WorldWideScience

Sample records for network text analysis

  1. A Network Text Analysis of David Ayer’s Fury

    Directory of Open Access Journals (Sweden)

    Starling David Hunter

    2015-12-01

    Full Text Available Network Text Analysis (NTA involves the creation of networks of words and/or concepts from linguistic data. Its key insight is that the position of words and concepts in a text network provides vital clues to the central and underlying themes of the text as a whole. Recent research has relied on inductive approaches to identify these themes. In this study we demonstrate a deductive approach that we apply to the screenplay of the 2014 World War II-era film Fury. Specifically, we first use genre expectations theory to establish prior expectations as to the key themes associated with war films. We then empirically test whether words and concepts associated with the most influentially-positioned nodes are consistent with themes common to the war-film genre. As predicted, we find that words and concepts associated with the least constrained nodes in the text network were significantly more likely to be associated with the war, action, and biography genres and significantly less likely to be associated with the mystery, science-fiction, fantasy, and film-noir genres. Keywords: content analysis, text analysis, network text analysis, semantic network analysis, film studies, screenplay, screenwriting, war movies, World War II, tanks

  2. Center of attention: A network text analysis of American Sniper

    Directory of Open Access Journals (Sweden)

    Starling Hunter

    2016-06-01

    Full Text Available Network Text Analysis (NTA is a term used to describe a variety of software - supported methods for modeling texts as networks of concepts. In this study we apply NTA to the screenplay of American Sniper, an Academy Award nominee for Best Adapted Screenplay in 2014. Specifically, we est ablish prior expectations as to the key themes associated with war films. We then empirically test whether words associated with the most influentially - positioned nodes in the network signify themes common to the war - film genre. As predicted, we find tha t words and concepts associated with the least constrained nodes in the text network were significantly more likely to be associated with the war genre and significantly less likely to be associated with genres to which the film did not belong.

  3. Full text clustering and relationship network analysis of biomedical publications.

    Directory of Open Access Journals (Sweden)

    Renchu Guan

    Full Text Available Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  4. Full text clustering and relationship network analysis of biomedical publications.

    Science.gov (United States)

    Guan, Renchu; Yang, Chen; Marchese, Maurizio; Liang, Yanchun; Shi, Xiaohu

    2014-01-01

    Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP) to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  5. Themes, syntax and other necessary steps in the network analysis of texts : A research paper

    NARCIS (Netherlands)

    Popping, R.

    1996-01-01

    Recent approaches to the qualitative analysis of texts afford visual depictions of words as networks. Yet network characteristics can also be quantified, enabling one to draw probabilistic inferences about a population of texts from a sample of texts-encoded-as-networks. This article describes three

  6. [Text mining, a method for computer-assisted analysis of scientific texts, demonstrated by an analysis of author networks].

    Science.gov (United States)

    Hahn, P; Dullweber, F; Unglaub, F; Spies, C K

    2014-06-01

    Searching for relevant publications is becoming more difficult with the increasing number of scientific articles. Text mining as a specific form of computer-based data analysis may be helpful in this context. Highlighting relations between authors and finding relevant publications concerning a specific subject using text analysis programs are illustrated graphically by 2 performed examples. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Text in social networking Web sites: A word frequency analysis of Live Spaces

    OpenAIRE

    Thelwall, Mike

    2008-01-01

    Social networking sites are owned by a wide section of society and seem to dominate Web usage. Despite much research into this phenomenon, little systematic data is available. This article partially fills this gap with a pilot text analysis of one social networking site, Live Spaces. The text in 3,071 English language Live Spaces sites was monitored daily for six months and word frequency statistics calculated and compared with those from the British National Corpus. The results confirmed the...

  8. Network analysis of named entity co-occurrences in written texts

    Science.gov (United States)

    Amancio, Diego Raphael

    2016-06-01

    The use of methods borrowed from statistics and physics to analyze written texts has allowed the discovery of unprecedent patterns of human behavior and cognition by establishing links between models features and language structure. While current models have been useful to unveil patterns via analysis of syntactical and semantical networks, only a few works have probed the relevance of investigating the structure arising from the relationship between relevant entities such as characters, locations and organizations. In this study, we represent entities appearing in the same context as a co-occurrence network, where links are established according to a null model based on random, shuffled texts. Computational simulations performed in novels revealed that the proposed model displays interesting topological features, such as the small world feature, characterized by high values of clustering coefficient. The effectiveness of our model was verified in a practical pattern recognition task in real networks. When compared with traditional word adjacency networks, our model displayed optimized results in identifying unknown references in texts. Because the proposed representation plays a complementary role in characterizing unstructured documents via topological analysis of named entities, we believe that it could be useful to improve the characterization of written texts (and related systems), specially if combined with traditional approaches based on statistical and deeper paradigms.

  9. [Semantic Network Analysis of Online News and Social Media Text Related to Comprehensive Nursing Care Service].

    Science.gov (United States)

    Kim, Minji; Choi, Mona; Youm, Yoosik

    2017-12-01

    As comprehensive nursing care service has gradually expanded, it has become necessary to explore the various opinions about it. The purpose of this study is to explore the large amount of text data regarding comprehensive nursing care service extracted from online news and social media by applying a semantic network analysis. The web pages of the Korean Nurses Association (KNA) News, major daily newspapers, and Twitter were crawled by searching the keyword 'comprehensive nursing care service' using Python. A morphological analysis was performed using KoNLPy. Nodes on a 'comprehensive nursing care service' cluster were selected, and frequency, edge weight, and degree centrality were calculated and visualized with Gephi for the semantic network. A total of 536 news pages and 464 tweets were analyzed. In the KNA News and major daily newspapers, 'nursing workforce' and 'nursing service' were highly rated in frequency, edge weight, and degree centrality. On Twitter, the most frequent nodes were 'National Health Insurance Service' and 'comprehensive nursing care service hospital.' The nodes with the highest edge weight were 'national health insurance,' 'wards without caregiver presence,' and 'caregiving costs.' 'National Health Insurance Service' was highest in degree centrality. This study provides an example of how to use atypical big data for a nursing issue through semantic network analysis to explore diverse perspectives surrounding the nursing community through various media sources. Applying semantic network analysis to online big data to gather information regarding various nursing issues would help to explore opinions for formulating and implementing nursing policies. © 2017 Korean Society of Nursing Science

  10. Word-Length Correlations and Memory in Large Texts: A Visibility Network Analysis

    Directory of Open Access Journals (Sweden)

    Lev Guzmán-Vargas

    2015-11-01

    Full Text Available We study the correlation properties of word lengths in large texts from 30 ebooks in the English language from the Gutenberg Project (www.gutenberg.org using the natural visibility graph method (NVG. NVG converts a time series into a graph and then analyzes its graph properties. First, the original sequence of words is transformed into a sequence of values containing the length of each word, and then, it is integrated. Next, we apply the NVG to the integrated word-length series and construct the network. We show that the degree distribution of that network follows a power law, P ( k ∼ k - γ , with two regimes, which are characterized by the exponents γ s ≈ 1 . 7 (at short degree scales and γ l ≈ 1 . 3 (at large degree scales. This suggests that word lengths are much more strongly correlated at large distances between words than at short distances between words. That finding is also supported by the detrended fluctuation analysis (DFA and recurrence time distribution. These results provide new information about the universal characteristics of the structure of written texts beyond that given by word frequencies.

  11. Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends.

    Science.gov (United States)

    Jurca, Gabriela; Addam, Omar; Aksac, Alper; Gao, Shang; Özyer, Tansel; Demetrick, Douglas; Alhajj, Reda

    2016-04-26

    Breast cancer is a serious disease which affects many women and may lead to death. It has received considerable attention from the research community. Thus, biomedical researchers aim to find genetic biomarkers indicative of the disease. Novel biomarkers can be elucidated from the existing literature. However, the vast amount of scientific publications on breast cancer make this a daunting task. This paper presents a framework which investigates existing literature data for informative discoveries. It integrates text mining and social network analysis in order to identify new potential biomarkers for breast cancer. We utilized PubMed for the testing. We investigated gene-gene interactions, as well as novel interactions such as gene-year, gene-country, and abstract-country to find out how the discoveries varied over time and how overlapping/diverse are the discoveries and the interest of various research groups in different countries. Interesting trends have been identified and discussed, e.g., different genes are highlighted in relationship to different countries though the various genes were found to share functionality. Some text analysis based results have been validated against results from other tools that predict gene-gene relations and gene functions.

  12. Text mining and network analysis to find functional associations of genes in high altitude diseases.

    Science.gov (United States)

    Bhasuran, Balu; Subramanian, Devika; Natarajan, Jeyakumar

    2018-05-02

    Travel to elevations above 2500 m is associated with the risk of developing one or more forms of acute altitude illness such as acute mountain sickness (AMS), high altitude cerebral edema (HACE) or high altitude pulmonary edema (HAPE). Our work aims to identify the functional association of genes involved in high altitude diseases. In this work we identified the gene networks responsible for high altitude diseases by using the principle of gene co-occurrence statistics from literature and network analysis. First, we mined the literature data from PubMed on high-altitude diseases, and extracted the co-occurring gene pairs. Next, based on their co-occurrence frequency, gene pairs were ranked. Finally, a gene association network was created using statistical measures to explore potential relationships. Network analysis results revealed that EPO, ACE, IL6 and TNF are the top five genes that were found to co-occur with 20 or more genes, while the association between EPAS1 and EGLN1 genes is strongly substantiated. The network constructed from this study proposes a large number of genes that work in-toto in high altitude conditions. Overall, the result provides a good reference for further study of the genetic relationships in high altitude diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Mining for constructions in texts using N-gram and network analysis

    DEFF Research Database (Denmark)

    Shibuya, Yoshikata; Jensen, Kim Ebensgaard

    2015-01-01

    N-gram analysis to Lewis Carroll's novel Alice's Adventures in Wonderland and Mark Twain's novelThe Adventures of Huckleberry Finn and extrapolate a number of likely constructional phenomena from recurring N-gram patterns in the two texts. In addition to simple N-gram analysis, the following....... The main premise is that, if constructions are functional units, then configurations of words that tend to recur together in discourse are likely to have some sort of function that speakers utilize in discourse. Writers of fiction, for instance, may use constructions in characterizations, mind-styles, text...

  14. Visualization and Analysis of a Cardio Vascular Diseaseand MUPP1-related Biological Network combining Text Mining and Data Warehouse Approaches

    Directory of Open Access Journals (Sweden)

    Sommer Björn

    2010-03-01

    Full Text Available Detailed investigation of socially important diseases with modern experimental methods has resulted in the generation of large volume of valuable data. However, analysis and interpretation of this data needs application of efficient computational techniques and systems biology approaches. In particular, the techniques allowing the reconstruction of associative networks of various biological objects and events can be useful. In this publication, the combination of different techniques to create such a network associated with an abstract cell environment is discussed in order to gain insights into the functional as well as spatial interrelationships. It is shown that experimentally gained knowledge enriched with data warehouse content and text mining data can be used for the reconstruction and localization of a cardiovascular disease developing network beginning with MUPP1/MPDZ (multi-PDZ domain protein.

  15. Directed Activities Related to Text: Text Analysis and Text Reconstruction.

    Science.gov (United States)

    Davies, Florence; Greene, Terry

    This paper describes Directed Activities Related to Text (DART), procedures that were developed and are used in the Reading for Learning Project at the University of Nottingham (England) to enhance learning from texts and that fall into two broad categories: (1) text analysis procedures, which require students to engage in some form of analysis of…

  16. Semantic Web and Contextual Information: Semantic Network Analysis of Online Journalistic Texts

    Science.gov (United States)

    Lim, Yon Soo

    This study examines why contextual information is important to actualize the idea of semantic web, based on a case study of a socio-political issue in South Korea. For this study, semantic network analyses were conducted regarding English-language based 62 blog posts and 101 news stories on the web. The results indicated the differences of the meaning structures between blog posts and professional journalism as well as between conservative journalism and progressive journalism. From the results, this study ascertains empirical validity of current concerns about the practical application of the new web technology, and discusses how the semantic web should be developed.

  17. Preserved Network Metrics across Translated Texts

    Science.gov (United States)

    Cabatbat, Josephine Jill T.; Monsanto, Jica P.; Tapang, Giovanni A.

    2014-09-01

    Co-occurrence language networks based on Bible translations and the Universal Declaration of Human Rights (UDHR) translations in different languages were constructed and compared with random text networks. Among the considered network metrics, the network size, N, the normalized betweenness centrality (BC), and the average k-nearest neighbors, knn, were found to be the most preserved across translations. Moreover, similar frequency distributions of co-occurring network motifs were observed for translated texts networks.

  18. Arabic text classification using Polynomial Networks

    Directory of Open Access Journals (Sweden)

    Mayy M. Al-Tahrawi

    2015-10-01

    Full Text Available In this paper, an Arabic statistical learning-based text classification system has been developed using Polynomial Neural Networks. Polynomial Networks have been recently applied to English text classification, but they were never used for Arabic text classification. In this research, we investigate the performance of Polynomial Networks in classifying Arabic texts. Experiments are conducted on a widely used Arabic dataset in text classification: Al-Jazeera News dataset. We chose this dataset to enable direct comparisons of the performance of Polynomial Networks classifier versus other well-known classifiers on this dataset in the literature of Arabic text classification. Results of experiments show that Polynomial Networks classifier is a competitive algorithm to the state-of-the-art ones in the field of Arabic text classification.

  19. Real Time Text Analysis

    Science.gov (United States)

    Senthilkumar, K.; Ruchika Mehra Vijayan, E.

    2017-11-01

    This paper aims to illustrate real time analysis of large scale data. For practical implementation we are performing sentiment analysis on live Twitter feeds for each individual tweet. To analyze sentiments we will train our data model on sentiWordNet, a polarity assigned wordNet sample by Princeton University. Our main objective will be to efficiency analyze large scale data on the fly using distributed computation. Apache Spark and Apache Hadoop eco system is used as distributed computation platform with Java as development language

  20. Text analysis methods, text analysis apparatuses, and articles of manufacture

    Science.gov (United States)

    Whitney, Paul D; Willse, Alan R; Lopresti, Charles A; White, Amanda M

    2014-10-28

    Text analysis methods, text analysis apparatuses, and articles of manufacture are described according to some aspects. In one aspect, a text analysis method includes accessing information indicative of data content of a collection of text comprising a plurality of different topics, using a computing device, analyzing the information indicative of the data content, and using results of the analysis, identifying a presence of a new topic in the collection of text.

  1. Content-driven analysis of an online community for smoking cessation: integration of qualitative techniques, automated text analysis, and affiliation networks.

    Science.gov (United States)

    Myneni, Sahiti; Fujimoto, Kayo; Cobb, Nathan; Cohen, Trevor

    2015-06-01

    We identified content-specific patterns of network diffusion underlying smoking cessation in the context of online platforms, with the aim of generating targeted intervention strategies. QuitNet is an online social network for smoking cessation. We analyzed 16 492 de-identified peer-to-peer messages from 1423 members, posted between March 1 and April 30, 2007. Our mixed-methods approach comprised qualitative coding, automated text analysis, and affiliation network analysis to identify, visualize, and analyze content-specific communication patterns underlying smoking behavior. Themes we identified in QuitNet messages included relapse, QuitNet-specific traditions, and cravings. QuitNet members who were exposed to other abstinent members by exchanging content related to interpersonal themes (e.g., social support, traditions, progress) tended to abstain. Themes found in other types of content did not show significant correlation with abstinence. Modeling health-related affiliation networks through content-driven methods can enable the identification of specific content related to higher abstinence rates, which facilitates targeted health promotion.

  2. Sentiment analysis: a comparison of deep learning neural network algorithm with SVM and naϊve Bayes for Indonesian text

    Science.gov (United States)

    Calvin Frans Mariel, Wahyu; Mariyah, Siti; Pramana, Setia

    2018-03-01

    Deep learning is a new era of machine learning techniques that essentially imitate the structure and function of the human brain. It is a development of deeper Artificial Neural Network (ANN) that uses more than one hidden layer. Deep Learning Neural Network has a great ability on recognizing patterns from various data types such as picture, audio, text, and many more. In this paper, the authors tries to measure that algorithm’s ability by applying it into the text classification. The classification task herein is done by considering the content of sentiment in a text which is also called as sentiment analysis. By using several combinations of text preprocessing and feature extraction techniques, we aim to compare the precise modelling results of Deep Learning Neural Network with the other two commonly used algorithms, the Naϊve Bayes and Support Vector Machine (SVM). This algorithm comparison uses Indonesian text data with balanced and unbalanced sentiment composition. Based on the experimental simulation, Deep Learning Neural Network clearly outperforms the Naϊve Bayes and SVM and offers a better F-1 Score while for the best feature extraction technique which improves that modelling result is Bigram.

  3. Individual Profiling Using Text Analysis

    Science.gov (United States)

    2016-04-15

    AFRL-AFOSR-UK-TR-2016-0011 Individual Profiling using Text Analysis 140333 Mark Stevenson UNIVERSITY OF SHEFFIELD, DEPARTMENT OF PSYCHOLOGY Final...REPORT TYPE      Final 3.  DATES COVERED (From - To)      15 Sep 2014 to 14 Sep 2015 4.  TITLE AND SUBTITLE Individual Profiling using Text Analysis ...consisted of collections of tweets for a number of Twitter users whose gender, age and personality scores are known. The task was to construct some system

  4. Automated analysis of instructional text

    Energy Technology Data Exchange (ETDEWEB)

    Norton, L.M.

    1983-05-01

    The development of a capability for automated processing of natural language text is a long-range goal of artificial intelligence. This paper discusses an investigation into the issues involved in the comprehension of descriptive, as opposed to illustrative, textual material. The comprehension process is viewed as the conversion of knowledge from one representation into another. The proposed target representation consists of statements of the prolog language, which can be interpreted both declaratively and procedurally, much like production rules. A computer program has been written to model in detail some ideas about this process. The program successfully analyzes several heavily edited paragraphs adapted from an elementary textbook on programming, automatically synthesizing as a result of the analysis a working Prolog program which, when executed, can parse and interpret let commands in the basic language. The paper discusses the motivations and philosophy of the project, the many kinds of prerequisite knowledge which are necessary, and the structure of the text analysis program. A sentence-by-sentence account of the analysis of the sample text is presented, describing the syntactic and semantic processing which is involved. The paper closes with a discussion of lessons learned from the project, possible alternative approaches, and possible extensions for future work. The entire project is presented as illustrative of the nature and complexity of the text analysis process, rather than as providing definitive or optimal solutions to any aspects of the task. 12 references.

  5. From Text to Political Positions: Text analysis across disciplines

    NARCIS (Netherlands)

    Kaal, A.R.; Maks, I.; van Elfrinkhof, A.M.E.

    2014-01-01

    ABSTRACT From Text to Political Positions addresses cross-disciplinary innovation in political text analysis for party positioning. Drawing on political science, computational methods and discourse analysis, it presents a diverse collection of analytical models including pure quantitative and

  6. Automatic Amharic text news classification: Aneural networks ...

    African Journals Online (AJOL)

    School of Computing and Electrical Engineering, Institute of Technology, Bahir Dar University, Bahir Dar ... The study is on classification of Amharic news automatically using neural networks approach. Learning Vector ... INTRODUCTION.

  7. Building a glaucoma interaction network using a text mining approach.

    Science.gov (United States)

    Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F

    2016-01-01

    The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of

  8. Finding novel relationships with integrated gene-gene association network analysis of Synechocystis sp. PCC 6803 using species-independent text-mining.

    Science.gov (United States)

    Kreula, Sanna M; Kaewphan, Suwisa; Ginter, Filip; Jones, Patrik R

    2018-01-01

    The increasing move towards open access full-text scientific literature enhances our ability to utilize advanced text-mining methods to construct information-rich networks that no human will be able to grasp simply from 'reading the literature'. The utility of text-mining for well-studied species is obvious though the utility for less studied species, or those with no prior track-record at all, is not clear. Here we present a concept for how advanced text-mining can be used to create information-rich networks even for less well studied species and apply it to generate an open-access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first case-study for the methodology. By merging the text-mining network with networks generated from species-specific experimental data, network integration was used to enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the search for novel candidate genes with a high degree of likely association to known target genes by (1) ignoring established relationships from the existing literature, as they are already 'known', and (2) demanding multiple independent evidences for every novel and potentially relevant relationship. Using selected case studies, we demonstrate the utility of the network resource and filter to ( i ) discover novel candidate associations between different genes or proteins in the network, and ( ii ) rapidly evaluate the potential role of any one particular gene or protein. The full network is provided as an open-source resource.

  9. Text and ideology: text-oriented discourse analysis

    Directory of Open Access Journals (Sweden)

    Maria Eduarda Gonçalves Peixoto

    2018-04-01

    Full Text Available The article aims to contribute to the understanding of the connection between text and ideology articulated by the text-oriented analysis of discourse (ADTO. Based on the reflections of Fairclough (1989, 2001, 2003 and Fairclough and Chouliaraki (1999, the debate presents the social ontology that ADTO uses to base its conception of social life as an open system and textually mediated; the article then explains the chronological-narrative development of the main critical theories of ideology, by virtue of which ADTO organizes the assumptions that underpin the particular use it makes of the term. Finally, the discussion presents the main aspects of the connection between text and ideology, offering a conceptual framework that can contribute to the domain of the theme according to a critical discourse analysis approach.

  10. Using ontology network structure in text mining.

    Science.gov (United States)

    Berndt, Donald J; McCart, James A; Luther, Stephen L

    2010-11-13

    Statistical text mining treats documents as bags of words, with a focus on term frequencies within documents and across document collections. Unlike natural language processing (NLP) techniques that rely on an engineered vocabulary or a full-featured ontology, statistical approaches do not make use of domain-specific knowledge. The freedom from biases can be an advantage, but at the cost of ignoring potentially valuable knowledge. The approach proposed here investigates a hybrid strategy based on computing graph measures of term importance over an entire ontology and injecting the measures into the statistical text mining process. As a starting point, we adapt existing search engine algorithms such as PageRank and HITS to determine term importance within an ontology graph. The graph-theoretic approach is evaluated using a smoking data set from the i2b2 National Center for Biomedical Computing, cast as a simple binary classification task for categorizing smoking-related documents, demonstrating consistent improvements in accuracy.

  11. Automatic theory generation from analyst text files using coherence networks

    Science.gov (United States)

    Shaffer, Steven C.

    2014-05-01

    This paper describes a three-phase process of extracting knowledge from analyst textual reports. Phase 1 involves performing natural language processing on the source text to extract subject-predicate-object triples. In phase 2, these triples are then fed into a coherence network analysis process, using a genetic algorithm optimization. Finally, the highest-value sub networks are processed into a semantic network graph for display. Initial work on a well- known data set (a Wikipedia article on Abraham Lincoln) has shown excellent results without any specific tuning. Next, we ran the process on the SYNthetic Counter-INsurgency (SYNCOIN) data set, developed at Penn State, yielding interesting and potentially useful results.

  12. English Metafunction Analysis in Chemistry Text: Characterization of Scientific Text

    Directory of Open Access Journals (Sweden)

    Ahmad Amin Dalimunte, M.Hum

    2013-09-01

    Full Text Available The objectives of this research are to identify what Metafunctions are applied in chemistry text and how they characterize a scientific text. It was conducted by applying content analysis. The data for this research was a twelve-paragraph chemistry text. The data were collected by applying a documentary technique. The document was read and analyzed to find out the Metafunction. The data were analyzed by some procedures: identifying the types of process, counting up the number of the processes, categorizing and counting up the cohesion devices, classifying the types of modulation and determining modality value, finally counting up the number of sentences and clauses, then scoring the grammatical intricacy index. The findings of the research show that Material process (71of 100 is mostly used, circumstance of spatial location (26 of 56 is more dominant than the others. Modality (5 is less used in order to avoid from subjectivity. Impersonality is implied through less use of reference either pronouns (7 or demonstrative (7, conjunctions (60 are applied to develop ideas, and the total number of the clauses are found much more dominant (109 than the total number of the sentences (40 which results high grammatical intricacy index. The Metafunction found indicate that the chemistry text has fulfilled the characteristics of scientific or academic text which truly reflects it as a natural science.

  13. Mining biological networks from full-text articles.

    Science.gov (United States)

    Czarnecki, Jan; Shepherd, Adrian J

    2014-01-01

    The study of biological networks is playing an increasingly important role in the life sciences. Many different kinds of biological system can be modelled as networks; perhaps the most important examples are protein-protein interaction (PPI) networks, metabolic pathways, gene regulatory networks, and signalling networks. Although much useful information is easily accessible in publicly databases, a lot of extra relevant data lies scattered in numerous published papers. Hence there is a pressing need for automated text-mining methods capable of extracting such information from full-text articles. Here we present practical guidelines for constructing a text-mining pipeline from existing code and software components capable of extracting PPI networks from full-text articles. This approach can be adapted to tackle other types of biological network.

  14. Using Semantic Linking to Understand Persons’ Networks Extracted from Text

    Directory of Open Access Journals (Sweden)

    Alessio Palmero Aprosio

    2017-11-01

    Full Text Available In this work, we describe a methodology to interpret large persons’ networks extracted from text by classifying cliques using the DBpedia ontology. The approach relies on a combination of NLP, Semantic web technologies, and network analysis. The classification methodology that first starts from single nodes and then generalizes to cliques is effective in terms of performance and is able to deal also with nodes that are not linked to Wikipedia. The gold standard manually developed for evaluation shows that groups of co-occurring entities share in most of the cases a category that can be automatically assigned. This holds for both languages considered in this study. The outcome of this work may be of interest to enhance the readability of large networks and to provide an additional semantic layer on top of cliques. This would greatly help humanities scholars when dealing with large amounts of textual data that need to be interpreted or categorized. Furthermore, it represents an unsupervised approach to automatically extend DBpedia starting from a corpus.

  15. Phonematic translation of Polish texts by the neural network

    International Nuclear Information System (INIS)

    Bielecki, A.; Podolak, I.T.; Wosiek, J.; Majkut, E.

    1996-01-01

    Using the back propagation algorithm, we have trained the feed forward neural network to pronounce Polish language, more precisely to translate Polish text into its phonematic counterpart. Depending on the input coding and network architecture, 88%-95% translation efficiency was achieved. (author)

  16. The Relationship between Paraphrasing and Text Analysis

    Directory of Open Access Journals (Sweden)

    María Luisa Cepeda Islas

    2013-04-01

    Full Text Available Given the importance of paraphrasing in the process of comprehension for college students, this study assessed the level of implementation of text analysis and paraphrases the response of a sample of senior students of the career psychology. We selected a group of freshmen to the Psychology course, which was asked to answer a questionnaire and carry out the summary of an empirical article. The results showed that participants have a low level of text analysis, at the same time had low levels of paraphrasing. It was seen that the predominant textual copy. They envision some possibilities for the structure of a training workshop not only paraphrasing but on the analysis of text.

  17. Entity recognition from clinical texts via recurrent neural network.

    Science.gov (United States)

    Liu, Zengjian; Yang, Ming; Wang, Xiaolong; Chen, Qingcai; Tang, Buzhou; Wang, Zhe; Xu, Hua

    2017-07-05

    Entity recognition is one of the most primary steps for text analysis and has long attracted considerable attention from researchers. In the clinical domain, various types of entities, such as clinical entities and protected health information (PHI), widely exist in clinical texts. Recognizing these entities has become a hot topic in clinical natural language processing (NLP), and a large number of traditional machine learning methods, such as support vector machine and conditional random field, have been deployed to recognize entities from clinical texts in the past few years. In recent years, recurrent neural network (RNN), one of deep learning methods that has shown great potential on many problems including named entity recognition, also has been gradually used for entity recognition from clinical texts. In this paper, we comprehensively investigate the performance of LSTM (long-short term memory), a representative variant of RNN, on clinical entity recognition and protected health information recognition. The LSTM model consists of three layers: input layer - generates representation of each word of a sentence; LSTM layer - outputs another word representation sequence that captures the context information of each word in this sentence; Inference layer - makes tagging decisions according to the output of LSTM layer, that is, outputting a label sequence. Experiments conducted on corpora of the 2010, 2012 and 2014 i2b2 NLP challenges show that LSTM achieves highest micro-average F1-scores of 85.81% on the 2010 i2b2 medical concept extraction, 92.29% on the 2012 i2b2 clinical event detection, and 94.37% on the 2014 i2b2 de-identification, which is considerably competitive with other state-of-the-art systems. LSTM that requires no hand-crafted feature has great potential on entity recognition from clinical texts. It outperforms traditional machine learning methods that suffer from fussy feature engineering. A possible future direction is how to integrate knowledge

  18. Identification of literary movements using complex networks to represent texts

    International Nuclear Information System (INIS)

    Amancio, Diego Raphael; Oliveira, Osvaldo N Jr; Fontoura Costa, Luciano da

    2012-01-01

    The use of statistical methods to analyze large databases of text has been useful in unveiling patterns of human behavior and establishing historical links between cultures and languages. In this study, we identified literary movements by treating books published from 1590 to 1922 as complex networks, whose metrics were analyzed with multivariate techniques to generate six clusters of books. The latter correspond to time periods coinciding with relevant literary movements over the last five centuries. The most important factor contributing to the distinctions between different literary styles was the average shortest path length, in particular the asymmetry of its distribution. Furthermore, over time there has emerged a trend toward larger average shortest path lengths, which is correlated with increased syntactic complexity, and a more uniform use of the words reflected in a smaller power-law coefficient for the distribution of word frequency. Changes in literary style were also found to be driven by opposition to earlier writing styles, as revealed by the analysis performed with geometrical concepts. The approaches adopted here are generic and may be extended to analyze a number of features of languages and cultures. (paper)

  19. Classification of protein-protein interaction full-text documents using text and citation network features.

    Science.gov (United States)

    Kolchinsky, Artemy; Abi-Haidar, Alaa; Kaur, Jasleen; Hamed, Ahmed Abdeen; Rocha, Luis M

    2010-01-01

    We participated (as Team 9) in the Article Classification Task of the Biocreative II.5 Challenge: binary classification of full-text documents relevant for protein-protein interaction. We used two distinct classifiers for the online and offline challenges: 1) the lightweight Variable Trigonometric Threshold (VTT) linear classifier we successfully introduced in BioCreative 2 for binary classification of abstracts and 2) a novel Naive Bayes classifier using features from the citation network of the relevant literature. We supplemented the supplied training data with full-text documents from the MIPS database. The lightweight VTT classifier was very competitive in this new full-text scenario: it was a top-performing submission in this task, taking into account the rank product of the Area Under the interpolated precision and recall Curve, Accuracy, Balanced F-Score, and Matthew's Correlation Coefficient performance measures. The novel citation network classifier for the biomedical text mining domain, while not a top performing classifier in the challenge, performed above the central tendency of all submissions, and therefore indicates a promising new avenue to investigate further in bibliome informatics.

  20. Rhetorical structure theory and text analysis

    Science.gov (United States)

    Mann, William C.; Matthiessen, Christian M. I. M.; Thompson, Sandra A.

    1989-11-01

    Recent research on text generation has shown that there is a need for stronger linguistic theories that tell in detail how texts communicate. The prevailing theories are very difficult to compare, and it is also very difficult to see how they might be combined into stronger theories. To make comparison and combination a bit more approachable, we have created a book which is designed to encourage comparison. A dozen different authors or teams, all experienced in discourse research, are given exactly the same text to analyze. The text is an appeal for money by a lobbying organization in Washington, DC. It informs, stimulates and manipulates the reader in a fascinating way. The joint analysis is far more insightful than any one team's analysis alone. This paper is our contribution to the book. Rhetorical Structure Theory (RST), the focus of this paper, is a way to account for the functional potential of text, its capacity to achieve the purposes of speakers and produce effects in hearers. It also shows a way to distinguish coherent texts from incoherent ones, and identifies consequences of text structure.

  1. Ecological network analysis: network construction

    NARCIS (Netherlands)

    Fath, B.D.; Scharler, U.M.; Ulanowicz, R.E.; Hannon, B.

    2007-01-01

    Ecological network analysis (ENA) is a systems-oriented methodology to analyze within system interactions used to identify holistic properties that are otherwise not evident from the direct observations. Like any analysis technique, the accuracy of the results is as good as the data available, but

  2. Text Analysis: Critical Component of Planning for Text-Based Discussion Focused on Comprehension of Informational Texts

    Science.gov (United States)

    Kucan, Linda; Palincsar, Annemarie Sullivan

    2018-01-01

    This investigation focuses on a tool used in a reading methods course to introduce reading specialist candidates to text analysis as a critical component of planning for text-based discussions. Unlike planning that focuses mainly on important text content or information, a text analysis approach focuses both on content and how that content is…

  3. Deep Belief Networks Based Toponym Recognition for Chinese Text

    Directory of Open Access Journals (Sweden)

    Shu Wang

    2018-06-01

    Full Text Available In Geographical Information Systems, geo-coding is used for the task of mapping from implicitly geo-referenced data to explicitly geo-referenced coordinates. At present, an enormous amount of implicitly geo-referenced information is hidden in unstructured text, e.g., Wikipedia, social data and news. Toponym recognition is the foundation of mining this useful geo-referenced information by identifying words as toponyms in text. In this paper, we propose an adapted toponym recognition approach based on deep belief network (DBN by exploring two key issues: word representation and model interpretation. A Skip-Gram model is used in the word representation process to represent words with contextual information that are ignored by current word representation models. We then determine the core hyper-parameters of the DBN model by illustrating the relationship between the performance and the hyper-parameters, e.g., vector dimensionality, DBN structures and probability thresholds. The experiments evaluate the performance of the Skip-Gram model implemented by the Word2Vec open-source tool, determine stable hyper-parameters and compare our approach with a conditional random field (CRF based approach. The experimental results show that the DBN model outperforms the CRF model with smaller corpus. When the corpus size is large enough, their statistical metrics become approaching. However, their recognition results express differences and complementarity on different kinds of toponyms. More importantly, combining their results can directly improve the performance of toponym recognition relative to their individual performances. It seems that the scale of the corpus has an obvious effect on the performance of toponym recognition. Generally, there is no adequate tagged corpus on specific toponym recognition tasks, especially in the era of Big Data. In conclusion, we believe that the DBN-based approach is a promising and powerful method to extract geo

  4. Lexical Sentiment Analysis in Slovenian Texts

    OpenAIRE

    VOLČANŠEK, MATEJA

    2015-01-01

    The goal of this thesis is to create a sentiment dictionary for the Slovenian language which can be used in lexical methods for automatic sentiment analysis. We start from a sentiment dictionary for the English language, translate it semi-automatically to Slovenian and curate its content. We test the performance of using the translated dictionary for automated lexical sentiment analysis on a corpus of 5000 manually annotated Slovenian news articles gathered from the main Slovenian news por...

  5. Probing the topological properties of complex networks modeling short written texts.

    Directory of Open Access Journals (Sweden)

    Diego R Amancio

    Full Text Available In recent years, graph theory has been widely employed to probe several language properties. More specifically, the so-called word adjacency model has been proven useful for tackling several practical problems, especially those relying on textual stylistic analysis. The most common approach to treat texts as networks has simply considered either large pieces of texts or entire books. This approach has certainly worked well-many informative discoveries have been made this way-but it raises an uncomfortable question: could there be important topological patterns in small pieces of texts? To address this problem, the topological properties of subtexts sampled from entire books was probed. Statistical analyses performed on a dataset comprising 50 novels revealed that most of the traditional topological measurements are stable for short subtexts. When the performance of the authorship recognition task was analyzed, it was found that a proper sampling yields a discriminability similar to the one found with full texts. Surprisingly, the support vector machine classification based on the characterization of short texts outperformed the one performed with entire books. These findings suggest that a local topological analysis of large documents might improve its global characterization. Most importantly, it was verified, as a proof of principle, that short texts can be analyzed with the methods and concepts of complex networks. As a consequence, the techniques described here can be extended in a straightforward fashion to analyze texts as time-varying complex networks.

  6. METHODS OF TEXT INFORMATION CLASSIFICATION ON THE BASIS OF ARTIFICIAL NEURAL AND SEMANTIC NETWORKS

    Directory of Open Access Journals (Sweden)

    L. V. Serebryanaya

    2016-01-01

    Full Text Available The article covers the use of perseptron, Hopfild artificial neural network and semantic network for classification of text information. Network training algorithms are studied. An algorithm of inverse mistake spreading for perceptron network and convergence algorithm for Hopfild network are implemented. On the basis of the offered models and algorithms automatic text classification software is developed and its operation results are evaluated.

  7. Networking European Universities through e-learning (reviewed text)

    OpenAIRE

    Dlouhá, Jana

    2008-01-01

    Virtual Campus for a Sustainable Europe (VCSE) network has been selected to be part of the EC DG EAC Inventory of innovative good practice on education for sustainable development. The main purpose of the Inventory is to show concrete examples which have been implemented in the Member States under the concept of ESD in formal and non-formal learning contexts and which are at the forefront as regards innovative approaches. Projects/programmes selected as innovative good practice will be use...

  8. Classifying medical relations in clinical text via convolutional neural networks.

    Science.gov (United States)

    He, Bin; Guan, Yi; Dai, Rui

    2018-05-16

    Deep learning research on relation classification has achieved solid performance in the general domain. This study proposes a convolutional neural network (CNN) architecture with a multi-pooling operation for medical relation classification on clinical records and explores a loss function with a category-level constraint matrix. Experiments using the 2010 i2b2/VA relation corpus demonstrate these models, which do not depend on any external features, outperform previous single-model methods and our best model is competitive with the existing ensemble-based method. Copyright © 2018. Published by Elsevier B.V.

  9. MET network in PubMed: a text-mined network visualization and curation system.

    Science.gov (United States)

    Dai, Hong-Jie; Su, Chu-Hsien; Lai, Po-Ting; Huang, Ming-Siang; Jonnagaddala, Jitendra; Rose Jue, Toni; Rao, Shruti; Chou, Hui-Jou; Milacic, Marija; Singh, Onkar; Syed-Abdul, Shabbir; Hsu, Wen-Lian

    2016-01-01

    Metastasis is the dissemination of a cancer/tumor from one organ to another, and it is the most dangerous stage during cancer progression, causing more than 90% of cancer deaths. Improving the understanding of the complicated cellular mechanisms underlying metastasis requires investigations of the signaling pathways. To this end, we developed a METastasis (MET) network visualization and curation tool to assist metastasis researchers retrieve network information of interest while browsing through the large volume of studies in PubMed. MET can recognize relations among genes, cancers, tissues and organs of metastasis mentioned in the literature through text-mining techniques, and then produce a visualization of all mined relations in a metastasis network. To facilitate the curation process, MET is developed as a browser extension that allows curators to review and edit concepts and relations related to metastasis directly in PubMed. PubMed users can also view the metastatic networks integrated from the large collection of research papers directly through MET. For the BioCreative 2015 interactive track (IAT), a curation task was proposed to curate metastatic networks among PubMed abstracts. Six curators participated in the proposed task and a post-IAT task, curating 963 unique metastatic relations from 174 PubMed abstracts using MET.Database URL: http://btm.tmu.edu.tw/metastasisway. © The Author(s) 2016. Published by Oxford University Press.

  10. Statistical analysis of network data with R

    CERN Document Server

    Kolaczyk, Eric D

    2014-01-01

    Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

  11. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  12. Communication Network Analysis Methods.

    Science.gov (United States)

    Farace, Richard V.; Mabee, Timothy

    This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…

  13. Analyzing big data in social media: Text and network analyses of an eating disorder forum.

    Science.gov (United States)

    Moessner, Markus; Feldhege, Johannes; Wolf, Markus; Bauer, Stephanie

    2018-05-10

    Social media plays an important role in everyday life of young people. Numerous studies claim negative effects of social media and media in general on eating disorder risk factors. Despite the availability of big data, only few studies have exploited the possibilities so far in the field of eating disorders. Methods for data extraction, computerized content analysis, and network analysis will be introduced. Strategies and methods will be exemplified for an ad-hoc dataset of 4,247 posts and 34,118 comments by 3,029 users of the proed forum on Reddit. Text analysis with latent Dirichlet allocation identified nine topics related to social support and eating disorder specific content. Social network analysis describes the overall communication patterns, and could identify community structures and most influential users. A linear network autocorrelation model was applied to estimate associations in language among network neighbors. The supplement contains R code for data extraction and analyses. This paper provides an introduction to investigating social media data, and will hopefully stimulate big data social media research in eating disorders. When applied in real-time, the methods presented in this manuscript could contribute to improving the safety of ED-related online communication. © 2018 Wiley Periodicals, Inc.

  14. Humanities data in R exploring networks, geospatial data, images, and text

    CERN Document Server

    Arnold, Taylor

    2015-01-01

    This pioneering book teaches readers to use R within four core analytical areas applicable to the Humanities: networks, text, geospatial data, and images. This book is also designed to be a bridge: between quantitative and qualitative methods, individual and collaborative work, and the humanities and social scientists. Exploring Humanities Data Types with R does not presuppose background programming experience. Early chapters take readers from R set-up to exploratory data analysis (continuous and categorical data, multivariate analysis, and advanced graphics with emphasis on aesthetics and facility). Everything is hands-on: networks are explained using U.S. Supreme Court opinions, and low-level NLP methods are applied to short stories by Sir Arthur Conan Doyle. The book’s data, code, appendix with 100 basic programming exercises and solutions, and dedicated website are valuable resources for readers. The methodology will have wide application in classrooms and self-study for the humanities, but also for use...

  15. Privacy protected text analysis in DataSHIELD

    Directory of Open Access Journals (Sweden)

    Rebecca Wilson

    2017-04-01

    Whilst it is possible to analyse free text within a DataSHIELD infrastructure, the challenge is creating generalised and resilient anti-disclosure methods for free text analysis. There are a range of biomedical and health sciences applications for DataSHIELD methods of privacy protected analysis of free text including analysis of electronic health records and analysis of qualitative data e.g. from social media.

  16. Comprehension and Analysis of Information in Text: I. Construction and Evaluation of Brief Texts.

    Science.gov (United States)

    Kozminsky, Ely; And Others

    This report describes a series of studies designed to construct and validate a set of text materials necessary to the pursuance of a long-term research project on information analysis and integration in semantically rich, naturalistic domains, primarily in the domain of the stock market. The methods and results of six separate experiments on…

  17. Systematic text condensation: a strategy for qualitative analysis.

    Science.gov (United States)

    Malterud, Kirsti

    2012-12-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies. Giorgi's psychological phenomenological analysis is the point of departure and inspiration for systematic text condensation. The basic elements of Giorgi's method and the elaboration of these in systematic text condensation are presented, followed by a detailed description of procedures for analysis according to systematic text condensation. Finally, similarities and differences compared with other frequently applied methods for qualitative analysis are identified, as the foundation of a discussion of strengths and limitations of systematic text condensation. Systematic text condensation is a descriptive and explorative method for thematic cross-case analysis of different types of qualitative data, such as interview studies, observational studies, and analysis of written texts. The method represents a pragmatic approach, although inspired by phenomenological ideas, and various theoretical frameworks can be applied. The procedure consists of the following steps: 1) total impression - from chaos to themes; 2) identifying and sorting meaning units - from themes to codes; 3) condensation - from code to meaning; 4) synthesizing - from condensation to descriptions and concepts. Similarities and differences comparing systematic text condensation with other frequently applied qualitative methods regarding thematic analysis, theoretical methodological framework, analysis procedures, and taxonomy are discussed. Systematic text condensation is a strategy for analysis developed from traditions shared by most of the methods for analysis of qualitative data. The method offers the novice researcher a process of intersubjectivity, reflexivity, and feasibility, while maintaining a responsible level of methodological rigour.

