WorldWideScience

Sample records for network system investigation

  1. Simulated, Emulated, and Physical Investigative Analysis (SEPIA) of networked systems.

    Energy Technology Data Exchange (ETDEWEB)

    Burton, David P.; Van Leeuwen, Brian P.; McDonald, Michael James; Onunkwo, Uzoma A.; Tarman, Thomas David; Urias, Vincent E.

    2009-09-01

    This report describes recent progress made in developing and utilizing hybrid Simulated, Emulated, and Physical Investigative Analysis (SEPIA) environments. Many organizations require advanced tools to analyze their information system's security, reliability, and resilience against cyber attack. Today's security analysis utilize real systems such as computers, network routers and other network equipment, computer emulations (e.g., virtual machines) and simulation models separately to analyze interplay between threats and safeguards. In contrast, this work developed new methods to combine these three approaches to provide integrated hybrid SEPIA environments. Our SEPIA environments enable an analyst to rapidly configure hybrid environments to pass network traffic and perform, from the outside, like real networks. This provides higher fidelity representations of key network nodes while still leveraging the scalability and cost advantages of simulation tools. The result is to rapidly produce large yet relatively low-cost multi-fidelity SEPIA networks of computers and routers that let analysts quickly investigate threats and test protection approaches.

  2. Investigation of the network delay on Profibus-DP based network

    OpenAIRE

    Yılmaz, C.; Gürdal, O.; Sayan, H.H.

    2008-01-01

    The mathematical model of the network-induced delay control systems (NDCS) is given. Also the role of the NDCS’s components such as controller, sensor and network environment on the network-induced delay are included in the mathematical model of the system. The network delay is investigated on Profibus-DP based network application and experimental results obtained are presented graphically. The experimental results obtained show that the network induced delay is randomly changed according to ...

  3. Development of Network-type Archaeological Investigation System

    Science.gov (United States)

    Chiba, F.; Yokokoyama, S.; Kaneda, A.; Konno, K.

    2015-08-01

    The Great East Japan Earthquake on March 11, 2011 is said to be a once-in-1000-year catastrophic quake. The Tsunami triggered by the earthquake destroyed broad coastal areas in northeast Japan. As recovery from the earthquake proceeds, the demand for new road construction, housing hill development, and residential construction is rapidly increasing. Culture plays a critical role in the district's recovery. For that reason, before development, cultural properties in the corresponding districts must be urgently investigated. This is a must, although balancing cultural recovery with rapid economic recovery is no easy task. With this in mind, we have developed a new system focusing on speedy archaeological investigation and adequate documentation. The authors reexamined the existing investigation process to categorize tasks into two types: those that must be done only at archaeological sites (site A) and ones available at other places (site B). We then formulated a scheme where the tasks on both sites are performed simultaneously in parallel over the network. Experiments are ongoing. This presentation reports the process and issues of our research and development.

  4. A new approach in development of data flow control and investigation system for computer networks

    International Nuclear Information System (INIS)

    Frolov, I.; Vaguine, A.; Silin, A.

    1992-01-01

    This paper describes a new approach in development of data flow control and investigation system for computer networks. This approach was developed and applied in the Moscow Radiotechnical Institute for control and investigations of Institute computer network. It allowed us to solve our network current problems successfully. Description of our approach is represented below along with the most interesting results of our work. (author)

  5. Criminal Network Investigation: Processes, Tools, and Techniques

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenqvist

    important challenge for criminal network investigation, despite the massive attention it receives from research and media. Challenges such as the investigation process, the context of the investigation, human factors such as thinking and creativity, and political decisions and legal laws are all challenges...... that could mean the success or failure of criminal network investigations. % include commission reports as indications of process related problems .. to "play a little politics" !! Information, process, and human factors, are challenges we find to be addressable by software system support. Based on those......Criminal network investigations such as police investigations, intelligence analysis, and investigative journalism involve a range of complex knowledge management processes and tasks. Criminal network investigators collect, process, and analyze information related to a specific target to create...

  6. Network Traffic Features for Anomaly Detection in Specific Industrial Control System Network

    Directory of Open Access Journals (Sweden)

    Matti Mantere

    2013-09-01

    Full Text Available The deterministic and restricted nature of industrial control system networks sets them apart from more open networks, such as local area networks in office environments. This improves the usability of network security, monitoring approaches that would be less feasible in more open environments. One of such approaches is machine learning based anomaly detection. Without proper customization for the special requirements of the industrial control system network environment, many existing anomaly or misuse detection systems will perform sub-optimally. A machine learning based approach could reduce the amount of manual customization required for different industrial control system networks. In this paper we analyze a possible set of features to be used in a machine learning based anomaly detection system in the real world industrial control system network environment under investigation. The network under investigation is represented by architectural drawing and results derived from network trace analysis. The network trace is captured from a live running industrial process control network and includes both control data and the data flowing between the control network and the office network. We limit the investigation to the IP traffic in the traces.

  7. Networks in biological systems: An investigation of the Gene Ontology as an evolving network

    International Nuclear Information System (INIS)

    Coronnello, C; Tumminello, M; Micciche, S; Mantegna, R.N.

    2009-01-01

    Many biological systems can be described as networks where different elements interact, in order to perform biological processes. We introduce a network associated with the Gene Ontology. Specifically, we construct a correlation-based network where the vertices are the terms of the Gene Ontology and the link between each two terms is weighted on the basis of the number of genes that they have in common. We analyze a filtered network obtained from the correlation-based network and we characterize its evolution over different releases of the Gene Ontology.

  8. A seismic network to investigate the sedimentary hosted hydrothermal Lusi system

    Science.gov (United States)

    Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono

    2016-04-01

    The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.

  9. Actor Network Theory Approach and its Application in Investigating Agricultural Climate Information System

    Directory of Open Access Journals (Sweden)

    Maryam Sharifzadeh

    2013-03-01

    Full Text Available Actor network theory as a qualitative approach to study complex social factors and process of socio-technical interaction provides new concepts and ideas to understand socio-technical nature of information systems. From the actor network theory viewpoint, agricultural climate information system is a network consisting of actors, actions and information related processes (production, transformation, storage, retrieval, integration, diffusion and utilization, control and management, and system mechanisms (interfaces and networks. Analysis of such systemsembody the identification of basic components and structure of the system (nodes –thedifferent sources of information production, extension, and users, and the understanding of how successfully the system works (interaction and links – in order to promote climate knowledge content and improve system performance to reach agricultural development. The present research attempted to introduce actor network theory as research framework based on network view of agricultural climate information system.

  10. Networks of Zeeman catastrophe machines for the investigation of complex systems

    International Nuclear Information System (INIS)

    Nagy, Péter; Tasnádi, Péter

    2014-01-01

    The investigation of chaotic motion and cooperative systems presents a great opportunity to involve modern physics into the basic course of mechanics taught to BSc-level students. In our previous paper (2014 Eur. J. Phys. 35 015018), it was demonstrated that a Zeeman machine can be a versatile and motivating tool for students to gain introductory knowledge about chaotic motion via interactive simulations. Although the Zeeman machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also very interesting and show typical chaotic features. In this paper, we present a novel construction consisting of Zeeman machines linked into a network. Although Zeeman networks can be built with almost arbitrary topology, our discussion is restricted to a system where Zeeman machines are arranged in a two-dimensional periodical lattice and the angular variables of the machines are limited to discrete values only. It will be shown that the Zeeman-crystal is appropriate for studying the properties of a broad range of complex systems. Using NetLogo simulations (second- and first-order) phase transitions, its ferromagnetic- and anti-ferromagnetic-type behaviour is demonstrated. A limiting case of the theoretical model of Zeeman-crystal leads to a model that is analogous to the Potts clock model used frequently in statistical physics. The present paper is organically linked to our website (http://csodafizika.hu/zeeman) where downloadable simulations, which are discussed in the paper, can be found. (paper)

  11. Automatic generation of investigator bibliographies for institutional research networking systems.

    Science.gov (United States)

    Johnson, Stephen B; Bales, Michael E; Dine, Daniel; Bakken, Suzanne; Albert, Paul J; Weng, Chunhua

    2014-10-01

    Publications are a key data source for investigator profiles and research networking systems. We developed ReCiter, an algorithm that automatically extracts bibliographies from PubMed using institutional information about the target investigators. ReCiter executes a broad query against PubMed, groups the results into clusters that appear to constitute distinct author identities and selects the cluster that best matches the target investigator. Using information about investigators from one of our institutions, we compared ReCiter results to queries based on author name and institution and to citations extracted manually from the Scopus database. Five judges created a gold standard using citations of a random sample of 200 investigators. About half of the 10,471 potential investigators had no matching citations in PubMed, and about 45% had fewer than 70 citations. Interrater agreement (Fleiss' kappa) for the gold standard was 0.81. Scopus achieved the best recall (sensitivity) of 0.81, while name-based queries had 0.78 and ReCiter had 0.69. ReCiter attained the best precision (positive predictive value) of 0.93 while Scopus had 0.85 and name-based queries had 0.31. ReCiter accesses the most current citation data, uses limited computational resources and minimizes manual entry by investigators. Generation of bibliographies using named-based queries will not yield high accuracy. Proprietary databases can perform well but requite manual effort. Automated generation with higher recall is possible but requires additional knowledge about investigators. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    Directory of Open Access Journals (Sweden)

    Kim Hyun

    2011-12-01

    Full Text Available Abstract Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  13. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  14. Pinning control of complex networked systems synchronization, consensus and flocking of networked systems via pinning

    CERN Document Server

    Su, Housheng

    2013-01-01

    Synchronization, consensus and flocking are ubiquitous requirements in networked systems. Pinning Control of Complex Networked Systems investigates these requirements by using the pinning control strategy, which aims to control the whole dynamical network with huge numbers of nodes by imposing controllers for only a fraction of the nodes. As the direct control of every node in a dynamical network with huge numbers of nodes might be impossible or unnecessary, it’s then very important to use the pinning control strategy for the synchronization of complex dynamical networks. The research on pinning control strategy in consensus and flocking of multi-agent systems can not only help us to better understand the mechanisms of natural collective phenomena, but also benefit applications in mobile sensor/robot networks. This book offers a valuable resource for researchers and engineers working in the fields of control theory and control engineering.   Housheng Su is an Associate Professor at the Department of Contro...

  15. Investigations on Incipient Fault Diagnosis of Power Transformer Using Neural Networks and Adaptive Neurofuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Nandkumar Wagh

    2014-01-01

    Full Text Available Continuity of power supply is of utmost importance to the consumers and is only possible by coordination and reliable operation of power system components. Power transformer is such a prime equipment of the transmission and distribution system and needs to be continuously monitored for its well-being. Since ratio methods cannot provide correct diagnosis due to the borderline problems and the probability of existence of multiple faults, artificial intelligence could be the best approach. Dissolved gas analysis (DGA interpretation may provide an insight into the developing incipient faults and is adopted as the preliminary diagnosis tool. In the proposed work, a comparison of the diagnosis ability of backpropagation (BP, radial basis function (RBF neural network, and adaptive neurofuzzy inference system (ANFIS has been investigated and the diagnosis results in terms of error measure, accuracy, network training time, and number of iterations are presented.

  16. Investigating the effectiveness of many-core network processors for high performance cyber protection systems. Part I, FY2011.

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Kyle Bruce; Naegle, John Hunt; Wright, Brian J.; Benner, Robert E., Jr.; Shelburg, Jeffrey Scott; Pearson, David Benjamin; Johnson, Joshua Alan; Onunkwo, Uzoma A.; Zage, David John; Patel, Jay S.

    2011-09-01

    This report documents our first year efforts to address the use of many-core processors for high performance cyber protection. As the demands grow for higher bandwidth (beyond 1 Gbits/sec) on network connections, the need to provide faster and more efficient solution to cyber security grows. Fortunately, in recent years, the development of many-core network processors have seen increased interest. Prior working experiences with many-core processors have led us to investigate its effectiveness for cyber protection tools, with particular emphasis on high performance firewalls. Although advanced algorithms for smarter cyber protection of high-speed network traffic are being developed, these advanced analysis techniques require significantly more computational capabilities than static techniques. Moreover, many locations where cyber protections are deployed have limited power, space and cooling resources. This makes the use of traditionally large computing systems impractical for the front-end systems that process large network streams; hence, the drive for this study which could potentially yield a highly reconfigurable and rapidly scalable solution.

  17. Network-Aware DHT-Based P2P Systems

    Science.gov (United States)

    Fayçal, Marguerite; Serhrouchni, Ahmed

    P2P networks lay over existing IP networks and infrastructure. This chapter investigates the relation between both layers, details the motivations for network awareness in P2P systems, and elucidates the requirements P2P systems have to meet for efficient network awareness. Since new P2P systems are mostly based on DHTs, we also present and analyse DHT-based architectures. And after a brief presentation of different existing network-awareness solutions, the chapter goes on effective cooperation between P2P traffic and network providers' business agreements, and introduces emerging DHT-based P2P systems that are network aware through a semantic defined for resource sharing. These new systems ensure also a certain context-awareness. So, they are analyzed and compared before an open end on prospects of network awareness in P2P systems.

  18. Building gene co-expression networks using transcriptomics data for systems biology investigations

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Watson-Haigh, Nathan S.

    2012-01-01

    Gene co-expression networks (GCN), built using high-throughput gene expression data are fundamental aspects of systems biology. The main aims of this study were to compare two popular approaches to building and analysing GCN. We use real ovine microarray transcriptomics datasets representing four......) is connected within a network. The two GCN construction methods used were, Weighted Gene Co-expression Network Analysis (WGCNA) and Partial Correlation and Information Theory (PCIT) methods. Nodes were ranked based on their connectivity measures in each of the four different networks created by WGCNA and PCIT...... (with > 20000 genes) access to large computer clusters, particularly those with larger amounts of shared memory is recommended....

  19. An automatic method to generate domain-specific investigator networks using PubMed abstracts

    Directory of Open Access Journals (Sweden)

    Gwinn Marta

    2007-06-01

    Full Text Available Abstract Background Collaboration among investigators has become critical to scientific research. This includes ad hoc collaboration established through personal contacts as well as formal consortia established by funding agencies. Continued growth in online resources for scientific research and communication has promoted the development of highly networked research communities. Extending these networks globally requires identifying additional investigators in a given domain, profiling their research interests, and collecting current contact information. We present a novel strategy for building investigator networks dynamically and producing detailed investigator profiles using data available in PubMed abstracts. Results We developed a novel strategy to obtain detailed investigator information by automatically parsing the affiliation string in PubMed records. We illustrated the results by using a published literature database in human genome epidemiology (HuGE Pub Lit as a test case. Our parsing strategy extracted country information from 92.1% of the affiliation strings in a random sample of PubMed records and in 97.0% of HuGE records, with accuracies of 94.0% and 91.0%, respectively. Institution information was parsed from 91.3% of the general PubMed records (accuracy 86.8% and from 94.2% of HuGE PubMed records (accuracy 87.0. We demonstrated the application of our approach to dynamic creation of investigator networks by creating a prototype information system containing a large database of PubMed abstracts relevant to human genome epidemiology (HuGE Pub Lit, indexed using PubMed medical subject headings converted to Unified Medical Language System concepts. Our method was able to identify 70–90% of the investigators/collaborators in three different human genetics fields; it also successfully identified 9 of 10 genetics investigators within the PREBIC network, an existing preterm birth research network. Conclusion We successfully created a

  20. An automatic method to generate domain-specific investigator networks using PubMed abstracts

    Science.gov (United States)

    Yu, Wei; Yesupriya, Ajay; Wulf, Anja; Qu, Junfeng; Gwinn, Marta; Khoury, Muin J

    2007-01-01

    Background Collaboration among investigators has become critical to scientific research. This includes ad hoc collaboration established through personal contacts as well as formal consortia established by funding agencies. Continued growth in online resources for scientific research and communication has promoted the development of highly networked research communities. Extending these networks globally requires identifying additional investigators in a given domain, profiling their research interests, and collecting current contact information. We present a novel strategy for building investigator networks dynamically and producing detailed investigator profiles using data available in PubMed abstracts. Results We developed a novel strategy to obtain detailed investigator information by automatically parsing the affiliation string in PubMed records. We illustrated the results by using a published literature database in human genome epidemiology (HuGE Pub Lit) as a test case. Our parsing strategy extracted country information from 92.1% of the affiliation strings in a random sample of PubMed records and in 97.0% of HuGE records, with accuracies of 94.0% and 91.0%, respectively. Institution information was parsed from 91.3% of the general PubMed records (accuracy 86.8%) and from 94.2% of HuGE PubMed records (accuracy 87.0). We demonstrated the application of our approach to dynamic creation of investigator networks by creating a prototype information system containing a large database of PubMed abstracts relevant to human genome epidemiology (HuGE Pub Lit), indexed using PubMed medical subject headings converted to Unified Medical Language System concepts. Our method was able to identify 70–90% of the investigators/collaborators in three different human genetics fields; it also successfully identified 9 of 10 genetics investigators within the PREBIC network, an existing preterm birth research network. Conclusion We successfully created a web-based prototype

  1. A network-based biomarker approach for molecular investigation and diagnosis of lung cancer

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2011-01-01

    Full Text Available Abstract Background Lung cancer is the leading cause of cancer deaths worldwide. Many studies have investigated the carcinogenic process and identified the biomarkers for signature classification. However, based on the research dedicated to this field, there is no highly sensitive network-based method for carcinogenesis characterization and diagnosis from the systems perspective. Methods In this study, a systems biology approach integrating microarray gene expression profiles and protein-protein interaction information was proposed to develop a network-based biomarker for molecular investigation into the network mechanism of lung carcinogenesis and diagnosis of lung cancer. The network-based biomarker consists of two protein association networks constructed for cancer samples and non-cancer samples. Results Based on the network-based biomarker, a total of 40 significant proteins in lung carcinogenesis were identified with carcinogenesis relevance values (CRVs. In addition, the network-based biomarker, acting as the screening test, proved to be effective in diagnosing smokers with signs of lung cancer. Conclusions A network-based biomarker using constructed protein association networks is a useful tool to highlight the pathways and mechanisms of the lung carcinogenic process and, more importantly, provides potential therapeutic targets to combat cancer.

  2. Banknote recognition: investigating processing and cognition framework using competitive neural network.

    Science.gov (United States)

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-02-01

    Humans are apt at recognizing patterns and discovering even abstract features which are sometimes embedded therein. Our ability to use the banknotes in circulation for business transactions lies in the effortlessness with which we can recognize the different banknote denominations after seeing them over a period of time. More significant is that we can usually recognize these banknote denominations irrespective of what parts of the banknotes are exposed to us visually. Furthermore, our recognition ability is largely unaffected even when these banknotes are partially occluded. In a similar analogy, the robustness of intelligent systems to perform the task of banknote recognition should not collapse under some minimum level of partial occlusion. Artificial neural networks are intelligent systems which from inception have taken many important cues related to structure and learning rules from the human nervous/cognition processing system. Likewise, it has been shown that advances in artificial neural network simulations can help us understand the human nervous/cognition system even furthermore. In this paper, we investigate three cognition hypothetical frameworks to vision-based recognition of banknote denominations using competitive neural networks. In order to make the task more challenging and stress-test the investigated hypotheses, we also consider the recognition of occluded banknotes. The implemented hypothetical systems are tasked to perform fast recognition of banknotes with up to 75 % occlusion. The investigated hypothetical systems are trained on Nigeria's Naira banknotes and several experiments are performed to demonstrate the findings presented within this work.

  3. Network Physiology: How Organ Systems Dynamically Interact

    Science.gov (United States)

    Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073

  4. Network Physiology: How Organ Systems Dynamically Interact.

    Science.gov (United States)

    Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  5. Complex systems and networks dynamics, controls and applications

    CERN Document Server

    Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu

    2016-01-01

    This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...

  6. A game theoretic investigation of deception in network security

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Thomas E.; Grosu, Daniel

    2010-12-03

    We perform a game theoretic investigation of the effects of deception on the interactions between an attacker and a defender of a computer network. The defender can employ camouflage by either disguising a normal system as a honeypot or by disguising a honeypot as a normal system. We model the interactions between defender and attacker using a signaling game, a non-cooperative two player dynamic game of incomplete information. For this model, we determine which strategies admit perfect Bayesian equilibria. These equilibria are refined Nash equilibria in which neither the defender nor the attacker will unilaterally choose to deviate from their strategies. Finally, we discuss the benefits of employing deceptive equilibrium strategies in the defense of a computer network.

  7. How does language change as a lexical network? An investigation based on written Chinese word co-occurrence networks

    Science.gov (United States)

    Chen, Heng; Chen, Xinying

    2018-01-01

    Language is a complex adaptive system, but how does it change? For investigating this process, four diachronic Chinese word co-occurrence networks have been built based on texts that were written during the last 2,000 years. By comparing the network indicators that are associated with the hierarchical features in language networks, we learn that the hierarchy of Chinese lexical networks has indeed evolved over time at three different levels. The connections of words at the micro level are continually weakening; the number of words in the meso-level communities has increased significantly; and the network is expanding at the macro level. This means that more and more words tend to be connected to medium-central words and form different communities. Meanwhile, fewer high-central words link these communities into a highly efficient small-world network. Understanding this process may be crucial for understanding the increasing structural complexity of the language system. PMID:29489837

  8. A Gamma Memory Neural Network for System Identification

    Science.gov (United States)

    Motter, Mark A.; Principe, Jose C.

    1992-01-01

    A gamma neural network topology is investigated for a system identification application. A discrete gamma memory structure is used in the input layer, providing delayed values of both the control inputs and the network output to the input layer. The discrete gamma memory structure implements a tapped dispersive delay line, with the amount of dispersion regulated by a single, adaptable parameter. The network is trained using static back propagation, but captures significant features of the system dynamics. The system dynamics identified with the network are the Mach number dynamics of the 16 Foot Transonic Tunnel at NASA Langley Research Center, Hampton, Virginia. The training data spans an operating range of Mach numbers from 0.4 to 1.3.

  9. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  10. Synchronization in node of complex networks consist of complex chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qiang, E-mail: qiangweibeihua@163.com [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China); Xie, Cheng-jun [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Liu, Hong-jun [School of Information Engineering, Weifang Vocational College, Weifang, 261041 (China); Li, Yan-hui [The Library, Weifang Vocational College, Weifang, 261041 (China)

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  11. A Case for Open Network Health Systems: Systems as Networks in Public Mental Health.

    Science.gov (United States)

    Rhodes, Michael Grant; de Vries, Marten W

    2017-01-08

    Increases in incidents involving so-called confused persons have brought attention to the potential costs of recent changes to public mental health (PMH) services in the Netherlands. Decentralized under the (Community) Participation Act (2014), local governments must find resources to compensate for reduced central funding to such services or "innovate." But innovation, even when pressure for change is intense, is difficult. This perspective paper describes experience during and after an investigation into a particularly violent incident and murder. The aim was to provide recommendations to improve the functioning of local PMH services. The investigation concluded that no specific failure by an individual professional or service provider facility led to the murder. Instead, also as a result of the Participation Act that severed communication lines between individuals and organizations, information sharing failures were likely to have reduced system level capacity to identify risks. The methods and analytical frameworks employed to reach this conclusion, also lead to discussion as to the plausibility of an unconventional solution. If improving communication is the primary problem, non-hierarchical information, and organizational networks arise as possible and innovative system solutions. The proposal for debate is that traditional "health system" definitions, literature and narratives, and operating assumptions in public (mental) health are 'locked in' constraining technical and organization innovations. If we view a "health system" as an adaptive system of economic and social "networks," it becomes clear that the current orthodox solution, the so-called integrated health system, typically results in a "centralized hierarchical" or "tree" network. An overlooked alternative that breaks out of the established policy narratives is the view of a 'health systems' as a non-hierarchical organizational structure or 'Open Network.' In turn, this opens new technological and

  12. Experimental investigations of overvoltages in neutral isolated networks

    Energy Technology Data Exchange (ETDEWEB)

    Vukelja, P I; Naumov, R M; Vucinic, M M; Budisin, P B [Electrotechnicki Inst. ' Nikola Tesla' , Belgrade (Yugoslavia)

    1993-09-01

    For more than a decade, the Nikola Tesla Institute has worked intensively on experimental investigations of transient voltages and currents in neutral isolated networks, usually at 6 kV. The paper presents the results of investigations of overvoltages at the instant of appearance of an earth fault and during its interruption, the earth-fault currents and overvoltages during ferroresonance. Investigations were performed on cable station service networks in hydro- and thermal-power plants, industrial and similar installations in Yugoslavia. On the basis of these investigations, some measures are suggested for improving the reliability of operation of neutral isolated networks. (author)

  13. Network operating system

    Science.gov (United States)

    1985-01-01

    Long-term and short-term objectives for the development of a network operating system for the Space Station are stated. The short-term objective is to develop a prototype network operating system for a 100 megabit/second fiber optic data bus. The long-term objective is to establish guidelines for writing a detailed specification for a Space Station network operating system. Major milestones are noted. Information is given in outline form.

  14. Investigating physics learning with layered student interaction networks

    DEFF Research Database (Denmark)

    Bruun, Jesper; Traxler, Adrienne

    Centrality in student interaction networks (SINs) can be linked to variables like grades [1], persistence [2], and participation [3]. Recent efforts in the field of network science have been done to investigate layered - or multiplex - networks as mathematical objects [4]. These networks can be e......, this study investigates how target entropy [5,1] and pagerank [6,7] are affected when we take time and modes of interaction into account. We present our preliminary models and results and outline our future work in this area....

  15. A Case for Open Network Health Systems: Systems as Networks in Public Mental Health

    Directory of Open Access Journals (Sweden)

    Michael Grant Rhodes

    2017-03-01

    Full Text Available Increases in incidents involving so-called confused persons have brought attention to the potential costs of recent changes to public mental health (PMH services in the Netherlands. Decentralized under the (Community Participation Act (2014, local governments must find resources to compensate for reduced central funding to such services or “innovate.” But innovation, even when pressure for change is intense, is difficult. This perspective paper describes experience during and after an investigation into a particularly violent incident and murder. The aim was to provide recommendations to improve the functioning of local PMH services. The investigation concluded that no specific failure by an individual professional or service provider facility led to the murder. Instead, also as a result of the Participation Act that severed communication lines between individuals and organizations, information sharing failures were likely to have reduced system level capacity to identify risks. The methods and analytical frameworks employed to reach this conclusion, also lead to discussion as to the plausibility of an unconventional solution. If improving communication is the primary problem, non-hierarchical information, and organizational networks arise as possible and innovative system solutions. The proposal for debate is that traditional “health system” definitions, literature and narratives, and operating assumptions in public (mental health are ‘locked in’ constraining technical and organization innovations. If we view a “health system” as an adaptive system of economic and social “networks,” it becomes clear that the current orthodox solution, the so-called integrated health system, typically results in a “centralized hierarchical” or “tree” network. An overlooked alternative that breaks out of the established policy narratives is the view of a ‘health systems’ as a non-hierarchical organizational structure or

  16. Experiments with arbitrary networks in time-multiplexed delay systems

    Science.gov (United States)

    Hart, Joseph D.; Schmadel, Don C.; Murphy, Thomas E.; Roy, Rajarshi

    2017-12-01

    We report a new experimental approach using an optoelectronic feedback loop to investigate the dynamics of oscillators coupled on large complex networks with arbitrary topology. Our implementation is based on a single optoelectronic feedback loop with time delays. We use the space-time interpretation of systems with time delay to create large networks of coupled maps. Others have performed similar experiments using high-pass filters to implement the coupling; this restricts the network topology to the coupling of only a few nearest neighbors. In our experiment, the time delays and coupling are implemented on a field-programmable gate array, allowing the creation of networks with arbitrary coupling topology. This system has many advantages: the network nodes are truly identical, the network is easily reconfigurable, and the network dynamics occur at high speeds. We use this system to study cluster synchronization and chimera states in both small and large networks of different topologies.

  17. Evolution of Linux operating system network

    Science.gov (United States)

    Xiao, Guanping; Zheng, Zheng; Wang, Haoqin

    2017-01-01

    Linux operating system (LOS) is a sophisticated man-made system and one of the most ubiquitous operating systems. However, there is little research on the structure and functionality evolution of LOS from the prospective of networks. In this paper, we investigate the evolution of the LOS network. 62 major releases of LOS ranging from versions 1.0 to 4.1 are modeled as directed networks in which functions are denoted by nodes and function calls are denoted by edges. It is found that the size of the LOS network grows almost linearly, while clustering coefficient monotonically decays. The degree distributions are almost the same: the out-degree follows an exponential distribution while both in-degree and undirected degree follow power-law distributions. We further explore the functionality evolution of the LOS network. It is observed that the evolution of functional modules is shown as a sequence of seven events (changes) succeeding each other, including continuing, growth, contraction, birth, splitting, death and merging events. By means of a statistical analysis of these events in the top 4 largest components (i.e., arch, drivers, fs and net), it is shown that continuing, growth and contraction events occupy more than 95% events. Our work exemplifies a better understanding and describing of the dynamics of LOS evolution.

  18. Network SCADA System

    International Nuclear Information System (INIS)

    Milivojevic, Dragan R.; Tasic, Visa; Karabasevic, Dejan

    2003-01-01

    Copper Institute, Industrial Informatics department, is developing and applying network real time process monitoring and control systems. Some of these systems are already in use. The paper presents some hardware and software general remarks and performances, with special regard to communication sub-systems and network possibilities. (Author)

  19. System Design for Nano-Network Communications

    Science.gov (United States)

    ShahMohammadian, Hoda

    The potential applications of nanotechnology in a wide range of areas necessities nano-networking research. Nano-networking is a new type of networking which has emerged by applying nanotechnology to communication theory. Therefore, this dissertation presents a framework for physical layer communications in a nano-network and addresses some of the pressing unsolved challenges in designing a molecular communication system. The contribution of this dissertation is proposing well-justified models for signal propagation, noise sources, optimum receiver design and synchronization in molecular communication channels. The design of any communication system is primarily based on the signal propagation channel and noise models. Using the Brownian motion and advection molecular statistics, separate signal propagation and noise models are presented for diffusion-based and flow-based molecular communication channels. It is shown that the corrupting noise of molecular channels is uncorrelated and non-stationary with a signal dependent magnitude. The next key component of any communication system is the reception and detection process. This dissertation provides a detailed analysis of the effect of the ligand-receptor binding mechanism on the received signal, and develops the first optimal receiver design for molecular communications. The bit error rate performance of the proposed receiver is evaluated and the impact of medium motion on the receiver performance is investigated. Another important feature of any communication system is synchronization. In this dissertation, the first blind synchronization algorithm is presented for the molecular communication channels. The proposed algorithm uses a non-decision directed maximum likelihood criterion for estimating the channel delay. The Cramer-Rao lower bound is also derived and the performance of the proposed synchronization algorithm is evaluated by investigating its mean square error.

  20. Parameter estimation in space systems using recurrent neural networks

    Science.gov (United States)

    Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.

    1991-01-01

    The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.

  1. Computer network defense system

    Science.gov (United States)

    Urias, Vincent; Stout, William M. S.; Loverro, Caleb

    2017-08-22

    A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves network connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.

  2. Summer School Mathematical Foundations of Complex Networked Information Systems

    CERN Document Server

    Fosson, Sophie; Ravazzi, Chiara

    2015-01-01

    Introducing the reader to the mathematics beyond complex networked systems, these lecture notes investigate graph theory, graphical models, and methods from statistical physics. Complex networked systems play a fundamental role in our society, both in everyday life and in scientific research, with applications ranging from physics and biology to economics and finance. The book is self-contained, and requires only an undergraduate mathematical background.

  3. Self-organization of complex networks as a dynamical system.

    Science.gov (United States)

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  4. The evolving network structure of US airline system during 1990-2010

    Science.gov (United States)

    Lin, Jingyi; Ban, Yifang

    2014-09-01

    This paper analyzes the growth and evolution of topological features of the US airline network over a 20-year period. It captures the change in the network system from different dimensions of complex networks such as centrality distribution and various structural properties of the network over time. We first illustrate the results of a set of measures, including degree, strength, betweenness centrality, and clustering structure. The geographic features of airport systems, spatial distance and network efficiency are also discussed in this section. In order to further capture the dynamics of the system, this paper also explores the correlation between different measures, and investigates various interactions inside the network. Overall this study offers a novel approach to understanding the growth and evolution of real physical networks.

  5. The APS control system network

    International Nuclear Information System (INIS)

    Sidorowicz, K.V.; McDowell, W.P.

    1995-01-01

    The APS accelerator control system is a distributed system consisting of operator interfaces, a network, and computer-controlled interfaces to hardware. This implementation of a control system has come to be called the open-quotes Standard Model.close quotes The operator interface is a UNDC-based workstation with an X-windows graphical user interface. The workstation may be located at any point on the facility network and maintain full functionality. The function of the network is to provide a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system. The crate or input/output controller (IOC) provides direct control and input/output interfaces for each accelerator subsystem. The network is an integral part of all modem control systems and network performance will determine many characteristics of a control system. This paper will describe the overall APS network and examine the APS control system network in detail. Metrics are provided on the performance of the system under various conditions

  6. Mechanisms of protection of information in computer networks and systems

    Directory of Open Access Journals (Sweden)

    Sergey Petrovich Evseev

    2011-10-01

    Full Text Available Protocols of information protection in computer networks and systems are investigated. The basic types of threats of infringement of the protection arising from the use of computer networks are classified. The basic mechanisms, services and variants of realization of cryptosystems for maintaining authentication, integrity and confidentiality of transmitted information are examined. Their advantages and drawbacks are described. Perspective directions of development of cryptographic transformations for the maintenance of information protection in computer networks and systems are defined and analyzed.

  7. Promoting Social Network Awareness: A Social Network Monitoring System

    Science.gov (United States)

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  8. Triangulation positioning system network

    Directory of Open Access Journals (Sweden)

    Sfendourakis Marios

    2017-01-01

    Full Text Available This paper presents ongoing work on localization and positioning through triangulation procedure for a Fixed Sensors Network - FSN.The FSN has to work as a system.As the triangulation problem becomes high complicated in a case with large numbers of sensors and transmitters, an adequate grid topology is needed in order to tackle the detection complexity.For that reason a Network grid topology is presented and areas that are problematic and need further analysis are analyzed.The Network System in order to deal with problems of saturation and False Triangulations - FTRNs will have to find adequate methods in every sub-area of the Area Of Interest - AOI.Also, concepts like Sensor blindness and overall Network blindness, are presented. All these concepts affect the Network detection rate and its performance and ought to be considered in a way that the network overall performance won’t be degraded.Network performance should be monitored contentiously, with right algorithms and methods.It is also shown that as the number of TRNs and FTRNs is increased Detection Complexity - DC is increased.It is hoped that with further research all the characteristics of a triangulation system network for positioning will be gained and the system will be able to perform autonomously with a high detection rate.

  9. Stability and stabilisation of a class of networked dynamic systems

    Science.gov (United States)

    Liu, H. B.; Wang, D. Q.

    2018-04-01

    We investigate the stability and stabilisation of a linear time invariant networked heterogeneous system with arbitrarily connected subsystems. A new linear matrix inequality based sufficient and necessary condition for the stability is derived, based on which the stabilisation is provided. The obtained conditions efficiently utilise the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, a sufficient condition only dependent on each individual subsystem is also presented for the stabilisation of the networked systems with a large scale. Numerical simulations show that these conditions are computationally valid in the analysis and synthesis of a large-scale networked system.

  10. Fiber-wireless convergence in next-generation communication networks systems, architectures, and management

    CERN Document Server

    Chang, Gee-Kung; Ellinas, Georgios

    2017-01-01

    This book investigates new enabling technologies for Fi-Wi convergence. The editors discuss Fi-Wi technologies at the three major network levels involved in the path towards convergence: system level, network architecture level, and network management level. The main topics will be: a. At system level: Radio over Fiber (digitalized vs. analogic, standardization, E-band and beyond) and 5G wireless technologies; b. Network architecture level: NGPON, WDM-PON, BBU Hotelling, Cloud Radio Access Networks (C-RANs), HetNets. c. Network management level: SDN for convergence, Next-generation Point-of-Presence, Wi-Fi LTE Handover, Cooperative MultiPoint. • Addresses the Fi-Wi convergence issues at three different levels, namely at the system level, network architecture level, and network management level • Provides approaches in communication systems, network architecture, and management that are expected to steer the evolution towards fiber-wireless convergence • Contributions from leading experts in the field of...

  11. Final report for the network authentication investigation and pilot.

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, John M.; Dautenhahn, Nathan; Miller, Marc M.; Wiener, Dallas J; Witzke, Edward L.

    2006-11-01

    New network based authentication mechanisms are beginning to be implemented in industry. This project investigated different authentication technologies to see if and how Sandia might benefit from them. It also investigated how these mechanisms can integrate with the Sandia Two-Factor Authentication Project. The results of these investigations and a network authentication path forward strategy are documented in this report.

  12. Investigation of the properties of fully reacted unstoichiometric polydimethylsiloxane networks and their extracted network fractions

    DEFF Research Database (Denmark)

    Frankær, Sarah Maria Grundahl; Jensen, Mette Krog; Bejenariu, Anca Gabriela

    2012-01-01

    We investigated the linear dynamic response of a series of fully reacted unstoichiometric polydimethylsiloxane (PDMS) networks and of the two corresponding network fractions namely the sol and the washed network. The sol and the washed network were separated by a simple extraction process. This way...

