetic resonance imaging (fMRI). Methods Eight individuals with chronic agrammatic aphasia participated in the study (four experimental and four control participants). Production of three-argument verbs in active sentences was trained using a sentence generation task emphasizing the verb’s argument structure and the thematic roles of sentential noun phrases. Before and after training, production of trained and untrained verbs was tested in naming and sentence production and fMRI scans were obtained, using an action naming task. Results Significant pre- to post-training improvement in trained and untrained (one- and two-argument) verbs was found for treated, but not control, participants, with between-group differences found for verb naming, production of verbs in sentences, and production of argument structure. fMRI activation derived from post-treatment compared to pre-treatment scans revealed upregulation in cortical regions implicated for verb and argument structure processing

  15. Natural lecithin promotes neural network complexity and activity

    Science.gov (United States)

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-01-01

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called “essential” fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications. PMID:27228907

  16. Natural lecithin promotes neural network complexity and activity.

    Science.gov (United States)

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-05-27

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called "essential" fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications.

  17. Effects of Near-Infrared Laser on Neural Cell Activity

    International Nuclear Information System (INIS)

    Mochizuki-Oda, Noriko; Kataoka, Yosky; Yamada, Hisao; Awazu, Kunio

    2004-01-01

    Near-infrared laser has been used to relieve patients from various kinds of pain caused by postherpetic neuralgesia, myofascial dysfunction, surgical and traumatic wound, cancer, and rheumatoid arthritis. Clinically, He-Ne (λ=632.8 nm, 780 nm) and Ga-Al-As (805 ± 25 nm) lasers are used to irradiate trigger points or nerve ganglion. However the precise mechanisms of such biological actions of the laser have not yet been resolved. Since laser therapy is often effective to suppress the pain caused by hyperactive excitation of sensory neurons, interactions with laser light and neural cells are suggested. As neural excitation requires large amount of energy liberated from adenosine triphosphate (ATP), we examined the effect of 830-nm laser irradiation on the energy metabolism of the rat central nervous system and isolated mitochondria from brain. The diode laser was applied for 15 min with irradiance of 4.8 W/cm2 on a 2 mm-diameter spot at the brain surface. Tissue ATP content of the irradiated area in the cerebral cortex was 19% higher than that of the non-treated area (opposite side of the cortex), whereas the ADP content showed no significant difference. Irradiation at another wavelength (652 nm) had no effect on either ATP or ADP contents. The temperature of the brain tissue was increased 4.5-5.0 deg. C during the irradiation of both 830-nm and 652-nm laser light. Direct irradiation of the mitochondrial suspension did not show any wavelength-dependent acceleration of respiration rate nor ATP synthesis. These results suggest that the increase in tissue ATP content did not result from the thermal effect, but from specific effect of the laser operated at 830 nm. Electrophysiological studies showed the hyperpolarization of membrane potential of isolated neurons and decrease in membrane resistance with irradiation of the laser, suggesting an activation of potassium channels. Intracellular ATP is reported to regulate some kinds of potassium channels. Possible mechanisms

  18. Where's the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network.

    Directory of Open Access Journals (Sweden)

    Christoph Hartmann

    2015-12-01

    Full Text Available Even in the absence of sensory stimulation the brain is spontaneously active. This background "noise" seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN, which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network's spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network's behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural

  19. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Science.gov (United States)

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  20. Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory.

    Science.gov (United States)

    Emrich, Stephen M; Riggall, Adam C; Larocque, Joshua J; Postle, Bradley R

    2013-04-10

    Traditionally, load sensitivity of sustained, elevated activity has been taken as an index of storage for a limited number of items in visual short-term memory (VSTM). Recently, studies have demonstrated that the contents of a single item held in VSTM can be decoded from early visual cortex, despite the fact that these areas do not exhibit elevated, sustained activity. It is unknown, however, whether the patterns of neural activity decoded from sensory cortex change as a function of load, as one would expect from a region storing multiple representations. Here, we use multivoxel pattern analysis to examine the neural representations of VSTM in humans across multiple memory loads. In an important extension of previous findings, our results demonstrate that the contents of VSTM can be decoded from areas that exhibit a transient response to visual stimuli, but not from regions that exhibit elevated, sustained load-sensitive delay-period activity. Moreover, the neural information present in these transiently activated areas decreases significantly with increasing load, indicating load sensitivity of the patterns of activity that support VSTM maintenance. Importantly, the decrease in classification performance as a function of load is correlated with within-subject changes in mnemonic resolution. These findings indicate that distributed patterns of neural activity in putatively sensory visual cortex support the representation and precision of information in VSTM.

  1. Recurrence analysis of ant activity patterns.

    Directory of Open Access Journals (Sweden)

    Felipe Marcel Neves

    Full Text Available In this study, we used recurrence quantification analysis (RQA and recurrence plots (RPs to compare the movement activity of individual workers of three ant species, as well as a gregarious beetle species. RQA and RPs quantify the number and duration of recurrences of a dynamical system, including a detailed quantification of signals that could be stochastic, deterministic, or both. First, we found substantial differences between the activity dynamics of beetles and ants, with the results suggesting that the beetles have quasi-periodic dynamics and the ants do not. Second, workers from different ant species varied with respect to their dynamics, presenting degrees of predictability as well as stochastic signals. Finally, differences were found among minor and major caste of the same (dimorphic ant species. Our results underscore the potential of RQA and RPs in the analysis of complex behavioral patterns, as well as in general inferences on animal behavior and other biological phenomena.

  2. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery.

    Science.gov (United States)

    Sihvonen, Aleksi J; Ripollés, Pablo; Rodríguez-Fornells, Antoni; Soinila, Seppo; Särkämö, Teppo

    2017-01-01

    Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV) and white matter volume (WMV) changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients ( N = 90), we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered) amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered) amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of the lesions

  3. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Science.gov (United States)

    Sihvonen, Aleksi J.; Ripollés, Pablo; Rodríguez-Fornells, Antoni; Soinila, Seppo; Särkämö, Teppo

    2017-01-01

    Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV) and white matter volume (WMV) changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90), we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered) amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered) amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of the lesions

  4. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Directory of Open Access Journals (Sweden)

    Aleksi J. Sihvonen

    2017-07-01

    Full Text Available Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM and morphometry (VBM study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV and white matter volume (WMV changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90, we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA. Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of

  5. Co-speech gestures influence neural activity in brain regions associated with processing semantic information.

    Science.gov (United States)

    Dick, Anthony Steven; Goldin-Meadow, Susan; Hasson, Uri; Skipper, Jeremy I; Small, Steven L

    2009-11-01

    Everyday communication is accompanied by visual information from several sources, including co-speech gestures, which provide semantic information listeners use to help disambiguate the speaker's message. Using fMRI, we examined how gestures influence neural activity in brain regions associated with processing semantic information. The BOLD response was recorded while participants listened to stories under three audiovisual conditions and one auditory-only (speech alone) condition. In the first audiovisual condition, the storyteller produced gestures that naturally accompany speech. In the second, the storyteller made semantically unrelated hand movements. In the third, the storyteller kept her hands still. In addition to inferior parietal and posterior superior and middle temporal regions, bilateral posterior superior temporal sulcus and left anterior inferior frontal gyrus responded more strongly to speech when it was further accompanied by gesture, regardless of the semantic relation to speech. However, the right inferior frontal gyrus was sensitive to the semantic import of the hand movements, demonstrating more activity when hand movements were semantically unrelated to the accompanying speech. These findings show that perceiving hand movements during speech modulates the distributed pattern of neural activation involved in both biological motion perception and discourse comprehension, suggesting listeners attempt to find meaning, not only in the words speakers produce, but also in the hand movements that accompany speech.

  6. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Science.gov (United States)

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  7. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    Science.gov (United States)

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  8. Differential patterns of cortical activation as a function of fluid reasoning complexity.

    Science.gov (United States)

    Perfetti, Bernardo; Saggino, Aristide; Ferretti, Antonio; Caulo, Massimo; Romani, Gian Luca; Onofrj, Marco

    2009-02-01

    Fluid intelligence (gf) refers to abstract reasoning and problem solving abilities. It is considered a human higher cognitive factor central to general intelligence (g). The regions of the cortex supporting gf have been revealed by recent bioimaging studies and valuable hypothesis on the neural correlates of individual differences have been proposed. However, little is known about the interaction between individual variability in gf and variation in cortical activity following task complexity increase. To further investigate this, two samples of participants (high-IQ, N = 8; low-IQ, N = 10) with significant differences in gf underwent two reasoning (moderate and complex) tasks and a control task adapted from the Raven progressive matrices. Functional magnetic resonance was used and the recorded signal analyzed between and within the groups. The present study revealed two opposite patterns of neural activity variation which were probably a reflection of the overall differences in cognitive resource modulation: when complexity increased, high-IQ subjects showed a signal enhancement in some frontal and parietal regions, whereas low-IQ subjects revealed a decreased activity in the same areas. Moreover, a direct comparison between the groups' activation patterns revealed a greater neural activity in the low-IQ sample when conducting moderate task, with a strong involvement of medial and lateral frontal regions thus suggesting that the recruitment of executive functioning might be different between the groups. This study provides evidence for neural differences in facing reasoning complexity among subjects with different gf level that are mediated by specific patterns of activation of the underlying fronto-parietal network.

  9. Integration of active devices on smart polymers for neural interfaces

    Science.gov (United States)

    Avendano-Bolivar, Adrian Emmanuel

    The increasing ability to ever more precisely identify and measure neural interactions and other phenomena in the central and peripheral nervous systems is revolutionizing our understanding of the human body and brain. To facilitate further understanding, more sophisticated neural devices, perhaps using microelectronics processing, must be fabricated. Materials often used in these neural interfaces, while compatible with these fabrication processes, are not optimized for long-term use in the body and are often orders of magnitude stiffer than the tissue with which they interact. Using the smart polymer substrates described in this work, suitability for processing as well as chronic implantation is demonstrated. We explore how to integrate reliable circuitry onto these flexible, biocompatible substrates that can withstand the aggressive environment of the body. To increase the capabilities of these devices beyond individual channel sensing and stimulation, active electronics must also be included onto our systems. In order to add this functionality to these substrates and explore the limits of these devices, we developed a process to fabricate single organic thin film transistors with mobilities up to 0.4 cm2/Vs and threshold voltages close to 0V. A process for fabricating organic light emitting diodes on flexible substrates is also addressed. We have set a foundation and demonstrated initial feasibility for integrating multiple transistors onto thin-film flexible devices to create new applications, such as matrix addressable functionalized electrodes and organic light emitting diodes. A brief description on how to integrate waveguides for their use in optogenetics is addressed. We have built understanding about device constraints on mechanical, electrical and in vivo reliability and how various conditions affect the electronics' lifetime. We use a bi-layer gate dielectric using an inorganic material such as HfO 2 combined with organic Parylene-c. A study of

  10. Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments

    International Nuclear Information System (INIS)

    Tahat Amani; Marti Jordi; Khwaldeh Ali; Tahat Kaher

    2014-01-01

    In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer ‘occurred’ and transfer ‘not occurred’. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies. (condensed matter: structural, mechanical, and thermal properties)

  11. Root activity patterns of some tree crops

    International Nuclear Information System (INIS)

    1975-01-01

    A coordinated research programme was followed using a soil injection method which employed 32 P-labelled superphosphate solution. The technique was applied for determining the root activity distribution of various crops. Field experiments were carried out in Uganda on bananas, Spain and Taiwan on citrus, Ghana on cocoa, Columbia and Kenya on coffee, and Ivory Coast and Malaysia on oil palms, to study the patterns of root activity as a function of depth and distance from the tree base, soil type, tree age and season. A few weeks after injection, leaf samples of similar age were taken from well-defined morphological positions on the tree and analyzed for 32 P. The activity of the label in the sample reflects the root activity at the various positions in the soil. Some preliminary experiments were also carried out using 32 P-superphosphate to evaluate the efficiency of different methods of fertilizer placement in relation to phosphate uptake by the plantation as a whole

  12. Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.

    Science.gov (United States)

    Okamoto, Hiroshi

    2016-08-01

    Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features

    Science.gov (United States)

    Huo, Guanying

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614

  14. Schema benefit vs. proactive interference: Contradicting behavioral outcomes and coexisting neural patterns.

    Science.gov (United States)

    Oren, Noga; Shapira-Lichter, Irit; Lerner, Yulia; Tarrasch, Ricardo; Hendler, Talma; Giladi, Nir; Ash, Elissa L

    2017-09-01

    Prior knowledge can either assist or hinder the ability to learn new information. These contradicting behavioral outcomes, referred to as schema benefit and proactive interference respectively, have been studied separately. Here we examined whether the known neural correlates of each process coexist, and how they are influenced by attentional loading and aging. To this end we used an fMRI task that affected both processes simultaneously by presenting pairs of related short movies in succession. The first movie of each pair provided context for the second movie, which could evoke schema benefit and/or proactive interference. Inclusion of an easy or hard secondary task performed during encoding of the movies, as well as testing both younger (22-35y) and older (65-79y) adults, allowed examining the effect of attentional load and older age on the neural patterns associated with context. Analyses focused on three predefined regions and examined how their inter-subject correlation (inter-SC) and functional connectivity (FC) with the hippocampi changed between the first and second movie. The results in the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) matched and expanded previous findings: higher inter-SC and lower FC were observed during the second compared to the first movie; yet the differentiation between the first and second movies in these regions was attenuated under high attentional load, pointing to dependency on attentional resources. Instead, at high load there was a significant context effect in the FC of the left ventrolateral prefrontal cortex (vlPFC), and greater FC in the second movie was related to greater proactive interference. Further, older adults showed context effect in the PCC and vlPFC. Intriguingly, older adults with inter-SC mPFC patterns similar to younger adults exhibited schema benefit in our task, while those with inter-SC PCC patterns similar to younger adults showed proactive interference in an independent task. The

  15. Activation of postnatal neural stem cells requires nuclear receptor TLX.

    Science.gov (United States)

    Niu, Wenze; Zou, Yuhua; Shen, Chengcheng; Zhang, Chun-Li

    2011-09-28

    Neural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown. Here, we show that nuclear receptor TLX (NR2E1) controls the activation status of postnatal NSCs in mice. Lineage tracing indicates that TLX-expressing cells give rise to both activated and inactive postnatal NSCs. Surprisingly, loss of TLX function does not result in spontaneous glial differentiation, but rather leads to a precipitous age-dependent increase of inactive cells with marker expression and radial morphology for NSCs. These inactive cells are mispositioned throughout the granular cell layer of the dentate gyrus during development and can proliferate again after reintroduction of ectopic TLX. RNA-seq analysis of sorted NSCs revealed a TLX-dependent global expression signature, which includes the p53 signaling pathway. TLX regulates p21 expression in a p53-dependent manner, and acute removal of p53 can rescue the proliferation defect of TLX-null NSCs in culture. Together, these findings suggest that TLX acts as an essential regulator that ensures the proliferative ability of postnatal NSCs by controlling their activation through genetic interaction with p53 and other signaling pathways.

  16. Brain activation patterns during memory of cognitive agency.

    Science.gov (United States)

    Vinogradov, Sophia; Luks, Tracy L; Simpson, Gregory V; Schulman, Brian J; Glenn, Shenly; Wong, Amy E

    2006-06-01

    Agency is the awareness that one's own self is the agent or author of an action, a thought, or a feeling. The implicit memory that one's self was the originator of a cognitive event - the sense of cognitive agency - has not yet been fully explored in terms of relevant neural systems. In this functional magnetic resonance imaging (fMRI) study, we examined brain activation patterns differentiating memory for the source of previously self-generated vs. experimenter-presented word items from a sentence completion paradigm designed to be emotionally neutral and semantically constrained in content. Accurate memory for the source of self-generated vs. externally-presented word items resulted in activation of dorsal medial prefrontal cortex (mPFC) bilaterally, supporting an emerging body of work that indicates a key role for this region in self-referential processing. Our data extend the function of mPFC into the domain of memory and the accurate retrieval of the sense of cognitive agency under conditions where agency was encoded implicitly.

  17. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI.

    Science.gov (United States)

    Bilevicius, Elena; Kolesar, Tiffany A; Kornelsen, Jennifer

    2016-04-19

    To assess the neural activity associated with mindfulness-based alterations of pain perception. The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2), unpleasantness (n = 5), and intensity (n = 5), and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  18. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  19. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  20. Anticipation of peer evaluation in anxious adolescents: divergence in neural activation and maturation.

    Science.gov (United States)

    Spielberg, Jeffrey M; Jarcho, Johanna M; Dahl, Ronald E; Pine, Daniel S; Ernst, Monique; Nelson, Eric E

    2015-08-01

    Adolescence is the time of peak onset for many anxiety disorders, particularly Social Anxiety Disorder. Research using simulated social interactions consistently finds differential activation in several brain regions in anxious (vs non-anxious) youth, including amygdala, striatum and medial prefrontal cortex. However, few studies examined the anticipation of peer interactions, a key component in the etiology and maintenance of anxiety disorders. Youth completed the Chatroom Task while undergoing functional magnetic resonance imaging. Patterns of neural activation were assessed in anxious and non-anxious youth as they were cued to anticipate social feedback from peers. Anxious participants evidenced greater amygdala activation and rostral anterior cingulate (rACC)↔amygdala coupling than non-anxious participants during anticipation of feedback from peers they had previously rejected; anxious participants also evidenced less nucleus accumbens activation during anticipation of feedback from selected peers. Finally, anxiety interacted with age in rACC: in anxious participants, age was positively associated with activation to anticipated feedback from rejected peers and negatively for selected peers, whereas the opposite pattern emerged for non-anxious youth. Overall, anxious youth showed greater reactivity in anticipation of feedback from rejected peers and thus may ascribe greater salience to these potential interactions and increase the likelihood of avoidance behavior. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    Science.gov (United States)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  2. SPR imaging combined with cyclic voltammetry for the detection of neural activity

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-03-01

    Full Text Available Surface plasmon resonance (SPR detects changes in refractive index at a metal-dielectric interface. In this study, SPR imaging (SPRi combined with cyclic voltammetry (CV was applied to detect neural activity in isolated bullfrog sciatic nerves. The neural activities induced by chemical and electrical stimulation led to an SPR response, and the activities were recorded in real time. The activities of different parts of the sciatic nerve were recorded and compared. The results demonstrated that SPR imaging combined with CV is a powerful tool for the investigation of neural activity.

  3. Neural network pattern recognition of lingual-palatal pressure for automated detection of swallow.

    Science.gov (United States)

    Hadley, Aaron J; Krival, Kate R; Ridgel, Angela L; Hahn, Elizabeth C; Tyler, Dustin J

    2015-04-01

    We describe a novel device and method for real-time measurement of lingual-palatal pressure and automatic identification of the oral transfer phase of deglutition. Clinical measurement of the oral transport phase of swallowing is a complicated process requiring either placement of obstructive sensors or sitting within a fluoroscope or articulograph for recording. Existing detection algorithms distinguish oral events with EMG, sound, and pressure signals from the head and neck, but are imprecise and frequently result in false detection. We placed seven pressure sensors on a molded mouthpiece fitting over the upper teeth and hard palate and recorded pressure during a variety of swallow and non-swallow activities. Pressure measures and swallow times from 12 healthy and 7 Parkinson's subjects provided training data for a time-delay artificial neural network to categorize the recordings as swallow or non-swallow events. User-specific neural networks properly categorized 96 % of swallow and non-swallow events, while a generalized population-trained network was able to properly categorize 93 % of swallow and non-swallow events across all recordings. Lingual-palatal pressure signals are sufficient to selectively and specifically recognize the initiation of swallowing in healthy and dysphagic patients.

  4. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2013-12-01

    Objective. Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  5. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity.

    Science.gov (United States)

    Cowley, Benjamin R; Kaufman, Matthew T; Butler, Zachary S; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M

    2013-12-01

    Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  6. DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2014-01-01

    Objective Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than three, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance DataHigh was developed to fulfill a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity. PMID:24216250

  7. Early patterns of commercial activity in graphene

    International Nuclear Information System (INIS)

    Shapira, Philip; Youtie, Jan; Arora, Sanjay

    2012-01-01

    Graphene, a novel nanomaterial consisting of a single layer of carbon atoms, has attracted significant attention due to its distinctive properties, including great strength, electrical and thermal conductivity, lightness, and potential benefits for diverse applications. The commercialization of scientific discoveries such as graphene is inherently uncertain, with the lag time between the scientific development of a new technology and its adoption by corporate actors revealing the extent to which firms are able to absorb knowledge and engage in learning to implement applications based on the new technology. From this perspective, we test for the existence of three different corporate learning and activity patterns: (1) a linear process where patenting follows scientific discovery; (2) a double-boom phenomenon where corporate (patenting) activity is first concentrated in technological improvements and then followed by a period of technology productization; and (3) a concurrent model where scientific discovery in publications occurs in parallel with patenting. By analyzing corporate publication and patent activity across country and application lines, we find that, while graphene as a whole is experiencing concurrent scientific development and patenting growth, country- and application-specific trends offer some evidence of the linear and double-boom models.

  8. Emotion disrupts neural activity during selective attention in psychopathy.

    Science.gov (United States)

    Sadeh, Naomi; Spielberg, Jeffrey M; Heller, Wendy; Herrington, John D; Engels, Anna S; Warren, Stacie L; Crocker, Laura D; Sutton, Bradley P; Miller, Gregory A

    2013-03-01

    Dimensions of psychopathy are theorized to be associated with distinct cognitive and emotional abnormalities that may represent unique neurobiological risk factors for the disorder. This hypothesis was investigated by examining whether the psychopathic personality dimensions of fearless-dominance and impulsive-antisociality moderated neural activity and behavioral responses associated with selective attention and emotional processing during an emotion-word Stroop task in 49 adults. As predicted, the dimensions evidenced divergent selective-attention deficits and sensitivity to emotional distraction. Fearless-dominance was associated with disrupted attentional control to positive words, and activation in right superior frontal gyrus mediated the relationship between fearless-dominance and errors to positive words. In contrast, impulsive-antisociality evidenced increased behavioral interference to both positive and negative words and correlated positively with recruitment of regions associated with motivational salience (amygdala, orbitofrontal cortex, insula), emotion regulation (temporal cortex, superior frontal gyrus) and attentional control (dorsal anterior cingulate cortex). Individuals high on both dimensions had increased recruitment of regions related to attentional control (temporal cortex, rostral anterior cingulate cortex), response preparation (pre-/post-central gyri) and motivational value (orbitofrontal cortex) in response to negative words. These findings provide evidence that the psychopathy dimensions represent dual sets of risk factors characterized by divergent dysfunction in cognitive and affective processes.

  9. Generalized activity equations for spiking neural network dynamics

    Directory of Open Access Journals (Sweden)

    Michael A Buice

    2013-11-01

    Full Text Available Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales - the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.

  10. The neural coding of expected and unexpected monetary performance outcomes: dissociations between active and observational learning.