  18. Text-mining analysis of mHealth research

    Science.gov (United States)

    Zengul, Ferhat; Oner, Nurettin; Delen, Dursun

    2017-01-01

    In recent years, because of the advancements in communication and networking technologies, mobile technologies have been developing at an unprecedented rate. mHealth, the use of mobile technologies in medicine, and the related research has also surged parallel to these technological advancements. Although there have been several attempts to review mHealth research through manual processes such as systematic reviews, the sheer magnitude of the number of studies published in recent years makes this task very challenging. The most recent developments in machine learning and text mining offer some potential solutions to address this challenge by allowing analyses of large volumes of texts through semi-automated processes. The objective of this study is to analyze the evolution of mHealth research by utilizing text-mining and natural language processing (NLP) analyses. The study sample included abstracts of 5,644 mHealth research articles, which were gathered from five academic search engines by using search terms such as mobile health, and mHealth. The analysis used the Text Explorer module of JMP Pro 13 and an iterative semi-automated process involving tokenizing, phrasing, and terming. After developing the document term matrix (DTM) analyses such as single value decomposition (SVD), topic, and hierarchical document clustering were performed, along with the topic-informed document clustering approach. The results were presented in the form of word-clouds and trend analyses. There were several major findings regarding research clusters and trends. First, our results confirmed time-dependent nature of terminology use in mHealth research. For example, in earlier versus recent years the use of terminology changed from “mobile phone” to “smartphone” and from “applications” to “apps”. Second, ten clusters for mHealth research were identified including (I) Clinical Research on Lifestyle Management, (II) Community Health, (III) Literature Review, (IV) Medical

  19. Text-mining analysis of mHealth research.

    Science.gov (United States)

    Ozaydin, Bunyamin; Zengul, Ferhat; Oner, Nurettin; Delen, Dursun

    2017-01-01

    In recent years, because of the advancements in communication and networking technologies, mobile technologies have been developing at an unprecedented rate. mHealth, the use of mobile technologies in medicine, and the related research has also surged parallel to these technological advancements. Although there have been several attempts to review mHealth research through manual processes such as systematic reviews, the sheer magnitude of the number of studies published in recent years makes this task very challenging. The most recent developments in machine learning and text mining offer some potential solutions to address this challenge by allowing analyses of large volumes of texts through semi-automated processes. The objective of this study is to analyze the evolution of mHealth research by utilizing text-mining and natural language processing (NLP) analyses. The study sample included abstracts of 5,644 mHealth research articles, which were gathered from five academic search engines by using search terms such as mobile health, and mHealth. The analysis used the Text Explorer module of JMP Pro 13 and an iterative semi-automated process involving tokenizing, phrasing, and terming. After developing the document term matrix (DTM) analyses such as single value decomposition (SVD), topic, and hierarchical document clustering were performed, along with the topic-informed document clustering approach. The results were presented in the form of word-clouds and trend analyses. There were several major findings regarding research clusters and trends. First, our results confirmed time-dependent nature of terminology use in mHealth research. For example, in earlier versus recent years the use of terminology changed from "mobile phone" to "smartphone" and from "applications" to "apps". Second, ten clusters for mHealth research were identified including (I) Clinical Research on Lifestyle Management, (II) Community Health, (III) Literature Review, (IV) Medical Interventions

  20. Text analysis with R for students of literature

    CERN Document Server

    Jockers, Matthew L

    2014-01-01

    Text Analysis with R for Students of Literature is written with students and scholars of literature in mind but will be applicable to other humanists and social scientists wishing to extend their methodological tool kit to include quantitative and computational approaches to the study of text. Computation provides access to information in text that we simply cannot gather using traditional qualitative methods of close reading and human synthesis. Text Analysis with R for Students of Literature provides a practical introduction to computational text analysis using the open source programming language R. R is extremely popular throughout the sciences and because of its accessibility, R is now used increasingly in other research areas. Readers begin working with text right away and each chapter works through a new technique or process such that readers gain a broad exposure to core R procedures and a basic understanding of the possibilities of computational text analysis at both the micro and macro scale. Each c...

  1. Network performance analysis

    CERN Document Server

    Bonald, Thomas

    2013-01-01

    The book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i

  2. Text Analysis of Chemistry Thesis and Dissertation Titles

    Science.gov (United States)

    Scalfani, Vincent F.

    2017-01-01

    Programmatic text analysis can be used to understand patterns and reveal trends in data that would otherwise be difficult or impossible to uncover with manual coding methods. This work uses programmatic text analysis, specifically term frequency counts, to study nearly 10,000 chemistry thesis and dissertation titles from 1911-2015. The thesis and…

  3. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  4. Analysis Of Aspects Of Messages Hiding In Text Environments

    Directory of Open Access Journals (Sweden)

    Afanasyeva Olesya

    2015-09-01

    Full Text Available In the work are researched problems, which arise during hiding of messages in text environments, being transmitted by electronic communication channels and the Internet. The analysis of selection of places in text environment (TE, which can be replaced by word from the message is performed. Selection and replacement of words in the text environment is implemented basing on semantic analysis of text fragment, consisting of the inserted word, and its environment in TE. For implementation of such analysis is used concept of semantic parameters of words coordination and semantic value of separate word. Are used well-known methods of determination of values of these parameters. This allows moving from quality level to quantitative level analysis of text fragments semantics during their modification by word substitution. Invisibility of embedded messages is ensured by providing preset values of the semantic cooperation parameter deviations.

  5. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  6. Analysis of computer networks

    CERN Document Server

    Gebali, Fayez

    2015-01-01

    This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies.   ·         Provides techniques for modeling and analysis of network software and switching equipment; ·         Discusses design options used to build efficient switching equipment; ·         Includes many worked examples of the application of discrete-time Markov chains to communication systems; ·         Covers the mathematical theory and techniques necessary for ana...

  7. Analysis of Recurrent Analog Neural Networks

    Directory of Open Access Journals (Sweden)

    Z. Raida

    1998-06-01

    Full Text Available In this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.

  8. Review Essay: Does Qualitative Network Analysis Exist?

    Directory of Open Access Journals (Sweden)

    Rainer Diaz-Bone

    2007-01-01

    Full Text Available Social network analysis was formed and established in the 1970s as a way of analyzing systems of social relations. In this review the theoretical-methodological standpoint of social network analysis ("structural analysis" is introduced and the different forms of social network analysis are presented. Structural analysis argues that social actors and social relations are embedded in social networks, meaning that action and perception of actors as well as the performance of social relations are influenced by the network structure. Since the 1990s structural analysis has integrated concepts such as agency, discourse and symbolic orientation and in this way structural analysis has opened itself. Since then there has been increasing use of qualitative methods in network analysis. They are used to include the perspective of the analyzed actors, to explore networks, and to understand network dynamics. In the reviewed book, edited by Betina HOLLSTEIN and Florian STRAUS, the twenty predominantly empirically orientated contributions demonstrate the possibilities of combining quantitative and qualitative methods in network analyses in different research fields. In this review we examine how the contributions succeed in applying and developing the structural analysis perspective, and the self-positioning of "qualitative network analysis" is evaluated. URN: urn:nbn:de:0114-fqs0701287

  9. Analysis of Network Parameters Influencing Performance of Hybrid Multimedia Networks

    Directory of Open Access Journals (Sweden)

    Dominik Kovac

    2013-10-01

    Full Text Available Multimedia networks is an emerging subject that currently attracts the attention of research and industrial communities. This environment provides new entertainment services and business opportunities merged with all well-known network services like VoIP calls or file transfers. Such a heterogeneous system has to be able satisfy all network and end-user requirements which are increasing constantly. Therefore the simulation tools enabling deep analysis in order to find the key performance indicators and factors which influence the overall quality for specific network service the most are highly needed. This paper provides a study on the network parameters like communication technology, routing protocol, QoS mechanism, etc. and their effect on the performance of hybrid multimedia network. The analysis was performed in OPNET Modeler environment and the most interesting results are discussed at the end of this paper

  10. Describing Old Czech Declension Patterns for Automatic Text Analysis

    Czech Academy of Sciences Publication Activity Database

    Jínová, P.; Lehečka, Boris; Oliva jr., Karel

    -, č. 13 (2014), s. 7-17 ISSN 1579-8372 Institutional support: RVO:68378092 Keywords : Old Czech morphology * declension patterns * automatic text analysis * i-stems * ja-stems Subject RIV: AI - Linguistics

  11. Gender Analysis On Islamic Texts: A Study On Its Accuracy

    Directory of Open Access Journals (Sweden)

    Muchammad Ichsan

    2014-06-01

    Full Text Available Gender equality movement is spreading all over the world, including in Indonesia where Muslim gender activists have made hard efforts to ensure gender fairness and equality among people. One of their efforts is emphasizing the urgency of reinterpreting Islamic texts. They insist on the reinterpretation of Islamic texts based on gender perspective and analysis due to the existence of many Islamic texts that trespass the principles of gender equality and fairness they have been fighting for. This paper aims at assuring and examining the accuracy of using gender perspective as a tool for analyzing the Islamic text. It is found that using gender perspective and analysis for reinterpreting Islamic texts is not in line with the Islamic principles and will only produce laws and points of views which deviate from Islamic teachings. To reach the goals of this study, a descriptive-analytical approach is employed.

  12. Profiling School Shooters: Automatic Text-Based Analysis

    Directory of Open Access Journals (Sweden)

    Yair eNeuman

    2015-06-01

    Full Text Available School shooters present a challenge to both forensic psychiatry and law enforcement agencies. The relatively small number of school shooters, their various charateristics, and the lack of in-depth analysis of all of the shooters prior to the shooting add complexity to our understanding of this problem. In this short paper, we introduce a new methodology for automatically profiling school shooters. The methodology involves automatic analysis of texts and the production of several measures relevant for the identification of the shooters. Comparing texts written by six school shooters to 6056 texts written by a comparison group of male subjects, we found that the shooters' texts scored significantly higher on the Narcissistic Personality dimension as well as on the Humilated and Revengeful dimensions. Using a ranking/priorization procedure, similar to the one used for the automatic identification of sexual predators, we provide support for the validity and relevance of the proposed methodology.

  13. Social network analysis and supply chain management

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez Rodríguez

    2016-01-01

    Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.

  14. Custom Ontologies for Expanded Network Analysis

    Science.gov (United States)

    2006-12-01

    for Expanded Network Analysis. In Visualising Network Information (pp. 6-1 – 6-10). Meeting Proceedings RTO-MP-IST-063, Paper 6. Neuilly-sur-Seine...Even to this day, current research groups are working to develop an approach that involves taking all available text, video, imagery and audio and

  15. The Types of Personal Networks in the Texts Containing Descriptions of Dematerialization of a Subject

    Directory of Open Access Journals (Sweden)

    Ella V. Nesterik

    2015-01-01

    Full Text Available The article examines the types of personal networks found in the descriptions of dematerialization of a subject and reveals the role of the linguistic means expressing the category of personality in the linguistic embodiment of this phenomenon. The research is conducted at the junction of several disciplines, among which text linguistics takes the leading place. The authors come to the conclusion that dematerialization is formed in a literary text by explicit means of expression of personality – predicates of a certain type and pronominal personal network.

  16. Basic general concepts in the network analysis

    Directory of Open Access Journals (Sweden)

    Boja Nicolae

    2004-01-01

    Full Text Available This survey is concerned oneself with the study of those types of material networks which can be met both in civil engineering and also in electrotechnics, in mechanics, or in hydrotechnics, and of which behavior lead to linear problems, solvable by means of Finite Element Method and adequate algorithms. Here, it is presented a unitary theory of networks met in the domains mentioned above and this one is illustrated with examples for the structural networks in civil engineering, electric circuits, and water supply networks, but also planar or spatial mechanisms can be comprised in this theory. The attention is focused to make evident the essential proper- ties and concepts in the network analysis, which differentiate the networks under force from other types of material networks. To such a network a planar, connected, and directed or undirected graph is associated, and with some vector fields on the vertex set this graph is endowed. .

  17. Sentiment analysis of Arabic tweets using text mining techniques

    Science.gov (United States)

    Al-Horaibi, Lamia; Khan, Muhammad Badruddin

    2016-07-01

    Sentiment analysis has become a flourishing field of text mining and natural language processing. Sentiment analysis aims to determine whether the text is written to express positive, negative, or neutral emotions about a certain domain. Most sentiment analysis researchers focus on English texts, with very limited resources available for other complex languages, such as Arabic. In this study, the target was to develop an initial model that performs satisfactorily and measures Arabic Twitter sentiment by using machine learning approach, Naïve Bayes and Decision Tree for classification algorithms. The datasets used contains more than 2,000 Arabic tweets collected from Twitter. We performed several experiments to check the performance of the two algorithms classifiers using different combinations of text-processing functions. We found that available facilities for Arabic text processing need to be made from scratch or improved to develop accurate classifiers. The small functionalities developed by us in a Python language environment helped improve the results and proved that sentiment analysis in the Arabic domain needs lot of work on the lexicon side.

  18. Neural Network Prediction of Disruptions Caused by Locked Modes on J-TEXT Tokamak

    International Nuclear Information System (INIS)

    Ding Yonghua; Jin Xuesong; Chen Zhenzhen; Zhuang Ge

    2013-01-01

    Prediction of disruptions caused by locked modes using the Back-Propagation (BP) neural network is completed on J-TEXT tokamak. The network, which is based on the BP neural network, uses Mirnov coils and locked mode coils signals as input data, and outputs a signal including information of prediction of locked mode. The rate of successful prediction of locked modes is more than 90%. For intrinsic locked mode disruptions, the network can give a prewarning signal about 1 ms ahead of the locking-time. For the disruption caused by resonant magnetic perturbation (RMPs) locked modes, the network can give a prewarning signal about 10 ms ahead of the locking-time

  19. Inferring Group Processes from Computer-Mediated Affective Text Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, Jack C [ORNL; Begoli, Edmon [ORNL; Jose, Ajith [Missouri University of Science and Technology; Griffin, Christopher [Pennsylvania State University

    2011-02-01

    Political communications in the form of unstructured text convey rich connotative meaning that can reveal underlying group social processes. Previous research has focused on sentiment analysis at the document level, but we extend this analysis to sub-document levels through a detailed analysis of affective relationships between entities extracted from a document. Instead of pure sentiment analysis, which is just positive or negative, we explore nuances of affective meaning in 22 affect categories. Our affect propagation algorithm automatically calculates and displays extracted affective relationships among entities in graphical form in our prototype (TEAMSTER), starting with seed lists of affect terms. Several useful metrics are defined to infer underlying group processes by aggregating affective relationships discovered in a text. Our approach has been validated with annotated documents from the MPQA corpus, achieving a performance gain of 74% over comparable random guessers.

  20. Computational text analysis and reading comprehension exam complexity towards automatic text classification

    CERN Document Server

    Liontou, Trisevgeni

    2014-01-01

    This book delineates a range of linguistic features that characterise the reading texts used at the B2 (Independent User) and C1 (Proficient User) levels of the Greek State Certificate of English Language Proficiency exams in order to help define text difficulty per level of competence. In addition, it examines whether specific reader variables influence test takers' perceptions of reading comprehension difficulty. The end product is a Text Classification Profile per level of competence and a formula for automatically estimating text difficulty and assigning levels to texts consistently and re

  1. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  2. Multifractal analysis of complex networks

    International Nuclear Information System (INIS)

    Wang Dan-Ling; Yu Zu-Guo; Anh V

    2012-01-01

    Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box-covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions D q of some theoretical networks, namely scale-free networks, small world networks, and random networks, and one kind of real network, namely protein—protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein—protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of D q due to changes in the parameters of the theoretical network models is also discussed. (general)

  3. Semantic Linking and Contextualization for Social Forensic Text Analysis

    NARCIS (Netherlands)

    Ren, Z.; van Dijk, D.; Graus, D.; van der Knaap, N.; Henseler, H.; de Rijke, M.; Brynielsson, J.; Johansson, F.

    2013-01-01

    With the development of social media, forensic text analysis is becoming more and more challenging as forensic analysts have begun to include this information source in their practice. In this paper, we report on our recent work related to semantic search in e-discovery and propose the use of entity

  4. Effectiveness of Conceptual Change Texts: A Meta Analysis

    Science.gov (United States)

    Armagan, Fulya Öner; Keskin, Melike Özer; Akin, Beril Salman

    2017-01-01

    The purpose of this study was to determine the overall effectiveness of conceptual change texts (CCTs) on academic achievement and to find out if effectiveness was related to some characteristics of the study. It followed up a Meta-analysis research approach. 42 published and unpublished studies, published between 1995 and 2010, and 42 experiment…

  5. Effectiveness of Systemic Text Analysis in EFL Writing Instruction

    Science.gov (United States)

    Velasco Tovar, Ender

    2016-01-01

    This action research study investigates the effectiveness of a model based on the theory of systemic text analysis for the teaching of EFL writing. Employing students' pieces of writing and a teachers' survey as data collection instruments, the writing performance of a group of monolingual intermediate level adult students enrolled on a private…

  6. A Novel Text Clustering Approach Using Deep-Learning Vocabulary Network

    Directory of Open Access Journals (Sweden)

    Junkai Yi

    2017-01-01

    Full Text Available Text clustering is an effective approach to collect and organize text documents into meaningful groups for mining valuable information on the Internet. However, there exist some issues to tackle such as feature extraction and data dimension reduction. To overcome these problems, we present a novel approach named deep-learning vocabulary network. The vocabulary network is constructed based on related-word set, which contains the “cooccurrence” relations of words or terms. We replace term frequency in feature vectors with the “importance” of words in terms of vocabulary network and PageRank, which can generate more precise feature vectors to represent the meaning of text clustering. Furthermore, sparse-group deep belief network is proposed to reduce the dimensionality of feature vectors, and we introduce coverage rate for similarity measure in Single-Pass clustering. To verify the effectiveness of our work, we compare the approach to the representative algorithms, and experimental results show that feature vectors in terms of deep-learning vocabulary network have better clustering performance.

  7. A Network of Themes: A Qualitative Approach to Gerhard Richter's Text

    Directory of Open Access Journals (Sweden)

    Narvika Bovcon

    2017-07-01

    Full Text Available Gerhard Richter's books Text – a collection of painter's verbal statements about his artistic method – and Atlas – 783 sheets with images, mainly photographs and visual notations – are two archives that complement the understanding of his diverse artistic practice. The paper presents a textual model that experimentally simulates a possible ordering principle for archives. Richter's statements in the book Text are cut up and used as short quotations. Those that relate to multiple aspects of the painter's oeuvre are identified as hubs in the semantic network. The hubs are organized paratactically, as an array of different themes. The paper presents a methodological hypothesis and an experimental model that aim to connect the research of real networks with the paradigms of humanistic interpretation. We have to bear in mind that the network is a result of the researcher's interpretative approach, which is added to the initial archive included in the book Text. The breaking up of Richter's poetics into atoms of quotations is an experimental proposal of a new textuality in art history and humanities, which has its own history. In comparison to digital archives with complex interfaces that often tend to obscure the content, the elements in our experiment appear as specific configurations of the semantic network and are presented in a limited number of linear texts. The method of listing of quotations gathers the fragments into a potential “whole”, i.e. a narrativized gateway to an archive according to the researcher's interpretation.

  8. Adapting computational text analysis to social science (and vice versa

    Directory of Open Access Journals (Sweden)

    Paul DiMaggio

    2015-11-01

    Full Text Available Social scientists and computer scientist are divided by small differences in perspective and not by any significant disciplinary divide. In the field of text analysis, several such differences are noted: social scientists often use unsupervised models to explore corpora, whereas many computer scientists employ supervised models to train data; social scientists hold to more conventional causal notions than do most computer scientists, and often favor intense exploitation of existing algorithms, whereas computer scientists focus more on developing new models; and computer scientists tend to trust human judgment more than social scientists do. These differences have implications that potentially can improve the practice of social science.

  9. Network Analysis, Architecture, and Design

    CERN Document Server

    McCabe, James D

    2007-01-01

    Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua

  10. Weighted Complex Network Analysis of Pakistan Highways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2013-01-01

    Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.

  11. Text mining factor analysis (TFA) in green tea patent data

    Science.gov (United States)

    Rahmawati, Sela; Suprijadi, Jadi; Zulhanif

    2017-03-01

    Factor analysis has become one of the most widely used multivariate statistical procedures in applied research endeavors across a multitude of domains. There are two main types of analyses based on factor analysis: Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). Both EFA and CFA aim to observed relationships among a group of indicators with a latent variable, but they differ fundamentally, a priori and restrictions made to the factor model. This method will be applied to patent data technology sector green tea to determine the development technology of green tea in the world. Patent analysis is useful in identifying the future technological trends in a specific field of technology. Database patent are obtained from agency European Patent Organization (EPO). In this paper, CFA model will be applied to the nominal data, which obtain from the presence absence matrix. While doing processing, analysis CFA for nominal data analysis was based on Tetrachoric matrix. Meanwhile, EFA model will be applied on a title from sector technology dominant. Title will be pre-processing first using text mining analysis.

  12. Optimizing Short Message Text Sentiment Analysis for Mobile Device Forensics

    OpenAIRE

    Aboluwarin , Oluwapelumi; Andriotis , Panagiotis; Takasu , Atsuhiro; Tryfonas , Theo

    2016-01-01

    Part 2: MOBILE DEVICE FORENSICS; International audience; Mobile devices are now the dominant medium for communications. Humans express various emotions when communicating with others and these communications can be analyzed to deduce their emotional inclinations. Natural language processing techniques have been used to analyze sentiment in text. However, most research involving sentiment analysis in the short message domain (SMS and Twitter) do not account for the presence of non-dictionary w...

  13. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  14. Network and Ensemble Enabled Entity Extraction in Informal Text (NEEEEIT) final report

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, Philip W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shead, Timothy M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dunlavy, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-09-01

    This SAND report summarizes the activities and outcomes of the Network and Ensemble Enabled Entity Extraction in Information Text (NEEEEIT) LDRD project, which addressed improving the accuracy of conditional random fields for named entity recognition through the use of ensemble methods.

  15. Practical text mining and statistical analysis for non-structured text data applications

    CERN Document Server

    Miner, Gary; Hill, Thomas; Nisbet, Robert; Delen, Dursun

    2012-01-01

    The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase d

  16. PUBLIC SERVICE ADVERTISING: AN ANALYSIS ON TEXT AND SEMIOTICS

    Directory of Open Access Journals (Sweden)

    Ni Wayan Sukarini

    2012-07-01

    Full Text Available This study concerns with text and semiotics analysis on the use of language in public service advertising (PSA. PSA in this study is the text which is especially on health. There are three problems that are analysed in this research, namely: (1 grammatical structure and the lexical of the text; (2 the relationship of trichotomies (representamen, object, and interpretant with the three components of sign in nonverbal aspect; and (3 ideologies and messages conveyed in the verbal and nonverbal signs. Three methods applied in this research respectively including descriptive, qualitative, and interpretative. The type of data was the written one which was taken from printed media in the forms of poster and brochure. The data was collected through five procedures, they are clipping, numbering, coding, picturing, and documenting. As a scientific writing, a number of theories must be applied for the analysis. The relevant theories are semantics, semiotics, speech act, hermeneutics, language function, and text structure. These six theories were applied eclecticly in analysing the grammatical structure, lexicals, signs, and the structure of texts in order to elaborate the meaning, ideology, and message which were being conveyed through the texts of PSA. The result of the analysis showed that the grammatical structure applied in the PSA of health could be classified into the simple structure in the forms of phrase, clause, and sentence. The use of verbs dominated initially in order to express the imperative meaning but still had the purpose of being persuasive. Kinds of lexicals found were very close to disease, reproduction, and health either the general terms, for example victims, medicine or the specific ones like HIV/AIDS, Odha, perinatal, nifas, jampersal, sadari. From the nonverbal aspect, the relationship of trichotomy with the three of sign components are more realistics in the Object with its three sub components. Triadic relationship of three sub

  17. PUBLIC SERVICE ADVERTISING: AN ANALYSIS ON TEXT AND SEMIOTICS

    Directory of Open Access Journals (Sweden)

    Ni Wayan Sukarini

    2015-07-01

    Full Text Available This study concerns with text and semiotics analysis on the use of language in public service advertising (PSA. PSA in this study is the text which is especially on health. There are three problems that are analysed in this research, namely: (1 grammatical structure and the lexical of the text; (2 the relationship of trichotomies (representamen, object, and interpretant with the three components of sign in nonverbal aspect; and (3 ideologies and messages conveyed in the verbal and nonverbal signs. Three methods applied in this research respectively including descriptive, qualitative, and interpretative. The type of data was the written one which was taken from printed media in the forms of poster and brochure. The data was collected through five procedures, they are clipping, numbering, coding, picturing, and documenting. As a scientific writing, a number of theories must be applied for the analysis. The relevant theories are semantics, semiotics, speech act, hermeneutics, language function, and text structure. These six theories were applied eclecticly in analysing the grammatical structure, lexicals, signs, and the structure of texts in order to elaborate the meaning, ideology, and message which were being conveyed through the texts of PSA. The result of the analysis showed that the grammatical structure applied in the PSA of health could be classified into the simple structure in the forms of phrase, clause, and sentence. The use of verbs dominated initially in order to express the imperative meaning but still had the purpose of being persuasive. Kinds of lexicals found were very close to disease, reproduction, and health either the general terms, for example victims, medicine or the specific ones like HIV/AIDS, Odha, perinatal, nifas, jampersal, sadari. From the nonverbal aspect, the relationship of trichotomy with the three of sign components are more realistics in the Object with its three sub components. Triadic relationship of three sub

  18. PageRank without hyperlinks: Reranking with PubMed related article networks for biomedical text retrieval

    Directory of Open Access Journals (Sweden)

    Lin Jimmy

    2008-06-01

    Full Text Available Abstract Background Graph analysis algorithms such as PageRank and HITS have been successful in Web environments because they are able to extract important inter-document relationships from manually-created hyperlinks. We consider the application of these techniques to biomedical text retrieval. In the current PubMed® search interface, a MEDLINE® citation is connected to a number of related citations, which are in turn connected to other citations. Thus, a MEDLINE record represents a node in a vast content-similarity network. This article explores the hypothesis that these networks can be exploited for text retrieval, in the same manner as hyperlink graphs on the Web. Results We conducted a number of reranking experiments using the TREC 2005 genomics track test collection in which scores extracted from PageRank and HITS analysis were combined with scores returned by an off-the-shelf retrieval engine. Experiments demonstrate that incorporating PageRank scores yields significant improvements in terms of standard ranked-retrieval metrics. Conclusion The link structure of content-similarity networks can be exploited to improve the effectiveness of information retrieval systems. These results generalize the applicability of graph analysis algorithms to text retrieval in the biomedical domain.

  19. DHARMAYATRA IN THE DWIJENDRA TATTWA TEXT ANALYSIS OF RECEPTION

    Directory of Open Access Journals (Sweden)

    Ida Bagus Rai Putra

    2012-11-01

    Full Text Available The object of the study is Dwijendra Text (hereinafter abbreviated to DT. It containsinteresting narrations and is importantly related to the dharmayatra, the holy religious journeymade by Dang Hyang Nirartha, the charismatic figure, in Bali, Lombok and Sumbawa. Beforethe analysis of reception was conducted, the corpus text of the DT texts completely andstructurally telling the religious journey made by Dang Hyang Nirartha was successfullydetermined. The analysis in this study was made to answer the following questions: what is thenarrative structure of the DT text; what are the enlightenment image entities of the dharmayatraof the DT text; how do people appreciate the dharmayatra of the DT text? The answers to thenarrative structure of the DT text; the image entities and the appreciation provided by people arethe main objectives of this study.The theories adopted in this study are the theory of reception introduced by Jauss, thetheory of semiotics introduced by Pierce and the theory of mythology introduced by Barthes. Asa qualitative study, the data needed were collected by the methods of observation, note taking,documentation and interview supported with a sound recorder and pictures. The results of theanalysis are informally presented, meaning that they are verbally described in the form of wordswhich are systematically composed based on the problems formulated in this study.The analysis of the narrative structure of the DT text contains narrative units which are inthe forms of theme, characters and plots. They all unite to form stories which are mythological,legendary, symbolic, hagiographic and suggestive in nature. Based on the analysis ofenlightenment image entities, it can be concluded that there are three basic entities leading to thecreation of the DT text. They are first enlightenment; second protection of Hinduism; and thirdconstruction of temple institutions. Based on the reception analysis, it can be concluded thatpeople, through

  20. Forecast of TEXT plasma disruptions using soft X rays as input signal in a neural network

    International Nuclear Information System (INIS)

    Vannucci, A.; Oliveira, K.A.; Tajima, T.

    1999-01-01

    A feedforward neural network with two hidden layers is used to forecast major and minor disruptive instabilities in TEXT tokamak discharges. Using the experimental data of soft X ray signals as input data, the neural network is trained with one disruptive plasma discharge, and a different disruptive discharge is used for validation. After being properly trained, the networks, with the same set of weights, are used to forecast disruptions in two other plasma discharges. It is observed that the neural network is able to predict the occurrence of a disruption more than 3 ms in advance. This time interval is almost 3 times longer than the one already obtained previously when a magnetic signal from a Mirnov coil was used to feed the neural networks. Visually no indication of an upcoming disruption is seen from the experimental data this far back from the time of disruption. Finally, by observing the predictive behaviour of the network for the disruptive discharges analysed and comparing the soft X ray data with the corresponding magnetic experimental signal, it is conjectured about where inside the plasma column the disruption first started. (author)

  1. A Review Paper On Exploring Text Link And Spacial-Temporal Information In Social Media Networks

    Directory of Open Access Journals (Sweden)

    Dr. Mamta Madan

    2015-03-01

    Full Text Available ABSTRACT The objective of this paper is to have a literature review on the various methods to mine the knowledge from the social media by taking advantage of embedded heterogeneous information. Specifically we are trying to review different types of mining framework which provides us useful information from these networks that have heterogeneous data types including text spacial-temporal and data association LINK information. Firstly we will discuss the link mining to study the link structure with respect to Social Media SM. Secondly we summarize the various text mining models thirdly we shall review spacial as well the temporal models to extract or detect the frequent related topics from SM. Fourthly we will try to figure out few improvised models that take advantage of the link textual temporal and spacial information which motivates to discover progressive principles and fresh methodologies for DM Data Mining in social media networks SMNs.

  2. Interdisciplinary Approach to the Mental Lexicon: Neural Network and Text Extraction From Long-term Memory

    Directory of Open Access Journals (Sweden)

    Vardan G. Arutyunyan

    2013-01-01

    Full Text Available The paper touches upon the principles of mental lexicon organization in the light of recent research in psycho- and neurolinguistics. As a focal point of discussion two main approaches to mental lexicon functioning are considered: modular or dual-system approach, developed within generativism and opposite single-system approach, representatives of which are the connectionists and supporters of network models. The paper is an endeavor towards advocating the viewpoint that mental lexicon is complex psychological organization based upon specific composition of neural network. In this regard, the paper further elaborates on the matter of storing text in human mental space and introduces a model of text extraction from long-term memory. Based upon data available, the author develops a methodology of modeling structures of knowledge representation in the systems of artificial intelligence.

  3. New baseline correction algorithm for text-line recognition with bidirectional recurrent neural networks

    Science.gov (United States)

    Morillot, Olivier; Likforman-Sulem, Laurence; Grosicki, Emmanuèle

    2013-04-01

    Many preprocessing techniques have been proposed for isolated word recognition. However, recently, recognition systems have dealt with text blocks and their compound text lines. In this paper, we propose a new preprocessing approach to efficiently correct baseline skew and fluctuations. Our approach is based on a sliding window within which the vertical position of the baseline is estimated. Segmentation of text lines into subparts is, thus, avoided. Experiments conducted on a large publicly available database (Rimes), with a BLSTM (bidirectional long short-term memory) recurrent neural network recognition system, show that our baseline correction approach highly improves performance.

  4. Feasibility and Utility of Lexical Analysis for Occupational Health Text.

    Science.gov (United States)

    Harber, Philip; Leroy, Gondy

    2017-06-01

    Assess feasibility and potential utility of natural language processing (NLP) for storing and analyzing occupational health data. Basic NLP lexical analysis methods were applied to 89,000 Mine Safety and Health Administration (MSHA) free text records. Steps included tokenization, term and co-occurrence counts, term annotation, and identifying exposure-health effect relationships. Presence of terms in the Unified Medical Language System (UMLS) was assessed. The methods efficiently demonstrated common exposures, health effects, and exposure-injury relationships. Many workplace terms are not present in UMLS or map inaccurately. Use of free text rather than narrowly defined numerically coded fields is feasible, flexible, and efficient. It has potential to encourage workers and clinicians to provide more data and to support automated knowledge creation. The lexical method used is easily generalizable to other areas. The UMLS vocabularies should be enhanced to be relevant to occupational health.

  5. Spectral signature verification using statistical analysis and text mining

    Science.gov (United States)

    DeCoster, Mallory E.; Firpi, Alexe H.; Jacobs, Samantha K.; Cone, Shelli R.; Tzeng, Nigel H.; Rodriguez, Benjamin M.

    2016-05-01

    In the spectral science community, numerous spectral signatures are stored in databases representative of many sample materials collected from a variety of spectrometers and spectroscopists. Due to the variety and variability of the spectra that comprise many spectral databases, it is necessary to establish a metric for validating the quality of spectral signatures. This has been an area of great discussion and debate in the spectral science community. This paper discusses a method that independently validates two different aspects of a spectral signature to arrive at a final qualitative assessment; the textual meta-data and numerical spectral data. Results associated with the spectral data stored in the Signature Database1 (SigDB) are proposed. The numerical data comprising a sample material's spectrum is validated based on statistical properties derived from an ideal population set. The quality of the test spectrum is ranked based on a spectral angle mapper (SAM) comparison to the mean spectrum derived from the population set. Additionally, the contextual data of a test spectrum is qualitatively analyzed using lexical analysis text mining. This technique analyzes to understand the syntax of the meta-data to provide local learning patterns and trends within the spectral data, indicative of the test spectrum's quality. Text mining applications have successfully been implemented for security2 (text encryption/decryption), biomedical3 , and marketing4 applications. The text mining lexical analysis algorithm is trained on the meta-data patterns of a subset of high and low quality spectra, in order to have a model to apply to the entire SigDB data set. The statistical and textual methods combine to assess the quality of a test spectrum existing in a database without the need of an expert user. This method has been compared to other validation methods accepted by the spectral science community, and has provided promising results when a baseline spectral signature is

  6. Social science and linguistic text analysis of nurses’ records

    DEFF Research Database (Denmark)

    Buus, N.; Hamilton, B. E.

    2016-01-01

    that included analyses of the social and linguistic features of records and recording. Two reviewers extracted data using established criteria for the evaluation of qualitative research papers. A common characteristic of nursing records was the economical use of language with local meanings that conveyed little......' disturbing behaviour. The text analysis methods were rarely transparent in the articles, which could suggest research quality problems. For most articles, the significance of the findings was substantiated more by theoretical readings of the institutional settings than by the analysis of textual data. More...... probing empirical research of nurses' records and a wider range of theoretical perspectives has the potential to expose the situated meanings of nursing work in healthcare organisations. © 2015 John Wiley & Sons Ltd....

  7. Complex Network Analysis of Guangzhou Metro

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2015-11-01

    Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.

  8. Extending Stochastic Network Calculus to Loss Analysis

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2013-01-01

    Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.

  9. PageRank without hyperlinks: reranking with PubMed related article networks for biomedical text retrieval.

    Science.gov (United States)

    Lin, Jimmy

    2008-06-06

    Graph analysis algorithms such as PageRank and HITS have been successful in Web environments because they are able to extract important inter-document relationships from manually-created hyperlinks. We consider the application of these techniques to biomedical text retrieval. In the current PubMed(R) search interface, a MEDLINE(R) citation is connected to a number of related citations, which are in turn connected to other citations. Thus, a MEDLINE record represents a node in a vast content-similarity network. This article explores the hypothesis that these networks can be exploited for text retrieval, in the same manner as hyperlink graphs on the Web. We conducted a number of reranking experiments using the TREC 2005 genomics track test collection in which scores extracted from PageRank and HITS analysis were combined with scores returned by an off-the-shelf retrieval engine. Experiments demonstrate that incorporating PageRank scores yields significant improvements in terms of standard ranked-retrieval metrics. The link structure of content-similarity networks can be exploited to improve the effectiveness of information retrieval systems. These results generalize the applicability of graph analysis algorithms to text retrieval in the biomedical domain.

  10. HPIminer: A text mining system for building and visualizing human protein interaction networks and pathways.

    Science.gov (United States)

    Subramani, Suresh; Kalpana, Raja; Monickaraj, Pankaj Moses; Natarajan, Jeyakumar

    2015-04-01

    The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Hybrid neural network for density limit disruption prediction and avoidance on J-TEXT tokamak

    Science.gov (United States)

    Zheng, W.; Hu, F. R.; Zhang, M.; Chen, Z. Y.; Zhao, X. Q.; Wang, X. L.; Shi, P.; Zhang, X. L.; Zhang, X. Q.; Zhou, Y. N.; Wei, Y. N.; Pan, Y.; J-TEXT team

    2018-05-01

    Increasing the plasma density is one of the key methods in achieving an efficient fusion reaction. High-density operation is one of the hot topics in tokamak plasmas. Density limit disruptions remain an important issue for safe operation. An effective density limit disruption prediction and avoidance system is the key to avoid density limit disruptions for long pulse steady state operations. An artificial neural network has been developed for the prediction of density limit disruptions on the J-TEXT tokamak. The neural network has been improved from a simple multi-layer design to a hybrid two-stage structure. The first stage is a custom network which uses time series diagnostics as inputs to predict plasma density, and the second stage is a three-layer feedforward neural network to predict the probability of density limit disruptions. It is found that hybrid neural network structure, combined with radiation profile information as an input can significantly improve the prediction performance, especially the average warning time ({{T}warn} ). In particular, the {{T}warn} is eight times better than that in previous work (Wang et al 2016 Plasma Phys. Control. Fusion 58 055014) (from 5 ms to 40 ms). The success rate for density limit disruptive shots is above 90%, while, the false alarm rate for other shots is below 10%. Based on the density limit disruption prediction system and the real-time density feedback control system, the on-line density limit disruption avoidance system has been implemented on the J-TEXT tokamak.

  12. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  13. Translation Analysis on Civil Engineering Text Produced by Machine Translator

    Directory of Open Access Journals (Sweden)

    Sutopo Anam

    2018-01-01

    Full Text Available Translation is extremely needed in communication since people have serious problem in the language used. Translation activity is done by the person in charge for translating the material. Translation activity is also able to be done by machine. It is called machine translation, reflected in the programs developed by programmer. One of them is Transtool. Many people used Transtool for helping them in solving the problem related with translation activities. This paper wants to deliver how important is the Transtool program, how effective is Transtool program and how is the function of Transtool for human business. This study applies qualitative research. The sources of data were document and informant. This study used documentation and in dept-interviewing as the techniques for collecting data. The collected data were analyzed by using interactive analysis. The results of the study show that, first; Transtool program is helpful for people in translating the civil engineering text and it functions as the aid or helper, second; the working of Transtool software program is effective enough and third; the result of translation produced by Transtool is good for short and simple sentences and not readable, not understandable and not accurate for long sentences (compound, complex and compound complex thought the result is informative. The translated material must be edited by the professional translator.

  14. Constructing an Intelligent Patent Network Analysis Method

    Directory of Open Access Journals (Sweden)

    Chao-Chan Wu

    2012-11-01

    Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.

  15. Intertextuality within the linguistic analysis of a literary text

    Directory of Open Access Journals (Sweden)

    Л Н Лунькова

    2008-12-01

    Full Text Available The article is devoted to the phenomenon of precedent texts in fiction, the ways they are introduced into it and the possibilities of their linguistic interpretation within secondary texts.

  16. An open stylometric system based on multilevel text analysis

    Directory of Open Access Journals (Sweden)

    Maciej Eder

    2017-12-01

    Full Text Available An open stylometric system based on multilevel text analysis Stylometric techniques are usually applied to a limited number of typical tasks, such as authorship attribution, genre analysis, or gender studies. However, they could be applied to several tasks beyond this canonical set, if only stylometric tools were more accessible to users from different areas of the humanities and social sciences. This paper presents a general idea, followed by a fully functional prototype of an open stylometric system that facilitates its wide use through to two aspects: technical and research flexibility. The system relies on a server installation combined with a web-based user interface. This frees the user from the necessity of installing any additional software. At the same time, the system offers a variety of ways in which the input texts can be analysed: they include not only the usual lexical level, but also deep-level linguistic features. This enables a range of possible applications, from typical stylometric tasks to the semantic analysis of text documents. The internal architecture of the system relies on several well-known software packages: a collection of language tools (for text pre-processing, Stylo (for stylometric analysis and Cluto (for text clustering. The paper presents: (1 The idea behind the system from the user’s perspective. (2 The architecture of the system, with a focus on data processing. (3 Features for text description. (4 The use of analytical systems such as Stylo and Cluto. The presentation is illustrated with example applications.   Otwarty system stylometryczny wykorzystujący wielopoziomową analizę języka  Zastosowania metod stylometrycznych na ogół ograniczają się do kilku typowych problemów badawczych, takich jak atrybucja autorska, styl gatunków literackich czy studia nad zróżnicowaniem stylistycznym kobiet i mężczyzn. Z pewnością dałoby się je z powodzeniem zastosować również do wielu innych problem

  17. Good news or bad news: Conducting sentiment analysis on Dutch texts to distinguish between positive and negative relations

    NARCIS (Netherlands)

    van Atteveldt, W.H.; Kleinnijenhuis, J.; Ruigrok, N.; Schlobach, S.

    2008-01-01

    Many research questions in political communication can be answered by representing text as a network of positive or negative relations between actors and issues such as conducted by semantic network analysis. This article presents a system for automatically determining the polarity

  18. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  19. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  20. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  1. Translation Analysis on Civil Engineering Text Produced by Machine Translator

    Science.gov (United States)

    Sutopo, Anam

    2018-02-01

    Translation is extremely needed in communication since people have serious problem in the language used. Translation activity is done by the person in charge for translating the material. Translation activity is also able to be done by machine. It is called machine translation, reflected in the programs developed by programmer. One of them is Transtool. Many people used Transtool for helping them in solving the problem related with translation activities. This paper wants to deliver how important is the Transtool program, how effective is Transtool program and how is the function of Transtool for human business. This study applies qualitative research. The sources of data were document and informant. This study used documentation and in dept-interviewing as the techniques for collecting data. The collected data were analyzed by using interactive analysis. The results of the study show that, first; Transtool program is helpful for people in translating the civil engineering text and it functions as the aid or helper, second; the working of Transtool software program is effective enough and third; the result of translation produced by Transtool is good for short and simple sentences and not readable, not understandable and not accurate for long sentences (compound, complex and compound complex) thought the result is informative. The translated material must be edited by the professional translator.

  2. Network value and optimum analysis on the mode of networked marketing in TV media

    Directory of Open Access Journals (Sweden)

    Xiao Dongpo

    2012-12-01

    Full Text Available Purpose: With the development of the networked marketing in TV media, it is important to do the research on network value and optimum analysis in this field.Design/methodology/approach: According to the research on the mode of networked marketing in TV media and Correlation theory, the essence of media marketing is creating, spreading and transferring values. The Participants of marketing value activities are in network, and value activities proceed in networked form. Network capability is important to TV media marketing activities.Findings: This article raises the direction of research of analysis and optimization about network based on the mode of networked marketing in TV media by studying TV media marketing Development Mechanism , network analysis and network value structure.

  3. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  4. Social network analysis: Presenting an underused method for nursing research.