  13. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    Science.gov (United States)

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  14. Application of neural networks in CRM systems

    Directory of Open Access Journals (Sweden)

    Bojanowska Agnieszka

    2017-01-01

    Full Text Available The central aim of this study is to investigate how to apply artificial neural networks in Customer Relationship Management (CRM. The paper presents several business applications of neural networks in software systems designed to aid CRM, e.g. in deciding on the profitability of building a relationship with a given customer. Furthermore, a framework for a neural-network based CRM software tool is developed. Building beneficial relationships with customers is generating considerable interest among various businesses, and is often mentioned as one of the crucial objectives of enterprises, next to their key aim: to bring satisfactory profit. There is a growing tendency among businesses to invest in CRM systems, which together with an organisational culture of a company aid managing customer relationships. It is the sheer amount of gathered data as well as the need for constant updating and analysis of this breadth of information that may imply the suitability of neural networks for the application in question. Neural networks exhibit considerably higher computational capabilities than sequential calculations because the solution to a problem is obtained without the need for developing a special algorithm. In the majority of presented CRM applications neural networks constitute and are presented as a managerial decision-taking optimisation tool.

  15. Studies of an application of a mobile communication system to the private telecommunication network. Part 1. Present condition of mobile communication system and proposal of the customer information network by PHS; Idotai tsushin system no denryoku tsushinmo eno tekiyo. 1. Idotai tsushin system no genjo to PHS ni yoru juyo kakei network no teian

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1996-03-01

    An application of various mobile communication systems to the electric power telecommunication network has been investigated. Among these, the customer information network by PHS (personal handy-phone system) has been proposed. Although great numbers of base stations are required for PHS, it can be applied as the customer information network by connecting to the power controller developed by the Central Research Institute of Electric Power Industry. The geostationary satellite telecommunication has been positively utilized by the electric power industry since the Hanshin-Awaji Great Earthquake. It can be used as the customer information network in the future. Since the radio access is a one-way communication, it cannot be applied to the electric power telecommunication network at present. It can be applied to the simple message communication or relatively low-speed data communication through the two-way communication. Public ground mobile telecommunication in the future includes various mobile telecommunication systems. To start the operation in 2000, the ITU (International Telecommunication Union) is making specifications common in the world. It is required to investigate the utilization as multipurpose systems. The network for PHS can be applied to the telecommunication network without optical cable. 20 refs., 5 figs., 3 tabs.

  16. An investigation of interference coordination in heterogeneous network for LTE-Advanced systems

    Science.gov (United States)

    Hasan, M. K.; Ismail, A. F.; H, Aisha-Hassan A.; Abdullah, Khaizuran; Ramli, H. A. M.

    2013-12-01

    The novel "femtocell" in Heterogeneous Network (HetNet) for LTE-Advanced (LTE-A) set-up will allow Malaysian wireless telecommunication operators (Maxis, Celcom, Digi, U-Mobile, P1, YTL and etc2.) to extend connectivity coverage where access would otherwise be limited or unavailable, particularly indoors of large building complexes. A femtocell is a small-sized cellular base station that encompasses all the functionality of a typical station. It therefore allows a simpler and self-contained deployment including private residences. For the Malaysian service providers, the main attractions of femtocell usage are the improvements to both coverage and capacity. The operators can provide a better service to end-users in turn reduce much of the agitations and complaints. There will be opportunity for new services at reduced cost. In addition, the operator not only benefits from the improved capacity and coverage but also can reduce both capital expenditure and operating expense i.e. alternative to brand new base station or macrocell installation. Interference is a key issue associated with femtocell development. There are a large number of issues associated with interference all of which need to be investigated, identified, quantified and solved. This is to ensure that the deployment of any femtocells will take place successfully. Among the most critical challenges in femtocell deployment is the interference between femtocell-to-macrocell and femtocell-to-femtocell in HetNets. In this paper, all proposed methods and algorithms will be investigated in the OFDMA femtocell system considering HetNet scenarios for LTE-A.

  17. An investigation of interference coordination in heterogeneous network for LTE-Advanced systems

    International Nuclear Information System (INIS)

    Hasan, M K; Ismail, A F; Aisha-Hassan A H; Abdullah, Khaizuran; Ramli, H A M

    2013-01-01

    The novel ''femtocell'' in Heterogeneous Network (HetNet) for LTE-Advanced (LTE-A) set-up will allow Malaysian wireless telecommunication operators (Maxis, Celcom, Digi, U-Mobile, P1, YTL and etc2.) to extend connectivity coverage where access would otherwise be limited or unavailable, particularly indoors of large building complexes. A femtocell is a small-sized cellular base station that encompasses all the functionality of a typical station. It therefore allows a simpler and self-contained deployment including private residences. For the Malaysian service providers, the main attractions of femtocell usage are the improvements to both coverage and capacity. The operators can provide a better service to end-users in turn reduce much of the agitations and complaints. There will be opportunity for new services at reduced cost. In addition, the operator not only benefits from the improved capacity and coverage but also can reduce both capital expenditure and operating expense i.e. alternative to brand new base station or macrocell installation. Interference is a key issue associated with femtocell development. There are a large number of issues associated with interference all of which need to be investigated, identified, quantified and solved. This is to ensure that the deployment of any femtocells will take place successfully. Among the most critical challenges in femtocell deployment is the interference between femtocell-to-macrocell and femtocell-to-femtocell in HetNets. In this paper, all proposed methods and algorithms will be investigated in the OFDMA femtocell system considering HetNet scenarios for LTE-A

  18. Robust networked H∞ synchronization of nonidentical chaotic Lur'e systems

    International Nuclear Information System (INIS)

    Yang De-Dong

    2014-01-01

    We mainly investigate the robust networked H ∞ synchronization problem of nonidentical chaotic Lur'e systems. In the design of the synchronization scheme, some network characteristics, such as nonuniform sampling, transmission-induced delays, and data packet dropouts, are considered. The parameters of master—slave chaotic Lur'e systems often allow differences. The sufficient condition in terms of linear matrix inequality (LMI) is obtained to guarantee the dissipative synchronization of nonidentical chaotic Lur'e systems in network environments. A numerical example is given to illustrate the validity of the proposed method. (general)

  19. Localisation system in wireless sensor networks using ns-2

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2012-04-01

    Full Text Available -1 /************************************************************************** ********** * * File: readme.asn * * Author: Adnan Abu-Mahfouz * * Date: March 2012 * * Description: Localisation system in wireless sensor networks using ns-2... *************************************************************************** *********/ /************************************************************************** *************************************************************************** *****/ 1. Introduction: ns-2 contains several flexible features that encourage researchers to use ns-2 to investigate the characteristics of wireless sensor networks (WSNs). However, to implement and evaluate localisation algorithms, the current ns- 2...

  20. Investigation of Wireless Sensor Networks for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-01-01

    Full Text Available Wireless sensor networks (WSNs are one of the most able technologies in the structural health monitoring (SHM field. Through intelligent, self-organising means, the contents of this paper will test a variety of different objects and different working principles of sensor nodes connected into a network and integrated with data processing functions. In this paper the key issues of WSN applied in SHM are discussed, including the integration of different types of sensors with different operational modalities, sampling frequencies, issues of transmission bandwidth, real-time ability, and wireless transmitter frequency. Furthermore, the topology, data fusion, integration, energy saving, and self-powering nature of different systems will be investigated. In the FP7 project “Health Monitoring of Offshore Wind Farms,” the above issues are explored.

  1. Investigation on network utilization efficiency and image transmission time for the PACS network

    International Nuclear Information System (INIS)

    Tawara, K.; Nishihara, E.; Komatsu, K.I.

    1987-01-01

    The authors investigated the following features of a PACS network: (1) network utilization efficiency and (2) image transmission time. They changed the following parameters, which the two items shown above depend on: (1) transfer rate between imaging equipment and network (10 kB/econd-8 MB/second), (2) network transmission speed (100 kB/second-50 MB/second), (3) packet length (10 kB-4 MB), and (4) message length (image data) (64 kB-4 MB). As a result, a conventional-type network cannot meet a need for PACS. To solve this problem, the authors propose a multiplexed network that consists of the high-speed network for image transmission and the conventional speed of control network for commands and shorter messages. If the packet length of the image network is designed to be variable, they can choose an optimum packet length for image transmission

  2. Fault tolerance of artificial neural networks with applications in critical systems

    Science.gov (United States)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  3. A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems

    Directory of Open Access Journals (Sweden)

    Takanori Fujiwara

    2018-03-01

    Full Text Available The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects. Several of the state of the art supercomputers use networks based on the increasingly popular Dragonfly topology. It is crucial to study the behavior and performance of different parallel applications running on Dragonfly networks in order to make optimal system configurations and design choices, such as job scheduling and routing strategies. However, in order to study these temporal network behavior, we would need a tool to analyze and correlate numerous sets of multivariate time-series data collected from the Dragonfly’s multi-level hierarchies. This paper presents such a tool–a visual analytics system–that uses the Dragonfly network to investigate the temporal behavior and optimize the communication performance of a supercomputer. We coupled interactive visualization with time-series analysis methods to help reveal hidden patterns in the network behavior with respect to different parallel applications and system configurations. Our system also provides multiple coordinated views for connecting behaviors observed at different levels of the network hierarchies, which effectively helps visual analysis tasks. We demonstrate the effectiveness of the system with a set of case studies. Our system and findings can not only help improve the communication performance of supercomputing applications, but also the network performance of next-generation supercomputers. Keywords: Supercomputing, Parallel communication network, Dragonfly networks, Time-series data, Performance analysis, Visual analytics

  4. Experimental investigations of overvoltages in 6kV station service cable networks of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vukelja, P.I.; Naumov, R.M.; Drobnjak, G.V.; Mrvic, J.D. [Nikola Tesla Inst., Belgrade (Yugoslavia)

    1996-12-31

    The paper presents the results of experimental investigations of overvoltages on 6kV isolated neutral station service cable networks of thermal power plants. The overvoltages were recorded with capacitive voltage measurement systems made at the Nikola Tesla Institute. Wideband capacitive voltage measurement systems recorded a flat response from below power frequencies to 10MHz. Investigations of overvoltages were performed for appearance and interruption of metal earth faults, intermittent earth faults, switching operation of HV motors switchgear, switching operation of transformers switchgear, and transfer of the network supply from one transformer to another. On the basis of these investigations, certain measures are proposed for limiting overvoltages and for the reliability of station service of thermal power plants.

  5. Study on networking issues of medium earth orbit satellite communications systems

    Science.gov (United States)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  6. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  7. Network speech systems technology program

    Science.gov (United States)

    Weinstein, C. J.

    1981-09-01

    This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.

  8. Networked Predictive Control for Nonlinear Systems With Arbitrary Region Quantizers.

    Science.gov (United States)

    Yang, Hongjiu; Xu, Yang; Xia, Yuanqing; Zhang, Jinhui

    2017-04-06

    In this paper, networked predictive control is investigated for planar nonlinear systems with quantization by an extended state observer (ESO). The ESO is used not only to deal with nonlinear terms but also to generate predictive states for dealing with network-induced delays. Two arbitrary region quantizers are applied to take effective values of signals in forward channel and feedback channel, respectively. Based on a "zoom" strategy, sufficient conditions are given to guarantee stabilization of the closed-loop networked control system with quantization. A simulation example is proposed to exhibit advantages and availability of the results.

  9. An investigation of 'sparse channel networks'. Characteristic behaviours and their causes

    International Nuclear Information System (INIS)

    Black, J.H.; Barker, J.A.; Woodman, N.D.

    2007-09-01

    This report represents a third study in a series concerned with groundwater flow in poorly permeable fractured crystalline rocks. The study has brought together three linked, but distinct, elements; a mathematical analysis of the intersection of ellipses, a review of field measurements associated with nuclear waste repository investigations and probabilistic simulations using a lattice network numerical model. We conclude that the model of channels that traverse fracture intersections without necessarily branching is a very likely representation of reality. More generally, assembling all the lines of evidence, it is suggested that groundwater flow systems in fractured crystalline rocks in the environs of underground laboratories have the following characteristics: Groundwater flows within a sparse network of channels just above the percolation limit. The frequency of intersections is low in that individual channels extend considerable distances between significant junctions. Individual channels often extend over many fracture surfaces and the resulting flow system is only weakly related to the density or size of mappable fractures. The sparseness of systems compared to the size of drifts and tunnels means that only a very few flow channels are intersected by drifts and tunnels. Highly convergent flow is required to connect to the rest of the network and this is misinterpreted as a skin of low hydraulic conductivity. Systems are so sparse that they are controlled by a few 'chokes' that give rise to compartments of head, and probably, of groundwater chemistry. Channels occur on all fracture planes, including those within fracture zones, and although the characteristics of the fracture zone channel networks may differ from those in surrounding rocks, they are nonetheless still channel networks. The actively flowing sparse channel network, occurring within any particular rock, is a naturally selected, small sub-set of the available channels. Hence, there are many

  10. Networks as systems.

    Science.gov (United States)

    Best, Allan; Berland, Alex; Greenhalgh, Trisha; Bourgeault, Ivy L; Saul, Jessie E; Barker, Brittany

    2018-03-19

    Purpose The purpose of this paper is to present a case study of the World Health Organization's Global Healthcare Workforce Alliance (GHWA). Based on a commissioned evaluation of GHWA, it applies network theory and key concepts from systems thinking to explore network emergence, effectiveness, and evolution to over a ten-year period. The research was designed to provide high-level strategic guidance for further evolution of global governance in human resources for health (HRH). Design/methodology/approach Methods included a review of published literature on HRH governance and current practice in the field and an in-depth case study whose main data sources were relevant GHWA background documents and key informant interviews with GHWA leaders, staff, and stakeholders. Sampling was purposive and at a senior level, focusing on board members, executive directors, funders, and academics. Data were analyzed thematically with reference to systems theory and Shiffman's theory of network development. Findings Five key lessons emerged: effective management and leadership are critical; networks need to balance "tight" and "loose" approaches to their structure and processes; an active communication strategy is key to create and maintain support; the goals, priorities, and membership must be carefully focused; and the network needs to support shared measurement of progress on agreed-upon goals. Shiffman's middle-range network theory is a useful tool when guided by the principles of complex systems that illuminate dynamic situations and shifting interests as global alliances evolve. Research limitations/implications This study was implemented at the end of the ten-year funding cycle. A more continuous evaluation throughout the term would have provided richer understanding of issues. Experience and perspectives at the country level were not assessed. Practical implications Design and management of large, complex networks requires ongoing attention to key issues like leadership

  11. The entire network topology display system of terminal communication access network

    OpenAIRE

    An Yi

    2016-01-01

    Now order terminal communication access network is network technology in Shanxi Province is diversiform, device type complex, lack of unified technical standard, the terminal communication access network management system of construction constitutes a great obstacle. Need to build a “unified communication interface and communication standard, unified communications network management” of the terminal communication access network cut in the integrated network management system, for the termina...

  12. Network Analyses in Systems Biology: New Strategies for Dealing with Biological Complexity

    DEFF Research Database (Denmark)

    Green, Sara; Serban, Maria; Scholl, Raphael

    2018-01-01

    of biological networks using tools from graph theory to the application of dynamical systems theory to understand the behavior of complex biological systems. We show how network approaches support and extend traditional mechanistic strategies but also offer novel strategies for dealing with biological...... strategies? When and how can network and mechanistic approaches interact in productive ways? In this paper we address these questions by focusing on how biological networks are represented and analyzed in a diverse class of case studies. Our examples span from the investigation of organizational properties...

  13. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  14. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2006-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  15. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2002-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  16. Atomic switch networks as complex adaptive systems

    Science.gov (United States)

    Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2018-03-01

    Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.

  17. NOSArmor: Building a Secure Network Operating System

    Directory of Open Access Journals (Sweden)

    Hyeonseong Jo

    2018-01-01

    Full Text Available Software-Defined Networking (SDN, controlling underlying network devices (i.e., data plane in a logically centralized manner, is now actively adopted in many real world networking environments. It is clear that a network administrator can easily understand and manage his networking environments with the help of SDN. In SDN, a network operating system (NOS, also known as an SDN controller, is the most critical component because it should be involved in all transactions for controlling network devices, and thus the security of NOS cannot be highly exaggerated. However, in spite of its importance, no previous works have thoroughly investigated the security of NOS. In this work, to address this problem, we present the NOSArmor, which integrates several security mechanisms, named as security building block (SBB, into a consolidated SDN controller. NOSArmor consists of eight SBBs and each of them addresses different security principles of network assets. For example, while role-based authorization focuses on securing confidentiality of internal storage from malicious applications, OpenFlow protocol verifier protects availability of core service in the controller from malformed control messages received from switches. In addition, NOSArmor shows competitive performance compared to existing other controllers (i.e., ONOS, Floodlight with secureness of network assets.

  18. Communicating embedded systems networks applications

    CERN Document Server

    Krief, Francine

    2013-01-01

    Embedded systems become more and more complex and require having some knowledge in various disciplines such as electronics, data processing, telecommunications and networks. Without detailing all the aspects related to the design of embedded systems, this book, which was written by specialists in electronics, data processing and telecommunications and networks, gives an interesting point of view of communication techniques and problems in embedded systems. This choice is easily justified by the fact that embedded systems are today massively communicating and that telecommunications and network

  19. A COMPARATIVE STUDY OF SYSTEM NETWORK ARCHITECTURE Vs DIGITAL NETWORK ARCHITECTURE

    OpenAIRE

    Seema; Mukesh Arya

    2011-01-01

    The efficient managing system of sources is mandatory for the successful running of any network. Here this paper describes the most popular network architectures one of developed by IBM, System Network Architecture (SNA) and other is Digital Network Architecture (DNA). As we know that the network standards and protocols are needed for the network developers as well as users. Some standards are The IEEE 802.3 standards (The Institute of Electrical and Electronics Engineers 1980) (LAN), IBM Sta...

  20. Delays and networked control systems

    CERN Document Server

    Hetel, Laurentiu; Daafouz, Jamal; Johansson, Karl

    2016-01-01

    This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students. .

  1. Network Intrusion Detection System using Apache Storm

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Manzoor

    2017-06-01

    Full Text Available Network security implements various strategies for the identification and prevention of security breaches. Network intrusion detection is a critical component of network management for security, quality of service and other purposes. These systems allow early detection of network intrusion and malicious activities; so that the Network Security infrastructure can react to mitigate these threats. Various systems are proposed to enhance the network security. We are proposing to use anomaly based network intrusion detection system in this work. Anomaly based intrusion detection system can identify the new network threats. We also propose to use Real-time Big Data Stream Processing Framework, Apache Storm, for the implementation of network intrusion detection system. Apache Storm can help to manage the network traffic which is generated at enormous speed and size and the network traffic speed and size is constantly increasing. We have used Support Vector Machine in this work. We use Knowledge Discovery and Data Mining 1999 (KDD’99 dataset to test and evaluate our proposed solution.

  2. NASDA knowledge-based network planning system

    Science.gov (United States)

    Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.

    1993-01-01

    One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.

  3. A financial network perspective of financial institutions' systemic risk contributions

    Science.gov (United States)

    Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang; Uryasev, Stan

    2016-08-01

    This study considers the effects of the financial institutions' local topology structure in the financial network on their systemic risk contribution using data from the Chinese stock market. We first measure the systemic risk contribution with the Conditional Value-at-Risk (CoVaR) which is estimated by applying dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH). Financial networks are constructed from dynamic conditional correlations (DCC) with graph filtering method of minimum spanning trees (MSTs). Then we investigate dynamics of systemic risk contributions of financial institution. Also we study dynamics of financial institution's local topology structure in the financial network. Finally, we analyze the quantitative relationships between the local topology structure and systemic risk contribution with panel data regression analysis. We find that financial institutions with greater node strength, larger node betweenness centrality, larger node closeness centrality and larger node clustering coefficient tend to be associated with larger systemic risk contributions.

  4. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  5. Network centrality measures and systemic risk: An application to the Turkish financial crisis

    Science.gov (United States)

    Kuzubaş, Tolga Umut; Ömercikoğlu, Inci; Saltoğlu, Burak

    2014-07-01

    In this paper, we analyze the performance of several network centrality measures in detecting systemically important financial institutions (SIFI) using data from the Turkish Interbank market during the financial crisis in 2000. We employ various network investigation tools such as volume, transactions, links, connectivity and reciprocity to gain a clearer picture of the network topology of the interbank market. We study the main borrower role of Demirbank in the crash of the banking system with network centrality measures which are extensively used in the network theory. This ex-post analysis of the crisis shows that centrality measures perform well in identifying and monitoring systemically important financial institutions which provide useful insights for financial regulations.

  6. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  7. Airborne Wireless Sensor Networks for Airplane Monitoring System

    Directory of Open Access Journals (Sweden)

    Shang Gao

    2018-01-01

    Full Text Available In traditional airplane monitoring system (AMS, data sensed from strain, vibration, ultrasound of structures or temperature, and humidity in cabin environment are transmitted to central data repository via wires. However, drawbacks still exist in wired AMS such as expensive installation and maintenance, and complicated wired connections. In recent years, accumulating interest has been drawn to performing AMS via airborne wireless sensor network (AWSN system with the advantages of flexibility, low cost, and easy deployment. In this review, we present an overview of AMS and AWSN and demonstrate the requirements of AWSN for AMS particularly. Furthermore, existing wireless hardware prototypes and network communication schemes of AWSN are investigated according to these requirements. This paper will improve the understanding of how the AWSN design under AMS acquires sensor data accurately and carries out network communication efficiently, providing insights into prognostics and health management (PHM for AMS in future.

  8. Multi-agent system based active distribution networks

    OpenAIRE

    Nguyen, H.P.

    2010-01-01

    This thesis gives a particular vision of the future power delivery system with its main requirements. An investigation of suitable concepts and technologies which creates a road map forward the smart grid has been carried out. They should meet the requirements on sustainability, efficiency, flexibility and intelligence. The so called Active Distribution Network (ADN) is introduced as an important element of the future power delivery system. With an open architecture, the ADN is designed to in...

  9. Identifying Vulnerabilities and Hardening Attack Graphs for Networked Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sudip; Vullinati, Anil K.; Halappanavar, Mahantesh; Chatterjee, Samrat

    2016-09-15

    We investigate efficient security control methods for protecting against vulnerabilities in networked systems. A large number of interdependent vulnerabilities typically exist in the computing nodes of a cyber-system; as vulnerabilities get exploited, starting from low level ones, they open up the doors to more critical vulnerabilities. These cannot be understood just by a topological analysis of the network, and we use the attack graph abstraction of Dewri et al. to study these problems. In contrast to earlier approaches based on heuristics and evolutionary algorithms, we study rigorous methods for quantifying the inherent vulnerability and hardening cost for the system. We develop algorithms with provable approximation guarantees, and evaluate them for real and synthetic attack graphs.

  10. Networking systems design and development

    CERN Document Server

    Chao, Lee

    2009-01-01

    Effectively integrating theory and hands-on practice, Networking Systems Design and Development provides students and IT professionals with the knowledge and skills needed to design, implement, and manage fully functioning network systems using readily available Linux networking tools. Recognizing that most students are beginners in the field of networking, the text provides step-by-step instruction for setting up a virtual lab environment at home. Grounded in real-world applications, this book provides the ideal blend of conceptual instruction and lab work to give students and IT professional

  11. Information Decomposition in Multivariate Systems: Definitions, Implementation and Application to Cardiovascular Networks

    Directory of Open Access Journals (Sweden)

    Luca Faes

    2016-12-01

    Full Text Available The continuously growing framework of information dynamics encompasses a set of tools, rooted in information theory and statistical physics, which allow to quantify different aspects of the statistical structure of multivariate processes reflecting the temporal dynamics of complex networks. Building on the most recent developments in this field, this work designs a complete approach to dissect the information carried by the target of a network of multiple interacting systems into the new information produced by the system, the information stored in the system, and the information transferred to it from the other systems; information storage and transfer are then further decomposed into amounts eliciting the specific contribution of assigned source systems to the target dynamics, and amounts reflecting information modification through the balance between redundant and synergetic interaction between systems. These decompositions are formulated quantifying information either as the variance or as the entropy of the investigated processes, and their exact computation for the case of linear Gaussian processes is presented. The theoretical properties of the resulting measures are first investigated in simulations of vector autoregressive processes. Then, the measures are applied to assess information dynamics in cardiovascular networks from the variability series of heart period, systolic arterial pressure and respiratory activity measured in healthy subjects during supine rest, orthostatic stress, and mental stress. Our results document the importance of combining the assessment of information storage, transfer and modification to investigate common and complementary aspects of network dynamics; suggest the higher specificity to alterations in the network properties of the measures derived from the decompositions; and indicate that measures of information transfer and information modification are better assessed, respectively, through entropy

  12. Multilevel Complex Networks and Systems

    Science.gov (United States)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  13. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  14. Interorganizational Innovation in Systemic Networks

    DEFF Research Database (Denmark)

    Seemann, Janne; Dinesen, Birthe; Gustafsson, Jeppe

    2013-01-01

    patients with chronic obstructive pulmonary disease (COPD) to avoid readmission, perform self monitoring and to maintain rehabilitation in their homes. The aim of the paper is to identify, analyze and discuss innovation dynamics in the COPD network and on a preliminary basis to identify implications...... for managing innovations in systemic networks. The main argument of this paper is that innovation dynamics in systemic networks should be understood as a complex interplay of four logics: 1) Fragmented innovation, 2) Interface innovation, 3) Competing innovation, 4) Co-innovation. The findings indicate...... that linear n-stage models by reducing complexity and flux end up focusing only on the surface of the network and are thus unable to grasp important aspects of network dynamics. The paper suggests that there is a need for a more dynamic innovation model able to grasp the whole picture of dynamics in systemic...

  15. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  16. Weighted Complex Network Analysis of Shanghai Rail Transit System

    Directory of Open Access Journals (Sweden)

    Yingying Xing

    2016-01-01

    Full Text Available With increasing passenger flows and construction scale, Shanghai rail transit system (RTS has entered a new era of networking operation. In addition, the structure and properties of the RTS network have great implications for urban traffic planning, design, and management. Thus, it is necessary to acquire their network properties and impacts. In this paper, the Shanghai RTS, as well as passenger flows, will be investigated by using complex network theory. Both the topological and dynamic properties of the RTS network are analyzed and the largest connected cluster is introduced to assess the reliability and robustness of the RTS network. Simulation results show that the distribution of nodes strength exhibits a power-law behavior and Shanghai RTS network shows a strong weighted rich-club effect. This study also indicates that the intentional attacks are more detrimental to the RTS network than to the random weighted network, but the random attacks can cause slightly more damage to the random weighted network than to the RTS network. Our results provide a richer view of complex weighted networks in real world and possibilities of risk analysis and policy decisions for the RTS operation department.

  17. Financial Network Systemic Risk Contributions

    NARCIS (Netherlands)

    Hautsch, N.; Schaumburg, J.; Schienle, M.

    2015-01-01

    We propose the realized systemic risk beta as a measure of financial companies' contribution to systemic risk, given network interdependence between firms' tail risk exposures. Conditional on statistically pre-identified network spillover effects and market and balance sheet information, we define

  18. Signal-regulated systems and networks

    CSIR Research Space (South Africa)

    Van Zyl, TL

    2010-07-01

    Full Text Available The article presents the use of signal regulatory networks (SRNs), a biologically inspired model based on gene regulatory networks. SRNs are a way of understanding a class of self-organizing IT systems, signal-regulated systems (SRSs). This article...

  19. Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu; Zou Yanli

    2008-01-01

    We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network

  20. Asynchronous control for networked systems

    CERN Document Server

    Rubio, Francisco; Bencomo, Sebastián

    2015-01-01

    This book sheds light on networked control systems; it describes different techniques for asynchronous control, moving away from the periodic actions of classical control, replacing them with state-based decisions and reducing the frequency with which communication between subsystems is required. The text focuses specially on event-based control. Split into two parts, Asynchronous Control for Networked Systems begins by addressing the problems of single-loop networked control systems, laying out various solutions which include two alternative model-based control schemes (anticipatory and predictive) and the use of H2/H∞ robust control to deal with network delays and packet losses. Results on self-triggering and send-on-delta sampling are presented to reduce the need for feedback in the loop. In Part II, the authors present solutions for distributed estimation and control. They deal first with reliable networks and then extend their results to scenarios in which delays and packet losses may occur. The novel ...

  1. Operating systems and network protocols for wireless sensor networks.

    Science.gov (United States)

    Dutta, Prabal; Dunkels, Adam

    2012-01-13

    Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.

  2. The APS control system network upgrade

    International Nuclear Information System (INIS)

    Sidorowicz, K. v.; Leibfritz, D.; McDowell, W. P.

    1999-01-01

    When it was installed,the Advanced Photon Source (APS) control system network was at the state-of-the-art. Different aspects of the system have been reported at previous meetings [1,2]. As loads on the controls network have increased due to newer and faster workstations and front-end computers, we have found performance of the system declining and have implemented an upgraded network. There have been dramatic advances in networking hardware in the last several years. The upgraded APS controls network replaces the original FDDI backbone and shared Ethernet hubs with redundant gigabit uplinks and fully switched 10/100 Ethernet switches with backplane fabrics in excess of 20 Gbits/s (Gbps). The central collapsed backbone FDDI concentrator has been replaced with a Gigabit Ethernet switch with greater than 30 Gbps backplane fabric. Full redundancy of the system has been maintained. This paper will discuss this upgrade and include performance data and performance comparisons with the original network

  3. Filtering and control of wireless networked systems

    CERN Document Server

    Zhang, Dan; Yu, Li

    2017-01-01

    This self-contained book, written by leading experts, offers a cutting-edge, in-depth overview of the filtering and control of wireless networked systems. It addresses the energy constraint and filter/controller gain variation problems, and presents both the centralized and the distributed solutions. The first two chapters provide an introduction to networked control systems and basic information on system analysis. Chapters (3–6) then discuss the centralized filtering of wireless networked systems, presenting different approaches to deal with energy efficiency and filter/controller gain variation problems. The next part (chapters 7–10) explores the distributed filtering of wireless networked systems, addressing the main problems of energy constraint and filter gain variation. The final part (chapters 11–14) focuses on the distributed control of wireless networked systems. networked systems for communication and control applications, the bo...

  4. Adaptive-impulsive synchronization in drive-response networks of continuous systems and its application

    International Nuclear Information System (INIS)

    Sun Mei; Zeng Changyan; Tao Yangwei; Tian Lixin

    2009-01-01

    Based on the comparison theorem for the stability of impulsive control system, adaptive-impulsive synchronization in drive-response networks of continuous systems with time-delay and non-time-delay is investigated. And the continuous control input, the simple updated laws and a linear impulsive controller are proposed. Moreover, two numerical examples are presented to verify the effectiveness and correctness of the theorem, using the energy resource system and Lue's system as the nodes of the networks.

  5. Attacks and intrusion detection in wireless sensor networks of industrial SCADA systems

    Science.gov (United States)

    Kamaev, V. A.; Finogeev, A. G.; Finogeev, A. A.; Parygin, D. S.

    2017-01-01

    The effectiveness of automated process control systems (APCS) and supervisory control and data acquisition systems (SCADA) information security depends on the applied protection technologies of transport environment data transmission components. This article investigates the problems of detecting attacks in wireless sensor networks (WSN) of SCADA systems. As a result of analytical studies, the authors developed the detailed classification of external attacks and intrusion detection in sensor networks and brought a detailed description of attacking impacts on components of SCADA systems in accordance with the selected directions of attacks.

  6. Structural Conditions for Collaboration and Learning in Innovation Networks: Using an Innovation System Performance Lens to Analyse Agricultural Knowledge Systems

    NARCIS (Netherlands)

    Hermans, F.; Klerkx, L.W.A.; Roep, D.

    2015-01-01

    Purpose: We investigate how the structural conditions of eight different European agricultural innovation systems can facilitate or hinder collaboration and social learning in multidisciplinary innovation networks. Methodology: We have adapted the Innovation System Failure Matrix to investigate the

  7. RECOMMENDER SYSTEMS IN SOCIAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Cleomar Valois Batista Jr

    2011-12-01

    Full Text Available The continued and diversified growth of social networks has changed the way in which users interact with them. With these changes, what once was limited to social contact is now used for exchanging ideas and opinions, creating the need for new features. Users have so much information at their fingertips that they are unable to process it by themselves; hence, the need to develop new tools. Recommender systems were developed to address this need and many techniques were used for different approaches to the problem. To make relevant recommendations, these systems use large sets of data, not taking the social network of the user into consideration. Developing a recommender system that takes into account the social network of the user is another way of tackling the problem. The purpose of this project is to use the theory of six degrees of separation (Watts 2003 amongst users of a social network to enhance existing recommender systems.

  8. Symptom based diagnostic system using artificial neural networks

    International Nuclear Information System (INIS)

    Santosh; Vinod, Gopika; Saraf, R.K.

    2003-01-01

    Nuclear power plant experiences a number of transients during its operations. In case of such an undesired plant condition generally known as an initiating event, the operator has to carry out diagnostic and corrective actions. The operator's response may be too late to mitigate or minimize the negative consequences in such scenarios. The objective of this work is to develop an operator support system based on artificial neural networks that will assist the operator to identify the initiating events at the earliest stages of their developments. A symptom based diagnostic system has been developed to investigate the initiating events. Neutral networks are utilized for carrying out the event identification by continuously monitoring process parameters. Whenever an event is detected, the system will display the necessary operator actions along with the initiating event. The system will also show the graphical trend of process parameters that are relevant to the event. This paper describes the features of the software that is used to monitor the reactor. (author)

  9. System-Level Design Methodologies for Networked Multiprocessor Systems-on-Chip

    DEFF Research Database (Denmark)

    Virk, Kashif Munir

    2008-01-01

    is the first such attempt in the published literature. The second part of the thesis deals with the issues related to the development of system-level design methodologies for networked multiprocessor systems-on-chip at various levels of design abstraction with special focus on the modeling and design...... at the system-level. The multiprocessor modeling framework is then extended to include models of networked multiprocessor systems-on-chip which is then employed to model wireless sensor networks both at the sensor node level as well as the wireless network level. In the third and the final part, the thesis...... to the transaction-level model. The thesis, as a whole makes contributions by describing a design methodology for networked multiprocessor embedded systems at three layers of abstraction from system-level through transaction-level to the cycle accurate level as well as demonstrating it practically by implementing...

  10. Endogenous network of firms and systemic risk

    Science.gov (United States)

    Ma, Qianting; He, Jianmin; Li, Shouwei

    2018-02-01

    We construct an endogenous network characterized by commercial credit relationships connecting the upstream and downstream firms. Simulation results indicate that the endogenous network model displays a scale-free property which exists in real-world firm systems. In terms of the network structure, with the expansion of the scale of network nodes, the systemic risk increases significantly, while the heterogeneities of network nodes have no effect on systemic risk. As for firm micro-behaviors, including the selection range of trading partners, actual output, labor requirement, price of intermediate products and employee salaries, increase of all these parameters will lead to higher systemic risk.

  11. Exponential networked synchronization of master-slave chaotic systems with time-varying communication topologies

    International Nuclear Information System (INIS)

    Yang Dong-Sheng; Liu Zhen-Wei; Liu Zhao-Bing; Zhao Yan

    2012-01-01

    The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time-varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method. (general)

  12. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  13. APPLICATION OF UKRAINIAN GRID INFRASTRUCTURE FOR INVESTIGATION OF NONLINEAR DYNAMICS IN LARGE NEURONAL NETWORKS

    Directory of Open Access Journals (Sweden)

    O. О. Sudakov

    2015-12-01

    Full Text Available In present work the Ukrainian National Grid (UNG infrastructure was applied for investigation of synchronization in large networks of interacting neurons. This application is important for solving of modern neuroscience problems related to mechanisms of nervous system activities (memory, cognition etc. and nervous pathologies (epilepsy, Parkinsonism, etc.. Modern non-linear dynamics theories and applications provides powerful basis for computer simulations of biological neuronal networks and investigation of phenomena which mechanisms hardly could be clarified by other approaches. Cubic millimeter of brain tissue contains about 105 neurons, so realistic (Hodgkin-Huxley model and phenomenological (Kuramoto-Sakaguchi, FitzHugh-Nagumo, etc. models simulations require consideration of large neurons numbers.

  14. Language Networks as Complex Systems

    Science.gov (United States)

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  15. Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems

    International Nuclear Information System (INIS)

    Tien, Iris; Der Kiureghian, Armen

    2016-01-01

    Novel algorithms are developed to enable the modeling of large, complex infrastructure systems as Bayesian networks (BNs). These include a compression algorithm that significantly reduces the memory storage required to construct the BN model, and an updating algorithm that performs inference on compressed matrices. These algorithms address one of the major obstacles to widespread use of BNs for system reliability assessment, namely the exponentially increasing amount of information that needs to be stored as the number of components in the system increases. The proposed compression and inference algorithms are described and applied to example systems to investigate their performance compared to that of existing algorithms. Orders of magnitude savings in memory storage requirement are demonstrated using the new algorithms, enabling BN modeling and reliability analysis of larger infrastructure systems. - Highlights: • Novel algorithms developed for Bayesian network modeling of infrastructure systems. • Algorithm presented to compress information in conditional probability tables. • Updating algorithm presented to perform inference on compressed matrices. • Algorithms applied to example systems to investigate their performance. • Orders of magnitude savings in memory storage requirement demonstrated.