    Science.gov (United States)

    Bellebaum, C; Jokisch, D; Gizewski, E R; Forsting, M; Daum, I

    2012-02-01

    Successful adaptation to the environment requires the learning of stimulus-response-outcome associations. Such associations can be learned actively by trial and error or by observing the behaviour and accompanying outcomes in other persons. The present study investigated similarities and differences in the neural mechanisms of active and observational learning from monetary feedback using functional magnetic resonance imaging. Two groups of 15 subjects each - active and observational learners - participated in the experiment. On every trial, active learners chose between two stimuli and received monetary feedback. Each observational learner observed the choices and outcomes of one active learner. Learning performance as assessed via active test trials without feedback was comparable between groups. Different activation patterns were observed for the processing of unexpected vs. expected monetary feedback in active and observational learners, particularly for positive outcomes. Activity for unexpected vs. expected reward was stronger in the right striatum in active learning, while activity in the hippocampus was bilaterally enhanced in observational and reduced in active learning. Modulation of activity by prediction error (PE) magnitude was observed in the right putamen in both types of learning, whereas PE related activations in the right anterior caudate nucleus and in the medial orbitofrontal cortex were stronger for active learning. The striatum and orbitofrontal cortex thus appear to link reward stimuli to own behavioural reactions and are less strongly involved when the behavioural outcome refers to another person's action. Alternative explanations such as differences in reward value between active and observational learning are also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A Combination of Central Pattern Generator-based and Reflex-based Neural Networks for Dynamic, Adaptive, Robust Bipedal Locomotion

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin

    2016-01-01

    Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior...

  12. Extraction and characterization of essential discharge patterns from multisite recordings of spiking ongoing activity.

    Directory of Open Access Journals (Sweden)

    Riccardo Storchi

    Full Text Available Neural activation patterns proceed often by schemes or motifs distributed across the involved cortical networks. As neurons are correlated, the estimate of all possible dependencies quickly goes out of control. The complex nesting of different oscillation frequencies and their high non-stationariety further hamper any quantitative evaluation of spiking network activities. The problem is exacerbated by the intrinsic variability of neural patterns.Our technique introduces two important novelties and enables to insulate essential patterns on larger sets of spiking neurons and brain activity regimes. First, the sampling procedure over N units is based on a fixed spike number k in order to detect N-dimensional arrays (k-sequences, whose sum over all dimension is k. Then k-sequences variability is greatly reduced by a hierarchical separative clustering, that assigns large amounts of distinct k-sequences to few classes. Iterative separations are stopped when the dimension of each cluster comes to be smaller than a certain threshold. As threshold tuning critically impacts on the number of classes extracted, we developed an effective cost criterion to select the shortest possible description of our dataset. Finally we described three indexes (C,S,R to evaluate the average pattern complexity, the structure of essential classes and their stability in time.We validated this algorithm with four kinds of surrogated activity, ranging from random to very regular patterned. Then we characterized a selection of ongoing activity recordings. By the S index we identified unstable, moderatly and strongly stable patterns while by the C and the R indices we evidenced their non-random structure. Our algorithm seems able to extract interesting and non-trivial spatial dynamics from multisource neuronal recordings of ongoing and potentially stimulated activity. Combined with time-frequency analysis of LFPs could provide a powerful multiscale approach linking population

  13. Drug-like and non drug-like pattern classification based on simple topology descriptor using hybrid neural network.

    Science.gov (United States)

    Wan-Mamat, Wan Mohd Fahmi; Isa, Nor Ashidi Mat; Wahab, Habibah A; Wan-Mamat, Wan Mohd Fairuz

    2009-01-01

    An intelligent prediction system has been developed to discriminate drug-like and non drug-like molecules pattern. The system is constructed by using the application of advanced version of standard multilayer perceptron (MLP) neural network called Hybrid Multilayer Perceptron (HMLP) neural network and trained using Modified Recursive Prediction Error (MRPE) training algorithm. In this work, a well understood and easy excess Rule of Five + Veber filter properties are selected as the topological descriptor. The main idea behind the selection of this simple descriptor is to assure that the system could be used widely, beneficial and more advantageous regardless at all user level within a drug discovery organization.

  14. What if? Neural activity underlying semantic and episodic counterfactual thinking.

    Science.gov (United States)

    Parikh, Natasha; Ruzic, Luka; Stewart, Gregory W; Spreng, R Nathan; De Brigard, Felipe

    2018-05-25

    Counterfactual thinking (CFT) is the process of mentally simulating alternative versions of known facts. In the past decade, cognitive neuroscientists have begun to uncover the neural underpinnings of CFT, particularly episodic CFT (eCFT), which activates regions in the default network (DN) also activated by episodic memory (eM) recall. However, the engagement of DN regions is different for distinct kinds of eCFT. More plausible counterfactuals and counterfactuals about oneself show stronger activity in DN regions compared to implausible and other- or object-focused counterfactuals. The current study sought to identify a source for this difference in DN activity. Specifically, self-focused counterfactuals may also be more plausible, suggesting that DN core regions are sensitive to the plausibility of a simulation. On the other hand, plausible and self-focused counterfactuals may involve more episodic information than implausible and other-focused counterfactuals, which would imply DN sensitivity to episodic information. In the current study, we compared episodic and semantic counterfactuals generated to be plausible or implausible against episodic and semantic memory reactivation using fMRI. Taking multivariate and univariate approaches, we found that the DN is engaged more during episodic simulations, including eM and all eCFT, than during semantic simulations. Semantic simulations engaged more inferior temporal and lateral occipital regions. The only region that showed strong plausibility effects was the hippocampus, which was significantly engaged for implausible CFT but not for plausible CFT, suggestive of binding more disparate information. Consequences of these findings for the cognitive neuroscience of mental simulation are discussed. Published by Elsevier Inc.

  15. Exponential stability of Cohen-Grossberg neural networks with a general class of activation functions

    International Nuclear Information System (INIS)

    Wan Anhua; Wang Miansen; Peng Jigen; Qiao Hong

    2006-01-01

    In this Letter, the dynamics of Cohen-Grossberg neural networks model are investigated. The activation functions are only assumed to be Lipschitz continuous, which provide a much wider application domain for neural networks than the previous results. By means of the extended nonlinear measure approach, new and relaxed sufficient conditions for the existence, uniqueness and global exponential stability of equilibrium of the neural networks are obtained. Moreover, an estimate for the exponential convergence rate of the neural networks is precisely characterized. Our results improve those existing ones

  16. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation.

    Science.gov (United States)

    Sameiro-Barbosa, Catia M; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system.

  17. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation

    Science.gov (United States)

    Sameiro-Barbosa, Catia M.; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306

  18. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    Directory of Open Access Journals (Sweden)

    Atsushi Ugajin

    Full Text Available Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica. Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica, on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing.

  19. Optical imaging of neuronal activity and visualization of fine neural structures in non-desheathed nervous systems.

    Directory of Open Access Journals (Sweden)

    Christopher John Goldsmith

    Full Text Available Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a

  20. Fast neutron spectra determination by threshold activation detectors using neural networks

    International Nuclear Information System (INIS)

    Kardan, M.R.; Koohi-Fayegh, R.; Setayeshi, S.; Ghiassi-Nejad, M.

    2004-01-01

    Neural network method was used for fast neutron spectra unfolding in spectrometry by threshold activation detectors. The input layer of the neural networks consisted of 11 neurons for the specific activities of neutron-induced nuclear reaction products, while the output layers were fast neutron spectra which had been subdivided into 6, 8, 10, 12, 15 and 20 energy bins. Neural network training was performed by 437 fast neutron spectra and corresponding threshold activation detector readings. The trained neural network have been applied for unfolding 50 spectra, which were not in training sets and the results were compared with real spectra and unfolded spectra by SANDII. The best results belong to 10 energy bin spectra. The neural network was also trained by detector readings with 5% uncertainty and the response of the trained neural network to detector readings with 5%, 10%, 15%, 20%, 25% and 50% uncertainty was compared with real spectra. Neural network algorithm, in comparison with other unfolding methods, is very fast and needless to detector response matrix and any prior information about spectra and also the outputs have low sensitivity to uncertainty in the activity measurements. The results show that the neural network algorithm is useful when a fast response is required with reasonable accuracy

  1. The neural basis of the bystander effect--the influence of group size on neural activity when witnessing an emergency.

    Science.gov (United States)

    Hortensius, Ruud; de Gelder, Beatrice

    2014-06-01

    Naturalistic observation and experimental studies in humans and other primates show that observing an individual in need automatically triggers helping behavior. The aim of the present study is to clarify the neurofunctional basis of social influences on individual helping behavior. We investigate whether when participants witness an emergency, while performing an unrelated color-naming task in an fMRI scanner, the number of bystanders present at the emergency influences neural activity in regions related to action preparation. The results show a decrease in activity with the increase in group size in the left pre- and postcentral gyri and left medial frontal gyrus. In contrast, regions related to visual perception and attention show an increase in activity. These results demonstrate the neural mechanisms of social influence on automatic action preparation that is at the core of helping behavior when witnessing an emergency. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Neural activity associated with metaphor comprehension: spatial analysis.

    Science.gov (United States)

    Sotillo, María; Carretié, Luis; Hinojosa, José A; Tapia, Manuel; Mercado, Francisco; López-Martín, Sara; Albert, Jacobo

    2005-01-03

    Though neuropsychological data indicate that the right hemisphere (RH) plays a major role in metaphor processing, other studies suggest that, at least during some phases of this processing, a RH advantage may not exist. The present study explores, through a temporally agile neural signal--the event-related potentials (ERPs)--, and through source-localization algorithms applied to ERP recordings, whether the crucial phase of metaphor comprehension presents or not a RH advantage. Participants (n=24) were submitted to a S1-S2 experimental paradigm. S1 consisted of visually presented metaphoric sentences (e.g., "Green lung of the city"), followed by S2, which consisted of words that could (i.e., "Park") or could not (i.e., "Semaphore") be defined by S1. ERPs elicited by S2 were analyzed using temporal principal component analysis (tPCA) and source-localization algorithms. These analyses revealed that metaphorically related S2 words showed significantly higher N400 amplitudes than non-related S2 words. Source-localization algorithms showed differential activity between the two S2 conditions in the right middle/superior temporal areas. These results support the existence of an important RH contribution to (at least) one phase of metaphor processing and, furthermore, implicate the temporal cortex with respect to that contribution.

  3. Trait motivation moderates neural activation associated with goal pursuit.

    Science.gov (United States)

    Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Sutton, Bradley P; Heller, Wendy

    2012-06-01

    Research has indicated that regions of left and right dorsolateral prefrontal cortex (DLPFC) are involved in integrating the motivational and executive function processes related to, respectively, approach and avoidance goals. Given that sensitivity to pleasant and unpleasant stimuli is an important feature of conceptualizations of approach and avoidance motivation, it is possible that these regions of DLPFC are preferentially activated by valenced stimuli. The present study tested this hypothesis by using a task in which goal pursuit was threatened by distraction from valenced stimuli while functional magnetic resonance imaging data were collected. The analyses examined whether the impact of trait approach and avoidance motivation on the neural processes associated with executive function differed depending on the valence or arousal level of the distractor stimuli. The present findings support the hypothesis that the regions of DLPFC under investigation are involved in integrating motivational and executive function processes, and they also indicate the involvement of a number of other brain areas in maintaining goal pursuit. However, DLPFC did not display differential sensitivity to valence.

  4. Efficient spiking neural network model of pattern motion selectivity in visual cortex.

    Science.gov (United States)

    Beyeler, Michael; Richert, Micah; Dutt, Nikil D; Krichmar, Jeffrey L

    2014-07-01

    Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available.

  5. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification

    Science.gov (United States)

    Anwer, Rao Muhammad; Khan, Fahad Shahbaz; van de Weijer, Joost; Molinier, Matthieu; Laaksonen, Jorma

    2018-04-01

    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification.

  6. Connectivity strategies for higher-order neural networks applied to pattern recognition

    Science.gov (United States)

    Spirkovska, Lilly; Reid, Max B.

    1990-01-01

    Different strategies for non-fully connected HONNs (higher-order neural networks) are discussed, showing that by using such strategies an input field of 128 x 128 pixels can be attained while still achieving in-plane rotation and translation-invariant recognition. These techniques allow HONNs to be used with the larger input scenes required for practical pattern-recognition applications. The number of interconnections that must be stored has been reduced by a factor of approximately 200,000 in a T/C case and about 2000 in a Space Shuttle/F-18 case by using regional connectivity. Third-order networks have been simulated using several connection strategies. The method found to work best is regional connectivity. The main advantages of this strategy are the following: (1) it considers features of various scales within the image and thus gets a better sample of what the image looks like; (2) it is invariant to shape-preserving geometric transformations, such as translation and rotation; (3) the connections are predetermined so that no extra computations are necessary during run time; and (4) it does not require any extra storage for recording which connections were formed.

  7. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    Science.gov (United States)

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  8. Textural Classification of Mammographic Parenchymal Patterns with the SONNET Selforganizing Neural Network

    Directory of Open Access Journals (Sweden)

    Daniel Howard

    2008-01-01

    Full Text Available In nationwide mammography screening, thousands of mammography examinations must be processed. Each consists of two standard views of each breast, and each mammogram must be visually examined by an experienced radiologist to assess it for any anomalies. The ability to detect an anomaly in mammographic texture is important to successful outcomes in mammography screening and, in this study, a large number of mammograms were digitized with a highly accurate scanner; and textural features were derived from the mammograms as input data to a SONNET selforganizing neural network. The paper discusses how SONNET was used to produce a taxonomic organization of the mammography archive in an unsupervised manner. This process is subject to certain choices of SONNET parameters, in these numerical experiments using the craniocaudal view, and typically produced O(10, for example, 39 mammogram classes, by analysis of features from O(103 mammogram images. The mammogram taxonomy captured typical subtleties to discriminate mammograms, and it is submitted that this may be exploited to aid the detection of mammographic anomalies, for example, by acting as a preprocessing stage to simplify the task for a computational detection scheme, or by ordering mammography examinations by mammogram taxonomic class prior to screening in order to encourage more successful visual examination during screening. The resulting taxonomy may help train screening radiologists and conceivably help to settle legal cases concerning a mammography screening examination because the taxonomy can reveal the frequency of mammographic patterns in a population.

  9. Comparison of Pattern Recognition, Artificial Neural Network and Pedotransfer Functions for Estimation of Soil Water Parameters

    Directory of Open Access Journals (Sweden)

    Amir LAKZIAN

    2010-09-01

    Full Text Available This paper presents the comparison of three different approaches to estimate soil water content at defined values of soil water potential based on selected parameters of soil solid phase. Forty different sampling locations in northeast of Iran were selected and undisturbed samples were taken to measure the water content at field capacity (FC, -33 kPa, and permanent wilting point (PWP, -1500 kPa. At each location solid particle of each sample including the percentage of sand, silt and clay were measured. Organic carbon percentage and soil texture were also determined for each soil sample at each location. Three different techniques including pattern recognition approach (k nearest neighbour, k-NN, Artificial Neural Network (ANN and pedotransfer functions (PTF were used to predict the soil water at each sampling location. Mean square deviation (MSD and its components, index of agreement (d, root mean square difference (RMSD and normalized RMSD (RMSDr were used to evaluate the performance of all the three approaches. Our results showed that k-NN and PTF performed better than ANN in prediction of water content at both FC and PWP matric potential. Various statistics criteria for simulation performance also indicated that between kNN and PTF, the former, predicted water content at PWP more accurate than PTF, however both approach showed a similar accuracy to predict water content at FC.

  10. Estimating repetitive spatiotemporal patterns from resting-state brain activity data.

    Science.gov (United States)

    Takeda, Yusuke; Hiroe, Nobuo; Yamashita, Okito; Sato, Masa-Aki

    2016-06-01

    Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined. This is because estimating spatiotemporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, including MEG/EEG. Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore, we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without using stimulus onset information. The proposed method successfully detected the stimulus onsets and estimated the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to resting-state functional magnetic resonance imaging (fMRI) data and MEG data. The results revealed informative spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Neural activity to intense positive versus negative stimuli can help differentiate bipolar disorder from unipolar major depressive disorder in depressed adolescents: a pilot fMRI study.

    Science.gov (United States)

    Diler, Rasim Somer; de Almeida, Jorge Renner Cardoso; Ladouceur, Cecile; Birmaher, Boris; Axelson, David; Phillips, Mary

    2013-12-30

    Failure to distinguish bipolar depression (BDd) from the unipolar depression of major depressive disorder (UDd) in adolescents has significant clinical consequences. We aimed to identify differential patterns of functional neural activity in BDd versus UDd and employed two (fearful and happy) facial expression/ gender labeling functional magnetic resonance imaging (fMRI) experiments to study emotion processing in 10 BDd (8 females, mean age=15.1 ± 1.1) compared to age- and gender-matched 10 UDd and 10 healthy control (HC) adolescents who were age- and gender-matched to the BDd group. BDd adolescents, relative to UDd, showed significantly lower activity to both intense happy (e.g., insula and temporal cortex) and intense fearful faces (e.g., frontal precentral cortex). Although the neural regions recruited in each group were not the same, both BDd and UDd adolescents, relative to HC, showed significantly lower neural activity to intense happy and mild happy faces, but elevated neural activity to mild fearful faces. Our results indicated that patterns of neural activity to intense positive and negative emotional stimuli can help differentiate BDd from UDd in adolescents. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Exploring non-stationarity patterns in schizophrenia: neural reorganization abnormalities in the alpha band

    Science.gov (United States)

    Núñez, Pablo; Poza, Jesús; Bachiller, Alejandro; Gomez-Pilar, Javier; Lubeiro, Alba; Molina, Vicente; Hornero, Roberto

    2017-08-01

    Objective. The aim of this paper was to characterize brain non-stationarity during an auditory oddball task in schizophrenia (SCH). The level of non-stationarity was measured in the baseline and response windows of relevant tones in SCH patients and healthy controls. Approach. Event-related potentials were recorded from 28 SCH patients and 51 controls. Non-stationarity was estimated in the conventional electroencephalography frequency bands by means of Kullback-Leibler divergence (KLD). Relative power (RP) was also computed to assess a possible complementarity with KLD. Main results. Results showed a widespread statistically significant increase in the level of non-stationarity from baseline to response in all frequency bands for both groups. Statistically significant differences in non-stationarity were found between SCH patients and controls in beta-2 and in the alpha band. SCH patients showed more non-stationarity in the left parieto-occipital region during the baseline window in the beta-2 band. A leave-one-out cross validation classification study with feature selection based on binary stepwise logistic regression to discriminate between SCH patients and controls provided a positive predictive value of 72.73% and negative predictive value of 78.95%. Significance. KLD can characterize transient neural reorganization during an attentional task in response to novelty and relevance. Our findings suggest anomalous reorganization of neural dynamics in SCH during an oddball task. The abnormal frequency-dependent modulation found in SCH patients during relevant tones is in agreement with the hypothesis of aberrant salience detection in SCH. The increase in non-stationarity in the alpha band during the active task supports the notion that this band is involved in top-down processing. The baseline differences in the beta-2 band suggest that hyperactivation of the default mode network during attention tasks may be related to SCH symptoms. Furthermore, the classification

  13. Seasonal and daily activity patterns of leopard tortoises ...

    African Journals Online (AJOL)

    Seasonal and daily activity patterns of leopard tortoises ( Stigmochelys pardalis Bell, 1828) on farmland in the Nama-Karoo, South Africa. ... that activity is also initiated by the time since sunrise. Key words: Stigmochelys pardalis, leopard tortoise, activity patterns, activity behaviour, Nama-Karoo Biome, time of day, season.

  14. Adaptive Forming of the Beam Pattern of Microstrip Antenna with the Use of an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Janusz Dudczyk

    2012-01-01

    Full Text Available Microstrip antenna has been recently one of the most innovative fields of antenna techniques. The main advantage of such an antenna is the simplicity of its production, little weight, a narrow profile, and easiness of integration of the radiating elements with the net of generators power systems. As a result of using arrays consisting of microstrip antennas; it is possible to decrease the size and weight and also to reduce the costs of components production as well as whole application systems. This paper presents possibilities of using artificial neural networks (ANNs in the process of forming a beam from radiating complex microstrip antenna. Algorithms which base on artificial neural networks use high parallelism of actions which results in considerable acceleration of the process of forming the antenna pattern. The appropriate selection of learning constants makes it possible to get theoretically a solution which will be close to the real time. This paper presents the training neural network algorithm with the selection of optimal network structure. The analysis above was made in case of following the emission source, setting to zero the pattern of direction of expecting interference, and following emission source compared with two constant interferences. Computer simulation was made in MATLAB environment on the basis of Flex Tool, a programme which creates artificial neural networks.

  15. Evaluation of the Performance of Feedforward and Recurrent Neural Networks in Active Cancellation of Sound Noise

    Directory of Open Access Journals (Sweden)

    Mehrshad Salmasi

    2012-07-01

    Full Text Available Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in noise attenuation are compared. We use Elman network as a recurrent neural network. For simulations, noise signals from a SPIB database are used. In order to compare the networks appropriately, equal number of layers and neurons are considered for the networks. Moreover, training and test samples are similar. Simulation results show that feedforward and recurrent neural networks present good performance in noise cancellation. As it is seen, the ability of recurrent neural network in noise attenuation is better than feedforward network.

  16. Activity in part of the neural correlates of consciousness reflects integration.

    Science.gov (United States)

    Eriksson, Johan

    2017-10-01

    Integration is commonly viewed as a key process for generating conscious experiences. Accordingly, there should be increased activity within the neural correlates of consciousness when demands on integration increase. We used fMRI and "informational masking" to isolate the neural correlates of consciousness and measured how the associated brain activity changed as a function of required integration. Integration was manipulated by comparing the experience of hearing simple reoccurring tones to hearing harmonic tone triplets. The neural correlates of auditory consciousness included superior temporal gyrus, lateral and medial frontal regions, cerebellum, and also parietal cortex. Critically, only activity in left parietal cortex increased significantly as a function of increasing demands on integration. We conclude that integration can explain part of the neural activity associated with the generation conscious experiences, but that much of associated brain activity apparently reflects other processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Physical Activity, Sedentary Behavior, and Dietary Patterns among Children

    OpenAIRE

    Gubbels, Jessica S.; van Assema, Patricia; Kremers, Stef P. J.

    2013-01-01

    Energy balance-related behavioral patterns find their origin in early childhood. The current paper provides an overview of studies that have examined such behavioral patterns, i.e., the clustering of dietary behaviors, physical activity, and/or sedentary behavior. The paper discusses the importance of examining energy balance-related behavioral patterns in children, outlines methods to examine these patterns, and provides examples of patterns that have been found (e.g., the universal sedentar...

  18. Passenger transport and household activity patterns

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Review of Danish passenger transport patterns and analysis of energy consumption, emissions and safety impacts for selected typical households' travelling......Review of Danish passenger transport patterns and analysis of energy consumption, emissions and safety impacts for selected typical households' travelling...

  19. Patterning and predicting aquatic insect richness in four West-African coastal rivers using artificial neural networks

    OpenAIRE

    Edia E.O.; Gevrey M.; Ouattara A.; Brosse S.; Gourène G.; Lek S.

    2010-01-01

    Despite their importance in stream management, the aquatic insect assemblages are still little known in West Africa. This is particularly true in South-Eastern Ivory Coast, where aquatic insect assemblages were hardly studied. We therefore aimed at characterising aquatic insect assemblages on four coastal rivers in South-Eastern Ivory Coast. Patterning aquatic insect assemblages was achieved using a Self-Organizing Map (SOM), an unsupervised Artificial Neural Networks (ANN) method. This metho...