    Science.gov (United States)

    Parnell, James Michael; Robinson, Jennifer C

    2018-06-01

    This paper introduces social network analysis as a versatile method with many applications in nursing research. Social networks have been studied for years in many social science fields. The methods continue to advance but remain unknown to most nursing scholars. Discussion paper. English language and interpreted literature was searched from Ovid Healthstar, CINAHL, PubMed Central, Scopus and hard copy texts from 1965 - 2017. Social network analysis first emerged in nursing literature in 1995 and appears minimally through present day. To convey the versatility and applicability of social network analysis in nursing, hypothetical scenarios are presented. The scenarios are illustrative of three approaches to social network analysis and include key elements of social network research design. The methods of social network analysis are underused in nursing research, primarily because they are unknown to most scholars. However, there is methodological flexibility and epistemological versatility capable of supporting quantitative and qualitative research. The analytic techniques of social network analysis can add new insight into many areas of nursing inquiry, especially those influenced by cultural norms. Furthermore, visualization techniques associated with social network analysis can be used to generate new hypotheses. Social network analysis can potentially uncover findings not accessible through methods commonly used in nursing research. Social networks can be analysed based on individual-level attributes, whole networks and subgroups within networks. Computations derived from social network analysis may stand alone to answer a research question or incorporated as variables into robust statistical models. © 2018 John Wiley & Sons Ltd.

  5. Analysis of Tense Interferential of Verbs in Old Narrative Texts

    Directory of Open Access Journals (Sweden)

    Mahmood Barati khansari

    2014-08-01

    Full Text Available Abstract One of the admirable methods to compose stories in Persian verse and prose, is the present Tense verbs in the meaning of past tense. This grammatical point has been hidden in the grammarian and stylist's point of view although it has been repeatedly mentioned in the texts and this point has been not mentioned in the grammatical books but some of the investigators and literati have pointed out it in their correction works. We mention their sayings: firstly, Allame Qazvini, doubtfully, mentions the interferential times of the verbs and inconsistencies of the Tenses in the correction of texts of Jahangoshaye – Joveini Book. He writes in the second footnote 2-3, that the verb Mikonam( I do is in the form of present Tense but its meaning is in the simple past Tense. As it has been observed, in the most old books the form of the verb is in the present tense but its meaning is in simple Tense ( Joveini, 1367, p. 357. Later, Fruzanfar in the correction of grammatical notes of ouhadoddin Kermani's Manaqeb, points to this point and counted it of the Eltefat Literary art ( Fruzanfar, 1347. P. 61 Mohammad Roushan informed this grammatical rule and he writes in the introduction of his book: the application of this kind of verb that is not on the basis of the dependent and independent verbs (Khagushi, 1361, p. 24. Yusofi in his correction on Bidpay Stories points to this grammatical point that it has been hidden of correctors of the book. Ha says that this grammatical point is the prose characteristic of the book. He adds that the characteristic includes in the present stories (Yusofi, 1364, p. 36. Finally, Dr. shfi'ee in his valuable notes on the Mateqol altei their mentions that this style of telling stories – the verb in the present Tense- is less in verse but the verbs in the same meaning and forms were used in old Persian as in the present time but there were inconsistence in the time and the form of the verbs in the past and the grammarians

  6. Analysis of Tense Interferential of Verbs in Old Narrative Texts

    Directory of Open Access Journals (Sweden)

    Amir Zeighami

    2014-07-01

    Full Text Available Abstract One of the admirable methods to compose stories in Persian verse and prose, is the present Tense verbs in the meaning of past tense. This grammatical point has been hidden in the grammarian and stylist's point of view although it has been repeatedly mentioned in the texts and this point has been not mentioned in the grammatical books but some of the investigators and literati have pointed out it in their correction works. We mention their sayings: firstly, Allame Qazvini, doubtfully, mentions the interferential times of the verbs and inconsistencies of the Tenses in the correction of texts of Jahangoshaye – Joveini Book. He writes in the second footnote 2-3, that the verb Mikonam( I do is in the form of present Tense but its meaning is in the simple past Tense. As it has been observed, in the most old books the form of the verb is in the present tense but its meaning is in simple Tense ( Joveini, 1367, p. 357. Later, Fruzanfar in the correction of grammatical notes of ouhadoddin Kermani's Manaqeb, points to this point and counted it of the Eltefat Literary art ( Fruzanfar, 1347. P. 61 Mohammad Roushan informed this grammatical rule and he writes in the introduction of his book: the application of this kind of verb that is not on the basis of the dependent and independent verbs (Khagushi, 1361, p. 24. Yusofi in his correction on Bidpay Stories points to this grammatical point that it has been hidden of correctors of the book. Ha says that this grammatical point is the prose characteristic of the book. He adds that the characteristic includes in the present stories (Yusofi, 1364, p. 36. Finally, Dr. shfi'ee in his valuable notes on the Mateqol altei their mentions that this style of telling stories – the verb in the present Tense- is less in verse but the verbs in the same meaning and forms were used in old Persian as in the present time but there were inconsistence in the time and the form of the verbs in the past and

  7. Transmission analysis in WDM networks

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    1999-01-01

    This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...

  8. Modular analysis of biological networks.

    Science.gov (United States)

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  9. Fast network centrality analysis using GPUs

    Directory of Open Access Journals (Sweden)

    Shi Zhiao

    2011-05-01

    Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.

  10. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    Directory of Open Access Journals (Sweden)

    Kim Hyun

    2011-12-01

    Full Text Available Abstract Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  11. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  12. An Analysis on Reading Texts in Teaching Turkish to Foreigners

    Directory of Open Access Journals (Sweden)

    Adem İŞCAN

    2017-09-01

    Full Text Available Being one of the four basic language skills, reading has a great importance in teaching Turkish to foreigners. It is required to develop reading skills to develop vocabulary. There have been some problems in teaching Turkish as second language. These problems are generally related to difference in alphabet, inadequacy of the sources used in teaching Turkish, methods and techniques used and the texts used. The basic sources used in teaching Turkish to foreigners are texts. This study aims at determination of the opinions of students in Gaziosmanpaşa University and Ondokuz Mayıs University Turkish Education and Application Center (TOMER concerning Turkish reading texts. General browsing method was used in the study. The questionnaire comprising of 24 items was applied to 25 students in beginner level and 7 students in advanced level. With this study, it is foreseen to arrange the texts being the key stone according to the wishes of and in compliance with the levels of students; giving importance to pre-reading, reading and post-reading activities and including questions with short-answer about the text as well as questions to develop high level skills.

  13. Models as Tools of Analysis of a Network Organisation

    Directory of Open Access Journals (Sweden)

    Wojciech Pająk

    2013-06-01

    Full Text Available The paper presents models which may be applied as tools of analysis of a network organisation. The starting point of the discussion is defining the following terms: supply chain and network organisation. Further parts of the paper present basic assumptions analysis of a network organisation. Then the study characterises the best known models utilised in analysis of a network organisation. The purpose of the article is to define the notion and the essence of network organizations and to present the models used for their analysis.

  14. NET-2 Network Analysis Program

    International Nuclear Information System (INIS)

    Malmberg, A.F.

    1974-01-01

    The NET-2 Network Analysis Program is a general purpose digital computer program which solves the nonlinear time domain response and the linearized small signal frequency domain response of an arbitrary network of interconnected components. NET-2 is capable of handling a variety of components and has been applied to problems in several engineering fields, including electronic circuit design and analysis, missile flight simulation, control systems, heat flow, fluid flow, mechanical systems, structural dynamics, digital logic, communications network design, solid state device physics, fluidic systems, and nuclear vulnerability due to blast, thermal, gamma radiation, neutron damage, and EMP effects. Network components may be selected from a repertoire of built-in models or they may be constructed by the user through appropriate combinations of mathematical, empirical, and topological functions. Higher-level components may be defined by subnetworks composed of any combination of user-defined components and built-in models. The program provides a modeling capability to represent and intermix system components on many levels, e.g., from hole and electron spatial charge distributions in solid state devices through discrete and integrated electronic components to functional system blocks. NET-2 is capable of simultaneous computation in both the time and frequency domain, and has statistical and optimization capability. Network topology may be controlled as a function of the network solution. (U.S.)

  15. Learning text representation using recurrent convolutional neural network with highway layers

    OpenAIRE

    Wen, Ying; Zhang, Weinan; Luo, Rui; Wang, Jun

    2016-01-01

    Recently, the rapid development of word embedding and neural networks has brought new inspiration to various NLP and IR tasks. In this paper, we describe a staged hybrid model combining Recurrent Convolutional Neural Networks (RCNN) with highway layers. The highway network module is incorporated in the middle takes the output of the bi-directional Recurrent Neural Network (Bi-RNN) module in the first stage and provides the Convolutional Neural Network (CNN) module in the last stage with the i...

  16. Expanding the Notion of Historical Text through Historic Building Analysis

    Science.gov (United States)

    Baron, Christine; Dobbs, Christina

    2015-01-01

    Among the disciplinary skills necessary for understanding in the social studies classroom is the ability to determine context and build meaning from past events. Historical buildings are an important component of historical study, and they serve as a type of nontraditional text that students can decode and use to construct meaning about multiple…

  17. Temporal analysis of text data using latent variable models

    DEFF Research Database (Denmark)

    Mølgaard, Lasse Lohilahti; Larsen, Jan; Goutte, Cyril

    2009-01-01

    Detecting and tracking of temporal data is an important task in multiple applications. In this paper we study temporal text mining methods for Music Information Retrieval. We compare two ways of detecting the temporal latent semantics of a corpus extracted from Wikipedia, using a stepwise...

  18. Peer Interaction in Text Chat: Qualitative Analysis of Chat Transcripts

    Science.gov (United States)

    Golonka, Ewa M.; Tare, Medha; Bonilla, Carrie

    2017-01-01

    Prior research has shown that intermediate-level adult learners of Russian who worked interactively with partners using text chat improved their vocabulary and oral production skills more than students who worked independently (Tare et al., 2014). Drawing on the dataset from Tare et al. (2014), the current study follows up to explore the nature of…

  19. Churn prediction based on text mining and CRM data analysis

    OpenAIRE

    Schatzmann, Anders; Heitz, Christoph; Münch, Thomas

    2014-01-01

    Within quantitative marketing, churn prediction on a single customer level has become a major issue. An extensive body of literature shows that, today, churn prediction is mainly based on structured CRM data. However, in the past years, more and more digitized customer text data has become available, originating from emails, surveys or scripts of phone calls. To date, this data source remains vastly untapped for churn prediction, and corresponding methods are rarely described in literature. ...

  20. A Text Analysis of the Marine Corps Fitness Report

    Science.gov (United States)

    2017-06-01

    43 3. Support Vector Machine .............................................................44 4. Boosting ...demonstrated below: Original text “#1 captain in the battalion. MRO is one of the most talented and gifted minds we have in the Marine Corps. He is a...officer, place in billets where the Corps needs are best and brightest. Finally, there is no doubt in my mind , this officer’s will and should be

  1. A text analysis of the poems of Sylvia Plath.

    Science.gov (United States)

    Lester, David; McSwain, Stephanie

    2011-08-01

    Changes in the words used in the poems of Sylvia Plath were examined using the Linguistic Inquiry and Word Count, a computer program for analyzing the content of texts. Major changes in the content of her poems were observed over the course of Plath's career, as well as in the final year of her life. As the time of her suicide came closer, words expressing positive emotions became more frequent, while words concerned with causation and insight became less frequent.

  2. Changing Text: A Social Semiotic Analysis of Textbooks

    Directory of Open Access Journals (Sweden)

    Jeff Bezemer

    2010-12-01

    Full Text Available In this paper we provide a multimodal account of historical changes in secondary school textbooks in England and their social significance. Adopting a social semiotic approach to text and text making we review learning resources across core subjects of the English national curriculum, English, Science and Mathematics. Comparing textbooks from the 1930s, 1980s and 2000s, we show that a all modes operating in textbooks -typography, image, writing and layout- contribute to meaning and potential for learning b that the use of these modes has changed between 1930 and now, in ways significant for social relations between and across makers and users of textbooks. Designers and readers / learners now take responsibility for coherence, which was previously the exclusive domain of authors. Where previously reading paths were fixed by makers it may now be left to learners to establish these according to their interests. For users of textbooks the changes in design demand new forms of ‘literacy’; a fluency not only in ‘reading’ writing, image, typography and layout jointly, but in the overall design of learning environments. We place these changes against the backdrop of wider social changes and features of the contemporary media landscape, recognizing a shift from stability, canonicity and vertical power structures to ‘horizontal’, more open, participatory relations in the production of knowledge.

  3. Automatic Text Analysis Based on Transition Phenomena of Word Occurrences

    Science.gov (United States)

    Pao, Miranda Lee

    1978-01-01

    Describes a method of selecting index terms directly from a word frequency list, an idea originally suggested by Goffman. Results of the analysis of word frequencies of two articles seem to indicate that the automated selection of index terms from a frequency list holds some promise for automatic indexing. (Author/MBR)

  4. Social network analysis of study environment

    Directory of Open Access Journals (Sweden)

    Blaženka Divjak

    2010-06-01

    Full Text Available Student working environment influences student learning and achievement level. In this respect social aspects of students’ formal and non-formal learning play special role in learning environment. The main research problem of this paper is to find out if students' academic performance influences their position in different students' social networks. Further, there is a need to identify other predictors of this position. In the process of problem solving we use the Social Network Analysis (SNA that is based on the data we collected from the students at the Faculty of Organization and Informatics, University of Zagreb. There are two data samples: in the basic sample N=27 and in the extended sample N=52. We collected data on social-demographic position, academic performance, learning and motivation styles, student status (full-time/part-time, attitudes towards individual and teamwork as well as informal cooperation. Afterwards five different networks (exchange of learning materials, teamwork, informal communication, basic and aggregated social network were constructed. These networks were analyzed with different metrics and the most important were betweenness, closeness and degree centrality. The main result is, firstly, that the position in a social network cannot be forecast only by academic success and, secondly, that part-time students tend to form separate groups that are poorly connected with full-time students. In general, position of a student in social networks in study environment can influence student learning as well as her/his future employability and therefore it is worthwhile to be investigated.

  5. Mining Sequential Update Summarization with Hierarchical Text Analysis

    Directory of Open Access Journals (Sweden)

    Chunyun Zhang

    2016-01-01

    Full Text Available The outbreak of unexpected news events such as large human accident or natural disaster brings about a new information access problem where traditional approaches fail. Mostly, news of these events shows characteristics that are early sparse and later redundant. Hence, it is very important to get updates and provide individuals with timely and important information of these incidents during their development, especially when being applied in wireless and mobile Internet of Things (IoT. In this paper, we define the problem of sequential update summarization extraction and present a new hierarchical update mining system which can broadcast with useful, new, and timely sentence-length updates about a developing event. The new system proposes a novel method, which incorporates techniques from topic-level and sentence-level summarization. To evaluate the performance of the proposed system, we apply it to the task of sequential update summarization of temporal summarization (TS track at Text Retrieval Conference (TREC 2013 to compute four measurements of the update mining system: the expected gain, expected latency gain, comprehensiveness, and latency comprehensiveness. Experimental results show that our proposed method has good performance.

  6. Network Analysis Tools: from biological networks to clusters and pathways.

    Science.gov (United States)

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  7. Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach.

    Science.gov (United States)

    Zhen, Cheng; Zhu, Caizhong; Chen, Haoyang; Xiong, Yiru; Tan, Junyuan; Chen, Dong; Li, Jin

    2017-02-21

    To systematically explore the molecular mechanism for hepatocellular carcinoma (HCC) metastasis and identify regulatory genes with text mining methods. Genes with highest frequencies and significant pathways related to HCC metastasis were listed. A handful of proteins such as EGFR, MDM2, TP53 and APP, were identified as hub nodes in PPI (protein-protein interaction) network. Compared with unique genes for HBV-HCCs, genes particular to HCV-HCCs were less, but may participate in more extensive signaling processes. VEGFA, PI3KCA, MAPK1, MMP9 and other genes may play important roles in multiple phenotypes of metastasis. Genes in abstracts of HCC-metastasis literatures were identified. Word frequency analysis, KEGG pathway and PPI network analysis were performed. Then co-occurrence analysis between genes and metastasis-related phenotypes were carried out. Text mining is effective for revealing potential regulators or pathways, but the purpose of it should be specific, and the combination of various methods will be more useful.

  8. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs......To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social......), and stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative example of a model for a strategic information network within a local government. We draw inferences about the structural role played by individuals recognized as key innovators and conclude that such an approach...

  9. Analysis on policies text of air pollution control in Beijing

    Science.gov (United States)

    ZHANG, Yujuan; WANG, Wen; ZHANG, Wei

    2017-04-01

    Air pollution is one of the most serious environmental problems, and it is also the inevitable result of the extensive economic development mode. The matter of air pollution in Beijing is becoming more and more serious since 2010, which has a great impact on the normal social production, living and human health. These hazards have been highly valued by the whole society. More than 30 years have been pasted since controlling the air pollution and the system of policies was relatively complete. These policies have improved the quality of atmospheric and prevented environment further deterioration. The policies performance is not obvious. It is urgent trouble to improve policy performance. This paper analyzes the 103 policies text of air pollution control in Beijing, and researches status, history and problems, and put forward suggestions on policy improvement and innovation at last.

  10. Frequency and Content Analysis of CFS in Medical Text Books

    Science.gov (United States)

    Jason, Leonard A.; Paavola, Erin; Porter, Nicole; Morello, Morgan L.

    2013-01-01

    Textbooks are a cornerstone in the training of medical staff and students, and they are an important source of references and reviews for these professionals. The objective of this study was to determine both the quantity and quality of chronic fatigue syndrome (CFS) information included in medical texts. After reviewing 119 medical textbooks from various medical specialties, we found that 48 (40.3%) of the medical textbooks included information on CFS. However, among the 129,527 total pages within these medical textbooks, the CFS content was presented on only 116.3 (.090%) pages. Other illnesses that are less prevalent, such as Multiple Sclerosis and Lyme disease, were more frequently represented in medical textbooks. These findings suggest that the topic of CFS is under-reported in published medical textbooks. PMID:21128580

  11. Multiresolution analysis applied to text-independent phone segmentation

    International Nuclear Information System (INIS)

    Cherniz, AnalIa S; Torres, MarIa E; Rufiner, Hugo L; Esposito, Anna

    2007-01-01

    Automatic speech segmentation is of fundamental importance in different speech applications. The most common implementations are based on hidden Markov models. They use a statistical modelling of the phonetic units to align the data along a known transcription. This is an expensive and time-consuming process, because of the huge amount of data needed to train the system. Text-independent speech segmentation procedures have been developed to overcome some of these problems. These methods detect transitions in the evolution of the time-varying features that represent the speech signal. Speech representation plays a central role is the segmentation task. In this work, two new speech parameterizations based on the continuous multiresolution entropy, using Shannon entropy, and the continuous multiresolution divergence, using Kullback-Leibler distance, are proposed. These approaches have been compared with the classical Melbank parameterization. The proposed encodings increase significantly the segmentation performance. Parameterization based on the continuous multiresolution divergence shows the best results, increasing the number of correctly detected boundaries and decreasing the amount of erroneously inserted points. This suggests that the parameterization based on multiresolution information measures provide information related to acoustic features that take into account phonemic transitions

  12. Trimming of mammalian transcriptional networks using network component analysis

    Directory of Open Access Journals (Sweden)

    Liao James C

    2010-10-01

    Full Text Available Abstract Background Network Component Analysis (NCA has been used to deduce the activities of transcription factors (TFs from gene expression data and the TF-gene binding relationship. However, the TF-gene interaction varies in different environmental conditions and tissues, but such information is rarely available and cannot be predicted simply by motif analysis. Thus, it is beneficial to identify key TF-gene interactions under the experimental condition based on transcriptome data. Such information would be useful in identifying key regulatory pathways and gene markers of TFs in further studies. Results We developed an algorithm to trim network connectivity such that the important regulatory interactions between the TFs and the genes were retained and the regulatory signals were deduced. Theoretical studies demonstrated that the regulatory signals were accurately reconstructed even in the case where only three independent transcriptome datasets were available. At least 80% of the main target genes were correctly predicted in the extreme condition of high noise level and small number of datasets. Our algorithm was tested with transcriptome data taken from mice under rapamycin treatment. The initial network topology from the literature contains 70 TFs, 778 genes, and 1423 edges between the TFs and genes. Our method retained 1074 edges (i.e. 75% of the original edge number and identified 17 TFs as being significantly perturbed under the experimental condition. Twelve of these TFs are involved in MAPK signaling or myeloid leukemia pathways defined in the KEGG database, or are known to physically interact with each other. Additionally, four of these TFs, which are Hif1a, Cebpb, Nfkb1, and Atf1, are known targets of rapamycin. Furthermore, the trimmed network was able to predict Eno1 as an important target of Hif1a; this key interaction could not be detected without trimming the regulatory network. Conclusions The advantage of our new algorithm

  13. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  14. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    Directory of Open Access Journals (Sweden)

    Chernoded Andrey

    2017-01-01

    Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  15. Diversity Performance Analysis on Multiple HAP Networks

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-06-01

    Full Text Available One of the main design challenges in wireless sensor networks (WSNs is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV. In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF and cumulative distribution function (CDF of the received signal-to-noise ratio (SNR are derived. In addition, the average symbol error rate (ASER with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  16. Analysis of Semantic Networks using Complex Networks Concepts

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2013-01-01

    In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminar...

  17. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  18. Complex Network Analysis of Guangzhou Metro

    OpenAIRE

    Yasir Tariq Mohmand; Fahad Mehmood; Fahd Amjad; Nedim Makarevic

    2015-01-01

    The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree...

  19. COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks

    NARCIS (Netherlands)

    Sie, Rory

    2012-01-01

    Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.

  20. Combining morphological analysis and Bayesian Networks for strategic decision support

    CSIR Research Space (South Africa)

    De Waal, AJ

    2007-12-01

    Full Text Available Morphological analysis (MA) and Bayesian networks (BN) are two closely related modelling methods, each of which has its advantages and disadvantages for strategic decision support modelling. MA is a method for defining, linking and evaluating...

  1. Networks and network analysis for defence and security

    CERN Document Server

    Masys, Anthony J

    2014-01-01

    Networks and Network Analysis for Defence and Security discusses relevant theoretical frameworks and applications of network analysis in support of the defence and security domains. This book details real world applications of network analysis to support defence and security. Shocks to regional, national and global systems stemming from natural hazards, acts of armed violence, terrorism and serious and organized crime have significant defence and security implications. Today, nations face an uncertain and complex security landscape in which threats impact/target the physical, social, economic

  2. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system.

    Science.gov (United States)

    Tudor, Catalina O; Ross, Karen E; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2015-01-01

    Protein phosphorylation is a reversible post-translational modification where a protein kinase adds a phosphate group to a protein, potentially regulating its function, localization and/or activity. Phosphorylation can affect protein-protein interactions (PPIs), abolishing interaction with previous binding partners or enabling new interactions. Extracting phosphorylation information coupled with PPI information from the scientific literature will facilitate the creation of phosphorylation interaction networks of kinases, substrates and interacting partners, toward knowledge discovery of functional outcomes of protein phosphorylation. Increasingly, PPI databases are interested in capturing the phosphorylation state of interacting partners. We have previously developed the eFIP (Extracting Functional Impact of Phosphorylation) text mining system, which identifies phosphorylated proteins and phosphorylation-dependent PPIs. In this work, we present several enhancements for the eFIP system: (i) text mining for full-length articles from the PubMed Central open-access collection; (ii) the integration of the RLIMS-P 2.0 system for the extraction of phosphorylation events with kinase, substrate and site information; (iii) the extension of the PPI module with new trigger words/phrases describing interactions and (iv) the addition of the iSimp tool for sentence simplification to aid in the matching of syntactic patterns. We enhance the website functionality to: (i) support searches based on protein roles (kinases, substrates, interacting partners) or using keywords; (ii) link protein entities to their corresponding UniProt identifiers if mapped and (iii) support visual exploration of phosphorylation interaction networks using Cytoscape. The evaluation of eFIP on full-length articles achieved 92.4% precision, 76.5% recall and 83.7% F-measure on 100 article sections. To demonstrate eFIP for knowledge extraction and discovery, we constructed phosphorylation-dependent interaction

  3. An Intelligent technical analysis using neural network

    Directory of Open Access Journals (Sweden)

    Reza Raei

    2011-07-01

    Full Text Available Technical analysis has been one of the most popular methods for stock market predictions for the past few decades. There have been enormous technical analysis methods to study the behavior of stock market for different kinds of trading markets such as currency, commodity or stock. In this paper, we propose two different methods based on volume adjusted moving average and ease of movement for stock trading. These methods are used with and without generalized regression neural network methods and the results are compared with each other. The preliminary results on historical stock price of 20 firms indicate that there is no meaningful difference between various proposed models of this paper.

  4. Data Farming Process and Initial Network Analysis Capabilities

    Directory of Open Access Journals (Sweden)

    Gary Horne

    2016-01-01

    Full Text Available Data Farming, network applications and approaches to integrate network analysis and processes to the data farming paradigm are presented as approaches to address complex system questions. Data Farming is a quantified approach that examines questions in large possibility spaces using modeling and simulation. It evaluates whole landscapes of outcomes to draw insights from outcome distributions and outliers. Social network analysis and graph theory are widely used techniques for the evaluation of social systems. Incorporation of these techniques into the data farming process provides analysts examining complex systems with a powerful new suite of tools for more fully exploring and understanding the effect of interactions in complex systems. The integration of network analysis with data farming techniques provides modelers with the capability to gain insight into the effect of network attributes, whether the network is explicitly defined or emergent, on the breadth of the model outcome space and the effect of model inputs on the resultant network statistics.

  5. Network of anatomical texts (NAnaTex), an open-source project for visualizing the interaction between anatomical terms.

    Science.gov (United States)

    Momota, Ryusuke; Ohtsuka, Aiji

    2018-01-01

    Anatomy is the science and art of understanding the structure of the body and its components in relation to the functions of the whole-body system. Medicine is based on a deep understanding of anatomy, but quite a few introductory-level learners are overwhelmed by the sheer amount of anatomical terminology that must be understood, so they regard anatomy as a dull and dense subject. To help them learn anatomical terms in a more contextual way, we started a new open-source project, the Network of Anatomical Texts (NAnaTex), which visualizes relationships of body components by integrating text-based anatomical information using Cytoscape, a network visualization software platform. Here, we present a network of bones and muscles produced from literature descriptions. As this network is primarily text-based and does not require any programming knowledge, it is easy to implement new functions or provide extra information by making changes to the original text files. To facilitate collaborations, we deposited the source code files for the network into the GitHub repository ( https://github.com/ryusukemomota/nanatex ) so that anybody can participate in the evolution of the network and use it for their own non-profit purposes. This project should help not only introductory-level learners but also professional medical practitioners, who could use it as a quick reference.

  6. Using Web Crawler Technology for Text Analysis of Geo-Events: A Case Study of the Huangyan Island Incident

    Science.gov (United States)

    Hu, H.; Ge, Y. J.

    2013-11-01

    With the social networking and network socialisation have brought more text information and social relationships into our daily lives, the question of whether big data can be fully used to study the phenomenon and discipline of natural sciences has prompted many specialists and scholars to innovate their research. Though politics were integrally involved in the hyperlinked word issues since 1990s, automatic assembly of different geospatial web and distributed geospatial information systems utilizing service chaining have explored and built recently, the information collection and data visualisation of geo-events have always faced the bottleneck of traditional manual analysis because of the sensibility, complexity, relativity, timeliness and unexpected characteristics of political events. Based on the framework of Heritrix and the analysis of web-based text, word frequency, sentiment tendency and dissemination path of the Huangyan Island incident is studied here by combining web crawler technology and the text analysis method. The results indicate that tag cloud, frequency map, attitudes pie, individual mention ratios and dissemination flow graph based on the data collection and processing not only highlight the subject and theme vocabularies of related topics but also certain issues and problems behind it. Being able to express the time-space relationship of text information and to disseminate the information regarding geo-events, the text analysis of network information based on focused web crawler technology can be a tool for understanding the formation and diffusion of web-based public opinions in political events.

  7. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  8. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis.

    Science.gov (United States)

    Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J; Inzé, Dirk; Van de Peer, Yves

    2013-03-01

    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein-protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies.

  9. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...... approaches. The paper finally highlights some of the applications of social network analysis and their implications for trade policies....

  10. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  11. Extracting recurrent scenarios from narrative texts using a Bayesian network: application to serious occupational accidents with movement disturbance.

    Science.gov (United States)

    Abdat, F; Leclercq, S; Cuny, X; Tissot, C

    2014-09-01

    A probabilistic approach has been developed to extract recurrent serious Occupational Accident with Movement Disturbance (OAMD) scenarios from narrative texts within a prevention framework. Relevant data extracted from 143 accounts was initially coded as logical combinations of generic accident factors. A Bayesian Network (BN)-based model was then built for OAMDs using these data and expert knowledge. A data clustering process was subsequently performed to group the OAMDs into similar classes from generic factor occurrence and pattern standpoints. Finally, the Most Probable Explanation (MPE) was evaluated and identified as the associated recurrent scenario for each class. Using this approach, 8 scenarios were extracted to describe 143 OAMDs in the construction and metallurgy sectors. Their recurrent nature is discussed. Probable generic factor combinations provide a fair representation of particularly serious OAMDs, as described in narrative texts. This work represents a real contribution to raising company awareness of the variety of circumstances, in which these accidents occur, to progressing in the prevention of such accidents and to developing an analysis framework dedicated to this kind of accident. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Functional Module Analysis for Gene Coexpression Networks with Network Integration.

    Science.gov (United States)

    Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

  13. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  14. Service network analysis for agricultural mental health

    Directory of Open Access Journals (Sweden)

    Fuller Jeffrey D

    2009-05-01

    Full Text Available Abstract Background Farmers represent a subgroup of rural and remote communities at higher risk of suicide attributed to insecure economic futures, self-reliant cultures and poor access to health services. Early intervention models are required that tap into existing farming networks. This study describes service networks in rural shires that relate to the mental health needs of farming families. This serves as a baseline to inform service network improvements. Methods A network survey of mental health related links between agricultural support, health and other human services in four drought declared shires in comparable districts in rural New South Wales, Australia. Mental health links covered information exchange, referral recommendations and program development. Results 87 agencies from 111 (78% completed a survey. 79% indicated that two thirds of their clients needed assistance for mental health related problems. The highest mean number of interagency links concerned information exchange and the frequency of these links between sectors was monthly to three monthly. The effectiveness of agricultural support and health sector links were rated as less effective by the agricultural support sector than by the health sector (p Conclusion Aligning with agricultural agencies is important to build effective mental health service pathways to address the needs of farming populations. Work is required to ensure that these agricultural support agencies have operational and effective links to primary mental health care services. Network analysis provides a baseline to inform this work. With interventions such as local mental health training and joint service planning to promote network development we would expect to see over time an increase in the mean number of links, the frequency in which these links are used and the rated effectiveness of these links.

  15. The Analysis of User Behaviour of a Network Management Training Tool using a Neural Network

    Directory of Open Access Journals (Sweden)

    Helen Donelan

    2005-10-01

    Full Text Available A novel method for the analysis and interpretation of data that describes the interaction between trainee network managers and a network management training tool is presented. A simulation based approach is currently being used to train network managers, through the use of a simulated network. The motivation is to provide a tool for exposing trainees to a life like situation without disrupting a live network. The data logged by this system describes the detailed interaction between trainee network manager and simulated network. The work presented here provides an analysis of this interaction data that enables an assessment of the capabilities of the trainee network manager as well as an understanding of how the network management tasks are being approached. A neural network architecture is implemented in order to perform an exploratory data analysis of the interaction data. The neural network employs a novel form of continuous self-organisation to discover key features in the data and thus provide new insights into the learning and teaching strategies employed.

  16. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  17. SOCIOLOGICAL UNDERSTANDING OF INTERNET: THEORETICAL APPROACHES TO THE NETWORK ANALYSIS

    Directory of Open Access Journals (Sweden)

    D. E. Dobrinskaya

    2016-01-01

    Full Text Available The network is an efficient way of social structure analysis for contemporary sociologists. It gives broad opportunities for detailed and fruitful research of different patterns of ties and social relations by quantitative analytical methods and visualization of network models. The network metaphor is used as the most representative tool for description of a new type of society. This new type is characterized by flexibility, decentralization and individualization. Network organizational form became the dominant form in modern societies. The network is also used as a mode of inquiry. Actually three theoretical network approaches in the Internet research case are the most relevant: social network analysis, “network society” theory and actor-network theory. Every theoretical approach has got its own notion of network. Their special methodological and theoretical features contribute to the Internet studies in different ways. The article represents a brief overview of these network approaches. This overview demonstrates the absence of a unified semantic space of the notion of “network” category. This fact, in turn, points out the need for detailed analysis of these approaches to reveal their theoretical and empirical possibilities in application to the Internet studies. 

  18. Convolutional Neural Networks for Text Categorization: Shallow Word-level vs. Deep Character-level

    OpenAIRE

    Johnson, Rie; Zhang, Tong

    2016-01-01

    This paper reports the performances of shallow word-level convolutional neural networks (CNN), our earlier work (2015), on the eight datasets with relatively large training data that were used for testing the very deep character-level CNN in Conneau et al. (2016). Our findings are as follows. The shallow word-level CNNs achieve better error rates than the error rates reported in Conneau et al., though the results should be interpreted with some consideration due to the unique pre-processing o...

  19. Improving Feature Representation Based on a Neural Network for Author Profiling in Social Media Texts.

    Science.gov (United States)

    Gómez-Adorno, Helena; Markov, Ilia; Sidorov, Grigori; Posadas-Durán, Juan-Pablo; Sanchez-Perez, Miguel A; Chanona-Hernandez, Liliana

    2016-01-01

    We introduce a lexical resource for preprocessing social media data. We show that a neural network-based feature representation is enhanced by using this resource. We conducted experiments on the PAN 2015 and PAN 2016 author profiling corpora and obtained better results when performing the data preprocessing using the developed lexical resource. The resource includes dictionaries of slang words, contractions, abbreviations, and emoticons commonly used in social media. Each of the dictionaries was built for the English, Spanish, Dutch, and Italian languages. The resource is freely available.

  20. Simultaneity Analysis In A Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Malović Miodrag

    2015-06-01

    Full Text Available An original wireless sensor network for vibration measurements was designed. Its primary purpose is modal analysis of vibrations of large structures. A number of experiments have been performed to evaluate the system, with special emphasis on the influence of different effects on simultaneity of data acquired from remote nodes, which is essential for modal analysis. One of the issues is that quartz crystal oscillators, which provide time reading on the devices, are optimized for use in the room temperature and exhibit significant frequency variations if operated outside the 20–30°C range. Although much research was performed to optimize algorithms of synchronization in wireless networks, the subject of temperature fluctuations was not investigated and discussed in proportion to its significance. This paper describes methods used to evaluate data simultaneity and some algorithms suitable for its improvement in small to intermediate size ad-hoc wireless sensor networks exposed to varying temperatures often present in on-site civil engineering measurements.

  1. Networks and Bargaining in Policy Analysis

    DEFF Research Database (Denmark)

    Bogason, Peter

    2006-01-01

    A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today.......A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today....

  2. Sharing Feelings Online: Studying Emotional Well-Being via Automated Text Analysis of Facebook Posts

    Directory of Open Access Journals (Sweden)

    Michele eSettanni

    2015-07-01

    Full Text Available Digital traces of activity on social network sites represent a vast source of ecological data with potential connections with individual behavioral and psychological characteristics. The present study investigates the relationship between user-generated textual content shared on Facebook and emotional well-being. Self-report measures of depression, anxiety and stress were collected from 201 adult Facebook users from North Italy. Emotion-related textual indicators, including emoticon use, were extracted form users’ Facebook posts via automated text analysis. Correlation analyses revealed that individuals with higher levels of depression, anxiety expressed negative emotions on Facebook more frequently. In addition, use of emoticons expressing positive emotions correlated negatively with stress level. When comparing age groups, younger users reported higher frequency of both emotion-related words and emoticon use in their posts. Also, the relationship between online emotional expression and self-report emotional well-being was generally stronger in the younger group. Overall, findings support the feasibility and validity of studying individual emotional well-being by means of examination of Facebook profiles. Implications for online screening purposes and future research directions are discussed.

  3. Assessing Group Interaction with Social Language Network Analysis

    Science.gov (United States)

    Scholand, Andrew J.; Tausczik, Yla R.; Pennebaker, James W.

    In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.

  4. Statistical Network Analysis for Functional MRI: Mean Networks and Group Comparisons.

    Directory of Open Access Journals (Sweden)

    Cedric E Ginestet

    2014-05-01

    Full Text Available Comparing networks in neuroscience is hard, because the topological properties of a given network are necessarily dependent on the number of edges of that network. This problem arises in the analysis of both weighted and unweighted networks. The term density is often used in this context, in order to refer to the mean edge weight of a weighted network, or to the number of edges in an unweighted one. Comparing families of networks is therefore statistically difficult because differences in topology are necessarily associated with differences in density. In this review paper, we consider this problem from two different perspectives, which include (i the construction of summary networks, such as how to compute and visualize the mean network from a sample of network-valued data points; and (ii how to test for topological differences, when two families of networks also exhibit significant differences in density. In the first instance, we show that the issue of summarizing a family of networks can be conducted by either adopting a mass-univariate approach, which produces a statistical parametric network (SPN, or by directly computing the mean network, provided that a metric has been specified on the space of all networks with a given number of nodes. In the second part of this review, we then highlight the inherent problems associated with the comparison of topological functions of families of networks that differ in density. In particular, we show that a wide range of topological summaries, such as global efficiency and network modularity are highly sensitive to differences in density. Moreover, these problems are not restricted to unweighted metrics, as we demonstrate that the same issues remain present when considering the weighted versions of these metrics. We conclude by encouraging caution, when reporting such statistical comparisons, and by emphasizing the importance of constructing summary networks.

  5. Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2014-01-01

    Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.

  6. Network externalities in telecommunication industry: An analysis of Serbian market

    Directory of Open Access Journals (Sweden)

    Trifunović Dejan

    2016-01-01

    Full Text Available This paper deals with network competition and provides empirical analysis of market concentration, network and call externalities, access pricing, price discrimination and switching costs in Serbian mobile phone telecommunications market. It is shown that network externalities governed the expansion of this market until 2008. Upon entry of VIP incumbents didn't engage in predatory behaviour towards entrant aiming to benefit from locked- in users. The policy of mobile phone number portability reduced on-net prices and substantially increased consumer's surplus. In contrast to some previous research, this policy was pro-competitive in Serbia. We have also determined that users of the network with the largest market share benefit the most from call externalities. Finally, one network does not price discriminate between outgoing and incoming roaming calls, which implies that users of this network have higher level pecuniary externalities in roaming compared to users of price discriminating networks.

  7. On the structure of Bayesian network for Indonesian text document paraphrase identification

    Science.gov (United States)

    Prayogo, Ario Harry; Syahrul Mubarok, Mohamad; Adiwijaya

    2018-03-01

    Paraphrase identification is an important process within natural language processing. The idea is to automatically recognize phrases that have different forms but contain same meanings. For examples if we input query “causing fire hazard”, then the computer has to recognize this query that this query has same meaning as “the cause of fire hazard. Paraphrasing is an activity that reveals the meaning of an expression, writing, or speech using different words or forms, especially to achieve greater clarity. In this research we will focus on classifying two Indonesian sentences whether it is a paraphrase to each other or not. There are four steps in this research, first is preprocessing, second is feature extraction, third is classifier building, and the last is performance evaluation. Preprocessing consists of tokenization, non-alphanumerical removal, and stemming. After preprocessing we will conduct feature extraction in order to build new features from given dataset. There are two kinds of features in the research, syntactic features and semantic features. Syntactic features consist of normalized levenshtein distance feature, term-frequency based cosine similarity feature, and LCS (Longest Common Subsequence) feature. Semantic features consist of Wu and Palmer feature and Shortest Path Feature. We use Bayesian Networks as the method of training the classifier. Parameter estimation that we use is called MAP (Maximum A Posteriori). For structure learning of Bayesian Networks DAG (Directed Acyclic Graph), we use BDeu (Bayesian Dirichlet equivalent uniform) scoring function and for finding DAG with the best BDeu score, we use K2 algorithm. In evaluation step we perform cross-validation. The average result that we get from testing the classifier as follows: Precision 75.2%, Recall 76.5%, F1-Measure 75.8% and Accuracy 75.6%.

  8. Short Message Service (SMS) Texting Symbols: A Functional Analysis of 10,000 Cellular Phone Text Messages

    Science.gov (United States)

    Beasley, Robert E.

    2009-01-01

    The purpose of this study was to investigate the use of symbolic expressions (e.g., "BTW," "LOL," "UR") in an SMS text messaging corpus consisting of over 10,000 text messages. More specifically, the purpose was to determine, not only how frequently these symbolic expressions are used, but how they are utilized in terms of the language functions…

  9. Egocentric Social Network Analysis of Pathological Gambling

    Science.gov (United States)

    Meisel, Matthew K.; Clifton, Allan D.; MacKillop, James; Miller, Joshua D.; Campbell, W. Keith; Goodie, Adam S.

    2012-01-01

    Aims To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family, and co-workers. is an innovative way to look at relationships among individuals; the current study was the first to our knowledge to apply SNA to gambling behaviors. Design Egocentric social network analysis was used to formally characterize the relationships between social network characteristics and gambling pathology. Setting Laboratory-based questionnaire and interview administration. Participants Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. Findings The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers, and drinkers in their social networks than did nonpathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked, and drank with than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked, and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Conclusions Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers, and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. PMID:23072641

  10. Egocentric social network analysis of pathological gambling.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  11. Zero-Shot Style Transfer in Text Using Recurrent Neural Networks

    OpenAIRE

    Carlson, Keith; Riddell, Allen; Rockmore, Daniel

    2017-01-01

    Zero-shot translation is the task of translating between a language pair where no aligned data for the pair is provided during training. In this work we employ a model that creates paraphrases which are written in the style of another existing text. Since we provide the model with no paired examples from the source style to the target style during training, we call this task zero-shot style transfer. Herein, we identify a high-quality source of aligned, stylistically distinct text in Bible ve...

  12. Weighted Complex Network Analysis of Shanghai Rail Transit System

    Directory of Open Access Journals (Sweden)

    Yingying Xing

    2016-01-01

    Full Text Available With increasing passenger flows and construction scale, Shanghai rail transit system (RTS has entered a new era of networking operation. In addition, the structure and properties of the RTS network have great implications for urban traffic planning, design, and management. Thus, it is necessary to acquire their network properties and impacts. In this paper, the Shanghai RTS, as well as passenger flows, will be investigated by using complex network theory. Both the topological and dynamic properties of the RTS network are analyzed and the largest connected cluster is introduced to assess the reliability and robustness of the RTS network. Simulation results show that the distribution of nodes strength exhibits a power-law behavior and Shanghai RTS network shows a strong weighted rich-club effect. This study also indicates that the intentional attacks are more detrimental to the RTS network than to the random weighted network, but the random attacks can cause slightly more damage to the random weighted network than to the RTS network. Our results provide a richer view of complex weighted networks in real world and possibilities of risk analysis and policy decisions for the RTS operation department.

  13. DataToText: A Consumer-Oriented Approach to Data Analysis

    Science.gov (United States)

    Kenny, David A.

    2010-01-01

    DataToText is a project developed where the user communicates the relevant information for an analysis and DataToText computer routine produces text output that describes in words, tables, and figures the results from the analyses. Two extended examples are given, one an example of a moderator analysis and the other an example of a dyadic data…

  14. The Network Protocol Analysis Technique in Snort

    Science.gov (United States)

    Wu, Qing-Xiu

    Network protocol analysis is a network sniffer to capture data for further analysis and understanding of the technical means necessary packets. Network sniffing is intercepted by packet assembly binary format of the original message content. In order to obtain the information contained. Required based on TCP / IP protocol stack protocol specification. Again to restore the data packets at protocol format and content in each protocol layer. Actual data transferred, as well as the application tier.

  15. Ecological network analysis for a virtual water network.

    Science.gov (United States)

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  16. Network Analysis on Attitudes: A Brief Tutorial.

    Science.gov (United States)

    Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L J

    2017-07-01

    In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs.