  16. Adaptive intelligent power systems: Active distribution networks

    International Nuclear Information System (INIS)

    McDonald, Jim

    2008-01-01

    Electricity networks are extensive and well established. They form a key part of the infrastructure that supports industrialised society. These networks are moving from a period of stability to a time of potentially major transition, driven by a need for old equipment to be replaced, by government policy commitments to cleaner and renewable sources of electricity generation, and by change in the power industry. This paper looks at moves towards active distribution networks. The novel transmission and distribution systems of the future will challenge today's system designs. They will cope with variable voltages and frequencies, and will offer more flexible, sustainable options. Intelligent power networks will need innovation in several key areas of information technology. Active control of flexible, large-scale electrical power systems is required. Protection and control systems will have to react to faults and unusual transient behaviour and ensure recovery after such events. Real-time network simulation and performance analysis will be needed to provide decision support for system operators, and the inputs to energy and distribution management systems. Advanced sensors and measurement will be used to achieve higher degrees of network automation and better system control, while pervasive communications will allow networks to be reconfigured by intelligent systems

  17. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad; Celik, Abdulkadir; Kamal, Ahmed E.

    2018-01-01

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power

  18. An investigation of 'sparse channel networks'. Characteristic behaviours and their causes

    Energy Technology Data Exchange (ETDEWEB)

    Black, J.H. (In Situ Solutions, East Bridgford (GB)); Barker, J.A.; Woodman, N.D. (Univ. of Southampton (GB))

    2007-09-15

    This report represents a third study in a series concerned with groundwater flow in poorly permeable fractured crystalline rocks. The study has brought together three linked, but distinct, elements; a mathematical analysis of the intersection of ellipses, a review of field measurements associated with nuclear waste repository investigations and probabilistic simulations using a lattice network numerical model. We conclude that the model of channels that traverse fracture intersections without necessarily branching is a very likely representation of reality. More generally, assembling all the lines of evidence, it is suggested that groundwater flow systems in fractured crystalline rocks in the environs of underground laboratories have the following characteristics: Groundwater flows within a sparse network of channels just above the percolation limit. The frequency of intersections is low in that individual channels extend considerable distances between significant junctions. Individual channels often extend over many fracture surfaces and the resulting flow system is only weakly related to the density or size of mappable fractures. The sparseness of systems compared to the size of drifts and tunnels means that only a very few flow channels are intersected by drifts and tunnels. Highly convergent flow is required to connect to the rest of the network and this is misinterpreted as a skin of low hydraulic conductivity. Systems are so sparse that they are controlled by a few 'chokes' that give rise to compartments of head, and probably, of groundwater chemistry. Channels occur on all fracture planes, including those within fracture zones, and although the characteristics of the fracture zone channel networks may differ from those in surrounding rocks, they are nonetheless still channel networks. The actively flowing sparse channel network, occurring within any particular rock, is a naturally selected, small sub-set of the available channels. Hence, there are

  19. Investigation of neural network paradigms for the development of automatic noise diagnostic/reactor surveillance systems

    International Nuclear Information System (INIS)

    Korsah, K.; Uhrig, R.E.

    1991-01-01

    The use of artificial intelligence (AI) techniques as an aid in the maintenance and operation of nuclear power plant systems has been recognized for the past several years, and several applications using expert systems technology currently exist. The authors investigated the backpropagation paradigm for the recognition of neutron noise power spectral density (PSD) signatures as a possible alternative to current methods based on statistical techniques. The goal is to advance the state of the art in the application of noise analysis techniques to monitor nuclear reactor internals. Continuous surveillance of reactor systems for structural degradation can be quite cost-effective because (1) the loss of mechanical integrity of the reactor internal components can be detected at an early stage before severe damage occurs, (2) unnecessary periodic maintenance can be avoided, (3) plant downtime can be reduced to a minimum, (4) a high level of plant safety can be maintained, and (5) it can be used to help justify the extension of a plant's operating license. The initial objectives were to use neutron noise PSD data from a pressurized water reactor, acquired over a period of ∼2 years by the Oak Ridge National Laboratory (ORNL) Power Spectral Density RECognition (PSDREC) system to develop networks that can (1) differentiate between normal neutron spectral data and anomalous spectral data (e.g., malfunctioning instrumentation); and (2) detect significant shifts in the positions of spectral resonances while reducing the effect of small, random shifts (in neutron noise analysis, shifts in the resonance(s) present in a neutron PSD spectrum are the primary means for diagnosing degradation of reactor internals). 11 refs, 8 figs

  20. Intelligent neural network diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.

  1. Ethical Issues in Network System Design

    Directory of Open Access Journals (Sweden)

    Duncan Langford

    1997-05-01

    Full Text Available Today, most desktop computers and PCs are networked that is, they have the ability to link to other machines, usually to access data and other information held remotely. Such machines may sometimes be connected directly to each other, as part of an office or company computer system. More frequently, however, connected machines are at a considerable distance from each other, typically connected through links to global systems such as the Internet, or World Wide Web (WWW. The networked machine itself may be anything from a powerful company computer with direct Internet connections, to a small hobbyist machine, accessing a bulletin board through telephone and modem. It is important to remember that, whatever the type or the location of networked machines, their access to the network, and the network itself, was planned and constructed following deliberate design considerations. In this paper I discuss some ways in which the technical design of computer systems might appropriately be influenced by ethical issues, and examine pressures on computer scientists and others to technically control network related actions perceived as 'unethical'. After examination of the current situation, I draw together the issues, and conclude by suggesting some ethically based recommendations for the future design of networked systems.

  2. A systems-level approach for investigating organophosphorus pesticide toxicity.

    Science.gov (United States)

    Zhu, Jingbo; Wang, Jing; Ding, Yan; Liu, Baoyue; Xiao, Wei

    2018-03-01

    The full understanding of the single and joint toxicity of a variety of organophosphorus (OP) pesticides is still unavailable, because of the extreme complex mechanism of action. This study established a systems-level approach based on systems toxicology to investigate OP pesticide toxicity by incorporating ADME/T properties, protein prediction, and network and pathway analysis. The results showed that most OP pesticides are highly toxic according to the ADME/T parameters, and can interact with significant receptor proteins to cooperatively lead to various diseases by the established OP pesticide -protein and protein-disease networks. Furthermore, the studies that multiple OP pesticides potentially act on the same receptor proteins and/or the functionally diverse proteins explained that multiple OP pesticides could mutually enhance toxicological synergy or additive on a molecular/systematic level. To the end, the integrated pathways revealed the mechanism of toxicity of the interaction of OP pesticides and elucidated the pathogenesis induced by OP pesticides. This study demonstrates a systems-level approach for investigating OP pesticide toxicity that can be further applied to risk assessments of various toxins, which is of significant interest to food security and environmental protection. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. How Unstable Are Complex Financial Systems? Analyzing an Inter-bank Network of Credit Relations

    Science.gov (United States)

    Sinha, Sitabhra; Thess, Maximilian; Markose, Sheri

    The recent worldwide economic crisis of 2007-09 has focused attention on the need to analyze systemic risk in complex financial networks. We investigate the problem of robustness of such systems in the context of the general theory of dynamical stability in complex networks and, in particular, how the topology of connections influence the risk of the failure of a single institution triggering a cascade of successive collapses propagating through the network. We use data on bilateral liabilities (or exposure) in the derivatives market between 202 financial intermediaries based in USA and Europe in the last quarter of 2009 to empirically investigate the network structure of the over-the-counter (OTC) derivatives market. We observe that the network exhibits both heterogeneity in node properties and the existence of communities. It also has a prominent core-periphery organization and can resist large-scale collapse when subjected to individual bank defaults (however, failure of any bank in the core may result in localized collapse of the innermost core with substantial loss of capital) but is vulnerable to system-wide breakdown as a result of an accompanying liquidity crisis.

  4. Optical wireless networked-systems: applications to aircrafts

    Science.gov (United States)

    Kavehrad, Mohsen; Fadlullah, Jarir

    2011-01-01

    This paper focuses on leveraging the progress in semiconductor technologies to facilitate production of efficient light-based in-flight entertainment (IFE), distributed sensing, navigation and control systems. We demonstrate the ease of configuring "engineered pipes" using cheap lenses, etc. to achieve simple linear transmission capacity growth. Investigation of energy-efficient, miniaturized transceivers will create a wireless medium, for both inter and intra aircrafts, providing enhanced security, and improved quality-of-service for communications links in greater harmony with onboard systems. The applications will seamlessly inter-connect multiple intelligent devices in a network that is deployable for aircrafts navigation systems, onboard sensors and entertainment data delivery systems, and high-definition audio-visual broadcasting systems. Recent experimental results on a high-capacity infrared (808 nm) system are presented. The light source can be applied in a hybrid package along with a visible lighting LED for both lighting and communications. Also, we present a pragmatic combination of light communications through "Spotlighting" and existing onboard power-lines. It is demonstrated in details that a high-capacity IFE visible light system communicating over existing power-lines (VLC/PLC) may lead to savings in many areas through reduction of size, weight and energy consumption. This paper addresses the challenges of integrating optimized optical devices in the variety of environments described above, and presents mitigation and tailoring approaches for a multi-purpose optical network.

  5. Virtualized Network Function Orchestration System and Experimental Network Based QR Recognition for a 5G Mobile Access Network

    Directory of Open Access Journals (Sweden)

    Misun Ahn

    2017-12-01

    Full Text Available This paper proposes a virtualized network function orchestration system based on Network Function Virtualization (NFV, one of the main technologies in 5G mobile networks. This system should provide connectivity between network devices and be able to create flexible network function and distribution. This system focuses more on access networks. By experimenting with various scenarios of user service established and activated in a network, we examine whether rapid adoption of new service is possible and whether network resources can be managed efficiently. The proposed method is based on Bluetooth transfer technology and mesh networking to provide automatic connections between network machines and on a Docker flat form, which is a container virtualization technology for setting and managing key functions. Additionally, the system includes a clustering and recovery measure regarding network function based on the Docker platform. We will briefly introduce the QR code perceived service as a user service to examine the proposal and based on this given service, we evaluate the function of the proposal and present analysis. Through the proposed approach, container relocation has been implemented according to a network device’s CPU usage and we confirm successful service through function evaluation on a real test bed. We estimate QR code recognition speed as the amount of network equipment is gradually increased, improving user service and confirm that the speed of recognition is increased as the assigned number of network devices is increased by the user service.

  6. The Network Information Management System (NIMS) in the Deep Space Network

    Science.gov (United States)

    Wales, K. J.

    1983-01-01

    In an effort to better manage enormous amounts of administrative, engineering, and management data that is distributed worldwide, a study was conducted which identified the need for a network support system. The Network Information Management System (NIMS) will provide the Deep Space Network with the tools to provide an easily accessible source of valid information to support management activities and provide a more cost-effective method of acquiring, maintaining, and retrieval data.

  7. Network performance for graphical control systems

    International Nuclear Information System (INIS)

    Clout, P.; Geib, M.; Westervelt, R.

    1992-01-01

    Vsystem is a toolbox for building graphically-based control systems. The real-tiem database component, Vaccess, includes all the networking support necessary to build multi-computer control systems. Vaccess has two modes of database access, synchronous and asynchronous. Vdraw is another component of Vsystem that allows developers and users to develop control screens and windows by drawing rather than programming. Based on X-windows, Vsystem provides the possibility of running Vdraw either on the workstation with the graphics or on the computer with the database. We have made some measurements on the cpu loading, elapsed time and the network loading to give some guidance in system configuration performance. It will be seen that asynchronous network access gives large performance increases and that the network database change notification protocol can be either more or less efficient than the X-window network protocol, depending on the graphical representation of the data. (author)

  8. Control theory of digitally networked dynamic systems

    CERN Document Server

    Lunze, Jan

    2013-01-01

    The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamic

  9. BABY MONITORING SYSTEM USING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Rajesh

    2014-09-01

    Full Text Available Sudden Infant Death Syndrome (SIDS is marked by the sudden death of an infant during sleep that is not predicted by the medical history and remains unexplained even after thorough forensic autopsy and detailed death investigation. In this we developed a system that provides solutions for the above problems by making the crib smart using the wireless sensor networks (WSN and smart phones. The system provides visual monitoring service through live video, alert services by crib fencing and awakens alert, monitoring services by temperature reading and light intensity reading, vaccine reminder and weight monitoring.

  10. Future Wireless Networks and Information Systems Volume 1

    CERN Document Server

    2012-01-01

    This volume contains revised and extended research articles written by prominent researchers participating in ICFWI 2011 conference. The 2011 International Conference on Future Wireless Networks and Information Systems (ICFWI 2011) has been held on November 30 ~ December 1, 2011, Macao, China. Topics covered include Wireless Information Networks, Wireless Networking Technologies, Mobile Software and Services, intelligent computing, network management, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Wireless Networks and Information Systems and also serve as an excellent reference work for researchers and graduate students working on Wireless Networks and Information Systems.

  11. Default cascades in complex networks: topology and systemic risk.

    Science.gov (United States)

    Roukny, Tarik; Bersini, Hugues; Pirotte, Hugues; Caldarelli, Guido; Battiston, Stefano

    2013-09-26

    The recent crisis has brought to the fore a crucial question that remains still open: what would be the optimal architecture of financial systems? We investigate the stability of several benchmark topologies in a simple default cascading dynamics in bank networks. We analyze the interplay of several crucial drivers, i.e., network topology, banks' capital ratios, market illiquidity, and random vs targeted shocks. We find that, in general, topology matters only--but substantially--when the market is illiquid. No single topology is always superior to others. In particular, scale-free networks can be both more robust and more fragile than homogeneous architectures. This finding has important policy implications. We also apply our methodology to a comprehensive dataset of an interbank market from 1999 to 2011.

  12. Topological resilience in non-normal networked systems

    Science.gov (United States)

    Asllani, Malbor; Carletti, Timoteo

    2018-04-01

    The network of interactions in complex systems strongly influences their resilience and the system capability to resist external perturbations or structural damages and to promptly recover thereafter. The phenomenon manifests itself in different domains, e.g., parasitic species invasion in ecosystems or cascade failures in human-made networks. Understanding the topological features of the networks that affect the resilience phenomenon remains a challenging goal for the design of robust complex systems. We hereby introduce the concept of non-normal networks, namely networks whose adjacency matrices are non-normal, propose a generating model, and show that such a feature can drastically change the global dynamics through an amplification of the system response to exogenous disturbances and eventually impact the system resilience. This early stage transient period can induce the formation of inhomogeneous patterns, even in systems involving a single diffusing agent, providing thus a new kind of dynamical instability complementary to the Turing one. We provide, first, an illustrative application of this result to ecology by proposing a mechanism to mute the Allee effect and, second, we propose a model of virus spreading in a population of commuters moving using a non-normal transport network, the London Tube.

  13. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L

    2009-05-01

    networked systems, and (4) design, situational awareness and control of complex networks. The program elements consist of a group of Complex Networked Systems Research Institutes (CNSRI), tightly coupled to an associated individual-investigator-based Complex Networked Systems Basic Research (CNSBR) program. The CNSRI's will be principally located at the DOE National Laboratories and are responsible for identifying research priorities, developing and maintaining a networked systems modeling and simulation software infrastructure, operating summer schools, workshops and conferences and coordinating with the CNSBR individual investigators. The CNSBR individual investigator projects will focus on specific challenges for networked systems. Relevancy of CNSBR research to DOE needs will be assured through the strong coupling provided between the CNSBR grants and the CNSRI's.

  14. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    International Nuclear Information System (INIS)

    Brown, D.L.

    2009-01-01

    , and (4) design, situational awareness and control of complex networks. The program elements consist of a group of Complex Networked Systems Research Institutes (CNSRI), tightly coupled to an associated individual-investigator-based Complex Networked Systems Basic Research (CNSBR) program. The CNSRI's will be principally located at the DOE National Laboratories and are responsible for identifying research priorities, developing and maintaining a networked systems modeling and simulation software infrastructure, operating summer schools, workshops and conferences and coordinating with the CNSBR individual investigators. The CNSBR individual investigator projects will focus on specific challenges for networked systems. Relevancy of CNSBR research to DOE needs will be assured through the strong coupling provided between the CNSBR grants and the CNSRI's.

  15. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    Science.gov (United States)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  16. Intrusion Detection in Networked Control Systems: From System Knowledge to Network Security

    NARCIS (Netherlands)

    Caselli, M.

    2016-01-01

    Networked control system‿ (NCS) is an umbrella term encompassing a broad variety of infrastructures such as industrial control systems (ICSs) and building automation systems (BASs). Nowadays, all these infrastructures play an important role in several aspects of our daily life, from managing

  17. Phase-space networks of geometrically frustrated systems.

    Science.gov (United States)

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  18. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  19. Cisco Router and Switch Forensics Investigating and Analyzing Malicious Network Activity

    CERN Document Server

    Liu, Dale

    2009-01-01

    Cisco IOS (the software that runs the vast majority of Cisco routers and all Cisco network switches) is the dominant routing platform on the Internet and corporate networks. This widespread distribution, as well as its architectural deficiencies, makes it a valuable target for hackers looking to attack a corporate or private network infrastructure. Compromised devices can disrupt stability, introduce malicious modification, and endanger all communication on the network. For security of the network and investigation of attacks, in-depth analysis and diagnostics are critical, but no book current

  20. An electronic regulatory document management system for a clinical trial network.

    Science.gov (United States)

    Zhao, Wenle; Durkalski, Valerie; Pauls, Keith; Dillon, Catherine; Kim, Jaemyung; Kolk, Deneil; Silbergleit, Robert; Stevenson, Valerie; Palesch, Yuko

    2010-01-01

    A computerized regulatory document management system has been developed as a module in a comprehensive Clinical Trial Management System (CTMS) designed for an NIH-funded clinical trial network in order to more efficiently manage and track regulatory compliance. Within the network, several institutions and investigators are involved in multiple trials, and each trial has regulatory document requirements. Some of these documents are trial specific while others apply across multiple trials. The latter causes a possible redundancy in document collection and management. To address these and other related challenges, a central regulatory document management system was designed. This manuscript shares the design of the system as well as examples of it use in current studies. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  1. Synchronization coupled systems to complex networks

    CERN Document Server

    Boccaletti, Stefano; del Genio, Charo I; Amann, Andreas

    2018-01-01

    A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behaviour in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite-dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially-extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations and application examples will help advanced graduate s...

  2. Apriori-based network intrusion detection system

    International Nuclear Information System (INIS)

    Wang Wenjin; Liu Junrong; Liu Baoxu

    2012-01-01

    With the development of network communication technology, more and more social activities run by Internet. In the meantime, the network information security is getting increasingly serious. Intrusion Detection System (IDS) has greatly improved the general security level of whole network. But there are still many problem exists in current IDS, e.g. high leak rate detection/false alarm rates and feature library need frequently upgrade. This paper presents an association-rule based IDS. This system can detect unknown attack by generate rules from training data. Experiment in last chapter proved the system has great accuracy on unknown attack detection. (authors)

  3. Herding Complex Networks

    KAUST Repository

    Ruf, Sebastian F.

    2018-04-12

    The problem of controlling complex networks is of interest to disciplines ranging from biology to swarm robotics. However, controllability can be too strict a condition, failing to capture a range of desirable behaviors. Herdability, which describes the ability to drive a system to a specific set in the state space, was recently introduced as an alternative network control notion. This paper considers the application of herdability to the study of complex networks. The herdability of a class of networked systems is investigated and two problems related to ensuring system herdability are explored. The first is the input addition problem, which investigates which nodes in a network should receive inputs to ensure that the system is herdable. The second is a related problem of selecting the best single node from which to herd the network, in the case that a single node is guaranteed to make the system is herdable. In order to select the best herding node, a novel control energy based herdability centrality measure is introduced.

  4. Systemic risk on different interbank network topologies

    Science.gov (United States)

    Lenzu, Simone; Tedeschi, Gabriele

    2012-09-01

    In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.

  5. The exploitation of neural networks in automotive engine management systems

    Energy Technology Data Exchange (ETDEWEB)

    Shayler, P.J.; Goodman, M. [University of Nottingham (United Kingdom); Ma, T. [Ford Motor Company, Dagenham (United Kingdom). Research and Engineering Centre

    2000-07-01

    The use of electronic engine control systems on spark ignition engines has enabled a high degree of performance optimisation to be achieved. The range of functions performed by these systems, and the level of performance demanded, is rising and thus so are development times and costs. Neural networks have attracted attention as having the potential to simplify software development and improve the performance of this software. The scope and nature of possible applications is described. In particular, the pattern recognition and classification abilities of networks are applied to crankshaft speed fluctuation data for engine-fault diagnosis, and multidimensional mapping capabilities are investigated as an alternative to large 'lookup' tables and calibration functions. (author)

  6. Large-scale computer networks and the future of legal knowledge-based systems

    NARCIS (Netherlands)

    Leenes, R.E.; Svensson, Jorgen S.; Hage, J.C.; Bench-Capon, T.J.M.; Cohen, M.J.; van den Herik, H.J.

    1995-01-01

    In this paper we investigate the relation between legal knowledge-based systems and large-scale computer networks such as the Internet. On the one hand, researchers of legal knowledge-based systems have claimed huge possibilities, but despite the efforts over the last twenty years, the number of

  7. Efficient Bayesian network modeling of systems

    International Nuclear Information System (INIS)

    Bensi, Michelle; Kiureghian, Armen Der; Straub, Daniel

    2013-01-01

    The Bayesian network (BN) is a convenient tool for probabilistic modeling of system performance, particularly when it is of interest to update the reliability of the system or its components in light of observed information. In this paper, BN structures for modeling the performance of systems that are defined in terms of their minimum link or cut sets are investigated. Standard BN structures that define the system node as a child of its constituent components or its minimum link/cut sets lead to converging structures, which are computationally disadvantageous and could severely hamper application of the BN to real systems. A systematic approach to defining an alternative formulation is developed that creates chain-like BN structures that are orders of magnitude more efficient, particularly in terms of computational memory demand. The formulation uses an integer optimization algorithm to identify the most efficient BN structure. Example applications demonstrate the proposed methodology and quantify the gained computational advantage

  8. Networking of safeguards systems

    International Nuclear Information System (INIS)

    Chare, P.; Dutrannois, A.; Kloeckner, W.; Swinhoe, M.

    1995-01-01

    This paper discusses the design of a safeguards system that can be incorporated into a plant during the final phase of its construction to permit the acquisition and transmission of data during plant operation in the absence of an inspector. The system is an example of a networked data system of weighing, identity, and NDA information. It collects all of its non-surveillance data produced by safeguards equipment in a fuel fabrication plant. The data collection and transfer tasks are carried out by two software packages: NEGUS, a redundant data acquisition system designed to record neutron coincidence data, high-resolution gamma spectra, and sensor data for the NDA information and associated barcode identity information, and BRANCH, which deals with weighing and associated identity information. These processes collect data from local electronics using an ethernet network and provide information to the main review program

  9. A neural network method for solving a system of linear variational inequalities

    International Nuclear Information System (INIS)

    Lan Hengyou; Cui Yishun

    2009-01-01

    In this paper, we transmute the solution for a new system of linear variational inequalities to an equilibrium point of neural networks, and by using analytic technique, some sufficient conditions are presented. Further, the estimation of the exponential convergence rates of the neural networks is investigated. The new and useful results obtained in this paper generalize and improve the corresponding results of recent works.

  10. Network aspects of the Fermilab control system

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.

    1977-01-01

    The control system of the Fermi National Accelerator is a heavily computerized network of distributed processors. One part of the control system includes a multidrop network of eleven Lockheed MAC-16 processors, a Digital Equipment Corporation PDP-11 computer, a Xerox 530, and a Control Data 6600 system. These computers exchange information using serial hardware and dedicated cable buses. The individual functions of the central processing units in this network, the message protocols for computer communications, and design guidelines for future distributed processing control systems are discussed

  11. Numerical Investigation of a Chip Printed Antenna Performances for Wireless Implantable Body Area Network Applications

    Science.gov (United States)

    Ramli, N. H.; Jaafar, H.; Lee, Y. S.

    2018-03-01

    Recently, wireless implantable body area network (WiBAN) system become an active area of research due to their various applications such as healthcare, support systems for specialized occupations and personal communications. Biomedical sensors networks mounted in the human body have drawn greater attention for health care monitoring systems. The implantable chip printed antenna for WiBAN applications is designed and the antenna performances is investigated in term of gain, efficiency, return loss, operating bandwidth and radiation pattern at different environments. This paper is presents the performances of implantable chip printed antenna in selected part of human body (hand, chest, leg, heart and skull). The numerical investigation is done by using human voxel model in built in the CST Microwave Studio Software. Results proved that the chip printed antenna is suitable to implant in the human hand model. The human hand model has less complex structure as it consists of skin, fat, muscle, blood and bone. Moreover, the antenna is implanted under the skin. Therefore the signal propagation path length to the base station at free space environment is considerably short. The antenna’s gain, efficiency and Specific Absorption Rate (SAR) are - 13.62dBi, 1.50 % and 0.12 W/kg respectively; which confirms the safety of the antenna usage. The results of the investigations can be used as guidance while designing chip implantable antenna in future.

  12. Advances in network systems architectures, security, and applications

    CERN Document Server

    Awad, Ali; Furtak, Janusz; Legierski, Jarosław

    2017-01-01

    This book provides the reader with a comprehensive selection of cutting–edge algorithms, technologies, and applications. The volume offers new insights into a range of fundamentally important topics in network architectures, network security, and network applications. It serves as a reference for researchers and practitioners by featuring research contributions exemplifying research done in the field of network systems. In addition, the book highlights several key topics in both theoretical and practical aspects of networking. These include wireless sensor networks, performance of TCP connections in mobile networks, photonic data transport networks, security policies, credentials management, data encryption for network transmission, risk management, live TV services, and multicore energy harvesting in distributed systems. .

  13. Towards a network operating system

    OpenAIRE

    López Álvarez, Victor; Gonzalez de Dios, Oscar; Fuentes, Beatriz; Yannuzzi, Marcelo; Fernández Palacios, Juan Pedro; Lopez, Diego

    2014-01-01

    A Network Operating System (NetOS) is a novel paradigm for developing a next-generation network management and operation platform. As we shall describe, NetOS not only goes far beyond the SDN concepts but also constitutes a fundamental enabler for NFV. © 2014 OSA.

  14. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy.

    Science.gov (United States)

    Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong

    2017-10-01

    Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals

  15. A preliminary investigation on the topology of Chinese climate networks

    International Nuclear Information System (INIS)

    Ge-Li, Wang; Tsonis, Anastasios A

    2009-01-01

    Complex networks have been studied across many fields of science in recent years. In this paper, we give a brief introduction of networks, then follow the original works by Tsonis et al (2004, 2006) starting with data of the surface temperature from 160 Chinese weather observations to investigate the topology of Chinese climate networks. Results show that the Chinese climate network exhibits a characteristic of regular, almost fully connected networks, which means that most nodes in this case have the same number of links, and so-called super nodes with a very large number of links do not exist there. In other words, though former results show that nodes in the extratropical region provide a property of scale-free networks, they still have other different local fine structures inside. We also detect the community of the Chinese climate network by using a Bayesian technique; the effective number of communities of the Chinese climate network is about four in this network. More importantly, this technique approaches results in divisions which have connections with physics and dynamics; the division into communities may highlight the aspects of the dynamics of climate variability. (geophysics, astronomy and astrophysics)

  16. Molecular System Dynamics for Self-Organization in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Milner StuartD

    2010-01-01

    Full Text Available We have been looking at the properties of physical configurations that occur in nature in order to characterize, predict, and control network robustness in dynamic communication networks. Our framework is based on the definition of a potential energy function to characterize robustness in communication networks and the study of first- and second-order variations of the potential energy to provide prediction and control strategies for network-performance optimization. This paper describes novel investigations within this framework that draw from molecular system dynamics. The Morse potential, which governs the energy stored in bonds within molecules, is considered for the characterization of the potential energy of communication links in the presence of physical constraints such as the power available at the transmitters in a network. The inclusion of the Morse potential translates into improved control strategies, where forces on network nodes drive the release, retention, or reconfiguration of communication links based on their role within the network architecture. The performance of the proposed approach is measured in terms of the number of source-to-destination connections that have an end-to-end communications path. Simulation results show the effectiveness of our control mechanism, where the physical topology reorganizes to maximize the number of source-to-destination communicating pairs. The algorithms developed are completely distributed, show constant time complexity and produce optimal solutions from local interactions, thus preserving the system's self-organizing capability.

  17. Investigation of efficient features for image recognition by neural networks.

    Science.gov (United States)

    Goltsev, Alexander; Gritsenko, Vladimir

    2012-04-01

    In the paper, effective and simple features for image recognition (named LiRA-features) are investigated in the task of handwritten digit recognition. Two neural network classifiers are considered-a modified 3-layer perceptron LiRA and a modular assembly neural network. A method of feature selection is proposed that analyses connection weights formed in the preliminary learning process of a neural network classifier. In the experiments using the MNIST database of handwritten digits, the feature selection procedure allows reduction of feature number (from 60 000 to 7000) preserving comparable recognition capability while accelerating computations. Experimental comparison between the LiRA perceptron and the modular assembly neural network is accomplished, which shows that recognition capability of the modular assembly neural network is somewhat better. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A Process Management System for Networked Manufacturing

    Science.gov (United States)

    Liu, Tingting; Wang, Huifen; Liu, Linyan

    With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.

  19. A systems biology approach to construct the gene regulatory network of systemic inflammation via microarray and databases mining

    Directory of Open Access Journals (Sweden)

    Lan Chung-Yu

    2008-09-01

    Full Text Available Abstract Background Inflammation is a hallmark of many human diseases. Elucidating the mechanisms underlying systemic inflammation has long been an important topic in basic and clinical research. When primary pathogenetic events remains unclear due to its immense complexity, construction and analysis of the gene regulatory network of inflammation at times becomes the best way to understand the detrimental effects of disease. However, it is difficult to recognize and evaluate relevant biological processes from the huge quantities of experimental data. It is hence appealing to find an algorithm which can generate a gene regulatory network of systemic inflammation from high-throughput genomic studies of human diseases. Such network will be essential for us to extract valuable information from the complex and chaotic network under diseased conditions. Results In this study, we construct a gene regulatory network of inflammation using data extracted from the Ensembl and JASPAR databases. We also integrate and apply a number of systematic algorithms like cross correlation threshold, maximum likelihood estimation method and Akaike Information Criterion (AIC on time-lapsed microarray data to refine the genome-wide transcriptional regulatory network in response to bacterial endotoxins in the context of dynamic activated genes, which are regulated by transcription factors (TFs such as NF-κB. This systematic approach is used to investigate the stochastic interaction represented by the dynamic leukocyte gene expression profiles of human subject exposed to an inflammatory stimulus (bacterial endotoxin. Based on the kinetic parameters of the dynamic gene regulatory network, we identify important properties (such as susceptibility to infection of the immune system, which may be useful for translational research. Finally, robustness of the inflammatory gene network is also inferred by analyzing the hubs and "weak ties" structures of the gene network

  20. Diagnostic Neural Network Systems for the Electronic Circuits

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Neural Networks is one of the most important artificial intelligent approaches for solving the diagnostic processes. This research concerns with uses the neural networks for diagnosis of the electronic circuits. Modern electronic systems contain both the analog and digital circuits. But, diagnosis of the analog circuits suffers from great complexity due to their nonlinearity. To overcome this problem, the proposed system introduces a diagnostic system that uses the neural network to diagnose both the digital and analog circuits. So, it can face the new requirements for the modern electronic systems. A fault dictionary method was implemented in the system. Experimental results are presented on three electronic systems. They are: artificial kidney, wireless network and personal computer systems. The proposed system has improved the performance of the diagnostic systems when applied for these practical cases

  1. ISC feedforward control of gasoline engine. Adaptive system using neural network; Jidoshayo gasoline engine no ISC feedforward seigyo. Neural network wo mochiita tekioka

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, N; Morita, S; Takiyama, T [Osaka City University, Osaka (Japan)

    1997-10-01

    For fuel economy and a good driver`s feeling, it is necessary for idle-speed to keep at a constant low speed. But keeping low speed has danger of engine stall when the engine torque is disturbed by the alternator, and so on. In this paper, adaptive feedforward idle-speed control system against electrical loads was investigated. This system was based on the reversed tansfer functions of the object system, and a neural network was used to adapt this system for aging. Then, this neural network was also used for creating feedforward table map. Good experimental results were obtained. 2 refs., 11 figs.

  2. Heating networks and domestic central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  3. Design of a sensor network system with a self-maintenance function for homeland security applications

    International Nuclear Information System (INIS)

    Fujiwara, Takeshi; Takahashi, Hiroyuki; Iyomoto, Naoko

    2008-01-01

    In this study, we develop a new concept of a robust wireless sensor network for homeland security applications. The sensor system consists of intelligent radiation sensors that can communicate each other through the wireless network. This structure can cover a wide area with a flexible geometry which is suitable for detecting a moving object with a detectable radiation source. Also, it has a tolerance against both the partial node's failure and packet errors; realized by a Self-Maintenance function. The Self-maintenance function is a function that enables an artifact to find, diagnosis and fix the trouble automatically and maintain itself. So far some approaches have been tried to realize robust monitoring system by applying the idea of multiplex system, based on ''2 out of 3'', but this requires a large amount of the hardware and is not suitable for sensor network systems. We designed a sensor network system with Self-Maintenance function based on qualitative reasoning technique for robust wireless sensor network system, and an instrument network based on ZigBee has been set up for investigations. CsI(Tl) gamma-ray detectors are used as sensors. The network system picks up correlation signals from sensors even some of sensors send false signals, which can be used as a reliable detection system for practical use. (author)

  4. Stabilization of model-based networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Francisco [CIDMA, Universidade de Aveiro, Aveiro (Portugal); Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); Abreu, Carlos [Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); CMEMS-UMINHO, Universidade do Minho, Braga (Portugal); Mendes, Paulo M. [CMEMS-UMINHO, Universidade do Minho, Braga (Portugal)

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.

  5. System for prediction of environmental emergency dose information network system

    International Nuclear Information System (INIS)

    Misawa, Makoto; Nagamori, Fumio

    2009-01-01

    In cases when an accident happens to arise with some risk for emission of a large amount radioactivity from the nuclear facilities, the environmental emergency due to this accident should be predicted rapidly and be informed immediately. The SPEEDI network system for such purpose was completed and now operated by Nuclear Safety Technology Center (NUSTEC) commissioned to do by Ministry of Education, Culture, Sports, Science and Technology, Japan. Fujitsu has been contributing to this project by developing the principal parts of the network performance, by introducing necessary servers, and also by keeping the network in good condition, such as with construction of the system followed by continuous operation and maintenance of the system. Real-time prediction of atmospheric diffusion of radionuclides for nuclear accidents in the world is now available with experimental verification for the real-time emergency response system. Improvement of worldwide version of the SPEEDI network system, accidental discharge of radionuclides with the function of simultaneous prediction for multiple domains and its evaluation is possible. (S. Ohno)

  6. VIOLIN: vaccine investigation and online information network.

    Science.gov (United States)

    Xiang, Zuoshuang; Todd, Thomas; Ku, Kim P; Kovacic, Bethany L; Larson, Charles B; Chen, Fang; Hodges, Andrew P; Tian, Yuying; Olenzek, Elizabeth A; Zhao, Boyang; Colby, Lesley A; Rush, Howard G; Gilsdorf, Janet R; Jourdian, George W; He, Yongqun

    2008-01-01

    Vaccines are among the most efficacious and cost-effective tools for reducing morbidity and mortality caused by infectious diseases. The vaccine investigation and online information network (VIOLIN) is a web-based central resource, allowing easy curation, comparison and analysis of vaccine-related research data across various human pathogens (e.g. Haemophilus influenzae, human immunodeficiency virus (HIV) and Plasmodium falciparum) of medical importance and across humans, other natural hosts and laboratory animals. Vaccine-related peer-reviewed literature data have been downloaded into the database from PubMed and are searchable through various literature search programs. Vaccine data are also annotated, edited and submitted to the database through a web-based interactive system that integrates efficient computational literature mining and accurate manual curation. Curated information includes general microbial pathogenesis and host protective immunity, vaccine preparation and characteristics, stimulated host responses after vaccination and protection efficacy after challenge. Vaccine-related pathogen and host genes are also annotated and available for searching through customized BLAST programs. All VIOLIN data are available for download in an eXtensible Markup Language (XML)-based data exchange format. VIOLIN is expected to become a centralized source of vaccine information and to provide investigators in basic and clinical sciences with curated data and bioinformatics tools for vaccine research and development. VIOLIN is publicly available at http://www.violinet.org.

  7. A Performance Evaluation of the Hemingway DSM System on a Network of SMPs

    National Research Council Canada - National Science Library

    Aggarwal, Anshu; Grumwald, Dirk

    1997-01-01

    .... In this paper we investigate the performance of a software distributed shared memory system, Hemingway, which is built out of such multiprocessor workstations, utilizing off-the-shelf communication networks...

  8. Investigating the effects of streamline-based fiber tractography on matrix scaling in brain connective network.

    Science.gov (United States)

    Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei

    2013-01-01

    Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.

  9. Evaluation of a Cyber Security System for Hospital Network.

    Science.gov (United States)

    Faysel, Mohammad A

    2015-01-01

    Most of the cyber security systems use simulated data in evaluating their detection capabilities. The proposed cyber security system utilizes real hospital network connections. It uses a probabilistic data mining algorithm to detect anomalous events and takes appropriate response in real-time. On an evaluation using real-world hospital network data consisting of incoming network connections collected for a 24-hour period, the proposed system detected 15 unusual connections which were undetected by a commercial intrusion prevention system for the same network connections. Evaluation of the proposed system shows a potential to secure protected patient health information on a hospital network.

  10. Method and system for mesh network embedded devices

    Science.gov (United States)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

  11. Geometric detection of coupling directions by means of inter-system recurrence networks

    International Nuclear Information System (INIS)

    Feldhoff, Jan H.; Donner, Reik V.; Donges, Jonathan F.; Marwan, Norbert; Kurths, Jürgen

    2012-01-01

    We introduce a geometric method for identifying the coupling direction between two dynamical systems based on a bivariate extension of recurrence network analysis. Global characteristics of the resulting inter-system recurrence networks provide a correct discrimination for weakly coupled Rössler oscillators not yet displaying generalised synchronisation. Investigating two real-world palaeoclimate time series representing the variability of the Asian monsoon over the last 10,000 years, we observe indications for a considerable influence of the Indian summer monsoon on climate in Eastern China rather than vice versa. The proposed approach can be directly extended to studying K>2 coupled subsystems.