  20. Neural networks engaged in tactile object manipulation: patterns of expression among healthy individuals

    Directory of Open Access Journals (Sweden)

    Seitz Rüdiger J

    2010-11-01

    Full Text Available Abstract Background Somatosensory object discrimination has been shown to involve widespread cortical and subcortical structures in both cerebral hemispheres. In this study we aimed to identify the networks involved in tactile object manipulation by principal component analysis (PCA of individual subjects. We expected to find more than one network. Methods Seven healthy right-handed male volunteers (aged 22 to 44 yrs manipulated with their right hand aluminium spheres during 5 s with a repetition frequency of 0.5-0.7 Hz. The correlation coefficients between the principal component temporal expression coefficients and the hemodynamic response modelled by SPM (ecc determined the task-related components. To establish reproducibility within subjects and similarity of functional connectivity patterns among subjects, regional correlation coefficients (rcc were computed between task-related component image volumes. By hierarchically categorizing, selecting and averaging the task-related component image volumes across subjects according to the rccs, mean component images (MCIs were derived describing neural networks associated with tactile object manipulation. Results Two independent mean component images emerged. Each included the primary sensorimotor cortex contralateral to the manipulating hand. The region extended to the premotor cortex in MCI 1, whereas it was restricted to the hand area of the primary sensorimotor cortex in MCI 2. MCI 1 showed bilateral involvement of the paralimbic anterior cingulate cortex (ACC, whereas MCI 2 implicated the midline thalamic nuclei and two areas of the rostral dorsal pons. Conclusions Two distinct networks participate in tactile object manipulation as revealed by the intra- and interindividual comparison of individual scans. Both were employed by most subjects, suggesting that both are involved in normal somatosensory object discrimination.

  1. Evaluation of the Performance of Feedforward and Recurrent Neural Networks in Active Cancellation of Sound Noise

    OpenAIRE

    Mehrshad Salmasi; Homayoun Mahdavi-Nasab

    2012-01-01

    Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in n...

  2. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  3. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

    OpenAIRE

    Francisco Javier Ordóñez; Daniel Roggen

    2016-01-01

    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we pro...

  4. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.

    Science.gov (United States)

    Kasabov, Nikola; Dhoble, Kshitij; Nuntalid, Nuttapod; Indiveri, Giacomo

    2013-05-01

    On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn new patterns from incoming data. So far these networks have been mainly used for fast image and speech frame-based recognition. Alternative spike-time learning methods, such as Spike-Timing Dependent Plasticity (STDP) and its variant Spike Driven Synaptic Plasticity (SDSP), can also be used to learn spatio-temporal representations, but they usually require many iterations in an unsupervised or semi-supervised mode of learning. This paper introduces a new class of eSNN, dynamic eSNN, that utilise both rank-order learning and dynamic synapses to learn SSTD in a fast, on-line mode. The paper also introduces a new model called deSNN, that utilises rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-supervised modes. The SDSP learning is used to evolve dynamically the network changing connection weights that capture spatio-temporal spike data clusters both during training and during recall. The new deSNN model is first illustrated on simple examples and then applied on two case study applications: (1) moving object recognition using address-event representation (AER) with data collected using a silicon retina device; (2) EEG SSTD recognition for brain-computer interfaces. The deSNN models resulted in a superior performance in terms of accuracy and speed when compared with other SNN models that use either rank-order or STDP learning. The reason is that the deSNN makes use of both the information contained in the order of the first input spikes

  5. Optimization of patterns of control bars using neural networks; Optimizacion de patrones de barras de control usando redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Mejia S, D.M. [IPN, ESFM, Depto. de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico); Ortiz S, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: dulcema6715@hotmail.com

    2005-07-01

    In this work the RENOPBC system that is based on a recurrent multi state neural network, for the optimization of patterns of control bars in a cycle of balance of a boiling water reactor (BWR for their initials in English) is presented. The design of patterns of bars is based on the execution of operation thermal limits, to maintain criticizes the reactor and that the axial profile of power is adjusted to one predetermined along several steps of burnt. The patterns of control bars proposed by the system are comparable to those proposed by human experts with many hour-man of experience. These results are compared with those proposed by other techniques as genetic algorithms, colonies of ants and tabu search for the same operation cycle. As consequence it is appreciated that the proposed patterns of control bars, have bigger operation easiness that those proposed by the other techniques. (Author)

  6. Right Inferior Frontal Gyrus Activation as a Neural Marker of Successful Lying

    Directory of Open Access Journals (Sweden)

    Oshin eVartanian

    2013-10-01

    Full Text Available There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low × 2 (Instruction: truth or lie repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC, middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus—a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  7. Right inferior frontal gyrus activation as a neural marker of successful lying.

    Science.gov (United States)

    Vartanian, Oshin; Kwantes, Peter J; Mandel, David R; Bouak, Fethi; Nakashima, Ann; Smith, Ingrid; Lam, Quan

    2013-01-01

    There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM) load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low) × 2 (Instruction: truth or lie) repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC), middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus-a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  8. Finding purchase activity patterns in small & medium enterprises

    NARCIS (Netherlands)

    Vegter, Geert J.

    2015-01-01

    Finding purchase activity patterns in Small & Medium Enterprises in a research program to enable SMEs to improve their purchase and company performance. Posterpresentatie KCO conferentie, 16 november 2015.

  9. Dance type and flight parameters are associated with different mushroom body neural activities in worker honeybee brains.

    Directory of Open Access Journals (Sweden)

    Taketoshi Kiya

    Full Text Available BACKGROUND: Honeybee foragers can transmit the information concerning the location of food sources to their nestmates using dance communication. We previously used a novel immediate early gene, termed kakusei, to demonstrate that the neural activity of a specific mushroom body (MB neuron subtype is preferentially enhanced in the forager brain. The sensory information related to this MB neuron activity, however, remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used kakusei to analyze the relationship between MB neuron activity and types of foraging behavior. The number of kakusei-positive MB neurons was higher in the round dancers that had flown a short distance than in the waggle dancers that had flown a long distance. Furthermore, the amount of kakusei transcript in the MBs inversely related to the waggle-phase duration of the waggle dance, which correlates with the flight distance. Using a narrow tunnel whose inside was vertically or axially lined, we manipulated the pattern of visual input, which is received by the foragers during flight, and analysed kakusei expression. The amount of kakusei transcript in the MBs was related to the foraging frequency but not to the tunnel pattern. In contrast, the number of kakusei-positive MB neurons was affected by the tunnel patterns, but not related to foraging frequency. CONCLUSIONS/SIGNIFICANCE: These results suggest that the MB neuron activity depends on the foraging frequency, whereas the number of active MB neurons is related to the pattern of visual input received during foraging flight. Our results suggest that the foraging frequency and visual experience during foraging are associated with different MB neural activities.

  10. Abnormal Task Modulation of Oscillatory Neural Activity in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Elisa C Dias

    2013-08-01

    Full Text Available Schizophrenia patients have deficits in cognitive function that are a core feature of the disorder. AX-CPT is commonly used to study cognition in schizophrenia, and patients have characteristic pattern of behavioral and ERP response. In AX-CPT subjects respond when a flashed cue A is followed by a target X, ignoring other letter combinations. Patients show reduced hit rate to go trials, and increased false alarms to sequences that require inhibition of a prepotent response. EEG recordings show reduced sensory (P1/N1, as well as later cognitive components (N2, P3, CNV. Behavioral deficits correlate most strongly with sensory dysfunction. Oscillatory analyses provide critical information regarding sensory/cognitive processing over and above standard ERP analyses. Recent analyses of induced oscillatory activity in single trials during AX-CPT in healthy volunteers showed characteristic response patterns in theta, alpha and beta frequencies tied to specific sensory and cognitive processes. Alpha and beta modulated during the trials and beta modulation over the frontal cortex correlated with reaction time. In this study, EEG data was obtained from 18 schizophrenia patients and 13 controls during AX-CPT performance, and single trial decomposition of the signal yielded power in the target wavelengths.Significant task-related event-related desynchronization (ERD was observed in both alpha and beta frequency bands over parieto-occipital cortex related to sensory encoding of the cue. This modulation was reduced in patients for beta, but not for alpha. In addition, significant beta ERD was observed over motor cortex, related to motor preparation for the response, and was also reduced in patients. These findings demonstrate impaired dynamic modulation of beta frequency rhythms in schizophrenia, and suggest that failures of oscillatory activity may underlie impaired sensory information processing in schizophrenia that in turn contributes to cognitive deficits.

  11. Neural Activity during Encoding Predicts False Memories Created by Misinformation

    Science.gov (United States)

    Okado, Yoko; Stark, Craig E. L.

    2005-01-01

    False memories are often demonstrated using the misinformation paradigm, in which a person's recollection of a witnessed event is altered after exposure to misinformation about the event. The neural basis of this phenomenon, however, remains unknown. The authors used fMRI to investigate encoding processes during the viewing of an event and…

  12. Voltage Estimation in Active Distribution Grids Using Neural Networks

    DEFF Research Database (Denmark)

    Pertl, Michael; Heussen, Kai; Gehrke, Oliver

    2016-01-01

    the observability of distribution systems has to be improved. To increase the situational awareness of the power system operator data driven methods can be employed. These methods benefit from newly available data sources such as smart meters. This paper presents a voltage estimation method based on neural networks...

  13. Active Control of Sound based on Diagonal Recurrent Neural Network

    NARCIS (Netherlands)

    Jayawardhana, Bayu; Xie, Lihua; Yuan, Shuqing

    2002-01-01

    Recurrent neural network has been known for its dynamic mapping and better suited for nonlinear dynamical system. Nonlinear controller may be needed in cases where the actuators exhibit the nonlinear characteristics, or in cases when the structure to be controlled exhibits nonlinear behavior. The

  14. Morphogens, modeling and patterning the neural tube: an interview with James Briscoe.

    Science.gov (United States)

    Briscoe, James

    2015-01-20

    James Briscoe has a BSc in Microbiology and Virology (from the University of Warwick, UK) and a PhD in Molecular and Cellular Biology (from the Imperial Cancer Research Fund, London, now Cancer Research UK). He started working on the development of the neural tube in the lab of Tom Jessel as a postdoctoral fellow, establishing that there was graded sonic hedgehog signaling in the ventral neural tube. He is currently a group leader and Head of Division in Developmental Biology at the MRC National Institute for Medical Research (which will become part of the Francis Crick Institute in April 2015). He is working to understand the molecular and cellular mechanisms of graded signaling in the vertebrate neural tube.We interviewed him about the development of ideas on morphogenetic gradients and his own work on modeling the development of the neural tube for our series on modeling in biology.

  15. The use of global image characteristics for neural network pattern recognitions

    Science.gov (United States)

    Kulyas, Maksim O.; Kulyas, Oleg L.; Loshkarev, Aleksey S.

    2017-04-01

    The recognition system is observed, where the information is transferred by images of symbols generated by a television camera. For descriptors of objects the coefficients of two-dimensional Fourier transformation generated in a special way. For solution of the task of classification the one-layer neural network trained on reference images is used. Fast learning of a neural network with a single neuron calculation of coefficients is applied.

  16. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    Directory of Open Access Journals (Sweden)

    Markus A Wenzel

    Full Text Available Brain-computer interfaces (BCIs that are based on event-related potentials (ERPs can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG. Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI, because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli.Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions.Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG.The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.

  17. The fiber-optic imaging and manipulation of neural activity during animal behavior.

    Science.gov (United States)

    Miyamoto, Daisuke; Murayama, Masanori

    2016-02-01

    Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Sex differences in neural activation following different routes of oxytocin administration in awake adult rats.

    Science.gov (United States)

    Dumais, Kelly M; Kulkarni, Praveen P; Ferris, Craig F; Veenema, Alexa H

    2017-07-01

    The neuropeptide oxytocin (OT) regulates social behavior in sex-specific ways across species. OT has promising effects on alleviating social deficits in sex-biased neuropsychiatric disorders. However little is known about potential sexually dimorphic effects of OT on brain function. Using the rat as a model organism, we determined whether OT administered centrally or peripherally induces sex differences in brain activation. Functional magnetic resonance imaging was used to examine blood oxygen level-dependent (BOLD) signal intensity changes in the brains of awake rats during the 20min following intracerebroventricular (ICV; 1μg/5μl) or intraperitoneal (IP; 0.1mg/kg) OT administration as compared to baseline. ICV OT induced sex differences in BOLD activation in 26 out of 172 brain regions analyzed, with 20 regions showing a greater volume of activation in males (most notably the nucleus accumbens and insular cortex), and 6 regions showing a greater volume of activation in females (including the lateral and central amygdala). IP OT also elicited sex differences in BOLD activation with a greater volume of activation in males, but this activation was found in different and fewer (10) brain regions compared to ICV OT. In conclusion, exogenous OT modulates neural activation differently in male versus female rats with the pattern and magnitude, but not the direction, of sex differences depending on the route of administration. These findings highlight the need to include both sexes in basic and clinical studies to fully understand the role of OT on brain function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Artificial Neural Network approach to develop unique Classification and Raga identification tools for Pattern Recognition in Carnatic Music

    Science.gov (United States)

    Srimani, P. K.; Parimala, Y. G.

    2011-12-01

    A unique approach has been developed to study patterns in ragas of Carnatic Classical music based on artificial neural networks. Ragas in Carnatic music which have found their roots in the Vedic period, have grown on a Scientific foundation over thousands of years. However owing to its vastness and complexities it has always been a challenge for scientists and musicologists to give an all encompassing perspective both qualitatively and quantitatively. Cognition, comprehension and perception of ragas in Indian classical music have always been the subject of intensive research, highly intriguing and many facets of these are hitherto not unravelled. This paper is an attempt to view the melakartha ragas with a cognitive perspective using artificial neural network based approach which has given raise to very interesting results. The 72 ragas of the melakartha system were defined through the combination of frequencies occurring in each of them. The data sets were trained using several neural networks. 100% accurate pattern recognition and classification was obtained using linear regression, TLRN, MLP and RBF networks. Performance of the different network topologies, by varying various network parameters, were compared. Linear regression was found to be the best performing network.

  20. Light evokes melanopsin-dependent vocalization and neural activation associated with aversive experience in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Anton Delwig

    Full Text Available Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs are the only functional photoreceptive cells in the eye of newborn mice. Through postnatal day 9, in the absence of functional rods and cones, these ipRGCs mediate a robust avoidance behavior to a light source, termed negative phototaxis. To determine whether this behavior is associated with an aversive experience in neonatal mice, we characterized light-induced vocalizations and patterns of neuronal activation in regions of the brain involved in the processing of aversive and painful stimuli. Light evoked distinct melanopsin-dependent ultrasonic vocalizations identical to those emitted under stressful conditions, such as isolation from the litter. In contrast, light did not evoke the broad-spectrum calls elicited by acute mechanical pain. Using markers of neuronal activation, we found that light induced the immediate-early gene product Fos in the posterior thalamus, a brain region associated with the enhancement of responses to mechanical stimulation of the dura by light, and thought to be the basis for migrainous photophobia. Additionally, light induced the phosphorylation of extracellular-related kinase (pERK in neurons of the central amygdala, an intracellular signal associated with the processing of the aversive aspects of pain. However, light did not activate Fos expression in the spinal trigeminal nucleus caudalis, the primary receptive field for painful stimulation to the head. We conclude that these light-evoked vocalizations and the distinct pattern of brain activation in neonatal mice are consistent with a melanopsin-dependent neural pathway involved in processing light as an aversive but not acutely painful stimulus.

  1. Physical Activity, Sedentary Behavior, and Dietary Patterns among Children.

    Science.gov (United States)

    Gubbels, Jessica S; van Assema, Patricia; Kremers, Stef P J

    2013-06-01

    Energy balance-related behavioral patterns find their origin in early childhood. The current paper provides an overview of studies that have examined such behavioral patterns, i.e., the clustering of dietary behaviors, physical activity, and/or sedentary behavior. The paper discusses the importance of examining energy balance-related behavioral patterns in children, outlines methods to examine these patterns, and provides examples of patterns that have been found (e.g., the universal sedentary-snacking and healthy intake patterns, as well as more unique or local patterns), child and parental characteristics predicting such patterns (e.g., child gender and maternal educational level), and the relationship of these patterns with overweight and related measures.

  2. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  3. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active

  4. Patterns and predictors of physical activity among pregnant women ...

    African Journals Online (AJOL)

    The patterns and predictors of physical activity (PA) in pregnant women is poorly understood. This study described the patterns of physical activity (PA) in specific domains (home, occupation, transport and exercise/sport) and intensities (light, moderate and vigorous), and determined the factors associated with achieving ...

  5. Time activity patterns: a case of south Durban, South Africa

    CSIR Research Space (South Africa)

    Matooane, M

    2010-08-01

    Full Text Available Exposure modelling in south Durban is constrained by a lack of population specific time-activity patterns data. We argue that the application of time-activity patterns from elsewhere in the world in exposure modelling in south Durban would...

  6. Default activity patterns at the neocortical microcircuit level

    Directory of Open Access Journals (Sweden)

    Artur eLuczak

    2012-06-01

    Full Text Available Even in absence of sensory stimuli cortical networks exhibit complex, self-organized activity patterns. While the function of those spontaneous patterns of activation remains poorly understood, recent studies both in vivo and in vitro have demonstrated that neocortical neurons activate in a surprisingly similar sequential order both spontaneously and following input into cortex. For example, neurons that tend to fire earlier within spontaneous bursts of activity also fire earlier than other neurons in response to sensory stimuli. These 'default patterns' can last hundreds of milliseconds and are strongly conserved under a variety of conditions. In this paper we will review recent evidence for these default patterns at the local cortical level. We speculate that cortical architecture imposes common constraints on spontaneous and evoked activity flow, which result in the similarity of the patterns.

  7. Causal Learning and Explanation of Deep Neural Networks via Autoencoded Activations

    OpenAIRE

    Harradon, Michael; Druce, Jeff; Ruttenberg, Brian

    2018-01-01

    Deep neural networks are complex and opaque. As they enter application in a variety of important and safety critical domains, users seek methods to explain their output predictions. We develop an approach to explaining deep neural networks by constructing causal models on salient concepts contained in a CNN. We develop methods to extract salient concepts throughout a target network by using autoencoders trained to extract human-understandable representations of network activations. We then bu...

  8. Self-reported empathy and neural activity during action imitation and observation in schizophrenia

    OpenAIRE

    Horan, William P.; Iacoboni, Marco; Cross, Katy A.; Korb, Alex; Lee, Junghee; Nori, Poorang; Quintana, Javier; Wynn, Jonathan K.; Green, Michael F.

    2014-01-01

    Introduction: Although social cognitive impairments are key determinants of functional outcome in schizophrenia their neural bases are poorly understood. This study investigated neural activity during imitation and observation of finger movements and facial expressions in schizophrenia, and their correlates with self-reported empathy. Methods: 23 schizophrenia outpatients and 23 healthy controls were studied with functional magnetic resonance imaging (fMRI) while they imitated, executed, o...

  9. A Parallel Supercomputer Implementation of a Biological Inspired Neural Network and its use for Pattern Recognition

    International Nuclear Information System (INIS)

    De Ladurantaye, Vincent; Lavoie, Jean; Bergeron, Jocelyn; Parenteau, Maxime; Lu Huizhong; Pichevar, Ramin; Rouat, Jean

    2012-01-01

    A parallel implementation of a large spiking neural network is proposed and evaluated. The neural network implements the binding by synchrony process using the Oscillatory Dynamic Link Matcher (ODLM). Scalability, speed and performance are compared for 2 implementations: Message Passing Interface (MPI) and Compute Unified Device Architecture (CUDA) running on clusters of multicore supercomputers and NVIDIA graphical processing units respectively. A global spiking list that represents at each instant the state of the neural network is described. This list indexes each neuron that fires during the current simulation time so that the influence of their spikes are simultaneously processed on all computing units. Our implementation shows a good scalability for very large networks. A complex and large spiking neural network has been implemented in parallel with success, thus paving the road towards real-life applications based on networks of spiking neurons. MPI offers a better scalability than CUDA, while the CUDA implementation on a GeForce GTX 285 gives the best cost to performance ratio. When running the neural network on the GTX 285, the processing speed is comparable to the MPI implementation on RQCHP's Mammouth parallel with 64 notes (128 cores).

  10. Study on pattern recognition of Raman spectrum based on fuzzy neural network

    Science.gov (United States)

    Zheng, Xiangxiang; Lv, Xiaoyi; Mo, Jiaqing

    2017-10-01

    Hydatid disease is a serious parasitic disease in many regions worldwide, especially in Xinjiang, China. Raman spectrum of the serum of patients with echinococcosis was selected as the research object in this paper. The Raman spectrum of blood samples from healthy people and patients with echinococcosis are measured, of which the spectrum characteristics are analyzed. The fuzzy neural network not only has the ability of fuzzy logic to deal with uncertain information, but also has the ability to store knowledge of neural network, so it is combined with the Raman spectrum on the disease diagnosis problem based on Raman spectrum. Firstly, principal component analysis (PCA) is used to extract the principal components of the Raman spectrum, reducing the network input and accelerating the prediction speed and accuracy of Network based on remaining the original data. Then, the information of the extracted principal component is used as the input of the neural network, the hidden layer of the network is the generation of rules and the inference process, and the output layer of the network is fuzzy classification output. Finally, a part of samples are randomly selected for the use of training network, then the trained network is used for predicting the rest of the samples, and the predicted results are compared with general BP neural network to illustrate the feasibility and advantages of fuzzy neural network. Success in this endeavor would be helpful for the research work of spectroscopic diagnosis of disease and it can be applied in practice in many other spectral analysis technique fields.

  11. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    Science.gov (United States)

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  12. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    Directory of Open Access Journals (Sweden)

    Serge Thomas Mickala Bourobou

    2015-05-01

    Full Text Available This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  13. Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu; Zou Yanli

    2008-01-01

    We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network

  14. Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila.

    Science.gov (United States)

    Narbonne-Reveau, Karine; Lanet, Elodie; Dillard, Caroline; Foppolo, Sophie; Chen, Ching-Huan; Parrinello, Hugues; Rialle, Stéphanie; Sokol, Nicholas S; Maurange, Cédric

    2016-06-14

    Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can dedifferentiate and generate malignant tumors. Here, we find that intermediate progenitors are prone to malignancy only when born during an early window of development while expressing the transcription factor Chinmo, and the mRNA-binding proteins Imp/IGF2BP and Lin-28. These genes compose an oncogenic module that is coopted upon dedifferentiation of early-born intermediate progenitors to drive unlimited tumor growth. In late larvae, temporal transcription factor progression in NSCs silences the module, thereby limiting mitotic potential and terminating the window of malignant susceptibility. Thus, this study identifies the gene regulatory network that confers malignant potential to neural tumors with early developmental origins.

  15. Parameter estimation of breast tumour using dynamic neural network from thermal pattern

    Directory of Open Access Journals (Sweden)

    Elham Saniei

    2016-11-01

    Full Text Available This article presents a new approach for estimating the depth, size, and metabolic heat generation rate of a tumour. For this purpose, the surface temperature distribution of a breast thermal image and the dynamic neural network was used. The research consisted of two steps: forward and inverse. For the forward section, a finite element model was created. The Pennes bio-heat equation was solved to find surface and depth temperature distributions. Data from the analysis, then, were used to train the dynamic neural network model (DNN. Results from the DNN training/testing confirmed those of the finite element model. For the inverse section, the trained neural network was applied to estimate the depth temperature distribution (tumour position from the surface temperature profile, extracted from the thermal image. Finally, tumour parameters were obtained from the depth temperature distribution. Experimental findings (20 patients were promising in terms of the model’s potential for retrieving tumour parameters.

  16. Neural activity, neural connectivity, and the processing of emotionally valenced information in older adults: links with life satisfaction.