  17. 4th International Conference in Network Analysis

    CERN Document Server

    Koldanov, Petr; Pardalos, Panos

    2016-01-01

    The contributions in this volume cover a broad range of topics including maximum cliques, graph coloring, data mining, brain networks, Steiner forest, logistic and supply chain networks. Network algorithms and their applications to market graphs, manufacturing problems, internet networks and social networks are highlighted. The "Fourth International Conference in Network Analysis," held at the Higher School of Economics, Nizhny Novgorod in May 2014, initiated joint research between scientists, engineers and researchers from academia, industry and government; the major results of conference participants have been reviewed and collected in this Work. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis.

  18. How do text-messaging smoking cessation interventions confer benefit? A multiple mediation analysis of Text2Quit.

    Science.gov (United States)

    Hoeppner, Bettina B; Hoeppner, Susanne S; Abroms, Lorien C

    2017-04-01

    To determine the degree to which the observed benefit of Text2Quit was accounted for by psychosocial mechanisms derived from its quit smoking messaging versus from the use of extra-programmatic smoking cessation treatments and services. Prospective, multiple mediation model of a randomized controlled trial (RCT). United States nation-wide. A total of 409 adult daily smokers participated. Participants were, on average, 35 years of age, predominantly female (68%), white (79%), lacked a college degree (70%), had medium nicotine dependence (average Fagerström Nicotine Dependence Score score of 5.2) and more than half (62%) had made a previous quit attempt. Adult daily smokers browsing the web for smoking cessation support (n = 409; recruited 19 May2011-10 July 2012) were randomized to receive smoking cessation support via Text2Quit versus a smoking cessation material. Mediators (i.e. changes in psychosocial constructs of health behavior change, use of extra-programmatic treatment) were assessed at 1 month using single-item measures and outcome (i.e. self-reported 7-day point prevalence abstinence) at 6-month follow-up. Mediators accounted for 35% of the effect of Text2Quit on smoking cessation. Only psychosocial mechanisms had complete mediational paths, with increases in self-efficacy [b = 0.10 (0.06-0.15)], quitting know-how [b = 0.07 (0.03-0.11)] and the sense that someone cared [b = 0.06 (0.01-0.11)], partially explaining the conferred benefit of Text2Quit. Use of outside resources, including treatments promoted explicitly by Text2Quit, i.e. medication [b = 0.001 (-0.01 to 0.01), quitline [b = -0.002 (-0.01 to 0.04)], treatments and resources not promoted by Text2Quit, i.e. online forums [b = 0.01 (-0.01 to 0.04)] and self-help materials [b = -0.01 (-0.04 to 0.02)], did not have complete mediational paths. An interaction effect existed for medication use that suggested that for participants not using medication, Text2Quit conferred substantial

  19. Validation of network communicability metrics for the analysis of brain structural networks.

    Directory of Open Access Journals (Sweden)

    Jennifer Andreotti

    Full Text Available Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.

  20. An investigation and comparison on network performance analysis

    OpenAIRE

    Lanxiaopu, Mi

    2012-01-01

    This thesis is generally about network performance analysis. It contains two parts. The theory part summarizes what network performance is and inducts the methods of doing network performance analysis. To answer what network performance is, a study into what network services are is done. And based on the background research, there are two important network performance metrics: Network delay and Throughput should be included in network performance analysis. Among the methods of network a...

  1. Text linguistics and critical discourse analysis: A multimodal analysis of a magazine advertisement

    Directory of Open Access Journals (Sweden)

    Sidnéa Nunes Ferreira

    2013-07-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2013n64p111 Drawing on Fairclough’s (1995 three-dimensional framework of discourse analysis of communicative events, in this paper we carry out a multimodal analysis of a diners Club international magazine advertisement. Moving from the description of how textimage (Mitchell 1995 constructs a problem-solution structure in the advertisement to the discussion of its discourse and sociocultural practices, the paper foregrounds a multi-layered ideological message, besides the construal of a need (problem for a product (solution. Through its multimodal structure, the advertisement seems to tap on two important sociological issues: the avoidance of human togetherness and the colonization of travelling by consumer markets (bauman  2007.

  2. Computer Support of Semantic Text Analysis of a Technical Specification on Designing Software

    OpenAIRE

    Zaboleeva-Zotova, Alla; Orlova, Yulia

    2009-01-01

    The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated a technique of the text analysis of a technical specification is submitted, the expanded fuzzy attribute grammar of a technical specification, intended for formaliza...

  3. Computer-aided System of Semantic Text Analysis of a Technical Specification

    OpenAIRE

    Zaboleeva-Zotova, Alla; Orlova, Yulia

    2008-01-01

    The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated the model of the analysis of the text of the technical project is submitted, the attribute grammar of a technical specification, intended for formalization of limited Ru...

  4. Sharing feelings online: studying emotional well-being via automated text analysis of Facebook posts.

    Science.gov (United States)

    Settanni, Michele; Marengo, Davide

    2015-01-01

    Digital traces of activity on social network sites represent a vast source of ecological data with potential connections with individual behavioral and psychological characteristics. The present study investigates the relationship between user-generated textual content shared on Facebook and emotional well-being. Self-report measures of depression, anxiety, and stress were collected from 201 adult Facebook users from North Italy. Emotion-related textual indicators, including emoticon use, were extracted form users' Facebook posts via automated text analysis. Correlation analyses revealed that individuals with higher levels of depression, anxiety expressed negative emotions on Facebook more frequently. In addition, use of emoticons expressing positive emotions correlated negatively with stress level. When comparing age groups, younger users reported higher frequency of both emotion-related words and emoticon use in their posts. Also, the relationship between online emotional expression and self-report emotional well-being was generally stronger in the younger group. Overall, findings support the feasibility and validity of studying individual emotional well-being by means of examination of Facebook profiles. Implications for online screening purposes and future research directions are discussed.

  5. Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Jianhua Ni

    2016-08-01

    Full Text Available The spatial distribution of urban service facilities is largely constrained by the road network. In this study, network point pattern analysis and correlation analysis were used to analyze the relationship between road network and healthcare facility distribution. The weighted network kernel density estimation method proposed in this study identifies significant differences between the outside and inside areas of the Ming city wall. The results of network K-function analysis show that private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to cluster around hospitals along the road network. After computing the correlation analysis between different categorized hospitals and street centrality, we find that the distribution of these hospitals correlates highly with the street centralities, and that the correlations are higher with private and small hospitals than with public and large hospitals. The comprehensive analysis results could help examine the reasonability of existing urban healthcare facility distribution and optimize the location of new healthcare facilities.

  6. Throughput Analysis of Large Wireless Networks with Regular Topologies

    Directory of Open Access Journals (Sweden)

    Hong Kezhu

    2007-01-01

    Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.

  7. Throughput Analysis of Large Wireless Networks with Regular Topologies

    Directory of Open Access Journals (Sweden)

    Kezhu Hong

    2007-04-01

    Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.

  8. An Approach to Data Analysis in 5G Networks

    Directory of Open Access Journals (Sweden)

    Lorena Isabel Barona López

    2017-02-01

    Full Text Available 5G networks expect to provide significant advances in network management compared to traditional mobile infrastructures by leveraging intelligence capabilities such as data analysis, prediction, pattern recognition and artificial intelligence. The key idea behind these actions is to facilitate the decision-making process in order to solve or mitigate common network problems in a dynamic and proactive way. In this context, this paper presents the design of Self-Organized Network Management in Virtualized and Software Defined Networks (SELFNET Analyzer Module, which main objective is to identify suspicious or unexpected situations based on metrics provided by different network components and sensors. The SELFNET Analyzer Module provides a modular architecture driven by use cases where analytic functions can be easily extended. This paper also proposes the data specification to define the data inputs to be taking into account in diagnosis process. This data specification has been implemented with different use cases within SELFNET Project, proving its effectiveness.

  9. Enabling dynamic network analysis through visualization in TVNViewer

    Directory of Open Access Journals (Sweden)

    Curtis Ross E

    2012-08-01

    Full Text Available Abstract Background Many biological processes are context-dependent or temporally specific. As a result, relationships between molecular constituents evolve across time and environments. While cutting-edge machine learning techniques can recover these networks, exploring and interpreting the rewiring behavior is challenging. Information visualization shines in this type of exploratory analysis, motivating the development ofTVNViewer (http://sailing.cs.cmu.edu/tvnviewer, a visualization tool for dynamic network analysis. Results In this paper, we demonstrate visualization techniques for dynamic network analysis by using TVNViewer to analyze yeast cell cycle and breast cancer progression datasets. Conclusions TVNViewer is a powerful new visualization tool for the analysis of biological networks that change across time or space.

  10. Noise Analysis studies with neural networks

    International Nuclear Information System (INIS)

    Seker, S.; Ciftcioglu, O.

    1996-01-01

    Noise analysis studies with neural network are aimed. Stochastic signals at the input of the network are used to obtain an algorithmic multivariate stochastic signal modeling. To this end, lattice modeling of a stochastic signal is performed to obtain backward residual noise sources which are uncorrelated among themselves. There are applied together with an additional input to the network to obtain an algorithmic model which is used for signal detection for early failure in plant monitoring. The additional input provides the information to the network to minimize the difference between the signal and the network's one-step-ahead prediction. A stochastic algorithm is used for training where the errors reflecting the measurement error during the training are also modelled so that fast and consistent convergence of network's weights is obtained. The lattice structure coupled to neural network investigated with measured signals from an actual power plant. (authors)

  11. Value Systems Alignment Analysis in Collaborative Networked Organizations Management

    Directory of Open Access Journals (Sweden)

    Patricia Macedo

    2017-11-01

    Full Text Available The assessment of value systems alignment can play an important role in the formation and evolution of collaborative networks, contributing to reduce potential risks of collaboration. For this purpose, an assessment tool is proposed as part of a collaborative networks information system, supporting both the formation and evolution of long-term strategic alliances and goal-oriented networks. An implementation approach for value system alignment analysis is described, which is intended to assist managers in virtual and networked organizations management. The implementation of the assessment and analysis methods is supported by a set of software services integrated in the information system that supports the management of the networked organizations. A case study in the solar energy sector was conducted, and the data collected through this study allow us to confirm the practical applicability of the proposed methods and the software services.

  12. Tweeting about Mental Health: Big Data Text Analysis of Twitter for Public Policy

    Science.gov (United States)

    Zaydman, Mikhail

    2017-01-01

    This dissertation examines conversations and attitudes about mental health in Twitter discourse. The research uses big data collection, machine learning classification, and social network analysis to answer the following questions (1) what mental health topics do people discuss on Twitter? (2) Have patterns of conversation changed over time? Have…

  13. Forcast of TEXT plasma disruptions using soft X-rays as input signal in a neural network

    International Nuclear Information System (INIS)

    Vannucci, A.; Oliveira, K.A.; Tajima, T.

    1998-02-01

    A feed-forward neural network with two hidden layers is used in this work to forecast major and minor disruptive instabilities in TEXT discharges. Using soft X-ray signals as input data, the neural net is trained with one disruptive plasma pulse, and a different disruptive discharge is used for validation. After being properly trained the networks, with the same set of weights. is then used to forecast disruptions in two others different plasma pulses. It is observed that the neural net is able to predict the incoming of a disruption more than 3 ms in advance. This time interval is almost three times longer than the one already obtained previously when magnetic signal from a Mirnov coil was used to feed the neural networks with. To our own eye we fail to see any indication of an upcoming disruption from the experimental data this far back from the time of disruption. Finally, from what we observe in the predictive behavior of our network, speculations are made whether the disruption triggering mechanism would be associated to an increase of the m = 2 magnetic island, that disturbs the central part of the plasma column afterwards or, in face of the results from this work, the initial perturbation would have occurred first in the central part of the plasma column, within the q = 1 magnetic surface, and then the m = 2 MHD mode would be destabilized afterwards

  14. Classification and Analysis of Computer Network Traffic

    OpenAIRE

    Bujlow, Tomasz

    2014-01-01

    Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models of traffic for academic purposes. We define the objective of this thesis as finding a way to evaluate the performance of various applications in a high-speed Internet infrastructure. To satisfy the obje...

  15. Wireless Sensor Network Security Analysis

    OpenAIRE

    Hemanta Kumar Kalita; Avijit Kar

    2009-01-01

    The emergence of sensor networks as one of the dominant technology trends in the coming decades hasposed numerous unique challenges to researchers. These networks are likely to be composed of hundreds,and potentially thousands of tiny sensor nodes, functioning autonomously, and in many cases, withoutaccess to renewable energy resources. Cost constraints and the need for ubiquitous, invisibledeployments will result in small sized, resource-constrained sensor nodes. While the set of challenges ...

  16. Uncovering and Managing the Impact of Methodological Choices for the Computational Construction of Socio-Technical Networks from Texts

    Science.gov (United States)

    2012-09-01

    results? In the field of network analysis, people have developed methods, metrics and theories that help to address these questions ( Brandes & Erlebach...properties have shown to foster the development of strategic alliances (Fitzmaurice, 2000). For situations in which groups need to balance...gold standard test, REX outputs can be assessed by subject matter experts ( SMEs ). The SMEs examine how closely the extracted data resemble the actual

  17. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  18. The Application of Machine Learning Algorithms for Text Mining based on Sentiment Analysis Approach

    Directory of Open Access Journals (Sweden)

    Reza Samizade

    2018-06-01

    Full Text Available Classification of the cyber texts and comments into two categories of positive and negative sentiment among social media users is of high importance in the research are related to text mining. In this research, we applied supervised classification methods to classify Persian texts based on sentiment in cyber space. The result of this research is in a form of a system that can decide whether a comment which is published in cyber space such as social networks is considered positive or negative. The comments that are published in Persian movie and movie review websites from 1392 to 1395 are considered as the data set for this research. A part of these data are considered as training and others are considered as testing data. Prior to implementing the algorithms, pre-processing activities such as tokenizing, removing stop words, and n-germs process were applied on the texts. Naïve Bayes, Neural Networks and support vector machine were used for text classification in this study. Out of sample tests showed that there is no evidence indicating that the accuracy of SVM approach is statistically higher than Naïve Bayes or that the accuracy of Naïve Bayes is not statistically higher than NN approach. However, the researchers can conclude that the accuracy of the classification using SVM approach is statistically higher than the accuracy of NN approach in 5% confidence level.

  19. 3rd International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2014-01-01

    This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications.  Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale...

  20. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  1. Consistency analysis of network traffic repositories

    NARCIS (Netherlands)

    Lastdrager, Elmer; Lastdrager, E.E.H.; Pras, Aiko

    Traffic repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffic that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for

  2. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  3. Spectral Analysis Methods of Social Networks

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work

  4. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    Science.gov (United States)

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  5. Detecting Distributed Network Traffic Anomaly with Network-Wide Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yang Dan

    2008-12-01

    Full Text Available Distributed network traffic anomaly refers to a traffic abnormal behavior involving many links of a network and caused by the same source (e.g., DDoS attack, worm propagation. The anomaly transiting in a single link might be unnoticeable and hard to detect, while the anomalous aggregation from many links can be prevailing, and does more harm to the networks. Aiming at the similar features of distributed traffic anomaly on many links, this paper proposes a network-wide detection method by performing anomalous correlation analysis of traffic signals' instantaneous parameters. In our method, traffic signals' instantaneous parameters are firstly computed, and their network-wide anomalous space is then extracted via traffic prediction. Finally, an anomaly is detected by a global correlation coefficient of anomalous space. Our evaluation using Abilene traffic traces demonstrates the excellent performance of this approach for distributed traffic anomaly detection.

  6. Analysis and Testing of Mobile Wireless Networks

    Science.gov (United States)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  7. Computer network environment planning and analysis

    Science.gov (United States)

    Dalphin, John F.

    1989-01-01

    The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.

  8. UMA/GAN network architecture analysis

    Science.gov (United States)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  9. Techniques for Intelligence Analysis of Networks

    National Research Council Canada - National Science Library

    Cares, Jeffrey R

    2005-01-01

    ...) there are significant intelligence analysis manifestations of these properties; and (4) a more satisfying theory of Networked Competition than currently exists for NCW/NCO is emerging from this research...

  10. Intertextual Content Analysis: An Approach for Analysing Text-Related Discussions with Regard to Movability in Reading and How Text Content Is Handled

    Science.gov (United States)

    Hallesson, Yvonne; Visén, Pia

    2018-01-01

    Reading and discussing texts as a means for learning subject content are regular features within educational contexts. This paper presents an approach for intertextual content analysis (ICA) of such text-related discussions revealing what the participants make of the text. Thus, in contrast to many other approaches for analysing conversation that…

  11. Topological Analysis of Wireless Networks (TAWN)

    Science.gov (United States)

    2016-05-31

    19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless... topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael

  12. Analysis of FOXO transcriptional networks

    NARCIS (Netherlands)

    van der Vos, K.E.

    2010-01-01

    The PI3K-PKB-FOXO signalling module plays a pivotal role in a wide variety of cellular processes, including proliferation, survival, differentiation and metabolism. Inappropriate activation of this network is frequently observed in human cancer and causes uncontrolled proliferation and survival. In

  13. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    Directory of Open Access Journals (Sweden)

    Aaron M. Prescott

    2016-08-01

    Full Text Available Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. However, the dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB. In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB. Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms

  14. Modeling and Analysis of New Products Diffusion on Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Shuping Li

    2014-01-01

    Full Text Available We present a heterogeneous networks model with the awareness stage and the decision-making stage to explain the process of new products diffusion. If mass media is neglected in the decision-making stage, there is a threshold whether the innovation diffusion is successful or not, or else it is proved that the network model has at least one positive equilibrium. For networks with the power-law degree distribution, numerical simulations confirm analytical results, and also at the same time, by numerical analysis of the influence of the network structure and persuasive advertisements on the density of adopters, we give two different products propagation strategies for two classes of nodes in scale-free networks.

  15. Conversation Analysis on Social Networking Sites

    OpenAIRE

    Belkaroui , Rami; Faiz , Rim; Elkhlifi , Aymen

    2014-01-01

    International audience; With the explosion of Web 2.0, people are becoming more communicative through expansion of services and multi-platform applications such as microblogs, forums and social networks which establishes social and collabora-tive backgrounds. These services can be seen as very large information repository containing millions of text messages usually organized into complex networks involving users interacting with each other at specific times. Several works focused only to ret...

  16. 1st International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2013-01-01

    This volume contains a selection of contributions from the "First International Conference in Network Analysis," held at the University of Florida, Gainesville, on December 14-16, 2011. The remarkable diversity of fields that take advantage of Network Analysis makes the endeavor of gathering up-to-date material in a single compilation a useful, yet very difficult, task. The purpose of this volume is to overcome this difficulty by collecting the major results found by the participants and combining them in one easily accessible compilation. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network is bringing together researchers, practitioners and other scientific communities from numerous fields such as Operations Research, Computer Science, Transportation, Energy, Social Sciences, and more. The contributions not only come from different fields, but also cover a broad range of topics relevant to the...

  17. Artificial neural networks for plasma spectroscopy analysis

    International Nuclear Information System (INIS)

    Morgan, W.L.; Larsen, J.T.; Goldstein, W.H.

    1992-01-01

    Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics

  18. Visualization and Analysis of Complex Covert Networks

    DEFF Research Database (Denmark)

    Memon, Bisharat

    systems that are covert and hence inherently complex. My Ph.D. is positioned within the wider framework of CrimeFighter project. The framework envisions a number of key knowledge management processes that are involved in the workflow, and the toolbox provides supporting tools to assist human end......This report discusses and summarize the results of my work so far in relation to my Ph.D. project entitled "Visualization and Analysis of Complex Covert Networks". The focus of my research is primarily on development of methods and supporting tools for visualization and analysis of networked......-users (intelligence analysts) in harvesting, filtering, storing, managing, structuring, mining, analyzing, interpreting, and visualizing data about offensive networks. The methods and tools proposed and discussed in this work can also be applied to analysis of more generic complex networks....

  19. Historical Network Analysis of the Web

    DEFF Research Database (Denmark)

    Brügger, Niels

    2013-01-01

    This article discusses some of the fundamental methodological challenges related to doing historical network analyses of the web based on material in web archives. Since the late 1990s many countries have established extensive national web archives, and software supported network analysis...... of the online web has for a number of years gained currency within Internet studies. However, the combination of these two phenomena—historical network analysis of material in web archives—can at best be characterized as an emerging new area of study. Most of the methodological challenges within this new area...... revolve around the specific nature of archived web material. On the basis of an introduction to the processes involved in web archiving as well as of the characteristics of archived web material, the article outlines and scrutinizes some of the major challenges which may arise when doing network analysis...

  20. The Deference Due the Oracle: Computerized Text Analysis in a Basic Writing Class.

    Science.gov (United States)

    Otte, George

    1989-01-01

    Describes how a computerized text analysis program can help students discover error patterns in their writing, and notes how students' responses to analyses can reduce errors and improve their writing. (MM)

  1. Investigating scientific literacy documents with linguistic network analysis

    DEFF Research Database (Denmark)

    Bruun, Jesper; Evans, Robert Harry; Dolin, Jens

    2009-01-01

    International discussions of scientific literacy (SL) are extensive and numerous sizeable documents on SL exist. Thus, comparing different conceptions of SL is methodologically challenging. We developed an analytical tool which couples the theory of complex networks with text analysis in order...

  2. Performance analysis of multi-hop wireless packet networks

    Directory of Open Access Journals (Sweden)

    Lim J.-T.

    1997-01-01

    Full Text Available In this paper, a unified analytical framework for performance analysis of multi-hop wireless packet networks is developed. The effect of coupling between the hops on the degradation of the delay-throughput characteristics and the probability of blocking is investigated. The issue of hop decoupling is addressed.

  3. Developing resources for sentiment analysis of informal Arabic text in social media

    OpenAIRE

    Itani, Maher; Roast, Chris; Al-Khayatt, Samir

    2017-01-01

    Natural Language Processing (NLP) applications such as text categorization, machine translation, sentiment analysis, etc., need annotated corpora and lexicons to check quality and performance. This paper describes the development of resources for sentiment analysis specifically for Arabic text in social media. A distinctive feature of the corpora and lexicons developed are that they are determined from informal Arabic that does not conform to grammatical or spelling standards. We refer to Ara...

  4. Portrayals of Wundt and Titchener in Introductory Psychology Texts: A Content Analysis.

    Science.gov (United States)

    Zehr, David

    2000-01-01

    Examines the content of introductory psychology books by performing a content analysis on texts from the 1970s and 1990s to determine whether the books incorporated recent historical scholarship in discussions of Wilhelm Wundt and Edward Titchener. Finds that some texts still misrepresent the relation between Wundt and Titchener. (CMK)

  5. The International Trade Network: weighted network analysis and modelling

    International Nuclear Information System (INIS)

    Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K

    2008-01-01

    Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN

  6. Network Anomaly Detection Based on Wavelet Analysis

    Science.gov (United States)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  7. From text to political positions: The convergence of political, linguistic and discourse analysis

    NARCIS (Netherlands)

    van Elfrinkhof, A.M.E.; Maks, I.; Kaal, A.R.; Kaal, A.R.; Maks, I.; van Elfrinkhof, A.M.E.

    2014-01-01

    Abstract: This chapter explores how three methods of political text analysis can complement each other to differentiate parties in detail. A word-frequency method and corpus linguistic techniques are joined by critical discourse analysis in an attempt to assess the ideological relation between

  8. Complementing the Numbers: A Text Mining Analysis of College Course Withdrawals

    Science.gov (United States)

    Michalski, Greg V.

    2011-01-01

    Excessive college course withdrawals are costly to the student and the institution in terms of time to degree completion, available classroom space, and other resources. Although generally well quantified, detailed analysis of the reasons given by students for course withdrawal is less common. To address this, a text mining analysis was performed…

  9. Text localization using standard deviation analysis of structure elements and support vector machines

    Directory of Open Access Journals (Sweden)

    Zagoris Konstantinos

    2011-01-01

    Full Text Available Abstract A text localization technique is required to successfully exploit document images such as technical articles and letters. The proposed method detects and extracts text areas from document images. Initially a connected components analysis technique detects blocks of foreground objects. Then, a descriptor that consists of a set of suitable document structure elements is extracted from the blocks. This is achieved by incorporating an algorithm called Standard Deviation Analysis of Structure Elements (SDASE which maximizes the separability between the blocks. Another feature of the SDASE is that its length adapts according to the requirements of the application. Finally, the descriptor of each block is used as input to a trained support vector machines that classify the block as text or not. The proposed technique is also capable of adjusting to the text structure of the documents. Experimental results on benchmarking databases demonstrate the effectiveness of the proposed method.

  10. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  11. Analysis of cohesive devices in a short text: 'Whiskey. No water. No ice.' by Tom Hart

    Directory of Open Access Journals (Sweden)

    Janković Anita V.

    2017-01-01

    Full Text Available The aim of this paper was two-fold. Primarily, based on literature review, it presented various takes on what constitutes a text and what makes it cohesive. Secondly, it reported the results of the cohesion analysis performed on a short drama by Tom Hart. This drama was written as a submission for the London Royal Court Theatre competition '100 Word Play'. The author used the model of analysis of a dramatic dialogue proposed by Halliday and Hassan. The dramatic dialogue here is characterized as a speaking text, for the stage; therefore, the stage directions were excluded from the analysis as para-linguistic phenomena. The results of the analysis revealed immediate ellipsis of anaphoric direction as the most common cohesive device in 47 percent of the text. Second in frequency are referencing mechanisms, and finally lexical devices and connectors. Furthermore, the analysis exposed the use of reiteration, both lexical and structural, which is not predicted by the model. However, these instances were explained by Hoey's model of lexical repetition. The thematic progression in the text is linear which is characteristic of dialogues. The analysis noted no usage of substitution nor parallelism, which is in itself indicative of the set hypothesis because parallelisms are characteristic of poetry and political discourse.

  12. NEXCADE: perturbation analysis for complex networks.

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    Full Text Available Recent advances in network theory have led to considerable progress in our understanding of complex real world systems and their behavior in response to external threats or fluctuations. Much of this research has been invigorated by demonstration of the 'robust, yet fragile' nature of cellular and large-scale systems transcending biology, sociology, and ecology, through application of the network theory to diverse interactions observed in nature such as plant-pollinator, seed-dispersal agent and host-parasite relationships. In this work, we report the development of NEXCADE, an automated and interactive program for inducing disturbances into complex systems defined by networks, focusing on the changes in global network topology and connectivity as a function of the perturbation. NEXCADE uses a graph theoretical approach to simulate perturbations in a user-defined manner, singly, in clusters, or sequentially. To demonstrate the promise it holds for broader adoption by the research community, we provide pre-simulated examples from diverse real-world networks including eukaryotic protein-protein interaction networks, fungal biochemical networks, a variety of ecological food webs in nature as well as social networks. NEXCADE not only enables network visualization at every step of the targeted attacks, but also allows risk assessment, i.e. identification of nodes critical for the robustness of the system of interest, in order to devise and implement context-based strategies for restructuring a network, or to achieve resilience against link or node failures. Source code and license for the software, designed to work on a Linux-based operating system (OS can be downloaded at http://www.nipgr.res.in/nexcade_download.html. In addition, we have developed NEXCADE as an OS-independent online web server freely available to the scientific community without any login requirement at http://www.nipgr.res.in/nexcade.html.

  13. Study of co-authorship network of papers in the Journal of Research in Medical Sciences using social network analysis

    Directory of Open Access Journals (Sweden)

    Firoozeh Zare-Farashbandi

    2014-01-01

    Full Text Available Background: Co-authorship is one of the most tangible forms of research collaboration. A co-authorship network is a social network in which the authors through participation in one or more publication through an indirect path have linked to each other. The present research using the social network analysis studied co-authorship network of 681 articles published in Journal of Research in Medical Sciences (JRMS during 2008-2012. Materials and Methods: The study was carried out with the scientometrics approach and using co-authorship network analysis of authors. The topology of the co-authorship network of 681 published articles in JRMS between 2008 and 2012 was analyzed using macro-level metrics indicators of network analysis such as density, clustering coefficient, components and mean distance. In addition, in order to evaluate the performance of each authors and countries in the network, the micro-level indicators such as degree centrality, closeness centrality and betweenness centrality as well as productivity index were used. The UCINET and NetDraw softwares were used to draw and analyze the co-authorship network of the papers. Results: The assessment of the authors productivity in this journal showed that the first ranks were belonged to only five authors, respectively. Furthermore, analysis of the co-authorship of the authors in the network demonstrated that in the betweenness centrality index, three authors of them had the good position in the network. They can be considered as the network leaders able to control the flow of information in the network compared with the other members based on the shortest paths. On the other hand, the key role of the network according to the productivity and centrality indexes was belonged to Iran, Malaysia and United States of America. Conclusion: Co-authorship network of JRMS has the characteristics of a small world network. In addition, the theory of 6° separation is valid in this network was also true.

  14. Forecast of TEXT plasma disruptions using soft X-rays as input signal in a neural network

    International Nuclear Information System (INIS)

    Vannucci, A.; Oliveira, K.A.; Tajima, T.; Tajima, Y.J.

    2001-01-01

    A feed-forward neural network is used to forecast major and minor disruptions in TEXT tokamak discharges. Using the experimental data of soft X-ray signals as input data, the neural net is trained with one disruptive plasma discharge, while a different disruptive discharge is used for validation. After proper training, the net works with the same set of weights, it is then used to forecast disruptions in two other different plasma discharges. It is observed that the neural net is capable of predicting the onset of a disruption up to 3.12 ms in advance. From what we observe in the predictive behavior of our network, speculations are made whether the disruption triggering mechanism is associated with an increase in the m=2 magnetic island, that disturbs the central part of the plasma column afterwards, or the initial perturbation has first occurred in the central part of the plasma column and then the m=2 MHD mode is destabilized. (author)

  15. Crawling Facebook for Social Network Analysis Purposes

    OpenAIRE

    Catanese, Salvatore A.; De Meo, Pasquale; Ferrara, Emilio; Fiumara, Giacomo; Provetti, Alessandro

    2011-01-01

    We describe our work in the collection and analysis of massive data describing the connections between participants to online social networks. Alternative approaches to social network data collection are defined and evaluated in practice, against the popular Facebook Web site. Thanks to our ad-hoc, privacy-compliant crawlers, two large samples, comprising millions of connections, have been collected; the data is anonymous and organized as an undirected graph. We describe a set of tools that w...

  16. Automated Analysis of Security in Networking Systems

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    2004-01-01

    such networking systems are modelled in the process calculus LySa. On top of this programming language based formalism an analysis is developed, which relies on techniques from data and control ow analysis. These are techniques that can be fully automated, which make them an ideal basis for tools targeted at non...

  17. Opinion Mining in Latvian Text Using Semantic Polarity Analysis and Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Gatis Špats

    2016-07-01

    Full Text Available In this paper we demonstrate approaches for opinion mining in Latvian text. Authors have applied, combined and extended results of several previous studies and public resources to perform opinion mining in Latvian text using two approaches, namely, semantic polarity analysis and machine learning. One of the most significant constraints that make application of opinion mining for written content classification in Latvian text challenging is the limited publicly available text corpora for classifier training. We have joined several sources and created a publically available extended lexicon. Our results are comparable to or outperform current achievements in opinion mining in Latvian. Experiments show that lexicon-based methods provide more accurate opinion mining than the application of Naive Bayes machine learning classifier on Latvian tweets. Methods used during this study could be further extended using human annotators, unsupervised machine learning and bootstrapping to create larger corpora of classified text.

  18. INVESTIGATING TEACHERS’ PROFESSIONAL COMPETENCE: A SYSTEMIC FUNCTIONAL LINGUISTIC ANALYSIS OF TEACHERS’ REPORT TEXTS

    Directory of Open Access Journals (Sweden)

    Sudarsono M. I. Sudarsono

    2017-05-01

    Full Text Available This research aims at observing the teachers’ professional competence by investigating the report texts written by three English teachers in a junior high school in terms of their schematic structures and linguistic features. To achieve this aim, a qualitative case study design involving analysis of English teachers’ report texts and interviews with these English teachers was employed in this research. The results of this research showed that generally the three English teachers have demonstrated sufficient ability in applying appropriate schematic structures and linguistic features relevant to the criteria of a report text. However, the results of this research also indicate that some improvements in understanding and writing a report text, especially in terms of schematic structure, linguistic features, and theme progressions, are needed to enhance the teachers’ subject matter content knowledge about report text.

  19. Network Analysis in Community Psychology: Looking Back, Looking Forward

    OpenAIRE

    Neal, Zachary P.; Neal, Jennifer Watling

    2017-01-01

    Highlights Network analysis is ideally suited for community psychology research because it focuses on context. Use of network analysis in community psychology is growing. Network analysis in community psychology has employed some potentially problematic practices. Recommended practices are identified to improve network analysis in community psychology.

  20. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  1. Network Analysis with Stochastic Grammars

    Science.gov (United States)

    2015-09-17

    rules N = 0 //non-terminal index clusters = cluster(W) //number of clusters drive the number S productions //cluster function described in text...Essa, “Recognizing multitasked activities from video using stochastic context-free grammar,” AAAI/IAAI, pp. 770–776, 2002. [18] R. Nevatia, T. Zhao

  2. NAPS: Network Analysis of Protein Structures

    Science.gov (United States)

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  3. Collective Competence and Social Capital Analysis in Collaborative Networks

    Directory of Open Access Journals (Sweden)

    Janaina Macke

    2010-06-01

    Full Text Available The present paper addresses the issue of collective competence and social capital analysis for collaborative networks. The objective of the project is to understand how collaborative networks can be influenced considering the perspective of social capital and core competences. In this model we defend the emphasis on endogenous resources, once the technology is, in a general way, accessible to most of the companies and, therefore will not be a long term competitive advantage. The model shows that collaborative networks will be more competitive and successful if they invest in to core elements that are: organizational culture and people. Therefore, the model contributes for the researches in socio-organizational filed and provides a tool to evaluate collaborative networks.

  4. Performance Analysis and Improvement of WPAN MAC for Home Networks

    Directory of Open Access Journals (Sweden)

    Saurabh Mehta

    2010-03-01

    Full Text Available The wireless personal area network (WPAN is an emerging wireless technology for future short range indoor and outdoor communication applications. The IEEE 802.15.3 medium access control (MAC is proposed to coordinate the access to the wireless medium among the competing devices, especially for short range and high data rate applications in home networks. In this paper we use analytical modeling to study the performance analysis of WPAN (IEEE 802.15.3 MAC in terms of throughput, efficient bandwidth utilization, and delay with various ACK policies under error channel condition. This allows us to introduce a K-Dly-ACK-AGG policy, payload size adjustment mechanism, and Improved Backoff algorithm to improve the performance of the WPAN MAC. Performance evaluation results demonstrate the impact of our improvements on network capacity. Moreover, these results can be very useful to WPAN application designers and protocol architects to easily and correctly implement WPAN for home networking.

  5. Analysis of texts produced by students of the early years: guidelines for a possible diagnosis

    Directory of Open Access Journals (Sweden)

    Terezinha da Conceição Costa-Hübes

    2012-12-01

    Full Text Available The analysis of students’ texts requires from the teacher scientific knowledge about language which provides him subsidies for the diagnosis of the writings. Thus, this paper aims to present some reflections on the possibilities of using a diagnostic table, designed with the purpose of guiding the teacher – when assessing the student’s text – in the identification of the mastered and non-mastered aspects in writing. The designing of the table is the result of studies carried out by a study group on Portuguese language, consisting of teachers of the early years and supported by the theories of speech genres (BAKHTIN, 2003 and text genres (BRONCKART, 2003, the concept of text as a teaching unit (GERALDI, 1984 and, more specifically, the discussions on practices of linguistic analysis (GERALDI, 1984 and 1997. In order to test the use of the table, we will take texts of the genre ‘note’ produced by students of the 3rd year of elementary school, considering genre, text and spelling aspects.

  6. A statistical analysis of UK financial networks

    Science.gov (United States)

    Chu, J.; Nadarajah, S.

    2017-04-01

    In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.

  7. Network Analysis of Rodent Transcriptomes in Spaceflight

    Science.gov (United States)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  8. "I'll See You on IM, Text, or Call You": A Social Network Approach of Adolescents' Use of Communication Media

    Science.gov (United States)

    Van Cleemput, Katrien

    2010-01-01

    This study explores some possibilities of social network analysis for studying adolescents' communication patterns. A full network analysis was conducted on third-grade high school students (15 year olds, 137 students) in Belgium. The results pointed out that face-to-face communication was still the most prominent way for information to flow…

  9. A meta-analysis of the effects of texting on driving.

    Science.gov (United States)

    Caird, Jeff K; Johnston, Kate A; Willness, Chelsea R; Asbridge, Mark; Steel, Piers

    2014-10-01

    Text messaging while driving is considered dangerous and known to produce injuries and fatalities. However, the effects of text messaging on driving performance have not been synthesized or summarily estimated. All available experimental studies that measured the effects of text messaging on driving were identified through database searches using variants of "driving" and "texting" without restriction on year of publication through March 2014. Of the 1476 abstracts reviewed, 82 met general inclusion criteria. Of these, 28 studies were found to sufficiently compare reading or typing text messages while driving with a control or baseline condition. Independent variables (text-messaging tasks) were coded as typing, reading, or a combination of both. Dependent variables included eye movements, stimulus detection, reaction time, collisions, lane positioning, speed and headway. Statistics were extracted from studies to compute effect sizes (rc). A total sample of 977 participants from 28 experimental studies yielded 234 effect size estimates of the relationships among independent and dependent variables. Typing and reading text messages while driving adversely affected eye movements, stimulus detection, reaction time, collisions, lane positioning, speed and headway. Typing text messages alone produced similar decrements as typing and reading, whereas reading alone had smaller decrements over fewer dependent variables. Typing and reading text messages affects drivers' capability to adequately direct attention to the roadway, respond to important traffic events, control a vehicle within a lane and maintain speed and headway. This meta-analysis provides convergent evidence that texting compromises the safety of the driver, passengers and other road users. Combined efforts, including legislation, enforcement, blocking technologies, parent modeling, social media, social norms and education, will be required to prevent continued deaths and injuries from texting and driving

  10. Complex network analysis of state spaces for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)

    2008-01-15

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.

  11. Complex network analysis of state spaces for random Boolean networks

    International Nuclear Information System (INIS)

    Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya

    2008-01-01

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two

  12. Whose American Government? A Quantitative Analysis of Gender and Authorship in American Politics Texts

    Science.gov (United States)

    Cassese, Erin C.; Bos, Angela L.; Schneider, Monica C.

    2014-01-01

    American government textbooks signal to students the kinds of topics that are important and, by omission, the kinds of topics that are not important to the discipline of political science. This article examines portrayals of women in introductory American politics textbooks through a quantitative content analysis of 22 widely used texts. We find…

  13. English tsotsitaals? − an analysis of two written texts in Surfspeak ...

    African Journals Online (AJOL)

    ... medium of English; (b) give an appreciation of the humour, wit and style associated with English tsotsitaals, via the analysis of two written texts; and (c) show the limitations of tsotsitaals in extended written usage, for which they have to co-exist with more mainstream forms of the dialect of English they utilise for their base.

  14. Intellectual Disabilities, Challenging Behaviour and Referral Texts: A Critical Discourse Analysis

    Science.gov (United States)

    Nunkoosing, Karl; Haydon-Laurelut, Mark

    2011-01-01

    The texts of referrals written by workers in residential services for people with learning difficulties constitute sites where contemporary discourses of intellectual disabilities are being constructed. This paper uses Critical Discourse Analysis to examine referrals made to a Community Learning Disability Team (CLDT). The study finds referral…

  15. Rethinking Critical Mathematics: A Comparative Analysis of Critical, Reform, and Traditional Geometry Instructional Texts

    Science.gov (United States)

    Brantlinger, Andrew

    2011-01-01

    This paper presents findings from a comparative analysis of three similar secondary geometry texts, one critical unit, one standards-based reform unit, and one specialist chapter. I developed the critical unit as I took the tenets of critical mathematics (CM) and substantiated them in printed curricular materials in which to teach as part of a…

  16. The Determination of Children's Knowledge of Global Lunar Patterns from Online Essays Using Text Mining Analysis

    Science.gov (United States)

    Cheon, Jongpil; Lee, Sangno; Smith, Walter; Song, Jaeki; Kim, Yongjin

    2013-01-01

    The purpose of this study was to use text mining analysis of early adolescents' online essays to determine their knowledge of global lunar patterns. Australian and American students in grades five to seven wrote about global lunar patterns they had discovered by sharing observations with each other via the Internet. These essays were analyzed for…

  17. Making Sense of Student Feedback Using Text Analysis--Adapting and Expanding a Common Lexicon

    Science.gov (United States)

    Santhanam, Elizabeth; Lynch, Bernardine; Jones, Jeffrey

    2018-01-01

    Purpose: This paper aims to report the findings of a study into the automated text analysis of student feedback comments to assist in investigating a high volume of qualitative information at various levels in an Australian university. It includes the drawbacks and advantages of using selected applications and established lexicons. There has been…

  18. Text analysis of open-ended survey responses : a complementary method to preference mapping

    NARCIS (Netherlands)

    ten Kleij, F; Musters, PAD

    The present study illustrates the use of computer-aided text analysis to evaluate the content of open-ended survey responses. During an in-hall test, different varieties of mayonnaise were evaluated by 165 respondents on a 10-point liking scale, with the option to freely comment on these

  19. The Imbalance Attitude of the Journalists in Six Chemical Castration Texts: An SFLCritical Discourse Analysis

    Directory of Open Access Journals (Sweden)

    Mustofa Kamal

    2017-10-01

    Full Text Available This research investigates how journalists behave in texts. The analysis focuses on the exploitation of attitudinal lexis. This is qualitatively explored through attitude and graduation. The data sources were columns of news, taken from an online version of The Jakarta Post on June sixth 2016. Having been selected using criterion-based sampling technique, the sources of data resulted in six chemical castration texts. The procedure of investigation consists of domain, taxonomic, componential, and cultural value analysis. The result shows that journalists are relatively subjective in reporting news by unbalancing the pros and cons, relatively inconsistent in work from delivering news to criticizing government officials, and relatively provocative by up-scaling critical evaluations against the government policy on sex offenders.

  20. Northern emporia and maritime networks. Modelling past communication using archaeological network analysis

    DEFF Research Database (Denmark)

    Sindbæk, Søren Michael

    2015-01-01

    preserve patterns of thisinteraction. Formal network analysis and modelling holds the potential to identify anddemonstrate such patterns, where traditional methods often prove inadequate. Thearchaeological study of communication networks in the past, however, calls for radically different analytical...... this is not a problem of network analysis, but network synthesis: theclassic problem of cracking codes or reconstructing black-box circuits. It is proposedthat archaeological approaches to network synthesis must involve a contextualreading of network data: observations arising from individual contexts, morphologies...

  1. SOCIOLOGICAL UNDERSTANDING OF INTERNET: THEORETICAL APPROACHES TO THE NETWORK ANALYSIS

    Directory of Open Access Journals (Sweden)

    D. E. Dobrinskaya

    2016-01-01

    Full Text Available Internet studies are carried out by various scientific disciplines and in different research perspectives. Sociological studies of the Internet deal with a new technology, a revolutionary means of mass communication and a social space. There is a set of research difficulties associated with the Internet. Firstly, the high speed and wide spread of Internet technologies’ development. Secondly, the collection and filtration of materials concerning with Internet studies. Lastly, the development of new conceptual categories, which are able to reflect the impact of the Internet development in contemporary world. In that regard the question of the “network” category use is essential. Network is the base of Internet functioning, on the one hand. On the other hand, network is the ground for almost all social interactions in modern society. So such society is called network society. Three theoretical network approaches in the Internet research case are the most relevant: network society theory, social network analysis and actor-network theory. Each of these theoretical approaches contributes to the study of the Internet. They shape various images of interactions between human beings in their entity and dynamics. All these approaches also provide information about the nature of these interactions. 