  12. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  13. Computer networks ISE a systems approach

    CERN Document Server

    Peterson, Larry L

    2007-01-01

    Computer Networks, 4E is the only introductory computer networking book written by authors who have had first-hand experience with many of the protocols discussed in the book, who have actually designed some of them as well, and who are still actively designing the computer networks today. This newly revised edition continues to provide an enduring, practical understanding of networks and their building blocks through rich, example-based instruction. The authors' focus is on the why of network design, not just the specifications comprising today's systems but how key technologies and p

  14. Network theory and its applications in economic systems

    Science.gov (United States)

    Huang, Xuqing

    This dissertation covers the two major parts of my Ph.D. research: i) developing theoretical framework of complex networks; and ii) applying complex networks models to quantitatively analyze economics systems. In part I, we focus on developing theories of interdependent networks, which includes two chapters: 1) We develop a mathematical framework to study the percolation of interdependent networks under targeted-attack and find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. 2) We analytically demonstrates that clustering, which quantifies the propensity for two neighbors of the same vertex to also be neighbors of each other, significantly increases the vulnerability of the system. In part II, we apply the complex networks models to study economics systems, which also includes two chapters: 1) We study the US corporate governance network, in which nodes representing directors and links between two directors representing their service on common company boards, and propose a quantitative measure of information and influence transformation in the network. Thus we are able to identify the most influential directors in the network. 2) We propose a bipartite networks model to simulate the risk propagation process among commercial banks during financial crisis. With empirical bank's balance sheet data in 2007 as input to the model, we find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation during the financial crisis between 2008 and 2011. The results suggest that complex networks model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the

  15. Analysis of Time Delay Simulation in Networked Control System

    OpenAIRE

    Nyan Phyo Aung; Zaw Min Naing; Hla Myo Tun

    2016-01-01

    The paper presents a PD controller for the Networked Control Systems (NCS) with delay. The major challenges in this networked control system (NCS) are the delay of the data transmission throughout the communication network. The comparative performance analysis is carried out for different delays network medium. In this paper, simulation is carried out on Ac servo motor control system using CAN Bus as communication network medium. The True Time toolbox of MATLAB is used for simulation to analy...

  16. System markets: Indirect network effects in action, or inaction?

    NARCIS (Netherlands)

    J.L.G. Binken (Jeroen)

    2010-01-01

    textabstractIn this dissertation, I empirically examine system markets up close. More specifically I examine indirect network effects, both demand-side and supply-side indirect network effects. Indirect network effects are the source of positive feedback in system markets, or so network effect

  17. Predicting Geotechnical Investigation Using the Knowledge Based System

    Directory of Open Access Journals (Sweden)

    Bojan Žlender

    2016-01-01

    Full Text Available The purpose of this paper is to evaluate the optimal number of investigation points and each field test and laboratory test for a proper description of a building site. These optimal numbers are defined based on their minimum and maximum number and with the equivalent investigation ratio. The total increments of minimum and maximum number of investigation points for different building site conditions were determined. To facilitate the decision-making process for a number of investigation points, an Adaptive Network Fuzzy Inference System (ANFIS was proposed. The obtained fuzzy inference system considers the influence of several entry parameters and computes the equivalent investigation ratio. The developed model (ANFIS-SI can be applied to characterize any building site. The ANFIS-SI model takes into account project factors which are evaluated with a rating from 1 to 10. The model ANFIS-SI, with integrated recommendations can be used as a systematic decision support tool for engineers to evaluate the number of investigation points, field tests, and laboratory tests for a proper description of a building site. The determination of the optimal number of investigative points and the optimal number of each field test and laboratory test is presented on reference case.

  18. Network Management using Multi-Agents System

    Directory of Open Access Journals (Sweden)

    Nestor DUQUE

    2013-07-01

    Full Text Available This paper aims to present a multiagent system for network management. The models developed for the proposed system defines certain intelligent agents interact to achieve the objectives and requirements of the multiagent organization.These agents have the property of being adaptive, acquire knowledge and skills to make decisions according to the actual state of the network that is represented in the information base, MIB, SNMP devices. The ideal state of the network policy is defined by the end user entered, which contain the value that should have performance variables and other parameters such as the frequency with which these variables should be monitored.. An agent based architecture increase the integration, adaptability, cooperation, autonomy and the efficient operation in heterogeneous environment in the network supervision. 

  19. Network Management using Multi-Agents System

    Directory of Open Access Journals (Sweden)

    Gustavo ISAZA

    2012-12-01

    Full Text Available This paper aims to present a multiagent system for network management. The models developed for the proposed system defines certain intelligent agents interact to achieve the objectives and requirements of the multiagent organization.These agents have the property of being adaptive, acquire knowledge and skills to make decisions according to the actual state of the network that is represented in the information base, MIB, SNMP devices. The ideal state of the network policy is defined by the end user entered, which contain the value that should have performance variables and other parameters such as the frequency with which these variables should be monitored.. An agent based architecture increase the integration, adaptability, cooperation, autonomy and the efficient operation in heterogeneous environment in the network supervision. 

  20. System markets: Indirect network effects in action, or inaction?

    OpenAIRE

    Binken, Jeroen

    2010-01-01

    textabstractIn this dissertation, I empirically examine system markets up close. More specifically I examine indirect network effects, both demand-side and supply-side indirect network effects. Indirect network effects are the source of positive feedback in system markets, or so network effect theory tells us. Systems are composed of complementary and interdependent products, such as hardware and software. For instance, a video game system is composed of the video game console, on the one han...

  1. Evaluation and Investigation of the Delay in VoIP Networks

    Directory of Open Access Journals (Sweden)

    V. Janata

    2011-06-01

    Full Text Available The paper is focused mainly on the delay problems, which considerably influence the final quality of connections in VoIP (Voice over IP networks. The paper provides a detailed exploration of the nature and mechanisms of the delay. The main purpose of the investigation was an attempt to formulate a mathematical model of delay in the VoIP network and its subsequent analysis by laboratory data.

  2. Dynamic artificial neural networks with affective systems.

    Directory of Open Access Journals (Sweden)

    Catherine D Schuman

    Full Text Available Artificial neural networks (ANNs are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP and long term depression (LTD, and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.

  3. Pattern-Oriented Reengineering of a Network System

    Directory of Open Access Journals (Sweden)

    Chung-Horng Lung

    2004-08-01

    Full Text Available Reengineering is to reorganize and modify existing systems to enhance them or to make them more maintainable. Reengineering is usually necessary as systems evolve due to changes in requirements, technologies, and/or personnel. Design patterns capture recurring structures and dynamics among software participants to facilitate reuse of successful designs. Design patterns are common and well studied in network systems. In this project, we reengineer part of a network system with some design patterns to support future evolution and performance improvement. We start with reverse engineering effort to understand the system and recover its high level architecture. Then we apply concurrent and networked design patterns to restructure the main sub-system. Those patterns include Half-Sync/Half-Async, Monitor Object, and Scoped Locking idiom. The resulting system is more maintainable and has better performance.

  4. On the Connectivity of Wireless Network Systems and an Application in Teacher-Student Interactive Platforms

    Directory of Open Access Journals (Sweden)

    Xun Ge

    2014-01-01

    Full Text Available A wireless network system is a pair (U;B, where B is a family of some base stations and U is a set of their users. To investigate the connectivity of wireless network systems, this paper takes covering approximation spaces as mathematical models of wireless network systems. With the help of covering approximation operators, this paper characterizes the connectivity of covering approximation spaces by their definable subsets. Furthermore, it is obtained that a wireless network system is connected if and only if the relevant covering approximation space has no nonempty definable proper subset. As an application of this result, the connectivity of a teacher-student interactive platform is discussed, which is established in the School of Mathematical Sciences of Soochow University. This application further demonstrates the usefulness of rough set theory in pedagogy and makes it possible to research education by logical methods and mathematical methods.

  5. Atomic switch networks-nanoarchitectonic design of a complex system for natural computing.

    Science.gov (United States)

    Demis, E C; Aguilera, R; Sillin, H O; Scharnhorst, K; Sandouk, E J; Aono, M; Stieg, A Z; Gimzewski, J K

    2015-05-22

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing-a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  6. Windows 2012 Server network security securing your Windows network systems and infrastructure

    CERN Document Server

    Rountree, Derrick

    2013-01-01

    Windows 2012 Server Network Security provides the most in-depth guide to deploying and maintaining a secure Windows network. The book drills down into all the new features of Windows 2012 and provides practical, hands-on methods for securing your Windows systems networks, including: Secure remote access Network vulnerabilities and mitigations DHCP installations configuration MAC filtering DNS server security WINS installation configuration Securing wired and wireless connections Windows personal firewall

  7. Investigation of discrete-fracture network conceptual model uncertainty at Forsmark

    International Nuclear Information System (INIS)

    Geier, Joel

    2011-04-01

    In the present work a discrete fracture model has been further developed and implemented using the latest SKB site investigation data. The model can be used for analysing the fracture network and to model flow through the rock in Forsmark. The aim has been to study uncertainties in the hydrological discrete fracture network (DFN) for the repository model. More specifically the objective has been to study to which extent available data limits uncertainties in the DFN model and how data that can be obtained in future underground work can further limit these uncertainties. Moreover, the effects on deposition hole utilisation and placement have been investigated as well as the effects on the flow to deposition holes

  8. Network-assisted crop systems genetics: network inference and integrative analysis.

    Science.gov (United States)

    Lee, Tak; Kim, Hyojin; Lee, Insuk

    2015-04-01

    Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Towards a comprehensive understanding of emerging dynamics and function of pancreatic islets: A complex network approach. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    Loppini, Alessandro

    2018-03-01

    Complex network theory represents a comprehensive mathematical framework to investigate biological systems, ranging from sub-cellular and cellular scales up to large-scale networks describing species interactions and ecological systems. In their exhaustive and comprehensive work [1], Gosak et al. discuss several scenarios in which the network approach was able to uncover general properties and underlying mechanisms of cells organization and regulation, tissue functions and cell/tissue failure in pathology, by the study of chemical reaction networks, structural networks and functional connectivities.

  10. Networked inventory management systems: materializing supply chain management

    NARCIS (Netherlands)

    Verwijmeren, M.A.A.P.; Vlist, van der P.; Donselaar, van K.H.

    1996-01-01

    Aims to explain the driving forces for networked inventory management. Discusses major developments with respect to customer requirements, networked organizations and networked inventory management. Presents high level specifications of networked inventory management information systems (NIMISs).

  11. Investigation of multimedia didactic courseware of network on image diagnosis

    International Nuclear Information System (INIS)

    Yang Xiaochun; Gong Jianping; Shen Junkang; Lu Zhian; Chen Guangqiang

    2001-01-01

    Objective: To investigate the methods of the design of multimedia didactic courseware of network on image diagnosis and its characteristic. Methods: Based on the teaching material of 'image diagnosis', the images were collected with computers and scanners, and processed with graphic software, and then the multimedia didactic courseware was designed with Frontpage. Results: The design of multimedia didactic courseware of network has been completed. Domain name has been applied. Part of the courseware has been passed to the website. Conclusion: Multimedia didactic courseware of network, with bright prospects, is superior in agility of didactic style, in abundance of content, and in timeliness of information

  12. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  13. Submodularity in dynamics and control of networked systems

    CERN Document Server

    Clark, Andrew; Bushnell, Linda; Poovendran, Radha

    2016-01-01

    This book presents a framework for the control of networked systems utilizing submodular optimization techniques. The main focus is on selecting input nodes for the control of networked systems, an inherently discrete optimization problem with applications in power system stability, social influence dynamics, and the control of vehicle formations. The first part of the book is devoted to background information on submodular functions, matroids, and submodular optimization, and presents algorithms for distributed submodular optimization that are scalable to large networked systems. In turn, the second part develops a unifying submodular optimization approach to controlling networked systems based on multiple performance and controllability criteria. Techniques are introduced for selecting input nodes to ensure smooth convergence, synchronization, and robustness to environmental and adversarial noise. Submodular optimization is the first unifying approach towards guaranteeing both performance and controllabilit...

  14. Rational function systems and electrical networks with multiparameters

    CERN Document Server

    Lu, KaiSheng

    2012-01-01

    To overcome the problems of system theory and network theory over real field, this book uses matrices over the field F(z) of rational functions in multiparameters describing coefficient matrices of systems and networks and makes systems and network description over F(z) and researches their structural properties: reducible condition of a class of matrices over F(z) and their characteristic polynomial; type1 matrix and two basic properties; variable replacement conditions for independent parameters; structural controllability and observability of linear systems over F(z); separability, reducibi

  15. Spontaneous formation of dynamical groups in an adaptive networked system

    International Nuclear Information System (INIS)

    Li Menghui; Guan Shuguang; Lai, C-H

    2010-01-01

    In this work, we investigate a model of an adaptive networked dynamical system, where the coupling strengths among phase oscillators coevolve with the phase states. It is shown that in this model the oscillators can spontaneously differentiate into two dynamical groups after a long time evolution. Within each group, the oscillators have similar phases, while oscillators in different groups have approximately opposite phases. The network gradually converts from the initial random structure with a uniform distribution of connection strengths into a modular structure that is characterized by strong intra-connections and weak inter-connections. Furthermore, the connection strengths follow a power-law distribution, which is a natural consequence of the coevolution of the network and the dynamics. Interestingly, it is found that if the inter-connections are weaker than a certain threshold, the two dynamical groups will almost decouple and evolve independently. These results are helpful in further understanding the empirical observations in many social and biological networks.

  16. On Emulation-Based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzel, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an in- strumented environment and checking the execution traces for signs of shellcode activity.

  17. On emulation-based network intrusion detection systems

    NARCIS (Netherlands)

    Abbasi, A.; Wetzels, J.; Bokslag, W.; Zambon, E.; Etalle, S.; Stavrou, A.; Bos, H.; Portokalidis, G.

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an instrumented environment and checking the execution traces for signs of shellcode activity.

  18. Wireless Sensor Network Metrics for Real-Time Systems

    Science.gov (United States)

    2009-05-20

    Wireless Sensor Network Metrics for Real-Time Systems Phoebus Wei-Chih Chen Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Wireless Sensor Network Metrics for Real-Time Systems 5a. CONTRACT NUMBER 5b... wireless sensor networks (WSNs) is moving from studies of WSNs in isolation toward studies where the WSN is treated as a component of a larger system

  19. The J-Staff System, Network Synchronisation and Noise

    Science.gov (United States)

    2014-06-01

    0 19th ICCRTS “C2 Agility: Lessons Learned from Research and Operations” The J-Staff System, Network Synchronisation and Noise Topics: 2, 5...DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE The J-Staff System, Network Synchronisation and Noise 5a. CONTRACT NUMBER 5b...Prescribed by ANSI Std Z39-18 1 The J-staff system, Network Synchronisation and Noise Alexander Kalloniatis, Mathew Zuparic Joint & Operations Analysis

  20. Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.

    Science.gov (United States)

    Aftab, Muhammad Saleheen; Shafiq, Muhammad

    2015-11-01

    This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Adaptive mechanism-based congestion control for networked systems

    Science.gov (United States)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  2. Game-theoretic strategies for asymmetric networked systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Ma, Chris Y. T. [Hang Seng Management College, Hon Kong; Hausken, Kjell [University of Stavanger, Norway; He, Fei [Texas A& M University, Kingsville, TX, USA; Yau, David K. Y. [Singapore University of Technology and Design; Zhuang, Jun [University at Buffalo (SUNY)

    2017-07-01

    Abstract—We consider an infrastructure consisting of a network of systems each composed of discrete components that can be reinforced at a certain cost to guard against attacks. The network provides the vital connectivity between systems, and hence plays a critical, asymmetric role in the infrastructure operations. We characterize the system-level correlations using the aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual system or network. The survival probabilities of systems and network satisfy first-order differential conditions that capture the component-level correlations. We formulate the problem of ensuring the infrastructure survival as a game between anattacker and a provider, using the sum-form and product-form utility functions, each composed of a survival probability term and a cost term. We derive Nash Equilibrium conditions which provide expressions for individual system survival probabilities, and also the expected capacity specified by the total number of operational components. These expressions differ only in a single term for the sum-form and product-form utilities, despite their significant differences.We apply these results to simplified models of distributed cloud computing infrastructures.

  3. Data networks and open systems

    International Nuclear Information System (INIS)

    Rosner, R.A.

    1985-01-01

    Computing in the LEP era will require a variety of communications facilities, ranging from high-speed local area networks forming the backbones of distributed control systems to wide area networks connecting data analysis centres together. The ISO model for Open Systems Interconnection (OSI) offers a possible framework for the general study of communications environments, whatever their performance parameters or geographical extent. This series of lectures uses the model as the basis for discussing elements of the communications hierarchy likely to be required for LEP computing. Examples are given of the practical application of OSI principles to real communications problems. (orig.)

  4. Constructing networks from a dynamical system perspective for multivariate nonlinear time series.

    Science.gov (United States)

    Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael

    2016-03-01

    We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.

  5. Zebra: A striped network file system

    Science.gov (United States)

    Hartman, John H.; Ousterhout, John K.

    1992-01-01

    The design of Zebra, a striped network file system, is presented. Zebra applies ideas from log-structured file system (LFS) and RAID research to network file systems, resulting in a network file system that has scalable performance, uses its servers efficiently even when its applications are using small files, and provides high availability. Zebra stripes file data across multiple servers, so that the file transfer rate is not limited by the performance of a single server. High availability is achieved by maintaining parity information for the file system. If a server fails its contents can be reconstructed using the contents of the remaining servers and the parity information. Zebra differs from existing striped file systems in the way it stripes file data: Zebra does not stripe on a per-file basis; instead it stripes the stream of bytes written by each client. Clients write to the servers in units called stripe fragments, which are analogous to segments in an LFS. Stripe fragments contain file blocks that were written recently, without regard to which file they belong. This method of striping has numerous advantages over per-file striping, including increased server efficiency, efficient parity computation, and elimination of parity update.

  6. Networked control of microgrid system of systems

    Science.gov (United States)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  7. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  8. Complex network synchronization of chaotic systems with delay coupling

    International Nuclear Information System (INIS)

    Theesar, S. Jeeva Sathya; Ratnavelu, K.

    2014-01-01

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology

  9. White blood cells identification system based on convolutional deep neural learning networks.

    Science.gov (United States)

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  10. Event-Triggered Fault Detection of Nonlinear Networked Systems.

    Science.gov (United States)

    Li, Hongyi; Chen, Ziran; Wu, Ligang; Lam, Hak-Keung; Du, Haiping

    2017-04-01

    This paper investigates the problem of fault detection for nonlinear discrete-time networked systems under an event-triggered scheme. A polynomial fuzzy fault detection filter is designed to generate a residual signal and detect faults in the system. A novel polynomial event-triggered scheme is proposed to determine the transmission of the signal. A fault detection filter is designed to guarantee that the residual system is asymptotically stable and satisfies the desired performance. Polynomial approximated membership functions obtained by Taylor series are employed for filtering analysis. Furthermore, sufficient conditions are represented in terms of sum of squares (SOSs) and can be solved by SOS tools in MATLAB environment. A numerical example is provided to demonstrate the effectiveness of the proposed results.

  11. Efficient network monitoring for large data acquisition systems

    International Nuclear Information System (INIS)

    Savu, D.O.; Martin, B.; Al-Shabibi, A.; Sjoen, R.; Batraneanu, S.M.; Stancu, S.N.

    2012-01-01

    Though constantly evolving and improving, the available network monitoring solutions have limitations when applied to the infrastructure of a high speed realtime data acquisition (DAQ) system. DAQ networks are particular computer networks where experts have to pay attention to both individual subsections as well as system wide traffic flows while monitoring the network. The ATLAS Network at the Large Hadron Collider (LHC) has more than 200 switches interconnecting 3500 hosts and totaling 8500 high speed links. The use of heterogeneous tools for monitoring various infrastructure parameters, in order to assure optimal DAQ system performance, proved to be a tedious and time consuming task for experts. To alleviate this problem we used our networking and DAQ expertise to build a flexible and scalable monitoring system providing an intuitive user interface with the same look and feel irrespective of the data provider that is used. Our system uses custom developed components for critical performance monitoring and seamlessly integrates complementary data from auxiliary tools, such as NAGIOS, information services or custom databases. A number of techniques (e.g. normalization, aggregation and data caching) were used in order to improve the user interface response time. The end result is a unified monitoring interface, for fast and uniform access to system statistics, which significantly reduced the time spent by experts for ad-hoc and post-mortem analysis. (authors)

  12. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  13. Time-Varying, Multi-Scale Adaptive System Reliability Analysis of Lifeline Infrastructure Networks

    Energy Technology Data Exchange (ETDEWEB)

    Gearhart, Jared Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kurtz, Nolan Scot [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The majority of current societal and economic needs world-wide are met by the existing networked, civil infrastructure. Because the cost of managing such infrastructure is high and increases with time, risk-informed decision making is essential for those with management responsibilities for these systems. To address such concerns, a methodology that accounts for new information, deterioration, component models, component importance, group importance, network reliability, hierarchical structure organization, and efficiency concerns has been developed. This methodology analyzes the use of new information through the lens of adaptive Importance Sampling for structural reliability problems. Deterioration, multi-scale bridge models, and time-variant component importance are investigated for a specific network. Furthermore, both bridge and pipeline networks are studied for group and component importance, as well as for hierarchical structures in the context of specific networks. Efficiency is the primary driver throughout this study. With this risk-informed approach, those responsible for management can address deteriorating infrastructure networks in an organized manner.

  14. On control of Hopf bifurcation in time-delayed neural network system

    International Nuclear Information System (INIS)

    Zhou Shangbo; Liao Xiaofeng; Yu Juebang; Wong Kwokwo

    2005-01-01

    The control of Hopf bifurcations in neural network systems is studied in this Letter. The asymptotic stability theorem and the relevant corollary for linearized nonlinear dynamical systems are proven. In particular, a novel method for analyzing the local stability of a dynamical system with time-delay is suggested. For the time-delayed system consisting of one or two neurons, a washout filter based control model is proposed and analyzed. By employing the stability theorems derived, we investigate the stability of a control system and state the relevant theorems for choosing the parameters of the stabilized control system

  15. SERS investigations and electrical recording of neuronal networks with three-dimensional plasmonic nanoantennas (Conference Presentation)

    Science.gov (United States)

    De Angelis, Francesco

    2017-06-01

    SERS investigations and electrical recording of neuronal networks with three-dimensional plasmonic nanoantennas Michele Dipalo, Valeria Caprettini, Anbrea Barbaglia, Laura Lovato, Francesco De Angelis e-mail: francesco.deangelis@iit.it Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova Biological systems are analysed mainly by optical, chemical or electrical methods. Normally each of these techniques provides only partial information about the environment, while combined investigations could reveal new phenomena occurring in complex systems such as in-vitro neuronal networks. Aiming at the merging of optical and electrical investigations of biological samples, we introduced three-dimensional plasmonic nanoantennas on CMOS-based electrical sensors [1]. The overall device is then capable of enhanced Raman Analysis of cultured cells combined with electrical recording of neuronal activity. The Raman measurements show a much higher sensitivity when performed on the tip of the nanoantenna in respect to the flat substrate [2]; this effect is a combination of the high plasmonic field enhancement and of the tight adhesion of cells on the nanoantenna tip. Furthermore, when plasmonic opto-poration is exploited [3] the 3D nanoelectrodes are able to penetrate through the cell membrane thus accessing the intracellular environment. Our latest results (unpublished) show that the technique is completely non-invasive and solves many problems related to state-of-the-art intracellular recording approaches on large neuronal networks. This research received funding from ERC-IDEAS Program: "Neuro-Plasmonics" [Grant n. 616213]. References: [1] M. Dipalo, G. C. Messina, H. Amin, R. La Rocca, V. Shalabaeva, A. Simi, A. Maccione, P. Zilio, L. Berdondini, F. De Angelis, Nanoscale 2015, 7, 3703. [2] R. La Rocca, G. C. Messina, M. Dipalo, V. Shalabaeva, F. De Angelis, Small 2015, 11, 4632. [3] G. C. Messina et al., Spatially, Temporally, and Quantitatively Controlled Delivery of

  16. COORDINATION IN MULTILEVEL NETWORK-CENTRIC CONTROL SYSTEMS OF REGIONAL SECURITY: APPROACH AND FORMAL MODEL

    Directory of Open Access Journals (Sweden)

    A. V. Masloboev

    2015-01-01

    Full Text Available The paper deals with development of methods and tools for mathematical and computer modeling of the multilevel network-centric control systems of regional security. This research is carried out under development strategy implementation of the Arctic zone of the Russian Federation and national safeguarding for the period before 2020 in the Murmansk region territory. Creation of unified interdepartmental multilevel computer-aided system is proposed intended for decision-making information support and socio-economic security monitoring of the Arctic regions of Russia. The distinctive features of the investigated system class are openness, self-organization, decentralization of management functions and decision-making, weak hierarchy in the decision-making circuit and goal generation capability inside itself. Research techniques include functional-target approach, mathematical apparatus of multilevel hierarchical system theory and principles of network-centric control of distributed systems with pro-active components and variable structure. The work considers network-centric management local decisions coordination problem-solving within the multilevel distributed systems intended for information support of regional security. The coordination problem-solving approach and problem formalization in the multilevel network-centric control systems of regional security have been proposed based on developed multilevel recurrent hierarchical model of regional socio-economic system complex security. The model provides coordination of regional security indexes, optimized by the different elements of multilevel control systems, subject to decentralized decision-making. The model specificity consists in application of functional-target technology and mathematical apparatus of multilevel hierarchical system theory for coordination procedures implementation of the network-centric management local decisions. The work-out and research results can find further

  17. Optical multicast system for data center networks.

    Science.gov (United States)

    Samadi, Payman; Gupta, Varun; Xu, Junjie; Wang, Howard; Zussman, Gil; Bergman, Keren

    2015-08-24

    We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical and electronic switched traffic routing in the data plane layer. The control plane includes a resource allocation algorithm to optimally assign optical splitters to the flows. The hardware architecture is built on a hybrid network with both Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS) networks to aggregate Top-of-Rack switches. The OCS is also the connectivity substrate of splitters to the optical network. The optical multicast system implementation requires only commodity optical components. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Experimental and numerical results show simultaneous delivery of multicast flows to all receivers with steady throughput. Compared to IP multicast that is the electronic counterpart, optical multicast performs with less protocol complexity and reduced energy consumption. Compared to peer-to-peer multicast methods, it achieves at minimum an order of magnitude higher throughput for flows under 250 MB with significantly less connection overheads. Furthermore, for delivering 20 TB of data containing only 15% multicast flows, it reduces the total delivery energy consumption by 50% and improves latency by 55% compared to a data center with a sole non-blocking EPS network.

  18. Individual heterogeneity generating explosive system network dynamics.

    Science.gov (United States)

    Manrique, Pedro D; Johnson, Neil F

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  19. Individual heterogeneity generating explosive system network dynamics

    Science.gov (United States)

    Manrique, Pedro D.; Johnson, Neil F.

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  20. Systems pharmacology - Towards the modeling of network interactions.

    Science.gov (United States)

    Danhof, Meindert

    2016-10-30

    Mechanism-based pharmacokinetic and pharmacodynamics (PKPD) and disease system (DS) models have been introduced in drug discovery and development research, to predict in a quantitative manner the effect of drug treatment in vivo in health and disease. This requires consideration of several fundamental properties of biological systems behavior including: hysteresis, non-linearity, variability, interdependency, convergence, resilience, and multi-stationarity. Classical physiology-based PKPD models consider linear transduction pathways, connecting processes on the causal path between drug administration and effect, as the basis of drug action. Depending on the drug and its biological target, such models may contain expressions to characterize i) the disposition and the target site distribution kinetics of the drug under investigation, ii) the kinetics of target binding and activation and iii) the kinetics of transduction. When connected to physiology-based DS models, PKPD models can characterize the effect on disease progression in a mechanistic manner. These models have been found useful to characterize hysteresis and non-linearity, yet they fail to explain the effects of the other fundamental properties of biological systems behavior. Recently systems pharmacology has been introduced as novel approach to predict in vivo drug effects, in which biological networks rather than single transduction pathways are considered as the basis of drug action and disease progression. These models contain expressions to characterize the functional interactions within a biological network. Such interactions are relevant when drugs act at multiple targets in the network or when homeostatic feedback mechanisms are operative. As a result systems pharmacology models are particularly useful to describe complex patterns of drug action (i.e. synergy, oscillatory behavior) and disease progression (i.e. episodic disorders). In this contribution it is shown how physiology-based PKPD and

  1. Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System

    Directory of Open Access Journals (Sweden)

    A. A. Salama

    2015-03-01

    Full Text Available In this paper, we present a review of different recommender system algorithms that are utilized in social networks based e-Learning systems. Future research will include our proposed our e-Learning system that utilizes Recommender System and Social Network. Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache in [21, 22, 23] and Salama et al. in [24-66].The purpose of this paper is to utilize a neutrosophic set to analyze social networks data conducted through learning activities.

  2. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    Science.gov (United States)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.

  3. Analysis of complex systems using neural networks

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  4. Synchronization in Complex Networks of Nonlinear Dynamical Systems

    CERN Document Server

    Wu, Chai Wah

    2007-01-01

    This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide

  5. PWR system simulation and parameter estimation with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice; Colak, Uener E-mail: uc@nuke.hacettepe.edu.tr

    2002-11-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within {+-}0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected.

  6. PWR system simulation and parameter estimation with neural networks

    International Nuclear Information System (INIS)

    Akkurt, Hatice; Colak, Uener

    2002-01-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within ±0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected

  7. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    Science.gov (United States)

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  8. Deep Space Network information system architecture study

    Science.gov (United States)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  9. An Improved Recurrent Neural Network for Complex-Valued Systems of Linear Equation and Its Application to Robotic Motion Tracking.

    Science.gov (United States)

    Ding, Lei; Xiao, Lin; Liao, Bolin; Lu, Rongbo; Peng, Hua

    2017-01-01

    To obtain the online solution of complex-valued systems of linear equation in complex domain with higher precision and higher convergence rate, a new neural network based on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network for complex-valued systems of linear equation in complex domain is proposed and theoretically proved to be convergent within finite time. Then, the illustrative results show that the new neural network model has the higher precision and the higher convergence rate, as compared with the gradient neural network (GNN) model and the ZNN model. Finally, the application for controlling the robot using the proposed method for the complex-valued systems of linear equation is realized, and the simulation results verify the effectiveness and superiorness of the new neural network for the complex-valued systems of linear equation.

  10. Intrusion Detection in Networked Control Systems: From System Knowledge to Network Security

    OpenAIRE

    Caselli, M.

    2016-01-01

    Networked control system‿ (NCS) is an umbrella term encompassing a broad variety of infrastructures such as industrial control systems (ICSs) and building automation systems (BASs). Nowadays, all these infrastructures play an important role in several aspects of our daily life, from managing essential services such as en- ergy and water (e.g., critical infrastructures) to monitoring the increasingly smart environments that surround us (e.g., the Internet of Things). Over the years, NCS techn...

  11. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  12. A Net of Friends: Investigating Friendship by Integrating Attachment Theory and Social Network Analysis.

    Science.gov (United States)

    Gillath, Omri; Karantzas, Gery C; Selcuk, Emre

    2017-11-01

    The current article focuses on attachment style-an individual difference widely studied in the field of close relationships-and its application to the study of social networks. Specifically, we investigated whether attachment style predicts perception and management of social networks. In Study 1, we examined the associations of attachment style with perceptions of network tie strength and multiplexity. In Studies 2a and 2b, we investigated the association between attachment style and network management skills (initiating, maintaining, and dissolving ties) and whether network management skills mediated the associations of attachment style with network tie strength and multiplexity. In Study 3, experimentally enhancing attachment security made people more likely to initiate and less likely to dissolve social ties (for the latter, especially among those high on avoidance or anxiety). As for maintenance, security priming also increased maintenance; however, mainly among people high on attachment anxiety or low on attachment avoidance.

  13. System analysis and planning of a gas distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Edwin F.M.; Farias, Helio Monteiro [AUTOMIND, Rio de Janeiro, RJ (Brazil); Costa, Carla V.R. [Universidade Salvador (UNIFACS), BA (Brazil)

    2009-07-01

    The increase in demand by gas consumers require that projects or improvements in gas distribution networks be made carefully and safely to ensure a continuous, efficient and economical supply. Gas distribution companies must ensure that the networks and equipment involved are defined and designed at the appropriate time to attend to the demands of the market. To do that a gas distribution network analysis and planning tool should use distribution networks and transmission models for the current situation and the future changes to be implemented. These models are used to evaluate project options and help in making appropriate decisions in order to minimize the capital investment in new components or simple changes in operational procedures. Gas demands are increasing and it is important that gas distribute design new distribution systems to ensure this growth, considering financial constraints of the company, as well as local legislation and regulation. In this study some steps of developing a flexible system that attends to those needs will be described. The analysis of distribution requires geographically referenced data for the models as well as an accurate connectivity and the attributes of the equipment. GIS systems are often used as a deposit center that holds the majority of this information. GIS systems are constantly updated as distribution network equipment is modified. The distribution network modeling gathered from this system ensures that the model represents the current network condition. The benefits of this architecture drastically reduce the creation and maintenance cost of the network models, because network components data are conveniently made available to populate the distribution network. This architecture ensures that the models are continually reflecting the reality of the distribution network. (author)

  14. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dynamical systems on networks a tutorial

    CERN Document Server

    Porter, Mason A

    2016-01-01

    This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Appli...

  16. Communication and control for networked complex systems

    CERN Document Server

    Peng, Chen; Han, Qing-Long

    2015-01-01

    This book reports on the latest advances in the study of Networked Control Systems (NCSs). It highlights novel research concepts on NCSs; the analysis and synthesis of NCSs with special attention to their networked character; self- and event-triggered communication schemes for conserving limited network resources; and communication and control co-design for improving the efficiency of NCSs. The book will be of interest to university researchers, control and network engineers, and graduate students in the control engineering, communication and network sciences interested in learning the core principles, methods, algorithms and applications of NCSs.

  17. A distributed database view of network tracking systems

    Science.gov (United States)

    Yosinski, Jason; Paffenroth, Randy

    2008-04-01

    In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.

  18. Networking the Home and University: How Families Can Be Integrated into Proximate/Distant Computer Systems.

    Science.gov (United States)

    Watson, J. Allen; And Others

    1989-01-01

    Describes study that was conducted to determine the feasibility of networking home microcomputers with a university mainframe system in order to investigate a new family process research paradigm, as well as the design and function of the microcomputer/mainframe system. Test instrumentation is described and systems' reliability and validity are…

  19. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  20. Reconfigurable radio systems network architectures and standards

    CERN Document Server

    Iacobucci, Maria Stella

    2013-01-01

    This timely book provides a standards-based view of the development, evolution, techniques and potential future scenarios for the deployment of reconfigurable radio systems.  After an introduction to radiomobile and radio systems deployed in the access network, the book describes cognitive radio concepts and capabilities, which are the basis for reconfigurable radio systems.  The self-organizing network features introduced in 3GPP standards are discussed and IEEE 802.22, the first standard based on cognitive radio, is described. Then the ETSI reconfigurable radio systems functional ar

  1. Decision support for the definition of wind turbine systems adequacy to site specificities and weak electrical networks

    International Nuclear Information System (INIS)

    Arbaoui, A.

    2006-10-01

    A decision support system for the definition of wind turbine systems is developed by taking into account the wind and site characteristics, the wind turbine components and the electrical network properties close to the site. The approach is based on functional analysis, on the investigation of the functional fluxes and on the definition of a model suitable for supporting decision at the preliminary stages of wind turbine design. The complete set of solutions derived from the model is determined using a Constraint Satisfaction Problem solver. The intrinsic capability of the model to support decision is derived from the investigation of the model parsimony, precision, exactness and specialization. The model takes into account performance criteria resulting from knowledge of manufacturers, distributors and investors. These criteria are used to discriminate design alternatives. Design alternatives correspond to choices of site (wind, electric network) and wind turbine architectures (related to 7 design variables). Performance criteria are the cost of electric kWh, the amount of energy being produced and the discounted total cost of the project. Electric network connection to wind turbines is taken into account through slow variations of the voltage and Flickers phenomenon. First, the maximal rate of penetration of the wind turbine energy production is determined. Next, two design alternatives have been investigated to improve wind turbine system integration in electric distribution networks. These alternatives are a reactive power control system and an inertial energy storage system. Inertial storage systems seem to be more expensive than reactive power control systems for this type of application. The influence of site specificities on decision making process has been established through three different sites (a Mediterranean site and two sites located in northern Europe). Profits relative to the cost of kWh appear to be high for Mediterranean sites. Most of the

  2. What Does Global Migration Network Say about Recent Changes in the World System Structure?

    Science.gov (United States)

    Zinkina, Julia; Korotayev, Andrey

    2014-01-01

    Purpose: The aim of this paper is to investigate whether the structure of the international migration system has remained stable through the recent turbulent changes in the world system. Design/methodology/approach: The methodology draws on the social network analysis framework--but with some noteworthy limitations stipulated by the specifics of…

  3. Computer systems and networks status and perspectives

    CERN Document Server

    Zacharov, V

    1981-01-01

    The properties of computers are discussed, both as separate units and in inter-coupled systems. The main elements of modern processor technology are reviewed and the associated peripheral components are discussed in the light of the prevailing rapid pace of developments. Particular emphasis is given to the impact of very large scale integrated circuitry in these developments. Computer networks are considered in some detail, including common-carrier and local-area networks, and the problem of inter-working is included in the discussion. Components of network systems and the associated technology are also among the topics treated.