    Science.gov (United States)

    Waldinger, Robert J; Kensinger, Elizabeth A; Schulz, Marc S

    2011-09-01

    This study examines whether differences in late-life well-being are linked to how older adults encode emotionally valenced information. Using fMRI with 39 older adults varying in life satisfaction, we examined how viewing positive and negative images would affect activation and connectivity of an emotion-processing network. Participants engaged most regions within this network more robustly for positive than for negative images, but within the PFC this effect was moderated by life satisfaction, with individuals higher in satisfaction showing lower levels of activity during the processing of positive images. Participants high in satisfaction showed stronger correlations among network regions-particularly between the amygdala and other emotion processing regions-when viewing positive, as compared with negative, images. Participants low in satisfaction showed no valence effect. Findings suggest that late-life satisfaction is linked with how emotion-processing regions are engaged and connected during processing of valenced information. This first demonstration of a link between neural recruitment and late-life well-being suggests that differences in neural network activation and connectivity may account for the preferential encoding of positive information seen in some older adults.

  17. Neural correlates of intentional switching from ternary to binary meter in a musical hemiola pattern.

    Science.gov (United States)

    Fujioka, Takako; Fidali, Brian C; Ross, Bernhard

    2014-01-01

    Musical rhythms are often perceived and interpreted within a metrical framework that integrates timing information hierarchically based on interval ratios. Endogenous timing processes facilitate this metrical integration and allow us using the sensory context for predicting when an expected sensory event will happen ("predictive timing"). Previously, we showed that listening to metronomes and subjectively imagining the two different meters of march and waltz modulated the resulting auditory evoked responses in the temporal lobe and motor-related brain areas such as the motor cortex, basal ganglia, and cerebellum. Here we further explored the intentional transitions between the two metrical contexts, known as hemiola in the Western classical music dating back to the sixteenth century. We examined MEG from 12 musicians while they repeatedly listened to a sequence of 12 unaccented clicks with an interval of 390 ms, and tapped to them with the right hand according to a 3 + 3 + 2 + 2 + 2 hemiola accent pattern. While participants listened to the same metronome sequence and imagined the accents, their pattern of brain responses significantly changed just before the "pivot" point of metric transition from ternary to binary meter. Until 100 ms before the pivot point, brain activities were more similar to those in the simple ternary meter than those in the simple binary meter, but the pattern was reversed afterwards. A similar transition was also observed at the downbeat after the pivot. Brain areas related to the metric transition were identified from source reconstruction of the MEG using a beamformer and included auditory cortices, sensorimotor and premotor cortices, cerebellum, inferior/middle frontal gyrus, parahippocampal gyrus, inferior parietal lobule, cingulate cortex, and precuneus. The results strongly support that predictive timing processes related to auditory-motor, fronto-parietal, and medial limbic systems underlie metrical representation and its transitions.

  18. Patterns of altered neural synchrony in the default mode network in autism spectrum disorder revealed with magnetoencephalography (MEG): Relationship to clinical symptomatology.

    Science.gov (United States)

    Lajiness-O'Neill, Renée; Brennan, Jonathan R; Moran, John E; Richard, Annette E; Flores, Ana-Mercedes; Swick, Casey; Goodcase, Ryan; Andersen, Tiffany; McFarlane, Kaitlyn; Rusiniak, Kenneth; Kovelman, Ioulia; Wagley, Neelima; Ugolini, Maggie; Albright, Jeremy; Bowyer, Susan M

    2018-03-01

    Disrupted neural synchrony may be a primary electrophysiological abnormality in autism spectrum disorders (ASD), altering communication between discrete brain regions and contributing to abnormalities in patterns of connectivity within identified neural networks. Studies exploring brain dynamics to comprehensively characterize and link connectivity to large-scale cortical networks and clinical symptoms are lagging considerably. Patterns of neural coherence within the Default Mode Network (DMN) and Salience Network (SN) during resting state were investigated in 12 children with ASD (M Age  = 9.2) and 13 age and gender-matched neurotypicals (NT) (M Age  = 9.3) with magnetoencephalography. Coherence between 231 brain region pairs within four frequency bands (theta (4-7 Hz), alpha, (8-12 Hz), beta (13-30 Hz), and gamma (30-80 Hz)) was calculated. Relationships between neural coherence and social functioning were examined. ASD was characterized by lower synchronization across all frequencies, reaching clinical significance in the gamma band. Lower gamma synchrony between fronto-temporo-parietal regions was observed, partially consistent with diminished default mode network (DMN) connectivity. Lower gamma coherence in ASD was evident in cross-hemispheric connections between: angular with inferior/middle frontal; middle temporal with middle/inferior frontal; and within right-hemispheric connections between angular, middle temporal, and inferior/middle frontal cortices. Lower gamma coherence between left angular and left superior frontal, right inferior/middle frontal, and right precuneus and between right angular and inferior/middle frontal cortices was related to lower social/social-communication functioning. Results suggest a pattern of lower gamma band coherence in a subset of regions within the DMN in ASD (angular and middle temporal cortical areas) related to lower social/social-communicative functioning. Autism Res 2018, 11: 434-449. © 2017 International

  19. Neural Plasticity and Memory: Is Memory Encoded in Hydrogen Bonding Patterns?

    Science.gov (United States)

    Amtul, Zareen; Rahman, Atta-Ur

    2016-02-01

    Current models of memory storage recognize posttranslational modification vital for short-term and mRNA translation for long-lasting information storage. However, at the molecular level things are quite vague. A comprehensive review of the molecular basis of short and long-lasting synaptic plasticity literature leads us to propose that the hydrogen bonding pattern at the molecular level may be a permissive, vital step of memory storage. Therefore, we propose that the pattern of hydrogen bonding network of biomolecules (glycoproteins and/or DNA template, for instance) at the synapse is the critical edifying mechanism essential for short- and long-term memories. A novel aspect of this model is that nonrandom impulsive (or unplanned) synaptic activity functions as a synchronized positive-feedback rehearsal mechanism by revising the configurations of the hydrogen bonding network by tweaking the earlier tailored hydrogen bonds. This process may also maintain the elasticity of the related synapses involved in memory storage, a characteristic needed for such networks to alter intricacy and revise endlessly. The primary purpose of this review is to stimulate the efforts to elaborate the mechanism of neuronal connectivity both at molecular and chemical levels. © The Author(s) 2014.

  20. Physical activity patterns during pregnancy through postpartum

    Directory of Open Access Journals (Sweden)

    Evenson Kelly R

    2009-11-01

    Full Text Available Abstract Background Realizing the importance of regular physical activity, particularly in the prevention of chronic diseases and unhealthy weight gain, it is important to study how physical activity changes during and after pregnancy using prospective study designs. The aim of this study was to describe the mode, duration, intensity, and changes in physical activity during pregnancy through one year postpartum among a cohort of women. Methods This study was part of the third Pregnancy, Infection and Nutrition Postpartum Study at the University of North Carolina Hospitals. A cohort of 471 women was followed at 17-22 and 27-30 weeks' gestation and at 3 and 12 months postpartum. The participants reported the mode, frequency, duration, and intensity of all physical activities that increased their breathing and heart rate in the past week. Results Overall physical activity for the cohort decreased from 17-22 weeks to 27-30 weeks of gestation, but rebounded up at 3 months postpartum and remained stable at 12 months postpartum. The mean MET h/wk values for each time point were 24.7 (standard deviation, SD 26.8, 19.1 (SD 18.9, 25.7 (SD 29.3, and 26.7 (SD 31.5. In postpartum, women reported more care-giving and recreational activity and less indoor household activity, as compared to their activity level during pregnancy. Conclusion For health benefits and weight management, health care professionals are encouraged to provide pregnant and postpartum women with information on recommendations of physical activity, particularly regarding the minimum duration and intensity level.

  1. Classifying sows' activity types from acceleration patterns

    DEFF Research Database (Denmark)

    Cornou, Cecile; Lundbye-Christensen, Søren

    2008-01-01

    An automated method of classifying sow activity using acceleration measurements would allow the individual sow's behavior to be monitored throughout the reproductive cycle; applications for detecting behaviors characteristic of estrus and farrowing or to monitor illness and welfare can be foreseen....... This article suggests a method of classifying five types of activity exhibited by group-housed sows. The method involves the measurement of acceleration in three dimensions. The five activities are: feeding, walking, rooting, lying laterally and lying sternally. Four time series of acceleration (the three...

  2. The challenges of neural mind-reading paradigms

    OpenAIRE

    Vilarroya, Oscar

    2013-01-01

    Neural mind-reading studies, based on multivariate pattern analysis (MVPA) methods, are providing exciting new studies. Some of the results obtained with these paradigms have raised high expectations, such as the possibility of creating brain reading devices. However, such hopes are based on the assumptions that: (a) the BOLD signal is a marker of neural activity; (b) the BOLD pattern identified by a MVPA is a neurally sound pattern; (c) the MVPA's feature space is a good mapping of the neura...

  3. Identification of Abnormal System Noise Temperature Patterns in Deep Space Network Antennas Using Neural Network Trained Fuzzy Logic

    Science.gov (United States)

    Lu, Thomas; Pham, Timothy; Liao, Jason

    2011-01-01

    This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.

  4. Toward a multipoint optical fibre sensor system for use in process water systems based on artificial neural network pattern recognition

    International Nuclear Information System (INIS)

    King, D; Lyons, W B; Flanagan, C; Lewis, E

    2005-01-01

    An optical fibre sensor capable of detecting various concentrations of ethanol in water supplies is reported. The sensor is based on a U-bend sensor configuration and is incorporated into a 170-metre length of silica cladding silica core optical fibre. The sensor is interrogated using Optical Time Domain Reflectometry (OTDR) and it is proposed to apply artificial neural network (ANN) pattern recognition techniques to the resulting OTDR signals to accurately classify the sensor test conditions. It is also proposed that additional U-bend configuration sensors will be added to the fibre measurement length, in order to implement a multipoint optical fibre sensor system

  5. Isolating Discriminant Neural Activity in the Presence of Eye Movements and Concurrent Task Demands

    Directory of Open Access Journals (Sweden)

    Jon Touryan

    2017-07-01

    Full Text Available A growing number of studies use the combination of eye-tracking and electroencephalographic (EEG measures to explore the neural processes that underlie visual perception. In these studies, fixation-related potentials (FRPs are commonly used to quantify early and late stages of visual processing that follow the onset of each fixation. However, FRPs reflect a mixture of bottom-up (sensory-driven and top-down (goal-directed processes, in addition to eye movement artifacts and unrelated neural activity. At present there is little consensus on how to separate this evoked response into its constituent elements. In this study we sought to isolate the neural sources of target detection in the presence of eye movements and over a range of concurrent task demands. Here, participants were asked to identify visual targets (Ts amongst a grid of distractor stimuli (Ls, while simultaneously performing an auditory N-back task. To identify the discriminant activity, we used independent components analysis (ICA for the separation of EEG into neural and non-neural sources. We then further separated the neural sources, using a modified measure-projection approach, into six regions of interest (ROIs: occipital, fusiform, temporal, parietal, cingulate, and frontal cortices. Using activity from these ROIs, we identified target from non-target fixations in all participants at a level similar to other state-of-the-art classification techniques. Importantly, we isolated the time course and spectral features of this discriminant activity in each ROI. In addition, we were able to quantify the effect of cognitive load on both fixation-locked potential and classification performance across regions. Together, our results show the utility of a measure-projection approach for separating task-relevant neural activity into meaningful ROIs within more complex contexts that include eye movements.

  6. Neural Activations of Guided Imagery and Music in Negative Emotional Processing: A Functional MRI Study.

    Science.gov (United States)

    Lee, Sang Eun; Han, Yeji; Park, HyunWook

    2016-01-01

    The Bonny Method of Guided Imagery and Music uses music and imagery to access and explore personal emotions associated with episodic memories. Understanding the neural mechanism of guided imagery and music (GIM) as combined stimuli for emotional processing informs clinical application. We performed functional magnetic resonance imaging (fMRI) to demonstrate neural mechanisms of GIM for negative emotional processing when personal episodic memory is recalled and re-experienced through GIM processes. Twenty-four healthy volunteers participated in the study, which used classical music and verbal instruction stimuli to evoke negative emotions. To analyze the neural mechanism, activated regions associated with negative emotional and episodic memory processing were extracted by conducting volume analyses for the contrast between GIM and guided imagery (GI) or music (M). The GIM stimuli showed increased activation over the M-only stimuli in five neural regions associated with negative emotional and episodic memory processing, including the left amygdala, left anterior cingulate gyrus, left insula, bilateral culmen, and left angular gyrus (AG). Compared with GI alone, GIM showed increased activation in three regions associated with episodic memory processing in the emotional context, including the right posterior cingulate gyrus, bilateral parahippocampal gyrus, and AG. No neural regions related to negative emotional and episodic memory processing showed more activation for M and GI than for GIM. As a combined multimodal stimulus, GIM may increase neural activations related to negative emotions and episodic memory processing. Findings suggest a neural basis for GIM with personal episodic memories affecting cortical and subcortical structures and functions. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI

    Directory of Open Access Journals (Sweden)

    Elena Bilevicius

    2016-04-01

    Full Text Available Objective: To assess the neural activity associated with mindfulness-based alterations of pain perception. Methods: The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. Results: The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2, unpleasantness (n = 5, and intensity (n = 5, and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Conclusions: Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  8. Global convergence of periodic solution of neural networks with discontinuous activation functions

    International Nuclear Information System (INIS)

    Huang Lihong; Guo Zhenyuan

    2009-01-01

    In this paper, without assuming boundedness and monotonicity of the activation functions, we establish some sufficient conditions ensuring the existence and global asymptotic stability of periodic solution of neural networks with discontinuous activation functions by using the Yoshizawa-like theorem and constructing proper Lyapunov function. The obtained results improve and extend previous works.

  9. Muscle activation patterns in posttraumatic neck pain

    NARCIS (Netherlands)

    Nederhand, Marcus Johannes

    2003-01-01

    As an important consequence of our research, we question the relevance of the criteria of the WAD injury severity classification system. We showed that the musculoskeletal signs in WAD grade II are not characterized by muscle spasm, (i.e. increase of muscle activity), but rather by a decrease in

  10. Neural activity and emotional processing following military deployment: Effects of mild traumatic brain injury and posttraumatic stress disorder.

    Science.gov (United States)

    Zuj, Daniel V; Felmingham, Kim L; Palmer, Matthew A; Lawrence-Wood, Ellie; Van Hooff, Miranda; Lawrence, Andrew J; Bryant, Richard A; McFarlane, Alexander C

    2017-11-01

    Posttraumatic Stress Disorder (PTSD) and mild traumatic brain injury (mTBI) are common comorbidities during military deployment that affect emotional brain processing, yet few studies have examined the independent effects of mTBI and PTSD. The purpose of this study was to examine distinct differences in neural responses to emotional faces in mTBI and PTSD. Twenty-one soldiers reporting high PTSD symptoms were compared to 21 soldiers with low symptoms, and 16 soldiers who reported mTBI-consistent injury and symptoms were compared with 16 soldiers who did not sustain an mTBI. Participants viewed emotional face expressions while their neural activity was recorded (via event-related potentials) prior to and following deployment. The high-PTSD group displayed increased P1 and P2 amplitudes to threatening faces at post-deployment compared to the low-PTSD group. In contrast, the mTBI group displayed reduced face-specific processing (N170 amplitude) to all facial expressions compared to the no-mTBI group. Here, we identified distinctive neural patterns of emotional face processing, with attentional biases towards threatening faces in PTSD, and reduced emotional face processing in mTBI. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nicotinergic Modulation of Attention-Related Neural Activity Differentiates Polymorphisms of DRD2 and CHRNA4 Receptor Genes.

    Directory of Open Access Journals (Sweden)

    Thomas P K Breckel

    Full Text Available Cognitive and neuronal effects of nicotine show high interindividual variability. Recent findings indicate that genetic variations that affect the cholinergic and dopaminergic neurotransmitter system impact performance in cognitive tasks and effects of nicotine. The current pharmacogenetic functional magnetic resonance imaging (fMRI study aimed to investigate epistasis effects of CHRNA4/DRD2 variations on behavioural and neural correlates of visuospatial attention after nicotine challenge using a data driven partial least squares discriminant analysis (PLS-DA approach. Fifty young healthy non-smokers were genotyped for CHRNA4 (rs1044396 and DRD2 (rs6277. They received either 7 mg transdermal nicotine or a matched placebo in a double blind within subject design prior to performing a cued target detection task with valid and invalid trials. On behavioural level, the strongest benefits of nicotine in invalid trials were observed in participants carrying both, the DRD2 T- and CHRNA4 C+ variant. Neurally, we were able to demonstrate that different DRD2/CHRNA4 groups can be decoded from the pattern of brain activity in invalid trials under nicotine. Neural substrates of interindividual variability were found in a network of attention-related brain regions comprising the pulvinar, the striatum, the middle and superior frontal gyri, the insula, the left precuneus, and the right middle temporal gyrus. Our findings suggest that polymorphisms in the CHRNA4 and DRD2 genes are a relevant source of individual variability in pharmacological studies with nicotine.

  12. Physical Activity, Sedentary Behavior, and Dietary Patterns among Children

    NARCIS (Netherlands)

    Gubbels, J.S.; van Assema, P.; Kremers, S.P.

    2013-01-01

    Energy balance-related behavioral patterns find their origin in early The current paper provides an overview of studies that have examined behavioral patterns, i.e., the clustering of dietary behaviors, physical activity, and/or sedentary behavior. The paper discusses the importance examining energy

  13. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  14. Increased Neural Activation during Picture Encoding and Retrieval in 60-Year-Olds Compared to 20-Year-Olds

    Science.gov (United States)

    Burgmans, S.; van Boxtel, M. P. J.; Vuurman, E. F. P. M.; Evers, E. A. T.; Jolles, J.

    2010-01-01

    Brain aging has been associated with both reduced and increased neural activity during task execution. The purpose of the present study was to investigate whether increased neural activation during memory encoding and retrieval is already present at the age of 60 as well as to obtain more insight into the mechanism behind increased activity.…

  15. Abnormal neural activities of directional brain networks in patients with long-term bilateral hearing loss.

    Science.gov (United States)

    Xu, Long-Chun; Zhang, Gang; Zou, Yue; Zhang, Min-Feng; Zhang, Dong-Sheng; Ma, Hua; Zhao, Wen-Bo; Zhang, Guang-Yu

    2017-10-13

    The objective of the study is to provide some implications for rehabilitation of hearing impairment by investigating changes of neural activities of directional brain networks in patients with long-term bilateral hearing loss. Firstly, we implemented neuropsychological tests of 21 subjects (11 patients with long-term bilateral hearing loss, and 10 subjects with normal hearing), and these tests revealed significant differences between the deaf group and the controls. Then we constructed the individual specific virtual brain based on functional magnetic resonance data of participants by utilizing effective connectivity and multivariate regression methods. We exerted the stimulating signal to the primary auditory cortices of the virtual brain and observed the brain region activations. We found that patients with long-term bilateral hearing loss presented weaker brain region activations in the auditory and language networks, but enhanced neural activities in the default mode network as compared with normally hearing subjects. Especially, the right cerebral hemisphere presented more changes than the left. Additionally, weaker neural activities in the primary auditor cortices were also strongly associated with poorer cognitive performance. Finally, causal analysis revealed several interactional circuits among activated brain regions, and these interregional causal interactions implied that abnormal neural activities of the directional brain networks in the deaf patients impacted cognitive function.

  16. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    Science.gov (United States)

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  17. Patterning and predicting aquatic insect richness in four West-African coastal rivers using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Edia E.O.

    2010-10-01

    Full Text Available Despite their importance in stream management, the aquatic insect assemblages are still little known in West Africa. This is particularly true in South-Eastern Ivory Coast, where aquatic insect assemblages were hardly studied. We therefore aimed at characterising aquatic insect assemblages on four coastal rivers in South-Eastern Ivory Coast. Patterning aquatic insect assemblages was achieved using a Self-Organizing Map (SOM, an unsupervised Artificial Neural Networks (ANN method. This method was applied to pattern the samples based on the richness of five major orders of aquatic insects (Diptera, Ephemeroptera, Coleoptera, Trichoptera and Odonata. This permitted to identify three clusters that were mainly related to the local environmental status of sampling sites. Then, we used the environmental characteristics of the sites to predict, using a multilayer perceptron neural network (MLP, trained by BackPropagation algorithm (BP, a supervised ANN, the richness of the five insect orders. The BP showed high predictability (0.90 for both Diptera and Trichoptera, 0.84 for both Coleoptera and Odonata, 0.69 for Ephemeroptera. The most contributing variables in predicting the five insect order richness were pH, conductivity, total dissolved solids, water temperature, percentage of rock and the canopy. This underlines the crucial influence of both instream characteristics and riparian context.

  18. An epidemiological study of physical activity patterns and weight ...

    African Journals Online (AJOL)

    Physical activity during pregnancy has been investigated for its potential benefits which includes weight control. Physical activity patterns of pregnant women in Tshwane, South Africa, were investigated using the EPIC–Norfolk Physical Activity Questionnaire (EPAQ-2) in an epidemiological cross-sectional study. Differences ...

  19. Physical activity patterns in Greenland: a country in transition.

    Science.gov (United States)

    Dahl-Petersen, Inger K; Jørgensen, Marit E; Bjerregaard, Peter

    2011-11-01

    To examine differences in physical activity patterns among Inuit in Greenland in relation to social transition. The Inuit in Greenland are an indigenous population in the circumpolar north who are experiencing rapid social transition. Physical activity patterns were assessed by the International Physical Activity Questionnaire (long version). The population was divided into six groups according to different stages of social change, measured on the basis of education, current residence and occupation. Data were collected in a country-wide cross-sectional population survey among adult Inuit in Greenland from 2005 to 2009. Men with long vocational or academic education living in towns (latest stage of social change) spent significantly less time on occupational physical activity (p = 0.001) compared with hunters and fishermen in villages (earliest stage of social change) (trend test p = 0.01). Women in the latest stage of change spent significantly less time on domestic physical activity (p physical activity during transportation (p = 0.02 and p = 0.01 for men and women, respectively). No significant difference was found for leisure time physical activity. Men and women in the latest stage of social change spent more time on sedentary activity (p physical activity patterns among Inuit in Greenland included decreasing time spent on domestic and occupational physical activity and increasing time spent on sedentary activities along with social change. Knowledge of changes in physical activity patterns in relation to social transition is important in prevention of obesity, type 2 diabetes and lifestyle diseases.

  20. Computational modeling of neural activities for statistical inference

    CERN Document Server

    Kolossa, Antonio

    2016-01-01

    This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field. .

  1. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors.

    Directory of Open Access Journals (Sweden)

    Linya You

    2015-03-01

    Full Text Available Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1 is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.

  2. Repetition-related reductions in neural activity reveal component processes of mental simulation.

    Science.gov (United States)

    Szpunar, Karl K; St Jacques, Peggy L; Robbins, Clifford A; Wig, Gagan S; Schacter, Daniel L

    2014-05-01

    In everyday life, people adaptively prepare for the future by simulating dynamic events about impending interactions with people, objects and locations. Previous research has consistently demonstrated that a distributed network of frontal-parietal-temporal brain regions supports this ubiquitous mental activity. Nonetheless, little is known about the manner in which specific regions of this network contribute to component features of future simulation. In two experiments, we used a functional magnetic resonance (fMR)-repetition suppression paradigm to demonstrate that distinct frontal-parietal-temporal regions are sensitive to processing the scenarios or what participants imagined was happening in an event (e.g., medial prefrontal, posterior cingulate, temporal-parietal and middle temporal cortices are sensitive to the scenarios associated with future social events), people (medial prefrontal cortex), objects (inferior frontal and premotor cortices) and locations (posterior cingulate/retrosplenial, parahippocampal and posterior parietal cortices) that typically constitute simulations of personal future events. This pattern of results demonstrates that the neural substrates of these component features of event simulations can be reliably identified in the context of a task that requires participants to simulate complex, everyday future experiences.