  2. Vulnerability analysis methods for road networks

    Science.gov (United States)

    Bíl, Michal; Vodák, Rostislav; Kubeček, Jan; Rebok, Tomáš; Svoboda, Tomáš

    2014-05-01

    Road networks rank among the most important lifelines of modern society. They can be damaged by either random or intentional events. Roads are also often affected by natural hazards, the impacts of which are both direct and indirect. Whereas direct impacts (e.g. roads damaged by a landslide or due to flooding) are localized in close proximity to the natural hazard occurrence, the indirect impacts can entail widespread service disabilities and considerable travel delays. The change in flows in the network may affect the population living far from the places originally impacted by the natural disaster. These effects are primarily possible due to the intrinsic nature of this system. The consequences and extent of the indirect costs also depend on the set of road links which were damaged, because the road links differ in terms of their importance. The more robust (interconnected) the road network is, the less time is usually needed to secure the serviceability of an area hit by a disaster. These kinds of networks also demonstrate a higher degree of resilience. Evaluating road network structures is therefore essential in any type of vulnerability and resilience analysis. There are a range of approaches used for evaluation of the vulnerability of a network and for identification of the weakest road links. Only few of them are, however, capable of simulating the impacts of the simultaneous closure of numerous links, which often occurs during a disaster. The primary problem is that in the case of a disaster, which usually has a large regional extent, the road network may remain disconnected. The majority of the commonly used indices use direct computation of the shortest paths or time between OD (origin - destination) pairs and therefore cannot be applied when the network breaks up into two or more components. Since extensive break-ups often occur in cases of major disasters, it is important to study the network vulnerability in these cases as well, so that appropriate

  3. Diversity Performance Analysis on Multiple HAP Networks

    Science.gov (United States)

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  4. Mixed Methods Analysis of Enterprise Social Networks

    DEFF Research Database (Denmark)

    Behrendt, Sebastian; Richter, Alexander; Trier, Matthias

    2014-01-01

    The increasing use of enterprise social networks (ESN) generates vast amounts of data, giving researchers and managerial decision makers unprecedented opportunities for analysis. However, more transparency about the available data dimensions and how these can be combined is needed to yield accurate...

  5. Nonlinear Time Series Analysis via Neural Networks

    Science.gov (United States)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  6. Integrating neural network technology and noise analysis

    International Nuclear Information System (INIS)

    Uhrig, R.E.; Oak Ridge National Lab., TN

    1995-01-01

    The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)

  7. A feminist post-structuralist analysis of an exemplar South African school history text

    Directory of Open Access Journals (Sweden)

    Jill Fardon

    2010-01-01

    Full Text Available A feminist post-structuralist perspective offers an alternative paradigm for the study of gender bias in History texts. It focuses on multiple perspectives and open interpretation, opens up space for female voices of the past and present, and deconstructs realist historical narrative. Our aim in this article is to discuss feminist post-structuralism as an innovative approach to History as a school subject, and to demonstrate its implications for the analysis of school History texts. We seek to identify and expose biases that marginalise women in school History texts and contribute to correcting these. Additionally, we seek to develop new knowledge for understanding gender differences. An example of the empirical application of the feminist post-structuralist perspective is provided. The exemplar text analysed supports masculine historical narrative, using a neutral and naturalising style, and renders women and the feminine meaning invisible. It is suggested that non-traditional forms of writing will help to dislodge the inherent hegemony in History texts and challenge the masculine status quo in school History texts.

  8. A Comparative Analysis of Information Hiding Techniques for Copyright Protection of Text Documents

    Directory of Open Access Journals (Sweden)

    Milad Taleby Ahvanooey

    2018-01-01

    Full Text Available With the ceaseless usage of web and other online services, it has turned out that copying, sharing, and transmitting digital media over the Internet are amazingly simple. Since the text is one of the main available data sources and most widely used digital media on the Internet, the significant part of websites, books, articles, daily papers, and so on is just the plain text. Therefore, copyrights protection of plain texts is still a remaining issue that must be improved in order to provide proof of ownership and obtain the desired accuracy. During the last decade, digital watermarking and steganography techniques have been used as alternatives to prevent tampering, distortion, and media forgery and also to protect both copyright and authentication. This paper presents a comparative analysis of information hiding techniques, especially on those ones which are focused on modifying the structure and content of digital texts. Herein, various text watermarking and text steganography techniques characteristics are highlighted along with their applications. In addition, various types of attacks are described and their effects are analyzed in order to highlight the advantages and weaknesses of current techniques. Finally, some guidelines and directions are suggested for future works.

  9. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  10. TIME SERIES ANALYSIS ON STOCK MARKET FOR TEXT MINING CORRELATION OF ECONOMY NEWS

    Directory of Open Access Journals (Sweden)

    Sadi Evren SEKER

    2014-01-01

    Full Text Available This paper proposes an information retrieval methodfor the economy news. Theeffect of economy news, are researched in the wordlevel and stock market valuesare considered as the ground proof.The correlation between stock market prices and economy news is an already ad-dressed problem for most of the countries. The mostwell-known approach is ap-plying the text mining approaches to the news and some time series analysis tech-niques over stock market closing values in order toapply classification or cluster-ing algorithms over the features extracted. This study goes further and tries to askthe question what are the available time series analysis techniques for the stockmarket closing values and which one is the most suitable? In this study, the newsand their dates are collected into a database and text mining is applied over thenews, the text mining part has been kept simple with only term frequency – in-verse document frequency method. For the time series analysis part, we havestudied 10 different methods such as random walk, moving average, acceleration,Bollinger band, price rate of change, periodic average, difference, momentum orrelative strength index and their variation. In this study we have also explainedthese techniques in a comparative way and we have applied the methods overTurkish Stock Market closing values for more than a2 year period. On the otherhand, we have applied the term frequency – inversedocument frequency methodon the economy news of one of the high-circulatingnewspapers in Turkey.

  11. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  12. Time series analysis of temporal networks

    Science.gov (United States)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  13. Adolescent Female Text Messaging Preferences to Prevent Pregnancy After an Emergency Department Visit: A Qualitative Analysis.

    Science.gov (United States)

    Chernick, Lauren Stephanie; Schnall, Rebecca; Stockwell, Melissa S; Castaño, Paula M; Higgins, Tracy; Westhoff, Carolyn; Santelli, John; Dayan, Peter S

    2016-09-29

    Over 15 million adolescents use the emergency department (ED) each year in the United States. Adolescent females who use the ED for medical care have been found to be at high risk for unintended pregnancy. Given that adolescents represent the largest users of text messaging and are receptive to receiving text messages related to their sexual health, the ED visit represents an opportunity for intervention. The aim of this qualitative study was to explore interest in and preferences for the content, frequency, and timing of an ED-based text message intervention to prevent pregnancy for adolescent females. We conducted semistructured, open-ended interviews in one urban ED in the United States with adolescent females aged 14-19 years. Eligible subjects were adolescents who were sexually active in the past 3 months, presented to the ED for a reproductive health complaint, owned a mobile phone, and did not use effective contraception. Using an interview guide, enrollment continued until saturation of key themes. The investigators designed sample text messages using the Health Beliefs Model and participants viewed these on a mobile phone. The team recorded, transcribed, and coded interviews based on thematic analysis using the qualitative analysis software NVivo and Excel. Participants (n=14) were predominantly Hispanic (13/14; 93%), insured (13/14; 93%), ED users in the past year (12/14; 86%), and frequent text users (10/14; 71% had sent or received >30 texts per day). All were interested in receiving text messages from the ED about pregnancy prevention, favoring messages that were "brief," "professional," and "nonaccusatory." Respondents favored texts with links to websites, repeated information regarding places to receive "confidential" care, and focused information on contraception options and misconceptions. Preferences for text message frequency varied from daily to monthly, with random hours of delivery to maintain "surprise." No participant feared that text

  14. Network analysis for the visualization and analysis of qualitative data.

    Science.gov (United States)

    Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D

    2018-03-01

    We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

    African Journals Online (AJOL)

    ... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...

  16. Using computerized text analysis to assess communication within an Italian type 1 diabetes Facebook group

    Directory of Open Access Journals (Sweden)

    Alda Troncone

    2015-11-01

    Full Text Available The purpose of this study was to assess messages posted by mothers of children with type 1 diabetes in the Italian Facebook group “Mamme e diabete” using computerized text analysis. The data suggest that these mothers use online discussion boards as a place to seek and provide information to better manage the disease’s daily demands—especially those tasks linked to insulin correction and administration, control of food intake, and bureaucratic duties, as well as to seek and give encouragement and to share experiences regarding diabetes and related impact on their life. The implications of these findings for the management of diabetes are discussed.

  17. Unsupervised text mining methods for literature analysis: a case study for Thomas Pynchon's V.

    Directory of Open Access Journals (Sweden)

    Christos Iraklis Tsatsoulis

    2013-08-01

    Full Text Available We investigate the use of unsupervised text mining methods for the analysis of prose literature works, using Thomas Pynchon's novel 'V'. as a case study. Our results suggest that such methods may be employed to reveal meaningful information regarding the novel’s structure. We report results using a wide variety of clustering algorithms, several distinct distance functions, and different visualization techniques. The application of a simple topic model is also demonstrated. We discuss the meaningfulness of our results along with the limitations of our approach, and we suggest some possible paths for further study.

  18. PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    S. Munapo

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.

    AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.

  19. Capacity analysis of vehicular communication networks

    CERN Document Server

    Lu, Ning

    2013-01-01

    This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. Moreover, unique characteristics of VANETs impose distinguished challenges on such an investigation. This SpringerBrief first introduces capacity scaling laws for wireless networks and briefly reviews the prior arts in deriving the capacity of VANETs. It then studies the unicast capacity considering the socialized mobility model of VANETs. With vehicles communicating based on a two-hop relaying scheme, the unicast capacity bound is deriv

  20. Neural network analysis in pharmacogenetics of mood disorders

    Directory of Open Access Journals (Sweden)

    Serretti Alessandro

    2004-12-01

    Full Text Available Abstract Background The increasing number of available genotypes for genetic studies in humans requires more advanced techniques of analysis. We previously reported significant univariate associations between gene polymorphisms and antidepressant response in mood disorders. However the combined analysis of multiple gene polymorphisms and clinical variables requires the use of non linear methods. Methods In the present study we tested a neural network strategy for a combined analysis of two gene polymorphisms. A Multi Layer Perceptron model showed the best performance and was therefore selected over the other networks. One hundred and twenty one depressed inpatients treated with fluvoxamine in the context of previously reported pharmacogenetic studies were included. The polymorphism in the transcriptional control region upstream of the 5HTT coding sequence (SERTPR and in the Tryptophan Hydroxylase (TPH gene were analysed simultaneously. Results A multi layer perceptron network composed by 1 hidden layer with 7 nodes was chosen. 77.5 % of responders and 51.2% of non responders were correctly classified (ROC area = 0.731 – empirical p value = 0.0082. Finally, we performed a comparison with traditional techniques. A discriminant function analysis correctly classified 34.1 % of responders and 68.1 % of non responders (F = 8.16 p = 0.0005. Conclusions Overall, our findings suggest that neural networks may be a valid technique for the analysis of gene polymorphisms in pharmacogenetic studies. The complex interactions modelled through NN may be eventually applied at the clinical level for the individualized therapy.

  1. Appraising the Corporate Sustainability Reports - Text Mining and Multi-Discriminatory Analysis

    Science.gov (United States)

    Modapothala, J. R.; Issac, B.; Jayamani, E.

    The voluntary disclosure of the sustainability reports by the companies attracts wider stakeholder groups. Diversity in these reports poses challenge to the users of information and regulators. This study appraises the corporate sustainability reports as per GRI (Global Reporting Initiative) guidelines (the most widely accepted and used) across all industrial sectors. Text mining is adopted to carry out the initial analysis with a large sample size of 2650 reports. Statistical analyses were performed for further investigation. The results indicate that the disclosures made by the companies differ across the industrial sectors. Multivariate Discriminant Analysis (MDA) shows that the environmental variable is a greater significant contributing factor towards explanation of sustainability report.

  2. Research trends on Big Data in Marketing: A text mining and topic modeling based literature analysis

    Directory of Open Access Journals (Sweden)

    Alexandra Amado

    2018-01-01

    Full Text Available Given the research interest on Big Data in Marketing, we present a research literature analysis based on a text mining semi-automated approach with the goal of identifying the main trends in this domain. In particular, the analysis focuses on relevant terms and topics related with five dimensions: Big Data, Marketing, Geographic location of authors’ affiliation (countries and continents, Products, and Sectors. A total of 1560 articles published from 2010 to 2015 were scrutinized. The findings revealed that research is bipartite between technological and research domains, with Big Data publications not clearly aligning cutting edge techniques toward Marketing benefits. Also, few inter-continental co-authored publications were found. Moreover, findings show that research in Big Data applications to Marketing is still in an embryonic stage, thus making it essential to develop more direct efforts toward business for Big Data to thrive in the Marketing arena.

  3. Automated Text Analysis Based on Skip-Gram Model for Food Evaluation in Predicting Consumer Acceptance

    Directory of Open Access Journals (Sweden)

    Augustine Yongwhi Kim

    2018-01-01

    Full Text Available The purpose of this paper is to evaluate food taste, smell, and characteristics from consumers’ online reviews. Several studies in food sensory evaluation have been presented for consumer acceptance. However, these studies need taste descriptive word lexicon, and they are not suitable for analyzing large number of evaluators to predict consumer acceptance. In this paper, an automated text analysis method for food evaluation is presented to analyze and compare recently introduced two jjampong ramen types (mixed seafood noodles. To avoid building a sensory word lexicon, consumers’ reviews are collected from SNS. Then, by training word embedding model with acquired reviews, words in the large amount of review text are converted into vectors. Based on these words represented as vectors, inference is performed to evaluate taste and smell of two jjampong ramen types. Finally, the reliability and merits of the proposed food evaluation method are confirmed by a comparison with the results from an actual consumer preference taste evaluation.

  4. Studying text coherence in Czech – a corpus-based analysis

    Directory of Open Access Journals (Sweden)

    Rysová Magdaléna

    2017-12-01

    Full Text Available The paper deals with the field of Czech corpus linguistics and represents one of various current studies analysing text coherence through language interactions. It presents a corpusbased analysis of grammatical coreference and sentence information structure (in terms of contextual boundness in Czech. It focuses on examining the interaction of these two language phenomena and observes where they meet to participate in text structuring. Specifically, the paper analyses contextually bound and non-bound sentence items and examines whether (and how often they are involved in relations of grammatical coreference in Czech newspaper articles. The analysis is carried out on the language data of the Prague Dependency Treebank (PDT containing 3,165 Czech texts. The results of the analysis are helpful in automatic text annotation - the paper presents how (or to what extent the annotation of grammatical coreference may be used in automatic (pre-annotation of sentence information structure in Czech. It demonstrates how accurately we may (automatically assume the value of contextual boundness for the antecedent and anaphor (as the two participants of a grammatical coreference relation. The results of the paper demonstrate that the anaphor of grammatical coreference is automatically predictable - it is a non-contrastive contextually bound sentence item in 99.18% of cases. On the other hand, the value of contextual boundness of the antecedent is not so easy to estimate (according to the PDT, the antecedent is contextually non-bound in 37% of cases, non-contrastive contextually bound in 50% and contrastive contextually bound in 13% of cases.

  5. A GENRE ANALYSIS OF PROMOTIONAL TEXTS IN AN INDONESIAN BATIK INDUSTRY

    Directory of Open Access Journals (Sweden)

    Diah Kristina

    2017-09-01

    Full Text Available This study explored sales promotion letters (SPLs and company profiles (CPs of two prominent batik companies in Solo, Central Java, Indonesia. This essay draws its data from the most important primary source of information on sales promotion letters and company profiles namely words, phrases, and clauses taken from the SPLs and CPs of batik written in Indonesian. Secondary sources were also consulted in this research, among these transcribed data obtained from in-depth interviews with the text writers and buyers. Three SPLs and two batik CPs were analyzed. In addition, two informants (marketing and promotion managers typifying the text production perspective and two buyers typifying the text consumption perspective were interviewed. This research was guided by theories of genre analysis which focuses on patterns of rhetorical organization and genre-specific language features. This study employed the multi-dimensional and multi perspective model of analysis focusing on textual, socio-cognitive and ethnographic aspects of the texts. This study concludes that the strong Javanese cultural influence has made the underlying intention of gaining profits to be less explicitly stated. Secondly, the textual analysis and the in-depth interviews supported the view that CPs of batik had been ideally used to create a favorable image of the company. Thirdly, the most distinctive feature that differentiated establishing credentials in the Indonesian batik business context had been the utilization of a sense of moral obligation to preserve native culture. Fourthly, the chemistry between writers and readers of SPLs and CPs built a strong foundation for mutual understanding and thus paved the way for making purchases. To conclude, this study has shown how the wider culture and the culture of the discourse community has contributed to the framing and formatting of SPLs and CPs of batik in terms of lexico-grammar, cognitive structuring, intertextuality and

  6. Mathematical Analysis of Urban Spatial Networks

    CERN Document Server

    Blanchard, Philippe

    2009-01-01

    Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.

  7. Intentional risk management through complex networks analysis

    CERN Document Server

    Chapela, Victor; Moral, Santiago; Romance, Miguel

    2015-01-01

    This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution,  the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained  in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...

  8. Pragmatics Analysis In Humorous Text In Reader’s Digest Magazine

    OpenAIRE

    Agustina, Sri

    2011-01-01

    Skripsi yang berjudul Pragmatic Analysis in Humorous Text in Reader’s Digest Magazine, menganalisis konteks dari humor yang berbentuk dialog dan bagaimana humor tersebut diinterpretasikan; yang terdapat di dalam teks humor di dalam majalah Reader’s Digest edisi Agustus, September, Oktober, November dan Desember 2010. Analisis ini menggunakan teori Yule tahun 1996 yang mengatakan bahwa beberapa fokus kajian pragmatik adalah mengkaji makna penutur di dalam konteks tertentu dan bagaimana konteks...

  9. Reconstruction, visualization and explorative analysis of human pluripotency network

    Directory of Open Access Journals (Sweden)

    Priyanka Narad

    2017-09-01

    Full Text Available Identification of genes/proteins involved in pluripotency and their inter-relationships is important for understanding the induction/loss and maintenance of pluripotency. With the availability of large volume of data on interaction/regulation of pluripotency scattered across a large number of biological databases and hundreds of scientific journals, it is required a systematic integration of data which will create a complete view of pluripotency network. Describing and interpreting such a network of interaction and regulation (i.e., stimulation and inhibition links are essential tasks of computational biology, an important first step in systems-level understanding of the underlying mechanisms of pluripotency. To address this, we have assembled a network of 166 molecular interactions, stimulations and inhibitions, based on a collection of research data from 147 publications, involving 122 human genes/proteins, all in a standard electronic format, enabling analyses by readily available software such as Cytoscape and its Apps (formerly called "Plugins". The network includes the core circuit of OCT4 (POU5F1, SOX2 and NANOG, its periphery (such as STAT3, KLF4, UTF1, ZIC3, and c-MYC, connections to upstream signaling pathways (such as ACTIVIN, WNT, FGF, and BMP, and epigenetic regulators (such as L1TD1, LSD1 and PRC2. We describe the general properties of the network and compare it with other literature-based networks. Gene Ontology (GO analysis is being performed to find out the over-represented GO terms in the network. We use several expression datasets to condense the network to a set of network links that identify the key players (genes/proteins and the pathways involved in transition from one state of pluripotency to other state (i.e., native to primed state, primed to non-pluripotent state and pluripotent to non-pluripotent state.

  10. A systematic review and meta-analysis of interventions for weight management using text messaging.

    Science.gov (United States)

    Siopis, G; Chey, T; Allman-Farinelli, M

    2015-02-01

    Obesity prevalence continues to increase worldwide, with significant associated chronic disease and health cost implications. Among more recent innovations in health service provision is the use of text messaging for health behaviour change interventions including weight management. This review investigates the efficacy of weight management programmes incorporating text messaging. Medical and scientific databases were searched from January 1993 to October 2013. Eligibility criteria included randomised controlled trials (RCTs), pseudoRCTs and before and after studies of weight management, among healthy children and adults, that used text messaging and included a nutrition component. Data extraction and quality assessment followed guidelines from PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) and the Evidence Analysis Manual of the American Academy of Nutrition and Dietetics. From 512 manuscripts retrieved, 14 met the inclusion criteria (five manuscripts in children and nine in adults). Duration of interventions ranged from 1 to 24 months. Frequency of text messaging was from daily to fortnightly. Six studies in adults were included in a meta-analysis with mean body weight change as the primary outcome. The weighted mean change in body weight in intervention participants was -2.56 kg (95% confidence interval = -3.46 to -1.65) and in controls -0.37 kg (95% confidence interval = -1.22 to 0.48). The small body of evidence indicates that text messaging interventions can promote weight loss. However, lack of long-term results indicate that further efficacy studies are required. Future investigations should elucidate the determinants, such as intervention duration, text message frequency and level of interactivity that maximise the success and cost effectiveness of the delivery medium. © 2014 The British Dietetic Association Ltd.

  11. A Network Thermodynamic Approach to Compartmental Analysis

    Science.gov (United States)

    Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387

  12. Multiscale Embedded Gene Co-expression Network Analysis.

    Directory of Open Access Journals (Sweden)

    Won-Min Song

    2015-11-01

    Full Text Available Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3, the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA by: i introducing quality control of co-expression similarities, ii parallelizing embedded network construction, and iii developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs. We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA. MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  13. SHAPE OF FEMININITY IN THE TEXT OF GEGURITAN (PHILOSOPICAL VERSE IN BALI: ANALYSIS OF FEMINISM

    Directory of Open Access Journals (Sweden)

    Ni Nyoman Karmini

    2012-11-01

    Full Text Available The object of this study is Balinese traditional literature which is the form of geguritan(philosophical verse. The reason why such texts are used as the object of the study is that theycontain very complex and interesting narrations about feminism. The objectives of this studyare to find out the formal and narrative structure of the texts and to describe the shape offemininity in the texts and its relevance to the lives of Balinese women who are Hindufollowers in the society. The objectives are all at once the answers to the problems of the study.The theory applied is that of feminism which emphasizes the concept ofRadical-Cultural Feminism. This study is a qualitative one of which the data were collected bydocumentation method, that is, by the techniques of note taking, observation and interview. Thedata were analyzed using the formal method in accordance with literature studies.There were nine geguritan (philosophical verses which were used as the object of thestudy. From the formal structural analysis, the pupuh (strophe used, its function and literarystyle could be identified. From the content, religious and amusement functions could beidentified. From the narrative structural analysis, it could be identified that the plot waschronological and sorot balik (backward directed; the characters and characterization weredescribed to express extraordinary ability, which was based on Hinduism, while the theme wasdescribed to express the application of panca crada (the five principles in Hinduism. Therewere seven findings as far as the analysis of the text is concerned: they are: (1 the educatedwomen could determine their attitudes, make decisions, show prestige and maintain theirdignity; (2 the women in the texts had extraordinary power. This means that the women werenot weak. Therefore, the stereotype that women were weak was neglected; (3 the educatedwomen who used Hinduism as the reference could become the men’s power; (4 the womenwho could

  14. Safeguards Network Analysis Procedure (SNAP): overview

    International Nuclear Information System (INIS)

    Chapman, L.D; Engi, D.

    1979-08-01

    Nuclear safeguards systems provide physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The outputs provided by the SNAP simulation program supplements the safeguards analyst's evaluative capabilities and supports the evaluation of existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use

  15. More Than Just Coding? Evaluating CAQDAS in a Discourse Analysis of News Texts

    Directory of Open Access Journals (Sweden)

    Katie MacMillan

    2005-09-01

    Full Text Available Computer assisted qualitative data ana­lysis software (CAQDAS is frequently described as a tool that can be used for "qualitative research" in general, with qualitative analysis treated as a "catch-all" homogeneous category. Few studies have detailed its use within specific methods, and even fewer have appraised its value for discourse analysis (DA. While some briefly comment that CAQDAS has technical limitations for discourse analysis, in general, the topic as a whole is given scant attention. Our aim is to investigate whether this limited interest in CAQDAS as a qualitative tool amongst discourse analysts, and in DA as a research method amongst CAQDAS users, is prac­tically based; due to an uncertainty about research methods, including DA; or because of method­ol­ogical incompatibilities. In order to address these questions, this study is based not only on a review of the literature on CAQDAS and on DA, but also on our own experience as discourse analysts put­ting some of the main CAQDAS to the test in a media analysis of news texts. URN: urn:nbn:de:0114-fqs0503257

  16. Deconstructing Concealed Gayness Text in The Film Negeri van Oranje: Critical Discourse Analysis

    Directory of Open Access Journals (Sweden)

    Heri Setiawan

    2018-02-01

    Full Text Available As one of the most popular creative cultural products, film sometimes speaks beyond what it presents. It is not always produced merely for entertainment purposes, but also to spread a certain ideology and represent a particular culture. Anchored in queer theory, this research looks at the Indonesian film, Negeri Van Oranje, which was chosen purposely to be analyzed using Fairclough’s critical discourse analysis model with an aim to deconstruct the concealed gayness text in the film. From the analysis, it was found that the gay scenes in the film try to tell its audience about the positions, feelings, challenges, and rejections that Indonesian gay people experience living amongst heteronormative surroundings. Some new notions about gay people’s life in Indonesia are extracted based on the analysis of the gay scenes in the film. The strategy of inserting gay content into a film nationally released in Indonesia is also revealed. The results of the analysis could be used to create a picture of what gay life looks like in Indonesia, a multicultural country that is well-known as the place in which the world’s largest Muslim population dwells.

  17. Utilization of Selected Data Mining Methods for Communication Network Analysis

    Directory of Open Access Journals (Sweden)

    V. Ondryhal

    2011-06-01

    Full Text Available The aim of the project was to analyze the behavior of military communication networks based on work with real data collected continuously since 2005. With regard to the nature and amount of the data, data mining methods were selected for the purpose of analyses and experiments. The quality of real data is often insufficient for an immediate analysis. The article presents the data cleaning operations which have been carried out with the aim to improve the input data sample to obtain reliable models. Gradually, by means of properly chosen SW, network models were developed to verify generally valid patterns of network behavior as a bulk service. Furthermore, unlike the commercially available communication networks simulators, the models designed allowed us to capture nonstandard models of network behavior under an increased load, verify the correct sizing of the network to the increased load, and thus test its reliability. Finally, based on previous experience, the models enabled us to predict emergency situations with a reasonable accuracy.

  18. SOME ASPECTS OF THE USE OF MATHEMATICAL-STATISTICAL METHODS IN THE ANALYSIS OF SOCIO-HUMANISTIC TEXTS Humanities and social text, mathematics, method, statistics, probability

    Directory of Open Access Journals (Sweden)

    Zaira M Alieva

    2016-01-01

    Full Text Available The article analyzes the application of mathematical and statistical methods in the analysis of socio-humanistic texts. The essence of mathematical and statistical methods, presents examples of their use in the study of Humanities and social phenomena. Considers the key issues faced by the expert in the application of mathematical-statistical methods in socio-humanitarian sphere, including the availability of sustainable contrasting socio-humanitarian Sciences and mathematics; the complexity of the allocation of the object that is the bearer of the problem; having the use of a probabilistic approach. The conclusion according to the results of the study.

  19. Static Voltage Stability Analysis by Using SVM and Neural Network

    Directory of Open Access Journals (Sweden)

    Mehdi Hajian

    2013-01-01

    Full Text Available Voltage stability is an important problem in power system networks. In this paper, in terms of static voltage stability, and application of Neural Networks (NN and Supported Vector Machine (SVM for estimating of voltage stability margin (VSM and predicting of voltage collapse has been investigated. This paper considers voltage stability in power system in two parts. The first part calculates static voltage stability margin by Radial Basis Function Neural Network (RBFNN. The advantage of the used method is high accuracy in online detecting the VSM. Whereas the second one, voltage collapse analysis of power system is performed by Probabilistic Neural Network (PNN and SVM. The obtained results in this paper indicate, that time and number of training samples of SVM, are less than NN. In this paper, a new model of training samples for detection system, using the normal distribution load curve at each load feeder, has been used. Voltage stability analysis is estimated by well-know L and VSM indexes. To demonstrate the validity of the proposed methods, IEEE 14 bus grid and the actual network of Yazd Province are used.

  20. Trends in Archaeological Network Research: A Bibliometric Analysis

    Directory of Open Access Journals (Sweden)

    Tom Brughmans

    2017-10-01

    Full Text Available This paper presents an overview of major trends in archaeological network research through a bibliometric analysis of the full corpus of publications on the topic between 1965 and 2016. It illustrates we can begin identifying the outlines of a new sub-discipline within archaeology with its distinct traditions, including a diversity of research approaches, dedicated events and preferred publication venues. This sub-discipline is at a similar stage of development as historical network research, and we argue that archaeologists and historians alike interested in establishing network research as a key tool for exploring social change will have a greater chance for success to the extent that we actively collaborate, pool resources, engage in common community activities and publications, and learn from each other’s mistakes.

  1. Principal component analysis networks and algorithms

    CERN Document Server

    Kong, Xiangyu; Duan, Zhansheng

    2017-01-01

    This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.

  2. Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models

    Directory of Open Access Journals (Sweden)

    Nicola Bernabò

    2016-01-01

    Full Text Available Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN. Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG, referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than “actin,” whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy.

  3. A statistical framework for differential network analysis from microarray data

    Directory of Open Access Journals (Sweden)

    Datta Somnath

    2010-02-01

    Full Text Available Abstract Background It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With the advent of microarray technology, newer computational techniques to detect such interaction or association between gene expressions are being proposed which lead to an association network. While most microarray analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how entire association network structures change between two or more biological settings, say normal versus diseased cell types. Results We provide a recipe for conducting a differential analysis of networks constructed from microarray data under two experimental settings. At the core of our approach lies a connectivity score that represents the strength of genetic association or interaction between two genes. We use this score to propose formal statistical tests for each of following queries: (i whether the overall modular structures of the two networks are different, (ii whether the connectivity of a particular set of "interesting genes" has changed between the two networks, and (iii whether the connectivity of a given single gene has changed between the two networks. A number of examples of this score is provided. We carried out our method on two types of simulated data: Gaussian networks and networks based on differential equations. We show that, for appropriate choices of the connectivity scores and tuning parameters, our method works well on simulated data. We also analyze a real data set involving normal versus heavy mice and identify an interesting set of genes that may play key roles in obesity. Conclusions Examining changes in network structure can provide valuable information about the

  4. Sharing problem gamblers’ experiences: a text analysis of gambling stories via online forum

    Directory of Open Access Journals (Sweden)

    Andrea Caputo

    2015-05-01

    Full Text Available The present study explored some common thematic domains which characterised problem gambling experiences of adult Italian participants with the aim of understanding motivations and expectations of problem gamblers and thus promoting better psychological interventions. Emotional Text Analysis was performed on 24 problem gambling stories collected via online forum in order to detect the main themes (cluster analysis and latent factors (correspondence analysis emerging in gamblers’ narratives. Five themes emerged which respectively refer to guilt (16.15%, obsession (27.60%, disease (30.77%, risk taking (15.89% and emotion regulation (4.17%. In addition, four synthetic dimensions were detected which consent to account the variability of problem gambling experience based on: struggle against compulsion (F1, ambivalent acceptance of gambling (F2, interpersonal detachment (F3 and illusion of control (F4. From the emotional experience shaping the problem gamblers’ narratives, this research study allows the identification of some factors which can contribute to quality research on problem gambling and which can provide some useful suggestion for treatment.

  5. The conceptualization of childhood in North American pediatric dentistry texts: a discursive case study analysis.

    Science.gov (United States)

    Makansi, Nora; Carnevale, Franco A; Macdonald, Mary Ellen

    2018-03-01

    In recent years, conceptions of childhood have been evolving towards an increased recognition of children as active agents, capable of participating in the determination of their wellbeing. In pediatric dentistry, the extent to which these conceptions are being discursively endorsed is not well known. The aim of this investigation was to examine the discursive construction of childhood in seminal North American pedagogical dentistry materials. We conducted a qualitative discourse analysis of a sample of prominent texts using a sociological discourse analysis approach. We analyzed the latest edition of Macdonald and Avery's textbook (Chapter: Non pharmacologic management of children's behaviors) and the clinical practice guidelines published by the American Academy of Pediatric Dentistry, AAPD (Behavior guidance for the pediatric dental patient). The analysis produced five salient discursive categories: socialization through behavior modification; development and behavior; paternalism; the utility of child-centered communication; and consequentialism. While there were instances of a child-centered focus in the texts, the main discourses were rooted in developmentalism and behaviorism. There was scant acknowledgment of the importance of children's agency or voice, which runs contrary to child-centered discourses and practices in related disciplines (e.g., pediatric medicine, nursing). Predominant discourses in pediatric dentistry suggest a paternalistic, behaviorist approach to the 'management' of children in the dental office, focused primarily on completing interventions. Priorities for the future development of pediatric dentistry are discussed, integrating more child-centered approaches. © 2017 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. TACIT: An open-source text analysis, crawling, and interpretation tool.

    Science.gov (United States)

    Dehghani, Morteza; Johnson, Kate M; Garten, Justin; Boghrati, Reihane; Hoover, Joe; Balasubramanian, Vijayan; Singh, Anurag; Shankar, Yuvarani; Pulickal, Linda; Rajkumar, Aswin; Parmar, Niki Jitendra

    2017-04-01

    As human activity and interaction increasingly take place online, the digital residues of these activities provide a valuable window into a range of psychological and social processes. A great deal of progress has been made toward utilizing these opportunities; however, the complexity of managing and analyzing the quantities of data currently available has limited both the types of analysis used and the number of researchers able to make use of these data. Although fields such as computer science have developed a range of techniques and methods for handling these difficulties, making use of those tools has often required specialized knowledge and programming experience. The Text Analysis, Crawling, and Interpretation Tool (TACIT) is designed to bridge this gap by providing an intuitive tool and interface for making use of state-of-the-art methods in text analysis and large-scale data management. Furthermore, TACIT is implemented as an open, extensible, plugin-driven architecture, which will allow other researchers to extend and expand these capabilities as new methods become available.

  7. Automated Text Analysis Based on Skip-Gram Model for Food Evaluation in Predicting Consumer Acceptance.

    Science.gov (United States)

    Kim, Augustine Yongwhi; Ha, Jin Gwan; Choi, Hoduk; Moon, Hyeonjoon

    2018-01-01

    The purpose of this paper is to evaluate food taste, smell, and characteristics from consumers' online reviews. Several studies in food sensory evaluation have been presented for consumer acceptance. However, these studies need taste descriptive word lexicon, and they are not suitable for analyzing large number of evaluators to predict consumer acceptance. In this paper, an automated text analysis method for food evaluation is presented to analyze and compare recently introduced two jjampong ramen types (mixed seafood noodles). To avoid building a sensory word lexicon, consumers' reviews are collected from SNS. Then, by training word embedding model with acquired reviews, words in the large amount of review text are converted into vectors. Based on these words represented as vectors, inference is performed to evaluate taste and smell of two jjampong ramen types. Finally, the reliability and merits of the proposed food evaluation method are confirmed by a comparison with the results from an actual consumer preference taste evaluation.

  8. CATHENA 4. A thermalhydraulics network analysis code

    International Nuclear Information System (INIS)

    Aydemir, N.U.; Hanna, B.N.

    2009-01-01

    Canadian Algorithm for THErmalhydraulic Network Analysis (CATHENA) is a one-dimensional, non-equilibrium, two-phase, two fluid network analysis code that has been in use for over two decades by various groups in Canada and around the world. The objective of the present paper is to describe the design, application and future development plans for the CATHENA 4 thermalhydraulics network analysis code, which is a modernized version of the present frozen CATHENA 3 code. The new code is designed in modular form, using the Fortran 95 (F95) programming language. The semi-implicit numerical integration scheme of CATHENA 3 is re-written to implement a fully-implicit methodology using Newton's iterative solution scheme suitable for nonlinear equations. The closure relations, as a first step, have been converted from the existing CATHENA 3 implementation to F95 but modularized to achieve ease of maintenance. The paper presents the field equations, followed by a description of the Newton's scheme used. The finite-difference form of the field equations is given, followed by a discussion of convergence criteria. Two applications of CATHENA 4 are presented to demonstrate the temporal and spatial convergence of the new code for problems with known solutions or available experimental data. (author)

  9. Spontaneous brain network activity: Analysis of its temporal complexity

    Directory of Open Access Journals (Sweden)

    Mangor Pedersen

    2017-06-01

    Full Text Available The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node and participation coefficients (the between-module connectivity of a node were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1 Entropy is higher for the participation coefficient than for the clustering coefficient. (2 The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3 The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy. In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient and integration (the participation coefficient are temporally complex

  10. Investment Valuation Analysis with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Hüseyin İNCE

    2017-07-01

    Full Text Available This paper shows that discounted cash flow and net present value, which are traditional investment valuation models, can be combined with artificial neural network model forecasting. The main inputs for the valuation models, such as revenue, costs, capital expenditure, and their growth rates, are heavily related to sector dynamics and macroeconomics. The growth rates of those inputs are related to inflation and exchange rates. Therefore, predicting inflation and exchange rates is a critical issue for the valuation output. In this paper, the Turkish economy’s inflation rate and the exchange rate of USD/TRY are forecast by artificial neural networks and implemented to the discounted cash flow model. Finally, the results are benchmarked with conventional practices.

  11. NIF ICCS network design and loading analysis

    International Nuclear Information System (INIS)

    Tietbohl, G; Bryant, R

    1998-01-01

    The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow provide operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738)

  12. Distinguishing manipulated stocks via trading network analysis

    Science.gov (United States)

    Sun, Xiao-Qian; Cheng, Xue-Qi; Shen, Hua-Wei; Wang, Zhao-Yang

    2011-10-01

    Manipulation is an important issue for both developed and emerging stock markets. For the study of manipulation, it is critical to analyze investor behavior in the stock market. In this paper, an analysis of the full transaction records of over a hundred stocks in a one-year period is conducted. For each stock, a trading network is constructed to characterize the relations among its investors. In trading networks, nodes represent investors and a directed link connects a stock seller to a buyer with the total trade size as the weight of the link, and the node strength is the sum of all edge weights of a node. For all these trading networks, we find that the node degree and node strength both have tails following a power-law distribution. Compared with non-manipulated stocks, manipulated stocks have a high lower bound of the power-law tail, a high average degree of the trading network and a low correlation between the price return and the seller-buyer ratio. These findings may help us to detect manipulated stocks.

  13. The Application of Social Network Analysis to Team Sports

    Science.gov (United States)

    Lusher, Dean; Robins, Garry; Kremer, Peter

    2010-01-01

    This article reviews how current social network analysis might be used to investigate individual and group behavior in sporting teams. Social network analysis methods permit researchers to explore social relations between team members and their individual-level qualities simultaneously. As such, social network analysis can be seen as augmenting…

  14. Analysis and visualization of citation networks

    CERN Document Server

    Zhao, Dangzhi

    2015-01-01

    Citation analysis-the exploration of reference patterns in the scholarly and scientific literature-has long been applied in a number of social sciences to study research impact, knowledge flows, and knowledge networks. It has important information science applications as well, particularly in knowledge representation and in information retrieval.Recent years have seen a burgeoning interest in citation analysis to help address research, management, or information service issues such as university rankings, research evaluation, or knowledge domain visualization. This renewed and growing interest

  15. Knowledge networking on Sociology: network analysis of blogs, YouTube videos and tweets about Sociology

    Directory of Open Access Journals (Sweden)

    Julián Cárdenas

    2017-06-01

    Full Text Available While mainstream scientific knowledge production have been widely studied in recent years with the development of scientometrics and bibliometrics, an emergent number of studies have focused on alternative sources of production and dissemination of knowledge such as blogs, YouTube videos and comments on Twitter. These online sources of knowledge become relevant in fields such as Sociology, where some academics seek to bring the sociological knowledge to the general population. To explore which knowledge on Sociology is produced and disseminated, and how is organized in these online sources, we analyze the knowledge networking of blogs, YouTube videos and tweets on Twitter using network analysis approach. Specifically, the present research analyzes the hyperlink network of the main blogs on Sociology, the networks of tags used to classify videos on Sociology hosted on YouTube, and the network of hashtags linked to #sociología on Twitter. The main results point out the existence of a cohesive and strongly connected community of blogs on Sociology, the very low presence of YouTube videos on Sociology in Spanish, and Sociology on Twitter is linked to others social sciences, classical scholars and social media

  16. A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic

    Directory of Open Access Journals (Sweden)

    Meng Fan-Bo

    2016-01-01

    Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.

  17. Mining concepts of health responsibility using text mining and exploratory graph analysis.

    Science.gov (United States)

    Kjellström, Sofia; Golino, Hudson

    2018-05-24

    Occupational therapists need to know about people's beliefs about personal responsibility for health to help them pursue everyday activities. The study aims to employ state-of-the-art quantitative approaches to understand people's views of health and responsibility at different ages. A mixed method approach was adopted, using text mining to extract information from 233 interviews with participants aged 5 to 96 years, and then exploratory graph analysis to estimate the number of latent variables. The fit of the structure estimated via the exploratory graph analysis was verified using confirmatory factor analysis. Exploratory graph analysis estimated three dimensions of health responsibility: (1) creating good health habits and feeling good; (2) thinking about one's own health and wanting to improve it; and 3) adopting explicitly normative attitudes to take care of one's health. The comparison between the three dimensions among age groups showed, in general, that children and adolescents, as well as the old elderly (>73 years old) expressed ideas about personal responsibility for health less than young adults, adults and young elderly. Occupational therapists' knowledge of the concepts of health responsibility is of value when working with a patient's health, but an identified challenge is how to engage children and older persons.

  18. The network researchers' network: A social network analysis of the IMP Group 1985-2006

    DEFF Research Database (Denmark)

    Henneberg, Stephan C. M.; Ziang, Zhizhong; Naudé, Peter

    The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987......). In this paper, based upon the papers presented at the 22 conferences held to date, we undertake a Social Network Analysis in order to examine the degree of co-publishing that has taken place between this group of researchers. We identify the different components in this database, and examine the large main...

  19. Reliability analysis with linguistic data: An evidential network approach

    International Nuclear Information System (INIS)

    Zhang, Xiaoge; Mahadevan, Sankaran; Deng, Xinyang

    2017-01-01

    In practical applications of reliability assessment of a system in-service, information about the condition of a system and its components is often available in text form, e.g., inspection reports. Estimation of the system reliability from such text-based records becomes a challenging problem. In this paper, we propose a four-step framework to deal with this problem. In the first step, we construct an evidential network with the consideration of available knowledge and data. Secondly, we train a Naive Bayes text classification algorithm based on the past records. By using the trained Naive Bayes algorithm to classify the new records, we build interval basic probability assignments (BPA) for each new record available in text form. Thirdly, we combine the interval BPAs of multiple new records using an evidence combination approach based on evidence theory. Finally, we propagate the interval BPA through the evidential network constructed earlier to obtain the system reliability. Two numerical examples are used to demonstrate the efficiency of the proposed method. We illustrate the effectiveness of the proposed method by comparing with Monte Carlo Simulation (MCS) results. - Highlights: • We model reliability analysis with linguistic data using evidential network. • Two examples are used to demonstrate the efficiency of the proposed method. • We compare the results with Monte Carlo Simulation (MCS).