  4. Computer systems and networks: Status and perspectives

    International Nuclear Information System (INIS)

    Zacharov, Z.

    1981-01-01

    The properties of computers are discussed, both as separate units and in inter-coupled systems. The main elements of modern processor thechnology are reviewed and the associated peripheral components are disscussed in the light of the prevailling rapid pace of developments. Particular emphais is given to the impact of very large scale integrated circuitry in these developments. Computer networks, and considered in some detail, including comon-carrier and local-area networks and the problem of inter-working is included in the discussion. Components of network systems and the associated technology are also among the topics treated. (orig.)

  5. Supervised cognitive system: A new vision for cognitive engine design in wireless networks

    KAUST Repository

    Alqerm, Ismail

    2018-03-19

    Cognitive radio attracts researchers\\' attention recently in radio resource management due to its ability to exploit environment awareness in configuring radio system parameters. Cognitive engine (CE) is the structure known for deciding system parameters\\' adaptation using optimization and machine learning techniques. However, these techniques have strengths and weaknesses depending on the experienced network scenario that make one more appropriate than others. In this paper, we propose a novel design for the cognitive system called supervised cognitive system (SCS), which aims to perform radio parameters adaptation with the most appropriate CE learning technique for the encountered network scenario. To realize SCS, it is required to evaluate the performance of different CEs in different network scenarios and according to certain performance objectives. In addition, the ability to select the most appropriate CE learning technique for adaptation in the current network scenario is also a priority in our design. Therefore, SCS investigates the relationship between learning and performance improvement and it employs online learning to classify scenarios and select the most appropriate CE learning technique. The testbed implementation and evaluation results in terms of goodput, packet error rate, and spectral efficiency show that the proposed SCS achieves more than 50% in performance gain compared to the best standalone CE.

  6. Investigating the performance of neural network backpropagation algorithms for TEC estimations using South African GPS data

    Science.gov (United States)

    Habarulema, J. B.; McKinnell, L.-A.

    2012-05-01

    In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC) estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP), backpropagation with weight delay (BPWD), backpropagation with momentum (BPM) term, backpropagation with chunkwise weight update (BPC) and backpropagation for batch (BPB) training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS) and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS) observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP), which achieves convergence after the least number of iterations during training. In this paper, neural network (NN) models were developed using hourly TEC data (for 8 years: 2000-2007) derived from GPS observations over a receiver station located at Sutherland (SUTH) (32.38° S, 20.81° E), South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN) (33.95° S, 18.47° E) and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.

  7. Investigation of Spatial Data with Open Source Social Network Analysis and Geographic Information Systems Applications

    Science.gov (United States)

    Sabah, L.; Şimşek, M.

    2017-11-01

    Social networks are the real social experience of individuals in the online environment. In this environment, people use symbolic gestures and mimics, sharing thoughts and content. Social network analysis is the visualization of complex and large quantities of data to ensure that the overall picture appears. It is the understanding, development, quantitative and qualitative analysis of the relations in the social networks of Graph theory. Social networks are expressed in the form of nodes and edges. Nodes are people/organizations, and edges are relationships between nodes. Relations are directional, non-directional, weighted, and weightless. The purpose of this study is to examine the effects of social networks on the evaluation of person data with spatial coordinates. For this, the cluster size and the effect on the geographical area of the circle where the placements of the individual are influenced by the frequently used placeholder feature in the social networks have been studied.

  8. On Real-Time Systems Using Local Area Networks.

    Science.gov (United States)

    1987-07-01

    87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in

  9. Value Systems Alignment Analysis in Collaborative Networked Organizations Management

    Directory of Open Access Journals (Sweden)

    Patricia Macedo

    2017-11-01

    Full Text Available The assessment of value systems alignment can play an important role in the formation and evolution of collaborative networks, contributing to reduce potential risks of collaboration. For this purpose, an assessment tool is proposed as part of a collaborative networks information system, supporting both the formation and evolution of long-term strategic alliances and goal-oriented networks. An implementation approach for value system alignment analysis is described, which is intended to assist managers in virtual and networked organizations management. The implementation of the assessment and analysis methods is supported by a set of software services integrated in the information system that supports the management of the networked organizations. A case study in the solar energy sector was conducted, and the data collected through this study allow us to confirm the practical applicability of the proposed methods and the software services.

  10. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... the UAB-SCIMS More The UAB-SCIMS Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network as a resource to promote knowledge in the ...

  11. Investigation of Load Sharing in Hybrid (2G/3G) Mobile Networks

    OpenAIRE

    Martynas Stirbys; Karolis Žvinys

    2015-01-01

    The main purpose of this work is to investigate load sharing methods for 2G/3G cellular networks in order to determine their impact on the network and users. One of the study aims is to analyze the performance of the methods. Moreover the paper provides an overview of the methods circumstances, limitations. Directed Retry and Load Based Handover methods were chosen. Data was obtained from real Lithuanian mobile operator’s network. The paper also discusses the changes in Key Performance Indica...

  12. Governance of Health Systems Comment on “A Network Based Theory of Health Systems and Cycles of Well-Being”

    OpenAIRE

    Blanchet, Karl

    2013-01-01

    Health systems research aims to understand the governance of health systems (i.e. how health systems function and perform and how their actors interact with each other). This can be achieved by applying innovative methodologies and concepts that are going to capture the complexity and dynamics of health systems when they are affected by shocks. The capacity of health systems to adapt to shocks (i.e. the resilience of health systems) is a new area of investigation. Social network analysis is a...

  13. Altered structural connectivity of pain-related brain network in burning mouth syndrome-investigation by graph analysis of probabilistic tractography.

    Science.gov (United States)

    Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu

    2017-05-01

    Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.

  14. Design and Realization of Network Teaching System

    Directory of Open Access Journals (Sweden)

    Ji Shan Shan

    2016-01-01

    Full Text Available Since 21 century, with the wide spread in family and public, network has been applied in many new fields, and the application in classes is of no exception. In traditional education, teachers give lessons to students face to face. Hence, the teaching quality depends largely on the quality and initiative of the individual teacher. However, the serious disadvantages of this mode are that teachers completely dominate the classroom and may ignore the subjective cognition role of the students, which may be bad for the growth of creativity and the innovative thinking ability. Obviously, traditional education mode cannot meet the requirements of the this new era which leads to the booming developing tendency of the network. As a new teaching measure, scientifically combining modern information technology and teaching practice, network teaching not only changes the traditional education by the means and form, but even also gives new meanings to teaching concept, process, method as well as teacher-student role and other deep levels. With the help of network teaching system, on-line classroom learning, relevant information systematization, standardization and automation, this system provides students with an efficient online learning method with high quality. This also helps to solve the disadvantages of the traditional teaching mode and promote the teaching methods to a new stage. It improves the network teaching platform, enriches the network teaching resources, and establishes a network teaching system, so as to improve information quality of teachers and students and assist in improving teaching quality of schools.

  15. Quasiperiodic AlGaAs superlattices for neuromorphic networks and nonlinear control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, K. V., E-mail: malyshev@bmstu.ru [Electronics and Laser Technology Department, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2015-01-28

    The application of quasiperiodic AlGaAs superlattices as a nonlinear element of the FitzHugh–Nagumo neuromorphic network is proposed and theoretically investigated on the example of Fibonacci and figurate superlattices. The sequences of symbols for the figurate superlattices were produced by decomposition of the Fibonacci superlattices' symbolic sequences. A length of each segment of the decomposition was equal to the corresponding figurate number. It is shown that a nonlinear network based upon Fibonacci and figurate superlattices provides better parallel filtration of a half-tone picture; then, a network based upon traditional diodes which have cubic voltage-current characteristics. It was found that the figurate superlattice F{sup 0}{sub 11}(1) as a nonlinear network's element provides the filtration error almost twice less than the conventional “cubic” diode. These advantages are explained by a wavelike shape of the decreasing part of the quasiperiodic superlattice's voltage-current characteristic, which leads to multistability of the network's cell. This multistability promises new interesting nonlinear dynamical phenomena. A variety of wavy forms of voltage-current characteristics opens up new interesting possibilities for quasiperiodic superlattices and especially for figurate superlattices in many areas—from nervous system modeling to nonlinear control systems development.

  16. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    Science.gov (United States)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  17. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  18. VANESA - A Software Application for the Visualization and Analysis of Networks in Systems Biology Applications

    Directory of Open Access Journals (Sweden)

    Brinkrolf Christoph

    2014-06-01

    Full Text Available VANESA is a modeling software for the automatic reconstruction and analysis of biological networks based on life-science database information. Using VANESA, scientists are able to model any kind of biological processes and systems as biological networks. It is now possible for scientists to automatically reconstruct important molecular systems with information from the databases KEGG, MINT, IntAct, HPRD, and BRENDA. Additionally, experimental results can be expanded with database information to better analyze the investigated elements and processes in an overall context. Users also have the possibility to use graph theoretical approaches in VANESA to identify regulatory structures and significant actors within the modeled systems. These structures can then be further investigated in the Petri net environment of VANESA. It is platform-independent, free-of-charge, and available at http://vanesa.sf.net.

  19. Network based on statistical multiplexing for event selection and event builder systems in high energy physics experiments

    International Nuclear Information System (INIS)

    Calvet, D.

    2000-03-01

    Systems for on-line event selection in future high energy physics experiments will use advanced distributed computing techniques and will need high speed networks. After a brief description of projects at the Large Hadron Collider, the architectures initially proposed for the Trigger and Data AcQuisition (TD/DAQ) systems of ATLAS and CMS experiments are presented and analyzed. A new architecture for the ATLAS T/DAQ is introduced. Candidate network technologies for this system are described. This thesis focuses on ATM. A variety of network structures and topologies suited to partial and full event building are investigated. The need for efficient networking is shown. Optimization techniques for high speed messaging and their implementation on ATM components are described. Small scale demonstrator systems consisting of up to 48 computers (∼1:20 of the final level 2 trigger) connected via ATM are described. Performance results are presented. Extrapolation of measurements and evaluation of needs lead to a proposal of implementation for the main network of the ATLAS T/DAQ system. (author)

  20. SNMS: an intelligent transportation system network architecture based on WSN and P2P network

    Institute of Scientific and Technical Information of China (English)

    LI Li; LIU Yuan-an; TANG Bi-hua

    2007-01-01

    With the development of city road networks, the question of how to obtain information about the roads is becoming more and more important. In this article, sensor network with mobile station (SNMS), a novel two-tiered intelligent transportation system (ITS) network architecture based on wireless sensor network (WSN) and peer-to-peer (P2P) network, is proposed to provide significant traffic information about the road and thereby, assist travelers to take optimum decisions when they are driving. A detailed explanation with regard to the strategy of each level as well as the design of two main components in the network, sensor unit (SU) and mobile station (MS), is presented. Finally, a representative scenario is described to display the operation of the system.

  1. Bio-inspired spiking neural network for nonlinear systems control.

    Science.gov (United States)

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  3. Networks for Autonomous Formation Flying Satellite Systems

    Science.gov (United States)

    Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.

    2001-01-01

    The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  4. The automated ground network system

    Science.gov (United States)

    Smith, Miles T.; Militch, Peter N.

    1993-01-01

    The primary goal of the Automated Ground Network System (AGNS) project is to reduce Ground Network (GN) station life-cycle costs. To accomplish this goal, the AGNS project will employ an object-oriented approach to develop a new infrastructure that will permit continuous application of new technologies and methodologies to the Ground Network's class of problems. The AGNS project is a Total Quality (TQ) project. Through use of an open collaborative development environment, developers and users will have equal input into the end-to-end design and development process. This will permit direct user input and feedback and will enable rapid prototyping for requirements clarification. This paper describes the AGNS objectives, operations concept, and proposed design.

  5. Phoebus: Network Middleware for Next-Generation Network Computing

    Energy Technology Data Exchange (ETDEWEB)

    Martin Swany

    2012-06-16

    The Phoebus project investigated algorithms, protocols, and middleware infrastructure to improve end-to-end performance in high speed, dynamic networks. The Phoebus system essentially serves as an adaptation point for networks with disparate capabilities or provisioning. This adaptation can take a variety of forms including acting as a provisioning agent across multiple signaling domains, providing transport protocol adaptation points, and mapping between distributed resource reservation paradigms and the optical network control plane. We have successfully developed the system and demonstrated benefits. The Phoebus system was deployed in Internet2 and in ESnet, as well as in GEANT2, RNP in Brazil and over international links to Korea and Japan. Phoebus is a system that implements a new protocol and associated forwarding infrastructure for improving throughput in high-speed dynamic networks. It was developed to serve the needs of large DOE applications on high-performance networks. The idea underlying the Phoebus model is to embed Phoebus Gateways (PGs) in the network as on-ramps to dynamic circuit networks. The gateways act as protocol translators that allow legacy applications to use dedicated paths with high performance.

  6. Restaurant Management System Over Private Network

    Directory of Open Access Journals (Sweden)

    Amanat Dhillon

    2017-08-01

    Full Text Available Restaurant Management System over Private Network is an automated business environment which allows restaurants to reduce operational costs increase efficiency of business improve customer satisfaction cut down labour costs decrease order processing time and provide better Quality-of-ServiceQ-S. This system manages a digital menu allowing the customers to place orders easily. Authentication fields for employees enable better administration of the restaurant. The whole restaurant is integrated into one private network thereby improving security and eliminating the need for a constant internet connection.

  7. AN AUTOMATED NETWORK SECURITYCHECKING AND ALERT SYSTEM: A NEW FRAMEWORK

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Yadav

    2013-09-01

    Full Text Available Network security checking is a vital process to assess and to identify weaknesses in network for management of security. Insecure entry points of a network provide attackers an easy target to access and compromise. Open ports of network components such as firewalls, gateways and end systems are analogues to open gates of a building through which any one can get into. Network scanning is performed to identify insecure entry points in the network components. To find out vulnerabilities on these points vulnerability assessment is performed. So security checking consists of both activities- network scanning as well as vulnerability assessment. A single tool used for the security checking may not give reliable results. This paper presents a framework for assessing the security of a network using multiple Network Scanning and Vulnerability Assessment tools. The proposed framework is an extension of the framework given by Jun Yoon and Wontae Sim [1] which performs vulnerability scanning only. The framework presented here adds network scanning, alerting and reporting system to their framework. Network scanning and vulnerability tools together complement each other and make it amenable for centralized control and management. The reporting system of framework sends an email to the network administrator which contains detailed report (as attachment of security checking process. Alerting system sends a SMS message as an alert to the network administrator in case of severe threats found in the network. Initial results of the framework are encouraging and further work is in progress.

  8. The influence of tie strength on evolutionary games on networks: An empirical investigation

    Science.gov (United States)

    Buesser, Pierre; Peña, Jorge; Pestelacci, Enea; Tomassini, Marco

    2011-11-01

    Extending previous work on unweighted networks, we present here a systematic numerical investigation of standard evolutionary games on weighted networks. In the absence of any reliable model for generating weighted social networks, we attribute weights to links in a few ways supported by empirical data ranging from totally uncorrelated to weighted bipartite networks. The results of the extensive simulation work on standard complex network models show that, except in a case that does not seem to be common in social networks, taking the tie strength into account does not change in a radical manner the long-run steady-state behavior of the studied games. Besides model networks, we also included a real-life case drawn from a coauthorship network. In this case also, taking the weights into account only changes the results slightly with respect to the raw unweighted graph, although to draw more reliable conclusions on real social networks many more cases should be studied as these weighted networks become available.

  9. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  10. Value Systems Alignment Analysis in Collaborative Networked Organizations Management

    OpenAIRE

    Patricia Macedo; Luis Camarinha-Matos

    2017-01-01

    The assessment of value systems alignment can play an important role in the formation and evolution of collaborative networks, contributing to reduce potential risks of collaboration. For this purpose, an assessment tool is proposed as part of a collaborative networks information system, supporting both the formation and evolution of long-term strategic alliances and goal-oriented networks. An implementation approach for value system alignment analysis is described, which is intended to assis...

  11. Collaborative Recurrent Neural Networks forDynamic Recommender Systems

    Science.gov (United States)

    2016-11-22

    JMLR: Workshop and Conference Proceedings 63:366–381, 2016 ACML 2016 Collaborative Recurrent Neural Networks for Dynamic Recommender Systems Young...an unprece- dented scale. Although such activity logs are abundantly available, most approaches to recommender systems are based on the rating...Recurrent Neural Network, Recommender System , Neural Language Model, Collaborative Filtering 1. Introduction As ever larger parts of the population

  12. Improvement of Networked Control Systems Performance Using a New Encryption Algorithm

    Directory of Open Access Journals (Sweden)

    Seyed Ali Mesbahifard

    2014-07-01

    Full Text Available Networked control systems are control systems which controllers and plants are connected via telecommunication network. One of the most important challenges in networked control systems is the problem of network time delay. Increasing of time delay may affect on control system performance extremely. Other important issue in networked control systems is the security problems. Since it is possible that unknown people access to network especially Internet, the probability of terrible attacks such as deception attacks is greater, therefore presentation of methods which could decrease time delay and increase system immunity are desired. In this paper a symmetric encryption with low data volume against deception attacks is proposed. This method has high security and low time delay rather than the other encryption algorithms and could improve the control system performance against deception attacks.

  13. An investigation of scalable anomaly detection techniques for a large network of Wi-Fi hotspots

    CSIR Research Space (South Africa)

    Machaka, P

    2015-01-01

    Full Text Available . The Neural Networks, Bayesian Networks and Artificial Immune Systems were used for this experiment. Using a set of data extracted from a live network of Wi-Fi hotspots managed by an ISP; we integrated algorithms into a data collection system to detect...

  14. A geophone wireless sensor network for investigating glacier stick-slip motion

    Science.gov (United States)

    Martinez, Kirk; Hart, Jane K.; Basford, Philip J.; Bragg, Graeme M.; Ward, Tyler; Young, David S.

    2017-08-01

    We have developed an innovative passive borehole geophone system, as part of a wireless environmental sensor network to investigate glacier stick-slip motion. The new geophone nodes use an ARM Cortex-M3 processor with a low power design capable of running on battery power while embedded in the ice. Only data from seismic events was stored, held temporarily on a micro-SD card until they were retrieved by systems on the glacier surface which are connected to the internet. The sampling rates, detection and filtering levels were determined from a field trial using a standard commercial passive seismic system. The new system was installed on the Skalafellsjökull glacier in Iceland and provided encouraging results. The results showed that there was a relationship between surface melt water production and seismic event (ice quakes), and these occurred on a pattern related to the glacier surface melt-water controlled velocity changes (stick-slip motion). Three types of seismic events were identified, which were interpreted to reflect a pattern of till deformation (Type A), basal sliding (Type B) and hydraulic transience (Type C) associated with stick-slip motion.

  15. A network-based dynamical ranking system for competitive sports

    Science.gov (United States)

    Motegi, Shun; Masuda, Naoki

    2012-12-01

    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.

  16. Investigation of Load Sharing in Hybrid (2G/3G Mobile Networks

    Directory of Open Access Journals (Sweden)

    Martynas Stirbys

    2015-07-01

    Full Text Available The main purpose of this work is to investigate load sharing methods for 2G/3G cellular networks in order to determine their impact on the network and users. One of the study aims is to analyze the performance of the methods. Moreover the paper provides an overview of the methods circumstances, limitations. Directed Retry and Load Based Handover methods were chosen. Data was obtained from real Lithuanian mobile operator’s network. The paper also discusses the changes in Key Performance Indicators.

  17. Artificial Neural Network Application for Power Transfer Capability and Voltage Calculations in Multi-Area Power System

    Directory of Open Access Journals (Sweden)

    Palukuru NAGENDRA

    2010-12-01

    Full Text Available In this study, the use of artificial neural network (ANN based model, multi-layer perceptron (MLP network, to compute the transfer capabilities in a multi-area power system was explored. The input for the ANN is load status and the outputs are the transfer capability among the system areas, voltage magnitudes and voltage angles at concerned buses of the areas under consideration. The repeated power flow (RPF method is used in this paper for calculating the power transfer capability, voltage magnitudes and voltage angles necessary for the generation of input-output patterns for training the proposed MLP neural network. Preliminary investigations on a three area 30-bus system reveal that the proposed model is computationally faster than the conventional method.

  18. Effective augmentation of networked systems and enhancing pinning controllability

    Science.gov (United States)

    Jalili, Mahdi

    2018-06-01

    Controlling dynamics of networked systems to a reference state, known as pinning control, has many applications in science and engineering. In this paper, we introduce a method for effective augmentation of networked systems, while also providing high levels of pinning controllability for the final augmented network. The problem is how to connect a sub-network to an already existing network such that the pinning controllability is maximised. We consider the eigenratio of the augmented Laplacian matrix as a pinning controllability metric, and use graph perturbation theory to approximate the influence of edge addition on the eigenratio. The proposed metric can be effectively used to find the inter-network links connecting the disjoint networks. Also, an efficient link rewiring approach is proposed to further optimise the pinning controllability of the augmented network. We provide numerical simulations on synthetic networks and show that the proposed method is more effective than heuristic ones.

  19. Introduction to Focus Issue: Complex network perspectives on flow systems.

    Science.gov (United States)

    Donner, Reik V; Hernández-García, Emilio; Ser-Giacomi, Enrico

    2017-03-01

    During the last few years, complex network approaches have demonstrated their great potentials as versatile tools for exploring the structural as well as dynamical properties of dynamical systems from a variety of different fields. Among others, recent successful examples include (i) functional (correlation) network approaches to infer hidden statistical interrelationships between macroscopic regions of the human brain or the Earth's climate system, (ii) Lagrangian flow networks allowing to trace dynamically relevant fluid-flow structures in atmosphere, ocean or, more general, the phase space of complex systems, and (iii) time series networks unveiling fundamental organization principles of dynamical systems. In this spirit, complex network approaches have proven useful for data-driven learning of dynamical processes (like those acting within and between sub-components of the Earth's climate system) that are hidden to other analysis techniques. This Focus Issue presents a collection of contributions addressing the description of flows and associated transport processes from the network point of view and its relationship to other approaches which deal with fluid transport and mixing and/or use complex network techniques.

  20. Network science, nonlinear science and infrastructure systems

    CERN Document Server

    2007-01-01

    Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .

  1. Architectural transformations in network services and distributed systems

    CERN Document Server

    Luntovskyy, Andriy

    2017-01-01

    With the given work we decided to help not only the readers but ourselves, as the professionals who actively involved in the networking branch, with understanding the trends that have developed in recent two decades in distributed systems and networks. Important architecture transformations of distributed systems have been examined. The examples of new architectural solutions are discussed. Content Periodization of service development Energy efficiency Architectural transformations in Distributed Systems Clustering and Parallel Computing, performance models Cloud Computing, RAICs, Virtualization, SDN Smart Grid, Internet of Things, Fog Computing Mobile Communication from LTE to 5G, DIDO, SAT-based systems Data Security Guaranteeing Distributed Systems Target Groups Students in EE and IT of universities and (dual) technical high schools Graduated engineers as well as teaching staff About the Authors Andriy Luntovskyy provides classes on networks, mobile communication, software technology, distributed systems, ...

  2. Representation of neural networks as Lotka-Volterra systems

    International Nuclear Information System (INIS)

    Moreau, Yves; Vandewalle, Joos; Louies, Stephane; Brenig, Leon

    1999-01-01

    We study changes of coordinates that allow the representation of the ordinary differential equations describing continuous-time recurrent neural networks into differential equations describing predator-prey models--also called Lotka-Volterra systems. We transform the equations for the neural network first into quasi-monomial form, where we express the vector field of the dynamical system as a linear combination of products of powers of the variables. In practice, this transformation is possible only if the activation function is the hyperbolic tangent or the logistic sigmoied. From this quasi-monomial form, we can directly transform the system further into Lotka-Volterra equations. The resulting Lotka-Volterra system is of higher dimension than the original system, but the behavior of its first variables is equivalent to the behavior of the original neural network

  3. Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests.

    Science.gov (United States)

    Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna

    2016-06-27

    Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments.

  4. Enabling parallel simulation of large-scale HPC network systems

    International Nuclear Information System (INIS)

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; Carns, Philip

    2016-01-01

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks used in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations

  5. Neural Network for Optimization of Existing Control Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1995-01-01

    The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....

  6. Lan Network Management System Design In PT. ABC

    OpenAIRE

    Mellviana Chandra; Drs. Lingga Hermanto, MM

    1998-01-01

    In all cases, the process of choosing what type of system and network to the appropriate network operating system relies heavily on an understanding of running a business firm (in terms of managing data and information into something meaningful). Hence thing to note is studied process data and information flow within an existing business in a way to analyze and evaluate as precisely as possible. Emphasized here that the selected network must support and reflect the ways data / information flo...

  7. Analysis and design of networked control systems

    CERN Document Server

    You, Keyou; Xie, Lihua

    2015-01-01

    This monograph focuses on characterizing the stability and performance consequences of inserting limited-capacity communication networks within a control loop. The text shows how integration of the ideas of control and estimation with those of communication and information theory can be used to provide important insights concerning several fundamental problems such as: ·         minimum data rate for stabilization of linear systems over noisy channels; ·         minimum network requirement for stabilization of linear systems over fading channels; and ·         stability of Kalman filtering with intermittent observations. A fundamental link is revealed between the topological entropy of linear dynamical systems and the capacities of communication channels. The design of a logarithmic quantizer for the stabilization of linear systems under various network environments is also extensively discussed and solutions to many problems of Kalman filtering with intermittent observations are de...

  8. Surface Casting Defects Inspection Using Vision System and Neural Network Techniques

    Directory of Open Access Journals (Sweden)

    Świłło S.J.

    2013-12-01

    Full Text Available The paper presents a vision based approach and neural network techniques in surface defects inspection and categorization. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks and pores that greatly influence the material’s properties Since the human visual inspection for the surface is slow and expensive, a computer vision system is an alternative solution for the online inspection. The authors present the developed vision system uses an advanced image processing algorithm based on modified Laplacian of Gaussian edge detection method and advanced lighting system. The defect inspection algorithm consists of several parameters that allow the user to specify the sensitivity level at which he can accept the defects in the casting. In addition to the developed image processing algorithm and vision system apparatus, an advanced learning process has been developed, based on neural network techniques. Finally, as an example three groups of defects were investigated demonstrates automatic selection and categorization of the measured defects, such as blowholes, shrinkage porosity and shrinkage cavity.

  9. Modelling, Estimation and Control of Networked Complex Systems

    CERN Document Server

    Chiuso, Alessandro; Frasca, Mattia; Rizzo, Alessandro; Schenato, Luca; Zampieri, Sandro

    2009-01-01

    The paradigm of complexity is pervading both science and engineering, leading to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the definition of powerful tools for modelling, estimation, and control; and the cross-fertilization of different disciplines and approaches. This book is devoted to networked systems which are one of the most promising paradigms of complexity. It is demonstrated that complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synchronization, social and economics events, networks of critical infrastructures, resources allocation, information processing, or control over communication networks. Moreover, it is shown how the recent technological advances in wireless communication and decreasing in cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile cap...

  10. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungwon Lee

    2009-05-01

    Full Text Available TheIP-based Ubiquitous Sensor Network (IP-USN is an effort to build the “Internet of things”. By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System called RIDES (Robust Intrusion DEtection System for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  11. Network analysis and synthesis a modern systems theory approach

    CERN Document Server

    Anderson, Brian D O

    2006-01-01

    Geared toward upper-level undergraduates and graduate students, this book offers a comprehensive look at linear network analysis and synthesis. It explores state-space synthesis as well as analysis, employing modern systems theory to unite the classical concepts of network theory. The authors stress passive networks but include material on active networks. They avoid topology in dealing with analysis problems and discuss computational techniques. The concepts of controllability, observability, and degree are emphasized in reviewing the state-variable description of linear systems. Explorations

  12. Multilayer network modeling creates opportunities for novel network statistics. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    Muldoon, Sarah Feldt

    2018-03-01

    As described in the review by Gosak et al., the field of network science has had enormous success in providing new insights into the structure and function of biological systems [1]. In the complex networks framework, system elements are network nodes, and connections between nodes represent some form of interaction between system elements [2]. The flexibility to define network nodes and edges to represent different aspects of biological systems has been employed to model numerous diverse systems at multiple scales.

  13. Integrated multimedia information system on interactive CATV network

    Science.gov (United States)

    Lee, Meng-Huang; Chang, Shin-Hung

    1998-10-01

    In the current CATV system architectures, they provide one- way delivery of a common menu of entertainment to all the homes through the cable network. Through the technologies evolution, the interactive services (or two-way services) can be provided in the cable TV systems. They can supply customers with individualized programming and support real- time two-way communications. With a view to the service type changed from the one-way delivery systems to the two-way interactive systems, `on demand services' is a distinct feature of multimedia systems. In this paper, we present our work of building up an integrated multimedia system on interactive CATV network in Shih Chien University. Besides providing the traditional analog TV programming from the cable operator, we filter some channels to reserve them as our campus information channels. In addition to the analog broadcasting channel, the system also provides the interactive digital multimedia services, e.g. Video-On- Demand (VOD), Virtual Reality, BBS, World-Wide-Web, and Internet Radio Station. These two kinds of services are integrated in a CATV network by the separation of frequency allocation for the analog broadcasting service and the digital interactive services. Our ongoing work is to port our previous work of building up a VOD system conformed to DAVIC standard (for inter-operability concern) on Ethernet network into the current system.

  14. Comprehensive evaluation index system of total supply capability in distribution network

    Science.gov (United States)

    Zhang, Linyao; Wu, Guilian; Yang, Jingyuan; Jia, Shuangrui; Zhang, Wei; Sun, Weiqing

    2018-01-01

    Aiming at the lack of a comprehensive evaluation of the distribution network, based on the existing distribution network evaluation index system, combined with the basic principles of constructing the evaluation index, put forward a new evaluation index system of distribution network capacity. This paper is mainly based on the total supply capability of the distribution network, combining single index and various factors, into a multi-evaluation index of the distribution network, thus forming a reasonable index system, and various indicators of rational quantification make the evaluation results more intuitive. In order to have a comprehensive judgment of distribution network, this paper uses weights to analyse the importance of each index, verify the rationality of the index system through the example, it is proved that the rationality of the index system, so as to guide the direction of distribution network planning.

  15. Wide area network monitoring system for HEP experiments at Fermilab

    International Nuclear Information System (INIS)

    Grigoriev, Maxim; Fermilab; Cottrell, Les; Logg, Connie; SLAC

    2004-01-01

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centres. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system

  16. Wide Area Network Monitoring System for HEP Experiments at Fermilab

    International Nuclear Information System (INIS)

    Grigoriev, M.

    2004-01-01

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centres. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system

  17. Wide Area Network Monitoring System for HEP Experiments at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, M.

    2004-11-23

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centres. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.

  18. New Communication Network Protocol for a Data Acquisition System

    Science.gov (United States)

    Uchida, T.; Fujii, H.; Nagasaka, Y.; Tanaka, M.

    2006-02-01

    An event builder based on communication networks has been used in high-energy physics experiments, and various networks have been adopted, for example, IEEE 802.3 (Ethernet), asynchronous transfer mode (ATM), and so on. In particular, Ethernet is widely used because its infrastructure is very cost effective. Many systems adopt standard protocols that are designed for a general network. However, in the case of an event builder, the communication pattern between stations is different from that in a general network. The unique communication pattern causes congestion, and thus makes it difficulty to quantitatively design the network. To solve this problem, we have developed a simple network protocol for a data acquisition (DAQ) system. The protocol is designed to keep the sequence of senders so that no congestion occurs. We implemented the protocol on a small hardware component [a field programmable gate array (FPGA)] and measured the performance, so that it will be ready for a generic DAQ system

  19. Development of a space-systems network testbed

    Science.gov (United States)

    Lala, Jaynarayan; Alger, Linda; Adams, Stuart; Burkhardt, Laura; Nagle, Gail; Murray, Nicholas

    1988-01-01

    This paper describes a communications network testbed which has been designed to allow the development of architectures and algorithms that meet the functional requirements of future NASA communication systems. The central hardware components of the Network Testbed are programmable circuit switching communication nodes which can be adapted by software or firmware changes to customize the testbed to particular architectures and algorithms. Fault detection, isolation, and reconfiguration has been implemented in the Network with a hybrid approach which utilizes features of both centralized and distributed techniques to provide efficient handling of faults within the Network.

  20. Absolute stability of nonlinear systems with time delays and applications to neural networks

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    2001-01-01

    Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.

  1. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Science.gov (United States)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  2. Three neural network based sensor systems for environmental monitoring

    International Nuclear Information System (INIS)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1994-05-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. One of the missions of the Pacific Northwest Laboratory is to examine and develop new technologies for environmental restoration and waste management at the Hanford Site. In this paper, three prototype sensing systems are discussed. These prototypes are composed of sensing elements, data acquisition system, computer, and neural network implemented in software, and are capable of automatically identifying contaminants. The first system employs an array of tin-oxide gas sensors and is used to identify chemical vapors. The second system employs an array of optical sensors and is used to identify the composition of chemical dyes in liquids. The third system contains a portable gamma-ray spectrometer and is used to identify radioactive isotopes. In these systems, the neural network is used to identify the composition of the sensed contaminant. With a neural network, the intense computation takes place during the training process. Once the network is trained, operation consists of propagating the data through the network. Since the computation involved during operation consists of vector-matrix multiplication and application of look-up tables unknown samples can be rapidly identified in the field

  3. Developing aircraft photonic networks for airplane systems

    DEFF Research Database (Denmark)

    White, Henry J.; Brownjohn, Nick; Baptista, João

    2013-01-01

    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial...

  4. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  5. Use of neural networks in the analysis of complex systems

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms) to some of the problems of complex engineering systems has the potential to enhance the safety reliability and operability of these systems. The work described here deals with complex systems or parts of such systems that can be isolated from the total system. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network. The neural networks are usually simulated on modern high-speed computers that carry out the calculations serially. However, it is possible to implement neural networks using specially designed microchips where the network calculations are truly carried out in parallel, thereby providing virtually instantaneous outputs for each set of inputs. Specific applications described include: Diagnostics: State of the Plant; Hybrid System for Transient Identification; Detection of Change of Mode in Complex Systems; Sensor Validation; Plant-Wide Monitoring; Monitoring of Performance and Efficiency; and Analysis of Vibrations. Although the specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  6. Combining Host-based and network-based intrusion detection system

    African Journals Online (AJOL)

    These attacks were simulated using hping. The proposed system is implemented in Java. The results show that the proposed system is able to detect attacks both from within (host-based) and outside sources (network-based). Key Words: Intrusion Detection System (IDS), Host-based, Network-based, Signature, Security log.

  7. System crash as dynamics of complex networks.

    Science.gov (United States)

    Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2016-10-18

    Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.

  8. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    Science.gov (United States)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  9. Predictive Control of Networked Multiagent Systems via Cloud Computing.

    Science.gov (United States)

    Liu, Guo-Ping

    2017-01-18

    This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.

  10. Spatial Models and Networks of Living Systems

    DEFF Research Database (Denmark)

    Juul, Jeppe Søgaard

    When studying the dynamics of living systems, insight can often be gained by developing a mathematical model that can predict future behaviour of the system or help classify system characteristics. However, in living cells, organisms, and especially groups of interacting individuals, a large number...... variables of the system. However, this approach disregards any spatial structure of the system, which may potentially change the behaviour drastically. An alternative approach is to construct a cellular automaton with nearest neighbour interactions, or even to model the system as a complex network...... with interactions defined by network topology. In this thesis I first describe three different biological models of ageing and cancer, in which spatial structure is important for the system dynamics. I then turn to describe characteristics of ecosystems consisting of three cyclically interacting species...

  11. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Directory of Open Access Journals (Sweden)

    Min-Joo Kang

    Full Text Available A novel intrusion detection system (IDS using a deep neural network (DNN is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN, therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN bus.

  12. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Science.gov (United States)

    Kang, Min-Joo; Kang, Je-Won

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.

  13. Developing a dynamic control system for mine compressed air networks

    OpenAIRE

    Van Heerden, S.W.; Pelzer, R.; Marais, J.H.

    2014-01-01

    Mines in general, make use of compressed air systems for daily operational activities. Compressed air on mines is traditionally distributed via compressed air ring networks where multiple shafts are supplied with compressed air from an integral system. These compressed air networks make use of a number of compressors feeding the ring from various locations in the network. While these mines have sophisticated control systems to control these compressors, they are not dynamic systems. Compresso...

  14. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    Science.gov (United States)

    Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen

    2016-04-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].

  15. Design of fuzzy systems using neurofuzzy networks.

    Science.gov (United States)

    Figueiredo, M; Gomide, F

    1999-01-01

    This paper introduces a systematic approach for fuzzy system design based on a class of neural fuzzy networks built upon a general neuron model. The network structure is such that it encodes the knowledge learned in the form of if-then fuzzy rules and processes data following fuzzy reasoning principles. The technique provides a mechanism to obtain rules covering the whole input/output space as well as the membership functions (including their shapes) for each input variable. Such characteristics are of utmost importance in fuzzy systems design and application. In addition, after learning, it is very simple to extract fuzzy rules in the linguistic form. The network has universal approximation capability, a property very useful in, e.g., modeling and control applications. Here we focus on function approximation problems as a vehicle to illustrate its usefulness and to evaluate its performance. Comparisons with alternative approaches are also included. Both, nonnoisy and noisy data have been studied and considered in the computational experiments. The neural fuzzy network developed here and, consequently, the underlying approach, has shown to provide good results from the accuracy, complexity, and system design points of view.