  3. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning.

    Science.gov (United States)

    Nokia, Miriam S; Mikkonen, Jarno E; Penttonen, Markku; Wikgren, Jan

    2012-01-01

    Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4-8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval (ITI), when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs.

  4. Exemplar-based optical neural net classifier for color pattern recognition

    Science.gov (United States)

    Yu, Francis T. S.; Uang, Chii-Maw; Yang, Xiangyang

    1992-10-01

    We present a color exemplar-based neural network that can be used as an optimum image classifier or an associative memory. Color decomposition and composition technique is used for constructing the polychromatic interconnection weight matrix (IWM). The Hamming net algorithm is modified to relax the dynamic range requirement of the spatial light modulator and to reduce the number of iteration cycles in the winner-take-all layer. Computer simulation results demonstrated the feasibility of this approach

  5. Categorizing Pedagogical Patterns by Teaching Activities and Pedagogical Value

    DEFF Research Database (Denmark)

    Eriksen, Ole

    2006-01-01

    The main contribution of this paper is a proposal for a universal pedagogical pattern categorization based on teaching values and activities. This categorization would be more sustainable than the arbitrary categorization implied by pedagogical pattern language themes. Pedagogical patterns from two...... central patterns languages are analyzed and categorized, and the result is a catalogue theoretically founded and practical in its application. The teaching values are derived from learning theories, implying the theoretical foundation of the catalogue. In order to increase the usability of the value...

  6. Altered Neural Activity during Irony Comprehension in Unaffected First-Degree Relatives of Schizophrenia Patients—An fMRI Study

    Directory of Open Access Journals (Sweden)

    Róbert Herold

    2018-01-01

    Full Text Available Irony is a type of figurative language in which the literal meaning of the expression is the opposite of what the speaker intends to communicate. Even though schizophrenic patients are known as typically impaired in irony comprehension and in the underlying neural functions, to date no one has explored the neural correlates of figurative language comprehension in first-degree relatives of schizophrenic patients. In the present study, we examined the neural correlates of irony understanding in schizophrenic patients and in unaffected first-degree relatives of patients compared to healthy adults with functional MRI. Our aim was to investigate if possible alterations of the neural circuits supporting irony comprehension in first-degree relatives of patients with schizophrenia would fulfill the familiality criterion of an endophenotype. We examined 12 schizophrenic patients, 12 first-degree relatives of schizophrenia patients and 12 healthy controls with functional MRI while they were performing irony and control tasks. Different phases of irony processing were examined, such as context processing and ironic statement comprehension. Patients had significantly more difficulty understanding irony than controls or relatives. Patients also showed markedly different neural activation pattern compared to controls in both stages of irony processing. Although no significant differences were found in the performance of the irony tasks between the control group and the relative group, during the fMRI analysis, the relatives showed stronger brain activity in the left dorsolateral prefrontal cortex during the context processing phase of irony tasks than the control group. However, the controls demonstrated higher activations in the left dorsomedial prefrontal cortex and in the right inferior frontal gyrus during the ironic statement phase of the irony tasks than the relative group. Our results show that despite good task performance, first-degree relatives of

  7. Behavioral and neural concordance in parent-child dyadic sleep patterns.

    Science.gov (United States)

    Lee, Tae-Ho; Miernicki, Michelle E; Telzer, Eva H

    2017-08-01

    Sleep habits developed in adolescence shape long-term trajectories of psychological, educational, and physiological well-being. Adolescents' sleep behaviors are shaped by their parents' sleep at both the behavioral and biological levels. In the current study, we sought to examine how neural concordance in resting-state functional connectivity between parent-child dyads is associated with dyadic concordance in sleep duration and adolescents' sleep quality. To this end, we scanned both parents and their child (N=28 parent-child dyads; parent M age =42.8years; adolescent M age =14.9years; 14.3% father; 46.4% female adolescent) as they each underwent a resting-state scan. Using daily diaries, we also assessed dyadic concordance in sleep duration across two weeks. Our results show that greater daily concordance in sleep behavior is associated with greater neural concordance in default-mode network connectivity between parents and children. Moreover, greater neural and behavioral concordances in sleep is associated with more optimal sleep quality in adolescents. The current findings expand our understanding of dyadic concordance by providing a neurobiological mechanism by which parents and children share daily sleep behaviors. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Physical activity patterns in Greenland: A country in transition

    DEFF Research Database (Denmark)

    Dahl-Petersen, Inger; Jørgensen, Marit E; Bjerregaard, Peter

    2011-01-01

    To examine differences in physical activity patterns among Inuit in Greenland in relation to social transition. The Inuit in Greenland are an indigenous population in the circumpolar north who are experiencing rapid social transition.......To examine differences in physical activity patterns among Inuit in Greenland in relation to social transition. The Inuit in Greenland are an indigenous population in the circumpolar north who are experiencing rapid social transition....

  9. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Mining continuous activity patterns from animal trajectory data

    Science.gov (United States)

    Wang, Y.; Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.

    2014-01-01

    The increasing availability of animal tracking data brings us opportunities and challenges to intuitively understand the mechanisms of animal activities. In this paper, we aim to discover animal movement patterns from animal trajectory data. In particular, we propose a notion of continuous activity pattern as the concise representation of underlying similar spatio-temporal movements, and develop an extension and refinement framework to discover the patterns. We first preprocess the trajectories into significant semantic locations with time property. Then, we apply a projection-based approach to generate candidate patterns and refine them to generate true patterns. A sequence graph structure and a simple and effective processing strategy is further developed to reduce the computational overhead. The proposed approaches are extensively validated on both real GPS datasets and large synthetic datasets.

  11. Fetal activity patterns in hypertensive pregnancies.

    Science.gov (United States)

    Rayburn, W F

    1982-01-01

    This prospective investigation attempts to determine whether the maternal recording of perceived fetal motion is useful for fetal assessment in pregnancies complicated by hypertension. During a 21 month period, 124 patients whose pregnancies were complicated by either chronic or pregnancy-induced hypertension participated. The number of perceived movements per hour (24 +/- 11, mean +/- S.D.) and evidence for fetal inactivity (7 cases, 6%) did not vary significantly from a control group of normotensive pregnancies (p greater than 0.05). Fetal inactivity was predictive of an unfavorable perinatal outcome in 6 of 7 cases, including the three stillborn infants. No perinatal deaths occurred among the 117 hypertensive pregnancies with active fetuses, and the 6 cases with an unfavorable outcome were associated with mild intrauterine growth delay, prematurity, or acute changes such as placental abruption or umbilical cord accidents. Realizing these limitations, a record of fetal inactivity is worthwhile in managing the pregnancy complicated by hypertension.

  12. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury

    Science.gov (United States)

    Hormigo, Kristiina M.; Zholudeva, Lyandysha V.; Spruance, Victoria M.; Marchenko, Vitaliy; Cote, Marie-Pascale; Vinit, Stephane; Giszter, Simon; Bezdudnaya, Tatiana; Lane, Michael A.

    2016-01-01

    Cervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals. One strategy with demonstrated therapeutic potential is the use of treatments that increase neural and muscular activity (e.g. locomotor training, neural and muscular stimulation) and promote plasticity. With a focus on respiratory function post-SCI, this review will discuss advances in the use of neural interfacing strategies and activity-based treatments, and highlights some recent results from our own research. PMID:27582085

  13. Aural localization of silent objects by active human biosonar: neural representations of virtual echo-acoustic space.

    Science.gov (United States)

    Wallmeier, Ludwig; Kish, Daniel; Wiegrebe, Lutz; Flanagin, Virginia L

    2015-03-01

    Some blind humans have developed the remarkable ability to detect and localize objects through the auditory analysis of self-generated tongue clicks. These echolocation experts show a corresponding increase in 'visual' cortex activity when listening to echo-acoustic sounds. Echolocation in real-life settings involves multiple reflections as well as active sound production, neither of which has been systematically addressed. We developed a virtualization technique that allows participants to actively perform such biosonar tasks in virtual echo-acoustic space during magnetic resonance imaging (MRI). Tongue clicks, emitted in the MRI scanner, are picked up by a microphone, convolved in real time with the binaural impulse responses of a virtual space, and presented via headphones as virtual echoes. In this manner, we investigated the brain activity during active echo-acoustic localization tasks. Our data show that, in blind echolocation experts, activations in the calcarine cortex are dramatically enhanced when a single reflector is introduced into otherwise anechoic virtual space. A pattern-classification analysis revealed that, in the blind, calcarine cortex activation patterns could discriminate left-side from right-side reflectors. This was found in both blind experts, but the effect was significant for only one of them. In sighted controls, 'visual' cortex activations were insignificant, but activation patterns in the planum temporale were sufficient to discriminate left-side from right-side reflectors. Our data suggest that blind and echolocation-trained, sighted subjects may recruit different neural substrates for the same active-echolocation task. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns

    Directory of Open Access Journals (Sweden)

    Andres M. Alvarez-Meza

    2017-10-01

    Full Text Available We introduce Enhanced Kernel-based Relevance Analysis (EKRA that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand.

  15. Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity

    Science.gov (United States)

    Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.

    2016-10-01

    Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.

  16. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.

    Science.gov (United States)

    Winkler, David A; Le, Tu C

    2017-01-01

    Neural networks have generated valuable Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) models for a wide variety of small molecules and materials properties. They have grown in sophistication and many of their initial problems have been overcome by modern mathematical techniques. QSAR studies have almost always used so-called "shallow" neural networks in which there is a single hidden layer between the input and output layers. Recently, a new and potentially paradigm-shifting type of neural network based on Deep Learning has appeared. Deep learning methods have generated impressive improvements in image and voice recognition, and are now being applied to QSAR and QSAR modelling. This paper describes the differences in approach between deep and shallow neural networks, compares their abilities to predict the properties of test sets for 15 large drug data sets (the kaggle set), discusses the results in terms of the Universal Approximation theorem for neural networks, and describes how DNN may ameliorate or remove troublesome "activity cliffs" in QSAR data sets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Multiscale Survival Process for Modeling Human Activity Patterns.

    Science.gov (United States)

    Zhang, Tianyang; Cui, Peng; Song, Chaoming; Zhu, Wenwu; Yang, Shiqiang

    2016-01-01

    Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications.

  18. Muscle activity pattern dependent pain development and alleviation

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Søgaard, Karen

    2014-01-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity...... do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms...... during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain...

  19. State-dependent, bidirectional modulation of neural network activity by endocannabinoids.

    Science.gov (United States)

    Piet, Richard; Garenne, André; Farrugia, Fanny; Le Masson, Gwendal; Marsicano, Giovanni; Chavis, Pascale; Manzoni, Olivier J

    2011-11-16

    The endocannabinoid (eCB) system and the cannabinoid CB1 receptor (CB1R) play key roles in the modulation of brain functions. Although actions of eCBs and CB1Rs are well described at the synaptic level, little is known of their modulation of neural activity at the network level. Using microelectrode arrays, we have examined the role of CB1R activation in the modulation of the electrical activity of rat and mice cortical neural networks in vitro. We find that exogenous activation of CB1Rs expressed on glutamatergic neurons decreases the spontaneous activity of cortical neural networks. Moreover, we observe that the net effect of the CB1R antagonist AM251 inversely correlates with the initial level of activity in the network: blocking CB1Rs increases network activity when basal network activity is low, whereas it depresses spontaneous activity when its initial level is high. Our results reveal a complex role of CB1Rs in shaping spontaneous network activity, and suggest that the outcome of endogenous neuromodulation on network function might be state dependent.

  20. Modeling activity patterns of wildlife using time-series analysis.

    Science.gov (United States)

    Zhang, Jindong; Hull, Vanessa; Ouyang, Zhiyun; He, Liang; Connor, Thomas; Yang, Hongbo; Huang, Jinyan; Zhou, Shiqiang; Zhang, Zejun; Zhou, Caiquan; Zhang, Hemin; Liu, Jianguo

    2017-04-01

    The study of wildlife activity patterns is an effective approach to understanding fundamental ecological and evolutionary processes. However, traditional statistical approaches used to conduct quantitative analysis have thus far had limited success in revealing underlying mechanisms driving activity patterns. Here, we combine wavelet analysis, a type of frequency-based time-series analysis, with high-resolution activity data from accelerometers embedded in GPS collars to explore the effects of internal states (e.g., pregnancy) and external factors (e.g., seasonal dynamics of resources and weather) on activity patterns of the endangered giant panda ( Ailuropoda melanoleuca ). Giant pandas exhibited higher frequency cycles during the winter when resources (e.g., water and forage) were relatively poor, as well as during spring, which includes the giant panda's mating season. During the summer and autumn when resources were abundant, pandas exhibited a regular activity pattern with activity peaks every 24 hr. A pregnant individual showed distinct differences in her activity pattern from other giant pandas for several months following parturition. These results indicate that animals adjust activity cycles to adapt to seasonal variation of the resources and unique physiological periods. Wavelet coherency analysis also verified the synchronization of giant panda activity level with air temperature and solar radiation at the 24-hr band. Our study also shows that wavelet analysis is an effective tool for analyzing high-resolution activity pattern data and its relationship to internal and external states, an approach that has the potential to inform wildlife conservation and management across species.

  1. I think therefore I am: Rest-related prefrontal cortex neural activity is involved in generating the sense of self.

    Science.gov (United States)

    Gruberger, M; Levkovitz, Y; Hendler, T; Harel, E V; Harari, H; Ben Simon, E; Sharon, H; Zangen, A

    2015-05-01

    The sense of self has always been a major focus in the psychophysical debate. It has been argued that this complex ongoing internal sense cannot be explained by any physical measure and therefore substantiates a mind-body differentiation. Recently, however, neuro-imaging studies have associated self-referential spontaneous thought, a core-element of the ongoing sense of self, with synchronous neural activations during rest in the medial prefrontal cortex (PFC), as well as the medial and lateral parietal cortices. By applying deep transcranial magnetic stimulation (TMS) over human PFC before rest, we disrupted activity in this neural circuitry thereby inducing reports of lowered self-awareness and strong feelings of dissociation. This effect was not found with standard or sham TMS, or when stimulation was followed by a task instead of rest. These findings demonstrate for the first time a critical, causal role of intact rest-related PFC activity patterns in enabling integrated, enduring, self-referential mental processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. An Artificial Neural Network for Movement Pattern Analysis to Estimate Blood Alcohol Content Level.

    Science.gov (United States)

    Gharani, Pedram; Suffoletto, Brian; Chung, Tammy; Karimi, Hassan A

    2017-12-13

    Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of "just-in-time" injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption.

  3. An Artificial Neural Network for Movement Pattern Analysis to Estimate Blood Alcohol Content Level

    Directory of Open Access Journals (Sweden)

    Pedram Gharani

    2017-12-01

    Full Text Available Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of “just-in-time” injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN, we performed regression analysis to define a model determining association between gait features and BACs. Part (70% of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption.

  4. Comparative aspects of adult neural stem cell activity in vertebrates.

    Science.gov (United States)

    Grandel, Heiner; Brand, Michael

    2013-03-01

    At birth or after hatching from the egg, vertebrate brains still contain neural stem cells which reside in specialized niches. In some cases, these stem cells are deployed for further postnatal development of parts of the brain until the final structure is reached. In other cases, postnatal neurogenesis continues as constitutive neurogenesis into adulthood leading to a net increase of the number of neurons with age. Yet, in other cases, stem cells fuel neuronal turnover. An example is protracted development of the cerebellar granular layer in mammals and birds, where neurogenesis continues for a few weeks postnatally until the granular layer has reached its definitive size and stem cells are used up. Cerebellar growth also provides an example of continued neurogenesis during adulthood in teleosts. Again, it is the granular layer that grows as neurogenesis continues and no definite adult cerebellar size is reached. Neuronal turnover is most clearly seen in the telencephalon of male canaries, where projection neurons are replaced in nucleus high vocal centre each year before the start of a new mating season--circuitry reconstruction to achieve changes of the song repertoire in these birds? In this review, we describe these and other examples of adult neurogenesis in different vertebrate taxa. We also compare the structure of the stem cell niches to find common themes in their organization despite different functions adult neurogenesis serves in different species. Finally, we report on regeneration of the zebrafish telencephalon after injury to highlight similarities and differences of constitutive neurogenesis and neuronal regeneration.

  5. Statistical Discriminability Estimation for Pattern Classification Based on Neural Incremental Attribute Learning

    DEFF Research Database (Denmark)

    Wang, Ting; Guan, Sheng-Uei; Puthusserypady, Sadasivan

    2014-01-01

    Feature ordering is a significant data preprocessing method in Incremental Attribute Learning (IAL), a novel machine learning approach which gradually trains features according to a given order. Previous research has shown that, similar to feature selection, feature ordering is also important based...... estimation. Moreover, a criterion that summarizes all the produced values of AD is employed with a GA (Genetic Algorithm)-based approach to obtain the optimum feature ordering for classification problems based on neural networks by means of IAL. Compared with the feature ordering obtained by other approaches...

  6. Application of neural network and pattern recognition software to the automated analysis of continuous nuclear monitoring of on-load reactors

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.A.; Eccleston, G.W.; Halbig, J.K.; Klosterbuer, S.F. [Los Alamos National Lab., NM (United States); Larson, T.W. [California Polytechnic State Univ., San Luis Obispo, CA (US)

    1993-08-01

    Automated analysis using pattern recognition and neural network software can help interpret data, call attention to potential anomalies, and improve safeguards effectiveness. Automated software analysis, based on pattern recognition and neural networks, was applied to data collected from a radiation core discharge monitor system located adjacent to an on-load reactor core. Unattended radiation sensors continuously collect data to monitor on-line refueling operations in the reactor. The huge volume of data collected from a number of radiation channels makes it difficult for a safeguards inspector to review it all, check for consistency among the measurement channels, and find anomalies. Pattern recognition and neural network software can analyze large volumes of data from continuous, unattended measurements, thereby improving and automating the detection of anomalies. The authors developed a prototype pattern recognition program that determines the reactor power level and identifies the times when fuel bundles are pushed through the core during on-line refueling. Neural network models were also developed to predict fuel bundle burnup to calculate the region on the on-load reactor face from which fuel bundles were discharged based on the radiation signals. In the preliminary data set, which was limited and consisted of four distinct burnup regions, the neural network model correctly predicted the burnup region with an accuracy of 92%.

  7. Leisure Activity Patterns and Marital Conflict in Iran

    Science.gov (United States)

    Ahmadi, Khodabakhsh; Saadat, Hassan; Noushad, Siena

    2016-01-01

    Background: Over the past few decades, the association between leisure activity patterns and marital conflict or satisfaction has been studied extensively. However, most studies to date have been limited to middle-class families of developed societies, and an investigation of the issue, from a developing country perspective like Iran, is non-existent. Objectives: In an observational, analytical, cross-sectional study we aimed to investigate the relationship between leisure activity patterns and marital conflict in a nationally representative sample of Iranian married males. Patients and Methods: Using the cluster sampling method, a representative sample of 400 Iranian married individuals from seven provinces of Iran was surveyed. Self-administered surveys included a checklist collecting demographic and socioeconomic characteristics of the enrolled participants, leisure time questionnaire, and marital conflict questionnaire. The main patterns of leisure activity were derived from principal component analysis. For each pattern, factor scores were calculated. The relationship between factor scores and marital conflict were assessed using multivariate linear regression models accounting for the potential confounding effects of age, education, socioeconomic status, job status, number of children, duration of marriage, and time spent for leisure. Results: Two hundred and ninety-nine respondents completed the leisure time and marital conflict questionnaires. Five major leisure patterns were identified accounting for 60.3% of the variance in data. The most dominant pattern was family-oriented activities (e.g. spending time with family outdoors and spending time with family indoors) and was negatively linked to marital conflict (standardized beta= −0.154, P = 0.013). Of the four remaining patterns, three only included individual activities and one was a family-individual composite. Individual patterns exhibited discrepant behavior; while the pattern involving activities

  8. Feeling full and being full : how gastric content relates to appetite, food properties and neural activation

    NARCIS (Netherlands)

    Camps, Guido

    2017-01-01

    Aim: This thesis aimed to further determine how gastric content relates to subjective experiences regarding appetite, how this relation is affected by food properties and whether this is visible in neural activation changes.

    Method: This was studied using

  9. The importance of cutaneous feedback on neural activation during maximal voluntary contraction

    NARCIS (Netherlands)

    Cruz-Montecinos, Carlos; Maas, Huub; Pellegrin-Friedmann, Carla; Tapia, Claudio

    2017-01-01

    Purpose: The purpose of this study was to investigate the importance of cutaneous feedback on neural activation during maximal voluntary contraction (MVC) of the ankle plantar flexors. Methods: The effects of cutaneous plantar anaesthesia were assessed in 15 subjects and compared to 15 controls,

  10. Specific and Nonspecific Neural Activity during Selective Processing of Visual Representations in Working Memory

    Science.gov (United States)

    Oh, Hwamee; Leung, Hoi-Chung

    2010-01-01

    In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two…

  11. Evaluation of neural networks to identify types of activity using accelerometers

    NARCIS (Netherlands)

    Vries, S.I. de; Garre, F.G.; Engbers, L.H.; Hildebrandt, V.H.; Buuren, S. van

    2011-01-01

    Purpose: To develop and evaluate two artificial neural network (ANN) models based on single-sensor accelerometer data and an ANN model based on the data of two accelerometers for the identification of types of physical activity in adults. Methods: Forty-nine subjects (21 men and 28 women; age range

  12. Dlx proteins position the neural plate border and determine adjacent cell fates.

    Science.gov (United States)

    Woda, Juliana M; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2003-01-01

    The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.

  13. Behavioral pattern separation and its link to the neural mechanisms of fear generalization.

    Science.gov (United States)

    Lange, Iris; Goossens, Liesbet; Michielse, Stijn; Bakker, Jindra; Lissek, Shmuel; Papalini, Silvia; Verhagen, Simone; Leibold, Nicole; Marcelis, Machteld; Wichers, Marieke; Lieverse, Ritsaert; van Os, Jim; van Amelsvoort, Therese; Schruers, Koen

    2017-11-01

    Fear generalization is a prominent feature of anxiety disorders and post-traumatic stress disorder (PTSD). It is defined as enhanced fear responding to a stimulus that bears similarities, but is not identical to a threatening stimulus. Pattern separation, a hippocampal-dependent process, is critical for stimulus discrimination; it transforms similar experiences or events into non-overlapping representations. This study is the first in humans to investigate the extent to which fear generalization relies on behavioral pattern separation abilities. Participants (N = 46) completed a behavioral task taxing pattern separation, and a neuroimaging fear conditioning and generalization paradigm. Results show an association between lower behavioral pattern separation performance and increased generalization in shock expectancy scores, but not in fear ratings. Furthermore, lower behavioral pattern separation was associated with diminished recruitment of the subcallosal cortex during presentation of generalization stimuli. This region showed functional connectivity with the orbitofrontal cortex and ventromedial prefrontal cortex. Together, the data provide novel experimental evidence that pattern separation is related to generalization of threat expectancies, and reduced fear inhibition processes in frontal regions. Deficient pattern separation may be critical in overgeneralization and therefore may contribute to the pathophysiology of anxiety disorders and PTSD. © The Author (2017). Published by Oxford University Press.