  20. Social science and linguistic text analysis of nurses' records: a systematic review and critique.

    Science.gov (United States)

    Buus, Niels; Hamilton, Bridget Elizabeth

    2016-03-01

    The two aims of the paper were to systematically review and critique social science and linguistic text analyses of nursing records in order to inform future research in this emerging area of research. Systematic searches in reference databases and in citation indexes identified 12 articles that included analyses of the social and linguistic features of records and recording. Two reviewers extracted data using established criteria for the evaluation of qualitative research papers. A common characteristic of nursing records was the economical use of language with local meanings that conveyed little information to the uninitiated reader. Records were dominated by technocratic-medical discourse focused on patients' bodies, and they depicted only very limited aspects of nursing practice. Nurses made moral evaluations in their categorisation of patients, which reflected detailed surveillance of patients' disturbing behaviour. The text analysis methods were rarely transparent in the articles, which could suggest research quality problems. For most articles, the significance of the findings was substantiated more by theoretical readings of the institutional settings than by the analysis of textual data. More probing empirical research of nurses' records and a wider range of theoretical perspectives has the potential to expose the situated meanings of nursing work in healthcare organisations. © 2015 John Wiley & Sons Ltd.

  1. Development of Workshops on Biodiversity and Evaluation of the Educational Effect by Text Mining Analysis

    Science.gov (United States)

    Baba, R.; Iijima, A.

    2014-12-01

    Conservation of biodiversity is one of the key issues in the environmental studies. As means to solve this issue, education is becoming increasingly important. In the previous work, we have developed a course of workshops on the conservation of biodiversity. To disseminate the course as a tool for environmental education, determination of the educational effect is essential. A text mining enables analyses of frequency and co-occurrence of words in the freely described texts. This study is intended to evaluate the effect of workshop by using text mining technique. We hosted the originally developed workshop on the conservation of biodiversity for 22 college students. The aim of the workshop was to inform the definition of biodiversity. Generally, biodiversity refers to the diversity of ecosystem, diversity between species, and diversity within species. To facilitate discussion, supplementary materials were used. For instance, field guides of wildlife species were used to discuss about the diversity of ecosystem. Moreover, a hierarchical framework in an ecological pyramid was shown for understanding the role of diversity between species. Besides, we offered a document material on the historical affair of Potato Famine in Ireland to discuss about the diversity within species from the genetic viewpoint. Before and after the workshop, we asked students for free description on the definition of biodiversity, and analyzed by using Tiny Text Miner. This technique enables Japanese language morphological analysis. Frequently-used words were sorted into some categories. Moreover, a principle component analysis was carried out. After the workshop, frequency of the words tagged to diversity between species and diversity within species has significantly increased. From a principle component analysis, the 1st component consists of the words such as producer, consumer, decomposer, and food chain. This indicates that the students have comprehended the close relationship between

  2. Making computers noble. An experiment in automatic analysis of medieval texts

    Directory of Open Access Journals (Sweden)

    Andrea Colli

    2016-02-01

    Full Text Available L’analisi informatica di testi filosofici, la creazione di database, ipertesti o edizioni elettroniche non costituiscono più unicamente una ricerca di frontiera, ma sono da molti anni una risorsa preziosa per gli studi umanistici. Ora, non si tratta di richiedere alle macchine un ulteriore sforzo per comprendere il linguaggio umano, quanto piuttosto di perfezionare gli strumenti affinché esse possano essere a tutti gli effetti collaboratori di ricerca. Questo articolo è concepito come il resoconto di un esperimento finalizzato a documentare come le associazioni lessicali di un gruppo selezionato di testi medievali possa offrire qualche suggerimento in merito ai loro contenuti teorici. Computer analysis of texts, creation of databases hypertexts and digital editions are not the final frontier of research anymore. Quite the contrary, from many years they have been representing a significant contribution to medieval studies. Therefore, we do not mean to make the computer able to grasp the meaning of human language and penetrate its secrets, but rather we aim at improving their tools, so that they will become an even more efficient equipment employed in research activities. This paper is thought as a sort of technical report with the proposed task to verify if an automatic identification of some word associations within a selected groups of medieval writings produces suggestions on the subject of the processed texts, able to be used in a theoretical inquiry.

  3. Social Network Analysis and Qualitative Interviews for Assessing Geographic Characteristics of Tourism Business Networks.

    Directory of Open Access Journals (Sweden)

    Ilan Kelman

    Full Text Available This study integrates quantitative social network analysis (SNA and qualitative interviews for understanding tourism business links in isolated communities through analysing spatial characteristics. Two case studies are used, the Surselva-Gotthard region in the Swiss Alps and Longyearbyen in the Arctic archipelago of Svalbard, to test the spatial characteristics of physical proximity, isolation, and smallness for understanding tourism business links. In the larger Surselva-Gotthard region, we found a strong relationship between geographic separation of the three communities on compartmentalization of the collaboration network. A small set of businesses played a central role in steering collaborative decisions for this community, while a group of structurally 'peripheral' actors were less influential. By contrast, the business community in Svalbard showed compartmentalization that was independent of geographic distance between actors. Within towns of similar size and governance scale, Svalbard is more compartmentalized, and those compartments are not driven by geographic separation of the collaboration clusters. This compartmentalization in Svalbard was reflected in a lower density of formal business collaboration ties compared to the communities of the Alps. We infer that the difference is due to Svalbard having higher cultural diversity and population turnover than the Alps communities. We propose that integrating quantitative network analysis from simple surveys with qualitative interviews targeted from the network results is an efficient general approach to identify regionally specific constraints and opportunities for effective governance.

  4. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  5. The Potential of Text Mining in Data Integration and Network Biology for Plant Research: A Case Study on Arabidopsis[C][W

    Science.gov (United States)

    Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J.; Inzé, Dirk; Van de Peer, Yves

    2013-01-01

    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein–protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies. PMID:23532071

  6. Network Analysis of Time-Lapse Microscopy Recordings

    Directory of Open Access Journals (Sweden)

    Erik eSmedler

    2014-09-01

    Full Text Available Multicellular organisms rely on intercellular communication to regulate important cellular processes critical to life. To further our understanding of those processes there is a need to scrutinize dynamical signaling events and their functions in both cells and organisms. Here, we report a method and provide MATLAB code that analyzes time-lapse microscopy recordings to identify and characterize network structures within large cell populations, such as interconnected neurons. The approach is demonstrated using intracellular calcium (Ca2+ recordings in neural progenitors and cardiac myocytes, but could be applied to a wide variety of biosensors employed in diverse cell types and organisms. In this method, network structures are analyzed by applying cross-correlation signal processing and graph theory to single-cell recordings. The goal of the analysis is to determine if the single cell activity constitutes a network of interconnected cells and to decipher the properties of this network. The method can be applied in many fields of biology in which biosensors are used to monitor signaling events in living cells. Analyzing intercellular communication in cell ensembles can reveal essential network structures that provide important biological insights.

  7. Brain Structure Network Analysis in Patients with Obstructive Sleep Apnea.

    Directory of Open Access Journals (Sweden)

    Yun-Gang Luo

    Full Text Available Childhood obstructive sleep apnea (OSA is a sleeping disorder commonly affecting school-aged children and is characterized by repeated episodes of blockage of the upper airway during sleep. In this study, we performed a graph theoretical analysis on the brain morphometric correlation network in 25 OSA patients (OSA group; 5 female; mean age, 10.1 ± 1.8 years and investigated the topological alterations in global and regional properties compared with 20 healthy control individuals (CON group; 6 females; mean age, 10.4 ± 1.8 years. A structural correlation network based on regional gray matter volume was constructed respectively for each group. Our results revealed a significantly decreased mean local efficiency in the OSA group over the density range of 0.32-0.44 (p < 0.05. Regionally, the OSAs showed a tendency of decreased betweenness centrality in the left angular gyrus, and a tendency of decreased degree in the right lingual and inferior frontal (orbital part gyrus (p < 0.005, uncorrected. We also found that the network hubs in OSA and controls were distributed differently. To the best of our knowledge, this is the first study that characterizes the brain structure network in OSA patients and invests the alteration of topological properties of gray matter volume structural network. This study may help to provide new evidence for understanding the neuropathophysiology of OSA from a topological perspective.

  8. Analysis and design of networked control systems

    CERN Document Server

    You, Keyou; Xie, Lihua

    2015-01-01

    This monograph focuses on characterizing the stability and performance consequences of inserting limited-capacity communication networks within a control loop. The text shows how integration of the ideas of control and estimation with those of communication and information theory can be used to provide important insights concerning several fundamental problems such as: ·         minimum data rate for stabilization of linear systems over noisy channels; ·         minimum network requirement for stabilization of linear systems over fading channels; and ·         stability of Kalman filtering with intermittent observations. A fundamental link is revealed between the topological entropy of linear dynamical systems and the capacities of communication channels. The design of a logarithmic quantizer for the stabilization of linear systems under various network environments is also extensively discussed and solutions to many problems of Kalman filtering with intermittent observations are de...

  9. Introducing the Interactive Model for the Training of Audiovisual Translators and Analysis of Multimodal Texts

    Directory of Open Access Journals (Sweden)

    Pietro Luigi Iaia

    2015-07-01

    Full Text Available Abstract – This paper introduces the ‘Interactive Model’ of audiovisual translation developed in the context of my PhD research on the cognitive-semantic, functional and socio-cultural features of the Italian-dubbing translation of a corpus of humorous texts. The Model is based on two interactive macro-phases – ‘Multimodal Critical Analysis of Scripts’ (MuCrAS and ‘Multimodal Re-Textualization of Scripts’ (MuReTS. Its construction and application are justified by a multidisciplinary approach to the analysis and translation of audiovisual texts, so as to focus on the linguistic and extralinguistic dimensions affecting both the reception of source texts and the production of target ones (Chaume 2004; Díaz Cintas 2004. By resorting to Critical Discourse Analysis (Fairclough 1995, 2001, to a process-based approach to translation and to a socio-semiotic analysis of multimodal texts (van Leeuwen 2004; Kress and van Leeuwen 2006, the Model is meant to be applied to the training of audiovisual translators and discourse analysts in order to help them enquire into the levels of pragmalinguistic equivalence between the source and the target versions. Finally, a practical application shall be discussed, detailing the Italian rendering of a comic sketch from the American late-night talk show Conan.Abstract – Questo studio introduce il ‘Modello Interattivo’ di traduzione audiovisiva sviluppato durante il mio dottorato di ricerca incentrato sulle caratteristiche cognitivo-semantiche, funzionali e socio-culturali della traduzione italiana per il doppiaggio di un corpus di testi comici. Il Modello è costituito da due fasi: la prima, di ‘Analisi critica e multimodale degli script’ (MuCrAS e la seconda, di ‘Ritestualizzazione critica e multimodale degli script’ (MuReTS, e la sua costruzione e applicazione sono frutto di un approccio multidisciplinare all’analisi e traduzione dei testi audiovisivi, al fine di esaminare le

  10. Understanding resilience in industrial symbiosis networks: insights from network analysis.

    Science.gov (United States)

    Chopra, Shauhrat S; Khanna, Vikas

    2014-08-01

    Industrial symbiotic networks are based on the principles of ecological systems where waste equals food, to develop synergistic networks. For example, industrial symbiosis (IS) at Kalundborg, Denmark, creates an exchange network of waste, water, and energy among companies based on contractual dependency. Since most of the industrial symbiotic networks are based on ad-hoc opportunities rather than strategic planning, gaining insight into disruptive scenarios is pivotal for understanding the balance of resilience and sustainability and developing heuristics for designing resilient IS networks. The present work focuses on understanding resilience as an emergent property of an IS network via a network-based approach with application to the Kalundborg Industrial Symbiosis (KIS). Results from network metrics and simulated disruptive scenarios reveal Asnaes power plant as the most critical node in the system. We also observe a decrease in the vulnerability of nodes and reduction in single points of failure in the system, suggesting an increase in the overall resilience of the KIS system from 1960 to 2010. Based on our findings, we recommend design strategies, such as increasing diversity, redundancy, and multi-functionality to ensure flexibility and plasticity, to develop resilient and sustainable industrial symbiotic networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Detecting and Analyzing Cybercrime in Text-Based Communication of Cybercriminal Networks through Computational Linguistic and Psycholinguistic Feature Modeling

    Science.gov (United States)

    Mbaziira, Alex Vincent

    2017-01-01

    Cybercriminals are increasingly using Internet-based text messaging applications to exploit their victims. Incidents of deceptive cybercrime in text-based communication are increasing and include fraud, scams, as well as favorable and unfavorable fake reviews. In this work, we use a text-based deception detection approach to train models for…

  12. NATbox: a network analysis toolbox in R.

    Science.gov (United States)

    Chavan, Shweta S; Bauer, Michael A; Scutari, Marco; Nagarajan, Radhakrishnan

    2009-10-08

    There has been recent interest in capturing the functional relationships (FRs) from high-throughput assays using suitable computational techniques. FRs elucidate the working of genes in concert as a system as opposed to independent entities hence may provide preliminary insights into biological pathways and signalling mechanisms. Bayesian structure learning (BSL) techniques and its extensions have been used successfully for modelling FRs from expression profiles. Such techniques are especially useful in discovering undocumented FRs, investigating non-canonical signalling mechanisms and cross-talk between pathways. The objective of the present study is to develop a graphical user interface (GUI), NATbox: Network Analysis Toolbox in the language R that houses a battery of BSL algorithms in conjunction with suitable statistical tools for modelling FRs in the form of acyclic networks from gene expression profiles and their subsequent analysis. NATbox is a menu-driven open-source GUI implemented in the R statistical language for modelling and analysis of FRs from gene expression profiles. It provides options to (i) impute missing observations in the given data (ii) model FRs and network structure from gene expression profiles using a battery of BSL algorithms and identify robust dependencies using a bootstrap procedure, (iii) present the FRs in the form of acyclic graphs for visualization and investigate its topological properties using network analysis metrics, (iv) retrieve FRs of interest from published literature. Subsequently, use these FRs as structural priors in BSL (v) enhance scalability of BSL across high-dimensional data by parallelizing the bootstrap routines. NATbox provides a menu-driven GUI for modelling and analysis of FRs from gene expression profiles. By incorporating readily available functions from existing R-packages, it minimizes redundancy and improves reproducibility, transparency and sustainability, characteristic of open-source environments

  13. Degrees of systematic thoroughness: A text analysis of student technical science writing

    Science.gov (United States)

    Esch, Catherine Julia

    This dissertation investigates student technical science writing and use of evidence. Student writers attended a writing-intensive undergraduate university oceanography course where they were required to write a technical paper drawing from an instructor-designed software program, Our Dynamic Planet. This software includes multiple interactive geological data sets relevant to plate tectonics. Through qualitative text analysis of students science writing, two research questions frame the study asking: How are the papers textually structured? Are there distinctions between high- and low-rated papers? General and specific text characteristics within three critical sections of the technical paper are identified and analyzed (Observations, Interpretations, Conclusions). Specific text characteristics consist of typical types of figures displayed in the papers, and typical statements within each paper section. Data gathering consisted of collecting 15 student papers which constitute the population of study. An analytical method was designed to manage and analyze the text characteristics. It has three stages: identifying coding categories, re-formulating the categories, and configuring categories. Three important elements emerged that identified notable distinctions in paper quality: data display and use, narration of complex geological feature relationships, and overall organization of text structure. An inter-rater coding concordance check was conducted, and showed high concordance ratios for the coding of each section: Observations = 0.95; Interpretations = 0.93; and Conclusions = 0.87. These categories collectively reveal a larger pattern of general differences in the paper quality levels (high, low, medium). This variation in the quality of papers demonstrates degrees of systematic thoroughness, which is defined as how systematically each student engages in the tasks of the assignment, and how thoroughly and consistently the student follows through on that systematic

  14. Network structure detection and analysis of Shanghai stock market

    Directory of Open Access Journals (Sweden)

    Sen Wu

    2015-04-01

    Full Text Available Purpose: In order to investigate community structure of the component stocks of SSE (Shanghai Stock Exchange 180-index, a stock correlation network is built to find the intra-community and inter-community relationship. Design/methodology/approach: The stock correlation network is built taking the vertices as stocks and edges as correlation coefficients of logarithm returns of stock price. It is built as undirected weighted at first. GN algorithm is selected to detect community structure after transferring the network into un-weighted with different thresholds. Findings: The result of the network community structure analysis shows that the stock market has obvious industrial characteristics. Most of the stocks in the same industry or in the same supply chain are assigned to the same community. The correlation of the internal stock prices’ fluctuation is closer than in different communities. The result of community structure detection also reflects correlations among different industries. Originality/value: Based on the analysis of the community structure in Shanghai stock market, the result reflects some industrial characteristics, which has reference value to relationship among industries or sub-sectors of listed companies.

  15. Network analysis of perception-action coupling in infants

    Directory of Open Access Journals (Sweden)

    Naama eRotem-Kohavi

    2014-04-01

    Full Text Available The functional networks that support action observation are of great interest in understanding the development of social cognition and motor learning. How infants learn to represent and understand the world around them remains one of the most intriguing questions in developmental cognitive neuroscience. Recently, mathematical measures derived from graph theory have been used to study connectivity networks in the developing brain. Thus far, this type of analysis in infancy has only been applied to the resting state. In this study, we recorded electroencephalography (EEG from infants (ages 4-11 months of age and adults while they observed three types of actions: a reaching for an object, b walking and c object motion. Graph theory based analysis was applied to these data to evaluate changes in brain networks. Global metrics that provide measures of the structural properties of the network (characteristic path, density, global efficiency, and modularity were calculated for each group and for each condition. We found statistically significant differences in measures for the observation of walking condition only. Specifically, in comparison to adults, infants showed increased density and global efficiency in combination with decreased modularity during observation of an action that is not within their motor repertoire (i.e. independent walking, suggesting a less structured organization. There were no group differences in global metric measures for observation of object motion or for observation of actions that are within the repertoire of infants (i.e. reaching. These preliminary results suggest that infants and adults may share a basic functional network for action observation that is sculpted by experience. Motor experience may lead to a shift towards a more efficient functional network.

  16. Determining Women’s Sexual Self-Schemas Through Advanced Computerized Text Analysis

    Science.gov (United States)

    Stanton, Amelia M.; Boyd, Ryan L.; Pulverman, Carey S.; Meston, Cindy M.

    2015-01-01

    The meaning extraction method (MEM), an advanced computerized text analysis technique, was used to analyze women’s sexual self-schemas. Participants (n = 239) completed open-ended essays about their personal feelings associated with sex and sexuality. These essays were analyzed using the MEM, a procedure designed to extract common themes from natural language. Using the MEM procedure, we extracted seven unique themes germane to sexual self-schemas: family and development, virginity, abuse, relationship, sexual activity, attraction, and existentialism. Each of these themes is comprised of frequently used words across the participants’ descriptions of their sexual selves. Significant differences in sexual self-schemas were observed to covary with age, relationship status, and sexual abuse history. PMID:26146161

  17. Determining women's sexual self-schemas through advanced computerized text analysis.

    Science.gov (United States)

    Stanton, Amelia M; Boyd, Ryan L; Pulverman, Carey S; Meston, Cindy M

    2015-08-01

    The meaning extraction method (MEM), an advanced computerized text analysis technique, was used to analyze women's sexual self-schemas. Participants (n=239) completed open-ended essays about their personal feelings associated with sex and sexuality. These essays were analyzed using the MEM, a procedure designed to extract common themes from natural language. Using the MEM procedure, we extracted seven unique themes germane to sexual self-schemas: family and development, virginity, abuse, relationship, sexual activity, attraction, and existentialism. Each of these themes is comprised of frequently used words across the participants' descriptions of their sexual selves. Significant differences in sexual self-schemas were observed to covary with age, relationship status, and sexual abuse history. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Analysis of Heterogeneous Text Documents with the Help of the Computer Program NUD*IST

    Directory of Open Access Journals (Sweden)

    Christine Plaß

    2000-12-01

    Full Text Available On the basis of a current research project we discuss the use of the computer program NUD*IST for the analysis and archiving of qualitative documents. Our project examines the social evaluation of spectacular criminal offenses and we identify, digitize and analyze documents from the entire 20th century. Since public and scientific discourses are examined, the data of the project are extraordinarily heterogeneous: scientific publications, court records, newspaper reports, and administrative documents. We want to show how to transfer general questions into a systematic categorization with the assistance of NUD*IST. Apart from the functions, possibilities and limitations of the application of NUD*IST, concrete work procedures and difficulties encountered are described. URN: urn:nbn:de:0114-fqs0003211

  19. A flood-based information flow analysis and network minimization method for gene regulatory networks.

    Science.gov (United States)

    Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias

    2013-04-24

    Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.

  20. Scaling analysis of the non-Abelian quasiparticle tunneling in [Formula: see text] FQH states.

    Science.gov (United States)

    Li, Qi; Jiang, Na; Wan, Xin; Hu, Zi-Xiang

    2018-06-27

    Quasiparticle tunneling between two counter propagating edges through point contacts could provide information on its statistics. Previous study of the short distance tunneling displays a scaling behavior, especially in the conformal limit with zero tunneling distance. The scaling exponents for the non-Abelian quasiparticle tunneling exhibit some non-trivial behaviors. In this work, we revisit the quasiparticle tunneling amplitudes and their scaling behavior in a full range of the tunneling distance by putting the electrons on the surface of a cylinder. The edge-edge distance can be smoothly tuned by varying the aspect ratio for a finite size cylinder. We analyze the scaling behavior of the quasiparticles for the Read-Rezayi [Formula: see text] states for [Formula: see text] and 4 both in the short and long tunneling distance region. The finite size scaling analysis automatically gives us a critical length scale where the anomalous correction appears. We demonstrate this length scale is related to the size of the quasiparticle at which the backscattering between two counter propagating edges starts to be significant.

  1. Text mining analysis of public comments regarding high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kugo, Akihide; Yoshikawa, Hidekazu; Shimoda, Hiroshi; Wakabayashi, Yasunaga

    2005-01-01

    In order to narrow the risk perception gap as seen in social investigations between the general public and people who are involved in nuclear industry, public comments on high-level radioactive waste (HLW) disposal have been conducted to find the significant talking points with the general public for constructing an effective risk communication model of social risk information regarding HLW disposal. Text mining was introduced to examine public comments to identify the core public interest underlying the comments. The utilized test mining method is to cluster specific groups of words with negative meanings and then to analyze public understanding by employing text structural analysis to extract words from subjective expressions. Using these procedures, it was found that the public does not trust the nuclear fuel cycle promotion policy and shows signs of anxiety about the long-lasting technological reliability of waste storage. To develop effective social risk communication of HLW issues, these findings are expected to help experts in the nuclear industry to communicate with the general public more effectively to obtain their trust. (author)

  2. Applications of social media and social network analysis

    CERN Document Server

    Kazienko, Przemyslaw

    2015-01-01

    This collection of contributed chapters demonstrates a wide range of applications within two overlapping research domains: social media analysis and social network analysis. Various methodologies were utilized in the twelve individual chapters including static, dynamic and real-time approaches to graph, textual and multimedia data analysis. The topics apply to reputation computation, emotion detection, topic evolution, rumor propagation, evaluation of textual opinions, friend ranking, analysis of public transportation networks, diffusion in dynamic networks, analysis of contributors to commun

  3. Analysis of complex systems using neural networks

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  4. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  5. Social sciences via network analysis and computation

    CERN Document Server

    Kanduc, Tadej

    2015-01-01

    In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t

  6. Analysis of Time Delay Simulation in Networked Control System

    OpenAIRE

    Nyan Phyo Aung; Zaw Min Naing; Hla Myo Tun

    2016-01-01

    The paper presents a PD controller for the Networked Control Systems (NCS) with delay. The major challenges in this networked control system (NCS) are the delay of the data transmission throughout the communication network. The comparative performance analysis is carried out for different delays network medium. In this paper, simulation is carried out on Ac servo motor control system using CAN Bus as communication network medium. The True Time toolbox of MATLAB is used for simulation to analy...

  7. 'Working is out of the question': a qualitative text analysis of medical certificates of disability.

    Science.gov (United States)

    Aarseth, Guri; Natvig, Bård; Engebretsen, Eivind; Lie, Anne Kveim

    2017-04-20

    Medical certificates influence the distribution of economic benefits in welfare states; however, the qualitative aspects of these texts remain largely unexplored. The present study is the first systematic investigation done of these texts. Our aim was to investigate how GPs select and mediate information about their patients' health and how they support their conclusions about illness, functioning and fitness for work in medical certificates. We performed a textual analysis of thirty-three medical certificates produced by general practitioners (GP) in Norway at the request of the Norwegian Labour and Welfare Administration (NAV).The certificates were subjected to critical reading using the combined analytic methods of narratology and linguistics. Some of the medical information was unclear, ambiguous, and possibly misleading. Evaluations of functioning related to illness were scarce or absent, regardless of diagnosis, and, hence, the basis of working incapacity was unclear. Voices in the text frequently conflated, obscuring the source of speaker. In some documents, the expert's subtle use of language implied doubts about the claimant's credibility, but explicit advocacy also occurred. GPs show little insight into their patients' working lives, but rather than express uncertainty and incompetence, they may resort to making too absolute and too general statements about patients' working capacity, and fail to report thorough assessments. A number of the texts in our material may not function as sufficient or reliable sources for making decisions regarding social benefits. Certificates as these may be deficient for several reasons, and textual incompetence may be one of them. Physicians in Norway receive no systematic training in professional writing. High-quality medical certificates, we believe, might be economical in the long term: it might increase the efficiency with which NAV processes cases and save costs by eliminating the need for unnecessary and expensive

  8. Spatial analysis of bus transport networks using network theory

    Science.gov (United States)

    Shanmukhappa, Tanuja; Ho, Ivan Wang-Hei; Tse, Chi Kong

    2018-07-01

    In this paper, we analyze the bus transport network (BTN) structure considering the spatial embedding of the network for three cities, namely, Hong Kong (HK), London (LD), and Bengaluru (BL). We propose a novel approach called supernode graph structuring for modeling the bus transport network. A static demand estimation procedure is proposed to assign the node weights by considering the points of interests (POIs) and the population distribution in the city over various localized zones. In addition, the end-to-end delay is proposed as a parameter to measure the topological efficiency of the bus networks instead of the shortest distance measure used in previous works. With the aid of supernode graph representation, important network parameters are analyzed for the directed, weighted and geo-referenced bus transport networks. It is observed that the supernode concept has significant advantage in analyzing the inherent topological behavior. For instance, the scale-free and small-world behavior becomes evident with supernode representation as compared to conventional or regular graph representation for the Hong Kong network. Significant improvement in clustering, reduction in path length, and increase in centrality values are observed in all the three networks with supernode representation. The correlation between topologically central nodes and the geographically central nodes reveals the interesting fact that the proposed static demand estimation method for assigning node weights aids in better identifying the geographically significant nodes in the network. The impact of these geographically significant nodes on the local traffic behavior is demonstrated by simulation using the SUMO (Simulation of Urban Mobility) tool which is also supported by real-world empirical data, and our results indicate that the traffic speed around a particular bus stop can reach a jammed state from a free flow state due to the presence of these geographically important nodes. A comparison

  9. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    Science.gov (United States)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  10. Toward a Theory of Industrial Supply Networks: A Multi-Level Perspective via Network Analysis

    Directory of Open Access Journals (Sweden)

    Yi Zuo

    2017-07-01

    Full Text Available In most supply chains (SCs, transaction relationships between suppliers and customers are commonly considered to be an extrapolation from a linear perspective. However, this traditional linear concept of an SC is egotistic and oversimplified and does not sufficiently reflect the complex and cyclical structure of supplier-customer relationships in current economic and industrial situations. The interactional relationships and topological characteristics between suppliers and customers should be analyzed using supply networks (SNs rather than traditional linear SCs. Therefore, this paper reconceptualizes SCs as SNs in complex adaptive systems (CAS, and presents three main contributions. First, we propose an integrated framework of CAS network by synthesizing multi-level network analysis from the network-, community- and vertex-perspective. The CAS perspective enables us to understand the advances of SN properties. Second, in order to emphasize the CAS properties of SNs, we conducted a real-world SN based on the Japanese industry and describe an advanced investigation of SN theory. The CAS properties help in enriching the SN theory, which can benefit SN management, community economics and industrial resilience. Third, we propose a quantitative metric of entropy to measure the complexity and robustness of SNs. The results not only support a specific understanding of the structural outcomes relevant to SNs, but also deliver efficient and effective support to the management and design of SNs.

  11. Robustness Analysis of Real Network Topologies Under Multiple Failure Scenarios

    DEFF Research Database (Denmark)

    Manzano, M.; Marzo, J. L.; Calle, E.

    2012-01-01

    on topological characteristics. Recently approaches also consider the services supported by such networks. In this paper we carry out a robustness analysis of five real backbone telecommunication networks under defined multiple failure scenarios, taking into account the consequences of the loss of established......Nowadays the ubiquity of telecommunication networks, which underpin and fulfill key aspects of modern day living, is taken for granted. Significant large-scale failures have occurred in the last years affecting telecommunication networks. Traditionally, network robustness analysis has been focused...... connections. Results show which networks are more robust in response to a specific type of failure....

  12. Identifying changes in the support networks of end-of-life carers using social network analysis.

    Science.gov (United States)

    Leonard, Rosemary; Horsfall, Debbie; Noonan, Kerrie

    2015-06-01

    End-of-life caring is often associated with reduced social networks for both the dying person and for the carer. However, those adopting a community participation and development approach, see the potential for the expansion and strengthening of networks. This paper uses Knox, Savage and Harvey's definitions of three generations social network analysis to analyse the caring networks of people with a terminal illness who are being cared for at home and identifies changes in these caring networks that occurred over the period of caring. Participatory network mapping of initial and current networks was used in nine focus groups. The analysis used key concepts from social network analysis (size, density, transitivity, betweenness and local clustering) together with qualitative analyses of the group's reflections on the maps. The results showed an increase in the size of the networks and that ties between the original members of the network strengthened. The qualitative data revealed the importance between core and peripheral network members and the diverse contributions of the network members. The research supports the value of third generation social network analysis and the potential for end-of-life caring to build social capital. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Network Resilience Analysis: Review Of Concepts And A Country-Level. Case Study

    Directory of Open Access Journals (Sweden)

    Mariusz Kamola

    2014-01-01

    Full Text Available This paper presents the rationale behind performing an analysis of Internet resilience in the sense of maintaining a connection of autonomous systems in the presence of failures or attacks — on a level of a single country. Next, the graph of a network is constructed that represents interconnections between autonomous systems. The connectivity of the graph is examined for cases of link or node failure. Resilience metrics are proposed, focusing on a single autonomous system or on overall network reliability. The process of geographic location of networking infrastructure is presented, leading to an analysis of network resilience in the case of a joint failure of neighboring autonomous systems.

  14. Assertions of Japanese Websites for and Against Cancer Screening: a Text Mining Analysis

    Science.gov (United States)

    Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masahumi; Kato, Mio; Kiuchi, Takahiro

    2017-04-01

    Background: Cancer screening rates are lower in Japan than in Western countries such as the United States and the United Kingdom. While health professionals publish pro-cancer-screening messages online to encourage proactive seeking for screening, anti-screening activists use the same medium to warn readers against following guidelines. Contents of pro- and anti-cancer-screening sites may contribute to readers’ acceptance of one or the other position. We aimed to use a text-mining method to examine frequently appearing contents on sites for and against cancer screening. Methods: We conducted online searches in December 2016 using two major search engines in Japan (Google Japan and Yahoo! Japan). Targeted websites were classified as “pro”, “anti”, or “neutral” depending on their claims, with the author(s) classified as “health professional”, “mass media”, or “layperson”. Text-mining analyses were conducted, and statistical analysis was performed using the chi-square test. Results: Of the 169 websites analyzed, the top-three most frequently appearing content topics in pro sites were reducing mortality via cancer screening, benefits of early detection, and recommendations for obtaining detailed examination. The top three most frequent in anti-sites were harm from radiation exposure, non-efficacy of cancer screening, and lack of necessity of early detection. Anti-sites also frequently referred to a well-known Japanese radiologist, Makoto Kondo, who rejects the standard forms of cancer care. Conclusion: Our findings should enable authors of pro-cancer-screening sites to write to counter misleading anti-cancer-screening messages and facilitate dissemination of accurate information. Creative Commons Attribution License

  15. Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research

    Science.gov (United States)

    Grunspan, Daniel Z.; Wiggins, Benjamin L.; Goodreau, Steven M.

    2014-01-01

    Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA)…

  16. Lapin Data Interchange Among Database, Analysis and Display Programs Using XML-Based Text Files

    Science.gov (United States)

    2005-01-01

    The purpose of grant NCC3-966 was to investigate and evaluate the interchange of application-specific data among multiple programs each carrying out part of the analysis and design task. This has been carried out previously by creating a custom program to read data produced by one application and then write that data to a file whose format is specific to the second application that needs all or part of that data. In this investigation, data of interest is described using the XML markup language that allows the data to be stored in a text-string. Software to transform output data of a task into an XML-string and software to read an XML string and extract all or a portion of the data needed for another application is used to link two independent applications together as part of an overall design effort. This approach was initially used with a standard analysis program, Lapin, along with standard applications a standard spreadsheet program, a relational database program, and a conventional dialog and display program to demonstrate the successful sharing of data among independent programs. Most of the effort beyond that demonstration has been concentrated on the inclusion of more complex display programs. Specifically, a custom-written windowing program organized around dialogs to control the interactions have been combined with an independent CAD program (Open Cascade) that supports sophisticated display of CAD elements such as lines, spline curves, and surfaces and turbine-blade data produced by an independent blade design program (UD0300).

  17. A networks analysis of terrorism in Africa: implications for Kenya

    Directory of Open Access Journals (Sweden)

    Steven Kigen Morumbasi

    2016-12-01

    Full Text Available This paper highlights the challenges that the international community faces in responding to the terrorists and the need to change tactics to respond more effectively to an increasingly nebulous enemy. Terrorism can take different forms and is perpetrated by both state and non-state actors. This research looks into the network structure of terrorism and terrorist groups. In the contemporary setting, terrorist organizations operate transnationally hence the use of the term ‘terrorism without borders’. An enabling factor of terrorism today is the network structure that it has adopted which gives it the ability to both project its reach and prevent easy infiltration. The network structure has also brought about renewed interests in Africa, where global terror networks such as al-Qaeda and the Islamic State compete for influence. Boko Haram in West Africa is an affiliate of the Islamic State and this provides possible linkages with the Islamic State in Libya. Boko Haram refers to itself as the Islamic State’s Western Province. Al-Shabaab has dominated headlines by carrying out deadly attacks in East Africa. The al-Qaeda affiliate has however faced resistance from a section of its members who seek ties with the Islamic State. This resulted in the formation of Jabha East Africa, a group that aligns itself to the Islamic State. The Sinai Peninsula has also witnessed an upsurge of terror attacks perpetrated by the Sinai Province, which views itself as a province of the Islamic State. This surmounts to a complex network structure of terrorist networks in Africa and the growing threat to militant Islam. The special attention is paid to analysis of terrorist challenges in Kenia.

  18. Invariant moments based convolutional neural networks for image analysis

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi G.V. Mahesh

    2017-01-01

    Full Text Available The paper proposes a method using convolutional neural network to effectively evaluate the discrimination between face and non face patterns, gender classification using facial images and facial expression recognition. The novelty of the method lies in the utilization of the initial trainable convolution kernels coefficients derived from the zernike moments by varying the moment order. The performance of the proposed method was compared with the convolutional neural network architecture that used random kernels as initial training parameters. The multilevel configuration of zernike moments was significant in extracting the shape information suitable for hierarchical feature learning to carry out image analysis and classification. Furthermore the results showed an outstanding performance of zernike moment based kernels in terms of the computation time and classification accuracy.

  19. Narrative text analysis to identify technologies to prevent motor vehicle crashes: examples from military vehicles.

    Science.gov (United States)

    Pollack, Keshia M; Yee, Nathan; Canham-Chervak, Michelle; Rossen, Lauren; Bachynski, Kathleen E; Baker, Susan P

    2013-02-01

    The purpose of this research is to describe the leading circumstances of military vehicle crashes to guide prioritization and implementation of crash avoidance and/or warning technologies. A descriptive study using narrative text analysis on 3,944 military vehicle crash narratives. Crash data on drivers, from 2001 to 2006, were assembled from the U.S. Army Combat Readiness/Safety Center. Reviewers collected information on the circumstances of crashes and determined if vehicle technology could have prevented the crash. Nearly 98% of the crashes were nonfatal; 63% occurred in the U.S. and 24% in Iraq. Among crash events where the direction of the impact was recorded, 32% were to the front of the vehicle and 16% involved a vehicle being rear-ended. Rollovers were mentioned in 20% of the narratives. Technology was determined to have the potential to prevent 26% of the crashes, with the forward collision warning system, rear end collision avoidance, emergency brake assistance, and rollover stability control system likely to have the greatest impacts. Some technologies available for civilian vehicles may prevent certain military crash circumstances. The results of this research are significant in light of ongoing global military operations that rely on military vehicles. Improving the preventive technology featured on military vehicles may be an effective strategy to reduce the occurrence of military crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Differential network analysis with multiply imputed lipidomic data.

    Directory of Open Access Journals (Sweden)

    Maiju Kujala

    Full Text Available The importance of lipids for cell function and health has been widely recognized, e.g., a disorder in the lipid composition of cells has been related to atherosclerosis caused cardiovascular disease (CVD. Lipidomics analyses are characterized by large yet not a huge number of mutually correlated variables measured and their associations to outcomes are potentially of a complex nature. Differential network analysis provides a formal statistical method capable of inferential analysis to examine differences in network structures of the lipids under two biological conditions. It also guides us to identify potential relationships requiring further biological investigation. We provide a recipe to conduct permutation test on association scores resulted from partial least square regression with multiple imputed lipidomic data from the LUdwigshafen RIsk and Cardiovascular Health (LURIC study, particularly paying attention to the left-censored missing values typical for a wide range of data sets in life sciences. Left-censored missing values are low-level concentrations that are known to exist somewhere between zero and a lower limit of quantification. To make full use of the LURIC data with the missing values, we utilize state of the art multiple imputation techniques and propose solutions to the challenges that incomplete data sets bring to differential network analysis. The customized network analysis helps us to understand the complexities of the underlying biological processes by identifying lipids and lipid classes that interact with each other, and by recognizing the most important differentially expressed lipids between two subgroups of coronary artery disease (CAD patients, the patients that had a fatal CVD event and the ones who remained stable during two year follow-up.

  1. A Survey of Key Technology of Network Public Opinion Analysis

    Directory of Open Access Journals (Sweden)

    Li Su Ying

    2016-01-01

    Full Text Available The internet has become an important base for internet users to make comments because of its interactivity and fast dissemination. The outbreak of internet public opinion has become a major risk for network information security. Domestic and foreign researchers had carried out extensive and in-depth study on public opinion. Fruitful results have achieved in the basic theory research and emergency handling and other aspects of public opinion. But research on the public opinion in China is still in the initial stage, the key technology of the public opinion analysis is still as a starting point for in-depth study and discussion.

  2. Analysis and monitoring design for networks

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, V.; Flanagan, D.; Rowan, T.; Batsell, S.

    1998-06-01

    The idea of applying experimental design methodologies to develop monitoring systems for computer networks is relatively novel even though it was applied in other areas such as meteorology, seismology, and transportation. One objective of a monitoring system should always be to collect as little data as necessary to be able to monitor specific parameters of the system with respect to assigned targets and objectives. This implies a purposeful monitoring where each piece of data has a reason to be collected and stored for future use. When a computer network system as large and complex as the Internet is the monitoring subject, providing an optimal and parsimonious observing system becomes even more important. Many data collection decisions must be made by the developers of a monitoring system. These decisions include but are not limited to the following: (1) The type data collection hardware and software instruments to be used; (2) How to minimize interruption of regular network activities during data collection; (3) Quantification of the objectives and the formulation of optimality criteria; (4) The placement of data collection hardware and software devices; (5) The amount of data to be collected in a given time period, how large a subset of the available data to collect during the period, the length of the period, and the frequency of data collection; (6) The determination of the data to be collected (for instance, selection of response and explanatory variables); (7) Which data will be retained and how long (i.e., data storage and retention issues); and (8) The cost analysis of experiments. Mathematical statistics, and, in particular, optimal experimental design methods, may be used to address the majority of problems generated by 3--7. In this study, the authors focus their efforts on topics 3--5.

  3. Frequency and content analysis of chronic fatigue syndrome in medical text books.

    Science.gov (United States)

    Jason, Leonard A; Paavola, Erin; Porter, Nicole; Morello, Morgan L

    2010-01-01

    Text books are a cornerstone in the training of medical staff and students, and they are an important source of references and reviews for these professionals. The objective of this study was to determine both the quantity and quality of chronic fatigue syndrome (CFS) information included in medical texts. After reviewing 119 medical text books from various medical specialties, we found that 48 (40.3%) of the medical text books included information on CFS. However, among the 129 527 total pages within these medical text books, the CFS content was presented on only 116.3 (0.090%) pages. Other illnesses that are less prevalent, such as multiple sclerosis and Lyme disease, were more frequently represented in medical text books. These findings suggest that the topic ofCFS is underreported in published medical text books.

  4. 6th International Conference on Network Analysis

    CERN Document Server

    Nikolaev, Alexey; Pardalos, Panos; Prokopyev, Oleg

    2017-01-01

    This valuable source for graduate students and researchers provides a comprehensive introduction to current theories and applications in optimization methods and network models. Contributions to this book are focused on new efficient algorithms and rigorous mathematical theories, which can be used to optimize and analyze mathematical graph structures with massive size and high density induced by natural or artificial complex networks. Applications to social networks, power transmission grids, telecommunication networks, stock market networks, and human brain networks are presented. Chapters in this book cover the following topics: Linear max min fairness Heuristic approaches for high-quality solutions Efficient approaches for complex multi-criteria optimization problems Comparison of heuristic algorithms New heuristic iterative local search Power in network structures Clustering nodes in random graphs Power transmission grid structure Network decomposition problems Homogeneity hypothesis testing Network analy...

  5. Artificial neural network for violation analysis

    International Nuclear Information System (INIS)

    Zhang, Z.; Polet, P.; Vanderhaegen, F.; Millot, P.

    2004-01-01

    Barrier removal (BR) is a safety-related violation, and it can be analyzed in terms of benefits, costs, and potential deficits. In order to allow designers to integrate BR into the risk analysis during the initial design phase or during re-design work, we propose a connectionist method integrating self-organizing maps (SOM). The basic SOM is an artificial neural network that, on the basis of the information contained in a multi-dimensional space, generates a space of lesser dimensions. Three algorithms--Unsupervised SOM, Supervised SOM, and Hierarchical SOM--have been developed to permit BR classification and prediction in terms of the different criteria. The proposed method can be used, on the one hand, to foresee/predict the possibility level of a new/changed barrier (prospective analysis), and on the other hand, to synthetically regroup/rearrange the BR of a given human-machine system (retrospective analysis). We applied this method to the BR analysis of an experimental railway simulator, and our preliminary results are presented here

  6. Sharing feelings online: Studying emotional well-being via automated text analysis of Facebook posts

    OpenAIRE

    Settanni, Michele; Marengo, Davide

    2015-01-01

    Digital traces of activity on social network sites represent a vast source of ecological data with potential connections with individual behavioral and psychological characteristics. The present study investigates the relationship between user-generated textual content shared on Facebook and emotional well-being. Self-report measures of depression, anxiety, and stress were collected from 201 adult Facebook users from North Italy. Emotion-related textual indicators, including emoticon use, wer...

  7. Intertextuality in the texts of Ancient Egypt: an analysis of the "sandbanks"

    Directory of Open Access Journals (Sweden)

    Leila Salem

    2017-07-01

    Full Text Available Literary texts emerged in ancient Egypt at the beginning of the 12th Dynasty. Nevertheless some metaphors, topics and expressions that are recurrent in the texts of fiction belong to other narrative fields, like the texts of the tombs or monumental. The concept of intertextuality allows us to analyze how literary texts permanently dialogue with other types of expressive discourses, putting in question the individual authorship of the same, since the literary text participates and is part of a broader, interconnected textuality, without a single mentor. Through the expression Tsw "sandbanks" we will analyze the intertextual relationship of the literary texts of the Middle Kingdom with the autobiographies of the Ancient Kingdom, and the First Intermediate Period and some religious texts of the New Kingdom as the Books of the Amduat. In this way, we will discuss the different meanings that the expression Tsw was acquiring according to the textual and historical context in which it was expressed. This allows us to conclude that the literary text is nourished by diversity and narrates topics that do not entirely belong to it, that is, it fictionalizes metaphors, expressions, ideas, texts that we find in nonfiction narratives but which are nourished by their meanings.