  16. A microfluidic investigation of gas exsolution in glass and shale fracture networks

    Science.gov (United States)

    Porter, M. L.; Jimenez-Martinez, J.; Harrison, A.; Currier, R.; Viswanathan, H. S.

    2016-12-01

    Microfluidic investigations of pore-scale fluid flow and transport phenomena has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real-time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. In this work, we describe a unique high pressure (up to 10.3 MPa) and temperature (up to 80 °C) microfluidics experimental system that allows us to investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in fractured rocks. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase gas (CO2 and N2) injection experiments designed to enhance oil recovery. In these experiments gas was injected into micromodels saturated with oil and allowed to soak for approximately 12 hours at elevated pressures. The pressure in the system was then decreased to atmospheric, causing the gas to expand and/or dissolve out of solution, subsequently mobilizing the oil. In addition to the experimental results, we present a relatively simple model designed to quantify the amount of oil mobilized as a function of decreasing system pressure. We will show comparisons between the experiments and model, and discuss the potential use of the model in field-scale reservoir simulations.

  17. Neural network application to aircraft control system design

    Science.gov (United States)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  18. Neural network application to aircraft control system design

    Science.gov (United States)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  19. Construct mine environment monitoring system based on wireless mesh network

    Science.gov (United States)

    Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun

    2018-04-01

    The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.

  20. Investigation of membrane mechanics using spring networks: application to red-blood-cell modelling.

    Science.gov (United States)

    Chen, Mingzhu; Boyle, Fergal J

    2014-10-01

    In recent years a number of red-blood-cell (RBC) models have been proposed using spring networks to represent the RBC membrane. Some results predicted by these models agree well with experimental measurements. However, the suitability of these membrane models has been questioned. The RBC membrane, like a continuum membrane, is mechanically isotropic throughout its surface, but the mechanical properties of a spring network vary on the network surface and change with deformation. In this work spring-network mechanics are investigated in large deformation for the first time via an assessment of the effect of network parameters, i.e. network mesh, spring type and surface constraint. It is found that a spring network is conditionally equivalent to a continuum membrane. In addition, spring networks are employed for RBC modelling to replicate the optical tweezers test. It is found that a spring network is sufficient for modelling the RBC membrane but strain-hardening springs are required. Moreover, the deformation profile of a spring network is presented for the first time via the degree of shear. It is found that spring-network deformation approaches continuous as the mesh density increases. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Designing Networked Adaptive Interactive Hybrid Systems

    NARCIS (Netherlands)

    Kester, L.J.H.M.

    2008-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. In these systems humans and intelligent machines will, in close interaction, be able to reach their goals under

  2. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  3. Recommender systems for location-based social networks

    CERN Document Server

    Symeonidis, Panagiotis; Manolopoulos, Yannis

    2014-01-01

    Online social networks collect information from users' social contacts and their daily interactions (co-tagging of photos, co-rating of products etc.) to provide them with recommendations of new products or friends. Lately, technological progressions in mobile devices (i.e. smart phones) enabled the incorporation of geo-location data in the traditional web-based online social networks, bringing the new era of Social and Mobile Web. The goal of this book is to bring together important research in a new family of recommender systems aimed at serving Location-based Social Networks (LBSNs). The chapters introduce a wide variety of recent approaches, from the most basic to the state-of-the-art, for providing recommendations in LBSNs. The book is organized into three parts. Part 1 provides introductory material on recommender systems, online social networks and LBSNs. Part 2 presents a wide variety of recommendation algorithms, ranging from basic to cutting edge, as well as a comparison of the characteristics of t...

  4. Distributed applications monitoring at system and network level

    CERN Document Server

    Aderholz, Michael; Augé, E; Bagliesi, G; Banistoni, G; Barone, L; Boschini, M; Brunengo, A; Bunn, J J; Butler, J; Campanella, M; Capiluppi, P; D'Amato, M; Darneri, M; Di Mattia, A; Dorokhov, A E; Gagliardi, F; Gaines, I; Gasparini, U; Ghiselli, A; Gordon, J; Grandi, C; Gálvez, P; Harris, F; Holtman, K; Karimäki, V; Karita, Y; Klem, J T; Legrand, I; Leltchouk, M; Linglin, D; Lubrano, P; Luminari, L; McArthur, I C; Michelotto, M; Morita, Y; Nazarenko, A; Newman, H; O'Dell, Vivian; O'Neale, S W; Osculati, B; Pepé, M; Perini, L; Pinfold, James L; Pordes, R; Prelz, F; Putzer, A; Resconi, S; Robertson, L; Rolli, S; Sasaki, T; Sato, H; Schaffer, R D; Schalk, T L; Servoli, L; Sgaravatto, M; Shiers, J; Silvestris, L; Siroli, G P; Sliwa, K; Smith, T; Somigliana, R; Stanescu, C; Stockinger, H E; Ugolotti, D; Valente, E; Vistoli, C; Wilkinson, R P; Willers, Ian Malcolm; Williams, D O

    2001-01-01

    Most distributed applications are based on architectural models that do not involve real-time knowledge of network status and of their network usage. Moreover the new "network aware" architectures are still under development and their design is not yet complete. We considered, as a use case, an application using ODBMS (Objectivity /DB) for the distributed analysis of experimental data. The dynamic usage of system and network resources at host and application levels has been measured in different client/server configurations, and on several LAN and WAN layouts. The aim was to study the application efficiency and behavior versus the network characteristics and conditions. The most interesting results of the LAN and WAN tests are described. System bottlenecks and limitations have been identified, and efficient working conditions in the different scenarios have been defined. The behavior observed when moving away from the optimal working conditions is also described.

  5. Distributed Synchronization in Networks of Agent Systems With Nonlinearities and Random Switchings.

    Science.gov (United States)

    Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen

    2013-02-01

    In this paper, the distributed synchronization problem of networks of agent systems with controllers and nonlinearities subject to Bernoulli switchings is investigated. Controllers and adaptive updating laws injected in each vertex of networks depend on the state information of its neighborhood. Three sets of Bernoulli stochastic variables are introduced to describe the occurrence probabilities of distributed adaptive controllers, updating laws and nonlinearities, respectively. By the Lyapunov functions method, we show that the distributed synchronization of networks composed of agent systems with multiple randomly occurring nonlinearities, multiple randomly occurring controllers, and multiple randomly occurring updating laws can be achieved in mean square under certain criteria. The conditions derived in this paper can be solved by semi-definite programming. Moreover, by mathematical analysis, we find that the coupling strength, the probabilities of the Bernoulli stochastic variables, and the form of nonlinearities have great impacts on the convergence speed and the terminal control strength. The synchronization criteria and the observed phenomena are demonstrated by several numerical simulation examples. In addition, the advantage of distributed adaptive controllers over conventional adaptive controllers is illustrated.

  6. Defense Strategies for Asymmetric Networked Systems with Discrete Components

    Directory of Open Access Journals (Sweden)

    Nageswara S. V. Rao

    2018-05-01

    Full Text Available We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  7. Defense Strategies for Asymmetric Networked Systems with Discrete Components.

    Science.gov (United States)

    Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun

    2018-05-03

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  8. Information retrieval system with ability of analogical inference using semantic network and function of fuzzification

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Iwai, S

    1982-01-01

    In information retrieval system, it is necessary to grasp user's subject of interest in order to present appropriate documents to the user. In this paper, the authors propose a model of human ability of analogical inference based on association between key words and, using it, construct an information retrieval system in which the computer with the ability learns its user's subject of interest through question-answering with the user. In this system, the association between key words is represented by a semantic network, and a function of fuzzification of input information is introduced in the semantic network to implement the ability of analogical inference based on the association. Finally, the effect of analogical inference on the learning efficiency of the system is investigated. 5 references.

  9. Local area networks in radiation detection systems: advantages and pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Blaauw, M [Interfaculty Reactor Inst., Delft Univ. of Technology (Netherlands); Lindstrom, R M [Inorganic Analytical Research Div., National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1993-06-01

    Both at the Interfaculty Reactor Institute (IRI) and at the National Institute of Standards and Technology (NIST), local area networks are being used to acquire and process data from multiple [gamma]-ray spectrometers. The IRI system was only recently set up. A comparison is made between the NIST network, the old IRI network and the new IRI network, resulting in recommendations for new systems to be set up. (orig.)

  10. Network Capacity Assessment and Increase in Systems with Intermittent Water Supply

    Directory of Open Access Journals (Sweden)

    Amilkar E. Ilaya-Ayza

    2016-03-01

    Full Text Available Water supply systems have been facing many challenges in recent decades due to the potential effects of climate change and rapid population growth. Water systems need to expand because of demographic growth. Therefore, evaluating and increasing system capacity is crucial. Specifically, we analyze network capacity as one of the main features of a system. When the network capacity starts to decrease, there is a risk that continuous supply will become intermittent. This paper discusses how network expansion carried out throughout the network life span typically reduces network capacity, thus transforming a system originally designed to work with continuous supply into a system with intermittent supply. A method is proposed to expand the network capacity in an environment of economic scarcity through a greedy algorithm that enables the definition of a schedule for pipe modification stages, and thus efficiently expands the network capacity. This method is, at the same time, an important step in the process of changing a water system from intermittent back to continuous supply—an achievement that remains one of the main challenges related to water and health in developing countries.

  11. Social network supported process recommender system.

    Science.gov (United States)

    Ye, Yanming; Yin, Jianwei; Xu, Yueshen

    2014-01-01

    Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.

  12. Social Network Supported Process Recommender System

    Directory of Open Access Journals (Sweden)

    Yanming Ye

    2014-01-01

    Full Text Available Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.

  13. Research on a practical telecom and CATV co-network transmission system

    Science.gov (United States)

    Mao, Youju

    1998-12-01

    A practical co-network transmission system of Telecom and CATV over installed Telecom network is designed. The system, making use of WDM and other technologies, has undergone experiments and performance tests on the Public Switched Telephone Network, which illustrate that optical fiber telecommunication network could be thereby transformed into a unified broadband network integrating VOICE, DATA, and VEDIO expeditiously and conveniently.

  14. Decoupling control of vehicle chassis system based on neural network inverse system

    Science.gov (United States)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  15. Evaluating neural networks and artificial intelligence systems

    Science.gov (United States)

    Alberts, David S.

    1994-02-01

    Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.

  16. Vein matching using artificial neural network in vein authentication systems

    Science.gov (United States)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  17. High-speed and high-fidelity system and method for collecting network traffic

    Science.gov (United States)

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  18. Active system area networks for data intensive computations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  19. Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction

    Energy Technology Data Exchange (ETDEWEB)

    Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)

    2008-06-15

    Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)

  20. An investigation and comparison on network performance analysis

    OpenAIRE

    Lanxiaopu, Mi

    2012-01-01

    This thesis is generally about network performance analysis. It contains two parts. The theory part summarizes what network performance is and inducts the methods of doing network performance analysis. To answer what network performance is, a study into what network services are is done. And based on the background research, there are two important network performance metrics: Network delay and Throughput should be included in network performance analysis. Among the methods of network a...

  1. Credit Default Swaps networks and systemic risk

    Science.gov (United States)

    Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano

    2014-11-01

    Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities.

  2. Credit Default Swaps networks and systemic risk.

    Science.gov (United States)

    Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano

    2014-11-04

    Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities.

  3. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  4. An expert system for configuring a network for a Milstar terminal

    Science.gov (United States)

    Mahoney, Melissa J.; Wilson, Elizabeth J.

    1994-01-01

    This paper describes a rule-based expert system which assists the user in configuring a network for Air Force terminals using the Milstar satellite system. The network configuration expert system approach uses CLIPS. The complexity of network configuration is discussed, and the methods used to model it are described.

  5. Systems and methods for modeling and analyzing networks

    Science.gov (United States)

    Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W

    2013-10-29

    The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.

  6. Applications of the parallel computing system using network

    International Nuclear Information System (INIS)

    Ido, Shunji; Hasebe, Hiroki

    1994-01-01

    Parallel programming is applied to multiple processors connected in Ethernet. Data exchanges between tasks located in each processing element are realized by two ways. One is socket which is standard library on recent UNIX operating systems. Another is a network connecting software, named as Parallel Virtual Machine (PVM) which is a free software developed by ORNL, to use many workstations connected to network as a parallel computer. This paper discusses the availability of parallel computing using network and UNIX workstations and comparison between specialized parallel systems (Transputer and iPSC/860) in a Monte Carlo simulation which generally shows high parallelization ratio. (author)

  7. Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks

    OpenAIRE

    Cao, Jinde; Alofi, Abdulaziz; Al-Mazrooei, Abdullah; Elaiw, Ahmed

    2013-01-01

    This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response error system is established. Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first time to switched time-varying delay networks, combining Halanay inequality technique, synchroniza...

  8. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  9. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  10. Investigating the Evolution of Linkage Dynamics among Equity Markets Using Network Models and Measures: The Case of Asian Equity Market Integration

    Directory of Open Access Journals (Sweden)

    Biplab Bhattacharjee

    2017-12-01

    Full Text Available The state of cross-market linkage structures and its stability over varying time-periods play a key role in the performance of international diversified portfolios. There has been an increasing interest of global investors in emerging capital markets in the Asian region. In this setting, an investigation into the temporal dynamics of cross-market linkage structures becomes significant for the selection and optimal allocation of securities in an internationally-diversified portfolio. In the quest for this, in the current study, weighted network models along with network metrics are employed to decipher the underlying cross-market linkage structures among Asian markets. The study analyses the daily return data of fourteen major Asian indices for a period of 14 years (2002–2016. The topological properties of the network are computed using centrality measures and measures of influence strength and are investigated over temporal scales. In particular, the overall influence strengths and India-specific influence strengths are computed and examined over a temporal scale. Threshold filtering is also performed to characterize the dynamics related to the linkage structure of these networks. The impacts of the 2008 financial crisis on the linkage structural patterns of these equity networks are also investigated. The key findings of this study include: a set of central and peripheral indices, the evolution of the linkage structures over the 2002–2016 period and the linkage dynamics during times of market stress. Mainly, the set of indices possessing influence over the Asian region in general and the Indian market in particular is also identified. The findings of this study can be utilized in effective systemic risk management and for the selection of an optimally-diversified portfolio, resilient to system-level shocks.

  11. Conceptualizing and Advancing Research Networking Systems.

    Science.gov (United States)

    Schleyer, Titus; Butler, Brian S; Song, Mei; Spallek, Heiko

    2012-03-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture , and evaluation . Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers' need for comprehensive information and potential collaborators' desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user's primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems.

  12. Conceptualizing and Advancing Research Networking Systems

    Science.gov (United States)

    SCHLEYER, TITUS; BUTLER, BRIAN S.; SONG, MEI; SPALLEK, HEIKO

    2013-01-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture, and evaluation. Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers’ need for comprehensive information and potential collaborators’ desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user’s primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems. PMID:24376309

  13. T-S Fuzzy Model Based Control Strategy for the Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Guang He

    2015-01-01

    Full Text Available The control problem for the networked suspension control system of maglev train with random induced time delay and packet dropouts is investigated. First, Takagi-Sugeno (T-S fuzzy models are utilized to represent the discrete-time nonlinear networked suspension control system, and the parameters uncertainties of the nonlinear model have also been taken into account. The controllers take the form of parallel distributed compensation. Then, a sufficient condition for the stability of the networked suspension control system is derived. Based on the criteria, the state feedback fuzzy controllers are obtained, and the controller gains can be computed by using MATLAB LMI Toolbox directly. Finally, both the numerical simulations and physical experiments on the full-scale single bogie of CMS-04 maglev train have been accomplished to demonstrate the effectiveness of this proposed method.

  14. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  15. Dynamic Intelligent Feedback Scheduling in Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Hui-ying Chen

    2013-01-01

    Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.

  16. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  17. Blockchain-Empowered Fair Computational Resource Sharing System in the D2D Network

    Directory of Open Access Journals (Sweden)

    Zhen Hong

    2017-11-01

    Full Text Available Device-to-device (D2D communication is becoming an increasingly important technology in future networks with the climbing demand for local services. For instance, resource sharing in the D2D network features ubiquitous availability, flexibility, low latency and low cost. However, these features also bring along challenges when building a satisfactory resource sharing system in the D2D network. Specifically, user mobility is one of the top concerns for designing a cooperative D2D computational resource sharing system since mutual communication may not be stably available due to user mobility. A previous endeavour has demonstrated and proven how connectivity can be incorporated into cooperative task scheduling among users in the D2D network to effectively lower average task execution time. There are doubts about whether this type of task scheduling scheme, though effective, presents fairness among users. In other words, it can be unfair for users who contribute many computational resources while receiving little when in need. In this paper, we propose a novel blockchain-based credit system that can be incorporated into the connectivity-aware task scheduling scheme to enforce fairness among users in the D2D network. Users’ computational task cooperation will be recorded on the public blockchain ledger in the system as transactions, and each user’s credit balance can be easily accessible from the ledger. A supernode at the base station is responsible for scheduling cooperative computational tasks based on user mobility and user credit balance. We investigated the performance of the credit system, and simulation results showed that with a minor sacrifice of average task execution time, the level of fairness can obtain a major enhancement.

  18. Social insect colony as a biological regulatory system: modelling information flow in dominance networks.

    Science.gov (United States)

    Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal

    2014-12-06

    Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. The Topological Analysis of Urban Transit System as a Small-World Network

    OpenAIRE

    Zhaosheng Yang; Huxing Zhou; Peng Gao; Hong Chen; Nan Zhang

    2011-01-01

    This paper proposes a topological analysis of urban transit system based on a functional representation network constructed from the urban transit system in Beijing. The representation gives a functional view on nodes named a transit line. Statistical measures are computed and introduced in complex network analysis. It shows that the urban transit system forms small-world networks and exhibits properties different from random networks and regular networks. Furthermore, the topological propert...

  20. Improved Robust Stability Criterion of Networked Control Systems with Transmission Delays and Packet Loss

    Directory of Open Access Journals (Sweden)

    Shenping Xiao

    2014-01-01

    Full Text Available The problem of stability analysis for a class of networked control systems (NCSs with network-induced delay and packet dropout is investigated in this paper. Based on the working mechanism of zero-order holder, the closed-loop NCS is modeled as a continuous-time linear system with input delay. By introducing a novel Lyapunov-Krasovskii functional which splits both the lower and upper bounds of the delay into two subintervals, respectively, and utilizes reciprocally convex combination technique, a new stability criterion is derived in terms of linear matrix inequalities. Compared with previous results in the literature, the obtained stability criterion is less conservative. Numerical examples demonstrate the validity and feasibility of the proposed method.

  1. Study on shielded pump system failure analysis method based on Bayesian network

    International Nuclear Information System (INIS)

    Bao Yilan; Huang Gaofeng; Tong Lili; Cao Xuewu

    2012-01-01

    This paper applies Bayesian network to the system failure analysis, with an aim to improve knowledge representation of the uncertainty logic and multi-fault states in system failure analysis. A Bayesian network for shielded pump failure analysis is presented, conducting fault parameter learning, updating Bayesian network parameter based on new samples. Finally, through the Bayesian network inference, vulnerability in this system, the largest possible failure modes, and the fault probability are obtained. The powerful ability of Bayesian network to analyze system fault is illustrated by examples. (authors)

  2. Network operating system focus technology

    Science.gov (United States)

    1985-01-01

    An activity structured to provide specific design requirements and specifications for the Space Station Data Management System (DMS) Network Operating System (NOS) is outlined. Examples are given of the types of supporting studies and implementation tasks presently underway to realize a DMS test bed capability to develop hands-on understanding of NOS requirements as driven by actual subsystem test beds participating in the overall Johnson Space Center test bed program. Classical operating system elements and principal NOS functions are listed.

  3. Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors.

    Science.gov (United States)

    Khoshgoftaar, Taghi M; Van Hulse, Jason; Napolitano, Amri

    2010-05-01

    Neural network algorithms such as multilayer perceptrons (MLPs) and radial basis function networks (RBFNets) have been used to construct learners which exhibit strong predictive performance. Two data related issues that can have a detrimental impact on supervised learning initiatives are class imbalance and labeling errors (or class noise). Imbalanced data can make it more difficult for the neural network learning algorithms to distinguish between examples of the various classes, and class noise can lead to the formulation of incorrect hypotheses. Both class imbalance and labeling errors are pervasive problems encountered in a wide variety of application domains. Many studies have been performed to investigate these problems in isolation, but few have focused on their combined effects. This study presents a comprehensive empirical investigation using neural network algorithms to learn from imbalanced data with labeling errors. In particular, the first component of our study investigates the impact of class noise and class imbalance on two common neural network learning algorithms, while the second component considers the ability of data sampling (which is commonly used to address the issue of class imbalance) to improve their performances. Our results, for which over two million models were trained and evaluated, show that conclusions drawn using the more commonly studied C4.5 classifier may not apply when using neural networks.

  4. Multilayer network modeling of integrated biological systems. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    De Domenico, Manlio

    2018-03-01

    Biological systems, from a cell to the human brain, are inherently complex. A powerful representation of such systems, described by an intricate web of relationships across multiple scales, is provided by complex networks. Recently, several studies are highlighting how simple networks - obtained by aggregating or neglecting temporal or categorical description of biological data - are not able to account for the richness of information characterizing biological systems. More complex models, namely multilayer networks, are needed to account for interdependencies, often varying across time, of biological interacting units within a cell, a tissue or parts of an organism.

  5. Consensus of Multi-Agent Systems with Prestissimo Scale-Free Networks

    International Nuclear Information System (INIS)

    Yang Hongyong; Lu Lan; Cao Kecai; Zhang Siying

    2010-01-01

    In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration. (interdisciplinary physics and related areas of science and technology)

  6. Diagnosis of mechanical pumping system using neural networks and system parameters analysis

    International Nuclear Information System (INIS)

    Tsai, Tai Ming; Wang, Wei Hui

    2009-01-01

    Normally, a mechanical pumping system is equipped to monitor some of the important input and output signals which are set to the prescribed values. This paper addressed dealing with these signals to establish the database of input- output relation by using a number of neural network models through learning algorithms. These signals encompass normal and abnormal running conditions. The abnormal running conditions were artificially generated. Meanwhile, for the purpose of setting up an on-line diagnosis network, the learning speed and accuracy of three kinds of networks, viz., the backpropagation (BPN), radial basis function (RBF) and adaptive linear (ADALINE) neural networks have been compared and assessed. The assessment criteria of the networks are compared with the correlation result matrix in terms of the neuron vectors. Both BPN and RBF are judged by the maximum vector based on the post-regression analysis, and the ADALINE is judged by the minimum vector based on the least mean square error analysis. By ignoring the neural network training time, it has been shown that if the mechanical diagnosis system is tackled off-line, the RBF method is suggested. However, for on-line diagnosis, the BPN method is recommended

  7. Diagnosis of mechanical pumping system using neural networks and system parameters analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Tai Ming; Wang, Wei Hui [National Taiwan Ocean University, Keelung (China)

    2009-01-15

    Normally, a mechanical pumping system is equipped to monitor some of the important input and output signals which are set to the prescribed values. This paper addressed dealing with these signals to establish the database of input- output relation by using a number of neural network models through learning algorithms. These signals encompass normal and abnormal running conditions. The abnormal running conditions were artificially generated. Meanwhile, for the purpose of setting up an on-line diagnosis network, the learning speed and accuracy of three kinds of networks, viz., the backpropagation (BPN), radial basis function (RBF) and adaptive linear (ADALINE) neural networks have been compared and assessed. The assessment criteria of the networks are compared with the correlation result matrix in terms of the neuron vectors. Both BPN and RBF are judged by the maximum vector based on the post-regression analysis, and the ADALINE is judged by the minimum vector based on the least mean square error analysis. By ignoring the neural network training time, it has been shown that if the mechanical diagnosis system is tackled off-line, the RBF method is suggested. However, for on-line diagnosis, the BPN method is recommended

  8. The Influence of Ethnic Diversity on Social Network Structure in a Common-Pool Resource System: Implications for Collaborative Management

    Directory of Open Access Journals (Sweden)

    Michele Barnes-Mauthe

    2013-03-01

    Full Text Available Social networks have recently been identified as key features in facilitating or constraining collaborative arrangements that can enhance resource governance and adaptability in complex social-ecological systems. Nonetheless, the effect of ethnicity on social network structure in an ethnically diverse common-pool resource system is virtually unknown. We characterize the entire social network of Hawaii's longline fishery, an ethnically diverse competitive pelagic fishery, and investigate network homophily, network structure, and cross-scale linkages. Results show that ethnicity significantly influences social network structure and is responsible for a homophily effect, which can create challenges for stakeholder collaboration across groups. Our analysis also suggests that ethnicity influences the formation of diverse network structures, and can affect the level of linkages to outside industry leaders, government or management officials, and members of the scientific community. This study provides the first empirical examination of the impact of ethnic diversity on resource user's social networks in the common-pool resource literature, having important implications for collaborative resource management.

  9. Multi-dimensional design window search system using neural networks in reactor core design

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    2000-02-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. We apply the present method to the neutronics and thermal hydraulics fields and develop the multi-dimensional design window search system using it. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. The system works on an engineering workstation (EWS) with efficient man-machine interface for pre- and post-processing. This report describes the principle of the present method, the structure of the system, the guidance of the usages of the system, the guideline for the efficient training of neural networks, the instructions of the input data for analysis calculation and so on. (author)

  10. A system-of-systems framework for the reliability analysis of distributed generation systems accounting for the impact of degraded communication networks

    International Nuclear Information System (INIS)

    Mo, Hua-Dong; Li, Yan-Fu; Zio, Enrico

    2016-01-01

    Highlights: • A system-of-systems framework is proposed for reliability analysis of DG system. • The impact of degraded communication networks is included and quantified. • Various uncertainties and contingencies in the DG system are considered. • A Monte Carlo simulation-optimal power flow computational framework is developed. • The results of the application study show the power of the proposed framework. - Abstract: Distributed generation (DG) systems install communication networks for managing real-time energy imbalance. Different from previous research, which typically assumes perfect communication networks, this work aims to quantitatively account for the impact of degraded communication networks on DG systems performance. The degraded behavior of communication networks is modeled by stochastic continuous time transmission delays and packet dropouts. On the DG systems side, we consider the inherent uncertainties of renewable energy sources, loads and energy prices. We develop a Monte Carlo simulation-optimal power flow (MCS-OPF) computational framework that is capable of generating consecutive time-dependent operating scenarios of the integrated system. Quantitative analysis is carried out to measure the impact of communication networks degradation onto the DG systems. For illustration, the framework is applied to a modified IEEE 13 nodes test feeder. The results demonstrate that the degraded communication networks can significantly deteriorate the performance of the integrated system. A grey differential model-based prediction method for reconstructing missing data is effective in mitigating the influence of the degraded communication networks.

  11. Integrated system for testing, investigation and analyzing of nuclear materials, TIAMAT-N

    International Nuclear Information System (INIS)

    Roth, Maria; Pitigoi, Vasile; Ionescu, Viorel; Constantin, Mihai; Babusi, Octavian

    2010-01-01

    Full text: The paper presents the results obtained in the framework of the project carried out as part of the National Program PNII, Modulus Capacities I, Competition 2008, concerning the performances of the Testing, Investigation and Analyzing System, used in the nuclear materials field. The system will ensure the evaluation of the nuclear structures, including the thermo-mechanical behaviour in connection with the physical-chemical analysis, microstructure and nondestructive investigations. Using last generation equipment and its interconnection to an IT system of monitoring, acquisition and data storage, it aims to implement the investigation methodologies applied in the nuclear area, to harmonize working practices according to the standards and procedures at European and international level. In addition, the system helps to develop a database, which will be continuously updated, with the materials investigated in the different types of tests and specific analyses. The project achievements will be capitalized at national level, sustaining the R and D studies of the National Nuclear Plan but also in the European and International Programs, including EURATOM Projects and Networks of Excellence, collaboration with AECL and COG Canada and participation in the AIEA Program. (authors)

  12. Using a Control System Ethernet Network as a Field Bus

    CERN Document Server

    De Van, William R; Lawson, Gregory S; Wagner, William H; Wantland, David M; Williams, Ernest

    2005-01-01

    A major component of a typical accelerator distributed control system (DCS) is a dedicated, large-scale local area communications network (LAN). The SNS EPICS-based control system uses a LAN based on the popular IEEE-802.3 set of standards (Ethernet). Since the control system network infrastructure is available throughout the facility, and since Ethernet-based controllers are readily available, it is tempting to use the control system LAN for "fieldbus" communications to low-level control devices (e.g. vacuum controllers; remote I/O). These devices may or may not be compatible with the high-level DCS protocols. This paper presents some of the benefits and risks of combining high-level DCS communications with low-level "field bus" communications on the same network, and describes measures taken at SNS to promote compatibility between devices connected to the control system network.

  13. Anomaly detection in an automated safeguards system using neural networks

    International Nuclear Information System (INIS)

    Whiteson, R.; Howell, J.A.

    1992-01-01

    An automated safeguards system must be able to detect an anomalous event, identify the nature of the event, and recommend a corrective action. Neural networks represent a new way of thinking about basic computational mechanisms for intelligent information processing. In this paper, we discuss the issues involved in applying a neural network model to the first step of this process: anomaly detection in materials accounting systems. We extend our previous model to a 3-tank problem and compare different neural network architectures and algorithms. We evaluate the computational difficulties in training neural networks and explore how certain design principles affect the problems. The issues involved in building a neural network architecture include how the information flows, how the network is trained, how the neurons in a network are connected, how the neurons process information, and how the connections between neurons are modified. Our approach is based on the demonstrated ability of neural networks to model complex, nonlinear, real-time processes. By modeling the normal behavior of the processes, we can predict how a system should be behaving and, therefore, detect when an abnormality occurs

  14. Investigating the effects of virtual social networks on entrepreneurial marketing

    Directory of Open Access Journals (Sweden)

    Kambeiz Talebi

    2014-10-01

    Full Text Available This paper presents an empirical investigation to study the effects of virtual social networks on entrepreneurial marketing. The study designs a questionnaire in Likert scale based on a model originally developed by Morris et al. (2002 [Morris, M. H., Schindehutte, M., & LaForge, R. W. (2002. Entrepreneurial marketing: a construct for integrating emerging entrepreneurship and marketing perspectives. Journal of Marketing Theory and Practice, 10(4, 1-19.]. The study considers the effects of three components of virtual social network (VSN; namely structural VSN, interaction VSN and functional VSN on entrepreneurial marketing. Using structural equation modeling, the study has determined positive and meaningful effects of all three VSN components on entrepreneurial marketing.

  15. Computationally Efficient Power Allocation Algorithm in Multicarrier-Based Cognitive Radio Networks: OFDM and FBMC Systems

    Directory of Open Access Journals (Sweden)

    Shaat Musbah

    2010-01-01

    Full Text Available Cognitive Radio (CR systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.

  16. Advanced information processing system: Input/output network management software

    Science.gov (United States)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  17. Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks

    Directory of Open Access Journals (Sweden)

    Jinde Cao

    2013-01-01

    Full Text Available This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response error system is established. Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first time to switched time-varying delay networks, combining Halanay inequality technique, synchronization criteria are derived for switched interval networks under the arbitrary switching rule, which are easy to verify in practice. Moreover, as an application, the proposed scheme is then applied to chaotic neural networks. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.

  18. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    Science.gov (United States)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  19. Investigating the structure of semantic networks in low and high creative persons

    Directory of Open Access Journals (Sweden)

    Yoed Nissan Kenett

    2014-06-01

    Full Text Available According to Mednick’s (1962 theory of individual differences in creativity, creative individuals appear to have a richer and more flexible associative network than less creative individuals. Thus, creative individuals are characterized by flat (broader associations instead of steep (few, common associations associational hierarchies. To study these differences, we implement a novel computational approach to the study of semantic networks, through the analysis of free associations. The core notion of our method is that concepts in the network are related to each other by their association correlations - overlap of similar associative responses (association clouds. We began by collecting a large sample of participants who underwent several creativity measurements and used a decision tree approach to divide the sample into low and high creative groups. Next, each group underwent a free association generation paradigm which allowed us to construct and analyze the semantic networks of both groups. Comparison of the semantic memory networks of persons with low creative ability and persons with high creative ability revealed differences between the two networks. The semantic memory network of persons with low creative ability seems to be more rigid, compared to the network of persons with high creative ability, in the sense that it is more spread out and breaks apart into more sub-parts. We discuss how our findings are in accord and extend Mednick’s (1962 theory and the feasibility of using network science paradigms to investigate high level cognition.

  20. Research on networked manufacturing system for reciprocating pump industry

    Science.gov (United States)

    Wu, Yangdong; Qi, Guoning; Xie, Qingsheng; Lu, Yujun

    2005-12-01

    Networked manufacturing is a trend of reciprocating pump industry. According to the enterprises' requirement, the architecture of networked manufacturing system for reciprocating pump industry was proposed, which composed of infrastructure layer, system management layer, application service layer and user layer. Its main functions included product data management, ASP service, business management, and customer relationship management, its physics framework was a multi-tier internet-based model; the concept of ASP service integration was put forward and its process model was also established. As a result, a networked manufacturing system aimed at the characteristics of reciprocating pump industry was built. By implementing this system, reciprocating pump industry can obtain a new way to fully utilize their own resources and enhance the capabilities to respond to the global market quickly.

  1. Designing of network planning system for small-scale manufacturing

    Science.gov (United States)

    Kapulin, D. V.; Russkikh, P. A.; Vinnichenko, M. V.

    2018-05-01

    The paper presents features of network planning in small-scale discrete production. The procedure of explosion of the production order, considering multilevel representation, is developed. The software architecture is offered. Approbation of the network planning system is carried out. This system allows carrying out dynamic updating of the production plan.

  2. State estimation in networked systems

    NARCIS (Netherlands)

    Sijs, J.

    2012-01-01

    This thesis considers state estimation strategies for networked systems. State estimation refers to a method for computing the unknown state of a dynamic process by combining sensor measurements with predictions from a process model. The most well known method for state estimation is the Kalman

  3. Network support for system initiated checkpoints

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip

    2013-01-29

    A system, method and computer program product for supporting system initiated checkpoints in parallel computing systems. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity.

  4. Design and Management of Networked Information Systems

    DEFF Research Database (Denmark)

    Havn, Erling; Bansler, Jørgen P.

    1996-01-01

    In this paper, we present a newly started research project at the Center for Tele-Information at the Technical University of Denmark. The project focuses on the design and management of networked information systems, that is computer-based IS linked by a wide area network and supporting...... research questions:1. What is the essence of the new managerial theories and models and how do they define the role of telecommunications and IT in organizations?2. How are these organizational theories and models implemented in practice?3. How is the design and implementation of information systems...... and networks actually organized and carried out?4. What are the consequences for work content, skills, working conditions, etc.? The research project consists of a theoretical analysis of contemporary management theories as well as a number of in-depth case studies of firms engaged in the design...

  5. Multiplex visibility graphs to investigate recurrent neural network dynamics

    Science.gov (United States)

    Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert

    2017-03-01

    A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.

  6. A drug-sensitive genetic network masks fungi from the immune system.

    Directory of Open Access Journals (Sweden)

    Robert T Wheeler

    2006-04-01

    Full Text Available Fungal pathogens can be recognized by the immune system via their beta-glucan, a potent proinflammatory molecule that is present at high levels but is predominantly buried beneath a mannoprotein coat and invisible to the host. To investigate the nature and significance of "masking" this molecule, we characterized the mechanism of masking and consequences of unmasking for immune recognition. We found that the underlying beta-glucan in the cell wall of Candida albicans is unmasked by subinhibitory doses of the antifungal drug caspofungin, causing the exposed fungi to elicit a stronger immune response. Using a library of bakers' yeast (Saccharomyces cerevisiae mutants, we uncovered a conserved genetic network that is required for concealing beta-glucan from the immune system and limiting the host response. Perturbation of parts of this network in the pathogen C. albicans caused unmasking of its beta-glucan, leading to increased beta-glucan receptor-dependent elicitation of key proinflammatory cytokines from primary mouse macrophages. By creating an anti-inflammatory barrier to mask beta-glucan, opportunistic fungi may promote commensal colonization and have an increased propensity for causing disease. Targeting the widely conserved gene network required for creating and maintaining this barrier may lead to novel broad-spectrum antimycotics.

  7. Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control

    International Nuclear Information System (INIS)

    Liu Dan-Feng; Wu Zhao-Yan; Ye Qing-Ling

    2014-01-01

    In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is investigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively. Several numerical simulations are provided to illustrate the effectiveness of the theoretical results. (general)

  8. Investigating the Influence of Special On–Off Attacks on Challenge-Based Collaborative Intrusion Detection Networks

    Directory of Open Access Journals (Sweden)

    Wenjuan Li

    2018-01-01

    Full Text Available Intrusions are becoming more complicated with the recent development of adversarial techniques. To boost the detection accuracy of a separate intrusion detector, the collaborative intrusion detection network (CIDN has thus been developed by allowing intrusion detection system (IDS nodes to exchange data with each other. Insider attacks are a great threat for such types of collaborative networks, where an attacker has the authorized access within the network. In literature, a challenge-based trust mechanism is effective at identifying malicious nodes by sending challenges. However, such mechanisms are heavily dependent on two assumptions, which would cause CIDNs to be vulnerable to advanced insider attacks in practice. In this work, we investigate the influence of advanced on–off attacks on challenge-based CIDNs, which can respond truthfully to one IDS node but behave maliciously to another IDS node. To evaluate the attack performance, we have conducted two experiments under a simulated and a real CIDN environment. The obtained results demonstrate that our designed attack is able to compromise the robustness of challenge-based CIDNs in practice; that is, some malicious nodes can behave untruthfully without a timely detection.