  14. The behavioural patterns and neural correlates of concrete and abstract verb processing in aphasia: A novel verb semantic battery

    Directory of Open Access Journals (Sweden)

    Reem S.W. Alyahya

    2018-01-01

    Full Text Available Typically, processing is more accurate and efficient for concrete than abstract concepts in both healthy adults and individuals with aphasia. While, concreteness effects have been thoroughly documented with respect to noun processing, other words classes have received little attention despite tending to be less concrete than nouns. The aim of the current study was to explore concrete-abstract differences in verbs and identify their neural correlates in post-stroke aphasia. Given the dearth of comprehension tests for verbs, a battery of neuropsychological tests was developed in this study to assess the comprehension of concrete and abstract verbs. Specifically, a sensitive verb synonym judgment test was generated that varied both the items' imageability and frequency, and a picture-to-word matching test with numerous concrete verbs. Normative data were then collected and the tests were administered to a cohort of 48 individuals with chronic post-stroke aphasia to explore the behavioural patterns and neural correlates of verb processing. The results revealed significantly better comprehension of concrete than abstract verbs, aligning with the existing aphasiological literature on noun processing. In addition, the patients performed better during verb comprehension than verb production. Lesion-symptom correlational analyses revealed common areas that support processing of concrete and abstract verbs, including the left anterior temporal lobe, posterior supramarginal gyrus and superior lateral occipital cortex. A direct contrast between them revealed additional regions with graded differences. Specifically, the left frontal regions were associated with processing abstract verbs; whereas, the left posterior temporal and occipital regions were associated with processing concrete verbs. Moreover, overlapping and distinct neural correlates were identified in association with the comprehension and production of concrete verbs. These patient findings

  15. The behavioural patterns and neural correlates of concrete and abstract verb processing in aphasia: A novel verb semantic battery.

    Science.gov (United States)

    Alyahya, Reem S W; Halai, Ajay D; Conroy, Paul; Lambon Ralph, Matthew A

    2018-01-01

    Typically, processing is more accurate and efficient for concrete than abstract concepts in both healthy adults and individuals with aphasia. While, concreteness effects have been thoroughly documented with respect to noun processing, other words classes have received little attention despite tending to be less concrete than nouns. The aim of the current study was to explore concrete-abstract differences in verbs and identify their neural correlates in post-stroke aphasia. Given the dearth of comprehension tests for verbs, a battery of neuropsychological tests was developed in this study to assess the comprehension of concrete and abstract verbs. Specifically, a sensitive verb synonym judgment test was generated that varied both the items' imageability and frequency, and a picture-to-word matching test with numerous concrete verbs. Normative data were then collected and the tests were administered to a cohort of 48 individuals with chronic post-stroke aphasia to explore the behavioural patterns and neural correlates of verb processing. The results revealed significantly better comprehension of concrete than abstract verbs, aligning with the existing aphasiological literature on noun processing. In addition, the patients performed better during verb comprehension than verb production. Lesion-symptom correlational analyses revealed common areas that support processing of concrete and abstract verbs, including the left anterior temporal lobe, posterior supramarginal gyrus and superior lateral occipital cortex. A direct contrast between them revealed additional regions with graded differences. Specifically, the left frontal regions were associated with processing abstract verbs; whereas, the left posterior temporal and occipital regions were associated with processing concrete verbs. Moreover, overlapping and distinct neural correlates were identified in association with the comprehension and production of concrete verbs. These patient findings align with data from

  16. Cognitive-affective neural plasticity following active-controlled mindfulness intervention

    DEFF Research Database (Denmark)

    Allen, Micah Galen

    Mindfulness meditation is a set of attention-based, regulatory and self-inquiry training regimes. Although the impact of mindfulness meditation training (MT) on self-regulation is well established, the neural mechanisms supporting such plasticity are poorly understood. MT is thought to act through...... prefrontal cortex (mPFC), and right anterior insula during negative valence processing. Our findings highlight the importance of active control in MT research, indicate unique neural mechanisms for progressive stages of mindfulness training, and suggest that optimal application of MT may differ depending...

  17. Neural networkbased semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear...... to determine the damper current based on the derived optimal damper force. For that reason an inverse MR damper model is also designed based on the neural network identification of the particular rotary MR damper. The performance of the proposed controller is compared to that of an optimal pure viscous damper...

  18. Patterns of frontoparietal activation as a marker for unsuccessful visuospatial processing in healthy aging.

    Science.gov (United States)

    Drag, Lauren L; Light, Sharee N; Langenecker, Scott A; Hazlett, Kathleen E; Wilde, Elisabeth A; Welsh, Robert; Steinberg, Brett A; Bieliauskas, Linas A

    2016-09-01

    Visuospatial abilities are sensitive to age-related decline, although the neural basis for this decline (and its everyday behavioral correlates) is as yet poorly understood. fMRI was employed to examine age-related differences in patterns of functional activation that underlie changes in visuospatial processing. All participants completed a brief neuropsychological battery and also a figure ground task (FGT) assessing visuospatial processing while fMRI was recorded. Participants included 16 healthy older adults (OA; aged 69-82 years) and 16 healthy younger adults (YA; aged 20-35 years). We examined age-related differences in behavioral performance on the FGT in relation to patterns of fMRI activation. OA demonstrated reduced performance on the FGT task and showed increased activation of supramarginal parietal cortex as well as increased activation of frontal and temporal regions compared to their younger counterparts. Performance on the FGT related to increased supramarginal gyrus activity and increased medial prefrontal activity in OAs, but not YAs. Our results are consistent with an anterior-posterior compensation model. Successful FGT performance requires the perception and integration of multiple stimuli and thus it is plausible that healthy aging may be accompanied by changes in visuospatial processing that mimic a subtle form of dorsal simultanagnosia. Overall, decreased visuospatial processing in OA relates to an altered frontoparietal neurobiological signature that may contribute to the general phenomenon of increasingly fragmented execution of behavior associated with normal aging.

  19. a Three-Step Spatial-Temporal Clustering Method for Human Activity Pattern Analysis

    Science.gov (United States)

    Huang, W.; Li, S.; Xu, S.

    2016-06-01

    How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time) to four dimensions (space, time and semantics). More specifically, not only a location and time that people stay and spend are collected, but also what people "say" for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The results show that the

  20. A THREE-STEP SPATIAL-TEMPORAL-SEMANTIC CLUSTERING METHOD FOR HUMAN ACTIVITY PATTERN ANALYSIS

    Directory of Open Access Journals (Sweden)

    W. Huang

    2016-06-01

    Full Text Available How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time to four dimensions (space, time and semantics. More specifically, not only a location and time that people stay and spend are collected, but also what people “say” for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The

  1. Leisure Activity Patterns and Marital Conflict in Iran.

    Science.gov (United States)

    Ahmadi, Khodabakhsh; Saadat, Hassan; Noushad, Siena

    2016-01-01

    Over the past few decades, the association between leisure activity patterns and marital conflict or satisfaction has been studied extensively. However, most studies to date have been limited to middle-class families of developed societies, and an investigation of the issue, from a developing country perspective like Iran, is non-existent. In an observational, analytical, cross-sectional study we aimed to investigate the relationship between leisure activity patterns and marital conflict in a nationally representative sample of Iranian married males. Using the cluster sampling method, a representative sample of 400 Iranian married individuals from seven provinces of Iran was surveyed. Self-administered surveys included a checklist collecting demographic and socioeconomic characteristics of the enrolled participants, leisure time questionnaire, and marital conflict questionnaire. The main patterns of leisure activity were derived from principal component analysis. For each pattern, factor scores were calculated. The relationship between factor scores and marital conflict were assessed using multivariate linear regression models accounting for the potential confounding effects of age, education, socioeconomic status, job status, number of children, duration of marriage, and time spent for leisure. Two hundred and ninety-nine respondents completed the leisure time and marital conflict questionnaires. Five major leisure patterns were identified accounting for 60.3% of the variance in data. The most dominant pattern was family-oriented activities (e.g. spending time with family outdoors and spending time with family indoors) and was negatively linked to marital conflict (standardized beta= -0.154, P = 0.013). Of the four remaining patterns, three only included individual activities and one was a family-individual composite. Individual patterns exhibited discrepant behavior; while the pattern involving activities like 'watching TV', 'non-purposive time spending', and

  2. Social power and approach-related neural activity

    OpenAIRE

    Boksem, Maarten; Smolders, Ruud; Cremer, David

    2009-01-01

    textabstractIt has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motiva...

  3. Dispositional Mindfulness and Depressive Symptomatology: Correlations with Limbic and Self-Referential Neural Activity during Rest

    Science.gov (United States)

    Way, Baldwin M.; Creswell, J. David; Eisenberger, Naomi I.; Lieberman, Matthew D.

    2010-01-01

    To better understand the relationship between mindfulness and depression, we studied normal young adults (n=27) who completed measures of dispositional mindfulness and depressive symptomatology, which were then correlated with: a) Rest: resting neural activity during passive viewing of a fixation cross, relative to a simple goal-directed task (shape-matching); and b) Reactivity: neural reactivity during viewing of negative emotional faces, relative to the same shape-matching task. Dispositional mindfulness was negatively correlated with resting activity in self-referential processing areas, while depressive symptomatology was positively correlated with resting activity in similar areas. In addition, dispositional mindfulness was negatively correlated with resting activity in the amygdala, bilaterally, while depressive symptomatology was positively correlated with activity in the right amygdala. Similarly, when viewing emotional faces, amygdala reactivity was positively correlated with depressive symptomatology and negatively correlated with dispositional mindfulness, an effect that was largely attributable to differences in resting activity. These findings indicate that mindfulness is associated with intrinsic neural activity and that changes in resting amygdala activity could be a potential mechanism by which mindfulness-based depression treatments elicit therapeutic improvement. PMID:20141298

  4. Akinetic-rigid and tremor-dominant Parkinson's disease patients show different patterns of intrinsic brain activity.

    Science.gov (United States)

    Zhang, Jiuquan; Wei, Luqing; Hu, Xiaofei; Xie, Bing; Zhang, Yanling; Wu, Guo-Rong; Wang, Jian

    2015-01-01

    Parkinson's disease (PD) is a surprisingly heterogeneous neurodegenerative disorder. It is well established that different subtypes of PD present with different clinical courses and prognoses. However, the neural mechanism underlying these disparate presentations is uncertain. Here we used resting-state fMRI (rs-fMRI) and the regional homogeneity (ReHo) method to determine neural activity patterns in the two main clinical subgroups of PD (akinetic-rigid and tremor-dominant). Compared with healthy controls, akinetic-rigid (AR) subjects had increased ReHo mainly in right amygdala, left putamen, bilateral angular gyrus, bilateral medial prefrontal cortex (MPFC), and decreased ReHo in left post cingulate gyrus/precuneus (PCC/PCu) and bilateral thalamus. In contrast, tremor-dominant (TD) patients showed higher ReHo mostly in bilateral angular gyrus, left PCC, cerebellum_crus1, and cerebellum_6, while ReHo was decreased in right putamen, primary sensory cortex (S1), vermis_3, and cerebellum_4_5. These results indicate that AR and TD subgroups both represent altered spontaneous neural activity in default-mode regions and striatum, and AR subjects exhibit more changed neural activity in the mesolimbic cortex (amygdala) but TD in the cerebellar regions. Of note, direct comparison of the two subgroups revealed a distinct ReHo pattern primarily located in the striatal-thalamo-cortical (STC) and cerebello-thalamo-cortical (CTC) loops. Overall, our findings highlight the involvement of default mode network (DMN) and STC circuit both in AR and TD subtypes, but also underscore the importance of integrating mesolimbic-striatal and CTC loops in understanding neural systems of akinesia and rigidity, as well as resting tremor in PD. This study provides improved understanding of the pathophysiological models of different subtypes of PD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    Science.gov (United States)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  6. Are muscle activation patterns altered during shod and barefoot running with a forefoot footfall pattern?

    Science.gov (United States)

    Ervilha, Ulysses Fernandes; Mochizuki, Luis; Figueira, Aylton; Hamill, Joseph

    2017-09-01

    This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.

  7. Probabilistic Neural Networks for Chemical Sensor Array Pattern Recognition: Comparison Studies, Improvements and Automated Outlier Rejection

    National Research Council Canada - National Science Library

    Shaffer, Ronald E

    1998-01-01

    For application to chemical sensor arrays, the ideal pattern recognition is accurate, fast, simple to train, robust to outliers, has low memory requirements, and has the ability to produce a measure...

  8. Stability switches, oscillatory multistability, and spatio-temporal patterns of nonlinear oscillations in recurrently delay coupled neural networks.

    Science.gov (United States)

    Song, Yongli; Makarov, Valeri A; Velarde, Manuel G

    2009-08-01

    A model of time-delay recurrently coupled spatially segregated neural assemblies is here proposed. We show that it operates like some of the hierarchical architectures of the brain. Each assembly is a neural network with no delay in the local couplings between the units. The delay appears in the long range feedforward and feedback inter-assemblies communications. Bifurcation analysis of a simple four-units system in the autonomous case shows the richness of the dynamical behaviors in a biophysically plausible parameter region. We find oscillatory multistability, hysteresis, and stability switches of the rest state provoked by the time delay. Then we investigate the spatio-temporal patterns of bifurcating periodic solutions by using the symmetric local Hopf bifurcation theory of delay differential equations and derive the equation describing the flow on the center manifold that enables us determining the direction of Hopf bifurcations and stability of the bifurcating periodic orbits. We also discuss computational properties of the system due to the delay when an external drive of the network mimicks external sensory input.

  9. Training spiking neural networks to associate spatio-temporal input-output spike patterns

    OpenAIRE

    Mohemmed, A; Schliebs, S; Matsuda, S; Kasabov, N

    2013-01-01

    In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input–output spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the conversion of spike trains into analogue signals and the application of the Widrow–Hoff learning rule. In this paper we present a mathematical formulation of the prop...

  10. Microglia modulate hippocampal neural precursor activity in response to exercise and aging.

    Science.gov (United States)

    Vukovic, Jana; Colditz, Michael J; Blackmore, Daniel G; Ruitenberg, Marc J; Bartlett, Perry F

    2012-05-09

    Exercise has been shown to positively augment adult hippocampal neurogenesis; however, the cellular and molecular pathways mediating this effect remain largely unknown. Previous studies have suggested that microglia may have the ability to differentially instruct neurogenesis in the adult brain. Here, we used transgenic Csf1r-GFP mice to investigate whether hippocampal microglia directly influence the activation of neural precursor cells. Our results revealed that an exercise-induced increase in neural precursor cell activity was mediated via endogenous microglia and abolished when these cells were selectively removed from hippocampal cultures. Conversely, microglia from the hippocampi of animals that had exercised were able to activate latent neural precursor cells when added to neurosphere preparations from sedentary mice. We also investigated the role of CX(3)CL1, a chemokine that is known to provide a more neuroprotective microglial phenotype. Intraparenchymal infusion of a blocking antibody against the CX(3)CL1 receptor, CX(3)CR1, but not control IgG, dramatically reduced the neurosphere formation frequency in mice that had exercised. While an increase in soluble CX(3)CL1 was observed following running, reduced levels of this chemokine were found in the aged brain. Lower levels of CX(3)CL1 with advancing age correlated with the natural decline in neural precursor cell activity, a state that could be partially alleviated through removal of microglia. These findings provide the first direct evidence that endogenous microglia can exert a dual and opposing influence on neural precursor cell activity within the hippocampus, and that signaling through the CX(3)CL1-CX(3)CR1 axis critically contributes toward this process.

  11. Simulation of activation and propagation delay during tripolar neural stimulation

    NARCIS (Netherlands)

    Goodall, E.V.; Goodall, Eleanor V.; Kosterman, L. Martin; Struijk, Johannes J.; Struijk, J.J.; Holsheimer, J.

    1993-01-01

    Computer simulations were perfonned to investigate the influence of stimulus amplitude on cathodal activation delay, propagation delay and blocking during stimulation with a bipolar cuff electrode. Activation and propagation delays were combined in a total delay term which was minimized between the

  12. Social power and approach-related neural activity

    NARCIS (Netherlands)

    M.A.S. Boksem (Maarten); R. Smolders (Ruud); D. de Cremer (David)

    2009-01-01

    textabstractIt has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and

  13. Differential Patterns of Abnormal Activity and Connectivity in the Amygdala-Prefrontal Circuitry in Bipolar-I and Bipolar-NOS Youth

    Science.gov (United States)

    Ladouceur, Cecile D.; Farchione, Tiffany; Diwadkar, Vaibhav; Pruitt, Patrick; Radwan, Jacqueline; Axelson, David A.; Birmaher, Boris; Phillips, Mary L.

    2011-01-01

    Objective: The functioning of neural systems supporting emotion processing and regulation in youth with bipolar disorder not otherwise specified (BP-NOS) remains poorly understood. We sought to examine patterns of activity and connectivity in youth with BP-NOS relative to youth with bipolar disorder type I (BP-I) and healthy controls (HC). Method:…

  14. Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube.

    Science.gov (United States)

    Kaul-Strehlow, Sabrina; Urata, Makoto; Praher, Daniela; Wanninger, Andreas

    2017-08-01

    A tubular nervous system is present in the deuterostome groups Chordata (cephalochordates, tunicates, vertebrates) and in the non-chordate Enteropneusta. However, the worm-shaped enteropneusts possess a less complex nervous system featuring only a short hollow neural tube, whereby homology to its chordate counterpart remains elusive. Since the majority of data on enteropneusts stem from the harrimaniid Saccoglossus kowalevskii, putative interspecific variations remain undetected resulting in an unreliable ground pattern that impedes homology assessments. In order to complement the missing data from another enteropneust family, we investigated expression of key neuronal patterning genes in the ptychoderid Balanoglossus misakiensis. The collar cord of B. misakiensis shows anterior Six3/6 and posterior Otx + Engrailed expression, in a region corresponding to the chordate brain. Neuronal Nk2.1/Nk2.2 expression is absent. Interestingly, we found median Dlx and lateral Pax6 expression domains, i.e., a condition that is reversed compared to chordates. Comparative analyses reveal that adult nervous system patterning is highly conserved among the enteropneust families Harrimaniidae, Spengelidae and Ptychoderidae. BmiDlx and BmiPax6 have no corresponding expression domains in the chordate brain, which may be indicative of independent acquisition of a tubular nervous system in Enteropneusta and Chordata.

  15. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  16. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-05

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.

  17. Effect of short-term escitalopram treatment on neural activation during emotional processing.

    Science.gov (United States)

    Maron, Eduard; Wall, Matt; Norbury, Ray; Godlewska, Beata; Terbeck, Sylvia; Cowen, Philip; Matthews, Paul; Nutt, David J

    2016-01-01

    Recent functional magnetic resonance (fMRI) imaging studies have revealed that subchronic medication with escitalopram leads to significant reduction in both amygdala and medial frontal gyrus reactivity during processing of emotional faces, suggesting that escitalopram may have a distinguishable modulatory effect on neural activation as compared with other serotonin-selective antidepressants. In this fMRI study we aimed to explore whether short-term medication with escitalopram in healthy volunteers is associated with reduced neural response to emotional processing, and whether this effect is predicted by drug plasma concentration. The neural response to fearful and happy faces was measured before and on day 7 of treatment with escitalopram (10mg) in 15 healthy volunteers and compared with those in a control unmedicated group (n=14). Significantly reduced activation to fearful, but not to happy facial expressions was observed in the bilateral amygdala, cingulate and right medial frontal gyrus following escitalopram medication. This effect was not correlated with plasma drug concentration. In accordance with previous data, we showed that escitalopram exerts its rapid direct effect on emotional processing via attenuation of neural activation in pathways involving medial frontal gyrus and amygdala, an effect that seems to be distinguishable from that of other SSRIs. © The Author(s) 2015.

  18. GH mediates exercise-dependent activation of SVZ neural precursor cells in aged mice.

    Directory of Open Access Journals (Sweden)

    Daniel G Blackmore

    Full Text Available Here we demonstrate, both in vivo and in vitro, that growth hormone (GH mediates precursor cell activation in the subventricular zone (SVZ of the aged (12-month-old brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation.

  19. GH Mediates Exercise-Dependent Activation of SVZ Neural Precursor Cells in Aged Mice

    Science.gov (United States)

    Blackmore, Daniel G.; Vukovic, Jana; Waters, Michael J.; Bartlett, Perry F.

    2012-01-01

    Here we demonstrate, both in vivo and in vitro, that growth hormone (GH) mediates precursor cell activation in the subventricular zone (SVZ) of the aged (12-month-old) brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation. PMID:23209615

  20. Bifurcation analysis and spatio-temporal patterns of nonlinear oscillations in a delayed neural network with unidirectional coupling

    International Nuclear Information System (INIS)

    Song Yongli; Tadé, Moses O; Zhang Tonghua

    2009-01-01

    In this paper, a delayed neural network with unidirectional coupling is considered which consists of two two-dimensional nonlinear differential equation systems with exponential decay where one system receives a delayed input from the other system. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the centre manifold theorem. We also investigate the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay-differential equations combined with representation theory of Lie groups. Then the global continuation of phase-locked periodic solutions is investigated. Numerical simulations are given to illustrate the results obtained

  1. Statistical analysis and decoding of neural activity in the rodent geniculate ganglion using a metric-based inference system.

    Directory of Open Access Journals (Sweden)

    Wei Wu

    Full Text Available We analyzed the spike discharge patterns of two types of neurons in the rodent peripheral gustatory system, Na specialists (NS and acid generalists (AG to lingual stimulation with NaCl, acetic acid, and mixtures of the two stimuli. Previous computational investigations found that both spike rate and spike timing contribute to taste quality coding. These studies used commonly accepted computational methods, but they do not provide a consistent statistical evaluation of spike trains. In this paper, we adopted a new computational framework that treated each spike train as an individual data point for computing summary statistics such as mean and variance in the spike train space. We found that these statistical summaries properly characterized the firing patterns (e. g. template and variability and quantified the differences between NS and AG neurons. The same framework was also used to assess the discrimination performance of NS and AG neurons and to remove spontaneous background activity or "noise" from the spike train responses. The results indicated that the new metric system provided the desired decoding performance and noise-removal improved stimulus classification accuracy, especially of neurons with high spontaneous rates. In summary, this new method naturally conducts statistical analysis and neural decoding under one consistent framework, and the results demonstrated that individual peripheral-gustatory neurons generate a unique and reliable firing pattern during sensory stimulation and that this pattern can be reliably decoded.

  2. Activity-regulated genes as mediators of neural circuit plasticity.

    Science.gov (United States)

    Leslie, Jennifer H; Nedivi, Elly

    2011-08-01

    Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Early capillary flux homogenization in response to neural activation.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Boas, David A

    2016-02-01

    This Brief Communication reports early homogenization of capillary network flow during somatosensory activation in the rat cerebral cortex. We used optical coherence tomography and statistical intensity variation analysis for tracing changes in the red blood cell flux over hundreds of capillaries nearly at the same time with 1-s resolution. We observed that while the mean capillary flux exhibited a typical increase during activation, the standard deviation of the capillary flux exhibited an early decrease that happened before the mean flux increase. This network-level data is consistent with the theoretical hypothesis that capillary flow homogenizes during activation to improve oxygen delivery. © The Author(s) 2015.