  8. Stories of change: the text analysis of handovers in an Italian psychiatric residential care home.

    Science.gov (United States)

    Accordini, M; Saita, E; Irtelli, F; Buratti, M; Savuto, G

    2017-05-01

    two decades. Method Emotional text analysis (ETA) was used to analyse the MHWs' handovers completed from 1990 to 2011. Results The analysis generated four clusters and three main factors illustrating the change in the MHWs' representations of the residential care home and its occupants. The factors showed: (1) the shift from an individualistic, problem-focused view to an inclusive, community-based approach; (2) the presence of a descriptive as well as a specialized language; and (3) the presence of a double focus: on patients and professionals. Conclusions Handovers transcripts document the following changes: (1) a shift from a symptom-based to a recovery-oriented approach; (2) a modification of the MHWs values towards an holistic view of the patient; (3) a growing importance assigned to accountability, services integration and teamwork. The paper shows that handovers can be used diachronically to document organizational change. © 2017 John Wiley & Sons Ltd.

  9. Free text adversity statements as part of a contextualised admissions process: a qualitative analysis.

    Science.gov (United States)

    Owen, Lysa E; Anderson, Stephanie Ann; Dowell, Johnathan S

    2018-04-02

    Medical schools globally are encouraged to widen access and participation for students from less privileged backgrounds. Many strategies have been implemented to address this inequality, but much still needs to be done to ensure fair access for all. In the literature, adverse circumstances include financial issues, poor educational experience and lack of professional-status parents. In order to take account of adverse circumstances faced by applicants, The University of Dundee School of Medicine offers applicants the opportunity to report circumstances which may have resulted in disadvantage. Applicants do this by completing a free text statement, known as an 'adversity statement', in addition to the other application information. This study analysed adversity statements submitted by applicants during two admissions cycles. Analysis of content and theme was done to identify the information applicants wished to be taken into consideration, and what range of adverse circumstances individuals reported. This study used a qualitative approach with thematic analysis to categorise the adversity statements. The data was initially analysed to create a coding framework which was then applied to the whole data set. Each coded segment was then analysed for heterogeneity and homogeneity, segments merged into generated themes, or to create sub-themes. The data set comprised a total of 384 adversity statements. These showed a wide range of detail involving family, personal health, education and living circumstances. Some circumstances, such as geographical location, have been identified and explored in previous research, while others, such as long term health conditions, have had less attention in the literature. The degree of impact, the length of statement and degree of detail, demonstrated wide variation between submissions. This study adds to the debate on best practice in contextual admissions and raises awareness of the range of circumstances and impact applicants wish to

  10. Inclusion of ethical issues in dementia guidelines: a thematic text analysis.

    Science.gov (United States)

    Knüppel, Hannes; Mertz, Marcel; Schmidhuber, Martina; Neitzke, Gerald; Strech, Daniel

    2013-08-01

    Clinical practice guidelines (CPGs) aim to improve professionalism in health care. However, current CPG development manuals fail to address how to include ethical issues in a systematic and transparent manner. The objective of this study was to assess the representation of ethical issues in general CPGs on dementia care. To identify national CPGs on dementia care, five databases of guidelines were searched and national psychiatric associations were contacted in August 2011 and in June 2013. A framework for the assessment of the identified CPGs' ethical content was developed on the basis of a prior systematic review of ethical issues in dementia care. Thematic text analysis and a 4-point rating score were employed to assess how ethical issues were addressed in the identified CPGs. Twelve national CPGs were included. Thirty-one ethical issues in dementia care were identified by the prior systematic review. The proportion of these 31 ethical issues that were explicitly addressed by each CPG ranged from 22% to 77%, with a median of 49.5%. National guidelines differed substantially with respect to (a) which ethical issues were represented, (b) whether ethical recommendations were included, (c) whether justifications or citations were provided to support recommendations, and (d) to what extent the ethical issues were explained. Ethical issues were inconsistently addressed in national dementia guidelines, with some guidelines including most and some including few ethical issues. Guidelines should address ethical issues and how to deal with them to help the medical profession understand how to approach care of patients with dementia, and for patients, their relatives, and the general public, all of whom might seek information and advice in national guidelines. There is a need for further research to specify how detailed ethical issues and their respective recommendations can and should be addressed in dementia guidelines. Please see later in the article for the Editors

  11. The Design and Analysis of Virtual Network Configuration for a Wireless Mobile ATM Network

    OpenAIRE

    Bush, Stephen F.

    1999-01-01

    This research concentrates on the design and analysis of an algorithm referred to as Virtual Network Configuration (VNC) which uses predicted future states of a system for faster network configuration and management. VNC is applied to the configuration of a wireless mobile ATM network. VNC is built on techniques from parallel discrete event simulation merged with constraints from real-time systems and applied to mobile ATM configuration and handoff. Configuration in a mobile network is a dyna...

  12. AN ANALYSIS OF ACEHNESE EFL STUDENTS’ GRAMMATICAL ERRORS IN WRITING RECOUNT TEXTS

    Directory of Open Access Journals (Sweden)

    Qudwatin Nisak M. Isa

    2017-11-01

    Full Text Available This study aims at finding empirical evidence of the most common types of grammatical errors and sources of errors in recount texts written by the first-year students of SMAS Babul Maghfirah, Aceh Besar. The subject of the study was a collection of students’ personal writing documents of recount texts about their lives experience. The students’ recount texts were analyzed by referring to Betty S. Azar classification and Richard’s theory on sources of errors. The findings showed that the total number of error is 436. Two frequent types of grammatical errors were Verb Tense and Word Choice. The major sources of error were Intralingual Error, Interference Error and Developmental Error respectively. Furthermore, the findings suggest that it is necessary for EFL teachers to apply appropriate techniques and strategies in teaching recount texts, which focus on past tense and language features of the text in order to reduce the possible errors to be made by the students.

  13. District heating and cooling systems for communities through power plant retrofit and distribution network. Final report. Volume I. Text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-15

    An analysis was performed investigating the potential of retrofitting Detroit Edison's Conners Creek power plant to supply district heating and cooling to an area surrounding the plant and within the City of Detroit. A detailed analysis was made of the types and ages of the buildings in the service area as a basis for establishing loads. The analysis of the power plant established possible modifications to the turbines to serve the load in the area. Based upon the service area data and plant retrofit schemes, a distribution system was developed incrementally over a 20-y period. An economic analysis of the system was performed to provide cash flows and payback periods for a variety of energy costs, system costs, and escalation rates to determine the economic viability of the system analyzed. The legal and regulatory requirements required of the district heating and cooling system owner in Michigan were also analyzed to determine what conditions must be met to own and operate the system.

  14. Phosphoproteomics-based systems analysis of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Hiroko eKozuka-Hata

    2012-01-01

    Full Text Available Signal transduction systems coordinate complex cellular information to regulate biological events such as cell proliferation and differentiation. Although the accumulating evidence on widespread association of signaling molecules has revealed essential contribution of phosphorylation-dependent interaction networks to cellular regulation, their dynamic behavior is mostly yet to be analyzed. Recent technological advances regarding mass spectrometry-based quantitative proteomics have enabled us to describe the comprehensive status of phosphorylated molecules in a time-resolved manner. Computational analyses based on the phosphoproteome dynamics accelerate generation of novel methodologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numerical modeling can be used to evaluate regulatory network elements from a statistical point of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the transcriptional level. These omics-based computational methodologies, which have firstly been applied to representative signaling systems such as the epidermal growth factor receptor pathway, have now opened up a gate for systems analysis of signaling networks involved in immune response and cancer.

  15. Analysis of robustness of urban bus network

    Science.gov (United States)

    Tao, Ren; Yi-Fan, Wang; Miao-Miao, Liu; Yan-Jie, Xu

    2016-02-01

    In this paper, the invulnerability and cascade failures are discussed for the urban bus network. Firstly, three static models(bus stop network, bus transfer network, and bus line network) are used to analyse the structure and invulnerability of urban bus network in order to understand the features of bus network comprehensively. Secondly, a new way is proposed to study the invulnerability of urban bus network by modelling two layered networks, i.e., the bus stop-line network and the bus line-transfer network and then the interactions between different models are analysed. Finally, by modelling a new layered network which can reflect the dynamic passenger flows, the cascade failures are discussed. Then a new load redistribution method is proposed to study the robustness of dynamic traffic. In this paper, the bus network of Shenyang City which is one of the biggest cities in China, is taken as a simulation example. In addition, some suggestions are given to improve the urban bus network and provide emergency strategies when traffic congestion occurs according to the numerical simulation results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61473073, 61374178, 61104074, and 61203329), the Fundamental Research Funds for the Central Universities (Grant Nos. N130417006, L1517004), and the Program for Liaoning Excellent Talents in University (Grant No. LJQ2014028).

  16. Method and tool for network vulnerability analysis

    Science.gov (United States)

    Swiler, Laura Painton [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM

    2006-03-14

    A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."

  17. Network-Based Visual Analysis of Tabular Data

    Science.gov (United States)

    Liu, Zhicheng

    2012-01-01

    Tabular data is pervasive in the form of spreadsheets and relational databases. Although tables often describe multivariate data without explicit network semantics, it may be advantageous to explore the data modeled as a graph or network for analysis. Even when a given table design conveys some static network semantics, analysts may want to look…

  18. Analysis of Computer Network Information Based on "Big Data"

    Science.gov (United States)

    Li, Tianli

    2017-11-01

    With the development of the current era, computer network and large data gradually become part of the people's life, people use the computer to provide convenience for their own life, but at the same time there are many network information problems has to pay attention. This paper analyzes the information security of computer network based on "big data" analysis, and puts forward some solutions.

  19. Road Transport Network Analysis In Port-Harcourt Metropolics ...

    African Journals Online (AJOL)

    Road transport network contributes to the economy of an area as it connects points of origin to destinations. The thrust of this article therefore, is on the analysis of the road networks in Port – Harcourt metropolis with the aim of determining the connectivity of the road networks and the most accessible node. Consequently ...

  20. An Approach to a Comprehensive Test Framework for Analysis and Evaluation of Text Line Segmentation Algorithms

    Directory of Open Access Journals (Sweden)

    Zoran N. Milivojevic

    2011-09-01

    Full Text Available The paper introduces a testing framework for the evaluation and validation of text line segmentation algorithms. Text line segmentation represents the key action for correct optical character recognition. Many of the tests for the evaluation of text line segmentation algorithms deal with text databases as reference templates. Because of the mismatch, the reliable testing framework is required. Hence, a new approach to a comprehensive experimental framework for the evaluation of text line segmentation algorithms is proposed. It consists of synthetic multi-like text samples and real handwritten text as well. Although the tests are mutually independent, the results are cross-linked. The proposed method can be used for different types of scripts and languages. Furthermore, two different procedures for the evaluation of algorithm efficiency based on the obtained error type classification are proposed. The first is based on the segmentation line error description, while the second one incorporates well-known signal detection theory. Each of them has different capabilities and convenience, but they can be used as supplements to make the evaluation process efficient. Overall the proposed procedure based on the segmentation line error description has some advantages, characterized by five measures that describe measurement procedures.

  1. A behavioral economic analysis of texting while driving: Delay discounting processes.

    Science.gov (United States)

    Hayashi, Yusuke; Miller, Kimberly; Foreman, Anne M; Wirth, Oliver

    2016-12-01

    The purpose of the present study was to examine an impulsive decision-making process underlying texting while driving from a behavioral economic perspective. A sample of 108 college students completed a novel discounting task that presented participants with a hypothetical scenario in which, after receiving a text message while driving, they rated the likelihood of replying to a text message immediately versus waiting to reply for a specific period of time. Participants also completed a delay discounting task in which they made repeated hypothetical choices between obtaining a larger amount of money available after a delay and an equal or lesser amount of money available immediately. The results show that the duration of the delay is a critical variable that strongly determines whether participants choose to wait to reply to a text message, and that the decrease in the likelihood of waiting as a function of delay is best described by a hyperbolic delay discounting function. The results also show that participants who self-reported higher frequency of texting while driving discounted the opportunity to reply to a text message at greater rates, whereas there was no relation between the rates of discounting of hypothetical monetary rewards and the frequency of texting while driving. The results support the conclusion that texting while driving is fundamentally an impulsive choice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Science Textbooks' Use of Graphical Representation: A Descriptive Analysis of Four Sixth Grade Science Texts

    Science.gov (United States)

    Slough, Scott W.; McTigue, Erin M.; Kim, Suyeon; Jennings, Susan K.

    2010-01-01

    Middle school teachers tend to rely heavily on texts that have become increasing more visual. There is little information available about the graphical demands of general middle grades' science texts. The purpose of this study was to quantify the type and quality of the graphical representations and how they interacted with the textual material in…

  3. Text-Based On-Line Conferencing: A Conceptual and Empirical Analysis Using a Minimal Prototype.

    Science.gov (United States)

    McCarthy, John C.; And Others

    1993-01-01

    Analyzes requirements for text-based online conferencing through the use of a minimal prototype. Topics discussed include prototyping with a minimal system; text-based communication; the system as a message passer versus the system as a shared data structure; and three exercises that showed how users worked with the prototype. (Contains 61…

  4. Analysis of Municipal Pipe Network Franchise Institution

    Science.gov (United States)

    Yong, Sun; Haichuan, Tian; Feng, Xu; Huixia, Zhou

    Franchise institution of municipal pipe network has some particularity due to the characteristic of itself. According to the exposition of Chinese municipal pipe network industry franchise institution, the article investigates the necessity of implementing municipal pipe network franchise institution in China, the role of government in the process and so on. And this offers support for the successful implementation of municipal pipe network franchise institution in China.

  5. Advanced functional network analysis in the geosciences: The pyunicorn package

    Science.gov (United States)

    Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen

    2013-04-01

    Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.

  6. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  7. Synchronization analysis of coloured delayed networks under ...

    Indian Academy of Sciences (India)

    This paper investigates synchronization of coloured delayed networks under decentralized pinning intermittent control. To begin with, the time delays are taken into account in the coloured networks. In addition, we propose a decentralized pinning intermittent control for coloured delayed networks, which is different from that ...

  8. A Social Network Analysis of Occupational Segregation

    DEFF Research Database (Denmark)

    Buhai, Ioan Sebastian; van der Leij, Marco

    We develop a social network model of occupational segregation between different social groups, generated by the existence of positive inbreeding bias among individuals from the same group. If network referrals are important for job search, then expected homophily in the contact network structure...

  9. Pareto distance for multi-layer network analysis

    DEFF Research Database (Denmark)

    Magnani, Matteo; Rossi, Luca

    2013-01-01

    services, e.g., Facebook, Twitter, LinkedIn and Foursquare. As a result, the analysis of on-line social networks requires a wider scope and, more technically speaking, models for the representation of this fragmented scenario. The recent introduction of more realistic layered models has however determined......Social Network Analysis has been historically applied to single networks, e.g., interaction networks between co-workers. However, the advent of on-line social network sites has emphasized the stratified structure of our social experience. Individuals usually spread their identities over multiple...

  10. A user exposure based approach for non-structural road network vulnerability analysis.

    Directory of Open Access Journals (Sweden)

    Lei Jin

    Full Text Available Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i the rationality of non-structural road network vulnerability, (ii the metrics for negative consequences accounting for variant road conditions, and (iii the introduction of a new vulnerability index based on user exposure. Based on the proposed methodology, a case study in the Sioux Falls network which was usually threatened by regular heavy snow during wintertime is detailedly discussed. The vulnerability ranking of links of Sioux Falls network with respect to heavy snow scenario is identified. As a result of non-structural consequences accompanied by conceivable degeneration of network, there are significant increases in generalized travel time costs which are measurements for "emotionally hurt" of topological road network.

  11. Exploring Social Meaning in Online Bilingual Text through Social Network Analysis

    Science.gov (United States)

    2015-09-01

    equivalent to what in monolingual settings is conveyed through prosody or other syntactic or lexical processes. It generates the presuppositions in... dictionaries and processing methods. Similarly, because social media are designed for specific purposes, off-the-shelf solutions for observation

  12. An asymptotic analysis of closed queueing networks with branching populations

    OpenAIRE

    Bayer, N.; Coffman, E.G.; Kogan, Y.A.

    1995-01-01

    textabstractClosed queueing networks have proven to be valuable tools for system performance analysis. In this paper, we broaden the applications of such networks by incorporating populations of {em branching customers: whenever a customer completes service at some node of the network, it is replaced by N>=0 customers, each routed independently to a next node, where N has a given, possibly node-dependent branching distribution. Applications of these branching and queueing networks focus on {e...

  13. NETWORK ANALYSIS OF PORTUGUESE TEAM ON FIFA WORLD CUP 2014

    Directory of Open Access Journals (Sweden)

    Rui Sousa Mendes,

    2015-05-01

    Full Text Available Match analysis has been using in football case to identify properties and patterns of teams (Sarmento et al., 2014. From the regular notational analysis until the most recent computational tactical metrics, a lot of different outcomes can be possible to extract from a single match (Clemente, Couceiro, Martins, & Mendes, 2015. In the specific case of football, the cooperation among team-members is one of the main factors that contribute for a better performance (Grund, 2012. Thus, to analyse such cooperation the Social Network Analysis have been used to identify how team-members are connected and if there are cooperation tendencies inside the team (Clemente et al., 2015. The prominent players have been also analysed in order to identify the central players in the team (Clemente, Couceiro, Martins, & Mendes, 2014.Objectives: Therefore, using the social network analysis approach the aim of this study was to analyse the centrality levels of Portuguese positional roles during the FIFA World Cup 2014 and to identify the prominent tactical positions that determined the moments with ball.

  14. Graph theoretical analysis and application of fMRI-based brain network in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    LIU Xue-na

    2012-08-01

    Full Text Available Alzheimer's disease (AD, a progressive neurodegenerative disease, is clinically characterized by impaired memory and many other cognitive functions. However, the pathophysiological mechanisms underlying the disease are not thoroughly understood. In recent years, using functional magnetic resonance imaging (fMRI as well as advanced graph theory based network analysis approach, several studies of patients with AD suggested abnormal topological organization in both global and regional properties of functional brain networks, specifically, as demonstrated by a loss of small-world network characteristics. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis. In this paper we introduce the essential concepts of complex brain networks theory, and review recent advances of the study on human functional brain networks in AD, especially focusing on the graph theoretical analysis of small-world network based on fMRI. We also propound the existent problems and research orientation.

  15. A social network analysis of treatment discoveries in cancer.

    Directory of Open Access Journals (Sweden)

    Athanasios Tsalatsanis

    2011-03-01

    Full Text Available Controlled clinical trials are widely considered to be the vehicle to treatment discovery in cancer that leads to significant improvements in health outcomes including an increase in life expectancy. We have previously shown that the pattern of therapeutic discovery in randomized controlled trials (RCTs can be described by a power law distribution. However, the mechanism generating this pattern is unknown. Here, we propose an explanation in terms of the social relations between researchers in RCTs. We use social network analysis to study the impact of interactions between RCTs on treatment success. Our dataset consists of 280 phase III RCTs conducted by the NCI from 1955 to 2006. The RCT networks are formed through trial interactions formed i at random, ii based on common characteristics, or iii based on treatment success. We analyze treatment success in terms of survival hazard ratio as a function of the network structures. Our results show that the discovery process displays power law if there are preferential interactions between trials that may stem from researchers' tendency to interact selectively with established and successful peers. Furthermore, the RCT networks are "small worlds": trials are connected through a small number of ties, yet there is much clustering among subsets of trials. We also find that treatment success (improved survival is proportional to the network centrality measures of closeness and betweenness. Negative correlation exists between survival and the extent to which trials operate within a limited scope of information. Finally, the trials testing curative treatments in solid tumors showed the highest centrality and the most influential group was the ECOG. We conclude that the chances of discovering life-saving treatments are directly related to the richness of social interactions between researchers inherent in a preferential interaction model.

  16. Redundancy in electronic health record corpora: analysis, impact on text mining performance and mitigation strategies.

    Science.gov (United States)

    Cohen, Raphael; Elhadad, Michael; Elhadad, Noémie

    2013-01-16

    The increasing availability of Electronic Health Record (EHR) data and specifically free-text patient notes presents opportunities for phenotype extraction. Text-mining methods in particular can help disease modeling by mapping named-entities mentions to terminologies and clustering semantically related terms. EHR corpora, however, exhibit specific statistical and linguistic characteristics when compared with corpora in the biomedical literature domain. We focus on copy-and-paste redundancy: clinicians typically copy and paste information from previous notes when documenting a current patient encounter. Thus, within a longitudinal patient record, one expects to observe heavy redundancy. In this paper, we ask three research questions: (i) How can redundancy be quantified in large-scale text corpora? (ii) Conventional wisdom is that larger corpora yield better results in text mining. But how does the observed EHR redundancy affect text mining? Does such redundancy introduce a bias that distorts learned models? Or does the redundancy introduce benefits by highlighting stable and important subsets of the corpus? (iii) How can one mitigate the impact of redundancy on text mining? We analyze a large-scale EHR corpus and quantify redundancy both in terms of word and semantic concept repetition. We observe redundancy levels of about 30% and non-standard distribution of both words and concepts. We measure the impact of redundancy on two standard text-mining applications: collocation identification and topic modeling. We compare the results of these methods on synthetic data with controlled levels of redundancy and observe significant performance variation. Finally, we compare two mitigation strategies to avoid redundancy-induced bias: (i) a baseline strategy, keeping only the last note for each patient in the corpus; (ii) removing redundant notes with an efficient fingerprinting-based algorithm. (a)For text mining, preprocessing the EHR corpus with fingerprinting yields

  17. Privacy Breach Analysis in Social Networks

    Science.gov (United States)

    Nagle, Frank

    This chapter addresses various aspects of analyzing privacy breaches in social networks. We first review literature that defines three types of privacy breaches in social networks: interactive, active, and passive. We then survey the various network anonymization schemes that have been constructed to address these privacy breaches. After exploring these breaches and anonymization schemes, we evaluate a measure for determining the level of anonymity inherent in a network graph based on its topological structure. Finally, we close by emphasizing the difficulty of anonymizing social network data while maintaining usability for research purposes and offering areas for future work.

  18. A gene network bioinformatics analysis for pemphigoid autoimmune blistering diseases.

    Science.gov (United States)

    Barone, Antonio; Toti, Paolo; Giuca, Maria Rita; Derchi, Giacomo; Covani, Ugo

    2015-07-01

    In this theoretical study, a text mining search and clustering analysis of data related to genes potentially involved in human pemphigoid autoimmune blistering diseases (PAIBD) was performed using web tools to create a gene/protein interaction network. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was employed to identify a final set of PAIBD-involved genes and to calculate the overall significant interactions among genes: for each gene, the weighted number of links, or WNL, was registered and a clustering procedure was performed using the WNL analysis. Genes were ranked in class (leader, B, C, D and so on, up to orphans). An ontological analysis was performed for the set of 'leader' genes. Using the above-mentioned data network, 115 genes represented the final set; leader genes numbered 7 (intercellular adhesion molecule 1 (ICAM-1), interferon gamma (IFNG), interleukin (IL)-2, IL-4, IL-6, IL-8 and tumour necrosis factor (TNF)), class B genes were 13, whereas the orphans were 24. The ontological analysis attested that the molecular action was focused on extracellular space and cell surface, whereas the activation and regulation of the immunity system was widely involved. Despite the limited knowledge of the present pathologic phenomenon, attested by the presence of 24 genes revealing no protein-protein direct or indirect interactions, the network showed significant pathways gathered in several subgroups: cellular components, molecular functions, biological processes and the pathologic phenomenon obtained from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The molecular basis for PAIBD was summarised and expanded, which will perhaps give researchers promising directions for the identification of new therapeutic targets.

  19. AN ANALYSIS OF STUDENT‘S DESCRIPTIVE TEXT: SYSTEMIC FUNCTIONAL LINGUISTICS PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Rizka Maulina Wulandari

    2017-12-01

    Full Text Available In Indonesia where different languages co-exist, and where English is used as a foreign language, the learners‘ capabilities in writing toward English plays an important role in formulating effective learning method. This descriptive qualitative research aimed to investigate the student‘s errors in writing descriptive text in SFL perspectives. A secondary, yet important, objective of this research is also to design the appropriate pedagogical plans that can be used for junior high school students in Indonesian education based on the result of the research. The results indicated that the student has good control about the schematic structure of descriptive text although many of his idea still uses Indonesian context which make the reader can be confused in understanding his meaning. It can be concluded that there is intervention from L1, that is Indonesian language, while he wrote his descriptive text.. Hence, the study highlighted that cooperative learning could be an option as an appropriate learning method to solve the students problem on writing descriptive text.

  20. State of the art applications of social network analysis

    CERN Document Server

    Can, Fazli; Polat, Faruk

    2014-01-01

    Social network analysis increasingly bridges the discovery of patterns in diverse areas of study as more data becomes available and complex. Yet the construction of huge networks from large data often requires entirely different approaches for analysis including; graph theory, statistics, machine learning and data mining. This work covers frontier studies on social network analysis and mining from different perspectives such as social network sites, financial data, e-mails, forums, academic research funds, XML technology, blog content, community detection and clique finding, prediction of user

  1. Network analysis and synthesis a modern systems theory approach

    CERN Document Server

    Anderson, Brian D O

    2006-01-01

    Geared toward upper-level undergraduates and graduate students, this book offers a comprehensive look at linear network analysis and synthesis. It explores state-space synthesis as well as analysis, employing modern systems theory to unite the classical concepts of network theory. The authors stress passive networks but include material on active networks. They avoid topology in dealing with analysis problems and discuss computational techniques. The concepts of controllability, observability, and degree are emphasized in reviewing the state-variable description of linear systems. Explorations

  2. The Analysis of SARDANA HPON Networks Using the HPON Network Configurator

    Directory of Open Access Journals (Sweden)

    Rastislav Roka

    2013-01-01

    Full Text Available NG-PON systems present optical access infrastructures to support various applications of the many service providers. In the near future, we can expect NG-PON technologies with different motivations for developing of HPON networks. The HPON is a hybrid passive optical network in a way that utilizes on a physical layer both TDM and WDM multiplexing principles together. The HPON network utilizes similar or soft revised topologies as TDM-PON architectures. In this second paper, requirements for the SARDANA HPON networks are introduced. A main part of the paper is dedicated to presentation of the HPON network configurator that allows configurating and analyzing the SARDANA HPON characteristics from a viewpoint of various specific network parameters. Finally, a short introduction to the comparison of the SARDANA and SUCCESS HPON networks based on simulation results is presented.

  3. The Analysis of SUCCESS HPON Networks Using the HPON Network Configurator

    Directory of Open Access Journals (Sweden)

    Rastislav Roka

    2013-01-01

    Full Text Available NG-PON systems present optical access infrastructures to support various applications of the many service providers. In the near future, we can expect NG-PON technologies with different motivations for developing of HPON networks. The HPON is a hybrid passive optical network in a way that utilizes on a physical layer both TDM and WDM multiplexing principles together. The HPON network utilizes similar or soft revised topologies as TDM-PON architectures. In this first paper, design requirements for SUCCESS HPON networks are introduced. A main part of the paper is dedicated to presentation of the HPON network configurator that allows configurating and analyzing the SUCCESS HPON characteristics from a viewpoint of various specific network parameters. Finally, a short introduction to the comparison of the SUCCESS and SARDANA HPON networks based on simulation results is presented.

  4. A content analysis of thinspiration images and text posts on Tumblr.

    Science.gov (United States)

    Wick, Madeline R; Harriger, Jennifer A

    2018-03-01

    Thinspiration is content advocating extreme weight loss by means of images and/or text posts. While past content analyses have examined thinspiration content on social media and other websites, no research to date has examined thinspiration content on Tumblr. Over the course of a week, 222 images and text posts were collected after entering the keyword 'thinspiration' into the Tumblr search bar. These images were then rated on a variety of characteristics. The majority of thinspiration images included a thin woman adhering to culturally based beauty, often posing in a manner that accentuated her thinness or sexuality. The most common themes for thinspiration text posts included dieting/restraint, weight loss, food guilt, and body guilt. The thinspiration content on Tumblr appears to be consistent with that on other mediums. Future research should utilize experimental methods to examine the potential effects of consuming thinspiration content on Tumblr. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Tariff Reduction Effects of WTO/DDA Agricultural Negotiations: Analysis of the Chairman's Second Draft Text

    Directory of Open Access Journals (Sweden)

    Se-Kyun Choi

    2003-06-01

    Full Text Available The average tariff reduction rate is 20% point higher in five developed countries analyzed in this study compared to five developing countries following the direction offered by the Chairman's Draft Text. Average tariff reduction rates are 31.6% for the five developing countries and 51.4% for the five developed countries. Korea's tariff reduction rate reaches to 36.1%, the highest reduction in developing countries, when Korea retains the developing country status. When Korea makes tariff reductions following the direction for developed countries, the average tariff reduction rate rises to 55.8%. Tariff reductions following the second Draft Text affect the tariff structure. Tariff escalation, dispersion and peaks can be mitigated by applying the tariff reduction methods proposed in the Second Draft Text. Tariff reductions give rise to the effects of reducing tariff escalation problem and the effects are stronger for the commodities with higher tariff rates and in developed countries. The average tariff rate for tariff peak commodities is reduced by 40% in developing countries and by 60% in developed countries. Tariff dispersion is also mitigated by reducing tariff rates. The difference of the average tariff rate between Korea and Australia is reduced to 38.5% from 59.8% by cutting tariff rates with the rules proposed in the second Draft Text. Korea needs to prepare the Country Schedule in advance to evaluate the potential outcome of the tariff cut following the Draft Text and to capture various voices from producers, consumers and other related institutions. For the preparation of the Country Schedule, Korea needs to decide minimum tariff cut items within a group of the commodity classified by tariff rates and this procedure requires discussion among producer and consumer groups.

  6. From text to codings: intercoder reliability assessment in qualitative content analysis.

    Science.gov (United States)

    Burla, Laila; Knierim, Birte; Barth, Jurgen; Liewald, Katharina; Duetz, Margreet; Abel, Thomas

    2008-01-01

    High intercoder reliability (ICR) is required in qualitative content analysis for assuring quality when more than one coder is involved in data analysis. The literature is short of standardized procedures for ICR procedures in qualitative content analysis. To illustrate how ICR assessment can be used to improve codings in qualitative content analysis. Key steps of the procedure are presented, drawing on data from a qualitative study on patients' perspectives on low back pain. First, a coding scheme was developed using a comprehensive inductive and deductive approach. Second, 10 transcripts were coded independently by two researchers, and ICR was calculated. A resulting kappa value of .67 can be regarded as satisfactory to solid. Moreover, varying agreement rates helped to identify problems in the coding scheme. Low agreement rates, for instance, indicated that respective codes were defined too broadly and would need clarification. In a third step, the results of the analysis were used to improve the coding scheme, leading to consistent and high-quality results. The quantitative approach of ICR assessment is a viable instrument for quality assurance in qualitative content analysis. Kappa values and close inspection of agreement rates help to estimate and increase quality of codings. This approach facilitates good practice in coding and enhances credibility of analysis, especially when large samples are interviewed, different coders are involved, and quantitative results are presented.

  7. Vulnerability Analysis of Urban Drainage Systems: Tree vs. Loop Networks

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-03-01

    Full Text Available Vulnerability analysis of urban drainage networks plays an important role in urban flood management. This study analyzes and compares the vulnerability of tree and loop systems under various rainfall events to structural failure represented by pipe blockage. Different pipe blockage scenarios, in which one of the pipes in an urban drainage network is assumed to be blocked individually, are constructed and their impacts on the network are simulated under different storm events. Furthermore, a vulnerability index is defined to measure the vulnerability of the drainage systems before and after the implementation of adaptation measures. The results obtained indicate that the tree systems have a relatively larger proportion of critical hydraulic pipes than the loop systems, thus the vulnerability of tree systems is substantially greater than that of the loop systems. Furthermore, the vulnerability index of tree systems is reduced after they are converted into a loop system with the implementation of adaptation measures. This paper provides an insight into the differences in the vulnerability of tree and loop systems, and provides more evidence for development of adaptation measures (e.g., tanks to reduce urban flooding.

  8. Centrality measures in temporal networks with time series analysis

    Science.gov (United States)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun

    2017-05-01

    The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.

  9. Neural Network Analysis of LEAP Energy Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, Robert E

    2002-09-10

    The Laser Electron Acceleration Project (LEAP) group has been conducting a proof of principle experiment on the acceleration of electrons with a pair of crossed laser beams. To date there has been no experimental verification of electron acceleration with crossed laser beams in a dielectric loaded vacuum, although the energy profile of an accelerated electron bunch has been well described by theory. The experiment is subject to unavoidable time dependent fluctuations in the independent variables. Changes in the experimental parameters can dramatically alter the beam profile incident near the focal plane of a high-resolution spectrometer located downstream from the accelerator cell. Neural networks (NNs) appear to provide an ideal tool for the positive determination of an acceleration event, being adaptable and able to handle highly complex nonlinear problems. Typical NNs under such conditions require a training set consisting of a representative data set along with ''answers'' which have been determined to be consistent with the variable state of the experimental parameters. A strategy of pattern recognition with respect to the status of independent variables can be employed to determine the signature characteristics of a laser perturbed electron bunch. Data cuts representing characteristics that were thought to be distinctive to accelerated beam profile images were implemented in the algorithm employed. Statistical analysis of the results of data cuts made on the energy profile images from the experiment is presented, as well as conclusions drawn from the results of this analysis. Finally, a discussion of future directions to be taken in this work is given including the orientation towards on-line, real-time analysis.

  10. Reconstructing Readability: Recent Developments and Recommendations in the Analysis of Text Difficulty

    Science.gov (United States)

    Benjamin, Rebekah George

    2012-01-01

    Largely due to technological advances, methods for analyzing readability have increased significantly in recent years. While past researchers designed hundreds of formulas to estimate the difficulty of texts for readers, controversy has surrounded their use for decades, with criticism stemming largely from their application in creating new texts…

  11. Lexical bundles in an advanced INTOCSU writing class and engineering texts: A functional analysis

    Science.gov (United States)

    Alquraishi, Mohammed Abdulrahman

    The purpose of this study is to investigate the functions of lexical bundles in two corpora: a corpus of engineering academic texts and a corpus of IEP advanced writing class texts. This study is concerned with the nature of formulaic language in Pathway IEPs and engineering texts, and whether those types of texts show similar or distinctive formulaic functions. Moreover, the study looked into lexical bundles found in an engineering 1.26 million-word corpus and an ESL 65000-word corpus using a concordancing program. The study then analyzed the functions of those lexical bundles and compared them statistically using chi-square tests. Additionally, the results of this investigation showed 236 unique frequent lexical bundles in the engineering corpus and 37 bundles in the pathway corpus. Also, the study identified several differences between the density and functions of lexical bundles in the two corpora. These differences were evident in the distribution of functions of lexical bundles and the minimal overlap of lexical bundles found in the two corpora. The results of this study call for more attention to formulaic language at ESP and EAP programs.

  12. Quantitative analysis of large amounts of journalistic texts using topic modelling

    NARCIS (Netherlands)

    Jacobi, C.; van Atteveldt, W.H.; Welbers, K.

    2016-01-01

    The huge collections of news content which have become available through digital technologies both enable and warrant scientific inquiry, challenging journalism scholars to analyse unprecedented amounts of texts. We propose Latent Dirichlet Allocation (LDA) topic modelling as a tool to face this

  13. Analysis of Nature of Science Included in Recent Popular Writing Using Text Mining Techniques

    Science.gov (United States)

    Jiang, Feng; McComas, William F.

    2014-01-01

    This study examined the inclusion of nature of science (NOS) in popular science writing to determine whether it could serve supplementary resource for teaching NOS and to evaluate the accuracy of text mining and classification as a viable research tool in science education research. Four groups of documents published from 2001 to 2010 were…

  14. Integrated Text Mining and Chemoinformatics Analysis Associates Diet to Health Benefit at Molecular Level

    DEFF Research Database (Denmark)

    Jensen, Kasper; Panagiotou, Gianni; Kouskoumvekaki, Irene

    2014-01-01

    , lipids and nutrients. In this work, we applied text mining and Naïve Bayes classification to assemble the knowledge space of food-phytochemical and food-disease associations, where we distinguish between disease prevention/amelioration and disease progression. We subsequently searched for frequently...

  15. Public reactions to e-cigarette regulations on Twitter: a text mining analysis.

    Science.gov (United States)

    Lazard, Allison J; Wilcox, Gary B; Tuttle, Hannah M; Glowacki, Elizabeth M; Pikowski, Jessica

    2017-12-01

    In May 2016, the Food and Drug Administration (FDA) issued a final rule that deemed e-cigarettes to be within their regulatory authority as a tobacco product. News and opinions about the regulation were shared on social media platforms, such as Twitter, which can play an important role in shaping the public's attitudes. We analysed information shared on Twitter for insights into initial public reactions. A text mining approach was used to uncover important topics among reactions to the e-cigarette regulations on Twitter. SAS Text Miner V.12.1 software was used for descriptive text mining to uncover the primary topics from tweets collected from May 1 to May 17 2016 using NUVI software to gather the data. A total of nine topics were generated. These topics reveal initial reactions to whether the FDA's e-cigarette regulations will benefit or harm public health, how the regulations will impact the emerging e-cigarette market and efforts to share the news. The topics were dominated by negative or mixed reactions. In the days following the FDA's announcement of the new deeming regulations, the public reaction on Twitter was largely negative. Public health advocates should consider using social media outlets to better communicate the policy's intentions, reach and potential impact for public good to create a more balanced conversation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Common Core Standards, Professional Texts, and Diverse Learners: A Qualitative Content Analysis

    Science.gov (United States)

    Yanoff, Elizabeth; LaDuke, Aja; Lindner, Mary

    2014-01-01

    This research study questioned the degree to which six professional texts guiding implementation of the Common Core Standards in reading address the needs of diverse learners. For the purposes of this research, diverse learners were specifically defined as above grade level readers, below grade level readers, and English learners. The researchers…

  17. The Push for More Challenging Texts: An Analysis of Early Readers' Rate, Accuracy, and Comprehension

    Science.gov (United States)

    Amendum, Steven J.; Conradi, Kristin; Liebfreund, Meghan D.

    2016-01-01

    The purpose of the study was to examine the relationship between the challenge level of text and early readers' reading comprehension. This relationship was also examined with consideration to students' word recognition accuracy and reading rate. Participants included 636 students, in Grades 1-3, in a southeastern state. Results suggest that…

  18. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  19. Exploratory social network analysis with Pajek. - 2nd ed.

    NARCIS (Netherlands)

    de Nooy, W.; Mrvar, A.; Batagelj, V.

    2011-01-01

    This is an extensively revised and expanded second edition of the successful textbook on social network analysis integrating theory, applications, and network analysis using Pajek. The main structural concepts and their applications in social research are introduced with exercises. Pajek software

  20. Content analysis to detect high stress in oral interviews and text documents

    Science.gov (United States)

    Thirumalainambi, Rajkumar (Inventor); Jorgensen, Charles C. (Inventor)

    2012-01-01

    A system of interrogation to estimate whether a subject of interrogation is likely experiencing high stress, emotional volatility and/or internal conflict in the subject's responses to an interviewer's questions. The system applies one or more of four procedures, a first statistical analysis, a second statistical analysis, a third analysis and a heat map analysis, to identify one or more documents containing the subject's responses for which further examination is recommended. Words in the documents are characterized in terms of dimensions representing different classes of emotions and states of mind, in which the subject's responses that manifest high stress, emotional volatility and/or internal conflict are identified. A heat map visually displays the dimensions manifested by the subject's responses in different colors, textures, geometric shapes or other visually distinguishable indicia.

  1. Addressing cancer disparities via community network mobilization and intersectoral partnerships: a social network analysis.

    Directory of Open Access Journals (Sweden)

    Shoba Ramanadhan

    Full Text Available Community mobilization and collaboration among diverse partners are vital components of the effort to reduce and eliminate cancer disparities in the United States. We studied the development and impact of intersectoral connections among the members of the Massachusetts Community Network for Cancer Education, Research, and Training (MassCONECT. As one of the Community Network Program sites funded by the National Cancer Institute, this infrastructure-building initiative utilized principles of Community-based Participatory Research (CBPR to unite community coalitions, researchers, policymakers, and other important stakeholders to address cancer disparities in three Massachusetts communities: Boston, Lawrence, and Worcester. We conducted a cross-sectional, sociometric network analysis four years after the network was formed. A total of 38 of 55 members participated in the study (69% response rate. Over four years of collaboration, the number of intersectoral connections reported by members (intersectoral out-degree increased, as did the extent to which such connections were reported reciprocally (intersectoral reciprocity. We assessed relationships between these markers of intersectoral collaboration and three intermediate outcomes in the effort to reduce and eliminate cancer disparities: delivery of community activities, policy engagement, and grants/publications. We found a positive and statistically significant relationship between intersectoral out-degree and community activities and policy engagement (the relationship was borderline significant for grants/publications. We found a positive and statistically significant relationship between intersectoral reciprocity and community activities and grants/publications (the relationship was borderline significant for policy engagement. The study suggests that intersectoral connections may be important drivers of diverse intermediate outcomes in the effort to reduce and eliminate cancer disparities

  2. Network meta-analysis: an introduction for pharmacists.

    Science.gov (United States)

    Xu, Yina; Amiche, Mohamed Amine; Tadrous, Mina

    2018-05-21

    Network meta-analysis is a new tool used to summarize and compare studies for multiple interventions, irrespective of whether these interventions have been directly evaluated against each other. Network meta-analysis is quickly becoming the standard in conducting therapeutic reviews and clinical guideline development. However, little guidance is available to help pharmacists review network meta-analysis studies in their practice. Major institutions such as the Cochrane Collaboration, Agency for Healthcare Research and Quality, Canadian Agency for Drugs and Technologies in Health, and National Institute for Health and Care Excellence Decision Support Unit have endorsed utilizing network meta-analysis to establish therapeutic evidence and inform decision making. Our objective is to introduce this novel technique to pharmacy practitioners, and highlight key assumptions behind network meta-analysis studies.