  9. Applying Trusted Network Technology To Process Control Systems

    Science.gov (United States)

    Okhravi, Hamed; Nicol, David

    Interconnections between process control networks and enterprise networks expose instrumentation and control systems and the critical infrastructure components they operate to a variety of cyber attacks. Several architectural standards and security best practices have been proposed for industrial control systems. However, they are based on older architectures and do not leverage the latest hardware and software technologies. This paper describes new technologies that can be applied to the design of next generation security architectures for industrial control systems. The technologies are discussed along with their security benefits and design trade-offs.

  10. Reconfigurable network systems and software-defined networking

    OpenAIRE

    Zilberman, N.; Watts, P. M.; Rotsos, C.; Moore, A. W.

    2015-01-01

    Modern high-speed networks have evolved from relatively static networks to highly adaptive networks facilitating dynamic reconfiguration. This evolution has influenced all levels of network design and management, introducing increased programmability and configuration flexibility. This influence has extended from the lowest level of physical hardware interfaces to the highest level of network management by software. A key representative of this evolution is the emergence of software-defined n...

  11. Design of real-time voice over internet protocol system under bandwidth network

    Science.gov (United States)

    Zhang, Li; Gong, Lina

    2017-04-01

    With the increasing bandwidth of the network and network convergence accelerating, VoIP means of communication across the network is becoming increasingly popular phenomenon. The real-time identification and analysis for VOIP flow over backbone network become the urgent needs and research hotspot of network operations management. Based on this, the paper proposes a VoIP business management system over backbone network. The system first filters VoIP data stream over backbone network and further resolves the call signaling information and media voice. The system can also be able to design appropriate rules to complete real-time reduction and presentation of specific categories of calls. Experimental results show that the system can parse and process real-time backbone of the VoIP call, and the results are presented accurately in the management interface, VoIP-based network traffic management and maintenance provide the necessary technical support.

  12. E-commerce System Security Assessment based on Bayesian Network Algorithm Research

    OpenAIRE

    Ting Li; Xin Li

    2013-01-01

    Evaluation of e-commerce network security is based on assessment method Bayesian networks, and it first defines the vulnerability status of e-commerce system evaluation index and the vulnerability of the state model of e-commerce systems, and after the principle of the Bayesian network reliability of e-commerce system and the criticality of the vulnerabilities were analyzed, experiments show that the change method is a good evaluation of the security of e-commerce systems.

  13. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    Science.gov (United States)

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  14. Protecting against cyber threats in networked information systems

    Science.gov (United States)

    Ertoz, Levent; Lazarevic, Aleksandar; Eilertson, Eric; Tan, Pang-Ning; Dokas, Paul; Kumar, Vipin; Srivastava, Jaideep

    2003-07-01

    This paper provides an overview of our efforts in detecting cyber attacks in networked information systems. Traditional signature based techniques for detecting cyber attacks can only detect previously known intrusions and are useless against novel attacks and emerging threats. Our current research at the University of Minnesota is focused on developing data mining techniques to automatically detect attacks against computer networks and systems. This research is being conducted as a part of MINDS (Minnesota Intrusion Detection System) project at the University of Minnesota. Experimental results on live network traffic at the University of Minnesota show that the new techniques show great promise in detecting novel intrusions. In particular, during the past few months our techniques have been successful in automatically identifying several novel intrusions that could not be detected using state-of-the-art tools such as SNORT.

  15. Delay Tolerant Networking with Data Triage Method based on Emergent User Policies for Disaster Information Network System

    Directory of Open Access Journals (Sweden)

    Noriki Uchida

    2014-01-01

    Full Text Available When Disaster Information Network System is considered in local areas that were heavy damaged by the East Japan Great Earthquake in 2011, the resiliency of the network system is one of significant subjects for the restoration of the areas. DTN (Delay Tolerant Network has been focused for the effective methods for such inoperable network circumstances. However, when DTN is applied for the local areas, there are some problems such as message delivery rate and latency because there are fewer roads, cars, and pedestrians than in urban areas. In this paper, we propose the Enhanced Media Coordinate System for its architecture, and Data Triage method by emergent user policies is introduced to improve the QoS in Disaster Information Network System in local areas. In the proposed method, every message is tagged with the priority levels by data types with considering emergent user policies, and the high priority messages are firstly duplicated to transmittable nodes. Then, the experimental results by the GIS map of a Japanese coastal town and the future studies are discussed.

  16. Design of Early Warning System Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Gan Bo

    2018-01-01

    Full Text Available In order to solve the shortcomings of the landslide monitoring technology method, a set of landslides monitoring and early warning system is designed. It can achieve real-time sensor data acquisition, remote transmission and query display. In addition, aiming at the harsh environment of landslide monitoring and the performance requirements of the monitoring system, an improved minimum hop routing protocol is proposed. It can reduce network energy consumption, enhance network robustness, and improve node layout and networking flexibility. In order to realize the remote transmission of data, GPRS wireless communication is used to transmit monitoring data. Combined with remote monitoring center, real-time data display, query, preservation and landslide warning and prediction are realized. The results show that the sensor data acquisition system is accurate, the system is stable, and the node network is flexible. Therefore, the monitoring system has a good use value.

  17. Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market.

    Science.gov (United States)

    Long, Haiming; Zhang, Ji; Tang, Nengyu

    2017-01-01

    This study considers the effect of an industry's network topology on its systemic risk contribution to the stock market using data from the CSI 300 two-tier industry indices from the Chinese stock market. We first measure industry's conditional-value-at-risk (CoVaR) and the systemic risk contribution (ΔCoVaR) using the fitted time-varying t-copula function. The network of the stock industry is established based on dynamic conditional correlations with the minimum spanning tree. Then, we investigate the connection characteristics and topology of the network. Finally, we utilize seemingly unrelated regression estimation (SUR) of panel data to analyze the relationship between network topology of the stock industry and the industry's systemic risk contribution. The results show that the systemic risk contribution of small-scale industries such as real estate, food and beverage, software services, and durable goods and clothing, is higher than that of large-scale industries, such as banking, insurance and energy. Industries with large betweenness centrality, closeness centrality, and clustering coefficient and small node occupancy layer are associated with greater systemic risk contribution. In addition, further analysis using a threshold model confirms that the results are robust.

  18. Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market.

    Directory of Open Access Journals (Sweden)

    Haiming Long

    Full Text Available This study considers the effect of an industry's network topology on its systemic risk contribution to the stock market using data from the CSI 300 two-tier industry indices from the Chinese stock market. We first measure industry's conditional-value-at-risk (CoVaR and the systemic risk contribution (ΔCoVaR using the fitted time-varying t-copula function. The network of the stock industry is established based on dynamic conditional correlations with the minimum spanning tree. Then, we investigate the connection characteristics and topology of the network. Finally, we utilize seemingly unrelated regression estimation (SUR of panel data to analyze the relationship between network topology of the stock industry and the industry's systemic risk contribution. The results show that the systemic risk contribution of small-scale industries such as real estate, food and beverage, software services, and durable goods and clothing, is higher than that of large-scale industries, such as banking, insurance and energy. Industries with large betweenness centrality, closeness centrality, and clustering coefficient and small node occupancy layer are associated with greater systemic risk contribution. In addition, further analysis using a threshold model confirms that the results are robust.

  19. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    Science.gov (United States)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as

  20. Structural and functional networks in complex systems with delay.

    Science.gov (United States)

    Eguíluz, Víctor M; Pérez, Toni; Borge-Holthoefer, Javier; Arenas, Alex

    2011-05-01

    Functional networks of complex systems are obtained from the analysis of the temporal activity of their components, and are often used to infer their unknown underlying connectivity. We obtain the equations relating topology and function in a system of diffusively delay-coupled elements in complex networks. We solve exactly the resulting equations in motifs (directed structures of three nodes) and in directed networks. The mean-field solution for directed uncorrelated networks shows that the clusterization of the activity is dominated by the in-degree of the nodes, and that the locking frequency decreases with increasing average degree. We find that the exponent of a power law degree distribution of the structural topology γ is related to the exponent of the associated functional network as α=(2-γ)(-1) for γ<2. © 2011 American Physical Society

  1. Time-varying causal network of the Korean financial system based on firm-specific risk premiums

    Science.gov (United States)

    Song, Jae Wook; Ko, Bonggyun; Cho, Poongjin; Chang, Woojin

    2016-09-01

    The aim of this paper is to investigate the Korean financial system based on time-varying causal network. We discover many stylized facts by utilizing the firm-specific risk premiums for measuring the causality direction from a firm to firm. At first, we discover that the interconnectedness of causal network is affected by the outbreak of financial events; the co-movement of firm-specific risk premium is strengthened after each positive event, and vice versa. Secondly, we find that the major sector of the Korean financial system is the Depositories, and the financial reform in June-2011 achieves its purpose by weakening the power of risk-spillovers of Broker-Dealers. Thirdly, we identify that the causal network is a small-world network with scale-free topology where the power-law exponents of out-Degree and negative event are more significant than those of in-Degree and positive event. Lastly, we discuss that the current aspects of causal network are closely related to the long-term future scenario of the KOSPI Composite index where the direction and stability are significantly affected by the power of risk-spillovers and the power-law exponents of degree distributions, respectively.

  2. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  3. Bi-Criteria System Optimum Traffic Assignment in Networks With Continuous Value of Time

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2013-04-01

    Full Text Available For an elastic demand transportation network with continuously distributed value of time, the system disutility can be measured either in time units or in cost units. The user equilibrium model and the system optimization model are each formulated in two different criteria. The conditions required for making the system optimum link flow pattern equivalent to the user equilibrium link flow pattern are derived. Furthermore, a bi-objective model has been developed which minimizes simultaneously the system travel time and the system travel cost. The existence of a pricing scheme with anonymous link tolls which can decentralize a Pareto system optimum into the user equilibrium has been investigated.

  4. Spreading Sequence System for Full Connectivity Relay Network

    Science.gov (United States)

    Kwon, Hyuck M. (Inventor); Yang, Jie (Inventor); Pham, Khanh D. (Inventor)

    2018-01-01

    Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.

  5. Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [Pacific Northwest National Laboratory (PNNL); Aziz, H M Abdul [ORNL; Young, Stan [National Renewable Energy Laboratory (NREL); Patil, Sagar [Pacific Northwest National Laboratory (PNNL)

    2017-10-01

    Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections. In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.

  6. Development of a Software Based Firewall System for Computer Network Traffic Control

    Directory of Open Access Journals (Sweden)

    Ikhajamgbe OYAKHILOME

    2009-12-01

    Full Text Available The connection of an internal network to an external network such as Internet has made it vulnerable to attacks. One class of network attack is unauthorized penetration into network due to the openness of networks. It is possible for hackers to sum access to an internal network, this pose great danger to the network and network resources. Our objective and major concern of network design was to build a secured network, based on software firewall that ensured the integrity and confidentiality of information on the network. We studied several mechanisms to achieve this; one of such mechanism is the implementation of firewall system as a network defence. Our developed firewall has the ability to determine which network traffic should be allowed in or out of the network. Part of our studied work was also channelled towards a comprehensive study of hardware firewall security system with the aim of developing this software based firewall system. Our software firewall goes a long way in protecting an internal network from external unauthorized traffic penetration. We included an anti virus software which is lacking in most firewalls.

  7. Mathematical models of electrical network systems theory and applications : an introduction

    CERN Document Server

    Kłos, Andrzej

    2017-01-01

    This book is for all those who are looking for a non-conventional mathematical model of electrical network systems. It presents a modern approach using linear algebra and derives various commonly unknown quantities and interrelations of network analysis. It also explores some applications of algebraic network model of and solves some examples of previously unsolved network problems in planning and operation of network systems. Complex mathematical aspects are illustrated and described in a way that is understandable for non-mathematicians. Discussing interesting concepts and practically useful methods of network analysis, it is a valuable resource for lecturers, students, engineers and research workers. .

  8. Design and implementation of a new fuzzy PID controller for networked control systems.

    Science.gov (United States)

    Fadaei, A; Salahshoor, K

    2008-10-01

    This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.

  9. Requirements of the integration of renewable energy into network charge regulation. Proposals for the further development of the network charge system. Final report

    International Nuclear Information System (INIS)

    Friedrichsen, Nele; Klobasa, Marian; Marwitz, Simon; Hilpert, Johannes; Sailer, Frank

    2016-01-01

    In this project we analyzed options to advance the network tariff system to support the German energy transition. A power system with high shares of renewables, requires more flexibility of supply and demand than the traditional system based on centralized, fossil power plants. Further, the power networks need to be adjusted and expanded. The transformation should aim at system efficiency i.e. look at both generation and network development. Network tariffs allocate the network cost towards network users. They also should provide incentives, e.g. to reduce peak load in periods of network congestion. Inappropriate network tariffs can hinder the provision of flexibility and thereby become a barrier towards system integration of renewable. Against this background, this report presents a systematic review of the German network tariff system and a discussion of several options to adapt the network tarif system in order to support the energy transition. The following aspects are analyzed: An adjustment of the privileges for industrial users to increase potential network benefits and reduce barriers towards a more market oriented behaviour. The payments for avoided network charges to distributed generation, that do not reflect cost reality in distribution networks anymore. Uniform transmission network tariffs as an option for a more appropriate allocation of cost associated with the energy transition. Increased standing fees in low voltage networks as an option to increase the cost-contribution of users with self-generation to network financing. Generator tariffs, to allocate a share of network cost to generators and provide incentives for network oriented location choice and/or feed-in.

  10. Investigation of Hybrid Pseudo Bipolar HVDC Performances Supply Power to Passive AC Network

    Directory of Open Access Journals (Sweden)

    Kuan Li

    2014-07-01

    Full Text Available The traditional HVDC plays an important role in the development of power grid. But the traditional HVDC cannot supply power either to entirely passive AC network or to weak AC system. In fact, an entirely passive AC network can be effectively powered through VSC-HVDC. However, the cost of investment in VSC-HVDC is amazingly high due to the limitation of power electronics technology. Based on CSC and VSC, this paper proposes a method to build Hybrid HVDC, which makes the power supply to the passive AC network come true and, at the same time, lowers the investment cost. The effect of topology, steady mathematical model, startup characteristic, steady and transient characteristics in Hybrid HVDC system are systematically studied in this paper. The simulation result shows that Hybrid HVDC can supply power to the passive AC network with high stability. This study provides a theoretical basis for the further development of HVDC.

  11. Network characteristics emerging from agent interactions in balanced distributed system.

    Science.gov (United States)

    Salman, Mahdi Abed; Bertelle, Cyrille; Sanlaville, Eric

    2015-01-01

    A distributed computing system behaves like a complex network, the interactions between nodes being essential information exchanges and migrations of jobs or services to execute. These actions are performed by software agents, which behave like the members of social networks, cooperating and competing to obtain knowledge and services. The load balancing consists in distributing the load evenly between system nodes. It aims at enhancing the resource usage. A load balancing strategy specifies scenarios for the cooperation. Its efficiency depends on quantity, accuracy, and distribution of available information. Nevertheless, the distribution of information on the nodes, together with the initial network structure, may create different logical network structures. In this paper, different load balancing strategies are tested on different network structures using a simulation. The four tested strategies are able to distribute evenly the load so that the system reaches a steady state (the mean response time of the jobs is constant), but it is shown that a given strategy indeed behaves differently according to structural parameters and information spreading. Such a study, devoted to distributed computing systems (DCSs), can be useful to understand and drive the behavior of other complex systems.

  12. Neural Network Models of Simple Mechanical Systems Illustrating the Feasibility of Accelerated Life Testing

    Science.gov (United States)

    Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph

    1996-01-01

    A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.

  13. Robust receding horizon control for networked and distributed nonlinear systems

    CERN Document Server

    Li, Huiping

    2017-01-01

    This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel ...

  14. Toward Optimal Transport Networks

    Science.gov (United States)

    Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.

    2008-01-01

    Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.

  15. Social network based dynamic transit service through the OMITS system.

    Science.gov (United States)

    2014-02-01

    The Open Mode Integrated Transportation System (OMITS) forms a sustainable information infrastructure for communication within and between the mobile/Internet network, the roadway : network, and the users social network. It manipulates the speed g...

  16. Pathways, Networks and Systems Medicine Conferences

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, Joseph H. [Pacific Northwest Research Institute

    2013-11-25

    The 6th Pathways, Networks and Systems Medicine Conference was held at the Minoa Palace Conference Center, Chania, Crete, Greece (16-21 June 2008). The Organizing Committee was composed of Joe Nadeau (CWRU, Cleveland), Rudi Balling (German Research Centre, Brauschweig), David Galas (Institute for Systems Biology, Seattle), Lee Hood (Institute for Systems Biology, Seattle), Diane Isonaka (Seattle), Fotis Kafatos (Imperial College, London), John Lambris (Univ. Pennsylvania, Philadelphia),Harris Lewin (Univ. of Indiana, Urbana-Champaign), Edison Liu (Genome Institute of Singapore, Singapore), and Shankar Subramaniam (Univ. California, San Diego). A total of 101 individuals from 21 countries participated in the conference: USA (48), Canada (5), France (5), Austria (4), Germany (3), Italy (3), UK (3), Greece (2), New Zealand (2), Singapore (2), Argentina (1), Australia (1), Cuba (1), Denmark (1), Japan (1), Mexico (1), Netherlands (1), Spain (1), Sweden (1), Switzerland (1). With respect to speakers, 29 were established faculty members and 13 were graduate students or postdoctoral fellows. With respect to gender representation, among speakers, 13 were female and 28 were male, and among all participants 43 were female and 58 were male. Program these included the following topics: Cancer Pathways and Networks (Day 1), Metabolic Disease Networks (Day 2), Day 3 ? Organs, Pathways and Stem Cells (Day 3), and Day 4 ? Inflammation, Immunity, Microbes and the Environment (Day 4). Proceedings of the Conference were not published.

  17. Stabilizing weighted complex networks

    International Nuclear Information System (INIS)

    Xiang Linying; Chen Zengqiang; Liu Zhongxin; Chen Fei; Yuan Zhuzhi

    2007-01-01

    Real networks often consist of local units which interact with each other via asymmetric and heterogeneous connections. In this paper, the V-stability problem is investigated for a class of asymmetric weighted coupled networks with nonidentical node dynamics, which includes the unweighted network as a special case. Pinning control is suggested to stabilize such a coupled network. The complicated stabilization problem is reduced to measuring the semi-negative property of the characteristic matrix which embodies not only the network topology, but also the node self-dynamics and the control gains. It is found that network stabilizability depends critically on the second largest eigenvalue of the characteristic matrix. The smaller the second largest eigenvalue is, the more the network is pinning controllable. Numerical simulations of two representative networks composed of non-chaotic systems and chaotic systems, respectively, are shown for illustration and verification

  18. Implementation of medical monitor system based on networks

    Science.gov (United States)

    Yu, Hui; Cao, Yuzhen; Zhang, Lixin; Ding, Mingshi

    2006-11-01

    In this paper, the development trend of medical monitor system is analyzed and portable trend and network function become more and more popular among all kinds of medical monitor devices. The architecture of medical network monitor system solution is provided and design and implementation details of medical monitor terminal, monitor center software, distributed medical database and two kind of medical information terminal are especially discussed. Rabbit3000 system is used in medical monitor terminal to implement security administration of data transfer on network, human-machine interface, power management and DSP interface while DSP chip TMS5402 is used in signal analysis and data compression. Distributed medical database is designed for hospital center according to DICOM information model and HL7 standard. Pocket medical information terminal based on ARM9 embedded platform is also developed to interactive with center database on networks. Two kernels based on WINCE are customized and corresponding terminal software are developed for nurse's routine care and doctor's auxiliary diagnosis. Now invention patent of the monitor terminal is approved and manufacture and clinic test plans are scheduled. Applications for invention patent are also arranged for two medical information terminals.

  19. Network Multifunctional Substation with Embedded System in Coal Mine

    Institute of Scientific and Technical Information of China (English)

    MENG Fan-rong; HUO Yan; ZHOU Yong

    2006-01-01

    In order to solve the problems of mining monitor and control systems during the construction process of digital mining combined with network and embedded technologies, the kernel access equipment of a mining monitor and control system was proposed and designed. It is the architecture of a mining embedded network multifunctional substation. This paper presents the design of hardware and software of the substation in detail. Finally, the system's efficiency was validated through experimentation.

  20. Modeling Networks and Dynamics in Complex Systems: from Nano-Composites to Opinion Formation

    Science.gov (United States)

    Shi, Feng

    Complex networks are ubiquitous in systems of physical, biological, social or technological origin. Components in those systems range from as large as cities in power grids, to as small as molecules in metabolic networks. Since the dawn of network science, significant attention has focused on the implications of dynamics in establishing network structure and the impact of structural properties on dynamics on those networks. The first part of the thesis follows this direction, studying the network formed by conductive nanorods in nano-materials, and focuses on the electrical response of the composite to the structure change of the network. New scaling laws for the shear-induced anisotropic percolation are introduced and a robust exponential tail of the current distribution across the network is identified. These results are relevant especially to "active" composite materials where materials are exposed to mechanical loading and strain deformations. However, in many real-world networks the evolution of the network topology is tied to the states of the vertices and vice versa. Networks that exhibit such a feedback are called adaptive or coevolutionary networks. The second part of the thesis examines two closely related variants of a simple, abstract model for coevolution of a network and the opinions of its members. As a representative model for adaptive networks, it displays the feature of self-organization of the system into a stable configuration due to the interplay between the network topology and the dynamics on the network. This simple model yields interesting dynamics and the slight change in the rewiring strategy results in qualitatively different behaviors of the system. In conclusion, the dissertation aims to develop new network models and tools which enable insights into the structure and dynamics of various systems, and seeks to advance network algorithms which provide approaches to coherently articulated questions in real-world complex systems such as

  1. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Science.gov (United States)

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  2. Balancing the Quantitative and Qualitative Aspects of Social Network Analysis to Study Complex Social Systems

    OpenAIRE

    Schipper, Danny; Spekkink, Wouter

    2015-01-01

    Social Network Analysis (SNA) can be used to investigate complex social systems. SNA is typically applied as a quantitative method, which has important limitations. First, quantitative methods are capable of capturing the form of relationships (e.g. strength and frequency), but they are less suitable for capturing the content of relationships (e.g. interests and motivations). Second, while complex social systems are highly dynamic, the representations that SNA creates of such systems are ofte...

  3. STIMULUS: End-System Network Interface Controller for 100 Gb/s Wide Area Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zarkesh-Ha, Payman [University of New Mexico

    2014-09-12

    The main goal of this research grant is to develop a system-level solution leveraging novel technologies that enable network communications at 100 Gb/s or beyond. University of New Mexico in collaboration with Acadia Optronics LLC has been working on this project to develop the 100 Gb/s Network Interface Controller (NIC) under this Department of Energy (DOE) grant.

  4. Consensus Algorithms for Networks of Systems with Second- and Higher-Order Dynamics

    Science.gov (United States)

    Fruhnert, Michael

    This thesis considers homogeneous networks of linear systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilizable. We show that, in continuous-time, consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. For networks of continuous-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback. For networks of discrete-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Schur. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. We show that consensus can always be achieved for marginally stable systems and discretized systems. Simple conditions for consensus achieving controllers are obtained when the Laplacian eigenvalues are all real. For networks of continuous-time time-variant higher-order systems, we show that uniform consensus can always be achieved if systems are quadratically stabilizable. In this case, we provide a simple condition to obtain a linear feedback control. For networks of discrete-time higher-order systems, we show that constant gains can be chosen such that consensus is achieved for a variety of network topologies. First, we develop simple results for networks of time

  5. Building Automation System Cyber Networks: An Unmitigated Risk to Federal Facilities

    Science.gov (United States)

    2015-12-01

    Cybersecurity, Appendix III, IV. xviii on the GSA network, and protected behind the GSA firewall ; the remaining facilities are operated on private...control systems by delaying or blocking the flow of information through control networks, thereby denying availability of the networks to control system...a worm, malware , or virus with no specific target.43 A targeted attack occurs when an individual or group attacks a specific system at a specific

  6. Positioning and tracking control system analysis for mobile free space optical network

    Science.gov (United States)

    Li, Yushan; Refai, Hazem; Sluss, , James J., Jr.; Verma, Pramode; LoPresti, Peter

    2005-08-01

    Free Space Optical (FSO) communication has evolved to be applied to the mobile network, because it can provide up to 2.5Gbps or higher data rate wireless communication. One of the key challenges with FSO systems is to maintain the Line of Sight (LOS) between transmitter and receiver. In this paper, the feasibility and performance of applying the FSO technology to the mobile network is explored, and the design plan of the attitude positioning and tracking control system of the FSO transceiver is investigated. First, the system architecture is introduced, the requirements for the control system are analyzed, the involved reference frames and frame transformation are presented. Second, the control system bandwidth is used to evaluate the system performance in controlling a positioning system consisting of a gimbal and a steering mirror, some definitions to describe the positioning accuracy and tracking capacity are given. The attitude control of a FSO transceiver is split into 2 similar channels: pitch and yaw. Using an equivalent linear control system model, the simulations are carried out, with and without the presence of uncertainties that includes GPS data errors and sensor measurement errors. Finally, based on the simulation results in the pitch channel, the quantitative evaluation on the performance of the control system is given, including positioning accuracy, tracking capability and uncertainty tolerance.

  7. A complex network-based importance measure for mechatronics systems

    Science.gov (United States)

    Wang, Yanhui; Bi, Lifeng; Lin, Shuai; Li, Man; Shi, Hao

    2017-01-01

    In view of the negative impact of functional dependency, this paper attempts to provide an alternative importance measure called Improved-PageRank (IPR) for measuring the importance of components in mechatronics systems. IPR is a meaningful extension of the centrality measures in complex network, which considers usage reliability of components and functional dependency between components to increase importance measures usefulness. Our work makes two important contributions. First, this paper integrates the literature of mechatronic architecture and complex networks theory to define component network. Second, based on the notion of component network, a meaningful IPR is brought into the identifying of important components. In addition, the IPR component importance measures, and an algorithm to perform stochastic ordering of components due to the time-varying nature of usage reliability of components and functional dependency between components, are illustrated with a component network of bogie system that consists of 27 components.

  8. A Distributed Computing Network for Real-Time Systems.

    Science.gov (United States)

    1980-11-03

    7 ) AU2 o NAVA TUNDEWATER SY$TEMS CENTER NEWPORT RI F/G 9/2 UIS RIBUT E 0 COMPUTIN G N LTWORK FOR REAL - TIME SYSTEMS .(U) UASSIFIED NOV Al 6 1...MORAIS - UT 92 dLEVEL c A Distributed Computing Network for Real - Time Systems . 11 𔃺-1 Gordon E/Morson I7 y tm- ,r - t "en t As J 2 -p .. - 7 I’ cNaval...NUMBER TD 5932 / N 4. TITLE mand SubotI. S. TYPE OF REPORT & PERIOD COVERED A DISTRIBUTED COMPUTING NETWORK FOR REAL - TIME SYSTEMS 6. PERFORMING ORG

  9. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Science.gov (United States)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  10. Dynamic defense and network randomization for computer systems

    Science.gov (United States)

    Chavez, Adrian R.; Stout, William M. S.; Hamlet, Jason R.; Lee, Erik James; Martin, Mitchell Tyler

    2018-05-29

    The various technologies presented herein relate to determining a network attack is taking place, and further to adjust one or more network parameters such that the network becomes dynamically configured. A plurality of machine learning algorithms are configured to recognize an active attack pattern. Notification of the attack can be generated, and knowledge gained from the detected attack pattern can be utilized to improve the knowledge of the algorithms to detect a subsequent attack vector(s). Further, network settings and application communications can be dynamically randomized, wherein artificial diversity converts control systems into moving targets that help mitigate the early reconnaissance stages of an attack. An attack(s) based upon a known static address(es) of a critical infrastructure network device(s) can be mitigated by the dynamic randomization. Network parameters that can be randomized include IP addresses, application port numbers, paths data packets navigate through the network, application randomization, etc.

  11. Impulsive Controller Design for Complex Nonlinear Singular Networked Systems with Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Xian-Lin Zhao

    2013-01-01

    Full Text Available Globally exponential stability of Complex (with coupling Nonlinear Singular Impulsive Networked Control Systems (CNSINCS with packet dropouts and time-delay is investigated. Firstly, the mathematic model of CNSINCS is established. Then, by employing the method of Lyapunov functional, exponential stability criteria are obtained and the impulsive controller design method is given. Finally, some simulation results are provided to demonstrate the effectiveness of the proposed method.

  12. End-System Network Interface Controller for 100 Gb/s Wide Area Networks: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jesse [Acadia Optronics LLC, Rockville, MD (United States)

    2013-08-30

    In recent years, network bandwidth requirements have scaled multiple folds, pushing the need for the development of data exchange mechanisms at 100 Gb/s and beyond. High performance computing, climate modeling, large-scale storage, and collaborative scientific research are examples of applications that can greatly benefit by leveraging high bandwidth capabilities of the order of 100 Gb/s. Such requirements and advances in IEEE Ethernet standards, Optical Transport Unit4 (OTU4), and host-system interconnects demand a network infrastructure supporting throughput rates of the order of 100 Gb/s with a single wavelength. To address such a demand Acadia Optronics in collaboration with the University of New Mexico, proposed and developed a end-system Network Interface Controller (NIC) for the 100Gbps WANs. Acadia’s 100G NIC employs an FPGA based system with a high-performance processor interconnect (PCIe 3.0) and a high capacity optical transmission link (CXP) to provide data transmission at the rate of 100 Gbps.

  13. A Wireless Location System in LTE Networks

    OpenAIRE

    Liu, Qi; Hu, Rongyi; Liu, Shan

    2017-01-01

    Personal location technologies are becoming important with the rapid development of Mobile Internet services. In traditional cellular networks, the key problems of user location technologies are high-precision synchronization among different base stations, inflexible processing resources, and low accuracy positioning, especially for indoor environment. In this paper, a new LTE location system in Centralized Radio Access Network (C-RAN) is proposed, which makes channel and location measurement...

  14. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  15. Application of Hierarchical Dissociated Neural Network in Closed-Loop Hybrid System Integrating Biological and Mechanical Intelligence

    Science.gov (United States)

    Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579

  16. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  17. A universal indicator of critical state transitions in noisy complex networked systems.

    Science.gov (United States)

    Liang, Junhao; Hu, Yanqing; Chen, Guanrong; Zhou, Tianshou

    2017-02-23

    Critical transition, a phenomenon that a system shifts suddenly from one state to another, occurs in many real-world complex networks. We propose an analytical framework for exactly predicting the critical transition in a complex networked system subjected to noise effects. Our prediction is based on the characteristic return time of a simple one-dimensional system derived from the original higher-dimensional system. This characteristic time, which can be easily calculated using network data, allows us to systematically separate the respective roles of dynamics, noise and topology of the underlying networked system. We find that the noise can either prevent or enhance critical transitions, playing a key role in compensating the network structural defect which suffers from either internal failures or environmental changes, or both. Our analysis of realistic or artificial examples reveals that the characteristic return time is an effective indicator for forecasting the sudden deterioration of complex networks.

  18. UPGRADE FOR HARDWARE/SOFTWARE SERVER AND NETWORK TOPOLOGY IN INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Oleksii O. Kaplun

    2011-02-01

    Full Text Available The network modernization, educational information systems software and hardware updates problem is actual in modern term of information technologies prompt development. There are server applications and network topology of Institute of Information Technology and Learning Tools of National Academy of Pedagogical Sciences of Ukraine analysis and their improvement methods expound in the article. The article materials represent modernization results implemented to increase network efficiency and reliability, decrease response time in Institute’s network information systems. The article gives diagrams of network topology before upgrading and after finish of optimization and upgrading processes.

  19. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    Science.gov (United States)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  20. Mimicking directed binary networks for exploring systemic sensitivity: Is NCAA FBS a fragile competition system?

    Directory of Open Access Journals (Sweden)

    Fushing Hsieh

    2016-07-01

    Full Text Available Can a popular real-world competition system indeed be fragile? To address this question, we represent such a system by a directed binary network. Upon observed network data, typically in a form of win-and-loss matrix, our computational developments begin with collectively extracting network's information flows. And then we compute and discover network's macrostate. This computable macrostate is further shown to contain deterministic structures embedded with randomness mechanisms. Such coupled deterministic and stochastic components becomes the basis for generating the microstate ensemble. Specifically a network mimicking algorithm is proposed to generate a microstate ensemble by subject to the statistical mechanics principle: All generated microscopic states have to conform to its macrostate of the target system. We demonstrate that such a microstate ensemble is an effective platform for exploring systemic sensitivity. Throughout our computational developments, we employ the NCAA Football Bowl Subdivision (FBS as an illustrating example system. Upon this system, its macrostate is discovered by having a nonlinear global ranking hierarchy as its deterministic component, while its constrained randomness component is embraced within the nearly completely recovered conference schedule . Based on the computed microstate ensemble, we are able to conclude that the NCAA FBS is overall a fragile competition system because it retains highly heterogeneous degrees of sensitivity with its ranking hierarchy.

  1. Adaptive networks as second order governance systems

    NARCIS (Netherlands)

    S.G. Nooteboom (Sibout); P.K. Marks (Peter)

    2010-01-01

    textabstractWe connect the idea of 'levers for change' with 'governance capacity' and propose 'adaptive networks' as an ideal type embedded in, and leveraging change in, governance systems. Discourses connect practices of citizens and companies with that governance system. Aware of

  2. Maths Meets Myths: Network Investigations of Ancient Narratives

    Science.gov (United States)

    Kenna, Ralph; Mac Carron, Pádraig

    2016-02-01

    Three years ago, we initiated a programme of research in which ideas and tools from statistical physics and network theory were applied to the field of comparative mythology. The eclecticism of the work, together with the perspectives it delivered, led to widespread media coverage and academic discussion. Here we review some aspects of the project, contextualised with a brief history of the long relationship between science and the humanities. We focus in particular on an Irish epic, summarising some of the outcomes of our quantitative investigation. We also describe the emergence of a new sub-discipline and our hopes for its future.

  3. Systemic risk and heterogeneous leverage in banking networks

    Science.gov (United States)

    Kuzubaş, Tolga Umut; Saltoğlu, Burak; Sever, Can

    2016-11-01

    This study probes systemic risk implications of leverage heterogeneity in banking networks. We show that the presence of heterogeneous leverages drastically changes the systemic effects of defaults and the nature of the contagion in interbank markets. Using financial leverage data from the US banking system, through simulations, we analyze the systemic significance of different types of borrowers, the evolution of the network, the consequences of interbank market size and the impact of market segmentation. Our study is related to the recent Basel III regulations on systemic risk and the treatment of the Global Systemically Important Banks (GSIBs). We also assess the extent to which the recent capital surcharges on GSIBs may curb financial fragility. We show the effectiveness of surcharge policy for the most-levered banks vis-a-vis uniform capital injection.

  4. Real-time visual communication to aid disaster recovery in a multi-segment hybrid wireless networking system

    Science.gov (United States)

    Al Hadhrami, Tawfik; Wang, Qi; Grecos, Christos

    2012-06-01

    When natural disasters or other large-scale incidents occur, obtaining accurate and timely information on the developing situation is vital to effective disaster recovery operations. High-quality video streams and high-resolution images, if available in real time, would provide an invaluable source of current situation reports to the incident management team. Meanwhile, a disaster often causes significant damage to the communications infrastructure. Therefore, another essential requirement for disaster management is the ability to rapidly deploy a flexible incident area communication network. Such a network would facilitate the transmission of real-time video streams and still images from the disrupted area to remote command and control locations. In this paper, a comprehensive end-to-end video/image transmission system between an incident area and a remote control centre is proposed and implemented, and its performance is experimentally investigated. In this study a hybrid multi-segment communication network is designed that seamlessly integrates terrestrial wireless mesh networks (WMNs), distributed wireless visual sensor networks, an airborne platform with video camera balloons, and a Digital Video Broadcasting- Satellite (DVB-S) system. By carefully integrating all of these rapidly deployable, interworking and collaborative networking technologies, we can fully exploit the joint benefits provided by WMNs, WSNs, balloon camera networks and DVB-S for real-time video streaming and image delivery in emergency situations among the disaster hit area, the remote control centre and the rescue teams in the field. The whole proposed system is implemented in a proven simulator. Through extensive simulations, the real-time visual communication performance of this integrated system has been numerically evaluated, towards a more in-depth understanding in supporting high-quality visual communications in such a demanding context.

  5. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  6. Exact tensor network ansatz for strongly interacting systems

    Science.gov (United States)

    Zaletel, Michael P.

    It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.

  7. Research of user access control for networked manufacturing system

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiao-lin; LEI Yu; CHEN De-ren

    2006-01-01

    An integrated user access control method was proposed to address the issues of security and management in networked manufacturing systems (NMS).Based on the analysis of the security issues in networked manufacturing system,an integrated user access control method composed of role-based access control (RBAC),task-based access control (TBAC),relationship-driven access control (RDAC)and coalition-based access control (CBAC) was proposed,including the hierarchical user relationship model,the reference model and the process model.The elements and their relationships were defined,and the expressions of constraints authorization were given.The extensible access control markup language (XACML) was used to implement this method.This method was used in the networked manufacturing system in the Shaoxing spinning region of China.The results show that the integrated user access control method can reduce the costs of system security maintenance and management.