  4. Agricultural activity shapes the communication and migration patterns in Senegal

    Science.gov (United States)

    Martin-Gutierrez, S.; Borondo, J.; Morales, A. J.; Losada, J. C.; Tarquis, A. M.; Benito, R. M.

    2016-06-01

    The communication and migration patterns of a country are shaped by its socioeconomic processes. The economy of Senegal is predominantly rural, as agriculture employs over 70% of the labor force. In this paper, we use mobile phone records to explore the impact of agricultural activity on the communication and mobility patterns of the inhabitants of Senegal. We find two peaks of phone calls activity emerging during the growing season. Moreover, during the harvest period, we detect an increase in the migration flows throughout the country. However, religious holidays also shape the mobility patterns of the Senegalese people. Hence, in the light of our results, agricultural activity and religious holidays are the primary drivers of mobility inside the country.

  5. Neural, Cellular and Molecular Mechanisms of Active Forgetting

    Science.gov (United States)

    Medina, Jorge H.

    2018-01-01

    The neurobiology of memory formation attracts much attention in the last five decades. Conversely, the rules that govern and the mechanisms underlying forgetting are less understood. In addition to retroactive interference, retrieval-induced forgetting and passive decay of time, it has been recently demonstrated that the nervous system has a diversity of active and inherent processes involved in forgetting. In Drosophila, some operate mainly at an early stage of memory formation and involves dopamine (DA) neurons, specific postsynaptic DA receptor subtypes, Rac1 activation and induces rapid active forgetting. In mammals, others regulate forgetting and persistence of seemingly consolidated memories and implicate the activity of DA receptor subtypes and AMPA receptors in the hippocampus (HP) and related structures to activate parallel signaling pathways controlling active time-dependent forgetting. Most of them may involve plastic changes in synaptic and extrasynaptic receptors including specific removal of GluA2 AMPA receptors. Forgetting at longer timescales might also include changes in adult neurogenesis in the dentate gyrus (DG) of the HP. Therefore, based on relevance or value considerations neuronal circuits may regulate in a time-dependent manner what is formed, stored, and maintained and what is forgotten. PMID:29467630

  6. Predesigned surface patterns and topological defects control the active matter.

    Science.gov (United States)

    Turiv, Taras; Peng, Chenhui; Guo, Yubing; Wei, Qi-Huo; Lavrentovich, Oleg

    Active matter exhibits remarkable patterns of never-ending dynamics with giant fluctuations of concentration, varying order, nucleating and annihilating topological defects. These patterns can be seen in active systems of both biological and artificial origin. A fundamental question is whether and how one can control this chaotic out-of-equilibrium behavior. We demonstrate a robust control of local concentration, trajectories of active self-propelled units and the net flows of active bacteria Bacillus Substilis by imposing pre-designed surface patterns of orientational order in a water-based lyotropic chromonic liquid crystal. The patterns force the bacteria to gather into dynamic swarms with spatially modulated concentration and well-defined polarity of motion. Topological defects produce net motion of bacteria with a unidirectional circulation, while pairs of defects induce a pumping action. The qualitative features of the dynamics can be explained by interplay of curvature and activity, in particular, by ability of mixed splay-bend curvatures to generate threshold-less active flows. The demonstrated level of control opens opportunities in engineering materials and devices that mimic rich functionality of living systems. This work was supported by NSF Grants DMR-1507637, DMS-1434185, CMMI-1436565, by the Petroleum Research Grant PRF# 56046-ND7 administered by the American Chemical Society.

  7. Prediction of Increasing Production Activities using Combination of Query Aggregation on Complex Events Processing and Neural Network

    Directory of Open Access Journals (Sweden)

    Achmad Arwan

    2016-07-01

    Full Text Available AbstrakProduksi, order, penjualan, dan pengiriman adalah serangkaian event yang saling terkait dalam industri manufaktur. Selanjutnya hasil dari event tersebut dicatat dalam event log. Complex Event Processing adalah metode yang digunakan untuk menganalisis apakah terdapat pola kombinasi peristiwa tertentu (peluang/ancaman yang terjadi pada sebuah sistem, sehingga dapat ditangani secara cepat dan tepat. Jaringan saraf tiruan adalah metode yang digunakan untuk mengklasifikasi data peningkatan proses produksi. Hasil pencatatan rangkaian proses yang menyebabkan peningkatan produksi digunakan sebagai data latih untuk mendapatkan fungsi aktivasi dari jaringan saraf tiruan. Penjumlahan hasil catatan event log dimasukkan ke input jaringan saraf tiruan untuk perhitungan nilai aktivasi. Ketika nilai aktivasi lebih dari batas yang ditentukan, maka sistem mengeluarkan sinyal untuk meningkatkan produksi, jika tidak, sistem tetap memantau kejadian. Hasil percobaan menunjukkan bahwa akurasi dari metode ini adalah 77% dari 39 rangkaian aliran event.Kata kunci: complex event processing, event, jaringan saraf tiruan, prediksi peningkatan produksi, proses. AbstractProductions, orders, sales, and shipments are series of interrelated events within manufacturing industry. Further these events were recorded in the event log. Complex event processing is a method that used to analyze whether there are patterns of combinations of certain events (opportunities / threats that occur in a system, so it can be addressed quickly and appropriately. Artificial neural network is a method that we used to classify production increase activities. The series of events that cause the increase of the production used as a dataset to train the weight of neural network which result activation value. An aggregate stream of events inserted into the neural network input to compute the value of activation. When the value is over a certain threshold (the activation value results

  8. Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors

    Directory of Open Access Journals (Sweden)

    Huaguang eGu

    2015-08-01

    Full Text Available In rabbit depressor nerve fibers, an on-off firing pattern, period-1 firing, and integer multiple firing with quiescent state were observed as the static pressure level was increased. A bursting pattern with bursts at the systolic phase of blood pressure, continuous firing, and bursting with burst at diastolic phase and quiescent state at systolic phase were observed as the mean level of the dynamic blood pressure was increased. For both static and dynamic pressures, the firing frequency of the first two firing patterns increased and of the last firing pattern decreased due to the quiescent state. If the quiescent state is disregarded, the spike frequency becomes an increasing trend. The instantaneous spike frequency of the systolic phase bursting, continuous firing, and diastolic phase bursting can reflect the temporal process of the systolic phase, whole procedure, and diastolic phase of the dynamic blood pressure signal, respectively. With increasing the static current corresponding to pressure level, the deterministic Hodgkin-Huxley (HH model manifests a process from a resting state first to period-1 firing via a subcritical Hopf bifurcation and then to a resting state via a supercritical Hopf bifurcation, and the firing frequency increases. The on-off firing and integer multiple firing were here identified as noise-induced firing patterns near the subcritical and supercritical Hopf bifurcation points, respectively, using the stochastic HH model. The systolic phase bursting and diastolic phase bursting were identified as pressure-induced firings near the subcritical and supercritical Hopf bifurcation points, respectively, using an HH model with a dynamic signal. The firing, spike frequency, and instantaneous spike frequency observed in the experiment were simulated and explained using HH models. The results illustrate the dynamics of different firing patterns and the frequency and temporal coding mechanisms of aortic baroreceptor.

  9. Neural activations associated with feedback and retrieval success

    Science.gov (United States)

    Wiklund-Hörnqvist, Carola; Andersson, Micael; Jonsson, Bert; Nyberg, Lars

    2017-11-01

    There is substantial behavioral evidence for a phenomenon commonly called "the testing effect", i.e. superior memory performance after repeated testing compared to re-study of to-be-learned materials. However, considerably less is known about the underlying neuro-cognitive processes that are involved in the initial testing phase, and thus underlies the actual testing effect. Here, we investigated functional brain activity related to test-enhanced learning with feedback. Subjects learned foreign vocabulary across three consecutive tests with correct-answer feedback. Functional brain-activity responses were analyzed in relation to retrieval and feedback events, respectively. Results revealed up-regulated activity in fronto-striatal regions during the first successful retrieval, followed by a marked reduction in activity as a function of improved learning. Whereas feedback improved behavioral performance across consecutive tests, feedback had a negligable role after the first successful retrieval for functional brain-activity modulations. It is suggested that the beneficial effects of test-enhanced learning is regulated by feedback-induced updating of memory representations, mediated via the striatum, that might underlie the stabilization of memory commonly seen in behavioral studies of the testing effect.

  10. Skin Conductance Responses and Neural Activations During Fear Conditioning and Extinction Recall Across Anxiety Disorders.

    Science.gov (United States)

    Marin, Marie-France; Zsido, Rachel G; Song, Huijin; Lasko, Natasha B; Killgore, William D S; Rauch, Scott L; Simon, Naomi M; Milad, Mohammed R

    2017-06-01

    The fear conditioning and extinction neurocircuitry has been extensively studied in healthy and clinical populations, with a particular focus on posttraumatic stress disorder. Despite significant overlap of symptoms between posttraumatic stress disorder and anxiety disorders, the latter has received less attention. Given that dysregulated fear levels characterize anxiety disorders, examining the neural correlates of fear and extinction learning may shed light on the pathogenesis of underlying anxiety disorders. To investigate the psychophysiological and neural correlates of fear conditioning and extinction recall in anxiety disorders and to document how these features differ as a function of multiple diagnoses or anxiety severity. This investigation was a cross-sectional, case-control, functional magnetic resonance imaging study at an academic medical center. Participants were healthy controls and individuals with at least 1 of the following anxiety disorders: generalized anxiety disorder, social anxiety disorder, specific phobia, and panic disorder. The study dates were between March 2013 and May 2015. Two-day fear conditioning and extinction paradigm. Skin conductance responses, blood oxygenation level-dependent responses, trait anxiety scores from the State Trait Anxiety Inventory-Trait Form, and functional connectivity. This study included 21 healthy controls (10 women) and 61 individuals with anxiety disorders (36 women). P values reported for the neuroimaging results are all familywise error corrected. Skin conductance responses during extinction recall did not differ between individuals with anxiety disorders and healthy controls (ηp2 = 0.001, P = .79), where ηp2 is partial eta squared. The anxiety group had lower activation of the ventromedial prefrontal cortex (vmPFC) during extinction recall (ηp2 = 0.178, P = .02). A similar hypoactive pattern was found during early conditioning (ηp2 = 0.106, P = .009). The vmPFC hypoactivation

  11. Neural activation to monetary reward is associated with amphetamine reward sensitivity.

    Science.gov (United States)

    Crane, Natania A; Gorka, Stephanie M; Weafer, Jessica; Langenecker, Scott A; de Wit, Harriet; Phan, K Luan

    2018-03-14

    One known risk factor for drug use and abuse is sensitivity to rewarding effects of drugs. It is not known whether this risk factor extends to sensitivity to non-drug rewards. In this study with healthy young adults, we examined the association between sensitivity to the subjective rewarding effects of amphetamine and a neural indicator of anticipation of monetary reward. We hypothesized that greater euphorigenic response to amphetamine would be associated with greater neural activation to anticipation of monetary reward (Win > Loss). Healthy participants (N = 61) completed four laboratory sessions in which they received d-amphetamine (20 mg) and placebo in alternating order, providing self-report measures of euphoria and stimulation at regular intervals. At a separate visit 1-3 weeks later, participants completed the guessing reward task (GRT) during fMRI in a drug-free state. Participants reporting greater euphoria after amphetamine also exhibited greater neural activation during monetary reward anticipation in mesolimbic reward regions, including the bilateral caudate and putamen. This is the first study to show a relationship between neural correlates of monetary reward and sensitivity to the subjective rewarding effects of amphetamine in humans. These findings support growing evidence that sensitivity to reward in general is a risk factor for drug use and abuse, and suggest that sensitivity of drug-induced euphoria may reflect a general sensitivity to rewards. This may be an index of vulnerability for drug use or abuse.

  12. Neural activities during affective processing in people with Alzheimer's disease

    NARCIS (Netherlands)

    Lee, Tatia M. C.; Sun, Delin; Leung, Mei-Kei; Chu, Leung-Wing; Keysers, Christian

    This study examined brain activities in people with Alzheimer's disease when viewing happy, sad, and fearful facial expressions of others. A functional magnetic resonance imaging and a voxel-based morphometry methodology together with a passive viewing of emotional faces paradigm were employed to

  13. Concurrent multitasking : From neural activity to human cognition

    NARCIS (Netherlands)

    Nijboer, Menno

    2016-01-01

    Multitasking has become an important part of our daily lives. This delicate juggling act between several activities occurs when people drive, when they are working, and even when they should be paying attention in the classroom. While multitasking is typically considered as something to avoid, there

  14. Dampened neural activity and abolition of epileptic-like activity in cortical slices by active ingredients of spices

    Science.gov (United States)

    Pezzoli, Maurizio; Elhamdani, Abdeladim; Camacho, Susana; Meystre, Julie; González, Stephanie Michlig; le Coutre, Johannes; Markram, Henry

    2014-01-01

    Active ingredients of spices (AIS) modulate neural response in the peripheral nervous system, mainly through interaction with TRP channel/receptors. The present study explores how different AIS modulate neural response in layer 5 pyramidal neurons of S1 neocortex. The AIS tested are agonists of TRPV1/3, TRPM8 or TRPA1. Our results demonstrate that capsaicin, eugenol, menthol, icilin and cinnamaldehyde, but not AITC dampen the generation of APs in a voltage- and time-dependent manner. This effect was further tested for the TRPM8 ligands in the presence of a TRPM8 blocker (BCTC) and on TRPM8 KO mice. The observable effect was still present. Finally, the influence of the selected AIS was tested on in vitro gabazine-induced seizures. Results coincide with the above observations: except for cinnamaldehyde, the same AIS were able to reduce the number, duration of the AP bursts and increase the concentration of gabazine needed to elicit them. In conclusion, our data suggests that some of these AIS can modulate glutamatergic neurons in the brain through a TRP-independent pathway, regardless of whether the neurons are stimulated intracellularly or by hyperactive microcircuitry. PMID:25359561

  15. Model Integrating Fuzzy Argument with Neural Network Enhancing the Performance of Active Queue Management

    Directory of Open Access Journals (Sweden)

    Nguyen Kim Quoc

    2015-08-01

    Full Text Available The bottleneck control by active queue management mechanisms at network nodes is essential. In recent years, some researchers have used fuzzy argument to improve the active queue management mechanisms to enhance the network performance. However, the projects using the fuzzy controller depend heavily on professionals and their parameters cannot be updated according to changes in the network, so the effectiveness of this mechanism is not high. Therefore, we propose a model combining the fuzzy controller with neural network (FNN to overcome the limitations above. Results of the training of the neural networks will find the optimal parameters for the adaptive fuzzy controller well to changes of the network. This improves the operational efficiency of the active queue management mechanisms at network nodes.

  16. PHYSIOLOGIC PATTERNS OF SLEEP ON EEG, MASKING OF EPILEPTIFORM ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. Yu. Glukhova

    2013-01-01

    Full Text Available Physiologic patterns of sleep on EEG can sometimes be similar to epileptiform activity and even to the EEG pattern of epileptic seizures, but they have no connection to epilepsy and their incorrect interpretation may lead to overdiagnosis of epilepsy. These sleep patterns include vertex transients, K-complexes, hypnagogic hypersynchrony, 14 and 6 Hz positive bursts, wicket-potentials, etc. The main distinctive features of acute physiological phenomena of sleep unlike epileptiform activity are stereotyped, monomorphic morphology of waves, which frequently has rhythmic, arcuate pattern, often with change of lateralization, mainly dominated in the first stages of sleep (N1-N2, with their reduction in the deeper stages and transition to delta sleep (N3. The correct interpretation of physiological sharp-wave phenomena of sleep on EEG requires considerable training and experience of the physician. Our review includes a variety of physiological sleep patterns, which can mimic epileptiform activity on EEG, their criteria of diagnostic with demonstration of own illustrations of EEG.

  17. Knowledge-Based Trajectory Error Pattern Method Applied to an Active Force Control Scheme

    Directory of Open Access Journals (Sweden)

    Endra Pitowarno, Musa Mailah, Hishamuddin Jamaluddin

    2012-08-01

    Full Text Available The active force control (AFC method is known as a robust control scheme that dramatically enhances the performance of a robot arm particularly in compensating the disturbance effects. The main task of the AFC method is to estimate the inertia matrix in the feedback loop to provide the correct (motor torque required to cancel out these disturbances. Several intelligent control schemes have already been introduced to enhance the estimation methods of acquiring the inertia matrix such as those using neural network, iterative learning and fuzzy logic. In this paper, we propose an alternative scheme called Knowledge-Based Trajectory Error Pattern Method (KBTEPM to suppress the trajectory track error of the AFC scheme. The knowledge is developed from the trajectory track error characteristic based on the previous experimental results of the crude approximation method. It produces a unique, new and desirable error pattern when a trajectory command is forced. An experimental study was performed using simulation work on the AFC scheme with KBTEPM applied to a two-planar manipulator in which a set of rule-based algorithm is derived. A number of previous AFC schemes are also reviewed as benchmark. The simulation results show that the AFC-KBTEPM scheme successfully reduces the trajectory track error significantly even in the presence of the introduced disturbances.Key Words:  Active force control, estimated inertia matrix, robot arm, trajectory error pattern, knowledge-based.

  18. What are the odds? The neural correlates of active choice during gambling

    Directory of Open Access Journals (Sweden)

    Bettina eStuder

    2012-04-01

    Full Text Available Gambling is a widespread recreational activity and requires pitting the values of potential wins and losses against their probability of occurrence. Neuropsychological research showed that betting behavior on laboratory gambling tasks is highly sensitive to focal lesions to the ventromedial prefrontal cortex (vmPFC and insula. In the current study, we assessed the neural basis of betting choices in healthy participants, using functional magnetic resonance imaging of the Roulette Betting Task. In half of the trials participants actively chose their bets; in the other half the computer dictated the bet size. Our results highlight the impact of volitional choice upon the neural substrates of gambling: Neural activity in a distributed network - including key structures of the reward circuitry (midbrain, striatum - was higher during active compared to computer-dictated bet selection. In line with neuropsychological data, the anterior insula and vmPFC were more activated during self-directed bet selection, and responses in these areas were differentially modulated by the odds of winning in the two choice conditions. In addition, responses in the vmPFC and ventral striatum were modulated by the bet size. Convergent with electrophysiological research in macaques, our results further implicate the inferior parietal cortex (IPC in the processing of the likelihood of potential outcomes: Neural responses in the IPC bilaterally reflected the probability of winning during bet selection. Moreover, the IPC was particularly sensitive to the odds of winning in the active choice condition, where this information was used to guide bet selection. Our results indicate a neglected role of the IPC in human decision-making under risk and help to integrate neuropsychological data of risk-taking following vmPFC and insula damage with models of choice derived from human neuroimaging and monkey electrophysiology.

  19. Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex.

    Science.gov (United States)

    Kok, Peter; de Lange, Floris P

    2014-07-07

    An essential part of visual perception is the grouping of local elements (such as edges and lines) into coherent shapes. Previous studies have shown that this grouping process modulates neural activity in the primary visual cortex (V1) that is signaling the local elements [1-4]. However, the nature of this modulation is controversial. Some studies find that shape perception reduces neural activity in V1 [2, 5, 6], while others report increased V1 activity during shape perception [1, 3, 4, 7-10]. Neurocomputational theories that cast perception as a generative process [11-13] propose that feedback connections carry predictions (i.e., the generative model), while feedforward connections signal the mismatch between top-down predictions and bottom-up inputs. Within this framework, the effect of feedback on early visual cortex may be either enhancing or suppressive, depending on whether the feedback signal is met by congruent bottom-up input. Here, we tested this hypothesis by quantifying the spatial profile of neural activity in V1 during the perception of illusory shapes using population receptive field mapping. We find that shape perception concurrently increases neural activity in regions of V1 that have a receptive field on the shape but do not receive bottom-up input and suppresses activity in regions of V1 that receive bottom-up input that is predicted by the shape. These effects were not modulated by task requirements. Together, these findings suggest that shape perception changes lower-order sensory representations in a highly specific and automatic manner, in line with theories that cast perception in terms of hierarchical generative models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Cognitive methodology for forecasting oil and gas industry using pattern-based neural information technologies

    Science.gov (United States)

    Gafurov, O.; Gafurov, D.; Syryamkin, V.

    2018-05-01

    The paper analyses a field of computer science formed at the intersection of such areas of natural science as artificial intelligence, mathematical statistics, and database theory, which is referred to as "Data Mining" (discovery of knowledge in data). The theory of neural networks is applied along with classical methods of mathematical analysis and numerical simulation. The paper describes the technique protected by the patent of the Russian Federation for the invention “A Method for Determining Location of Production Wells during the Development of Hydrocarbon Fields” [1–3] and implemented using the geoinformation system NeuroInformGeo. There are no analogues in domestic and international practice. The paper gives an example of comparing the forecast of the oil reservoir quality made by the geophysicist interpreter using standard methods and the forecast of the oil reservoir quality made using this technology. The technical result achieved shows the increase of efficiency, effectiveness, and ecological compatibility of development of mineral deposits and discovery of a new oil deposit.

  2. Adhesion modification of neural stem cells induced by nanoscale ripple patterns

    International Nuclear Information System (INIS)

    Pedraz, P; Casado, S; Rodriguez, V; Ayuso-Sacido, A; Gnecco, E; Giordano, M C; Mongeot, F Buatier de

    2016-01-01

    We have studied the influence of anisotropic nanopatterns (ripples) on the adhesion and morphology of mouse neural stem cells (C17.2) on glass substrates using cell viability assay, optical microscopy and atomic force microscopy. The ripples were produced by defocused ion beam sputtering with inert Ar ions, which physically remove atoms from the surface at the energy of 800 eV. The ripple periodicity (∼200 nm) is comparable to the thickness of the cytoplasmatic microspikes (filopodia) which link the stem cells to the substrate. All methods show that the cell adhesion is significantly lowered compared to the same type of cells on flat glass surfaces. Furthermore, the AFM analysis reveals that the filopodia tend to be trapped parallel or perpendicular to the ripples, which limits the spreading of the stem cell on the rippled substrate. This opens the perspective of controlling the micro-adhesion of stem cells and the orientation of their filopodia by tuning the anisotropic substrate morphology without chemical reactions occurring at the surface. (paper)

  3. Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors.

    Science.gov (United States)

    Han, Bing; Taha, Tarek M

    2010-04-01

    There is currently a strong push in the research community to develop biological scale implementations of neuron based vision models. Systems at this scale are computationally demanding and generally utilize more accurate neuron models, such as the Izhikevich and the Hodgkin-Huxley models, in favor of the more popular integrate and fire model. We examine the feasibility of using graphics processing units (GPUs) to accelerate a spiking neural network based character recognition network to enable such large scale systems. Two versions of the network utilizing the Izhikevich and Hodgkin-Huxley models are implemented. Three NVIDIA general-purpose (GP) GPU platforms are examined, including the GeForce 9800 GX2, the Tesla C1060, and the Tesla S1070. Our results show that the GPGPUs can provide significant speedup over conventional processors. In particular, the fastest GPGPU utilized, the Tesla S1070, provided a speedup of 5.6 and 84.4 over highly optimized implementations on the fastest central processing unit (CPU) tested, a quadcore 2.67 GHz Xeon processor, for the Izhikevich and the Hodgkin-Huxley models, respectively. The CPU implementation utilized all four cores and the vector data parallelism offered by the processor. The results indicate that GPUs are well suited for this application domain.