  3. Application of OLAM network in X-ray spectral analysis

    International Nuclear Information System (INIS)

    Liu Yinbing; Zhou Rongsheng

    2001-01-01

    The author describes a new approach to the automatic radioisotope identification problem based on the use of OLAM network. Different from the traditional methods, the OLAM network takes the spectrum as a whole comparing its shape with the patterns learned during the training period of the network. It is found that the OLAM network, once adequately trained, is quite suitable to identify a given isotope present in a mixture of elements as well as the relative proportions of each identified substance. Preliminary results are good enough to consider OLAM network as powerful and simple tools in the automatic spectrum analysis

  4. Formal Food-related Networks in Ireland: A Case Study Analysis

    Directory of Open Access Journals (Sweden)

    Maeve Henchion

    2012-03-01

    Full Text Available  Strategic networking is of crucial importance for innovation in small and medium sized enterprises (SMEs as it enables these companies access external resources and overcome internal constraints. However, SMEs often lack the skills and competencies to engage in and benefit from networks. Consequently SMEs often fail in establishing strategic and efficient networks. To date, there is limited guidance available on the optimal design of such networks. Furthermore, limited guidance is available on the number of networks, and level of engagement therein, that companies should be involved with. Using case studies across a range of formal networks within the food sector in Ireland, insights into the success factors and barriers to network learning are presented, which provide a foundation for such guidelines. Three case studies were selected for analysis in Ireland. Up to ten in-depth interviews were scheduled with the network managers and key informants from the triple helix (i.e. policy, research and industry sectors within each formal network. Initially, interviewees were identified as a result of a review of secondary sources and personal knowledge of the authors. The snowball sampling technique was then employed to identify additional interviewees within each network. The findings from this study revealed that some formal networks had a strong institutional influence, including significant financial inputs, whilst others had bottom-up origins. Many networks had strong levels of interaction prior to formalisation, which provided solid trust-based foundations. Innovation and/or learning were not the expressed objectives of all networks at the outset. However, interviewees across all three networks felt that positive impacts had been achieved in these areas. Whilst being involved in a broad network can provide access to a wider range of ideas, these case studies suggest that being involved in a smaller, dense network, with high levels of IP

  5. The problem of popularisation of expert texts: Analysis of media discourses on Ljubljana urbanism

    Directory of Open Access Journals (Sweden)

    Matjaž Uršič

    2008-01-01

    Full Text Available In the period after the post-socialist transition of Slovenia we can notice an increased number of instrumental, marketing oriented public relation (PR activities in expert and popular media from the field of spatial planning. The problem of instrumentalisation of media discourses reflects in exclusion i.e. deficiency of content-argumentative language in public debate. The basic purpose of the article is to analyse and expose some of the relationships and processes that have great influence in the space of the city and its surroundings. The article draws on empirical evidence from quantitative and qualitative analyse of texts and pays attention to some of the actual cases in spatial planning that show hidden contents, explicit and implicit ideological constructions, particularisms of interest groups and strategies of instrumental marketing campaigns.

  6. The semiotic construction of masculinity and affect: A multimodal analysis of media texts

    Directory of Open Access Journals (Sweden)

    Sônia Maria de Oliveira Pimenta

    2013-07-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2013n64p173 The aim of this paper is to observe changes in the semiotic construction of masculine identities as a dynamic flux of social representations mediated by the multimodal aspect of texts (sensory modality, salience, behaviour and point of view.  The study compares previous research data from a magazine article of 2003 and its cover- page to four adverts of the 2005 edition and three recent adverts published in the 2008 edition of the same magazine, so as to perceive how they position readers ideologically in order to (1 detect how masculinity is discursively represented in its heterogeneity connected, ideologically, with power relations, vanity and emotions and (2 define their identities as consumers of goods and services.

  7. Safety Gear Decontamination Practices Among Florida Firefighters: Analysis of a Text-Based Survey Methodology.

    Science.gov (United States)

    Moore, Kevin J; Koru-Sengul, Tulay; Alvarez, Armando; Schaefer-Solle, Natasha; Harrison, Tyler R; Kobetz, Erin N; Caban-Martinez, Alberto J

    2018-02-01

    Despite the National Fire Protection Association (NFPA) 1851 Personal Protective Equipment Care and Maintenance guidelines, little is known about the routine cleaning of firefighter bunker gear. In collaboration with a large Florida firefighter union, a mobile phone text survey was administered, which included eight questions in an item logic format. In total, 250 firefighters participated in the survey of which 65% reported cleaning their bunker gear in the past 12 months. Approximately 32% ( n = 52) indicated that they had above average confidence in gear cleaning procedures. Arriving at a fire incident response was a significant predictor of gear cleaning in the 12 months preceding survey administration. Using mobile phone-based texting for periodic queries on adherence to NFPA cleaning guidelines and safety message distribution may assist firefighters to increase decontamination procedure frequency.

  8. Effects of Mobile Text Advertising on Consumer Purchase Intention: A Moderated Mediation Analysis

    OpenAIRE

    Hongyan, Lin; Zhankui, Chen

    2017-01-01

    Mobile shopping is increasing in prevalence and has become a necessary part of many people's daily lives. However, one main channel for mobile shopping, mobile shopping applications (apps), has not been thoroughly investigated. This study focused on mobile text advertising delivered from mobile shopping apps using the intention to purchase as the dependent variable for testing its marketing effect. In the context of a promotion focus vs. a prevention focus, we used Higgins' regulatory focus t...

  9. Using Machine Learning for Sentiment and Social Influence Analysis in Text

    OpenAIRE

    Kolog, Emmanuel Awuni; Montero, Calkin Suero; Toivonen, Tapani

    2017-01-01

    Students’ academic achievement is largely driven by their social phenomena, which is shaped by social influence and opinion dynamics. In this paper, we employed a machine learning technique to detect social influence and sentiment in text-based students’ life stories. The life stories were first pre-processed and clustered using k-means with euclidean distance. After that, we identified domestic, peer and school staff as the main influences on students’ academic development. The various influ...

  10. One-way versus two-way text messaging on improving medication adherence: meta-analysis of randomized trials.

    Science.gov (United States)

    Wald, David S; Butt, Shahena; Bestwick, Jonathan P

    2015-10-01

    Mobile telephone text messaging is a simple potential solution to the failure to take medications as directed. There is uncertainty over the effectiveness of 1-way text messaging (sending text message reminders only) compared with 2-way text messaging (sending reminders and receiving replies confirming whether medication has been taken) as a means of improving medication adherence. A meta-analysis of 8 randomized trials (1994 patients) that tested the effectiveness of text messaging on medication adherence was performed. The trials were divided into 2 groups: trials using 1-way text messaging versus no text messaging and trials using 2-way text messaging versus no text messaging. The summary estimates of the effect of the 2 methods of text messaging (1-way or 2-way) were compared. The summary relative risk estimate was 1.04 (95% confidence interval, 0.97-1.11) for 1-way text messaging and 1.23 (95% confidence interval, 1.13-1.35) for 2-way text messaging. The difference in effect between the 2 methods was statistically significant (P = .007). Two-way text messaging is associated with substantially improved medication adherence compared with 1-way text messaging. This has important implications in the provision of mobile-based messaging in the management of patients taking medication for the prevention of chronic disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Syntactic computations in the language network: Characterising dynamic network properties using representational similarity analysis

    Directory of Open Access Journals (Sweden)

    Lorraine Komisarjevsky Tyler

    2013-05-01

    Full Text Available The core human capacity of syntactic analysis involves a left hemisphere network involving left inferior frontal gyrus (LIFG and posterior middle temporal gyrus (LMTG and the anatomical connections between them. Here we use MEG to determine the spatio-temporal properties of syntactic computations in this network. Listeners heard spoken sentences containing a local syntactic ambiguity (e.g. …landing planes…, at the offset of which they heard a disambiguating verb and decided whether it was an acceptable/unacceptable continuation of the sentence. We charted the time-course of processing and resolving syntactic ambiguity by measuring MEG responses from the onset of each word in the ambiguous phrase and the disambiguating word. We used representational similarity analysis (RSA to characterize syntactic information represented in the LIFG and LpMTG over time and to investigate their relationship to each other. Testing a variety of lexico-syntactic and ambiguity models against the MEG data, our results suggest early lexico-syntactic responses in the LpMTG and later effects of ambiguity in the LIFG, pointing to a clear differentiation in the functional roles of these two regions. Our results suggest the LpMTG represents and transmits lexical information to the LIFG, which responds to and resolves the ambiguity.

  12. [Systematic Readability Analysis of Medical Texts on Websites of German University Clinics for General and Abdominal Surgery].

    Science.gov (United States)

    Esfahani, B Janghorban; Faron, A; Roth, K S; Grimminger, P P; Luers, J C

    2016-12-01

    Background: Besides the function as one of the main contact points, websites of hospitals serve as medical information portals. As medical information texts should be understood by any patients independent of the literacy skills and educational level, online texts should have an appropriate structure to ease understandability. Materials and Methods: Patient information texts on websites of clinics for general surgery at German university hospitals (n = 36) were systematically analysed. For 9 different surgical topics representative medical information texts were extracted from each website. Using common readability tools and 5 different readability indices the texts were analysed concerning their readability and structure. The analysis was furthermore stratified in relation to geographical regions in Germany. Results: For the definite analysis the texts of 196 internet websites could be used. On average the texts consisted of 25 sentences and 368 words. The reading analysis tools congruously showed that all texts showed a rather low readability demanding a high literacy level from the readers. Conclusion: Patient information texts on German university hospital websites are difficult to understand for most patients. To fulfill the ambition of informing the general population in an adequate way about medical issues, a revision of most medical texts on websites of German surgical hospitals is recommended. Georg Thieme Verlag KG Stuttgart · New York.

  13. Analysis of the airport network of India as a complex weighted network

    Science.gov (United States)

    Bagler, Ganesh

    2008-05-01

    Transportation infrastructure of a country is one of the most important indicators of its economic growth. Here we study the Airport Network of India (ANI) which represents India’s domestic civil aviation infrastructure as a complex network. We find that ANI, a network of domestic airports connected by air links, is a small-world network characterized by a truncated power-law degree distribution and has a signature of hierarchy. We investigate ANI as a weighted network to explore its various properties and compare them with their topological counterparts. The traffic in ANI, as in the World-wide Airport Network (WAN), is found to be accumulated on interconnected groups of airports and is concentrated between large airports. In contrast to WAN, ANI is found to be having disassortative mixing which is offset by the traffic dynamics. The analysis indicates possible mechanism of formation of a national transportation network, which is different from that on a global scale.

  14. WGCNA: an R package for weighted correlation network analysis.

    Science.gov (United States)

    Langfelder, Peter; Horvath, Steve

    2008-12-29

    Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.

  15. The Representation of Diversity in Marketing Principles Texts: An Exploratory Analysis.

    Science.gov (United States)

    Foxman, Ellen; Easterling, Debbie

    1999-01-01

    Content analysis of portrayals of organizations and individuals in 32 marketing textbooks showed that in many respects their depiction of the actual U.S. workplace was not accurate. Women and people with disabilities were underrepresented; results for ethnic minorities were unclear because of difficulties of identification in print. (SK)

  16. Increasing the trustworthiness of research results: the role of computers in qualitative text analysis

    Science.gov (United States)

    Lynne M. Westphal

    2000-01-01

    By using computer packages designed for qualitative data analysis a researcher can increase trustworthiness (i.e., validity and reliability) of conclusions drawn from qualitative research results. This paper examines trustworthiness issues and therole of computer software (QSR's NUD*IST) in the context of a current research project investigating the social...

  17. Network Analysis of Earth's Co-Evolving Geosphere and Biosphere

    Science.gov (United States)

    Hazen, R. M.; Eleish, A.; Liu, C.; Morrison, S. M.; Meyer, M.; Consortium, K. D.

    2017-12-01

    A fundamental goal of Earth science is the deep understanding of Earth's dynamic, co-evolving geosphere and biosphere through deep time. Network analysis of geo- and bio- `big data' provides an interactive, quantitative, and predictive visualization framework to explore complex and otherwise hidden high-dimension features of diversity, distribution, and change in the evolution of Earth's geochemistry, mineralogy, paleobiology, and biochemistry [1]. Networks also facilitate quantitative comparison of different geological time periods, tectonic settings, and geographical regions, as well as different planets and moons, through network metrics, including density, centralization, diameter, and transitivity.We render networks by employing data related to geographical, paragenetic, environmental, or structural relationships among minerals, fossils, proteins, and microbial taxa. An important recent finding is that the topography of many networks reflects parameters not explicitly incorporated in constructing the network. For example, networks for minerals, fossils, and protein structures reveal embedded qualitative time axes, with additional network geometries possibly related to extinction and/or other punctuation events (see Figure). Other axes related to chemical activities and volatile fugacities, as well as pressure and/or depth of formation, may also emerge from network analysis. These patterns provide new insights into the way planets evolve, especially Earth's co-evolving geosphere and biosphere. 1. Morrison, S.M. et al. (2017) Network analysis of mineralogical systems. American Mineralogist 102, in press. Figure Caption: A network of Phanerozoic Era fossil animals from the past 540 million years includes blue, red, and black circles (nodes) representing family-level taxa and grey lines (links) between coexisting families. Age information was not used in the construction of this network; nevertheless an intrinsic timeline is embedded in the network topology. In

  18. SU-C-BRD-03: Analysis of Accelerator Generated Text Logs for Preemptive Maintenance

    International Nuclear Information System (INIS)

    Able, CM; Baydush, AH; Nguyen, C; Munley, MT; Gersh, J; Ndlovu, A; Rebo, I; Booth, J; Perez, M; Sintay, B

    2014-01-01

    Purpose: To develop a model to analyze medical accelerator generated parameter and performance data that will provide an early warning of performance degradation and impending component failure. Methods: A robust 6 MV VMAT quality assurance treatment delivery was used to test the constancy of accelerator performance. The generated text log files were decoded and analyzed using statistical process control (SPC) methodology. The text file data is a single snapshot of energy specific and overall systems parameters. A total of 36 system parameters were monitored which include RF generation, electron gun control, energy control, beam uniformity control, DC voltage generation, and cooling systems. The parameters were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and the parameter/system specification. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: the value of 1 standard deviation from the mean operating parameter of 483 TB systems, a small fraction (≤ 5%) of the operating range, or a fraction of the minor fault deviation. Results: There were 34 parameters in which synthetic errors were introduced. There were 2 parameters (radial position steering coil, and positive 24V DC) in which the errors did not exceed the limit of the I/MR chart. The I chart limit was exceeded for all of the remaining parameters (94.2%). The MR chart limit was exceeded in 29 of the 32 parameters (85.3%) in which the I chart limit was exceeded. Conclusion: Statistical process control I/MR evaluation of text log file parameters may be effective in providing an early warning of performance degradation or component failure for digital medical accelerator systems. Research is Supported by Varian Medical Systems, Inc

  19. SU-C-BRD-03: Analysis of Accelerator Generated Text Logs for Preemptive Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Able, CM; Baydush, AH; Nguyen, C; Munley, MT [Wake Forest School of Medicine, Department of Radiation Oncology, Winston Salem, NC (United States); Gersh, J [Gibbs Cancer Center and Research Institute, Spartenburg Regional Medical Ce, Spartenburg, SC (United States); Ndlovu, A; Rebo, I [John Theuer Cancer Center, Hackensack University Medical Center, Hackensack, NJ (United States); Booth, J; Perez, M [North Sydney Cancer Center, Royal North Shore Hospital, Sydney, St Leonards (Australia); Sintay, B [Cone Health Cancer Center, Greensboro, NC (United States)

    2014-06-15

    Purpose: To develop a model to analyze medical accelerator generated parameter and performance data that will provide an early warning of performance degradation and impending component failure. Methods: A robust 6 MV VMAT quality assurance treatment delivery was used to test the constancy of accelerator performance. The generated text log files were decoded and analyzed using statistical process control (SPC) methodology. The text file data is a single snapshot of energy specific and overall systems parameters. A total of 36 system parameters were monitored which include RF generation, electron gun control, energy control, beam uniformity control, DC voltage generation, and cooling systems. The parameters were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and the parameter/system specification. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: the value of 1 standard deviation from the mean operating parameter of 483 TB systems, a small fraction (≤ 5%) of the operating range, or a fraction of the minor fault deviation. Results: There were 34 parameters in which synthetic errors were introduced. There were 2 parameters (radial position steering coil, and positive 24V DC) in which the errors did not exceed the limit of the I/MR chart. The I chart limit was exceeded for all of the remaining parameters (94.2%). The MR chart limit was exceeded in 29 of the 32 parameters (85.3%) in which the I chart limit was exceeded. Conclusion: Statistical process control I/MR evaluation of text log file parameters may be effective in providing an early warning of performance degradation or component failure for digital medical accelerator systems. Research is Supported by Varian Medical Systems, Inc.

  20. Topology design and performance analysis of an integrated communication network

    Science.gov (United States)

    Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.

    1985-01-01

    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.

  1. Applications of social network analysis to obesity: a systematic review.

    Science.gov (United States)

    Zhang, S; de la Haye, K; Ji, M; An, R

    2018-04-20

    People's health behaviours and outcomes can be profoundly shaped by the social networks they are embedded in. Based on graph theory, social network analysis is a research framework for the study of social interactions and the structure of these interactions among social actors. A literature search was conducted in PubMed and Web of Science for articles published until August 2017 that applied social network analysis to examine obesity and social networks. Eight studies (three cross-sectional and five longitudinal) conducted in the US (n = 6) and Australia (n = 2) were identified. Seven focused on adolescents' and one on adults' friendship networks. They examined structural features of these networks that were associated with obesity, including degree distribution, popularity, modularity maximization and K-clique percolation. All three cross-sectional studies that used exponential random graph models found individuals with similar body weight status and/or weight-related behaviour were more likely to share a network tie than individuals with dissimilar traits. Three longitudinal studies using stochastic actor-based models found friendship network characteristics influenced change in individuals' body weight status and/or weight-related behaviour over time. Future research should focus on diverse populations and types of social networks and identifying the mechanisms by which social networks influence obesity to inform network-based interventions. © 2018 World Obesity Federation.

  2. Why social network analysis is important to Air Force applications

    Science.gov (United States)

    Havig, Paul R.; McIntire, John P.; Geiselman, Eric; Mohd-Zaid, Fairul

    2012-06-01

    Social network analysis is a powerful tool used to help analysts discover relationships amongst groups of people as well as individuals. It is the mathematics behind such social networks as Facebook and MySpace. These networks alone cause a huge amount of data to be generated and the issue is only compounded once one adds in other electronic media such as e-mails and twitter. In this paper we outline the basics of social network analysis and how it may be used in current and future Air Force applications.

  3. Theological Media Literacy Education and Hermeneutic Analysis of Soviet Audiovisual Anti-Religious Media Texts in Students' Classroom

    Science.gov (United States)

    Fedorov, Alexander

    2015-01-01

    This article realized the Russian way of theological media education literacy and hermeneutic analysis of specific examples of Soviet anti-religious audiovisual media texts: a study of the process of interpretation of these media texts, cultural and historical factors influencing the views of the media agency/authors. The hermeneutic analysis…

  4. Urban Traffic Signal System Control Structural Optimization Based on Network Analysis

    Directory of Open Access Journals (Sweden)

    Li Wang

    2013-01-01

    Full Text Available Advanced urban traffic signal control systems such as SCOOT and SCATS normally coordinate traffic network using multilevel hierarchical control mechanism. In this mechanism, several key intersections will be selected from traffic signal network and the network will be divided into different control subareas. Traditionally, key intersection selection and control subareas division are executed according to dynamic traffic counts and link length between intersections, which largely rely on traffic engineers’ experience. However, it omits important inherent characteristics of traffic network topology. In this paper, we will apply network analysis approach into these two aspects for traffic system control structure optimization. Firstly, the modified C-means clustering algorithm will be proposed to assess the importance of intersections in traffic network and furthermore determine the key intersections based on three indexes instead of merely on traffic counts in traditional methods. Secondly, the improved network community discovery method will be used to give more reasonable evidence in traffic control subarea division. Finally, to test the effectiveness of network analysis approach, a hardware-in-loop simulation environment composed of regional traffic control system, microsimulation software and signal controller hardware, will be built. Both traditional method and proposed approach will be implemented on simulation test bed to evaluate traffic operation performance indexes, for example, travel time, stop times, delay and average vehicle speed. Simulation results show that the proposed network analysis approach can improve the traffic control system operation performance effectively.

  5. Compensatory Analysis and Optimization for MADM for Heterogeneous Wireless Network Selection

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2016-01-01

    Full Text Available In the next-generation heterogeneous wireless networks, a mobile terminal with a multi-interface may have network access from different service providers using various technologies. In spite of this heterogeneity, seamless intersystem mobility is a mandatory requirement. One of the major challenges for seamless mobility is the creation of a network selection scheme, which is for users that select an optimal network with best comprehensive performance between different types of networks. However, the optimal network may be not the most reasonable one due to compensation of MADM (Multiple Attribute Decision Making, and the network is called pseudo-optimal network. This paper conducts a performance evaluation of a number of widely used MADM-based methods for network selection that aim to keep the mobile users always best connected anywhere and anytime, where subjective weight and objective weight are all considered. The performance analysis shows that the selection scheme based on MEW (weighted multiplicative method and combination weight can better avoid accessing pseudo-optimal network for balancing network load and reducing ping-pong effect in comparison with three other MADM solutions.

  6. Magnetic Diagnosis Upgrade and Analysis for MHD Instabilities on the J-TEXT

    Science.gov (United States)

    Guo, Daojing; Hu, Qiming; Zhuang, Ge; Wang, Nengchao; Ding, Yonghua; Tang, Yuejin; Yu, Qingquan; Huazhong University of Science; Technology Team; Max-Planck-Institut für Plasmaphysik Collaboration

    2017-10-01

    The magnetic diagnostic system on the J-TEXT tokamak has been upgraded to measure the magnetohydrodynamic (MHD) instabilities with diverse bands of frequencies. 12 saddle loop probes and 73 Mirnov probes are newly developed. The fabrication and installment of the new probes are elaborately designed, in consideration of higher spatial resolution and better amplitude-frequency characteristic. In this case, the probes utilize two kinds of novel fabrication craft, one of which is low temperature co-fired ceramics (LTCC), the other is flexible printed circuit (FPC). A great deal of experiments on the J-TEXT have validated the stability of the new system. Some typical discharges observed by the new diagnostic system are reviewed. In order to extract useful information from raw signals, several efficient signal processing methods are reviewed. An analytical model based on lumped eddy current circuits is used to compensate equilibrium flux and the corresponding eddy current fluxes, a visualization processing based on singular value decomposition (SVD) and cross-power spectrum are applied to detect the mode number. Fusion Science Program of China (Contract Nos. 2015GB111001 and 2014GB108000) and the National Natural Science Foundation of China (Contract Nos. 11505069 and 11405068).

  7. Effects of Mobile Text Advertising on Consumer Purchase Intention: A Moderated Mediation Analysis

    Directory of Open Access Journals (Sweden)

    Lin Hongyan

    2017-06-01

    Full Text Available Mobile shopping is increasing in prevalence and has become a necessary part of many people's daily lives. However, one main channel for mobile shopping, mobile shopping applications (apps, has not been thoroughly investigated. This study focused on mobile text advertising delivered from mobile shopping apps using the intention to purchase as the dependent variable for testing its marketing effect. In the context of a promotion focus vs. a prevention focus, we used Higgins' regulatory focus theory combined with Ajzen's TPB and Herzog's U&G to analyze the mechanism by which consumers formulate an intention to purchase in a mobile advertising context. This empirical study surveyed 320 consumers who had made a purchase using a mobile shopping app in the previous month. The results showed that infotainment, irritation, and subjective norms were significantly associated with attitudes; in turn, attitudes mediated the impact of these three factors on the intention to purchase. Moreover, a high promotion focus not only strengthened the positive effect of infotainment on attitudes but also intensified the mediation effect of attitudes between infotainment and the intention to purchase. A high prevention focus also consolidated the negative effect of irritation on attitudes as well as reinforced the mediation effect of attitudes between irritation and the intention to purchase. Furthermore, attitudes, subjective norms, and perceived behavioral control collectively impacted the intention to purchase. These findings shed light on ways to customize goods information in mobile advertising and have strong theoretical and practical implications.

  8. Menzerath-Altmann law for distinct word distribution analysis in a large text

    Science.gov (United States)

    Eroglu, Sertac

    2013-06-01

    The empirical law uncovered by Menzerath and formulated by Altmann, known as the Menzerath-Altmann law (henceforth the MA law), reveals the statistical distribution behavior of human language in various organizational levels. Building on previous studies relating organizational regularities in a language, we propose that the distribution of distinct (or different) words in a large text can effectively be described by the MA law. The validity of the proposition is demonstrated by examining two text corpora written in different languages not belonging to the same language family (English and Turkish). The results show not only that distinct word distribution behavior can accurately be predicted by the MA law, but that this result appears to be language-independent. This result is important not only for quantitative linguistic studies, but also may have significance for other naturally occurring organizations that display analogous organizational behavior. We also deliberately demonstrate that the MA law is a special case of the probability function of the generalized gamma distribution.

  9. Integrative analysis of many weighted co-expression networks using tensor computation.

    Directory of Open Access Journals (Sweden)

    Wenyuan Li

    2011-06-01

    Full Text Available The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks.

  10. Capi text V.1--data analysis software for nailfold skin capillaroscopy.

    Science.gov (United States)

    Dobrev, Hristo P

    2007-01-01

    Nailfold skin capillaroscopy is a simple non-invasive method used to assess conditions of disturbed microcirculation such as Raynaud's phenomenon, acrocyanosis, perniones, connective tissue diseases, psoriasis, diabetes mellitus, neuropathy and vibration disease. To develop data analysis software aimed at assisting the documentation and analysis of a capillaroscopic investigation. SOFTWARE DESCRIPTION: The programme is based on a modular principle. The module "Nomenclatures" includes menus for the patients' data. The module "Examinations" includes menus for all general and specific aspects of the medical examination and capillaroscopic investigations. The modules "Settings" and "Information" include customization menus for the programme. The results of nailfold capillaroscopy can be printed in a short or expanded form. This software allows physicians to perform quick search by using various specified criteria and prepare analyses and reports. This software programme will facilitate any practitioner who performs nailfold skin capillaroscopy.

  11. Text Stream Trend Analysis using Multiscale Visual Analytics with Applications to Social Media Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; Beaver, Justin M [ORNL; BogenII, Paul L. [Google Inc.; Drouhard, Margaret MEG G [ORNL; Pyle, Joshua M [ORNL

    2015-01-01

    In this paper, we introduce a new visual analytics system, called Matisse, that allows exploration of global trends in textual information streams with specific application to social media platforms. Despite the potential for real-time situational awareness using these services, interactive analysis of such semi-structured textual information is a challenge due to the high-throughput and high-velocity properties. Matisse addresses these challenges through the following contributions: (1) robust stream data management, (2) automated sen- timent/emotion analytics, (3) inferential temporal, geospatial, and term-frequency visualizations, and (4) a flexible drill-down interaction scheme that progresses from macroscale to microscale views. In addition to describing these contributions, our work-in-progress paper concludes with a practical case study focused on the analysis of Twitter 1% sample stream information captured during the week of the Boston Marathon bombings.

  12. Military construction program economic analysis manual: Text and appendixes: Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    1987-12-01

    This manual enables the US Air Force to comprehensively and systematically analyze alternative approaches to meeting its military construction requirements. The manual includes step-by-step procedures for completing economic analyses for military construction projects, beginning with determining if an analysis is necessary. Instructions and a checklist of the tasks involved for each step are provided; and examples of calculations and illustrations of completed forms are included. The manual explains the major tasks of an economic analysis, including identifying the problem, selecting realistic alternatives for solving it, formulating appropriate assumptions, determining the costs and benefits of the alternatives, comparing the alternatives, testing the sensitivity of major uncertainties, and ranking the alternatives. Appendixes are included that contain data, indexes, and worksheets to aid in performing the economic analyses. For reference, Volume 2 contains sample economic analyses that illustrate how each form is filled out and that include a complete example of the documentation required. 6 figs., 12 tabs

  13. Conflict over natural resource management a social indicator based on analysis of online news media text

    Science.gov (United States)

    David N. Bengston; David P. Fan

    1999-01-01

    An indicator of the level of conflict over natural resource management was developed and applied to the case of U.S. national forest policy and management. Computer-coded content analysis was used to identify expressions of conflict in a national database of almost 10,000 news media stories about the U.S. Forest Service. Changes in the amount of news media discussion...

  14. Neutral space analysis for a Boolean network model of the fission yeast cell cycle network

    Directory of Open Access Journals (Sweden)

    Gonzalo A Ruz

    2014-01-01

    Full Text Available BACKGROUND: Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle. RESULTS: Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes. CONCLUSIONS: In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the

  15. Category theoretic analysis of hierarchical protein materials and social networks.

    Directory of Open Access Journals (Sweden)

    David I Spivak

    Full Text Available Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a "concept web" or "semantic network" except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine.

  16. Using Social Network Analysis to Assess Mentorship and Collaboration in a Public Health Network.

    Science.gov (United States)

    Petrescu-Prahova, Miruna; Belza, Basia; Leith, Katherine; Allen, Peg; Coe, Norma B; Anderson, Lynda A

    2015-08-20

    Addressing chronic disease burden requires the creation of collaborative networks to promote systemic changes and engage stakeholders. Although many such networks exist, they are rarely assessed with tools that account for their complexity. This study examined the structure of mentorship and collaboration relationships among members of the Healthy Aging Research Network (HAN) using social network analysis (SNA). We invited 97 HAN members and partners to complete an online social network survey that included closed-ended questions about HAN-specific mentorship and collaboration during the previous 12 months. Collaboration was measured by examining the activity of the network on 6 types of products: published articles, in-progress manuscripts, grant applications, tools, research projects, and presentations. We computed network-level measures such as density, number of components, and centralization to assess the cohesiveness of the network. Sixty-three respondents completed the survey (response rate, 65%). Responses, which included information about collaboration with nonrespondents, suggested that 74% of HAN members were connected through mentorship ties and that all 97 members were connected through at least one form of collaboration. Mentorship and collaboration ties were present both within and across boundaries of HAN member organizations. SNA of public health collaborative networks provides understanding about the structure of relationships that are formed as a result of participation in network activities. This approach may offer members and funders a way to assess the impact of such networks that goes beyond simply measuring products and participation at the individual level.

  17. The System For Co-Reference Resolution For Slovenian Texts Analysis and Possibilities of its Use

    Directory of Open Access Journals (Sweden)

    Peter Holozan

    2015-10-01

    Full Text Available Co-reference resolution is an important part of language technologies, but has not yet been developed for Slovenian. There are various types of co-references and the paper focuses on anaphora resolution of personal pronouns. Seven methods, used in combination, were used; the most important one is based on activation. First results are promising, but for more extensive evaluation, Slovenian corpus with marked examples is needed. Co-reference resolution was used in the question answering system Crammer, which can, as a result, answer more questions than before, because it can replace personal pronouns. At the same time, some other improvement were added to Crammer, e.g. answering to individual words and phrases and answering to declarative sentences. Added was also generation of long answers to questions with interrogative particles. Co-reference resolution also improved working of Presis machine translation, especially for determining of gender of pronouns and for disambiguation of attributive subordinate clauses.

  18. Analysis of free text in electronic health records for identification of cancer patient trajectories

    DEFF Research Database (Denmark)

    Jensen, Kasper; Soguero-Ruiz, Cristina; Mikalsen, Karl Oyvind

    2017-01-01

    With an aging patient population and increasing complexity in patient disease trajectories, physicians are often met with complex patient histories from which clinical decisions must be made. Due to the increasing rate of adverse events and hospitals facing financial penalties for readmission......, there has never been a greater need to enforce evidence-led medical decision-making using available health care data. In the present work, we studied a cohort of 7,741 patients, of whom 4,080 were diagnosed with cancer, surgically treated at a University Hospital in the years 2004-2012. We have developed...... a methodology that allows disease trajectories of the cancer patients to be estimated from free text in electronic health records (EHRs). By using these disease trajectories, we predict 80% of patient events ahead in time. By control of confounders from 8326 quantified events, we identified 557 events...

  19. Investigation and analysis of network psychology of college students

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaoyan

    2013-01-01

    Based on basic situational research and analysis carried out on 638 college students using network,we found that as many as 20 percent of the students are not only largely dependent on internet,but also addicted to it.Further biography characteristics analyses for different individuals on the four dimensions of the network forced addiction,tolerance,and time management and interpersonal relationship and health,show that there are significant differences in grades,gender with different education levels of their parents.Further researches on discrepancy that addicted groups have in network entertainment addiction,network information,cyber porn,network relations and network transactions addictions also illustrate that significant discrepancies exist in gender,net age,different discipline and other factors.Finally we put forward some correlative measures to solve the problems of college students network psychology from individuals,schools,and society levels.

  20. Perturbation analysis of complete synchronization in networks of phase oscillators.

    Science.gov (United States)

    Tönjes, Ralf; Blasius, Bernd

    2009-08-01

    The behavior of weakly coupled self-sustained oscillators can often be well described by phase equations. Here we use the paradigm of Kuramoto phase oscillators which are coupled in a network to calculate first- and second-order corrections to the frequency of the fully synchronized state for nonidentical oscillators. The topology of the underlying coupling network is reflected in the eigenvalues and eigenvectors of the network Laplacian which influence the synchronization frequency in a particular way. They characterize the importance of nodes in a network and the relations between them. Expected values for the synchronization frequency are obtained for oscillators with quenched random frequencies on a class of scale-free random networks and for a Erdös-Rényi random network. We briefly discuss an application of the perturbation theory in the second order to network structural analysis.

  1. Incremental Centrality Algorithms for Dynamic Network Analysis

    Science.gov (United States)

    2013-08-01

    literature.   7.1.3 Small World Networks In 1998, Watts and Strogatz introduced a model that starts with a regular lattice (ring) of n nodes and...and S. Strogatz , "Collective Dynamics of ‘Small-World’ Networks," Nature, vol. 393, pp. 440-442, 1998. [13] T. Opsahl, "Structure and Evolution of...34On Random Graphs," Publicationes Mathematicae, vol. 6, 1959. [167] D.J. Watts and S.H. Strogatz , "Collective Dynamics of ‘Small-World’ Networks

  2. Fractal Analysis of Mobile Social Networks

    International Nuclear Information System (INIS)

    Zheng Wei; Pan Qian; Sun Chen; Deng Yu-Fan; Zhao Xiao-Kang; Kang Zhao

    2016-01-01

    Fractal and self similarity of complex networks have attracted much attention in recent years. The fractal dimension is a useful method to describe the fractal property of networks. However, the fractal features of mobile social networks (MSNs) are inadequately investigated. In this work, a box-covering method based on the ratio of excluded mass to closeness centrality is presented to investigate the fractal feature of MSNs. Using this method, we find that some MSNs are fractal at different time intervals. Our simulation results indicate that the proposed method is available for analyzing the fractal property of MSNs. (paper)

  3. A novel procedure on next generation sequencing data analysis using text mining algorithm.

    Science.gov (United States)

    Zhao, Weizhong; Chen, James J; Perkins, Roger; Wang, Yuping; Liu, Zhichao; Hong, Huixiao; Tong, Weida; Zou, Wen

    2016-05-13

    Next-generation sequencing (NGS) technologies have provided researchers with vast possibilities in various biological and biomedical research areas. Efficient data mining strategies are in high demand for large scale comparative and evolutional studies to be performed on the large amounts of data derived from NGS projects. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. We report a novel procedure to analyse NGS data using topic modeling. It consists of four major procedures: NGS data retrieval, preprocessing, topic modeling, and data mining using Latent Dirichlet Allocation (LDA) topic outputs. The NGS data set of the Salmonella enterica strains were used as a case study to show the workflow of this procedure. The perplexity measurement of the topic numbers and the convergence efficiencies of Gibbs sampling were calculated and discussed for achieving the best result from the proposed procedure. The output topics by LDA algorithms could be treated as features of Salmonella strains to accurately describe the genetic diversity of fliC gene in various serotypes. The results of a two-way hierarchical clustering and data matrix analysis on LDA-derived matrices successfully classified Salmonella serotypes based on the NGS data. The implementation of topic modeling in NGS data analysis procedure provides a new way to elucidate genetic information from NGS data, and identify the gene-phenotype relationships and biomarkers, especially in the era of biological and medical big data. The implementation of topic modeling in NGS data analysis provides a new way to elucidate genetic information from NGS data, and identify the gene-phenotype relationships and biomarkers, especially in the era of biological and medical big data.

  4. JOURNEYS ACROSS TERRITORIES: A COMPARATIVE ANALYSIS OF THE LITERARY AND CINEMATIC TEXTS OF EAT, PRAY, LOVE.

    OpenAIRE

    Meera Babu.

    2018-01-01

    Film and novel are two different forms of art which are closely connected to each other. Both film and novel can be seen as a form of representational arts which depends on established codes and conventions of language. The study attempts a comparative analysis of the memoir and the movie, Eat, Pray, Love. It focuses on the features of the book and the film, various changes that has been made when the memoir was adapted, the journey of the protagonist and the cultural interventions that are p...

  5. Text Mining.

    Science.gov (United States)

    Trybula, Walter J.

    1999-01-01

    Reviews the state of research in text mining, focusing on newer developments. The intent is to describe the disparate investigations currently included under the term text mining and provide a cohesive structure for these efforts. A summary of research identifies key organizations responsible for pushing the development of text mining. A section…

  6. NAP: The Network Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks.

    Science.gov (United States)

    Theodosiou, Theodosios; Efstathiou, Georgios; Papanikolaou, Nikolas; Kyrpides, Nikos C; Bagos, Pantelis G; Iliopoulos, Ioannis; Pavlopoulos, Georgios A

    2017-07-14

    Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .

  7. ANALYSIS OF MARKOV NETWORK WITH INCOMES, POSITIVE AND NEGATIVE MESSAGES

    Directory of Open Access Journals (Sweden)

    V. V. Naumenko

    2014-01-01

    Full Text Available Markov queuing network with income in transient regime is considered. It has positive and negative messages, which can be used in forecasting income of information and telecommunication systems and networks affected by viruses. Investigations are carried out in the cases when incomes from transitions between network states are deterministic functions dependent on states, or they are random variables with given mean values. In the last case it is assumed that all network systems operate in a high load mode. An example is given.

  8. Look Together: Analyzing Gaze Coordination with Epistemic Network Analysis

    Directory of Open Access Journals (Sweden)

    Sean eAndrist

    2015-07-01

    Full Text Available When conversing and collaborating in everyday situations, people naturally and interactively align their behaviors with each other across various communication channels, including speech, gesture, posture, and gaze. Having access to a partner's referential gaze behavior has been shown to be particularly important in achieving collaborative outcomes, but the process in which people's gaze behaviors unfold over the course of an interaction and become tightly coordinated is not well understood. In this paper, we present work to develop a deeper and more nuanced understanding of coordinated referential gaze in collaborating dyads. We recruited 13 dyads to participate in a collaborative sandwich-making task and used dual mobile eye tracking to synchronously record each participant's gaze behavior. We used a relatively new analysis technique—epistemic network analysis—to jointly model the gaze behaviors of both conversational participants. In this analysis, network nodes represent gaze targets for each participant, and edge strengths convey the likelihood of simultaneous gaze to the connected target nodes during a given time-slice. We divided collaborative task sequences into discrete phases to examine how the networks of shared gaze evolved over longer time windows. We conducted three separate analyses of the data to reveal (1 properties and patterns of how gaze coordination unfolds throughout an interaction sequence, (2 optimal time lags of gaze alignment within a dyad at different phases of the interaction, and (3 differences in gaze coordination patterns for interaction sequences that lead to breakdowns and repairs. In addition to contributing to the growing body of knowledge on the coordination of gaze behaviors in joint activities, this work has implications for the design of future technologies that engage in situated interactions with human users.

  9. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... devices in their costumers household e.g. heat pumps. With these smart services, utility companies can do load balancing on the grid by shifting load using resources the customers have. The problem investigated in this paper is what bandwidth require-ments can be expected when implementing such network...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...

  10. Stability analysis of impulsive parabolic complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinliang, E-mail: wangjinliang1984@yahoo.com.cn [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China); Wu Huaining [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China)

    2011-11-15

    Highlights: > Two impulsive parabolic complex network models are proposed. > The global exponential stability of impulsive parabolic complex networks are considered. > The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  11. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  12. Stability analysis of impulsive parabolic complex networks

    International Nuclear Information System (INIS)

    Wang Jinliang; Wu Huaining

    2011-01-01

    Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  13. Latent Space Approaches to Social Network Analysis

    National Research Council Canada - National Science Library

    Hoff, Peter D; Raftery, Adrian E; Handcock, Mark S

    2001-01-01

    .... In studies of social networks, recent emphasis has been placed on random graph models where the nodes usually represent individual social actors and the edges represent the presence of a specified...

  14. Social network analysis of sustainable transportation organizations.

    Science.gov (United States)

    2012-07-15

    Studying how organizations communicate with each other can provide important insights into the influence, and policy success of different types of organizations. This study examines the communication networks of 121 organizations promoting sustainabl...

  15. Network Analysis in Community Psychology: Looking Back, Looking Forward.

    Science.gov (United States)

    Neal, Zachary P; Neal, Jennifer Watling

    2017-09-01

    Network analysis holds promise for community psychology given the field's aim to understand the interplay between individuals and their social contexts. Indeed, because network analysis focuses explicitly on patterns of relationships between actors, its theories and methods are inherently extra-individual in nature and particularly well suited to characterizing social contexts. But, to what extent has community psychology taken advantage of this network analysis as a tool for capturing context? To answer these questions, this study provides a review of the use network analysis in articles published in American Journal of Community Psychology. Looking back, we describe and summarize the ways that network analysis has been employed in community psychology research to understand the range of ways community psychologists have found the technique helpful. Looking forward and paying particular attention to analytic issues identified in past applications, we provide some recommendations drawn from the network analysis literature to facilitate future applications of network analysis in community psychology. © 2017 The Authors. American Journal of Community Psychology published by Wiley Periodicals, Inc. on behalf of Society for Community Research and Action.

  16. Using Social Network Analysis to Investigate Positive EOL Communication.

    Science.gov (United States)

    Xu, Jiayun; Yang, Rumei; Wilson, Andrew; Reblin, Maija; Clayton, Margaret F; Ellington, Lee

    2018-04-30

    End of life (EOL) communication is a complex process involving the whole family and multiple care providers. Applications of analysis techniques that account for communication beyond the patient and patient/provider, will improve clinical understanding of EOL communication. To introduce the use of social network analysis to EOL communication data, and to provide an example of applying social network analysis to home hospice interactions. We provide a description of social network analysis using social network analysis to model communication patterns during home hospice nursing visits. We describe three social network attributes (i.e. magnitude, directionality, and reciprocity) in the expression of positive emotion among hospice nurses, family caregivers, and hospice cancer patients. Differences in communication structure by primary family caregiver gender and across time were also examined. Magnitude (frequency) in the expression of positive emotion occurred most often between nurses and caregivers or nurses and patients. Female caregivers directed more positive emotion to nurses, and nurses directed more positive emotion to other family caregivers when the primary family caregiver was male. Reciprocity (mutuality) in positive emotion declined towards day of death, but increased on day of actual patient death. There was variation in reciprocity by the type of positive emotion expressed. Our example demonstrates that social network analysis can be used to better understand the process of EOL communication. Social network analysis can be expanded to other areas of EOL research, such as EOL decision-making and health care teamwork. Copyright © 2018. Published by Elsevier Inc.

  17. Value Systems Alignment Analysis in Collaborative Networked Organizations Management

    OpenAIRE

    Patricia Macedo; Luis Camarinha-Matos

    2017-01-01

    The assessment of value systems alignment can play an important role in the formation and evolution of collaborative networks, contributing to reduce potential risks of collaboration. For this purpose, an assessment tool is proposed as part of a collaborative networks information system, supporting both the formation and evolution of long-term strategic alliances and goal-oriented networks. An implementation approach for value system alignment analysis is described, which is intended to assis...

  18. A cyberciege traffic analysis extension for teaching network security

    OpenAIRE

    Chang, Xuquan Stanley.; Chua, Kim Yong.

    2011-01-01

    CyberCIEGE is an interactive game simulating realistic scenarios that teaches the players Information Assurance (IA) concepts. The existing game scenarios only provide a high-level abstraction of the networked environment, e.g., nodes do not have Internet protocol (IP) addresses or belong to proper subnets, and there is no packet-level network simulation. This research explored endowing the game with network level traffic analysis, and implementing a game scenario to take advantage of this ne...

  19. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  20. Analysis and Comparison of Typical Models within Distribution Network Design

    DEFF Research Database (Denmark)

    Jørgensen, Hans Jacob; Larsen, Allan; Madsen, Oli B.G.

    This paper investigates the characteristics of typical optimisation models within Distribution Network Design. During the paper fourteen models known from the literature will be thoroughly analysed. Through this analysis a schematic approach to categorisation of distribution network design models...... for educational purposes. Furthermore, the paper can be seen as a practical introduction to network design modelling as well as a being an art manual or recipe when constructing such a model....