  8. Computer network for electric power control systems. Chubu denryoku (kabu) denryoku keito seigyoyo computer network

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneizumi, T. (Chubu Electric Power Co. Inc., Nagoya (Japan)); Shimomura, S.; Miyamura, N. (Fuji Electric Co. Ltd., Tokyo (Japan))

    1992-06-03

    A computer network for electric power control system was developed that is applied with the open systems interconnection (OSI), an international standard for communications protocol. In structuring the OSI network, a direct session layer was accessed from the operation functions when high-speed small-capacity information is transmitted. File transfer, access and control having a function of collectively transferring large-capacity data were applied when low-speed large-capacity information is transmitted. A verification test for the realtime computer network (RCN) mounting regulation was conducted according to a verification model using a mini-computer, and a result that can satisfy practical performance was obtained. For application interface, kernel, health check and two-route transmission functions were provided as a connection control function, so were transmission verification function and late arrival abolishing function. In system mounting pattern, dualized communication server (CS) structure was adopted. A hardware structure may include a system to have the CS function contained in a host computer and a separate installation system. 5 figs., 6 tabs.

  9. Investigation of road network features and safety performance.

    Science.gov (United States)

    Wang, Xuesong; Wu, Xingwei; Abdel-Aty, Mohamed; Tremont, Paul J

    2013-07-01

    The analysis of road network designs can provide useful information to transportation planners as they seek to improve the safety of road networks. The objectives of this study were to compare and define the effective road network indices and to analyze the relationship between road network structure and traffic safety at the level of the Traffic Analysis Zone (TAZ). One problem in comparing different road networks is establishing criteria that can be used to scale networks in terms of their structures. Based on data from Orange and Hillsborough Counties in Florida, road network structural properties within TAZs were scaled using 3 indices: Closeness Centrality, Betweenness Centrality, and Meshedness Coefficient. The Meshedness Coefficient performed best in capturing the structural features of the road network. Bayesian Conditional Autoregressive (CAR) models were developed to assess the safety of various network configurations as measured by total crashes, crashes on state roads, and crashes on local roads. The models' results showed that crash frequencies on local roads were closely related to factors within the TAZs (e.g., zonal network structure, TAZ population), while crash frequencies on state roads were closely related to the road and traffic features of state roads. For the safety effects of different networks, the Grid type was associated with the highest frequency of crashes, followed by the Mixed type, the Loops & Lollipops type, and the Sparse type. This study shows that it is possible to develop a quantitative scale for structural properties of a road network, and to use that scale to calculate the relationships between network structural properties and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Statistical Mechanics of Temporal and Interacting Networks

    Science.gov (United States)

    Zhao, Kun

    In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide

  11. Availability Allocation of Networked Systems Using Markov Model and Heuristics Algorithm

    OpenAIRE

    Li, Ruiying; Liu, Xiaoxi; Huang, Ning

    2014-01-01

    It is a common practice to allocate the system availability goal to reliability and maintainability goals of components in the early design phase. However, the networked system availability is difficult to be allocated due to its complex topology and multiple down states. To solve these problems, a practical availability allocation method is proposed. Network reliability algebraic methods are used to derive the availability expression of the networked topology on the system level, and Markov ...

  12. Reliability issues of free-space communications systems and networks

    Science.gov (United States)

    Willebrand, Heinz A.

    2003-04-01

    Free space optics (FSO) is a high-speed point-to-point connectivity solution traditionally used in the enterprise campus networking market for building-to-building LAN connectivity. However, more recently some wire line and wireless carriers started to deploy FSO systems in their networks. The requirements on FSO system reliability, meaing both system availability and component reliability, are far more stringent in the carrier market when compared to the requirements in the enterprise market segment. This paper tries to outline some of the aspects that are important to ensure carrier class system reliability.

  13. Elliptic Curve Cryptography with Security System in Wireless Sensor Networks

    Science.gov (United States)

    Huang, Xu; Sharma, Dharmendra

    2010-10-01

    The rapid progress of wireless communications and embedded micro-electro-system technologies has made wireless sensor networks (WSN) very popular and even become part of our daily life. WSNs design are generally application driven, namely a particular application's requirements will determine how the network behaves. However, the natures of WSN have attracted increasing attention in recent years due to its linear scalability, a small software footprint, low hardware implementation cost, low bandwidth requirement, and high device performance. It is noted that today's software applications are mainly characterized by their component-based structures which are usually heterogeneous and distributed, including the WSNs. But WSNs typically need to configure themselves automatically and support as hoc routing. Agent technology provides a method for handling increasing software complexity and supporting rapid and accurate decision making. This paper based on our previous works [1, 2], three contributions have made, namely (a) fuzzy controller for dynamic slide window size to improve the performance of running ECC (b) first presented a hidden generation point for protection from man-in-the middle attack and (c) we first investigates multi-agent applying for key exchange together. Security systems have been drawing great attentions as cryptographic algorithms have gained popularity due to the natures that make them suitable for use in constrained environment such as mobile sensor information applications, where computing resources and power availability are limited. Elliptic curve cryptography (ECC) is one of high potential candidates for WSNs, which requires less computational power, communication bandwidth, and memory in comparison with other cryptosystem. For saving pre-computing storages recently there is a trend for the sensor networks that the sensor group leaders rather than sensors communicate to the end database, which highlighted the needs to prevent from the man

  14. Defense strategies for asymmetric networked systems under composite utilities

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Ma, Chris Y. T. [Hang Seng Management College, Hon Kong; Hausken, Kjell [University of Stavanger, Norway; He, Fei [Texas A& M University, Kingsville, TX, USA; Yau, David K. Y. [Singapore University of Technology and Design; Zhuang, Jun [University at Buffalo (SUNY)

    2017-11-01

    We consider an infrastructure of networked systems with discrete components that can be reinforced at certain costs to guard against attacks. The communications network plays a critical, asymmetric role of providing the vital connectivity between the systems. We characterize the correlations within this infrastructure at two levels using (a) aggregate failure correlation function that specifies the infrastructure failure probability giventhe failure of an individual system or network, and (b) first order differential conditions on system survival probabilities that characterize component-level correlations. We formulate an infrastructure survival game between an attacker and a provider, who attacks and reinforces individual components, respectively. They use the composite utility functions composed of a survival probability term and a cost term, and the previously studiedsum-form and product-form utility functions are their special cases. At Nash Equilibrium, we derive expressions for individual system survival probabilities and the expected total number of operational components. We apply and discuss these estimates for a simplified model of distributed cloud computing infrastructure

  15. Phosphoproteomics-based systems analysis of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Hiroko eKozuka-Hata

    2012-01-01

    Full Text Available Signal transduction systems coordinate complex cellular information to regulate biological events such as cell proliferation and differentiation. Although the accumulating evidence on widespread association of signaling molecules has revealed essential contribution of phosphorylation-dependent interaction networks to cellular regulation, their dynamic behavior is mostly yet to be analyzed. Recent technological advances regarding mass spectrometry-based quantitative proteomics have enabled us to describe the comprehensive status of phosphorylated molecules in a time-resolved manner. Computational analyses based on the phosphoproteome dynamics accelerate generation of novel methodologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numerical modeling can be used to evaluate regulatory network elements from a statistical point of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the transcriptional level. These omics-based computational methodologies, which have firstly been applied to representative signaling systems such as the epidermal growth factor receptor pathway, have now opened up a gate for systems analysis of signaling networks involved in immune response and cancer.

  16. Ecological network analysis for a virtual water network.

    Science.gov (United States)

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  17. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  18. Study on the complex network characteristics of urban road system based on GIS

    Science.gov (United States)

    Gao, Zhonghua; Chen, Zhenjie; Liu, Yongxue; Huang, Kang

    2007-06-01

    Urban road system is the basic bone of urban transportation and one of the most important factors that influent and controls the urban configuration. In this paper, an approach of modeling, analyzing and optimizing urban road system is described based on complex network theory and GIS technology. The urban road system is studied on three focuses: building the urban road network, modeling the computational procedures based on urban road networks and analyzing the urban road system of Changzhou City as the study case. The conclusion is that the urban road network is a scale-free network with small-world characteristic, and there is still space for development of the whole network as a small-world network, also the key road crosses should be kept expedite.

  19. Increased Efficiency of Face Recognition System using Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Rajani Muraleedharan

    2006-02-01

    Full Text Available This research was inspired by the need of a flexible and cost effective biometric security system. The flexibility of the wireless sensor network makes it a natural choice for data transmission. Swarm intelligence (SI is used to optimize routing in distributed time varying network. In this paper, SI maintains the required bit error rate (BER for varied channel conditions while consuming minimal energy. A specific biometric, the face recognition system, is discussed as an example. Simulation shows that the wireless sensor network is efficient in energy consumption while keeping the transmission accuracy, and the wireless face recognition system is competitive to the traditional wired face recognition system in classification accuracy.

  20. EGSNRC distributed systems on commercial network

    International Nuclear Information System (INIS)

    McCormack, J.M.

    2001-01-01

    Full text: EGSnrc is a Monte Carlo based simulation program for determining radiation dose distribution within a body. Computational times are large as each individual photon path must be calculated and every energy absorption event stored. This means that EGSnrc lends itself to distributed processing, as each photon is independent of the next, and code is included within the package to enable this. EGSnrc is currently only supported on Unix based computer systems, whilst the department has ∼45 Pentium II and III class workstations all operating under Windows NT within a Novell network. This investigation demonstrates the capability of a windows based system to perform distributed computation of EGSnrc. All Unix scripts were modified to work as one single Windows NT batch file. The source code was then compiled using the gcc C compiler (a Windows NT version of the Unix compiler) without modification of the underlying source code. A small Visual Basic program was used as a trigger to start the simulation as a Windows NT service, with Novell Z.E.N. Works to distribute the trigger code to each system. When a trigger was received, the computer began a simulation as a low priority task in such a way that the user did not see anything on the screen, and so the simulation did not slow down the general running of the computer. The results were then transferred to the network, and collated on a central computer. As an unattended system, a calculation can start within 15 minutes of any desired time, calculate the desired results, and return the results for collation. This demonstrated effectively a distributed Windows NT TM EGSnrc system. Simulations must be chosen carefully to ensure that each photon can be considered independent, as photon histories do not get distributed. Each system that was used for EGSnrc was required to be capable of running the full EGSnrc simulation on its own EGSnrc stored the entire result array locally, so a large, high-resolution body required

  1. Handbook of sensor networks compact wireless and wired sensing systems

    CERN Document Server

    Ilyas, Mohammad

    2004-01-01

    INTRODUCTION Opportunities and Challenges in Wireless Sensor Networks, M. Haenggi, Next Generation Technologies to Enable Sensor Networks, J. I.  Goodman, A. I. Reuther, and D. R. Martinez Sensor Networks Management, L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro Models for Programmability in Sensor Networks, A. Boulis Miniaturizing Sensor Networks with MEMS, Brett Warneke A Taxonomy of Routing Techniques in Wireless Sensor Networks, J. N. Al-Karaki and A. E. Kamal Artificial Perceptual Systems, A. Loutfi, M. Lindquist, and P. Wide APPLICATIONS Sensor Network Architecture and Appl

  2. The design and implementation of access control management system in IHEP network

    International Nuclear Information System (INIS)

    Wang Yanming; An Dehai; Qi Fazhi

    2010-01-01

    In campus network environment of Institute of High Energy Physics, because of the number of Network devices and computers are large scale, ensuring the access validity of network devices and user's computer, and aiming at effective control the exceptional network communication are technological means to achieve network normal running. The access control system of Campus network of institute of High Energy Physics using MySQL database in the behind, and using CGI PHP HTML language to develop the front interface. The System achieves user information management, user computer access control, cutting down the exceptional network communication and alarm function. Increasing the management effective of network, to ensure campus network safety and reliable running. (authors)

  3. Software defined networking firewall for industry 4.0 manufacturing systems

    Directory of Open Access Journals (Sweden)

    Akihiro Tsuchiya

    2018-04-01

    Full Text Available Purpose: In order to leverage automation control data, Industry 4.0 manufacturing systems require industrial devices to be connected to the network. Potentially, this can increase the risk of cyberattacks, which can compromise connected industrial devices to acquire production data or gain control over the production process. Search engines such as Sentient Hyper-Optimized Data Access Network (SHODAN can be perverted by attackers to acquire network information that can be later used for intrusion. To prevent this, cybersecurity standards propose network architectures divided into several networks segments based on system functionalities. In this architecture, Firewalls limit the exposure of industrial control devices in order to minimize security risks. This paper presents a novel Software Defined Networking (SDN Firewall that automatically applies this standard architecture without compromising network flexibility.   Design/methodology/approach: The proposed SDN Firewall changes filtering rules in order to implement the different network segments according to application level access control policies. The Firewall applies two filtering techniques described in this paper: temporal filtering and spatial filtering, so that only applications in a white list can connect to industrial control devices. Network administrators need only to configure this application-oriented white lists to comply with security standards for ICS. This simplifies to a great extent network management tasks. Authors have developed a prototype implementation based on the OPC UA Standard and conducted security tests in order to test the viability of the proposal. Findings: Network segmentation and segregation are effective counter-measures against network scanning attacks. The proposed SDN Firewall effectively configures a flat network into virtual LAN segments according to security standard guidelines. Research limitations/implications: The prototype implementation still

  4. MetNet - In situ observational Network and Orbital platform to investigate the Martian environment

    Science.gov (United States)

    Harri, Ari-Matti; Leinonen, Jussi; Merikallio, Sini; Paton, Mark; Haukka, Harri; Polkko, Jouni

    2007-09-01

    MetNet Mars Mission is an in situ observational network and orbital platform mission to investigate the Martian environment and it has been proposed to European Space Agency in response to Call for proposals for the first planning cycle of Cosmic Vision 2015-2025 D/SCI/DJS/SV/val/21851. The MetNet Mars Mission is to be implemented in collaboration with ESA, FMI, LA, IKI and the payload providing science teams. The scope of the MetNet Mission is to deploy 16 MetNet Landers (MNLs) on the Martian surface by using inflatable descent system structures accompanied by an atmospheric sounder and data relay onboard the MetNet Orbiter (MNO), which is based on ESA Mars Express satellite platform. The MNLs are attached on the three sides of the satellite and most of the MNLs are deployed to Mars separately a few weeks prior to the arrival to Mars. The MetNet Orbiter will perform continuous atmospheric soundings thus complementing the accurate in situ observations at the Martian ground produced by the MetNet observation network, as well as the orbiter will serve as the primary data relay between the MetNet Landers and the Earth. The MNLs are equipped with a versatile science payload focused on the atmospheric science of Mars. Detailed characterisation of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatological cycles, as well as interior investigations, require simultaneous in situ meteorological, seismic and magnetic measurements from networks of stations on the Martian surface. MetNet Mars Mission will also provide a crucial support for the safety of large landing missions in general and manned Mars missions in particular. Accurate knowledge of atmospheric conditions and weather data is essential to guarantee safe landings of the forthcoming Mars mission elements.

  5. Urban Traffic Signal System Control Structural Optimization Based on Network Analysis

    Directory of Open Access Journals (Sweden)

    Li Wang

    2013-01-01

    Full Text Available Advanced urban traffic signal control systems such as SCOOT and SCATS normally coordinate traffic network using multilevel hierarchical control mechanism. In this mechanism, several key intersections will be selected from traffic signal network and the network will be divided into different control subareas. Traditionally, key intersection selection and control subareas division are executed according to dynamic traffic counts and link length between intersections, which largely rely on traffic engineers’ experience. However, it omits important inherent characteristics of traffic network topology. In this paper, we will apply network analysis approach into these two aspects for traffic system control structure optimization. Firstly, the modified C-means clustering algorithm will be proposed to assess the importance of intersections in traffic network and furthermore determine the key intersections based on three indexes instead of merely on traffic counts in traditional methods. Secondly, the improved network community discovery method will be used to give more reasonable evidence in traffic control subarea division. Finally, to test the effectiveness of network analysis approach, a hardware-in-loop simulation environment composed of regional traffic control system, microsimulation software and signal controller hardware, will be built. Both traditional method and proposed approach will be implemented on simulation test bed to evaluate traffic operation performance indexes, for example, travel time, stop times, delay and average vehicle speed. Simulation results show that the proposed network analysis approach can improve the traffic control system operation performance effectively.

  6. New designing of E-Learning systems with using network learning

    OpenAIRE

    Malayeri, Amin Daneshmand; Abdollahi, Jalal

    2010-01-01

    One of the most applied learning in virtual spaces is using E-Learning systems. Some E-Learning methodologies has been introduced, but the main subject is the most positive feedback from E-Learning systems. In this paper, we introduce a new methodology of E-Learning systems entitle "Network Learning" with review of another aspects of E-Learning systems. Also, we present benefits and advantages of using these systems in educating and fast learning programs. Network Learning can be programmable...

  7. Metropolises in the Twittersphere: An Informetric Investigation of Informational Flows and Networks

    Directory of Open Access Journals (Sweden)

    Thorsten Förster

    2015-09-01

    Full Text Available Information flows on social media platforms are able to show trends and user interests as well as connections between users. In this paper, we present a method how to analyze city related networks on the social media platform Twitter based on the user content. Forty million tweets have been downloaded via Twitter’s REST API (application programming interface and Twitter’s Streaming API. The investigation focuses on two aspects: firstly, trend detection has been done to analyze 31 informational world cities, according the user activity, popularity of shared websites and topics defined by hashtags. Secondly, a hint of how connected informational cities are to each other is given by creating a clustered network based on the number of connections between different city pairs. Tokyo, New York City, London and Paris clearly lead the ranking of the most active cities if compared by the total number of tweets. The investigation shows that Twitter is very frequently used to share content from other services like Instagram or YouTube. The most popular topics in tweets reveal great differences between the cities. In conclusion, the investigation shows that social media services like Twitter also can be a mirror of the society they are used in and bring to light information flows of connected cities in a global network. The presented method can be applied in further research to analyze information flows regarding specific topics and/or geographical locations.

  8. Investigation on energy efficient sensor node placement in railway systems

    Directory of Open Access Journals (Sweden)

    Ayona Philipose

    2016-06-01

    Full Text Available Recently wireless sensor network (WSN has been widely used for monitoring railway tracks and rail tunnels. The key requirement in the design of such WSN is to minimize the energy consumption so as to maximize the network lifetime. This paper includes the performance of an improved medium access control (MAC protocol, namely, time adaptive-bit map assisted (TA-BMA protocol, for the purpose of communication between the sensors placed in a railway wagon. The train is considered to be moving at a constant speed, and the sensor nodes are stationary with respect to the motion of train. The effect of mobility on the proposed MAC protocol is determined using genetic algorithm (GA, and the observed increase in energy consumption on considering mobility is 18.51%. Performance analysis of the system model is carried out using QualNet (ver. 7.1, and the energy consumption in transmit mode, receive mode, percentage of time in sleep mode, end-to-end delay and throughput are investigated.

  9. Identification of Complex Dynamical Systems with Neural Networks (2/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  10. Identification of Complex Dynamical Systems with Neural Networks (1/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  11. Future cooperative communication systems driven by social mobile networks

    DEFF Research Database (Denmark)

    Blázovics, L.; Varga, C.; Bamford, W.

    2011-01-01

    In this work we are underlining the importance of social mobile networks for upcoming cooperative communication systems. The assumption of this work is that future mobile communication systems will incorporate user cooperation, i.e. a combination of cellular access in parallel with ongoing short...... cases. By the example of the Gedda-Headz gaming community, possible links between cooperative mobile communication and social mobile networks are shown....

  12. On the Use of Information Quality in Stochastic Networked Control Systems

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Madsen, Jacob Theilgaard; Rasmussen, Jakob Gulddahl

    2017-01-01

    Networked control is challenged by stochastic delays that are caused by the communication networks as well as by the approach taken to exchange information about system state and set-points. Combined with stochastic changing information, there is a probability that information at the controller....... This is first analyzed in simulation models for the example system of a wind-farm controller. As simulation analysis is subject to stochastic variability and requires large computational effort, the paper develops a Markov model of a simplified networked control system and uses numerical results from the Markov...... is not matching the true system observation, which we call mismatch probability (mmPr). The hypothesis is that the optimization of certain parameters of networked control systems targeting mmPr is equivalent to the optimization targeting control performance, while the former is practically much easier to conduct...

  13. Remote network control plasma diagnostic system for Tokamak T-10

    International Nuclear Information System (INIS)

    Troynov, V I; Zimin, A M; Krupin, V A; Notkin, G E; Nurgaliev, M R

    2016-01-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet. (paper)

  14. Network monitoring module of BES III system environment

    International Nuclear Information System (INIS)

    Song Liwen; Zhao Jingwei; Zhang Bingyun

    2002-01-01

    In order to meet the needs of the complicated network architecture of BES III (Beijing Spectrometer III) and make sure normal online running in the future, it is necessary to develop a multi-platforms Network Monitoring Tool which can help system administrator monitor and manage BES III network. The author provides a module that can monitor not only the traffic of switch-router's ports but also the performance status of key devices in the network environment, meanwhile it can also give warning to manager and submit the related reports. the great sense, the theory basis, the implementing method and the graph in formation of this tool will be discussed

  15. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  16. Joint Design of Control and Power Efficiency in Wireless Networked Control System

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2014-01-01

    Full Text Available This paper presents a joint design method for wireless networked control system (WNCS to balance both the demands of network service and the control performance. Since the problems of power consumption, communication reliability, and system stability exist simultaneously and interdependently in WNCS, most of the achieved results in the wireless network and wired networked control system cannot be used directly. To coordinate the three problems, sampling period is found to be the linking bridge. An adaptive sampling power efficiency algorithm is proposed to manage the power consumption such that it can meet the demands of network life span. The sampling period is designed to update periodically on the constraints of network schedulability and system stability. The convergence of the power efficiency algorithm is further proved. The sampling period is no longer a fixed value, however; thus, increasing the difficulty in modeling and controlling such a complicated time-varying system remains. In this work, a switched control system scheme is applied to model such a WNCS, and the effect of network-induced delay is considered. Switched feedback controllers are introduced to stabilize the WNCS, and some considerations on stability condition and the bounds of the update circle for renewing sampling period are discussed. A numerical example shows the effectiveness of the proposed method.

  17. Challenges in network science: Applications to infrastructures, climate, social systems and economics

    Science.gov (United States)

    Havlin, S.; Kenett, D. Y.; Ben-Jacob, E.; Bunde, A.; Cohen, R.; Hermann, H.; Kantelhardt, J. W.; Kertész, J.; Kirkpatrick, S.; Kurths, J.; Portugali, J.; Solomon, S.

    2012-11-01

    Network theory has become one of the most visible theoretical frameworks that can be applied to the description, analysis, understanding, design and repair of multi-level complex systems. Complex networks occur everywhere, in man-made and human social systems, in organic and inorganic matter, from nano to macro scales, and in natural and anthropogenic structures. New applications are developed at an ever-increasing rate and the promise for future growth is high, since increasingly we interact with one another within these vital and complex environments. Despite all the great successes of this field, crucial aspects of multi-level complex systems have been largely ignored. Important challenges of network science are to take into account many of these missing realistic features such as strong coupling between networks (networks are not isolated), the dynamics of networks (networks are not static), interrelationships between structure, dynamics and function of networks, interdependencies in given networks (and other classes of links, including different signs of interactions), and spatial properties (including geographical aspects) of networks. This aim of this paper is to introduce and discuss the challenges that future network science needs to address, and how different disciplines will be accordingly affected.

  18. Development of steering system in network environment

    International Nuclear Information System (INIS)

    Kanagawa, Fumihiro; Noguchi, So; Yamashita, Hideo

    2002-01-01

    We have been developing the steering system, which can successively observe the-data obtained during the numerical computation and change the parameters in the analysis. Moreover, this system is also extended to link the network. By using this system, a user can easily detect errors immediately and achieve the rapid and accurate analysis with lower computation cost. (Author)

  19. Network science of biological systems at different scales: A review

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present

  20. Analysis of Basic Transmission Networks for Integrated Ship Control Systems

    DEFF Research Database (Denmark)

    Hansen, T.N.; Granum-Jensen, M.

    1993-01-01

    Description of a computer network for Integrated Ship Control Systems which is going to be developed as part of an EC-project. Today equipment of different make are not able to communicate with each other because most often each supplier of ISC systems has got their own proprietary network.....

  1. The Abbott and Costello Effect: Who's on What, and What's Where When? A Human-Centered Method to Investigate Network Centric Warfare Systems

    National Research Council Canada - National Science Library

    Reed, Derek W

    2007-01-01

    ...), fundamentally changing how warfare is being conducted. Network centric warfare (NCW) systems are being rushed to the field and are offered as a solution for the fog of war and as a way to reduce manpower costs...

  2. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  3. Investigating the Influence Relationship Models for Stocks in Indian Equity Market: A Weighted Network Modelling Study.

    Science.gov (United States)

    Bhattacharjee, Biplab; Shafi, Muhammad; Acharjee, Animesh

    2016-01-01

    The socio-economic systems today possess high levels of both interconnectedness and interdependencies, and such system-level relationships behave very dynamically. In such situations, it is all around perceived that influence is a perplexing power that has an overseeing part in affecting the dynamics and behaviours of involved ones. As a result of the force & direction of influence, the transformative change of one entity has a cogent aftereffect on the other entities in the system. The current study employs directed weighted networks for investigating the influential relationship patterns existent in a typical equity market as an outcome of inter-stock interactions happening at the market level, the sectorial level and the industrial level. The study dataset is derived from 335 constituent stocks of 'Standard & Poor Bombay Stock Exchange 500 index' and study period is 1st June 2005 to 30th June 2015. The study identifies the set of most dynamically influential stocks & their respective temporal pattern at three hierarchical levels: the complete equity market, different sectors, and constituting industry segments of those sectors. A detailed influence relationship analysis is performed for the sectorial level network of the construction sector, and it was found that stocks belonging to the cement industry possessed high influence within this sector. Also, the detailed network analysis of construction sector revealed that it follows scale-free characteristics and power law distribution. In the industry specific influence relationship analysis for cement industry, methods based on threshold filtering and minimum spanning tree were employed to derive a set of sub-graphs having temporally stable high-correlation structure over this ten years period.

  4. Investigating Factors Related to Virtual Private Network Adoption in Small Businesses

    Science.gov (United States)

    Lederer, Karen

    2012-01-01

    The purpose of this quantitative study was to investigate six factors that may influence adoption of virtual private network (VPN) technologies in small businesses with fewer than 100 employees. Prior research indicated small businesses employing fewer than 100 workers do not adopt VPN technology at the same rate as larger competitors, and the…

  5. Automotive mechatronics automotive networking, driving stability systems, electronics

    CERN Document Server

    2015-01-01

    As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...

  6. Adaptive neural network/expert system that learns fault diagnosis for different structures

    Science.gov (United States)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  7. A system's view of metro and regional optical networks

    Science.gov (United States)

    Lam, Cedric F.; Way, Winston I.

    2009-01-01

    Developments in fiber optic communications have been rejuvenated after the glut of the overcapacity at the turn of the century. The boom of video-centric network applications finally resulted in another wave of vast build-outs of broadband access networks such as FTTH, DOCSIS 3.0 and WI-FI systems, which in turn also drove up the bandwidth demands in metro and regional WDM networks. These new developments have rekindled research interests on technologies not only to meet the surging demand, but also to upgrade legacy network infrastructures in an evolutionary manner without disrupting existing services and incurring significant capital penalties. Standard bodies such as IEEE, ITU and OIF have formed task forces to ratify 100Gb/s interface standards. Thanks to the seemingly unlimited bandwidth in single-mode fibers, advances in optical networks has traditionally been fueled by more capable physical components such as more powerful laser, cleaner and wider bandwidth optical amplifier, faster modulator and photo-detectors, etc. In the meanwhile, the mainstream modulation technique for fiber optic communication systems has remained the most rudimentary form of on-off keying (OOK) and direct power detection for a very long period of time because spectral efficiency had never been a concern. This scenario, however, is no longer valid as demand for bandwidth is pushing the limit of current of current WDM technologies. In terms of spectral use, all the 100-GHz ITU grids in the C-band have been populated with 10Gb/s wavelengths in most of the WDM transport networks, and we are exhausting the power and bandwidth offered on existing fiber plant EDFAs. Beyond 10Gb/s, increasing the transmission to 40Gb/s by brute force OOK approach incurs significant penalties due to chromatic and polarization mode dispersion. With conventional modulation schemes, transmission impairments at 40Gb/s speed and above already become such difficult challenges that the efforts to manage these

  8. Applying the Taguchi Method for Investigating the Phase-Locked Loop Dynamics Affected by Hybrid Storage System Parameters

    Directory of Open Access Journals (Sweden)

    Mostafa Ahmadzadeh

    2018-01-01

    Full Text Available Storage systems play an important role in performance of micro-grids. Storage systems may decrease fluctuations caused by periodic and unpredictable nature of distributed generation resource. Some micro-grids are connected to the network via a grid-interface converter. The phase-locked loop (PLL is a commonly technique for the grid synchronization of network-connected converters. Various parameters affect the stability of PLL (including the network-side and microgrid-side parameters. The effect of the micro-grid-side parameters on the stability of the PLL has not been studied so far. In this paper, the stability of PLL influenced by microgrid-side parameters has been evaluated after a detailed analytical modeling of micro-grid components (including the production power fluctuations, energy storage system, microgrid-side loads, controller parameters etc.. This paper proposes two new stability analysis criteria for PLL affected by micro-grid and hybrid storage system parameters. Using proposed criteria for stability of PLL, optimized rate of micro-grid and hybrid storage system parameters are obtained using statistical methods (Taguchi approach. Finally, behavior of PLL affected by hybrid storage system is investigated. The simulation results and eigenvalues analysis confirm the theoretical analysis and proposed criteria.

  9. Telecommunication Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Balachandran, Kartheepan; Hald, Sara Ligaard

    2014-01-01

    In this chapter, we look into the role of telecommunication networks and their capability of supporting critical infrastructure systems and applications. The focus is on smart grids as the key driving example, bearing in mind that other such systems do exist, e.g., water management, traffic control......, etc. First, the role of basic communication is examined with a focus on critical infrastructures. We look at heterogenic networks and standards for smart grids, to give some insight into what has been done to ensure inter-operability in this direction. We then go to the physical network, and look...... threats to the critical infrastructure. Finally, before our conclusions and outlook, we give a brief overview of some key activities in the field and what research directions are currently investigated....

  10. Robustness leads close to the edge of chaos in coupled map networks: toward the understanding of biological networks

    International Nuclear Information System (INIS)

    Saito, Nen; Kikuchi, Macoto

    2013-01-01

    Dynamics in biological networks are, in general, robust against several perturbations. We investigate a coupled map network as a model motivated by gene regulatory networks and design systems that are robust against phenotypic perturbations (perturbations in dynamics), as well as systems that are robust against mutation (perturbations in network structure). To achieve such a design, we apply a multicanonical Monte Carlo method. Analysis based on the maximum Lyapunov exponent and parameter sensitivity shows that systems with marginal stability, which are regarded as systems at the edge of chaos, emerge when robustness against network perturbations is required. This emergence of the edge of chaos is a self-organization phenomenon and does not need a fine tuning of parameters. (paper)

  11. Development of an Embedded Networked Sensing System for Structural Health Monitoring

    OpenAIRE

    Whang, Daniel; Xu, Ning; Rangwala, Sumit; Chintalapudi, Krishna; Govindan, Ramesh; Wallace, J W

    2004-01-01

    An innovative networked embedded sensing system for structural health monitoring is currently being developed. This sensor network has been prototyped in the laboratory, and will be deployed in a series of forced-vibration tests involving a full-scale, four-story office building in the next coming months. The low-power wireless seismic sensor system enables the acquisition of 15–30 channels of 16-bit accelerometer data at 128 Hz over a wireless network. The advantage of such a system is its t...

  12. Visually Augmented Analysis of Socio-Technical Networks in Engineering Systems Design Research

    DEFF Research Database (Denmark)

    Storga, M.; Stankovic, T.; Cash, Philip

    2013-01-01

    In characterizing systems behaviour, complex-systems scientists use tools from a variety of disciplines, including nonlinear dynamics, information theory, computation theory, evolutionary biology and social network analysis, among others. All of these topics have been studied for some time......, but only fairly recently has the study of networks in general become a major topic of research in complex engineering systems. The research reported in this paper is discussing how the visually augmented analysis of complex socio-networks (networks of people and technology engaged in a product...

  13. Toward negative Poisson's ratio composites: Investigation of the auxetic behavior of fibrous networks

    Science.gov (United States)

    Tatlier, Mehmet Seha

    Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.

  14. [Network Design of the Spaceport Command and Control System

    Science.gov (United States)

    Teijeiro, Antonio

    2017-01-01

    I helped the Launch Control System (LCS) hardware team sustain the network design of the Spaceport Command and Control System. I wrote the procedure that will be used to satisfy an official hardware test for the hardware carrying data from the Launch Vehicle. I installed hardware and updated design documents in support of the ongoing development of the Spaceport Command and Control System and applied firewall experience I gained during my spring 2017 semester to inspect and create firewall security policies as requested. Finally, I completed several online courses concerning networking fundamentals and Unix operating systems.

  15. Revisiting Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.

    2009-01-01

    Intrusion detection systems (IDSs) are well-known and widely-deployed security tools to detect cyber-attacks and malicious activities in computer systems and networks. A signature-based IDS works similar to anti-virus software. It employs a signature database of known attacks, and a successful match

  16. Information Security Policy Modeling for Network Security Systems

    Directory of Open Access Journals (Sweden)

    Dmitry Sergeevich Chernyavskiy

    2014-12-01

    Full Text Available Policy management for network security systems (NSSs is one of the most topical issues of network security management. Incorrect configurations of NSSs lead to system outages and appearance of vulnerabilities. Moreover, policy management process is a time-consuming task, which includes significant amount of manual work. These factors reduce efficiency of NSSs’ utilization. The paper discusses peculiarities of policy management process and existing approaches to policy modeling, presents a model aimed to formalize policies for NSSs independently on NSSs’ platforms and select the most effective NSSs for implementation of the policies.

  17. Investigation and modeling on protective textiles using artificial neural networks for defense applications

    International Nuclear Information System (INIS)

    Ramaiah, Gurumurthy B.; Chennaiah, Radhalakshmi Y.; Satyanarayanarao, Gurumurthy K.

    2010-01-01

    Kevlar 29 is a class of Kevlar fiber used for protective applications primarily by the military and law enforcement agencies for bullet resistant vests, hence for these reasons military has found that armors reinforced with Kevlar 29 multilayer fabrics which offer 25-40% better fragmentation resistance and provide better fit with greater comfort. The objective of this study is to investigate and develop an artificial neural network model for analyzing the performance of ballistic fabrics made from Kevlar 29 single layer fabrics using their material properties as inputs. Data from fragment simulation projectile (FSP) ballistic penetration measurements at 244 m/s has been used to demonstrate the modeling aspects of artificial neural networks. The neural network models demonstrated in this paper is based on back propagation (BP) algorithm which is inbuilt in MATLAB 7.1 software and is used for studies in science, technology and engineering. In the present research, comparisons are also made between the measured values of samples selected for building the neural network model and network predicted results. The analysis of the results for network predicted and experimental samples used in this study showed similarity.

  18. Risk management communication system between a local government and residents using several network systems and terminal devices

    Science.gov (United States)

    Ohyama, Takashi; Enomoto, Hiroyuki; Takei, Yuichiro; Maeda, Yuji

    2009-05-01

    Most of Japan's local governments utilize municipal disaster-management radio communications systems to communicate information on disasters or terrorism to residents. The national government is progressing in efforts toward digitalization by local governments of these systems, but only a small number (approx. 10%) have introduced such equipment due to its requiring large amounts of investment. On the other hand, many local governments are moving forward in installation of optical fiber networks for the purpose of eliminating the "digital divide." We herein propose a communication system as an alternative or supplement to municipal disaster-management radio communications systems, which utilizes municipal optical fiber networks, the internet and similar networks and terminals. The system utilizes the multiple existing networks and is capable of instantly distributing to all residents, and controlling, risk management information. We describe the system overview and the field trials conducted with a local government using this system.

  19. SNMP-SI: A Network Management Tool Based on Slow Intelligence System Approach

    Science.gov (United States)

    Colace, Francesco; de Santo, Massimo; Ferrandino, Salvatore

    The last decade has witnessed an intense spread of computer networks that has been further accelerated with the introduction of wireless networks. Simultaneously with, this growth has increased significantly the problems of network management. Especially in small companies, where there is no provision of personnel assigned to these tasks, the management of such networks is often complex and malfunctions can have significant impacts on their businesses. A possible solution is the adoption of Simple Network Management Protocol. Simple Network Management Protocol (SNMP) is a standard protocol used to exchange network management information. It is part of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite. SNMP provides a tool for network administrators to manage network performance, find and solve network problems, and plan for network growth. SNMP has a big disadvantage: its simple design means that the information it deals with is neither detailed nor well organized enough to deal with the expanding modern networking requirements. Over the past years much efforts has been given to improve the lack of Simple Network Management Protocol and new frameworks has been developed: A promising approach involves the use of Ontology. This is the starting point of this paper where a novel approach to the network management based on the use of the Slow Intelligence System methodologies and Ontology based techniques is proposed. Slow Intelligence Systems is a general-purpose systems characterized by being able to improve performance over time through a process involving enumeration, propagation, adaptation, elimination and concentration. Therefore, the proposed approach aims to develop a system able to acquire, according to an SNMP standard, information from the various hosts that are in the managed networks and apply solutions in order to solve problems. To check the feasibility of this model first experimental results in a real scenario are showed.

  20. Fuzzy-driven energy storage system for mitigating voltage unbalance factor on distribution network with photovoltaic system

    Science.gov (United States)

    Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat

    2017-04-01

    The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.