  4. A Cutting Pattern Recognition Method for Shearers Based on Improved Ensemble Empirical Mode Decomposition and a Probabilistic Neural Network

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2015-10-01

    Full Text Available In order to guarantee the stable operation of shearers and promote construction of an automatic coal mining working face, an online cutting pattern recognition method with high accuracy and speed based on Improved Ensemble Empirical Mode Decomposition (IEEMD and Probabilistic Neural Network (PNN is proposed. An industrial microphone is installed on the shearer and the cutting sound is collected as the recognition criterion to overcome the disadvantages of giant size, contact measurement and low identification rate of traditional detectors. To avoid end-point effects and get rid of undesirable intrinsic mode function (IMF components in the initial signal, IEEMD is conducted on the sound. The end-point continuation based on the practical storage data is performed first to overcome the end-point effect. Next the average correlation coefficient, which is calculated by the correlation of the first IMF with others, is introduced to select essential IMFs. Then the energy and standard deviation of the reminder IMFs are extracted as features and PNN is applied to classify the cutting patterns. Finally, a simulation example, with an accuracy of 92.67%, and an industrial application prove the efficiency and correctness of the proposed method.

  5. Characteristics of diurnal pattern of global photosynthetically-active ...

    African Journals Online (AJOL)

    A two year data (September 1992 August 1994) on photosynhetically-active radiation (PAR) measured at Ilorin (Lat.: 832´N. Long.:434´E) using LI-190SA quantum sensor are analysed both on daily and monthly mean diurnal bases. This was done with the aim of characterizing the diurnal pattern of this radiation at this ...

  6. Thoracic posture, shoulder muscle activation patterns and isokinetic ...

    African Journals Online (AJOL)

    Background. Shoulder injuries are the most severe injuries in rugby union players, accounting for almost 20% of injuries related to the sport and resulting in lost playing hours. Objective. To profile the thoracic posture, scapular muscle activation patterns and rotator cuff muscle isokinetic strength of semi-professional

  7. Physical Activity and Pattern of Blood Pressure in Postmenopausal ...

    African Journals Online (AJOL)

    Background: Hormonal changes during menopause have been attributed to hypertension-a common public health concern. This study investigated physical activity (PA) and pattern of blood pressure (BP) in postmenopausal women newly diagnosed with hypertension and referred for treatment at the medicine outpatient ...

  8. Merlin : microsimulation system for predicting leisure activity-travel patterns

    NARCIS (Netherlands)

    Middelkoop, van M.; Borgers, A.W.J.; Timmermans, H.J.P.

    2004-01-01

    Development of a model of annual activity-travel patterns of leisure and vacation travel is reported. The simulation system, called Merlin, is a hybrid model system consisting of discrete choice models and rule-based models. It predicts the annual number of day trips and vacations, and the profile

  9. Physical Activity Patterns among U.S. Adults with Disabilities

    Science.gov (United States)

    Chiu, Chung-Yi; An, Ruopeng

    2016-01-01

    Purpose: To characterize physical activity patterns among people with disabilities using data from a nationally representative health survey. Method: Individual-level data came from the Behavioral Risk Factor Surveillance System 2011 survey. Pearson's chi-squared tests were conducted to assess the difference in the proportion distribution of…

  10. Differences in neural activity when processing emotional arousal and valence in autism spectrum disorders.

    Science.gov (United States)

    Tseng, Angela; Wang, Zhishun; Huo, Yuankai; Goh, Suzanne; Russell, James A; Peterson, Bradley S

    2016-02-01

    Individuals with autism spectrum disorders (ASD) often have difficulty recognizing and interpreting facial expressions of emotion, which may impair their ability to navigate and communicate successfully in their social, interpersonal environments. Characterizing specific differences between individuals with ASD and their typically developing (TD) counterparts in the neural activity subserving their experience of emotional faces may provide distinct targets for ASD interventions. Thus we used functional magnetic resonance imaging (fMRI) and a parametric experimental design to identify brain regions in which neural activity correlated with ratings of arousal and valence for a broad range of emotional faces. Participants (51 ASD, 84 TD) were group-matched by age, sex, IQ, race, and socioeconomic status. Using task-related change in blood-oxygen-level-dependent (BOLD) fMRI signal as a measure, and covarying for age, sex, FSIQ, and ADOS scores, we detected significant differences across diagnostic groups in the neural activity subserving the dimension of arousal but not valence. BOLD-signal in TD participants correlated inversely with ratings of arousal in regions associated primarily with attentional functions, whereas BOLD-signal in ASD participants correlated positively with arousal ratings in regions commonly associated with impulse control and default-mode activity. Only minor differences were detected between groups in the BOLD signal correlates of valence ratings. Our findings provide unique insight into the emotional experiences of individuals with ASD. Although behavioral responses to face-stimuli were comparable across diagnostic groups, the corresponding neural activity for our ASD and TD groups differed dramatically. The near absence of group differences for valence correlates and the presence of strong group differences for arousal correlates suggest that individuals with ASD are not atypical in all aspects of emotion-processing. Studying these similarities

  11. Relation of obesity to neural activation in response to food commercials.

    Science.gov (United States)

    Gearhardt, Ashley N; Yokum, Sonja; Stice, Eric; Harris, Jennifer L; Brownell, Kelly D

    2014-07-01

    Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    Science.gov (United States)

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  13. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  14. Patterns of EEG Activity in Individuals with Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Zhukova M.A.,

    2016-10-01

    Full Text Available The article reviews most recent findings on neural activity in children and adults with autism spectrum disorders (ASD. Most of the studies demonstrate decreased connectivity in cortical regions, excitatory/inhibitory imbalance and atypical processing of language in people with ASD. It is argued that difficulties in semantic integration are connected to selective insensitivity to language, which is manifested in atypical N400 ERP component. In the article we analyze the data suggesting a strong relationship between ASD and epilepsy and argue that the comorbidity is more prevalent among individuals who have cognitive dysfunction. The EEG profile of people with ASD suggests U-shaped alterations with excess in high- and low-frequency EEG bands. We critically analyze the “broken mirror” hypothesis of ASD and demonstrate findings which challenge this theory.

  15. Deep neural nets as a method for quantitative structure-activity relationships.

    Science.gov (United States)

    Ma, Junshui; Sheridan, Robert P; Liaw, Andy; Dahl, George E; Svetnik, Vladimir

    2015-02-23

    Neural networks were widely used for quantitative structure-activity relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on large problems, difficult to train, prone to overfitting, etc.), they were superseded by more robust methods like support vector machine (SVM) and random forest (RF), which arose in the early 2000s. The last 10 years has witnessed a revival of neural networks in the machine learning community thanks to new methods for preventing overfitting, more efficient training algorithms, and advancements in computer hardware. In particular, deep neural nets (DNNs), i.e. neural nets with more than one hidden layer, have found great successes in many applications, such as computer vision and natural language processing. Here we show that DNNs can routinely make better prospective predictions than RF on a set of large diverse QSAR data sets that are taken from Merck's drug discovery effort. The number of adjustable parameters needed for DNNs is fairly large, but our results show that it is not necessary to optimize them for individual data sets, and a single set of recommended parameters can achieve better performance than RF for most of the data sets we studied. The usefulness of the parameters is demonstrated on additional data sets not used in the calibration. Although training DNNs is still computationally intensive, using graphical processing units (GPUs) can make this issue manageable.

  16. Neural network controller for Active Demand-Side Management with PV energy in the residential sector

    International Nuclear Information System (INIS)

    Matallanas, E.; Castillo-Cagigal, M.; Gutiérrez, A.; Monasterio-Huelin, F.; Caamaño-Martín, E.; Masa, D.; Jiménez-Leube, J.

    2012-01-01

    Highlights: ► We have developed a neural controller for Active Demand-Side Management. ► The controller consists of Multilayer Perceptrons evolved with a genetic algorithm. ► The architecture of the controller is distributed and modular. ► The simulations show that the electrical local behavior improves. ► Active Demand-Side Management helps users to control his energy behaviour. -- Abstract: In this paper, we describe the development of a control system for Demand-Side Management in the residential sector with Distributed Generation. The electrical system under study incorporates local PV energy generation, an electricity storage system, connection to the grid and a home automation system. The distributed control system is composed of two modules: a scheduler and a coordinator, both implemented with neural networks. The control system enhances the local energy performance, scheduling the tasks demanded by the user and maximizing the use of local generation.

  17. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning.

    Science.gov (United States)

    Kim, Sang Hee; Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan

    2015-09-01

    In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks

    Science.gov (United States)

    2015-12-31

    classification of liquid–vapor structures into flow patterns is useful for predicting heat transfer rates and, ultimately, system performance. Most flow and...Here, ~x represents the spa- tial variables, x and y, and t is time. This normalization assigns εð~x; tÞ to be zero for only vapor (εg) and one for...tube surface [17,22]. As in stratified wavy flow, interfacial waves were also present in stratified wavy transitional flow. The waves were more fre

  19. Listening to sound patterns as a dynamic activity

    Science.gov (United States)

    Jones, Mari Riess

    2003-04-01

    The act of listening to a series of sounds created by some natural event is described as involving an entrainmentlike process that transpires in real time. Some aspects of this dynamic process are suggested. In particular, real-time attending is described in terms of an adaptive synchronization activity that permits a listener to target attending energy to forthcoming elements within an acoustical pattern (e.g., music, speech, etc.). Also described are several experiments that illustrate features of this approach as it applies to attending to musiclike patterns. These involve listeners' responses to changes in either the timing or the pitch structure (or both) of various acoustical sequences.

  20. Activity Patterns and Pollution Exposure. A Case Study of Melbourne

    International Nuclear Information System (INIS)

    Marquez, L.; Smith, N.; Trinidad, G.; Guo, J.

    2001-01-01

    In recent times there has been increasing interest in modelling policies to limit impacts of air pollution due to motor vehicles. Impacts of air pollution on human health and comfort depend on the relationship between the distribution of pollutants and the spatial distribution of the urban population. As emissions, weather conditions and the location of the population vary with time of day, day of month and season of the year, the problem is complex. Travel demand models with activity-based approaches and a focus on the overall structure of activity/travel relations, not only spatially, but temporally can make a valuable contribution. They are often used to estimate emissions due to the travel patterns of city populations but may equally be used to provide distributions of urban populations during the day. A case study for Melbourne, Australia demonstrates the use of activity data in the estimation of population exposure. Additionally the study shows some marked differences in activity between seasons and even greater the differences in effect of that activity on exposure to air pollution. Numbers of cities will have seasonal pollutant patterns similar to Melbourne and others will benefit from exploring such patterns

  1. Distinct Neural Activity Associated with Focused-Attention Meditation and Loving-Kindness Meditation

    Science.gov (United States)

    Lee, Tatia M. C.; Leung, Mei-Kei; Hou, Wai-Kai; Tang, Joey C. Y.; Yin, Jing; So, Kwok-Fai; Lee, Chack-Fan; Chan, Chetwyn C. H.

    2012-01-01

    This study examined the dissociable neural effects of ānāpānasati (focused-attention meditation, FAM) and mettā (loving-kindness meditation, LKM) on BOLD signals during cognitive (continuous performance test, CPT) and affective (emotion-processing task, EPT, in which participants viewed affective pictures) processing. Twenty-two male Chinese expert meditators (11 FAM experts, 11 LKM experts) and 22 male Chinese novice meditators (11 FAM novices, 11 LKM novices) had their brain activity monitored by a 3T MRI scanner while performing the cognitive and affective tasks in both meditation and baseline states. We examined the interaction between state (meditation vs. baseline) and expertise (expert vs. novice) separately during LKM and FAM, using a conjunction approach to reveal common regions sensitive to the expert meditative state. Additionally, exclusive masking techniques revealed distinct interactions between state and group during LKM and FAM. Specifically, we demonstrated that the practice of FAM was associated with expertise-related behavioral improvements and neural activation differences in attention task performance. However, the effect of state LKM meditation did not carry over to attention task performance. On the other hand, both FAM and LKM practice appeared to affect the neural responses to affective pictures. For viewing sad faces, the regions activated for FAM practitioners were consistent with attention-related processing; whereas responses of LKM experts to sad pictures were more in line with differentiating emotional contagion from compassion/emotional regulation processes. Our findings provide the first report of distinct neural activity associated with forms of meditation during sustained attention and emotion processing. PMID:22905090

  2. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.

    2014-01-01

    Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014

  3. Intranasal oxytocin reduces social perception in women: Neural activation and individual variation.

    Science.gov (United States)

    Hecht, Erin E; Robins, Diana L; Gautam, Pritam; King, Tricia Z

    2017-02-15

    Most intranasal oxytocin research to date has been carried out in men, but recent studies indicate that females' responses can differ substantially from males'. This randomized, double-blind, placebo-controlled study involved an all-female sample of 28 women not using hormonal contraception. Participants viewed animations of geometric shapes depicting either random movement or social interactions such as playing, chasing, or fighting. Probe questions asked whether any shapes were "friends" or "not friends." Social videos were preceded by cues to attend to either social relationships or physical size changes. All subjects received intranasal placebo spray at scan 1. While the experimenter was not blinded to nasal spray contents at Scan 1, the participants were. Scan 2 followed a randomized, double-blind design. At scan 2, half received a second placebo dose while the other half received 24 IU of intranasal oxytocin. We measured neural responses to these animations at baseline, as well as the change in neural activity induced by oxytocin. Oxytocin reduced activation in early visual cortex and dorsal-stream motion processing regions for the social > size contrast, indicating reduced activity related to social attention. Oxytocin also reduced endorsements that shapes were "friends" or "not friends," and this significantly correlated with reduction in neural activation. Furthermore, participants who perceived fewer social relationships at baseline were more likely to show oxytocin-induced increases in a broad network of regions involved in social perception and social cognition, suggesting that lower social processing at baseline may predict more positive neural responses to oxytocin. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Optimizing human activity patterns using global sensitivity analysis.

    Science.gov (United States)

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  5. Cortisol patterns are associated with T cell activation in HIV.

    Directory of Open Access Journals (Sweden)

    Sarah Patterson

    Full Text Available The level of T cell activation in untreated HIV disease is strongly and independently associated with risk of immunologic and clinical progression. The factors that influence the level of activation, however, are not fully defined. Since endogenous glucocorticoids are important in regulating inflammation, we sought to determine whether less optimal diurnal cortisol patterns are associated with greater T cell activation.We studied 128 HIV-infected adults who were not on treatment and had a CD4(+ T cell count above 250 cells/µl. We assessed T cell activation by CD38 expression using flow cytometry, and diurnal cortisol was assessed with salivary measurements.Lower waking cortisol levels correlated with greater T cell immune activation, measured by CD38 mean fluorescent intensity, on CD4(+ T cells (r = -0.26, p = 0.006. Participants with lower waking cortisol also showed a trend toward greater activation on CD8(+ T cells (r = -0.17, p = 0.08. A greater diurnal decline in cortisol, usually considered a healthy pattern, correlated with less CD4(+ (r = 0.24, p = 0.018 and CD8(+ (r = 0.24, p = 0.017 activation.These data suggest that the hypothalamic-pituitary-adrenal (HPA axis contributes to the regulation of T cell activation in HIV. This may represent an important pathway through which psychological states and the HPA axis influence progression of HIV.

  6. SME purchasing activity patterns delphi study : Recognizing patterns in the way Small and Medium Enterprises (SMEs) organize their procurement activities

    NARCIS (Netherlands)

    Vegter, Geert

    2015-01-01

    This survey is about recognizing patterns in the way Small and Medium Enterprises (SMEs) organize their procurement activities. The scope of the survey is limited to the key commodities of the SME. A key commodity is defined as the purchased product or service group which is essential for realizing

  7. Psychopathic traits linked to alterations in neural activity during personality judgments of self and others

    Directory of Open Access Journals (Sweden)

    Philip Deming

    Full Text Available Psychopathic individuals are notorious for their grandiose sense of self-worth and disregard for the welfare of others. One potential psychological mechanism underlying these traits is the relative consideration of “self” versus “others”. Here we used task-based functional magnetic resonance imaging (fMRI to identify neural responses during personality trait judgments about oneself and a familiar other in a sample of adult male incarcerated offenders (n = 57. Neural activity was regressed on two clusters of psychopathic traits: Factor 1 (e.g., egocentricity and lack of empathy and Factor 2 (e.g., impulsivity and irresponsibility. Contrary to our hypotheses, Factor 1 scores were not significantly related to neural activity during self- or other-judgments. However, Factor 2 traits were associated with diminished activation to self-judgments, in relation to other-judgments, in bilateral posterior cingulate cortex and right temporoparietal junction. These findings highlight cortical regions associated with a dimension of social-affective cognition that may underlie psychopathic individuals' impulsive traits. Keywords: Psychopathy, fMRI, Social cognition, Self-referential processing, Emotion, Psychopathology

  8. Assessing neural activity related to decision-making through flexible odds ratio curves and their derivatives.

    Science.gov (United States)

    Roca-Pardiñas, Javier; Cadarso-Suárez, Carmen; Pardo-Vazquez, Jose L; Leboran, Victor; Molenberghs, Geert; Faes, Christel; Acuña, Carlos

    2011-06-30

    It is well established that neural activity is stochastically modulated over time. Therefore, direct comparisons across experimental conditions and determination of change points or maximum firing rates are not straightforward. This study sought to compare temporal firing probability curves that may vary across groups defined by different experimental conditions. Odds-ratio (OR) curves were used as a measure of comparison, and the main goal was to provide a global test to detect significant differences of such curves through the study of their derivatives. An algorithm is proposed that enables ORs based on generalized additive models, including factor-by-curve-type interactions to be flexibly estimated. Bootstrap methods were used to draw inferences from the derivatives curves, and binning techniques were applied to speed up computation in the estimation and testing processes. A simulation study was conducted to assess the validity of these bootstrap-based tests. This methodology was applied to study premotor ventral cortex neural activity associated with decision-making. The proposed statistical procedures proved very useful in revealing the neural activity correlates of decision-making in a visual discrimination task. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Psychopathic traits linked to alterations in neural activity during personality judgments of self and others.

    Science.gov (United States)

    Deming, Philip; Philippi, Carissa L; Wolf, Richard C; Dargis, Monika; Kiehl, Kent A; Koenigs, Michael

    2018-01-01

    Psychopathic individuals are notorious for their grandiose sense of self-worth and disregard for the welfare of others. One potential psychological mechanism underlying these traits is the relative consideration of "self" versus "others". Here we used task-based functional magnetic resonance imaging (fMRI) to identify neural responses during personality trait judgments about oneself and a familiar other in a sample of adult male incarcerated offenders ( n  = 57). Neural activity was regressed on two clusters of psychopathic traits: Factor 1 (e.g., egocentricity and lack of empathy) and Factor 2 (e.g., impulsivity and irresponsibility). Contrary to our hypotheses, Factor 1 scores were not significantly related to neural activity during self- or other-judgments. However, Factor 2 traits were associated with diminished activation to self-judgments, in relation to other-judgments, in bilateral posterior cingulate cortex and right temporoparietal junction. These findings highlight cortical regions associated with a dimension of social-affective cognition that may underlie psychopathic individuals' impulsive traits.

  10. Astrocyte glycogen as an emergency fuel under conditions of glucose deprivation or intense neural activity.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2015-02-01

    Energy metabolism in the brain is a complex process that is incompletely understood. Although glucose is agreed as the main energy support of the brain, the role of glucose is not clear, which has led to controversies that can be summarized as follows: the fate of glucose, once it enters the brain is unclear. It is not known the form in which glucose enters the cells (neurons and glia) within the brain, nor the degree of metabolic shuttling of glucose derived metabolites between cells, with a key limitation in our knowledge being the extent of oxidative metabolism, and how increased tissue activity alters this. Glycogen is present within the brain and is derived from glucose. Glycogen is stored in astrocytes and acts to provide short-term delivery of substrates to neural elements, although it may also contribute an important component to astrocyte metabolism. The roles played by glycogen awaits further study, but to date its most important role is in supporting neural elements during increased firing activity, where signaling molecules, proposed to be elevated interstitial K(+), indicative of elevated neural firing rates, activate glycogen phosphorylase leading to increased production of glycogen derived substrate.

  11. Autogenic training alters cerebral activation patterns in fMRI.

    Science.gov (United States)

    Schlamann, Marc; Naglatzki, Ryan; de Greiff, Armin; Forsting, Michael; Gizewski, Elke R

    2010-10-01

    Cerebral activation patterns during the first three auto-suggestive phases of autogenic training (AT) were investigated in relation to perceived experiences. Nineteen volunteers trained in AT and 19 controls were studied with fMRI during the first steps of autogenic training. FMRI revealed activation of the left postcentral areas during AT in those with experience in AT, which also correlated with the level of AT experience. Activation of prefrontal and insular cortex was significantly higher in the group with experience in AT while insular activation was correlated with number years of simple relaxation exercises. Specific activation in subjects experienced in AT may represent a training effect. Furthermore, the correlation of insular activation suggests that these subjects are different from untrained subjects in emotional processing or self-awareness.

  12. Physical activity patterns of youth with Down syndrome.

    Science.gov (United States)

    Esposito, Phil E; MacDonald, Megan; Hornyak, Joseph E; Ulrich, Dale A

    2012-04-01

    The purpose of this study was to examine the physical activity patterns of children with Down syndrome. A cross-sectional approach and accelerometry were used to measure the time children with Down syndrome (N = 104) spent in sedentary, light, and moderate-to-vigorous physical activity. Results indicated that adolescents from ages 14 to 15 years were the most sedentary and spent the least amount of time in light and moderate-to-vigorous physical activity. A general trend of decreasing physical activity as children increase in age was found. This trend is similar to that found among typically developing youth. Participants in this study were found to spend a majority of their day engaged in sedentary activities. Results indicate that most participants were not accumulating the recommended 60 minutes of moderate or vigorous physical activity.

  13. A direct comparison of appetitive and aversive anticipation: Overlapping and distinct neural activation.

    Science.gov (United States)

    Sege, Christopher T; Bradley, Margaret M; Weymar, Mathias; Lang, Peter J

    2017-05-30

    fMRI studies of reward find increased neural activity in ventral striatum and medial prefrontal cortex (mPFC), whereas other regions, including the dorsolateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC), and anterior insula, are activated when anticipating aversive exposure. Although these data suggest differential activation during anticipation of pleasant or of unpleasant exposure, they also arise in the context of different paradigms (e.g., preparation for reward vs. threat of shock) and participants. To determine overlapping and unique regions active during emotional anticipation, we compared neural activity during anticipation of pleasant or unpleasant exposure in the same participants. Cues signalled the upcoming presentation of erotic/romantic, violent, or everyday pictures while BOLD activity during the 9-s anticipatory period was measured using fMRI. Ventral striatum and a ventral mPFC subregion were activated when anticipating pleasant, but not unpleasant or neutral, pictures, whereas activation in other regions was enhanced when anticipating appetitive or aversive scenes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Soman poisoning increases neural progenitor proliferation and induces long-term glial activation in mouse brain

    International Nuclear Information System (INIS)

    Collombet, Jean-Marc; Four, Elise; Bernabe, Denis; Masqueliez, Catherine; Burckhart, Marie-France; Baille, Valerie; Baubichon, Dominique; Lallement, Guy

    2005-01-01

    To date, only short-term glial reaction has been extensively studied following soman or other warfare neurotoxicant poisoning. In a context of cell therapy by neural progenitor engraftment to repair brain damage, the lo